

U.S. ARMY GARRISON WIESBADEN DRINKING WATER CONSUMER CONFIDENCE REPORT FISCAL YEAR 2024

Table of Contents

Letter from the U.S. Army Garrison Wiesbaden Garrison Commander	3
Drinking Water Sources	4
Why so much testing?	5
Required information per EPA	5
Is our water safe to drink?	6
Hot Topic: Lead in Water	7
Clay Kaserne and Amelia Earhart	8
Additional Monitoring and Other Installations	9
Further Improving Drinking Water Quality	10
Water Conservation	11
Results	12
Table 2: Lucius D. Clay Kaserne Water Quality Summary	13
Table 3: Army Family Housing Areas Aukamm, Crestview and Hainerberg Water C	Quality
Summary**	14
Table 4: Amelia Earhart Center Water Quality Summary	15
Table 5: Golf Course Rheinblick Water Quality Summary**	16
Table 6: Mainz Kastel Station Water Quality Summary	17
Table 7: McCully Support Center and Wackernheim Range Water Quality Summary	18
Table 8: Darmstadt Training Complex (DAGGER) Water Quality Summary	19
Testing Parameters	20
Customer input welcome	21
Acronyms and definitions	22

U.S. ARMY GARRISON WIESBADEN – FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT Letter from the U.S. Army Garrison Wiesbaden Garrison Commander

Dear USAG Wiesbaden Community Member,

I am pleased to present USAG Wiesbaden's eighth annual Consumer Confidence Report that offers you, our valued residents, a transparent overview of our drinking water supply sources, water quality information, and testing results over the past fiscal year. Our goal is to provide you and your family with reliable, safe and compliant drinking water. We are continually striving to improve our services, protect our vital water resources and maintain your trust by keeping you informed.

Here at USAG Wiesbaden, we are blessed with a sufficient supply of high-quality drinking water. Please remember, we all play a part in protecting our environment, especially groundwater, which is key to replenishing our drinking water supply. By working together, we can preserve its quality and availability for generations to come.

TROYG. DANDERSON

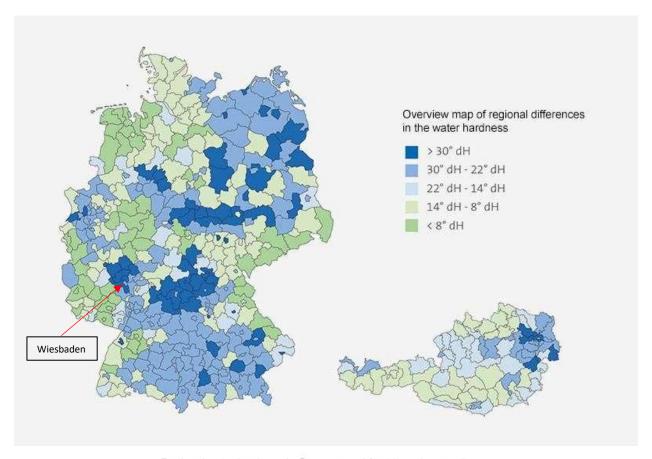
COL, MI

COMMANDING

Drinking Water Sources

USAG Wiesbaden installations receive their drinking water from several local reputable German suppliers who ensure water quality is in strict compliance with the German Drinking Water Ordinance. All suppliers publish water quality reports (in German) on their websites.

Table 1: USAG Wiesbaden Water Systems, Suppliers and Sources


	Water System	Water Supplier	Source
1.	Lucius D. Clay Kaserne	WLW/Hessenwasser: Ried (Hassloch) https://www.wlw- iesbaden.de/wasser/trinkwasserqualitaet	GW ¹
,	Army Family Housing Areas: Aukamm, Crestview, and Hainerberg	ESWE/Hessenwasser: Ried (Hassloch)/ Taunus/Niedernhausen https://www.hessenwasser.de/home.html	GW
3.	Amelia Earhart Center	ESWE/Hessenwasser: Schierstein/Taunus https://www.hessenwasser.de/home.html	GW and GWUDISW ²
4.	Golf Course Rheinblick	ESWE/Hessenwasser: Ried (Hassloch)/Schierstein https://www.hessenwasser.de/home.html	GW and GWUDISW
5.	Mainz Kastel Station	Mainz Netze GmbH: Petersaue/Hof-Schönau https://www.mainzer-netze.de/trinkwasser/trinkwasserqualitaet/	GWUDISW
;	McCully Support Center and Wackernheim Range	Rheinhessische Energie Wackernheim https://www.rheinhessische.de/wasser.html	GW and GWUDISW
	Darmstadt Training Center (DAGGER)	HSE Hessenwasser https://www.hessenwasser.de/home.html	GW

Note: Report does not include water supplied to Army operational areas at Mainz Kastel Support Annex and Egelsbach Transmitter facilities (non-potable water). Majority of our water supply comes from groundwater that travels through purifying sand and activated carbon filtration to remove impurities prior

¹ Groundwater

² Groundwater under the direct influence of surface water

U.S. ARMY GARRISON WIESBADEN — FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT to distribution. The overall water hardness for USAG Wiesbaden is *hard* meaning it is high in essential minerals, such as calcium and magnesium.

Regional water hardness in Germany and Austria varies greatly

Figure 1: If the groundwater comes into contact with limestone, the water hardness tends to be higher, whereas surface water tends to be softer. The quickest way to find out the hardness of your drinking water is to contact your local water supplier.

Although healthy for consumption, hardness causes white scaling to develop on appliances and around faucets. These mineral deposits are easily removable with vinegar or lemon juice. Hard water can contribute to dry skin, and soap not rinsing off easily when using American based products. Therefore, residents may consider using German soaps and beauty products formulated for use in hard water.

Why so much testing?

Required information per EPA

Continual maintenance of the distribution systems and ongoing water testing assures our water remains safe. The sources of drinking water – both tap water and bottled water – include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land

U.S. ARMY GARRISON WIESBADEN — FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT or through the ground, it can pick up and dissolve various natural and synthetic substances to include:

- Microbes, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganics, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from agriculture, urban stormwater runoff, and residential uses.
- ❖ Organic chemicals, including synthetic and volatile organics from industrial processes, petroleum production, gas stations, urban stormwater runoff, and septic systems.
- * Radioactive materials, which can be naturally occurring or the result of oil or gas production and mining activities.

Drinking water, including bottled water, may also contain small amounts of impurities that do not necessarily pose a health risk. Some people may be more vulnerable to impurities in drinking water than the general population.

Persons undergoing chemotherapy or organ transplants, with immune system disorders, some elderly and infants may be at a higher risk of waterborne illness. These people should seek advice about drinking water quality from their health care providers. More information on drinking water quality and potential health effects is available by visiting the EPA website at https://www.epa.gov/ground-water-and-drinking-water/safe-drinking-water-information or by calling the EPA Safe Drinking Water Hotline at 001-800-426-4791.

Is our water safe to drink? EXTREMELY!

The water at USAG Wiesbaden is highly tested and monitored for all health and safety parameters. The garrison distribution systems are not only well maintained and very safe, the German provided water is highly regulated and of excellent quality. Although the source water comes from German providers, we also add chlorine to the water entering the Garrison potable water systems to protect from any potential biologics. This makes drinking water from the tap extremely safe. In addition to the treatment and testing performed by water suppliers, the Directorate of Public Works (DPW) Sanitation Branch operates and maintains each installation's water distribution system. DPW personnel are on call 24 hours per day, 7 days per week to maintain a continuous supply of safe and compliant drinking water. They conduct daily water quality field-testing to verify systems are operating properly, ensure water systems remain pressurized, and maintain sufficient disinfectant residual.

U.S. ARMY GARRISON WIESBADEN – FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT

Landstuhl Regional Medical Center (LRMC) Environmental Health Service conducts monthly bacteriological and water quality monitoring at multiple locations throughout the Garrison to verify our water remains safe and compliant. Through a Service Agreement between IMCOM-Europe and Public Health Command-Europe (PHCE), environmental engineers at PHCE conduct recurring water sampling and analyses at their U.S./German accredited laboratories for over 80 parameters annually. PHCE consistently reports that the water quality of all USAG Wiesbaden installation's water systems comply with the Final Governing Standards (FGS) regulations. DPW Environmental Division provides overall management and technical oversight of the Drinking Water Program to ensure water remains safe and compliant.

For detailed information on specific water quality parameters and results, please reach out to the DPW Environmental Division.

Hot Topic: Lead in Water

There are no known lead pipes in use at USAG Wiesbaden and lead testing verifies our water supply is well below the regulatory action level. Lead is a naturally occurring metal found in small amounts throughout our environment including groundwater. Lead is not absorbed through the skin from washing or bathing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children.

Additionally, the FGS required Lead & Copper Rule monitoring is conducted by PHCE, and USAG Wiesbaden is an active participant in the Armywide, 5-year lead testing campaign to ensure primary drinking water taps in child occupied facilities and occupied Army Family Housing units are safe. The first campaign was from FY16-FY20 and was completed with 100% Army Family

Housing (AFH) units tested. Due to COVID and reduced ability to secure contractors, the second campaign from FY21-FY25 is behind schedule. However, great effort is being done to ensure the campaign still completes 100% Army Family Housing units tested by end of FY25.

Lead testing completed in Fiscal Year 2024 confirmed safe drinking water in USAG Wiesbaden community facilities (designated High-Risk Facilities (HRF)) occupied by children aged 6 and under. In FY21, DPW Environmental Division began overseeing the Army lead sampling campaign and is seeking resident support to continue the testing.

During the second 5-year cycle, approximately 4% of the kitchen faucet first draw samples (A: first cup (250 mL) of water after 8 hours) reported results above the action level, which is likely attributable to lead leaching from the brass within the faucet to the water or the aerator. In these cases, DPW quickly coordinates faucet or aerator replacements, which have proven effective at reducing lead levels.

Figure 2: Timing of sample collection set after a water stagnation period of at least 8 hours using 250-milliter samples containers.

Majority of all second draw (B) and third draw (C) testing results reported lead well below the action level, emphasizing the importance of flushing your tap until noticeably colder (30 seconds to 2 minutes) after extended periods of non-use before using the water for consumption purposes. DPW notifies all residents of their lead sampling results within 30 days of receiving the results. Lead testing results are too numerous to include in this report but are available by contacting DPW Environmental Division during business hours at 0611-143-548-4093/4086.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure wherever you are staying is available at https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water.

Clay Kaserne and Amelia Earhart

<u>Clay Kaserne Barracks:</u> Lead and Copper Rule monitoring initially reported copper above action levels in several Clay Kaserne barracks in late 2017. This is likely attributable to copper leaching from the barrack pipes into the water due to low occupancy rates, which allowed the water to stagnate. This emphasizes the importance of allowing the cold water to run prior to use for drinking or cooking purposes to flush out stagnant water.

Steps taken to effectively reduce copper levels in barrack drinking water include educating occupants to flush cold water before use, and filtering water at shared kitchens and fountains. Permanent solutions include replacement of brass faucets and accessible copper piping within barracks, and installation of automatic flushing devices on top floors to reduce water stagnation.

Unlike lead, copper is essential for health with a Recommended Dietary Allowance (RDA) of 900 micrograms per day. Excessive copper exposure can cause stomach and intestinal distress short-term, liver and kidney damage long-term, and complications in genetically predisposed people with Wilson's disease that allows excess copper to build up in the body.

U.S. ARMY GARRISON WIESBADEN — FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT In FY21, Clay Kaserne drinking water complied with lead and copper standards for two consecutive semi-annual monitoring events and qualified for reduced annual sampling. FY24 continues the same results as FY22 and FY21, and Ultimate Reduced monitoring was achieved. The next sampling event for Clay Kaserne will be in FY26. Results are provided in <u>Table 2</u>.

As of FY23 UPH (barracks) are going through an improvement plan (BIP). This BIP is aimed at updating and renovating Clay Kaserne buildings to house more unaccompanied soldiers, as well as improve other outdated homes and apartments. These improvements will additionally ensure copper is no longer an issue within the barracks. Updates to water supply lines and faucets happen as buildings are updated individually. BIP is expected to take up to 2 more years to complete, then the second phase (Army Family Housing) will begin and last for 30 years.

Amelia Earhart Center (AEC) From FY20-FY21, AEC was not in compliance with copper action levels. The interior plumbing of the building consists of copper piping. Due to low water usage during the COVID pandemic, particulates in aerators and stagnation are possible causes of the increase in copper levels. Semi-annual monitoring for lead, copper, and other water quality monitoring parameters continued until two consecutive monitoring events were below action levels. The DPW took action by making plumbing modifications, installing auto-flushing devices, and implementing a flushing program.

In FY22, semiannual testing results complied with both lead and copper action levels in July 2022. In January 2023, the lead and copper levels were in compliance with the FGS. This indicates the corrective actions were successful in reducing the levels and allowed the monitoring to switch from semi-annual to annual. Fiscal Year 2024 shows the lead and copper levels were again in compliance with FGS regulations. FY25 begins intensive renovations on the AEC, to which plumbing will also be updated.

Additional Monitoring and Other Installations

Additional monitoring conducted to ensure water remains safe includes the following:

McCully Support Center Increased Nitrate Monitoring:

Per the FGS, increased quarterly monitoring for nitrates began at McCully Support Center in 2012 when nitrate was initially reported above 5 parts per million (ppm). Elevated nitrate levels in water are usually attributable to fertilizer applications from farming. In FY24, nitrate concentration was 4.3 ppm, and remains consistently well below the maximum contaminant level (MCL) of 10 ppm.

As of August 2023, McCully complied with lead and copper action levels to have Ultimate Reduced Monitoring. The next monitoring event will be in FY26.

Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) Water Supply Testing:

U.S. ARMY GARRISON WIESBADEN — FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT PFOA/PFOS are compounds found in everyday life products such as carpets, clothing, fabrics for furniture, food packaging, cookware, firefighting foams and other materials needing resistance to water, grease, and stains.

All testing results for the USAG Wiesbaden water supplies sampled in FY23 and FY24 were reported well below the EPA's lifetime health advisory levels for these unhealthy compounds.

Testing Hot Shower Water for Legionella Bacteria:

Although not yet required stateside, the FGS requires annual monitoring of hot water for Legionella bacteria in multi-family and community facilities having showers with large hot water heaters.

Inhaling water droplets containing high concentrations of Legionella bacteria can cause Legionnaires disease, a type of severe pneumonia. Persons over 50 years old, smokers, or those with compromised immune systems are most susceptible to infection. Children are rarely affected. Legionella typically becomes a concern in hot water systems where water is not hot enough to kill the bacteria or where water remains stagnant for long periods of time.

In FY24 at USAG Wiesbaden, a certified contractor collected hot water samples (1 sample per stairwell or 2 per facility) from 150 buildings for Legionella analyses. Six of the buildings tested reported legionella above the 100 CFU/100 mL FGS action level requiring notification of occupants and corrective actions including technical inspection of boilers, replacement of hot water circulation pumps, raising hot water temperatures and flushing of lines. Legionella sampling results are not included in this report, but you can contact DPW Environmental Division at 0611-143-548-4093/4086 for further information.

Further Improving Drinking Water Quality

Consider taking an active role at further improving the drinking water quality at your tap for you and your family by following the EPA Best Management Practices listed below, which are applicable wherever you live or are visiting:

- ❖ Flush cold water before initial daily use. At the start of each day or after extended periods of non-use, flush the cold-water tap by running the water for about 30 seconds or until it becomes noticeably colder indicating you are receiving fresh water. No need to waste this stagnant flush water as it is useful for watering plants or cleaning purposes.
- ❖ Use only cold water, not hot water to prepare food, drinks and especially baby formula. Hot water is more aggressive at leaching metals from plumbing so be sure to use only cold water for drinking water purposes and then heat it when hot water is needed.
- ❖ Twice per year, clean the aerator screens at the end of your faucets. Sediment and mineral deposits accumulate on faucet aerators degrading water quality. Removing and soaking the aerators in vinegar overnight dissolves these deposits, improving flow and water quality. As needed, replacement aerators are available at the Hainerberg Self-Help

- U.S. ARMY GARRISON WIESBADEN FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT Store (Building 7802, 0611-143-**548-4072**). *Make sure to bring the old aerators along, as there are several different types.*
- Consider using a water filter, which may reduce the hardness, remove chlorine, and improve taste. Be sure to replace the filter at proper intervals to prevent bacteria from developing.

DPW Environmental Division recommends residents use their kitchen cold-water taps as the primary source of drinking water since these are the taps tested for lead, and likely used more often. Additionally, drinking hard water has natural health benefits due to the high magnesium and calcium levels, essential minerals for optimal health and longevity.

Water Conservation

Water is a precious resource that is not limitless or cheap. USAG Wiesbaden consumes over 160 million gallons of water every year at a rising cost of roughly \$1.6 million dollars. DPW water conservation measures included reducing irrigation in summer months and installing low-flow plumbing fixtures during housing and office renovations. You too can conserve water and protect the environment by:

- Not letting the water run while shaving or brushing teeth;
- Only running the dishwasher and washing machine when full;
- Not using toilets for trash disposal. Dispose of tissues, cotton balls, etc. in the trash bin instead;
- Never flushing medicine down the drain where it can reenter the environment. Return unneeded medications and prescription drugs to the Wiesbaden Army Health Clinic;
- Never flushing hazardous products down the drain. Bring unneeded household hazardous materials to the Clay Kaserne Recycling Center Bldg. 2450 Heinigstrasse;
- Promptly reporting water leaks to DPW Customer Service at 0611-143-548-4357 or create a service order on the ARMA web page: <u>AMC Login ArmyMaintenance.com</u>
- ❖ Immediately reporting spills of hazardous substances to the USAG Wiesbaden Fire Department at 0611-143-548-0112.

Results

Per the FGS, your water is tested for a wide variety of parameters. Results must remain below the regulatory limit to comply. This limit, called the maximum contaminant level (MCL) establishes the regulatory criteria to protect human health. If a level exceeds the MCL, it is a violation. PHCE consistently reports our water complies with the FGS water quality criteria for the drinking water parameters evaluated each fiscal year.

Tables 2-8 present the regulated substances detected by laboratory analyses in each water system, although testing included many other parameters. This allows an easy comparison of the impurities detected to the regulatory limits. The reporting period for this report is October 1, 2023 to September 30, 2024; however, not all parameters require annual monitoring per the FGS.

Quick view at definitions and units:

- ❖ <u>Maximum Contaminant Level (MCL):</u> The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- ❖ <u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water which there is no known or expected risk to health. MCLGs allow a margin of safety.
- ❖ <u>Action Level:</u> The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- ❖ <u>Treatment Technique (TT):</u> A required process intended to reduce the level of a contaminant in drinking water.
- ❖ <u>Maximum Residual Disinfectant Level (MRDL):</u> The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- ❖ <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- ❖ <u>Units:</u> The units of measurement typically used in the tables are *ppm*, which stands for the concentration in parts per million (or 1 milligram in 1 liter); *ppb* is even smaller and stands for parts per billion (or 1 microgram in 1 liter); ppt is smaller still representing parts per trillion; *pCi/L* stands for picocurie per liter and describes radiological activity.

U.S. Army Garrison Wiesbaden – FY24 Drinking Water Consumer Confidence Report Table 2: Lucius D. Clay Kaserne Water Quality Summary

	Inorganic Chemicals						
Contaminant	MCL	Ideal Goal (EPA's MCLG)	Your Water Results	Sample Date	Violation	Typical Sources	
Nickle	0.1 ppm	0.02 ppm	0.0011	14-Nov-23	No	Erosion of natural deposits	
Barium	2.0 ppm	2.0 ppm	0.13	14-Nov-23	No	Erosion of natural deposits	
Fluoride	4.0 ppm	4.0 ppm	0.11	14-Nov-23	No	Erosion of natural deposits	
Nitrate (as Nitrogen)	10 ppm	10 ppm	0.35	14-Nov-23	No	Runoff from fertilizer use	
Sodium	No Standard*	N/A	16.9	14-Nov-23	No	Erosion of natural deposits	
			Disir	nfectant Residuals			
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources	
Total Trihalomethanes	0.080 ppm	N/A	0.026	30-Jul-24	No	Sum total of disinfection byproducts	
Total Haloacetic Acids	0.060 ppm	N/A	0.0089	30-Jul-24	No	Sum total of disinfection byproducts	
Dalpon	0.2 ppm	N/A	0.00008	30-Jul-24	No	Byproduct of Chlorine Disinfection	
			*Average	of three separate locations			

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

U.S. ARMY GARRISON WIESBADEN – FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT

Table 3: Army Family Housing Areas Aukamm, Crestview and Hainerberg Water Quality Summary**

	Inorganic Chemicals							
Contaminant	MCL	Ideal Goal (EPA's MCLG)	Your Water Results	Sample Date	Violation	Typical Sources		
Aluminum	No Standard*	N/A	<0.005	30-Oct-23	No	Erosion of natural deposits		
Barium	2.0 ppm	2.0 ppm	0.074	30-Oct-23	No	Erosion of natural deposits		
Fluoride	4.0 ppm	4.0 ppm	<0.1	30-Oct-23	No	Erosion of natural deposits		
Nitrate (as Nitrogen)	10 ppm	10 ppm	1.0	30-Oct-23	No	Runoff from fertilizer use		
Sodium	No Standard*	N/A	10.9	30-Oct-23	No	Erosion of natural deposits		
			Disi	nfectant Residuals				
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources		
Total Trihalomethanes	0.080 ppm	N/A	0.031 ppm	30-Jul-24	No	Sum total of disinfection byproducts		
Total Haloacetic Acids	0.060 ppm	N/A	<0.0060 ppm	30-Jul-24	No	Sum total of disinfection byproducts		
			* highest of 12 sampling poi	nts across Hainerberg, Aukamm, and Crest	view			
			Polycyclic Aroma	atic Hydrocarbons (PAH)/ PFAS				
Contaminant	MCL or EPA HA	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources		
Total PAHs	0.2 ppb	N/A	Not Detected	30-Oct-23	No	Burning of coal/gas/wood.		
Sum PFOS & PFOA	70 ppm	N/A	Not Detected	3-Apr-24	No	Industrial sites/ fire training		

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

^{**} Includes Hainerberg Schools, Lodge and PX.

Table 4: Amelia Earhart Center Water Quality Summary

	Inorganic Chemicals							
Contaminant	MCL	Ideal Goal (EPA's MCLG)	Your Water Results	Sample Date	Violation			Typical Sources
Boron	No Standard*	1.0 ppm	0.04	30-Oct-23		No		Erosion of natural deposits
Barium	2.0 ppm	2.0 ppm	0.087	30-Oct-23		No		Erosion of natural deposits
Fluoride	4.0 ppm	4.0 ppm	0.18	30-Oct-23		No		Erosion of natural deposits
Nickel	0.1 ppm	0.02 ppm	0.0014	30-Oct-23		No		Erosion of natural deposits
Nitrate (as Nitrogen)	10 ppm	10 ppm	0.64	30-Oct-23		No		Runoff from fertilizer use
Sodium	No Standard*	N/A	31.9	30-Oct-23		No		Erosion of natural deposits
			Dis	infectant Residuals				
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation			Typical Sources
Total Trihalomethanes	0.080 ppm	N/A	<0.002	30-Jul-24		No		Sum total of disinfection byproducts
Total Haloacetic Acids	0.060 ppm	N/A	<0.0060	30-Jul-24		No		Sum total of disinfection byproducts
			Polycyclic Aron	natic Hydrocarbons (PAH)/ PFAS	,			
Contaminant	MCL, or EPA HA	MCLG or MRDLG	Your Water Results	Sample Date		Violation		Typical Sources
Total PAHs	0.2 ppb	N/A	Not Detected	30-Oct-23		No		Burning of coal/gas/wood.
Sum PFOS & PFOA	70 ppm	N/A	2.2 ppm and Not Detected	31-Jan-24 and 15-Jul-24	No			Industrial sites/ fire training
			١	∟ead and Copper				
Contaminant	EPA's Action Level	Ideal Goal (EPA's MCLG)	90% of Test Levels Were Less Than	# of Tests with Levels above EPA's Action Level	Lowest Level	Highest Level	Violation	Typical Sources
Lead	90% of samples <15 ppb	0 ppb	0.0016 ppm	0 out of 6**	<0.001 ppm	0.0017 ppm	No	Corrosion of household plumbing
Copper	90% of samples <1.3 ppm	1.3 ppm	0.86 ppm	0 out of 6**	0.31 ppm	0.98 ppm	No	Corrosion of household plumbing

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

^{**}Under reduced monitoring, a minimum of 5 samples are required. PHCE collected 6 samples.

U.S. ARMY GARRISON WIESBADEN – FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT

Table 5: Golf Course Rheinblick Water Quality Summary**

	Inorganic Chemicals						
Contaminant	MCL	Ideal Goal (EPA's MCLG)	Your Water Results	Sample Date	Violation	Typical Sources	
Aluminum	No Standard*	N/A	<0.005	30-Oct-23	No	Erosion of natural deposits	
Barium	2.0 ppm	2.0 ppm	0.12	30-Oct-23	No	Erosion of natural deposits	
Boron	No Standard*	1.0 ppm	0.03	30-Oct-23	No	Erosion of natural deposits	
Fluoride	4.0 ppm	4.0 ppm	0.13	30-Oct-23	No	Erosion of natural deposits	
Nitrate (as Nitrogen)	10 ppm	10 ppm	0.29	30-Oct-23	No	Runoff from fertilizer use	
Sodium	No Standard*	N/A	18.6	30-Oct-23	No	Erosion of natural deposits	
			Polycyclic Arom	atic Hydrocarbons (PAH)/ PFAS			
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources	
Total PAHs	0.2 ppb	N/A	Not Detected	30-Oct-23	No	Burning of coal/gas/wood.	
Sum PFOS & PFOA	70 ppm	N/A	Not Detected	3-Apr-24	No	Industrial sites/ fire training	

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

^{**} As a transient non-community water system (TNCWS), applicable testing at Rheinblick Golf Course is limited to inorganics and ammonium/nitrates.

U.S. ARMY GARRISON WIESBADEN – FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT Table 6: Mainz Kastel Station Water Quality Summary

	Inorganic Chemicals						
Contaminant	taminant MCL (EPA's MCLG)		(EPA's Your Water Results Sample Date		Violation	Typical Sources	
Aluminum	No Standard*	N/A	0.0061	30-Oct-23	No	Erosion of natural deposits	
Antimony	0.006 ppm	0.005 ppm	0.00021	30-Oct-23	No	Erosion of natural deposits	
Boron	No Standard*	1.0 ppm	0.03	30-Oct-23	No	Erosion of natural deposits	
Barium	2.0 ppm	2.0 ppm	0.09	30-Oct-23	No	Erosion of natural deposits	
Fluoride	4.0 ppm	4.0 ppm	0.15	30-Oct-23	No	Erosion of natural deposits	
Nickel	0.1 ppm	0.02 ppm	0.0010	30-Oct-23	No	Erosion of natural deposits	
Nitrate (as Nitrogen)	10 ppm	10 ppm	0.5	30-Oct-23	No	Runoff from fertilizer use	
Sodium	No Standard*	N/A	26.3	30-Oct-23	No	Erosion of natural deposits	
			Disi	nfectant Residuals			
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources	
Total Trihalomethanes	0.080 ppm	N/A	<0.002	30-Jul-24	No	Sum total of disinfection byproducts	
Total Haloacetic Acids	0.060 ppm	N/A	<0.0060	30-Jul-24	No	Sum total of disinfection byproducts	
	Polycyclic Aromatic Hydrocarbons (PAH)/ PFAS						
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources	
Total PAHs	0.2 ppb	N/A	Not Detected	30-Oct-23	No	Burning of coal/gas/wood.	
Sum PFOS & PFOA	70 ppm	N/A	Not Detected	31-Jan-24 and 15-Jul-24	No	Industrial sites/ fire training	

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

U.S. ARMY GARRISON WIESBADEN – FY24 DRINKING WATER CONSUMER CONFIDENCE REPORT Table 7: McCully Support Center and Wackernheim Range Water Quality Summary

	Inorganic Chemicals						
Contaminant	MCL	Ideal Goal (EPA's MCLG)	Your Water Results	Sample Date	Violation	Typical Sources	
Aluminum	No Standard*	N/A	0.0055	14-Nov-23	No	Erosion of natural deposits	
Barium	2.0 ppm	2.0 ppm	0.09	14-Nov-23	No	Erosion of natural deposits	
Boron	No Standard*	1.0 ppm	0.03	30-Oct-23	No	Erosion of natural deposits	
Fluoride	4.0 ppm	4.0 ppm	0.14	14-Nov-23	No	Erosion of natural deposits	
Nickel	0.1 ppm	0.02 ppm	0.0013	30-Oct-23	No	Erosion of natural deposits	
Nitrate (as Nitrogen)	10 ppm	10 ppm	4.3	14-Nov-23	No	Runoff from fertilizer use	
Sodium	No Standard*	N/A	28.9	14-Nov-23	No	Erosion of natural deposits	
			Disir	nfectant Residuals			
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date	Violation	Typical Sources	
Total Trihalomethanes	0.080 ppm	N/A	0.045	31-Jul-24	No	Sum total of disinfection byproducts	
Total Haloacetic Acids	0.060 ppm	N/A	<.0.0060	31-Jul-24	No	Sum total of disinfection byproducts	
Polycyclic Aromatic Hydrocarbons (PAH)/ PFAS							
Contaminant MCL, or EPA HA MCLG or MRDLG Your Water Results		Sample Date	Violation	Typical Sources			
Total PAHs	0.2 ppb	N/A	Not Detected	14-Nov-23	No	Burning of coal/gas/wood.	
Sum PFOS & PFOA	0.07ppb	N/A	-	Next Sample in FY25		Industrial sites/ fire training	

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

Table 8: Darmstadt Training Complex (DAGGER) Water Quality Summary

	Inorganic Chemicals							
Contaminant	Contaminant MCL Ideal Goal (EPA's MCLG)		Your Water Results	Sample Date	Violation			Typical Sources
Aluminum	No Standard*	N/A	<0.005	14-Nov-23		No		Erosion of natural deposits
Barium	2.0 ppm	2.0 ppm	0.055	14-Nov-23		No		Erosion of natural deposits
Fluoride	4.0 ppm	4.0 ppm	<0.1	14-Nov-23		No		Erosion of natural deposits
Nickel	0.1 ppm	0.02 ppm	0.0014	30-Oct-23		No		Erosion of natural deposits
Nitrate (as Nitrogen)	10 ppm	10 ppm	2.1	14-Nov-23		No		Runoff from fertilizer use
Sodium	No Standard*	N/A	11.7	14-Nov-23		No		Erosion of natural deposits
			Polycyclic Aroma	atic Hydrocarbons (PAH)/ PFAS				
Contaminant	MCL	MCLG or MRDLG	Your Water Results	Sample Date		Violation		Typical Sources
Total PAHs	0.2 ppb	N/A	Not Detected	14-Nov-23		No		Burning of coal/gas/wood.
Sum PFOS & PFOA	0.07ppb	N/A	-	Next Sample in FY26		No		Industrial sites/ fire training
			Le	ead and Copper				
Contaminant	EPA's Action Level	Ideal Goal (EPA's MCLG)	90% of Test Levels Were Less Than	# of Tests with Levels above EPA's Action Level	Lowest Level	Highest Level	Violation	Typical Sources
Lead	90% of samples <15 ppb	0 ppb	0.0021 ppm	0 out of 5	<0.001 ppm	0.0022 ppm	No	Corrosion of household plumbing
Copper	90% of samples <1.3 ppm	1.3 ppm	0.032 ppm	0 out of 5	0.014 ppm	0.040 ppm	No	Corrosion of household plumbing

^{*} No Standard per EPA, but the FGS establishes notification levels for these parameters. Parameters were below their respective notification levels.

Testing Parameters

Table 9: Parameters requiring monitoring per German Final Governing Standards

Inorganics	Volatile Organic Compounds (VOCs)
Ammonia	Benzene
Cyanide, free	Bromodichloromethane
Fluoride	Bromoform
Nitrate (as Nitrogen)	Carbon tetrachloride
Nitrite (as Nitrogen)	Chlorobenzene
Total Nitrate and Nitrite	Chloroform
	Dibromochloromethane
Metals	1,2-Dichlorobenzene
Aluminum	1,1-Dichloroethene
Antimony	cis-1,2-Dichloroethene
Arsenic	trans-1,2-Dichloroethene
Barium	1,2-Dichloropropane
Beryllium	Ethylbenzene
Boron	Methyl t-butyl ether
Cadmium	Methylene chloride
Chromium	Naphtalene
Copper	Styrene
Lead	Tetrachloroethene
Mercury	Toluene
Nickel	1,2,4-Trichlorobenzene
Selenium	1,1,1-Trichloroethane
Sodium	1,1,2-Trichloroethane
Thallium	Trichloroethene
	Vinyl Chloride
Organic Compounds (PAHs)	Xylene, Total
Benzo(a)pyrene	Trihalomethanes, total
Total PAHs	Di (2-ethylhexyl) adipate
Benzo(b)fluoranthene	Di (2-ethylhexyl) phthalate
Benzo(k)fluoranthene	
Benzo(g,h,h)perylene	Radiological Activity
Indeno(1,2,3-cd)pyrene	Gross Alpha Activity, total
	Gross Alpha Uncertainty
Disinfectant Byproducts	Gross Alpha Minimum Detect Activity
Trihalomethanes, total	Gross Alpha Activity (calculated)
Bromodichloromethane	Gross Beta Activity, total
Bromoform	Gross Beta Uncertainty
Chloroform	Gross Beta Minimum Detect Activity
Dibromochloromethane	Uranium
Haloacetic Acids, total	Radium – 228 Activity
Dibromoacetic acid	Radium – 228 Uncertainty
Dichloroacetic acid	Radium – 228 Minimum Detect Activity
Monobromoacetic acid	Radium – 226 Activity
Monochloroacetic acid	Radium – 226 Uncertainty
Trichloroacetic acid	Radium – 226 Minimum Detect Activity
	Combined Radium 226/228

Additionally Analyzed Parameters
Alkalinity
Calcium
Magnesium
Phosphorus, total
Saturation (Langelier) Index
Total dissolved solids
Total hardness (calculated)
Perfluorooctanoic acid (PFOA)
Perfluorooctanesulfonic acid
(PFOS)
Dalapon [2, 2-DPA]

Customer input welcome

Our valued customers do not need to wait for Town Hall meetings to discuss water supply and drinking water quality. For more information on this report or drinking water quality in general, please visit the DPW-Environmental Division website at:

https://home.army.mil/wiesbaden/index.php/my-fort/all-services/environmental or call 0611-143-548-4093/4086 during working hours. The Environmental Division welcomes your ideas and comments to improve this report and our services.

Acronyms and definitions

Acronym	Meaning
AL	Action Level. A level below the maximum contaminant level that if exceeded
	requires initiation of additional monitoring and possible operational actions.
Disinfectant Byproducts	They can form when disinfectants, such as chlorine, react with naturally present
	compounds in the water.
DoD	Department of Defense
DPW	Directorate of Public Works
EPA	United States Environmental Protection Agency
FY	U.S. Government Fiscal Year. FY23 starts on 1 October 2022 and ends on 30 September 2023.
GW	Ground Water
GWUDISW	Ground Water Under Direct Influence of Surface Water
FGS	German Final Governing Standards (latest edition 2020)
HLA	Health Advisory Level
LCR	Lead and Copper Rule
MCL	Maximum Contaminant Level. The highest level of a contaminant allowed in drinking
	water before some type of action is required. If results exceed the MCL, they are
	marked as violation.
MCLG	Maximum Contaminant Level Goal. The level of a contaminant in drinking water
	below which there is no known or expected risk to health. MCLGs allow a margin of
	safety.
mg/L	Metric unit of measure meaning milligrams per liter. 1 mg/l corresponds to 1 minute
	in 2 years, or a single penny in \$10,000.
mL	Milliliter (1 cup or 8 ounces equals 236.5 mL)
MRDL	Maximum residual disinfectant level. The highest level of a disinfectant allowed in
	drinking water. There is convincing evidence that addition of a disinfectant is
	necessary for control of microbial contaminants.
MRDLG	Maximum residual disinfectant level goal. The level of a drinking water disinfectant
	below which there is no known or expected risk to health. MRDLGs do not reflect
	the benefits of the use of disinfectants to control microbial contaminants.
Parameter	Substance being tested for
pCi/L	Metric unit of measure meaning picocuries per liter.
PFOA	Perfluorooctanoic Acid
PFOS	Perfluorooctane Sulfonate
PHCE	Public Health Command-Europe
ppb	Parts per billion (or 1 drop in a billion gallons)
ppm	Parts per million (or 1 drop in 1 million gallons)
RDA	Recommended Dietary Allowance or popularly called the Recommended Daily
	Allowance.
TNCWS	Transient Non-Community Water System
USAG	United States Army Garrison