QC Summary

Sample ID: OQ32583-001 Batch: 32583 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date					
Benzene	ND	1	0.50	0.027	ug/L	10/22/2013 2306					
Ethylbenzene	ND	1	0.50	0.17	ug/L	10/22/2013 2306					
Methyl tertiary butyl ether (MTBE)	ND	1	0.50	0.019	ug/L	10/22/2013 2306					
Naphthalene	ND	1	0.50	0.17	ug/L	10/22/2013 2306					
Toluene	ND	1	0.50	0.17	ug/L	10/22/2013 2306					
Xylenes (total)	ND	1	0.50	0.17	ug/L	10/22/2013 2306					
Surrogate	Q % Rec	Acceptance Limit									
Bromofluorobenzene	109	70-130									
1,2-Dichloroethane-d4	113	70-130									
Toluene-d8	114	70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ32583-002 Batch: 32583 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	49		1	99	70-130	10/22/2013 2134			
Ethylbenzene	50	51		1	101	70-130	10/22/2013 2134			
Methyl tertiary butyl ether (MTBE)	50	51		1	102	70-130	10/22/2013 2134			
Naphthalene	50	58		1	117	50-140	10/22/2013 2134			
Toluene	50	48		1	96	70-130	10/22/2013 2134			
Xylenes (total)	100	100		1	102	70-130	10/22/2013 2134			
Surrogate	Q % Rec	Acceptane Limit	ce							
Bromofluorobenzene	105	70-130								
1,2-Dichloroethane-d4	111	70-130								
Toluene-d8	111	70-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			0			5				
Sample ID: OQ32583-003 Batch: 32583 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spiko Amou (ug/L	Int	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50		49		1	98	0.49	70-130	20	10/22/2013 2157
Ethylbenzene	50		51		1	102	1.1	70-130	20	10/22/2013 2157
Methyl tertiary butyl ether (MTBE)	50		48		1	96	6.3	70-130	20	10/22/2013 2157
Naphthalene	50		53		1	106	9.6	50-140	20	10/22/2013 2157
Toluene	50		50		1	99	3.0	70-130	20	10/22/2013 2157
Xylenes (total)	100		100		1	102	0.037	70-130	20	10/22/2013 2157
Surrogate	Q	% Rec	Ac	cceptance Limit						
Bromofluorobenzene		107		70-130						
1,2-Dichloroethane-d4		109		70-130						
Toluene-d8		114		70-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

olumns exceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OJ18025-002M Batch: 32583 Analytical Method: 8260B	S Matrix: Aqueous Prep Method: 5030B									
Parameter	Sampl Amour (ug/L)	nt Amoui	nt Result	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Benzene	ND	50	56		1	111	70-130	10/23/2013 0612		
Ethylbenzene	ND	50	57		1	115	70-130	10/23/2013 0612		
Methyl tertiary butyl ether (MTBE)	1.6	50	57		1	112	70-130	10/23/2013 0612		
Naphthalene	ND	50	63		1	125	50-140	10/23/2013 0612		
Toluene	ND	50	57		1	113	70-130	10/23/2013 0612		
Xylenes (total)	ND	100	120		1	116	70-130	10/23/2013 0612		
Surrogate	Q	% Rec	Acceptance Limit							
1,2-Dichloroethane-d4		114	70-130							
Bromofluorobenzene		114	70-130							
Toluene-d8		119	70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

ND = Not detected at or above the MDL

ne MDL $J = Estimated result < PQL and <math>\ge$ MDL

+ = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			0				5				
Sample ID: OJ18025-002MD Batch: 32583 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B										
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPI Limit) Analysis Date
Benzene	ND		50	56		1	113	1.4	70-130	20	10/23/2013 0635
Ethylbenzene	ND		50	58		1	117	1.7	70-130	20	10/23/2013 0635
Methyl tertiary butyl ether (MTBE)	1.6		50	59		1	114	2.1	70-130	20	10/23/2013 0635
Naphthalene	ND		50	64		1	129	2.9	50-140	20	10/23/2013 0635
Toluene	ND		50	57		1	115	1.5	70-130	20	10/23/2013 0635
Xylenes (total)	ND		100	120		1	117	0.95	70-130	20	10/23/2013 0635
Surrogate	Q	% Rec	Ac	cceptance Limit							
1,2-Dichloroethane-d4		116		70-130							
Bromofluorobenzene		114		70-130							
Toluene-d8		121		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

columns exceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ32647-001 Batch: 32647 Analytical Method: 8260B			Preț	eous)B			
5	D II			501			
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND		1	0.50	0.027	ug/L	10/23/2013 1409
Ethylbenzene	ND		1	0.50	0.17	ug/L	10/23/2013 1409
Methyl tertiary butyl ether (MTBE)	ND		1	0.50	0.019	ug/L	10/23/2013 1409
Naphthalene	ND		1	0.50	0.17	ug/L	10/23/2013 1409
Toluene	ND		1	0.50	0.17	ug/L	10/23/2013 1409
Xylenes (total)	ND		1	0.50	0.17	ug/L	10/23/2013 1409
Surrogate	Q % Rec		eptance limit				
Bromofluorobenzene	87	7	0-130				
1,2-Dichloroethane-d4	108	7	0-130				
Toluene-d8	107	7	0-130				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ32647-002 Batch: 32647 Analytical Method: 8260B							
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	50		1	100	70-130	10/23/2013 1054
Ethylbenzene	50	55		1	109	70-130	10/23/2013 1054
Methyl tertiary butyl ether (MTBE)	50	48		1	97	70-130	10/23/2013 1054
Naphthalene	50	48		1	97	50-140	10/23/2013 1054
Toluene	50	55		1	111	70-130	10/23/2013 1054
Xylenes (total)	100	100		1	104	70-130	10/23/2013 1054
Surrogate	Q % Rec	Acceptan Limit	ce				
Bromofluorobenzene	99	70-130					
1,2-Dichloroethane-d4	89	70-130					
Toluene-d8	106	70-130					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria + = RPD is out of criteria

Sample ID: OQ32647-003 Batch: 32647 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Resu (ug/L		Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Benzene	50	50		1	100	0.13	70-130	20	10/23/2013 1259	
Ethylbenzene	50	51		1	103	6.1	70-130	20	10/23/2013 1259	
Methyl tertiary butyl ether (MTBE)	50	46		1	93	4.6	70-130	20	10/23/2013 1259	
Naphthalene	50	43		1	85	13	50-140	20	10/23/2013 1259	
Toluene	50	53		1	106	4.5	70-130	20	10/23/2013 1259	
Xylenes (total)	100	100		1	100	4.4	70-130	20	10/23/2013 1259	
Surrogate	Q %	Rec	Acceptance Limit							
Bromofluorobenzene	1(01	70-130							
1,2-Dichloroethane-d4	9	4	70-130							
Toluene-d8	1(09	70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

N = Recovery is out of criteria

J = Estimated result < PQL and \geq MDL

+ = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OJ18025-030M Batch: 32647 Analytical Method: 8260B	IS Matrix: Aqueous Prep Method: 5030B									
Parameter	Samp Amou (ug/L	int A	Spike mount ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
Benzene	ND	5	0	54		1	108	70-130	10/23/2013 2024	
Ethylbenzene	ND	5	0	56		1	113	70-130	10/23/2013 2024	
Methyl tertiary butyl ether (MTBE)	7.9	5	0	58		1	99	70-130	10/23/2013 2024	
Naphthalene	ND	5	0	42		1	84	50-140	10/23/2013 2024	
Toluene	ND	5	0	59		1	117	70-130	10/23/2013 2024	
Xylenes (total)	ND	1	00	110		1	108	70-130	10/23/2013 2024	
Surrogate	Q	% Rec		ptance mit						
1,2-Dichloroethane-d4		95	70)-130						
Bromofluorobenzene		104	70)-130						
Toluene-d8		110	70)-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

lumns exceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Matrix: Aqueous Prep Method: 5030B										
Amo	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPE Limit) Analysis Date
ND		50	56		1	112	3.9	70-130	20	10/23/2013 2047
ND		50	60		1	119	5.3	70-130	20	10/23/2013 2047
7.9		50	61		1	106	6.0	70-130	20	10/23/2013 2047
ND		50	49		1	99	16	50-140	20	10/23/2013 2047
ND		50	61		1	123	4.3	70-130	20	10/23/2013 2047
ND		100	110		1	114	5.9	70-130	20	10/23/2013 2047
Q	% Rec	Ac	ceptance Limit							
	93		70-130							
	101		70-130							
	109		70-130							
	Samų Amo (ug/ ND ND 7.9 ND ND ND	Sample Amount (ug/L) ND ND 7.9 ND ND ND ND Q % Rec 93 101	Sample Amount (ug/L) Spike Amount (ug/L) ND 50 ND 100 Action 100 100 93 101	Sample Amount (ug/L) Spike Amount (ug/L) Result (ug/L) ND 50 56 ND 50 60 7.9 50 61 ND 50 61 ND 50 61 ND 50 61 ND 50 110 Q % Rec Limit 93 70-130	Sample Amount (ug/L) Spike Amount (ug/L) Result (ug/L) Q ND 50 56 0 ND 50 60 1 ND 50 61 1 ND 50 61 1 ND 50 61 1 ND 50 61 1 ND 100 110 1 Q % Rec Acceptance Limit 4 93 70-130 10 1	Sample Amount (ug/L) Spike Amount (ug/L) Result (ug/L) Q Dit ND 50 56 1 ND 50 60 1 ND 50 61 1 ND 100 110 1 ND 100 110 1 ND 93 70-130 1	Sample Amount (ug/L) Spike Amount (ug/L) Q Dil % Rec ND 50 56 1 112 ND 50 60 1 119 7.9 50 61 1 106 ND 50 61 1 123 ND 50 61 1 123 ND 50 61 1 124 ND 50 61 1 123 ND 50 61 1 123 ND 100 110 1 144 Q % Rec Acceptance Limit V V 93 70-130 V V V V	Sample Amount (ug/L) Spike Amount (ug/L) Result (ug/L) Q Dil % Rec % RPD ND 50 56 1 112 3.9 ND 50 60 1 119 5.3 7.9 50 61 1 106 6.0 ND 50 61 1 106 6.0 ND 50 61 1 123 4.3 ND 50 61 1 123 4.3 ND 50 61 1 124 5.9 Q % Rec Acceptance Limit 1 114 5.9 Q % Rec Acceptance Limit 1 114 5.9 93 70-130 50 50 5.9 5.9	Prep Method: 5030B Sample Amount (ug/L) Spike Amount (ug/L) Q Dil % Rec % RPD % Rec Limit ND 50 56 1 112 3.9 70-130 ND 50 60 1 119 5.3 70-130 ND 50 61 1 106 6.0 70-130 ND 50 61 1 99 16 50-140 ND 50 61 1 123 4.3 70-130 ND 50 61 1 123 4.3 70-130 ND 50 61 1 123 4.3 70-130 ND 50 61 1 114 5.9 70-130 ND 100 110 1 114 5.9 70-130 Q % Rec Limit Limit Limit Limit Limit 93 70-130 1 114 5.9 Limit 93 70-130 Limit Limit Limit Limit	Prep Method: 5030B Sample Amount (ug/L) Spike Amount (ug/L) Q Dil % Rec % RPD Manue Limit % RPL Limit ND 50 56 1 112 3.9 70.130 20 ND 50 660 1 119 5.3 70.130 20 ND 50 61 1 106 6.00 70.130 20 ND 50 61 1 123 4.3 70.130 20 ND 100 110 1 114 5.9 70.130 20 ND 93 70.130 20 20 20 20 20 20 ND 100 110 1 14 5.9 70.130 20 ND 93

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35721-001 Batch: 35721 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date			
Benzene	ND		1	0.50	0.027	ug/L	10/24/2013 1012			
Ethylbenzene	ND		1	0.50	0.17	ug/L	10/24/2013 1012			
Naphthalene	ND		1	0.50	0.17	ug/L	10/24/2013 1012			
Toluene	ND		1	0.50	0.17	ug/L	10/24/2013 1012			
Xylenes (total)	ND		1	0.50	0.17	ug/L	10/24/2013 1012			
Surrogate	Q % Rec		eptance ₋imit							
Bromofluorobenzene	92	7	0-130							
1,2-Dichloroethane-d4	95	7	0-130							
Toluene-d8	90	7	0-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

lumns exceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35721-0 Batch: 35721 Analytical Method: 8260B	02	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Benzene	50	47		1	94	70-130	10/24/2013 0840				
Ethylbenzene	50	45		1	91	70-130	10/24/2013 0840				
Naphthalene	50	40		1	81	50-140	10/24/2013 0840				
Toluene	50	47		1	94	70-130	10/24/2013 0840				
Xylenes (total)	100	92		1	92	70-130	10/24/2013 0840				
Surrogate	Q % Rec	Accepta Limi									
Bromofluorobenzene	84	70-13	30								
1,2-Dichloroethane-d4	88	70-13	30								
Toluene-d8	87	70-13	30								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

C columns exceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35721-003 Batch: 35721 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B										
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date		
Benzene	50	47		1	95	0.77	70-130	20	10/24/2013 0903		
Ethylbenzene	50	45		1	90	0.71	70-130	20	10/24/2013 0903		
Naphthalene	50	41		1	83	2.8	50-140	20	10/24/2013 0903		
Toluene	50	47		1	94	0.051	70-130	20	10/24/2013 0903		
Xylenes (total)	100	91		1	91	1.1	70-130	20	10/24/2013 0903		
Surrogate	Q % Rec	Ac	ceptance Limit								
Bromofluorobenzene	82		70-130								
1,2-Dichloroethane-d4	86		70-130								
Toluene-d8	86		70-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

umns exceeds 40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			. 9								
Sample ID: OQ35723-001 Batch: 35723 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B										
Parameter	Res	ult	Q	Dil	PQL	MDL	Units	Analysis Date			
Benzene	ND			1	0.50	0.027	ug/L	10/22/2013 2251			
Ethylbenzene	ND			1	0.50	0.17	ug/L	10/22/2013 2251			
Methyl tertiary butyl ether (MTBE)	ND			1	0.50	0.019	ug/L	10/22/2013 2251			
Naphthalene	ND			1	0.50	0.17	ug/L	10/22/2013 2251			
Toluene	ND			1	0.50	0.17	ug/L	10/22/2013 2251			
Xylenes (total)	ND			1	0.50	0.17	ug/L	10/22/2013 2251			
Surrogate	Q	% Rec		Acceptance Limit							
Bromofluorobenzene		97		70-130							
1,2-Dichloroethane-d4		94		70-130							
Toluene-d8		90		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35723-002 Batch: 35723 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Benzene	50	51		1	102	70-130	10/22/2013 2120				
Ethylbenzene	50	50		1	100	70-130	10/22/2013 2120				
Methyl tertiary butyl ether (MTBE)	50	55		1	110	70-130	10/22/2013 2120				
Naphthalene	50	48		1	97	50-140	10/22/2013 2120				
Toluene	50	51		1	101	70-130	10/22/2013 2120				
Xylenes (total)	100	100		1	101	70-130	10/22/2013 2120				
Surrogate	Q % Rec	Acceptan Limit	се								
Bromofluorobenzene	92	70-130									
1,2-Dichloroethane-d4	90	70-130									
Toluene-d8	89	70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: 0Q35723-003 Batch: 35723	Matrix: Aqueous Prep Method: 5030B											
Analytical Method: 8260B												
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date			
Benzene	50	49		1	99	3.0	70-130	20	10/22/2013 2142			
Ethylbenzene	50	50		1	99	0.47	70-130	20	10/22/2013 2142			
Methyl tertiary butyl ether (MTBE)	50	53		1	106	4.4	70-130	20	10/22/2013 2142			
Naphthalene	50	49		1	98	1.2	50-140	20	10/22/2013 2142			
Toluene	50	50		1	100	1.9	70-130	20	10/22/2013 2142			
Xylenes (total)	100	100		1	100	0.43	70-130	20	10/22/2013 2142			
Surrogate	Q % Red	Ac	ceptance Limit									
Bromofluorobenzene	92		70-130									
1,2-Dichloroethane-d4	88		70-130									
Toluene-d8	89		70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			0			5			
Sample ID: OJ18025-011MS Batch: 35723 Analytical Method: 8260B	1			Pre		ix: Aqueous d: 5030B	;		
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	10		1000	2300	Ν	20	232	70-130	10/23/2013 0702
Ethylbenzene	ND		1000	1900	Ν	20	187	70-130	10/23/2013 0702
Methyl tertiary butyl ether (MTBE)	240		1000	3800	Ν	20	354	70-130	10/23/2013 0702
Naphthalene	ND		1000	2400	Ν	20	239	50-140	10/23/2013 0702
Toluene	ND		1000	2300	Ν	20	231	70-130	10/23/2013 0702
Xylenes (total)	ND		2000	3800	Ν	20	190	70-130	10/23/2013 0702
Surrogate	Q	% Rec	, Ac	ceptance Limit					
1,2-Dichloroethane-d4	Ν	223		70-130					
Bromofluorobenzene	Ν	181		70-130					
Toluene-d8	Ν	198		70-130					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			-	-			-					
Sample ID: 0J18025-011MD Batch: 35723 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B										
Parameter	Sam Amo (ug/	unt	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RP[Limit) Analysis Date	
Benzene	10		1000	2300	Ν	20	233	0.52	70-130	20	10/23/2013 0727	
Ethylbenzene	ND		1000	1900	Ν	20	194	3.7	70-130	20	10/23/2013 0727	
Methyl tertiary butyl ether (MTBE)	240		1000	3800	Ν	20	352	0.32	70-130	20	10/23/2013 0727	
Naphthalene	ND		1000	2000	Ν	20	202	17	50-140	20	10/23/2013 0727	
Toluene	ND		1000	2300	Ν	20	231	0.36	70-130	20	10/23/2013 0727	
Xylenes (total)	ND		2000	3800	Ν	20	192	1.3	70-130	20	10/23/2013 0727	
Surrogate	Q	% Rec	Ac	ceptance Limit								
1,2-Dichloroethane-d4	Ν	217		70-130								
Bromofluorobenzene	Ν	182		70-130								
Toluene-d8	Ν	196		70-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

N = Recovery is out of criteria + = RPD is out of criteria

J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35729-001 Batch: 35729 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date				
Benzene	ND	1	0.50	0.027	ug/L	10/23/2013 1055				
Ethylbenzene	ND	1	0.50	0.17	ug/L	10/23/2013 1055				
Methyl tertiary butyl ether (MTBE)	ND	1	0.50	0.019	ug/L	10/23/2013 1055				
Naphthalene	ND	1	0.50	0.17	ug/L	10/23/2013 1055				
Toluene	ND	1	0.50	0.17	ug/L	10/23/2013 1055				
Xylenes (total)	ND	1	0.50	0.17	ug/L	10/23/2013 1055				
Surrogate	Q % Rec	Acceptance Limit								
Bromofluorobenzene	94	70-130								
1,2-Dichloroethane-d4	89	70-130								
Toluene-d8	85	70-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35729-002 Batch: 35729 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	46		1	91	70-130	10/23/2013 0921			
Ethylbenzene	50	45		1	90	70-130	10/23/2013 0921			
Methyl tertiary butyl ether (MTBE)	50	52		1	103	70-130	10/23/2013 0921			
Naphthalene	50	45		1	90	50-140	10/23/2013 0921			
Toluene	50	46		1	92	70-130	10/23/2013 0921			
Xylenes (total)	100	91		1	91	70-130	10/23/2013 0921			
Surrogate	Q % Rec	Accepta Limit								
Bromofluorobenzene	87	70-13	0							
1,2-Dichloroethane-d4	85	70-13	0							
Toluene-d8	86	70-13	0							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

N = Recovery is out of criteria + = RPD is out of criteria

J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: 0035729-003 Batch: 35729	-003 Matrix: Aqueous Prep Method: 5030B											
Analytical Method: 8260B												
Parameter	Spike Amount (ug/L)	Result (ug/L)		Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date			
Benzene	50	48		1	96	4.6	70-130	20	10/23/2013 0947			
Ethylbenzene	50	47		1	94	5.2	70-130	20	10/23/2013 0947			
Methyl tertiary butyl ether (MTBE)	50	50		1	100	3.5	70-130	20	10/23/2013 0947			
Naphthalene	50	44		1	88	2.3	50-140	20	10/23/2013 0947			
Toluene	50	48		1	97	5.5	70-130	20	10/23/2013 0947			
Xylenes (total)	100	95		1	95	3.9	70-130	20	10/23/2013 0947			
Surrogate	Q %I	A Rec	cceptance Limit									
Bromofluorobenzene	8	9	70-130									
1,2-Dichloroethane-d4	8	7	70-130									
Toluene-d8	8	8	70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

	-		3-		j							
Sample ID: OQ35730-001 Batch: 35730 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B										
Parameter	Res	ult	Q	Dil	PQL	MDL	Units	Analysis Date				
Benzene	ND			1	0.50	0.027	ug/L	10/23/2013 1644				
Ethylbenzene	ND			1	0.50	0.17	ug/L	10/23/2013 1644				
Methyl tertiary butyl ether (MTBE)	ND			1	0.50	0.019	ug/L	10/23/2013 1644				
Naphthalene	ND			1	0.50	0.17	ug/L	10/23/2013 1644				
Toluene	ND			1	0.50	0.17	ug/L	10/23/2013 1644				
Xylenes (total)	ND			1	0.50	0.17	ug/L	10/23/2013 1644				
Surrogate	Q	% Rec	А	cceptance Limit								
Bromofluorobenzene		113		70-130								
1,2-Dichloroethane-d4		118		70-130								
Toluene-d8		116		70-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35730-002 Batch: 35730 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Benzene	50	51		1	102	70-130	10/23/2013 1511				
Ethylbenzene	50	53		1	106	70-130	10/23/2013 1511				
Methyl tertiary butyl ether (MTBE)	50	54		1	107	70-130	10/23/2013 1511				
Naphthalene	50	61		1	122	50-140	10/23/2013 1511				
Toluene	50	51		1	101	70-130	10/23/2013 1511				
Xylenes (total)	100	110		1	107	70-130	10/23/2013 1511				
Surrogate	Q % Rec	Acceptan Limit	ce								
Bromofluorobenzene	113	70-130									
1,2-Dichloroethane-d4	117	70-130									
Toluene-d8	118	70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

N = Recovery is out of criteria

J = Estimated result < PQL and \geq MDL

+ = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: 0Q35730-003 Batch: 35730	Matrix: Aqueous Prep Method: 5030B											
Analytical Method: 8260B												
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date			
Benzene	50	49		1	99	3.3	70-130	20	10/23/2013 1534			
Ethylbenzene	50	52		1	105	0.81	70-130	20	10/23/2013 1534			
Methyl tertiary butyl ether (MTBE)	50	51		1	102	4.9	70-130	20	10/23/2013 1534			
Naphthalene	50	56		1	113	8.0	50-140	20	10/23/2013 1534			
Toluene	50	52		1	103	2.0	70-130	20	10/23/2013 1534			
Xylenes (total)	100	110		1	106	1.4	70-130	20	10/23/2013 1534			
Surrogate	Q % Re	Ac c	ceptance Limit									
Bromofluorobenzene	113		70-130									
1,2-Dichloroethane-d4	115		70-130									
Toluene-d8	121		70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			5		5			
Sample ID: OQ35732-001 Batch: 35732 Analytical Method: 8260B				Pro	Matrix: Aque ep Method: 5030			
Parameter	Res	ult	Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND			1	0.50	0.027	ug/L	10/24/2013 0039
Ethylbenzene	ND			1	0.50	0.17	ug/L	10/24/2013 0039
Methyl tertiary butyl ether (MTBE)	ND			1	0.50	0.019	ug/L	10/24/2013 0039
Naphthalene	ND			1	0.50	0.17	ug/L	10/24/2013 0039
Toluene	ND			1	0.50	0.17	ug/L	10/24/2013 0039
Xylenes (total)	ND			1	0.50	0.17	ug/L	10/24/2013 0039
Surrogate	Q	% Rec	A	Acceptance Limit				
Bromofluorobenzene		87		70-130				
1,2-Dichloroethane-d4		99		70-130				
Toluene-d8		100		70-130				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35732-002 Batch: 35732 Analytical Method: 8260B			Pr	Matrix ep Method:	: Aqueous 5030B		
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	50	50		1	101	70-130	10/23/2013 2305
Ethylbenzene	50	57		1	113	70-130	10/23/2013 2305
Methyl tertiary butyl ether (MTBE)	50	50		1	101	70-130	10/23/2013 2305
Naphthalene	50	52		1	103	50-140	10/23/2013 2305
Toluene	50	57		1	114	70-130	10/23/2013 2305
Xylenes (total)	100	110		1	110	70-130	10/23/2013 2305
Surrogate	Q % Rec	Acceptane Limit	ce				
Bromofluorobenzene	101	70-130					
1,2-Dichloroethane-d4	89	70-130					
Toluene-d8	106	70-130					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: 0Q35732-003				Drop	Matrix: A				
Batch: 35732				Prepr	Method: 50	J30B			
Analytical Method: 8260B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Benzene	50	49		1	97	3.7	70-130	20	10/23/2013 2328
Ethylbenzene	50	55		1	111	1.9	70-130	20	10/23/2013 2328
Methyl tertiary butyl ether (MTBE)	50	49		1	98	2.8	70-130	20	10/23/2013 2328
Naphthalene	50	52		1	103	0.36	50-140	20	10/23/2013 2328
Toluene	50	56		1	111	2.2	70-130	20	10/23/2013 2328
Xylenes (total)	100	110		1	106	3.1	70-130	20	10/23/2013 2328
Surrogate	Q % Re	Ac	ceptance Limit						
Bromofluorobenzene	103		70-130						
1,2-Dichloroethane-d4	88		70-130						
Toluene-d8	108		70-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N = Recovery is out of criteria + = RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: 0Q35733-001
Batch: 35733
Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Deveryation	Descult	0	DOI	MDI	Linite	Analusia Data
Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Methyl tertiary butyl ether (MTBE)	ND	1	0.50	0.019	ug/L	10/24/2013 1323
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	87	70-130				
1,2-Dichloroethane-d4	98	70-130				
Toluene-d8	106	70-130				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

40% N = Recovery is out of criteria

+ = RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35733-002 Batch: 35733 Analytical Method: 8260B				Pr	Matrix rep Method:	: Aqueous 5030B		
Parameter	Spi Amo (ug	ount	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Methyl tertiary butyl ether (MTBE)	50		48		1	95	70-130	10/24/2013 1150
Surrogate	Q	% Rec	Accepta Limi					
Bromofluorobenzene		104	70-13	30				
1,2-Dichloroethane-d4	85		70-130					
Toluene-d8		108	70-13	30				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

N = Recovery is out of criteria + = RPD is out of criteria

J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: OQ35733-003 Batch: 35733 Analytical Method: 8260B			Matrix: Aqueous Prep Method: 5030B										
Parameter	Spike Amount (ug/L)		Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date			
Methyl tertiary butyl ether (MTBE)	50		49		1	99	3.7	70-130	20	10/24/2013 1213			
Surrogate	Q	% Rec	Aco	ceptance Limit									
Bromofluorobenzene		100		70-130									
1,2-Dichloroethane-d4	86			70-130									
Toluene-d8		106		70-130									

PQL = Practical quantitation limit

ND = Not detected at or above the MDL

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

+ = RPD is out of criteria J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		And and a state of the state of	A REPORT OF		
APCANIC Report ACONTACT	Contact Cilling	, c	Sampler (Prinled Name)	Jarrel Fru / Dan Rhedry	U CUORE NO.
∑ 260	No. / Bax No. / Emai	Jax No. / Email	Vaybill No.		Page L
City Carlor State Zin Code Preservative	- L	A VIAN Guilde	×		Number of Containers
27607	4. HNC3 7. NBOH				Bottle (See Instructions on beck)
	5. HCL				Preservative
2. H2504					Lat No.
Project Number CPORTHAPS, 2012. ALLCOM	ab com Matrix	Sis	28/4		0518025
tie Date Time	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	onalys Cher ∞	1 - 5,248		Remarks / Cooler ID
26-MLJ-16 (101513) 14/15/12 1131	S X	1			
10/15/17					
M			×		
6			×		
(10121) 1138			×		
			*		
1012) 1201			×		
513					
26-MW-36R(101513) 1455					
16-MW-06R(101513) 🖤 1533					
Tum Around Time Required (Prior lab approval required for excedited TAT) Samplic) sample uisposa		ac kequirements (specity)	Prostary maked to the most of the market of the	netti tatati nPojen Al hkrawn
 Rush (Places Specify) 	D Refurn to Client	A Disposal by Lab			10000 10
1. Relinquished by J. SermDier	10/17/13	1 [2 CU	1. Received by	naie	Ð
	Date	Time	2. Received by	Date	Time
	Date	Time	3. Received by	Date	Time
4	Date	Time	4. Laboratory Received by/	Date	Time
CAP.	TOURIN	0052			12113 0900

Photone No. (2003) / 21-3/00 Fax No. (B03 www.sheelylab.com Nacht Sampler Printed Na Nacht A And A <	Curves Mar		H JO Zobed	Number of Containers	Bottle (See Instructions on back) Preservative	Lot No.	0718025	Remarks / Cooler ID												ant DPoison DUnknown	Time	Time	Time	Time C.C. C.C.	
Telephone No. Telephone No. (000) 791-911 Answer to Compari- tion Telephone No. (End) (End) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>dentification</td><td>ammable CISkin imit</td><td>Date</td><td>Date</td><td>Date</td><td>Date</td><td></td></th<>																			dentification	ammable CISkin imit	Date	Date	Date	Date	
Eightone No. Fast P.O Number P.O Number P.O Number P.O Number P.O Number Data District Individit District Distrit Dister	of Manual -																		Possible Haz					W. W. M. T.	
Taile Report to Control Taile Telephone No. Fax No. / Email Taile Fax No. / Email Taile Fax No. / Email Tobal 1. Unges. Anality 5. No. 2. NacWitzna 5. No. 3. H2SO4 6. Na Trio. 1. Unges. 4. HNO3 7. H2O 1. Unges. 1. H2O 6. Na Trio. 2. Nachty 6. Na Trio. 3. H2SO4 6. Na Trio. 3. H2SO4 6. Na Trio. 1. H2O 1. Control 1. H2O 1. Control 1. P. O Number 1. Control 1. P. P. Number 1. Control 1. P. P. Number 1. Control 1. D. P. P. Number 1. Control 1. D. P. P. Number 1. Control	w.shealylab.com	Par F																	equirements (Spoc		eceived by	sceived by	sceived by	sboratory Received I	
H H Report to Construction Zip Code Telephone No. Att	\$1		Ś				79 iw	1/1910		$\overline{\mathbf{x}}$	X	×	\checkmark	X	5	\times	X	X	_	-+	1. R.	ы Ц	3. R	4: L2	LAB(
Are Dr. Are Dr. Are Dr. Teleptione i State Zip Code Preserval Nuc Z7607 1. Unpres. -26 2. NaONiZnA -26 2. NaONiZnA -26 2. NaONiZnA -26 2. NaONiZnA -16 3. HSSO4 P.O. Number P.O. Number M. Loode P.O. Number M. Loof P.O. Number M. Loode P.O. Number M. Loof P.O. Number M. Loof <t< td=""><td></td><td>JUNG</td><td>3</td><td>m</td><td></td><td></td><td>sia</td><td>oo Other Chially</td><td>×</td><td>\times</td><td>×</td><td>X</td><td>\times</td><td>X</td><td>X</td><td>×</td><td></td><td>X</td><td></td><td>C Disposel by Lab</td><td></td><td></td><td></td><td>900</td><td></td></t<>		JUNG	3	m			sia	oo Other Chially	×	\times	×	X	\times	X	X	×		X		C Disposel by Lab				900	
Hint ALLAN Horizon Address Address Address Address Address Project Namber Project Number Project Number Address Rething 10 / D Continues for each combined on Continues for each Continues for	WW		/ Fax No. / Email / Staller sibbons & arcalis-10,		HOBN.7	io.	Matrix Matrix	C=Comp W W W W W W C B M C C B C C C C C C C C C C C C C C	X	×	×	×	×			×			Sample Disposal	um to Utent 🧃 Disposel by Lab	X(7 12m)	Time	Time	Time Time	

Shealy Environmental Services, Inc.

54 [4 8	Geote No.	Page of L	Number of Configures	Bottle (See Instructions on back) Preservative	Lot No.	0718025	Remarks / Cooler ID											int DPoisen DUnkrown	Ē	Time	Time	Time	C Terres Blank II V / ILM-
Number 34748																		Possible Hazard Identification ENro-Hazard - Elemente - ESkin Irriterd	Date	Date	Date	Date 13	Hersint Tarun
91-9111	Dan Rhedes																	Possible Hazard Identification				4	a lee Pack
Caroli Fax N b.com	Sare Fine Nemy	1	11															QC Requirements (Specify)	1. Received by	2. Received by	3. Received by	4. Laboratory Received by	LAB USE ONLY Beseived on the (Check) Luffes ID No
West Columbia, South Telephone No. (803) 791-9700 www.shealyla	Juo	At No. / Email / Ch. L.M	2			sis	Analy Analy oner	X	×	\times				\preceq	×		×	Discreal by Lab	10.		Time	Time	
Teleph	1910	HE .	T~ .	4, HNO3 7, NaOH 5 HOI	8. Nai Thio.	ab Matrix	0+0 0+0	GX				*1						Sample Disposal	5	Date	Date	Date	weeks from receipt
Chain of Custody Record	Report to Ct	# 300 Telephone No. /		7 1. Unpres.	3. H2S04	P.O Number	Date.	10/11/01		6.601	1155	115Y	1239	1244	1433	91441	1537	ured for expedited TAT)					samples are retained for six weeks fro
Unain or Uustoc	ICANIS	POI Cordal at Center No.	State	MC 1200	5.26	LOIL. NOLOGN	Sample ID / Description (Containers for each sample may be combined on one ine)	26 -MW-43(101617) 10/	26-MW-19(101617)	Dup-2 (101613)	-54(10613)	26-MW-31(101413)	26-MN-41 (101613)	26-MW-57 (101417)	26 - MW- 38 (10613)	26-MW-51 (10113)	26 - MW- 53 (101613)	Tum Around Time Required (Prior iso approval recurred for expective) TAT). Seimplie 🖌 Standard – m. Anior (Plesse Snamh)	1. Relinguished by Sampler	2. Relinquierfed by	3. Relinquished by	4. Relinquished by FCAL	Note: All samples are retained for six weeks unless other arrangements are ma
	2	j.	1_	1411	51	Project Number	imens fo	ML	AL.	21	26-14-54	13	1r	MM	AM-	MM	MM	dard r	guishe		quishe	quishe	ž

Conte No.		Page	Number of Containers Bottle (See Instructions on back)	Preservative	Lot No.	0518025	Remarks / Cooler ID										eri niPoisco nil foircan	Time	Time	Time	Time	9100
	Khubes																Possible Hazard Identification	Date	Date	Date	Date	10(8)13
	Den Kla																Possible Hazard Identification				E	
0 Fax No. (803) 791-9111 yisb.com Sampler Printed Name)	Tare Fr	vraybili No.															QC Requirements (Specify)	by	by	04	4. Laboratory Received by	\mathbb{P}
200	-	UVBVD	_														quiren	eived	eived	eived	oratory	SE ON
o. (803) 791-9700 Fax www.shealylab.com		m) Dard'i - 4. com	n 4	٦	, 3 %		(IBNA	2	X	X	X	X	X	X	X	X		a) 1. Received by	2. Received by	3. Received by	4. Laboratory	400 LAB USE ONLY
Telephone No. (803) 791-970 www.sheal	JMAHAN (JWHAL	No remain	· ONH		ka Thio.	Si2/	00-0 9 9 9 19#0 19#0	X	X	×		×		X		×	Oisposal de Client 😹 Dienneel tw. Lab	Lin Time 1.	Time 2.	Time 3.	Time	from receipt
phone No. (803) 791-970 www.sheal	J'We Hey SABONS	919-15-1-142 / Jelly, gibles parels		2. NaOH/ZnA 5. HCL		SIS/	00-0 9 9 9 19#0 19#0	1125 11	1625 1 X	1625 1112 X	1632	X X X	X 1 01/2 1	1804 III X	10/14/13 0915		 Discretal for Lab. 	Time 1 + (0)	Time 2.	ei	Time (n receipt

SHEALY ENVIRONMENTAL SERVICES, INC.

SHEALY ENVIRONMENTAL SERVICES, INC.

÷.

Shealy Enviro Document Nu	amber: F-AD	vices, Inc. -016	Page Replaces Date: 09/3	
Revision Nun	nber: 13		Effective Date: 09/	26/13
C 11 ()	L and	·	Sample Receipt Checklist (SRC)	
Client:	Aroca	5	Cooler Inspected by/date: CAT / 10/18/13 Lot #:05/8025	_
Means of	-	SESI	Client UPS FedEx Airborne Exp Other	
Yes -	No		1. Were custody scals present on the cooler?	-
Yes	No	1	2. If custody seals were present, were they intact and unbroken?	-
Cooler II	D/Origina	l temperatu	are upon receipt/Derived (corrected) temperature upon receipt:	-
014/1	.4/1.1	°C		
Method:	I Temp	erature Bla	nk Against Bottles IR Gun ID: 3 IR Gun Correction Factor: 3 .	c II
Tarenion (or coorant	we	st Ice Blue Ice Dry Ice None	
If respon	se is No (or Yes for	14, 15, 16), an explanation/resolution must be provided.	
			3. If temperature of any cooler exceeded 6.0°C, was Project Manager notified?	-
Yes	No 🗌	NA 🖸	PM notified by SRC, phone, note (circle one), other: (For	
		-	coolers received via commercial courier, PMs are to be notified immediately.	
Yes 🗌	No 🖂	NA	4. Is the commercial courier's packing slip attached to this form?	-
Yes 🖉	No		5. Were proper custody procedures (relinquished/received) followed?	-
Yes 🗌	No	NA	5a Were samples relinquished by elient to commercial courier?	_
Yes 7	No		6. Were sample IDs listed?	_
Yes 7	No		7. Was collection date & time listed?	
Yes 7	No			
Yes 7	No		8. Were tests to be performed listed on the COC?	
Yes	No		9. Did all samples arrive in the proper containers for each test?	
Yes	No		10. Did all container label information (ID, date, time) agree with COC?	
			11. Did all containers arrive in good condition (unbroken, lids on, etc.)?	
Yes	No		12. Was adequate sample volume available?	
Yes 🔤	No 🗍		13. Were all samples received within ½ the holding time or 48 hours, whichever	-
37	N [] 2		comes first?	
Yes	No		14. Were any samples containers missing?	-
Yes	No		15. Were there any excess samples not listed on COC?	-
Yes 🗍	No 🔽	NA	16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA	
			viais /	
Yes	No	NA	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?	-
Yes 🗌	No	NA 🖉	 Were all cyanide and/or sulfide samples received at a pH >12? 	
Yes 🗌	No 🗌	NA	 Were all applicable NH3/TKN/cyanide/phenol (<0.2mg/L) samples free of residual chlorine? 	
Yes	No	NA	20. Were collection temperatures documented on the COC for NC samples?	-
			21. Were client remarks/requests (i.e. requested dilucious a second dilucious)	_
Yes	No 🗌	NA 📝	 Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? 	
Sample P	reservati	on (Must	be completed for any sample(a) incorrectly present a site in the comment section in LIMS'	4
Sample(s)		(1.240)	be completed for any sample(s) incorrectly preserved or with headspace.)	
		ole receivin	were received incorrectly preserved and were adjusted	d
according	iy in saing	he receivin	g with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)	
Sample(s)		And the second second second		_
Sample(s)	the second s		were received with bubbles >6 mm in diameter.	
TKN/cyar	the second s	al	were received with TRC >0.2 mg/L for NH3/	
Sample la	Contraction of the local division of the loc			
			KWP Date: (0 / 8/13	
Unrective	Action ta	aken, if ne		
Was client		Yes	No Did client respond: Yes No	
SESI emplo	oyee:		Date of remonsel	
omments:	Sampl	e-orz	unsided 76-huur 76 - huur 1 1 10 - 1 10	
COCOL	D YOUGT	ea per	Cos and most had with date + time.	-
hip ble	SINK YR	ceived to	at not documented on Col.	

ARCADIS

Appendix B

Data Validation Reports

Analytical data were evaluated in accordance with applicable USEPA SW-846 method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (July 2002), analytical method control criteria, the analytical laboratory Quality Assurance Control Limits, the Fort Stewart Military Reservation and Hunter Army Airfield Quality Assurance Project Plan (ARCADIS-2008), and professional judgment.

The data review summarized in this report includes a review of all sample collection documentation and the electronic data validation of the analytical data housed in the project database. Sample collection documentation included sample collection logs and chains of custody. The electronic data validation was performed utilizing the EQuIS Data Qualification Module (DQM). DQM checks for the following parameters:

- ⁿ Holding times and preservation;
- ⁿ Blank contamination;
 - 1. Method blanks,
 - 2. Trip blanks,
 - 3. Equipment blanks;
- ⁿ Matrix spike and Duplicate sample recovery;
- ⁿ Matrix Spike and Matrix Spike Duplicate relative percent differences;
- Laboratory Control Sample and Duplicate recovery;
- Laboratory Control Sample and Duplicate relative percent differences;
- ⁿ Surrogate recovery (organic analyses only); and
- Field duplicate relative percent difference.

Manual review was performed for the following items:

n

- ⁿ Sample dilutions and reporting limits;
- Case Narratives; and
- Laboratory Duplicates

Data was generated by Shealy Environmental Services, Inc. – West Columbia, South Carolina and Test America – Savannah Laboratories. Data qualifiers were applied electronically to the database with any additional qualifiers added manually. A summary of the data as amended by data qualifiers is included with the original hard copy reports.

The attached table summarizes the data that were qualified due to QC deficiencies. The table indicates compounds/analytes qualified based on electronic and manual validation. Refer to the associated method section of the validation checklist for a detailed explanation of qualification. All other data in these SDGs are considered usable as reported.

The following list of data qualifiers and definitions were applied in accordance with qualification criteria defined in the greater than guidance documents:

- UB Compound/analyte detected in blank or associated blank, qualified as a non-detect at listed value.
- J The analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected greater than the reporting limit; however, the reported quantitation limit is approximate and may, or may not represent the actual limit of quantitation necessary to accurately and precisely measure analyte in the sample.
- R The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; and the presence or absence of the analyte cannot be verified.
- U Not detected at the quantitative reporting limit

DQM RUN BY:	Rachelle Borne	June 11, 2013
REVIEW PERFORMED BY:	Rachelle Borne	June 11, 2013
SIGNATURE:	Sechul Ban	June 11, 2013

1

The following samples were included in this SDG:

SDG	Sample ID	Sample Date	Parent Sample
OD05014	26-MW-55(040313)	4/3/2013	
OD05014	26-MW-56(040313)	4/3/2013	
OD05014	26-MW-57(040213)	4/2/2013	
OD05014	26-MW-58(040213)	4/2/2013	
OD05014	26-MW-59(040313)	4/3/2013	
OD05014	Trip Blank_20130403	4/3/2013	
OD05014	26-DUP-01(040313)	4/3/2013	26-MW-54(040313)
OD05014	26-DUP-02(040313)	4/3/2013	26-MW-55(040313)
OD05014	26-MW-06R(040313)	4/3/2013	
OD05014	26-MW-07(040313)	4/3/2013	
OD05014	26-MW-09(040313)	4/3/2013	
OD05014	26-MW-15R(040313)	4/3/2013	
OD05014	26-MW-16(040313)	4/3/2013	
OD05014	26-MW-19(040313)	4/3/2013	
OD05014	26-MW-20(040313)	4/3/2013	
OD05014	26-MW-21(040313)	4/3/2013	
OD05014	26-MW-23(040313)	4/3/2013	
OD05014	26-MW-24R(040313)	4/3/2013	
OD05014	26-MW-25R(040313)	4/3/2013	
OD05014	26-MW-28R(040313)	4/3/2013	
OD05014	26-MW-31(040213)	4/2/2013	
OD05014	26-MW-32(040213)	4/2/2013	
OD05014	26-MW-33(040213)	4/2/2013	
OD05014	26-MW-35(040313)	4/3/2013	
OD05014	26-MW-36R(040313)	4/3/2013	
OD05014	26-MW-38(040313)	4/3/2013	
OD05014	26-MW-39(040213)	4/2/2013	
OD05014	26-MW-40(040213)	4/2/2013	
OD05014	26-MW-41(040313)	4/3/2013	
OD05014	26-MW-42(040213)	4/2/2013	
OD05014	26-MW-43(040213)	4/2/2013	
OD05014	26-MW-47(040213)	4/2/2013	
OD05014	26-MW-49(040213)	4/2/2013	
OD05014	26-MW-50(040213)	4/2/2013	
OD05014	26-MW-51(040213)	4/2/2013	
OD05014	26-MW-52(040213)	4/2/2013	
OD05014	26-MW-53(040313)	4/3/2013	
OD05014	26-MW-54(040313)	4/3/2013	

ANALYTICAL DATA PACKAGE DOCUMENTATION

GENERAL INFORMATION

Reported		Performance Acceptable		Not	
No	Yes	No	Yes	Required	
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
		No Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	ReportedAcceptionNoYesNoXX	ReportedAcceptableNoYesNoYesXX	

QA - quality assurance

The analytical report was complete with the following exceptions or notations.

Note: The laboratory reported values between the quantitative reporting limit and the method detection limit as estimated concentrations. The "J" qualifier was retained in this validation. Non-detect values are reported at the quantitative reporting limit.

VOLATILE ORGANIC COMPOUNDS

Items Reviewed	DQM De	eficiency	Qualification Applied		
	No	Yes	No	Yes	
1. Holding times/Preservation	DQM		DQM		
2. Reporting limits	М		М		
3. Blanks					
A. Method blanks	DQM		DQM		
B. Equipment blanks	NA		NA		
C. Trip blanks	DQM		DQM		
4. Surrogate spike recoveries	DQM		DQM		
 Laboratory control sample (LCS) A. LCS %R 	DQM		DQM		
B. LCS duplicate (LCSD) %R	DQM		DQM		
C. LCS/LCSD RPD	DQM		DQM		
6. Matrix spike (MS)					
A. MS %R	DQM		DQM		
B. MS duplicate (MSD) %R	DQM		DQM		
C. MS/MSD precision (RPD)	DQM		DQM		
7. Field/Lab Duplicate precision (RPD)		DQM		DQM	

M – Manual Review %R - percent recovery RPD - relative percent difference

DQM - Data Qualification Module

Comments:

This section presents a discussion of any additions or changes to the electronic data validation for compounds analyzed by Method 8260B.

6. Sample 26-MW-58(040213) was used as the MS. The recoveries were acceptable.

Sample 26-MW-24R(040313) was used as the MS/MSD. The recoveries and RPDs were acceptable.

Sample 26-DUP-02(040313) was used as the MS/MSD. The recoveries and RPDs were acceptable.

Sample 26-MW-21(040313) was used as the MS. The recoveries were acceptable.

7. Sample 26-MW-56(040313) was used as the laboratory duplicate. The RPD for MTBE was above the control limit. The parent sample was qualified as estimated for this compound.

Sample 26-DUP-01(040313) was collected as a field duplicate of 26-MW-54(040313). The RPDs were acceptable at less than 40%.

Sample 26-DUP-02(040313) was collected as a field duplicate of 26-MW-55(040313). The RPDs were acceptable at less than 40%.

OD05014

FST-26

SDG	Sample ID	Method	Analyte	Result	Units	Qualifier	Reason	Dilution
OD05014	26-MW-56(040313)	SW8260	Methyl tert-butyl ether	24	ug/l	J	LD RPD	1

Analytical data were evaluated in accordance with applicable USEPA SW-846 method requirements, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (October 1999), "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (July 2002), analytical method control criteria, the analytical laboratory Quality Assurance Control Limits, the Fort Stewart Military Reservation and Hunter Army Airfield Quality Assurance Project Plan (ARCADIS-2008), and professional judgment.

The data review summarized in this report includes a review of all sample collection documentation and the electronic data validation of the analytical data housed in the project database. Sample collection documentation included sample collection logs and chains of custody. The electronic data validation was performed utilizing the EQuIS Data Qualification Module (DQM). DQM checks for the following parameters:

- ⁿ Holding times and preservation;
- ⁿ Blank contamination;
 - 1. Method blanks,
 - 2. Trip blanks,
 - 3. Equipment blanks;
- ⁿ Matrix spike and Duplicate sample recovery;
- ⁿ Matrix Spike and Matrix Spike Duplicate relative percent differences;
- Laboratory Control Sample and Duplicate recovery;
- Laboratory Control Sample and Duplicate relative percent differences;
- ⁿ Surrogate recovery (organic analyses only); and
- Field duplicate relative percent difference.

Manual review was performed for the following items:

n

- ⁿ Sample dilutions and reporting limits;
- Case Narratives; and
- Laboratory Duplicates

Data was generated by Shealy Environmental Services, Inc. – West Columbia, South Carolina and Test America – Savannah Laboratories. Data qualifiers were applied electronically to the database with any additional qualifiers added manually. A summary of the data as amended by data qualifiers is included with the original hard copy reports.

The attached table summarizes the data that were qualified due to QC deficiencies. The table indicates compounds/analytes qualified based on electronic and manual validation. Refer to the associated method section of the validation checklist for a detailed explanation of qualification. All other data in these SDGs are considered usable as reported.

The following list of data qualifiers and definitions were applied in accordance with qualification criteria defined in the greater than guidance documents:

- UB Compound/analyte detected in blank or associated blank, qualified as a non-detect at listed value.
- J The analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected greater than the reporting limit; however, the reported quantitation limit is approximate and may, or may not represent the actual limit of quantitation necessary to accurately and precisely measure analyte in the sample.
- R The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; and the presence or absence of the analyte cannot be verified.
- U Not detected at the quantitative reporting limit

DQM RUN BY:	Rachelle Borne	11/15/13
REVIEW PERFORMED BY:	Rachelle Borne	11/15/13
SIGNATURE:	Sechul Ban	11/15/13

The following samples were included in this SDG:

SDG	Sample ID	Sample Date	Parent Sample
OJ18025	26-MW-06R (101513)	10/15/2013	
OJ18025	26-MW-07 (101513)	10/15/2013	
OJ18025	26-MW-09R (101513)	10/15/2013	
OJ18025	26-MW-15R (101513)	10/15/2013	
OJ18025	26-MW-16 (101513)	10/15/2013	
OJ18025	26-MW-19 (101613)	10/16/2013	
OJ18025	26-MW-20 (101513)	10/15/2013	
OJ18025	26-MW-21 (101613)	10/16/2013	
OJ18025	26-MW-23 (101513)	10/15/2013	
OJ18025	26-MW-24R (101513)	10/15/2013	
OJ18025	26-MW-25R (101513)	10/15/2013	
OJ18025	26-MW-28R (101513)	10/15/2013	
OJ18025	26-MW-31 (101613)	10/16/2013	
OJ18025	26-MW-32 (101613)	10/16/2013	
OJ18025	26-MW-33 (101613)	10/16/2013	
OJ18025	26-MW-35 (101513)	10/15/2013	
OJ18025	26-MW-36R (101513)	10/15/2013	
OJ18025	26-MW-38 (101613)	10/16/2013	
OJ18025	26-MW-39 (101713)	10/17/2013	
OJ18025	26-MW-40 (101713)	10/17/2013	
OJ18025	26-MW-41 (101613)	10/16/2013	
OJ18025	26-MW-42 (101613)	10/16/2013	
OJ18025	26-MW-43 (101613)	10/16/2013	
OJ18025	26-MW-49 (101613)	10/16/2013	
OJ18025	26-MW-50 (101613)	10/16/2013	
OJ18025	26-MW-51 (101613)	10/16/2013	
OJ18025	26-MW-52 (101613)	10/16/2013	
OJ18025	26-MW-53 (101613)	10/16/2013	
OJ18025	26-MW-54 (101613)	10/16/2013	
OJ18025	26-MW-55 (101513)	10/15/2013	
OJ18025	26-MW-56 (101613)	10/16/2013	
OJ18025	26-MW-57 (101613)	10/16/2013	
OJ18025	26-MW-58 (101613)	10/16/2013	
OJ18025	26-MW-59 (101513)	10/15/2013	
OJ18025	TRIP BLANK	10/18/2013	
OJ18025	DUP-1 (101513)	10/15/2013	26-MW-55 (101513)
OJ18025	DUP-2 (101613)	10/16/2013	26-MW-54 (101613)

ANALYTICAL DATA PACKAGE DOCUMENTATION

GENERAL INFORMATION

Reported		Performance Acceptable		Not	
No	Yes	No	Yes	Required	
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	Х		Х		
	· · · · ·	No Yes X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	ReportedAcceptionNoYesNoXX	ReportedAcceptableNoYesNoYesXX	

QA - quality assurance

The analytical report was complete with the following exceptions or notations.

Note: The laboratory reported values between the quantitative reporting limit and the method detection limit as estimated concentrations. The "J" qualifier was retained in this validation. Non-detect values are reported at the quantitative reporting limit.

VOLATILE ORGANIC COMPOUNDS

Items Reviewed	DQM De	eficiency	Qualification Applied		
	No	Yes	No	Yes	
1. Holding times/Preservation	DQM		DQM		
2. Reporting limits	М		М		
3. Blanks					
A. Method blanks	DQM		DQM		
B. Equipment blanks	NA		NA		
C. Trip blanks	DQM		DQM		
4. Surrogate spike recoveries	DQM		DQM		
5. Laboratory control sample (LCS) A. LCS %R	DQM		DQM		
B. LCS duplicate (LCSD) %R	DQM		DQM		
C. LCS/LCSD RPD	DQM		DQM		
6. Matrix spike (MS)					
A. MS %R	DQM			DQM	
B. MS duplicate (MSD) %R	DQM			DQM	
C. MS/MSD precision (RPD)	DQM		DQM		
7. Field/Lab Duplicate precision (RPD)	DQM		DQM		

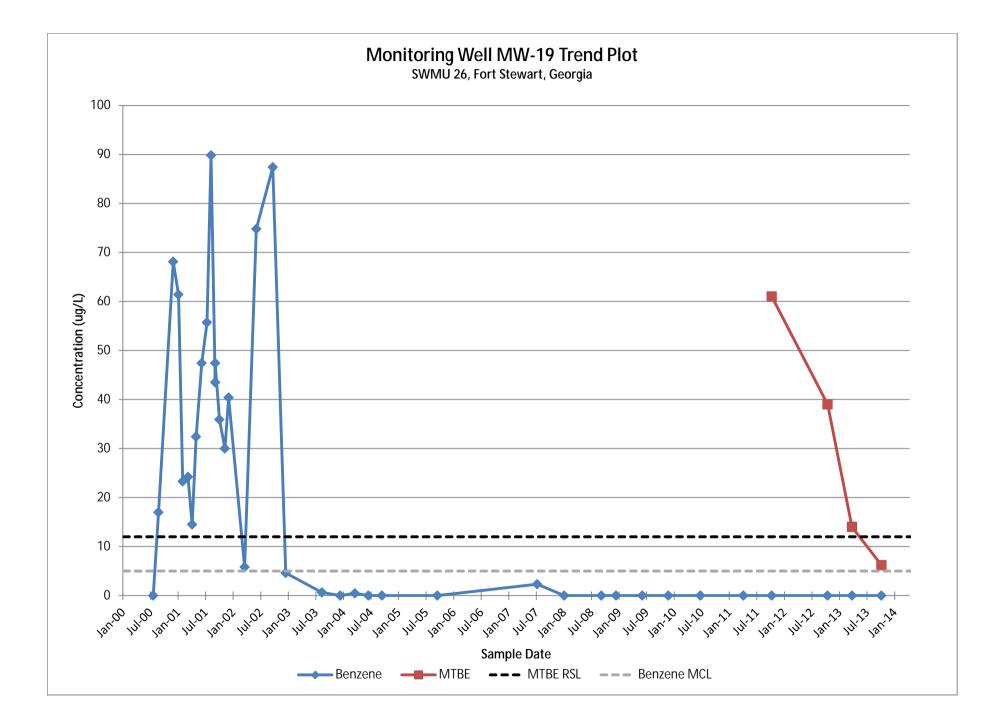
M – Manual Review %R - percent recovery RPI

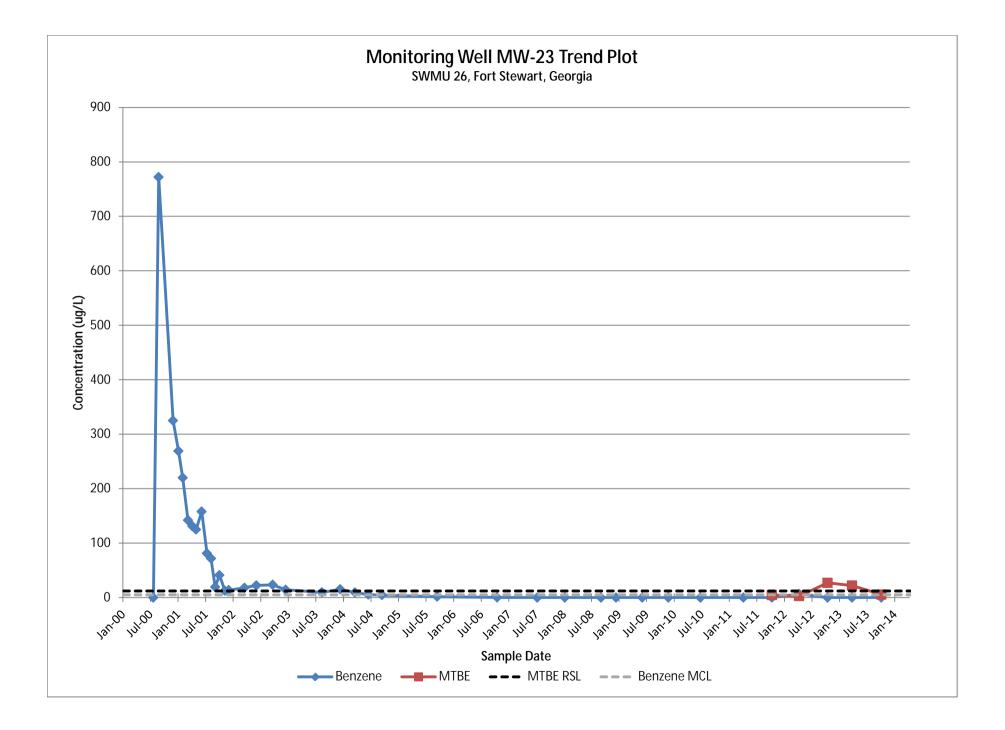
RPD - relative percent difference

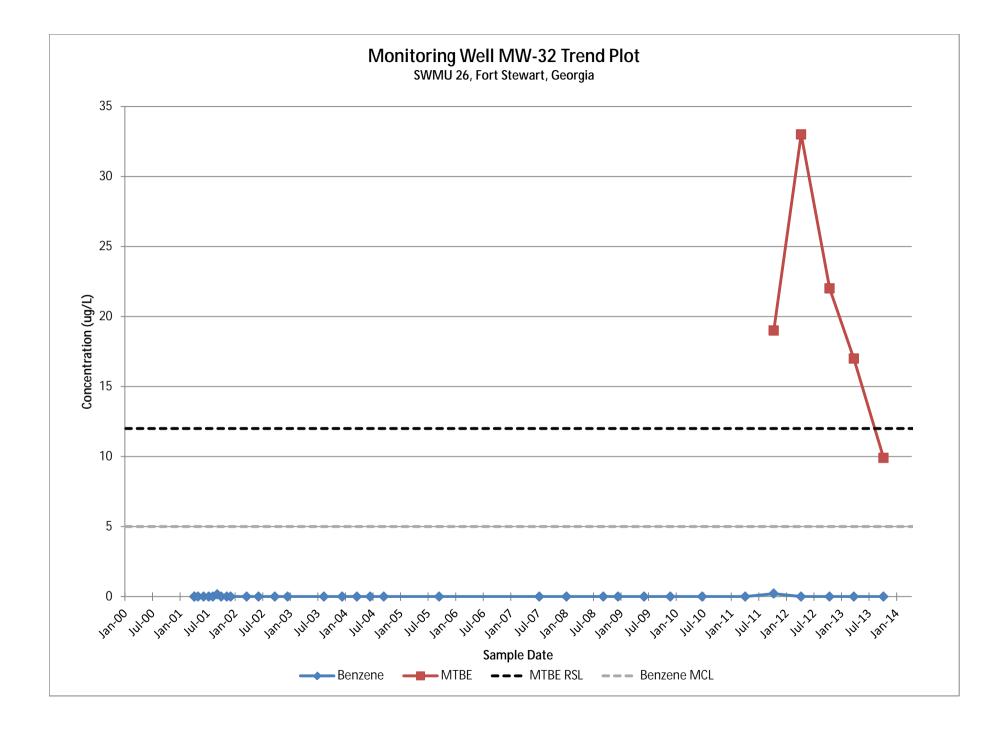
DQM - Data Qualification Module

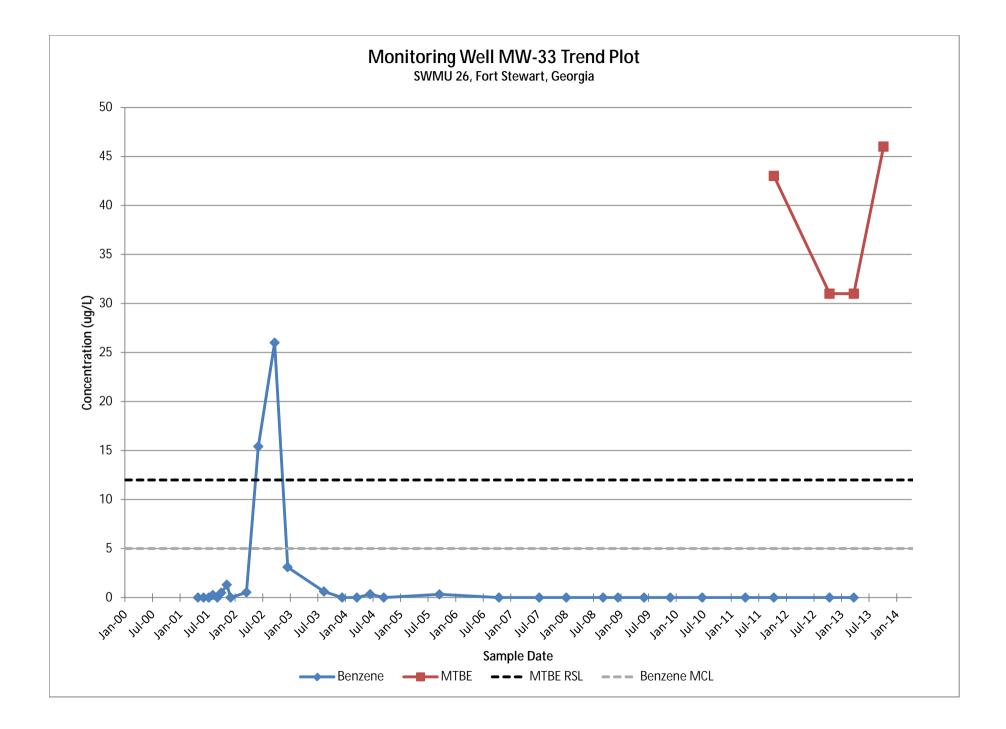
Comments:

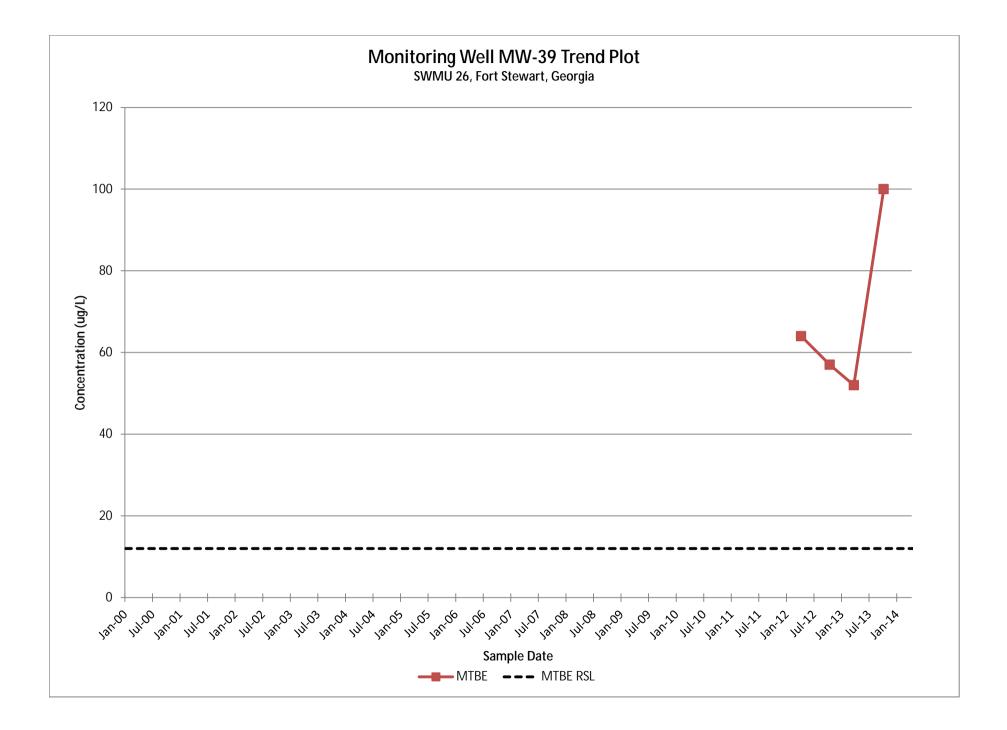
This section presents a discussion of any additions or changes to the electronic data validation for compounds analyzed by Method 8260B.

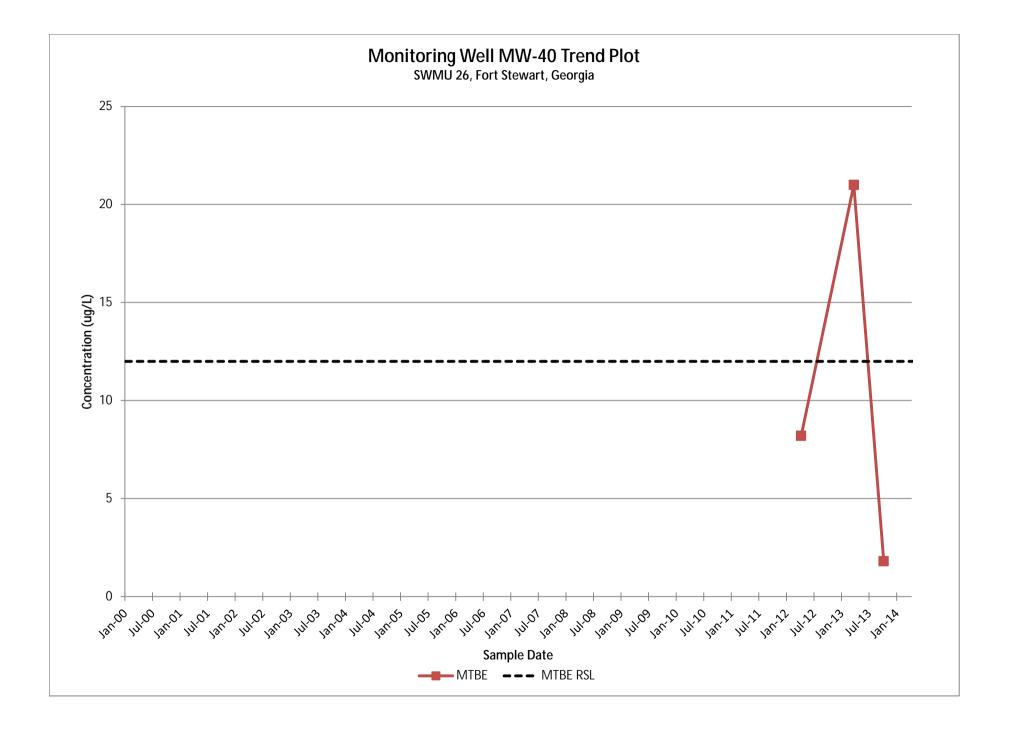

- 6A. Samples 26-MW-24R and 26-MW-58(101613) were used as the MS/MSDs. The recoveries and RPDs were acceptable. Sample 26-m2-55(101513) was used as the MS/MSD. The recovery of methyl tert butyl ether was above the control limit in the MS and the MSD. This compound was detected in the parent sample and therefore qualified as estimated.
- 7. Sample DUP-1 (101513) was collected as a field duplicate of 26-MW-55 (101513). The RPDs were acceptable at less than 40%.

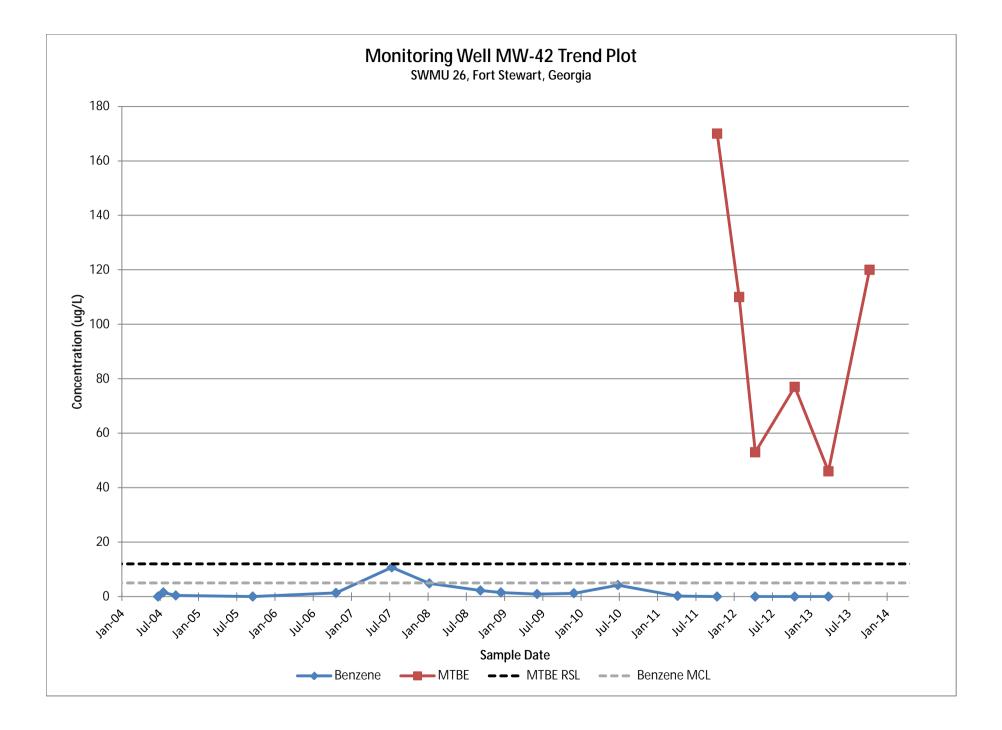

Sample DUP-02 (101613) was collected as a field duplicate of 26-MW-54(101613). The RPDs were acceptable at less than 40%.

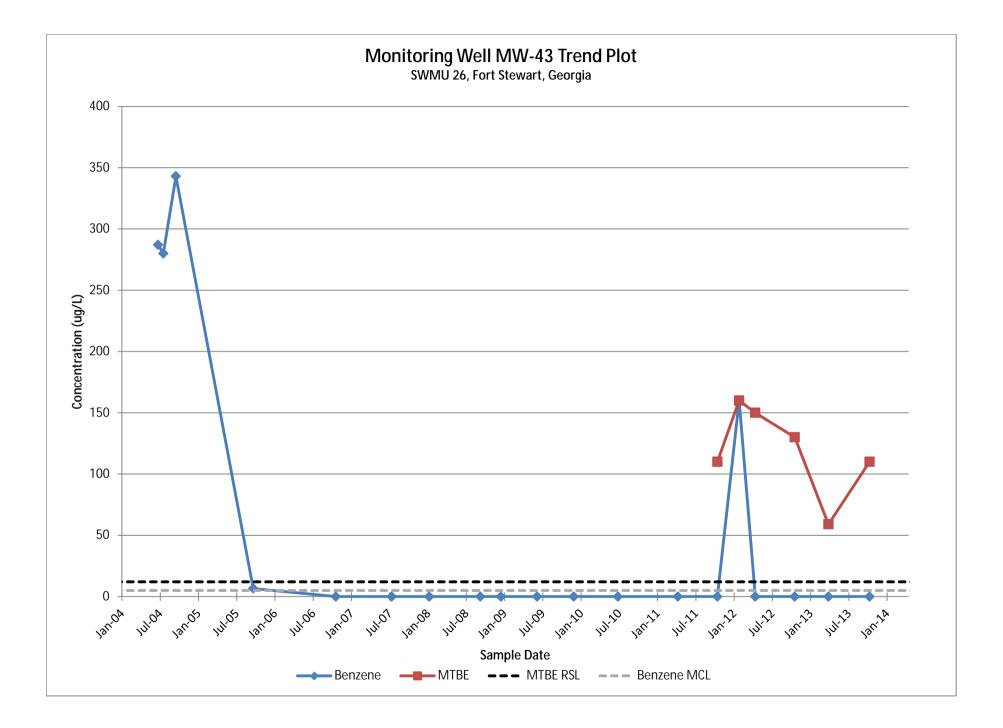


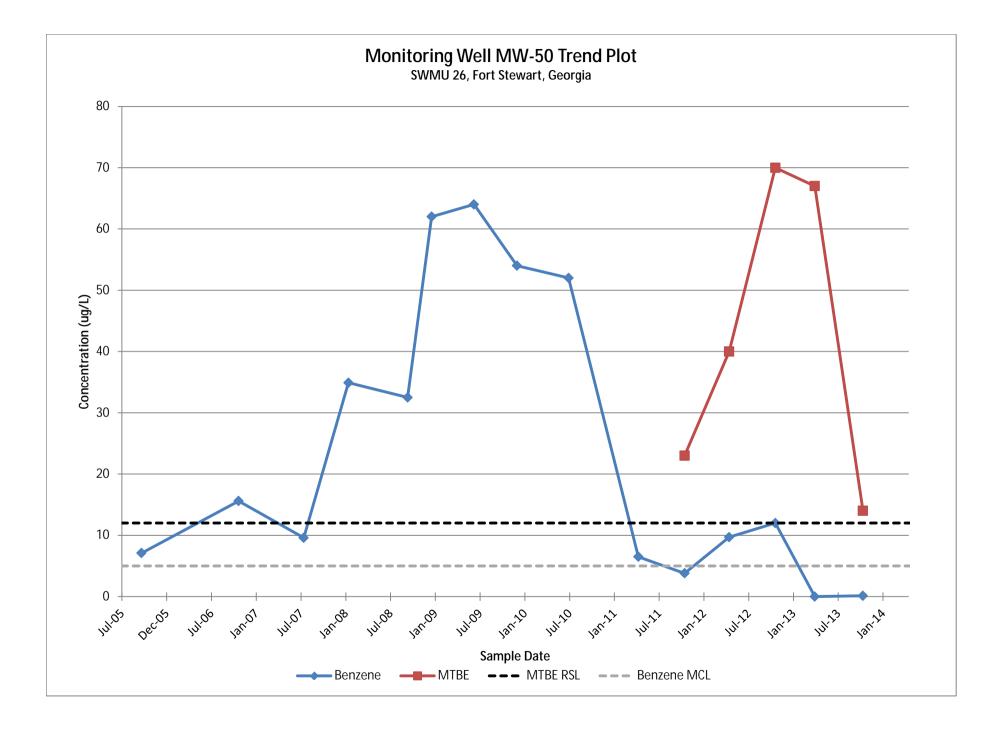

Appendix C

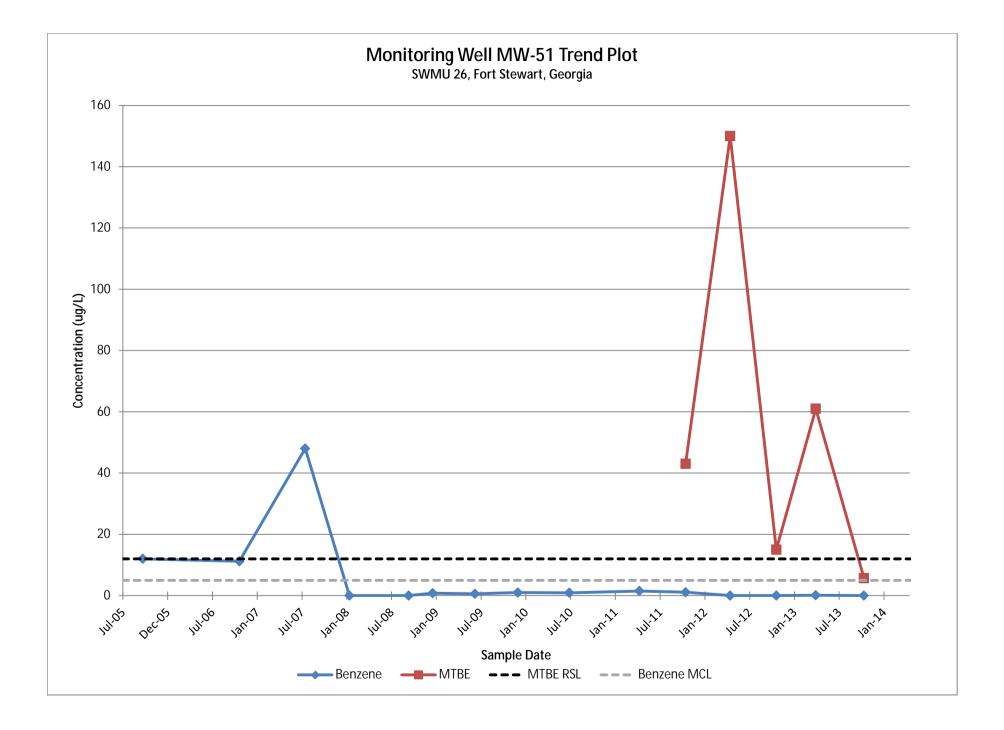

Trend Plots

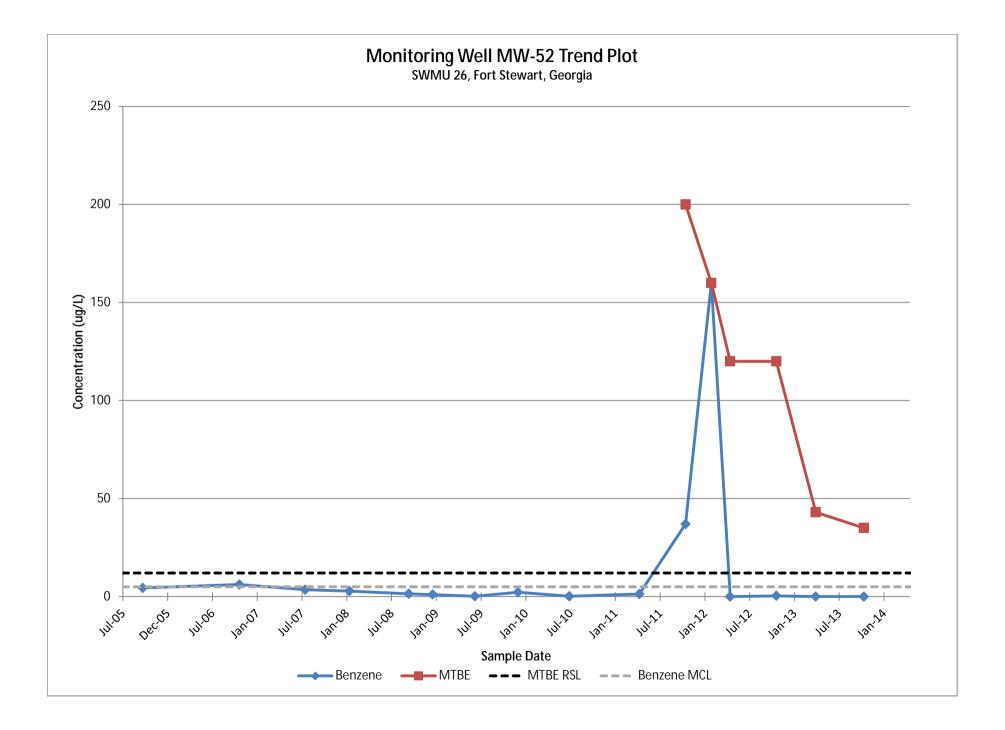


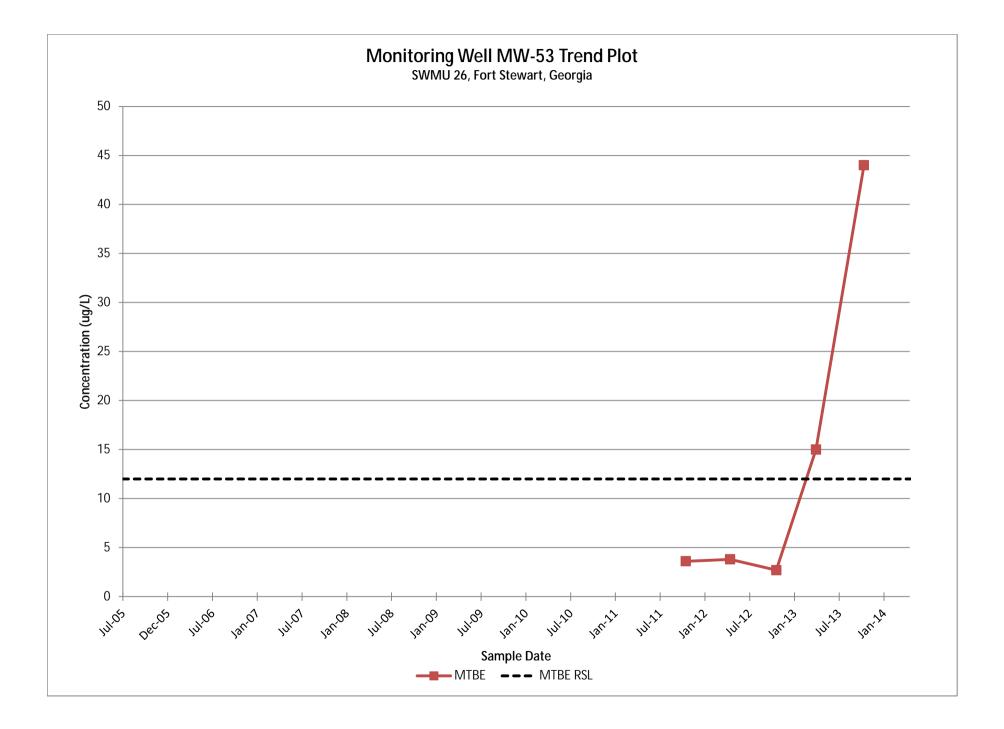


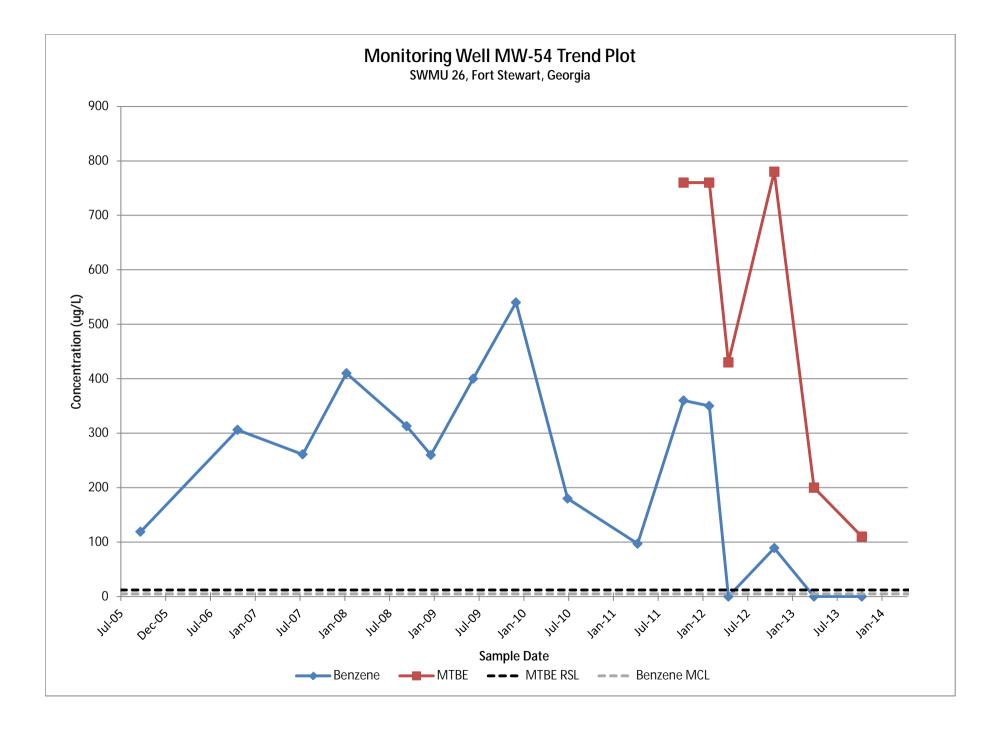


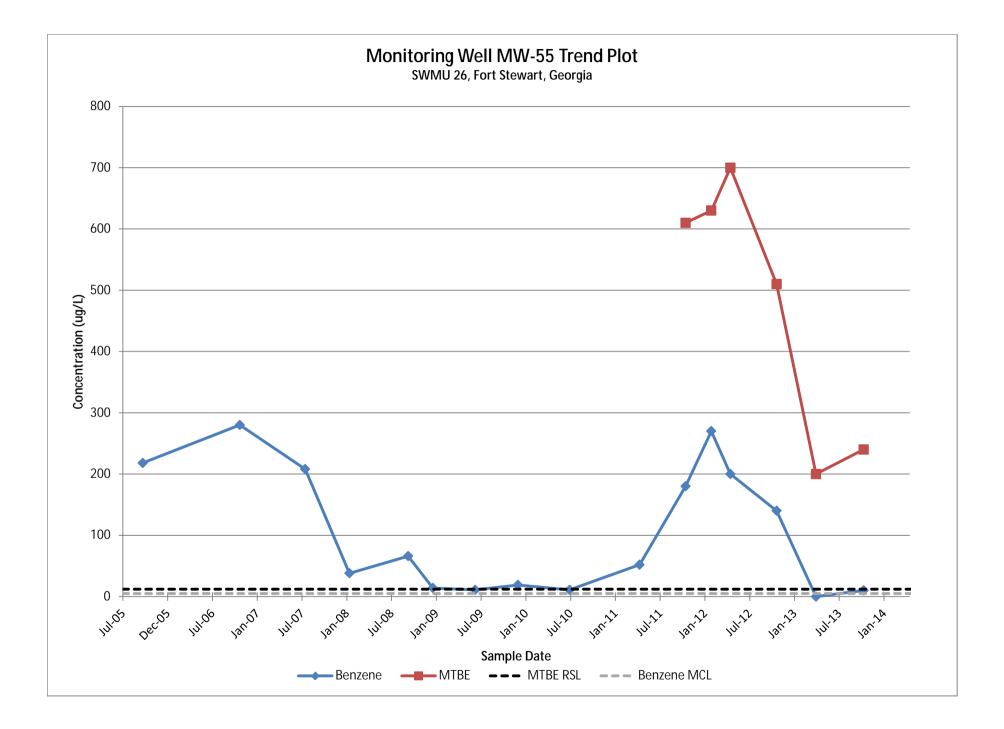


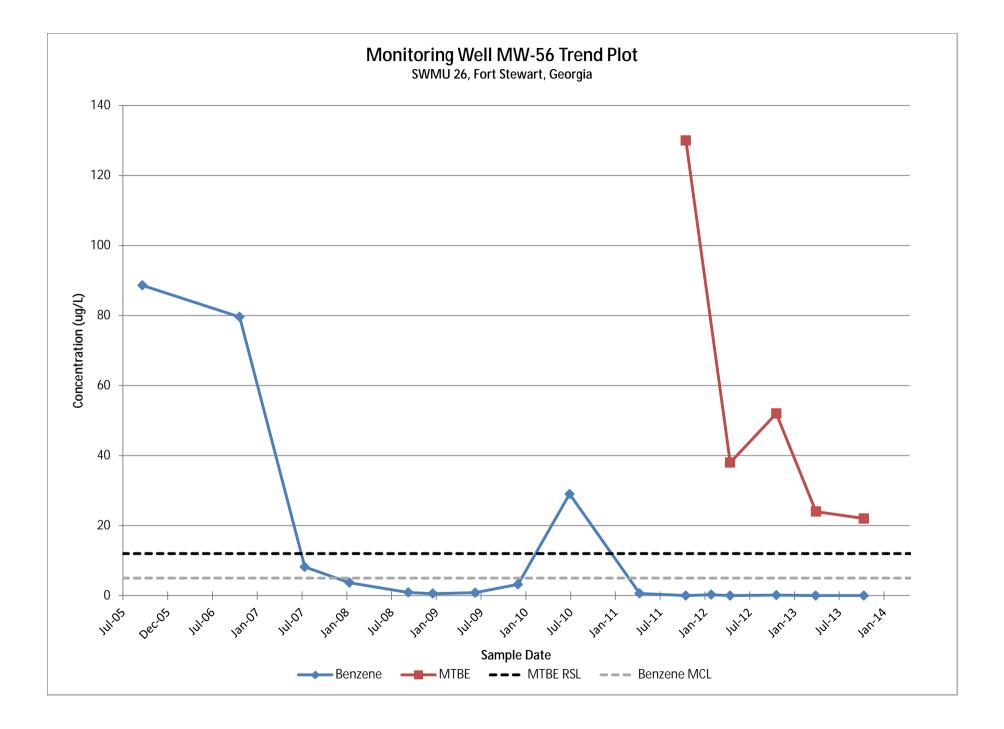


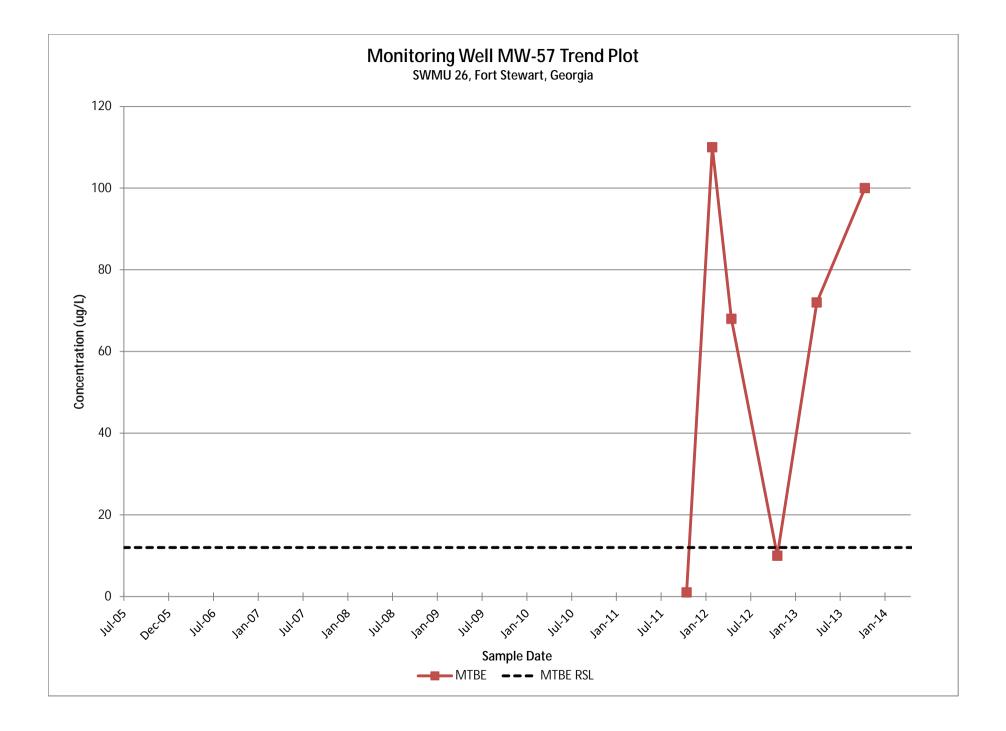












Appendix D

MTBE and Naphthalene Remediation Goal Calculations

MEMO To: Shelley Gibbons

Copies: Scott Bostian ARCADIS G&M of North Carolina, Inc. 801 Corporate Center Drive Suite 300 Raleigh North Carolina 27607 Tel 919 854 1282 Fax 919 854 5448

ARCADIS G&M of North Carolina, Inc.

NC Engineering License # C-1869 NC Surveying License # C-1869

From: Alexandra Meyers Shawn Sager

Date: 17 August 2015 ARCADIS Project No.: 10153004.0001.26RPT

Subject:

Development of Health Based Remediation Goals for the Former 724th Tanker Purging Station (Solid Waste Management Unit [SWMU] 26), Fort Stewart, Georgia

Groundwater at SWMU 26 is monitored as part of the corrective action plan. Methyl-tert-butyl either (MTBE) and naphthalene were detected in groundwater at concentrations exceeding the United States Environmental Protection Agency (USEPA) Tapwater Regional Screening Levels (RSLs) as reported in Seventeenth (17th) and Eighteenth (18th) Corrective Action Plan (CAP) Progress Report (ARCADIS 2013a,b). The Georgia Department of Natural Resources, Environmental Protection Division (GAEPD) requested derivation of site-specific health based remediation goals (RGs) to be incorporated into the next CAP Progress report. In the response to comment letter, ARCADIS indicated that groundwater was not used as a potable water supply nor was the site developed. There are no plans to develop SWMU 26. Therefore, the most likely exposure pathway would be if a construction or utility worker were to dig a trench for subsurface utilities. However, the GAEPD indicated in a comment to the Nineteenth (19th) CAP to which this is an appendix, that all groundwater in Georgia must be considered to be a potential source for drinking water. As a result, RGs were developed for a hypothetical future child and adult resident and a hypothetical future commercial worker based on potable use of groundwater. RGs were calculated for MTBE and naphthalene based on direct contact with groundwater (incidental ingestion, dermal absorption, and inhalation of vapors).

The remainder of this memo includes an exposure assessment, toxicity assessment, and derivation of goals.

Exposure Assessment

Although unlikely, groundwater could be used as a potable water supply. If this were to occur and if SWMU 26 were redeveloped, then a hypothetical future child and adult resident could occur contact groundwater through ingestion, dermal contact while washing hands and showering, and inhalation of volatiles during showering and household use. The exposure parameters used to calculate RGs are presented below as well as in Table 1:

- Averaging time of 25,550 days (70 years × 365 days per year) for cancer effects and averaging time of 2,190 days (6 years × 365 days per year) for a child and 7,300 days (20 years × 365 days per year) for an adult for non-cancer effects (USEPA 1989);
- Exposure duration of 6 years for a child and 20 years for an adult (USEPA 2014);
- Exposure frequency of 350 days per year for 24 hours per day for both a hypothetical future child and adult resident (USEPA 2014);
- Groundwater ingestion rate of 0.78 liters per day (L/day) for a hypothetical future child resident and
 2.5 L/day for a hypothetical future adult resident (USEPA 2014);
- Exposed skin surface area of 6,378 square centimeters (cm²) for a hypothetical future child resident and 20,000 cm² for a hypothetical future adult resident (USEPA 2014); and
- Groundwater dermal exposure time of 0.54 hours per day for a hypothetical future child resident and 0.71 hours per day for a hypothetical future adult resident (USEPA 2014).

If SWMU 26 were redeveloped and used for non-residential purposes, it is possible, albeit unlikely, that a future commercial worker could occur use the groundwater as a potable water source and contact groundwater through ingestion, dermal contact, and inhalation of volatiles while washing hands. The exposure parameters used to calculate the RGs are presented in Table 1 and summarized below:

- Averaging time of 25,550 days (70 years × 365 days per year) for cancer effects and averaging time of 9,125 days (25 years × 365 days per year) for non-cancer effects (USEPA 1989);
- Exposure duration of 25 years (USEPA 2014);
- Exposure frequency of 250 days per year for 8 hours per day (USEPA 2014);
- Groundwater ingestion rate of 1.25 liters per day (professional judgement; a worker is assumed to consume half the daily intake of water at their place of work);
- Exposed hands skin surface area of 980 cm² (USEPA 2011); and

ARCADIS

Groundwater dermal exposure time of 0.25 hours per day (professional judgement).

Typically, utility trenches are three feet below ground surface (bgs). Depth to water at SWMU 26 is six feet bgs. Therefore, it is unlikely that a construction or utility worker would contact water seeping into the trench. The worker could inhale vapors migrating into the trench. Thus, the most likely exposure pathway is inhalation of vapors migrating from groundwater by a hypothetical future construction or utility worker. Nonetheless, at the request of GAEPD, it was assumed that the trench would be constructed to at least a depth of 6 feet so that water would seep into the trench. With these assumptions, it was assumed that a construction worker could be exposed to groundwater through incidental ingestion, dermal contact, and inhalation of volatiles that migrate into the excavation area. The exposure parameters are presented in **Table 1** and are summarized as follows:

- Averaging time of 25,550 days (70 years × 365 days per year) for cancer effects; and averaging time of 182 days (26 weeks × 7 days per week) for non-cancer effects (USEPA 1989);
- Exposure duration of 26 weeks assuming that the excavation lasted for six months (professional judgment);
- Exposure frequency of 5 workdays per week for eight hours per day or a standard 40 hour work week (professional judgment);
- Groundwater ingestion rate of 0.002 liters per day (professional judgement; a construction worker is assumed to consume 1/10th the ingestion rate during swimming);
- Exposed skin surface area of 3,527 cm² (USEPA 2014); and
- Groundwater contact or dermal exposure time of 2 hours per day (professional judgement) assuming that once the groundwater seeped into the trench, the worker would not linger in the trench but would work to create a safe work environment.

The equations used to evaluate groundwater exposure by a hypothetical future resident and hypothetical future commercial worker are presented in **Table 2**. The equations used to evaluate groundwater exposure by a hypothetical future construction worker are presented in **Table 3**.

Emissions via volatilization from groundwater into a trench were estimated following Virginia Department of Environmental Quality (VDEQ; 2012) guidance (**Table 3**). The volatilization factor was calculated assuming that there was a mass transfer from the groundwater to the soil at the bottom of the trench into the air in the trench driven by molecular diffusion. The result of the volatilization factor calculation for each constituent is

presented in **Table 4**. Absorption parameters used to estimate dermal exposure to groundwater are presented in **Table 5**.

Toxicity Assessment

The toxicity assessment discusses the two general categories of toxic effects (noncarcinogenic and carcinogenic) and constituent-specific toxicity values used to calculate potential risks for these two types of toxic effects. The toxicity values were obtained from the USEPA (June 2015) RSL table, based on GAEPD recommendations (Table 6).

Non-Carcinogenic Effects

For many non-carcinogenic effects, protective mechanisms must be overcome before an effect is manifested. Therefore, a finite dose (threshold), below which adverse effects will not occur, exists for non-carcinogens. Depending on the dose, a single compound might elicit several adverse effects in the exposure route, the duration of exposure, and the susceptibility of the individual. Constituents may exhibit their toxic effects at the point of application or contact (local effect) or at other sites (systemic effects) after they have been absorbed into and distributed throughout the body. Most constituents can produce more than one type of toxic effect, depending on the dose and the susceptibility of the exposed individual or receptor. The goal of toxicity studies for application in risk assessment is to identify the most sensitive toxic effect and the exposure levels that are expected to be safe.

For a given constituent, the dose or concentration that elicits no adverse effect when evaluating the most sensitive response in the most sensitive species studied is referred to as the "no observed adverse effect level" (NOAEL). The NOAEL is used to establish non-cancer toxicity values (called reference doses [RfDs] or reference concentrations [RfCs]). The RfD and RfC represent a daily oral and inhalation exposure level that is not expected to cause adverse non-carcinogenic health effects, respectively. USEPA has not yet developed toxicity values for dermal exposure. Therefore, dermal RfDs were calculated by multiplying the oral RfD by the percent oral absorption efficiency as obtained from USEPA (2004) guidance.

Subchronic toxicity values were used to evaluate the potential for adverse health effects associated with exposure to constituents over a period of 2 weeks to 7 years, which apply to the construction worker scenario. Subchronic RfDs and RfCs are available for MTBE from the Agency for Toxic Substances and Disease Registry (ATSDR; 2015). A subchronic RfD is also available for naphthalene from ATSDR (2015). A subchronic RfC is unavailable for naphthalene; therefore, the chronic RfC was used to assess exposure to naphthalene. The RfDs and RfCs are presented in **Table 6**.

Carcinogenic Effects

Cancer induction in humans and animals by chemicals proceeds through a complex series of reactions and processes. Carcinogenic constituents may produce tumors at the point of application or contact, or they may produce tumors in other tissues after they have been distributed throughout the body. Some constituents are associated only with one or two tumor types, while others may cause tumors at many different sites.

For carcinogens, USEPA's Cancer Guidelines (USEPA 2005) recommend a conservative default approach in which it is assumed that any level of exposure could cause cancer when data are not adequate to understand the mode of action. USEPA generally considers a linear dose-response model, and extrapolates from either the lowest dose or point of departure from laboratory animal data using a mathematical model that plots a line through the zero point and, based on the slope of this dose-response line, assigns a risk level for increasingly smaller doses of a particular compound. While constructing the linear extrapolation from animal or human data, USEPA uses values that are based on a 95 percent upper confidence limit (UCL) of the dose/response slope. Therefore, any risk estimates derived from the model are based on values higher than those reported in the underlying studies and not the most likely estimates generated by applying the mathematical model to the actual study data. The UCL for the slope of this line is called the cancer slope factor (CSF) or inhalation unit risk (IUR). CSFs and IURs are used to assess oral and inhalation carcinogenic risk, respectively. USEPA has not yet developed toxicity values for dermal exposure for MTBE or naphthalene. Therefore, dermal RfDs were calculated by dividing the oral CSF by the percent oral absorption efficiency as obtained from USEPA (2004) guidance. **Table 6** presents the carcinogenic toxicity values..

Health Based Remediation Goal Derivation

An RG for cancer (RG_c) and non-cancer effects (RG_{nc}) were derived for the hypothetical future child and adult resident, hypothetical future commercial worker, and construction worker assuming a target cancer risk of 1 in 1,000,000 (1×10^{-6}) and target hazard quotient of 1 for non-cancer effects in **Tables 7** through **Table 10**, respectively.

The final RG for each receptor was derived by taking the minimum result of the RG based on cancer and non-cancer effects as presented in **Table 11** In addition, the hypothetical future resident RG is based on the minimum RG for the child and adult resident.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 2015. Minimal Risk Levels. Available at: <u>http://www.atsdr.cdc.gov/mrls/index.asp</u>. April.

ARCADIS. 2013a. SWMU 26, Seventeenth Corrective Action Progress Report, Former 724th Tanker Purging Station, Fort Steward, Georgia. March.

ARCADIS. 2013b. SWMU 26, Eighteenth Corrective Action Progress Report, Former 724th Tanker Purging Station, Fort Steward, Georgia. March.

California Environmental Protection Agency (CalEPA). 2015. Office of Environmental Health Hazard Assessment (OEHHA). Online Toxicity Criteria Database. Available at: http://oehha.ca.gov/tcdb/index.asp.

United States Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume 1, Part A. Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December.

United States Environmental Protection Agency (USEPA). 2001. Fact Sheet, Correcting the Henry's Law Constant for Soil Temperature. June.

United States Environmental Protection Agency (USEPA). 2003. Human Health Toxicity Values in Superfund Risk Assessments. Memo from Michael B. Cook. Office of Solid Waste and Emergency Response Directive 9285.7-53. December.

United States Environmental Protection Agency (USEPA). 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, Washington, DC. EPA/540/R/99/005. July.

United States Environmental Protection Agency (USEPA). 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. March.

United States Environmental Protection Agency (USEPA). 2011. Exposure Factors Handbook: 2011 Edition. Office of Research and Development. EPA/600/R-090/052F. September.

United States Environmental Protection Agency (USEPA). 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. February.

United States Environmental Protection Agency (USEPA). 2015a. Regional Screening Table. Available at: <u>http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm</u>. June.

United States Environmental Protection Agency (USEPA). 2015b. Integrated Risk Information System (IRIS), Office of Research and Development, National Center of Environmental Assessment. Available at: http://www.epa.gov/iris.

Virginia Department of Environmental Quality. (VDEQ). 2012. Voluntary Remediation Program Risk Assessment Guidance. Available at

http://www.deq.virginia.gov/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemed iationProgram/VRPRiskAssessmentGuidance/Guidance.aspx.

Table 1 Receptor Exposure Parameters Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

				Resid	ent					
Parameter	Symbol	Units	Chi 0 to 6	years	Adult 6 to 30 years		Commercial Worker		Constru Wor	ker
				[ref]		[ref]		[ref]		[ref]
General Factors										
Averaging Time (cancer)	ATc	days	25,550	[1,2,a]	25,550	[1,2,a]	25,550	[1,2,a]	25,550	[1,2,a]
Averaging Time (noncancer)	ATnc	days	2,190	[1,2,a]	7,300	[1,2,a]	9,125	[1,2,a]	182	[1,2,a]
Body Weight	BW	kg	15	[1,2]	80	[2]	80	[2]	80	[2]
Exposure Frequency	EF	days/year	350	[1,2]	350	[1,2]	250	[2,3]	-	
Exposure Duration	ED	years	6	[2]	20	[2]	25	[1,2]	-	
Subchronic Exposure										
Exposure Frequency - subchronic	EFsc	days/week	_		-		_		5	PJ [d]
Exposure Duration - subchronic	EDsc	weeks	-		-		-		26	PJ [d]
Inhalation										
Exposure Time	ET	hour/day	24	PJ	24	PJ	8	PJ	8	PJ
Conversion Factor	CF	day/hour	0.042		0.042		0.042		0.042	
Groundwater - Ingestion (Oral)		, ,								
Groundwater Ingestion Rate	IDaw	L /dov/	0.78	[2]	2.5	[2]	1.25	[1 h]	0.002	DLIA
C	IRgw	L/day	0.76	[2]	2.5	[2]	1.20	[1,b]	0.002	PJ [e]
<u> Groundwater - Dermal Contact</u>										
Exposed Skin Surface Area	SSAgw	Cm ²	6,378	[2]	20,900	[2]	980	[2,c]	3,527	[2]
Exposure Time; groundwater contact	ETgw	hours/day	0.54	[2]	0.71	[2]	0.25	PJ [c]	2	PJ

References [ref]:

[1] USEPA 1989

[2] USEPA 2014

[3] USEPA 2011

[a] The averaging time for cancer risk is the expected lifespan of 70 years expressed in days.

The averaging time for non-cancer hazard is the total exposure duration (ED) expressed in days.

[b] It was assumed that a worker may get up to half the adult daily water intake at the place of work.

[c] A worker is assumed to wash their hands with groundwater used as drinking water. Therefore, skin surface area was set equal to that of an adult worker's hands and the exposure time was assumed to be a quarter of an hour a day.

[d] The construction worker is assumed to work 5 times a week for 26 weeks.

[e] The incidential groundwater ingestion rate for the construction worker is assumed to be 1/10^m the ingestion rate during swimming (USEPA 2011).

cm² Centimeter squared.

kg Kilogram.

L Liter.

mg Milligram.

PJ Professional Judgement.

	So	lid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia
ROUTE-SPE	CIFIC CONCENTRATION GOALS:	
<u>Oral:</u>	(RG _o) _{C or NC} =	$(\text{TCR or THQ}) \times \text{BW} \times (\text{AT}_{\text{C}} \text{ or } \text{AT}_{\text{NC}})$ $\text{IRgw} \times \text{EF} \times \text{ED} \times [\text{CSF}_{\circ} \text{ or } (1/\text{RfD}_{\circ})]$
<u>Dermal:</u>	(RG _d) _{C or NC} =	$\begin{array}{rcl} (\text{TCR or THQ}) \times \text{BW} & \times & (\text{AT}_{\text{C}} & \text{or AT}_{\text{NC}}) \times & (1,000 \ \text{cm}^3\text{/L}) \\ \hline & \text{SSAgw} & \times \ \text{Kp} & \times \ \text{ETgw} & \times \ \text{EF} & \times \ \text{ED} \times & [\ \text{CSF}_{a} & \text{or } (1/\text{RfD}_{a})] \end{array}$
Inhalation:	(RG _i) _{C or NC} = VFr	(TCR or THQ) × (AT _C or AT _{NC}) es × ET × CF × EF × ED × [(IUR × 10-3 mg/µg) or (1/RfC)]
RG BASED C	N CANCER EFFECTS: (combining a	all exposure routes)
		1
RG _c	= [1	/ (RG _o) _C] + [1/(RG _d) _C] + [1/(RG _i) _C]
RG BASED C	ON NON-CANCER EFFECTS: (comb	ning all exposure routes)
RG _{NC}	=	1
110	[17	$(RG_{o})_{NC}$] + [1/($RG_{d})_{NC}$] + [1/($RG_{i})_{NC}$]
RG = MININ	1UM of RG_{C} and RG_{NC}	
Variable Defin		
		(days) (Table 1).
Variable Defir	nitions:	
Variable Defin AT _C	nitions: Averaging time for cancer effects (
Variable Defin AT _C AT _{NC}	nitions: Averaging time for cancer effects (Averaging time for non-cancer effe	ects (days) (Table 1).
Variable Defin AT _C AT _{NC} BW	itions: Averaging time for cancer effects (Averaging time for non-cancer effe Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour	ects (days) (Table 1).
Variable Defin AT _C AT _{NC} BW CF	itions: Averaging time for cancer effects (Averaging time for non-cancer effe Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF _a)
Variable Defin AT _C AT _{NC} BW CF	hitions: Averaging time for cancer effects (Averaging time for non-cancer effe Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF _a) kg/day]) (Table 6).
Variable Defin AT _C AT _{NC} BW CF CSF	hitions: Averaging time for cancer effects (Averaging time for non-cancer effe Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF _a) kg/day]) (Table 6). I).
Variable Defin AT _C AT _{NC} BW CF CSF ED	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF _a) kg/day]) (Table 6). I). Table 1).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure frequency (days/year) (T	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF _a) kg/day]) (Table 6).). Table 1). ntact (hours/day) (Table 1).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater con	ects (days) (Table 1). ;) and dermal (adjusted to an absorbed dose, CSF _a) kg/day]) (Table 6).). Table 1). ntact (hours/day) (Table 1). ay) (Table 1).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IRgw	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater con Ingestion rate of groundwater (L/da	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF _a) kg/day]) (Table 6). I). Table 1). ntact (hours/day) (Table 1). ay) (Table 1). e 6).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IRgw IUR	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater cor Ingestion rate of groundwater (L/da Inhalation Unit Risk (m ³ /µg) (Table	 c. and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (Table 1). ntact (hours/day) (Table 1). ay) (Table 1). e 6). (Table 5).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IRgw IUR Kp	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater con Ingestion rate of groundwater (L/da Inhalation Unit Risk (m ³ /µg) (Table Permeability coefficient (cm/hour) Reference concentration (mg/m ³)	 c. and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (Table 1). ntact (hours/day) (Table 1). ay) (Table 1). e 6). (Table 5).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IRgw IUR Kp RfC	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater con Ingestion rate of groundwater (L/da Inhalation Unit Risk (m ³ /µg) (Table Permeability coefficient (cm/hour) Reference concentration (mg/m ³)	 c. and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (adjusted to an absorbed dose, CSF_a) (but able 6). (adjusted to an absorbed dose, CSF_a) (adjusted to an absorbed dose, CSF_a) (but able 6).
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IRgw IUR Kp RfC	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure frequency (days/year) (T Exposure time for groundwater cor Ingestion rate of groundwater (L/da Inhalation Unit Risk (m ³ /µg) (Table Permeability coefficient (cm/hour) Reference concentration (mg/m ³) Reference dose for oral (RfD _o) or a	 acts (days) (Table 1). and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (able 1). able 1). ntact (hours/day) (Table 1). ay) (Table 1). 6). (Table 5). (Table 5). (Table 6). dermal (adjusted to an absorbed dose, RfD_a)
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IRgw IUR Kp RfC RfD	nitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater con Ingestion rate of groundwater (L/d Inhalation Unit Risk (m ³ /µg) (Table Permeability coefficient (cm/hour) Reference concentration (mg/m ³) of exposure (mg/kg/day) (Table 6). Remediation goal for groundwater	 ects (days) (Table 1). and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (I). Table 1). ntact (hours/day) (Table 1). ay) (Table 1). e 6). (Table 5). (Table 5). (Table 6). dermal (adjusted to an absorbed dose, RfD_a)
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IUR Kp RfC RfD RfC RfD	hitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure frequency (days/year) (T Exposure time for groundwater cor Ingestion rate of groundwater (L/da Inhalation Unit Risk (m ³ /µg) (Table Permeability coefficient (cm/hour) Reference concentration (mg/m ³) Reference dose for oral (RfD _o) or of exposure (mg/kg/day) (Table 6). Remediation goal for groundwater Exposed skin surface area for groundwater	 ects (days) (Table 1). and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6). (I). Table 1). ntact (hours/day) (Table 1). ay) (Table 1). e 6). (Table 5). (Table 5). (Table 6). dermal (adjusted to an absorbed dose, RfD_a)
Variable Defin AT _C AT _{NC} BW CF CSF ED EF ETgw IUR Kp RfC RfD RG	nitions: Averaging time for cancer effects (Averaging time for non-cancer effects) Body weight (kg) (Table 1). Conversion Factor 0.042 day/hour Cancer slope factor for oral (CSF _o exposure (kg-day/mg [inverse mg/l Exposure duration (years) (Table 1 Exposure duration (years) (Table 1 Exposure frequency (days/year) (T Exposure time for groundwater con Ingestion rate of groundwater (L/d Inhalation Unit Risk (m ³ /µg) (Table Permeability coefficient (cm/hour) Reference concentration (mg/m ³) of exposure (mg/kg/day) (Table 6). Remediation goal for groundwater	ects (days) (Table 1).) and dermal (adjusted to an absorbed dose, CSF_a) kg/day]) (Table 6).). Table 1). ntact (hours/day) (Table 1). ay) (Table 1). e 6). (Table 5). (Table 5). (Table 6). dermal (adjusted to an absorbed dose, RfD_a) (mg/L). undwater contact (cm ²) (Table 1).

 Table 2

 Site-Specific Remediation Goal Equations for Groundwater Based on Residential and Commercial Worker Exposure

 Solid Waste Management Unit (SWMU) 26

Table 3 Site-Specific Remediation Goal Equations for Groundwater Based on Construction Worker Exposure Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

ROUTE-SPECIFIC CONCENTRATION GOALS:

Table 3 Site-Specific Remediation Goal Equations for Groundwater Based on Construction Worker Exposure Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

Variable De	finitions:
τ	Lag time for dermal absorption through the skin (hour) (Table 5).
А	Area of trench (m2) (Table 4).
ACH	Air changes per hour (h-1) (Table 4).
AT _C	Averaging time for cancer effects (days) (Table 1).
$\mathrm{AT}_{\mathrm{NC}}$	Averaging time for non-cancer effects (days) (Table 1).
В	Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum
	relative to its permeability coefficient across the viable epidermis (unitless) (Table 5).
BW	Body weight (kg) (Table 1).
CF	Conversion Factor 0.042 day/hour.
CSF	Cancer slope factor for oral (CSF_o) or dermal (adjusted to an absorbed dose, CSF_a)
	exposure (kg-day/mg [inverse mg/kg/day]) (Table 6).
DA	Dermal absorption factor (L/cm²/day) calculated using Equation [1] or [2] as appropriate.
EDsc	Subchronic exposure duration (years) (Table 1).
EFsc	Subchronic exposure frequency (days/year) (Table 1).
ETgw	Exposure time for groundwater contact (hours/day) (Table 1).
F	Fraction of trench floor through which contaminant can enter (unitless) (Table 4).
FA	Fraction of absorbed water (unitless) (Table 5).
IRgw	Incidental ingestion rate of groundwater (L/day) (Table 1).
IUR	Inhalation Unit Risk (m³/µg) (Table 6).
k _g	Gas-phase mass transfer coefficient (cm/sec) \approx (0.833 cm/sec) × [(18 g/mol)/MW] ^{0.335} × (T/298.15) ^{1.005} .
k _i	Mass transfer coefficient (cm/sec) (Table 4).
k _l	Liquid-phase mass transfer coefficient (cm/sec) ≈ (0.002 cm/sec) × (T/298.15) × [(32 g/mol)/MW] ^{1/2} .
Кр	Permeability coefficient (cm/hour) (Table 5).
MW	Molecular weight (g/mol) (Table 4).
RfC	Reference concentration (mg/m ³) (Table 6).
RfD	Reference dose for oral (RfD _o) or dermal (adjusted to an absorbed dose, RfD _a)
	exposure (mg/kg/day) (Table 6).
RG	Remediation goal for groundwater (mg/L).
SSAgw	Exposed skin surface area for groundwater contact (cm ²) (Table 1).
t*	Time required to reach steady state (hour) (Table 5).
TCR	Target cancer risk (unitless).
THQ	Target hazard quotient for non-cancer effects (unitless).
V	Volume of trench (m ³) (Table 4).
VFw	Volatilization factor from exposed water in a trench (L/m ³) (Table 4).

Table 4 Water Volatilization Factors Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

Constituent	Molecular Weight (MW) (g/mol)	Henry's	Henry's		Parameters [a] Enthalpy of vaporization at boiling point (ΔH _v) (cal/mol)	Normal Boiling Point (Tb) (K)	Critical Temperature (Tc) (K)	Enthalpy of vaporization at water temp. [b] (ΔH _v) (cal/mol)	Henry's Law Constant at water temp. [b] (H) (atm-m³/mol)	Henry's Law Constant at water temp. [b] (Ho) (unitless)	Gas-Phase Mass Transfer Coefficient (K _{iG}) (cm/sec)	Liquid-Phase Mass Transfer Coefficient (K _{iL}) (cm/sec)	Overall Mass Transfer Coefficient (K _i) (cm/sec)	Volatilization Factor [c] Exposed Water in a Trench (VFw) (L/m³)
Volatile Organic Compounds Methyl tert-Butyl Ether (MTBE) Naphthalene	8.82E+01 1.28E+02	5.87E-04 4.40E-04	2.40E-02 1.80E-02	7.53E-02 6.05E-02	6.68E+03 1.04E+04	3.28E+02 4.91E+02	4.97E+02 7.48E+02	7.17E+03 1.28E+04	4.77E-04 3.04E-04	1.99E-02 1.27E-02	4.8E-01 4.2E-01	1.18E-03 9.83E-04	1.1E-03 8.3E-04	1.04E+01 8.17E+00

Mass Transfer Coefficient Parameters

Default input parameters, as presented in the table beneath, were used. Unit Parameter

MWH ₂ 0	g/mol	18.02	Molecular weight of water.
MWO ₂	g/mol	32.00	Molecular weight of oxygen.
kL,O ₂	cm/sec	0.002	Liquid-phase mass transfer coefficient of oxygen at 25°C.
kG,H₂O	cm/sec	0.833	Gas-phase mass transfer coefficient of water vapor at 25°C.
R	atm-m ³ /mole-K	0.000082	Ideal gas constant.
Tgw	°C	20	Temperature of groundwater.
Т	к	293.15	Average system absolute temperature.

Trench Model Input Parameters:

Default input parameters, as presented in the table beneath, were used.

Parameter	Unit	Value		
A F	m² unitless	2.23 1		ridth). Assumed to be 3 feet wide and 8 feet long (VDEQ 2012 default). rough which contaminant can enter (VDEQ 2012 default).
V	m ³	4.08	Volume of trench (area x	depth) (VDEQ 2012 default).
ACH D _{Trench}	h ⁻¹ m	2 1.83	Air changes per hour (VD Depth of trench which is e	EQ_2012 default). equal to the depth of groundwater (Site-specific).
θ_{as}	cm ³ /cm ³	0.26	Air-filled porosity in the va	dose zone (default for silty clay) (Site-specific).
θτ	cm ³ /cm ³	0.48	Total porosity in the vado	se zone (default for silty clay) (Site-specific).
atm-m ³ /mol	Atmosphere per meter cubed pe	r mole.	h ⁻¹	Inverse hour.
°C	Degrees Celsius.		к	Degrees Kelvin.
cal/mol	Calories per mol.		L/m ³	Liter per cubic meter.
cm/sec	Centimeter per second.		m	Meter.
cm ² /sec	Centimeter squared per second.		m ²	Square Meter.
cm ³ /cm ³	Cubic centimeter per cubic centi	meter.	m ³	Cubic Meter.
g/mol	Gram per mol.			
[a]	Constituent-specific physical par	ameters were obta	ained from (USEPA 2015a).	

Constituent-specific physical parameters were obtained from (USEPA 2015a). Enthalpy of vaporization and Henry's Law Constant were adjusted for soil temperature based on USEPA recommended methods (USEPA 2001). Volatilization factors for water in a trench were calculated using VDEQ trench model (2012).

[a] [b] [c]

Assuming dispersion is occurring within a box that is a square meter in area and two meters high.

Table 5 Dermal Absorption Parameters Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

Constituent	Within EPD	Permeability Kp (cm/h		Non-Stea FA	dy State Der τ	State Dermal Absorpti τ t*		ers [c]
	Range? [a]	Value	[Ref]	(unitless)	(hour)	(hour)	(unitless)	Source
Volatile Organic Compounds								
Methyl tert-Butyl Ether (MTBE)	Yes	2.1E-03	RSL	1.0E+00	3.3E-01	7.9E-01	7.6E-03	RSL
Naphthalene	Yes	4.7E-02	RSL	1.0E+00	5.5E-01	1.3E+00	2.0E-01	RSL

References [ref]:

EPD Effective Prediction Domain

RSL Regional Screening Level

cm Centimeter.

mg Milligram.

[a] As defined by USEPA 2004b, constituents with a molecular weight and Kow outside the EPD are not evaluated for dermal exposu

[b] Permeability coefficient for dermal contact with constituents in water (centimeters per hour).

[c] Absorption parameters for use in the non-steady state model for dermal contact with constituents in water.

 τ = Lag time for dermal absorption through the skin.

t* = Time required to reach steady state.

B = Ratio of the permeability coefficient through the stratus corneum relative to the permeability coefficient across the viable epide FA = Fraction of absorbed water.

Table 6 Toxicity Values Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

Constituent	ABS _{GI} [a]	Oral RfD (mg/kg/day) [b]			Dermal RfD (mg/kg/day) [c]		Inhalation RfC (mg/m³) [b]			Oral CSF (mg/kg/day) ⁻¹ [b]		Dermal CSF (mg/kg/day) ⁻¹ [c]	Inhalation Unit Risk (μg/m ³) ⁻¹ [b]			
		Subchr	onic	Chron	ic	Subchronic	Chronic	Subchro	onic	Chron	ic					
		Value	[ref]	Value	[ref]	Value	Value	Value	[ref]	Value	[ref]	Value	[ref]	Value	Value	[ref]
Volatile Organic Compounds																
Methyl tert-Butyl Ether (MTBE)	1	3.0E-01	Α	NA		3.0E-01	NA	2.5E+00	Α	3.0E+00	I	1.8E-03	С	1.8E-03	2.6E-07	С
Naphthalene	1	6.0E-01	А	2.0E-02	Ι	6.0E-01	2.0E-02	3.0E-03	С	3.0E-03	Ι	NA		NA	3.4E-05	С

References [ref]:

A Agency for Toxic Substances Disease Registry (ATSDR 2015).

C CalEPA, Toxicity Criteria database (CalEPA 2015).

I USEPA, Integrated Risk Information System (IRIS) (USEPA 2015b).

mg/kg/day	Milligram per kilogram per day.
mg/m ³	Milligram per cubic meter.
(mg/kg/day) ⁻¹	Inverse milligram per kilogram per day (risk per unit dose).
(μg/m ³) ⁻¹	Inverse microgram per cubic meter.
[b]	ABSGI = Gastrointestinal track absorption factor; from USEPA 2015a.

[b] Toxicity values were obtained per USEPA hierarchy (USEPA 2003).

[c] RfD (dermal) = RfD (oral) × ABS_{GI} .

CSF (dermal) = CSF (oral) / ABS_{GI} .

c Chronic criteria used as subchronic.

NA Toxicity value is not available.

Table 7 Site-Specific Remediation Goal Concentration Calculation for Exposure to Groundwater of a Child Resident Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

			CANC	ER EFFECTS						
		Route-Specific RG (mg/L)			RG _c	Route-Specific RG (mg/L)			RG _{NC}	Minimum
Constituent	DA [a]	Oral	Dermal	Inhalation	(mg/L)	Oral	Dermal	Inhalation	(mg/L)	RG [b]
	(L/cm²/day)	(RG _o) _c	(RG _d) _C	(RG _i) _c	TCR = 1E-06	(RG _o) _{NC}	(RG _d) _{NC}	(RG _i) _{NC}	THQ = 1	(mg/L)
Volatile Organic Compounds										
Methyl tert-Butyl Ether (MTBE)	2.45E-06 [1]	1.3E-01	6.5E+00	4.1E+00	1.2E-01	NA	NA	2.8E+02	2.8E+02	1.2E-01 C
Naphthalene	7.01E-05 [1]	NA	NA	3.2E-02	3.2E-02	4.0E-01	7.0E-01	2.8E-01	1.3E-01	3.2E-02 C

[a] The dermal absorption factor was calculated using Equation [1] as indicated in Table 5.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N").

DA Dermal absorption.

L/cm²/day Liter per square centimer per day. mg/L Milligram per liter. NA Not available; insufficient data.

Equations:

(RGo)c = (TCR × 15 × 25,550) / (0.78 × 350 × 6 × CSFo)

(RGd)c = (TCR × 15 × 25,550) / (6,378 × DA × 350 × 6 × CSFa) (RGi)c = (TCR × 25,550) / (0.5 × 0.042 × 0.54 × 350 × 6 × IUR) RG Remediation goal for groundwater.

TCR Target cancer risk.

THQ Target hazard quotient for noncancer effects.

(RGo)nc = (THQ × 15 × 2,190) / (0.78 × 350 × 6 × [1/RfDo]) (RGd)nc = (THQ × 15 × 2,190) / (6,378 × DA × 350 × 6 × [1/RfDa]) (RGi)nc = (THQ × 2,190) / (0.5 × 0.042 × 0.54 × 350 × 6 × [1/RfC])

Table 8 Site-Specific Remediation Goal Concentration Calculation for Exposure to Groundwater of an Adult Resident Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

			CANC	ER EFFECTS							
		Route	-Specific RG	(mg/L)	(mg/L) RG _c		Route-Specific RG (mg/L)			Minimum	
Constituent	DA [a]	Oral	Dermal	Inhalation	(mg/L)	Oral	Dermal	Inhalation	(mg/L)	RG [b]	
	(L/cm²/day)	(RG _o) _c	(RG _d) _C	(RG _i) _c	TCR = 1E-06	(RG _o) _{NC}	(RG _d) _{NC}	(RG _i) _{NC}	THQ = 1	(mg/L)	
Volatile Organic Compounds											
Methyl tert-Butyl Ether (MTBE)	2.81E-06 [1]	6.5E-02	2.8E+00	9.4E-01	5.9E-02	NA	NA	2.1E+02	2.1E+02	5.9E-02 C	
Naphthalene	8.04E-05 [1]	NA	NA	7.2E-03	7.2E-03	6.7E-01	9.9E-01	2.1E-01	1.4E-01	7.2E-03 C	

[a] The dermal absorption factor was calculated using Equation [1] as indicated in Table 5.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N").

DA Dermal absorption.

L/cm²/day Liter per square centimer per day. mg/L Milligram per liter. NA Not available; insufficient data.

Equations:

- (RGo)c = (TCR × 80 × 25,550) / (2.5 × 350 × 20 × CSFo)
- (RGd)c = (TCR × 80 × 25,550) / (20,900 × DA × 350 × 20 × CSFa)
- (RGi)c = (TCR × 25,550) / (0.5 × 0.042 × 0.71 × 350 × 20 × IUR)

- RG Remediation goal for groundwater.
- TCR Target cancer risk.
- THQ Target hazard quotient for noncancer effects.

(RGo)nc = (THQ × 80 × 7,300) / (2.5 × 350 × 20 × [1/RfDo]) (RGd)nc = (THQ × 80 × 7,300) / (20,900 × DA × 350 × 20 × [1/RfDa]) (RGi)nc = (THQ × 7,300) / (0.5 × 0.042 × 0.71 × 350 × 20 × [1/RfC])

Table 9 Site-Specific Remediation Goal Concentration Calculation for Exposure to Groundwater of a Commercial Worker Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

			CANC	ER EFFECTS						
		Route-Specific RG (mg/L)			RG _c	Route-Specific RG (mg/L)			RG _{NC}	Minimum
Constituent	DA [a]	Oral	Dermal	Inhalation	(mg/L)	Oral	Dermal	Inhalation	(mg/L)	RG [b]
	(L/cm²/day)	(RG _o) _c	(RG _d) _C	(RG _i) _C	TCR = 1E-06	(RG _o) _{NC}	(RG _d) _{NC}	(RG _i) _{NC}	THQ = 1	(mg/L)
Volatile Organic Compounds										
Methyl tert-Butyl Ether (MTBE)	1.67E-06 [1]	1.5E-01	1.1E+02	3.0E+00	1.4E-01	NA	NA	8.3E+02	8.3E+02	1.4E-01 C
Naphthalene	4.77E-05 [1]	NA	NA	2.3E-02	2.3E-02	1.9E+00	5.0E+01	8.3E-01	5.7E-01	2.3E-02 C

[a] The dermal absorption factor was calculated using Equation [1] as indicated in Table 5.

[b] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N").

DA Dermal absorption.

L/cm²/day Liter per square centimer per day. mg/L Milligram per liter. NA Not available; insufficient data.

Equations:

(RGo)c = (TCR × 80 × 25,550) / (1.25 × 250 × 25 × CSFo)

(RGd)c = (TCR × 80 × 25,550) / (980 × DA × 250 × 25 × CSFa)

 $({\rm RGi}){\rm c} = ({\rm TCR} \times 25{,}550) \ / \ (0.5 \times 0.042 \times 0.25 \times 250 \times 25 \times {\rm IUR})$

RG Remediation goal for groundwater.

TCR Target cancer risk.

THQ Target hazard quotient for noncancer effects.

(RGo)nc = (THQ × 80 × 9,125) / (1.25 × 250 × 25 × [1/RfDo]) (RGd)nc = (THQ × 80 × 9,125) / (980 × DA × 250 × 25 × [1/RfDa]) (RGi)nc = (THQ × 9,125) / (0.5 × 0.042 × 0.25 × 250 × 25 × [1/RfC])

Table 10 Site-Specific Remediation Goal Concentration Calculation for Exposure to Groundwater of a Construction Worker Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

			CANCER EFFECTS			NON-CANCER EFFECTS					
			Route-	Specific RG	i (mg/L)	RG _c	Route	-Specific RG	(mg/L)	RG _{NC}	Minimum
Constituent	DA [a]	VF [b]	Oral	Dermal	Inhalation	(mg/L)	Oral	Dermal	Inhalation	(mg/L)	RG [c]
	(L/cm²/day)	(L/m³)	(RG _o) _c	(RG _d) _C	(RG _i) _C	TCR = 1E-06	(RG _o) _{NC}	(RG _d) _{NC}	(RG _i) _{NC}	THQ = 1	(mg/L)
Volatile Organic Compounds											
Methyl tert-Butyl Ether (MTBE)	5.58E-06 [2]	1.04E+01	4.4E+03	4.4E+02	8.7E-01	8.7E-01	1.7E+04	1.7E+03	4.0E+00	4.0E+00	8.7E-01 C
Naphthalene	1.39E-04 [2]	8.17E+00	NA	NA	8.4E-03	8.4E-03	3.4E+04	1.4E+02	6.1E-03	6.1E-03	6.1E-03 N

[a] The dermal absorption factor was calculated using Equation [2] as indicated in Table 5.

[b] The volatilization factor [VF] calculated in Table 4.

[c] Minimum of the HBG_C (identified by "C") and HBG_{NC} (identified by "N").

DA Dermal absorption.

L/cm²/day Liter per square centimer per day. mg/L Milligram per liter. NA Not available; insufficient data.

Equations:

(RGo)c = (TCR × 80 × 25,550) / (0.002 × 5 × 26 × CSFo) (RGd)c = (TCR × 80 × 25,550) / (3,527 × DA × 5 × 26 × CSFa) (RGi)c = (TCR × 25,550) / (VF × 0.042 × 2 × 5 × 26 × IUR) RG Remediation goal for groundwater.

- TCR Target cancer risk.
- THQ Target hazard quotient for noncancer effects.
- VF Volatilization factor.

(RGo)nc = (THQ × 80 × 182) / (0.002 × 5 × 26 × [1/RfDo]) (RGd)nc = (THQ × 80 × 182) / (3,527 × DA × 5 × 26 × [1/RfDa]) (RGi)nc = (THQ × 182) / (VF × 0.042 × 2 × 5 × 26 × [1/RfC])

Table 11 Summary of Calculated Site-Specific Remediation Goals Solid Waste Management Unit (SWMU) 26 Fort Stewart, Georgia

	Minimum Groundwater RG (mg/L)						
Constituent	Child	Adult	Resident ^a	Commercial	Construction		
	Resident	Resident	Resident	Worker	Worker		
Volatile Organic Compounds							
Methyl tert-Butyl Ether (MTBE)	1.2E-01	5.9E-02	5.9E-02	1.4E-01	8.7E-01		
Naphthalene	3.2E-02	7.2E-03	7.2E-03	2.3E-02	6.1E-03		

^a = The resident RG is based on the minimum RG for the child and adult resident.

Milligram per liter. Remediation goal. mg/L RG

Appendix E

Soil Boring and Well Construction Log

A	RCADIS		SOIL CORE / SAMPLING LOG
Boring/Well	MW-60	Project/NoPUDTIAFJ	. 2013 DZGMU Page 1 of 1
Site Location	FJT-26 F4	- Stevat, Ga	Drilling Started 5/14/14 Completed 5/14/14
Drilling Contractor	Geo Las		Driller Phillip Helper Lat
Drilling Fluid U	sed	IONE	Drilling Method Hollen Ifen Aver
Length and Diar of Coring Devic			Sampling Interval Confinent feet
Total Depth Dril	lled 25	_Feet Hole Diameter	2 Coring Device Marro Cone
Prepared By	Jared	[] NO	Hammer Hammer Weight <u>N/A</u> Drop <u>N/A</u> ins.

Soil Characterization:

Sample/Core (Fee From	Depth bls) To	Gras Surface Sample/Core Description	PID (ppm)
0	3	Brown Sand some organ's meterial fine - ned post Loupla	1. Les
3	3.5	Gay silty shad, forme chy med shift, high plassicity	seic 7
4	5	Lt. born sall some with solt low plackingthe	/
5	6.5	NU Recovery	
6.5	7	Gray silly sad, som clay, south, ho med plasticity	
7	10	Dark Grey fin - medium rand, Wet	
. 10	16	Same as above but for - Coarde, free clay WET	
IÇ	19.5	Gray fun-corre fond w/ some play & shell dropped with	
19.5	20.5	Gray silly and w/clay mod shift high plasticity Dry	
20-5	25	Ct Croy Rin-vary capage land Dans cley & shall frequenty	
2 mar 10		WET	
		FILD POLL	
		the of Boring (a) 25++695	
	1		
			1
			×
			2
	1		
,Y	1		

WELL CONSTRUCTION LOG- UNCONSOLIDATED

	ft	Project	FST-26		er 724th	Purging	Well	MW-60
	↓ LAND SURFACE	Town/City	Fort Stev		ation		-	
		County	Liberty				State	Georgia
	drilled hole						-	
	Well casing, <u>2</u> inch diameter, <u>Schedule 40 PVC</u> Backfill	Installation Drilling Met			4/2014 ow Stem	Auger		
	X Grout Portland Cement	Drilling Cor	ntractor	Geo	Lab			
		Drilling Flui		Non				
	4.4 1.4	2g.r.a	4		0			
	ft* Bentoniteslurry	Developme	nt Technic	que(s)	and Dat	e(s)		
	13 ft* X pellets	Whale Pun	np, 5/14/20	014				
	Well Screen. inch diameter Sch 40 PVC_,slot	Fluid Loss Water Ren Static Dept Pumping D Pumping D	noved Duri h to Wate epth to Wa	ing De r	-	N/A nt 9.35 18.5 hours	feet	_gallons _gallons below M.P. below M.P.
		Yield	N	М	_gpm		Date	5/14/2014
	Gravel Pack	Specific Ca	pacity		NM	_gpm/ft		
<	X Sand Pack	Well Purpo	se	Mon	iitoring W	/ell		
	<u>25</u> ft* <u>25.5</u> ft*	Remarks	Flush Mo	ount C	ompletio	n with Lc	ocking W	/ell Seal
	Measuring Point is Top of Well Casing Unless Otherwise Noted.							
	* Depth Below Land Surface NM = Not Measured N/A = Not Applicable gpm = gallons per minute	Prepared b	у	Jare	ed Fino			

G:\Env\Common\Field Forms\Well Construction Diagrams-Monitoring Wells

Appendix F

Sampling Data Sheets

WATER SAMPLING LOG

Project No. <u>GP08HAFS.2012.N26GM</u>	Date 4-2-2013
Site Location: <u>Ft. Stewart, GA (FST-26)</u>	Monitoring Well Number 26-MW-40
Rep./Field Blank No	Sample Collection Time 215
Weather Swwy	Sampling Method <u>Low Flow Peristaltic</u>
Evacuation Data:	
Depth to bottom of well (ft bls) 13.60	Casing stick-up above concrete (feet)
Depth to water from top of casing	Screened Interval (ft bls)
Water Column (ft) Gallons in well	Casing Diameter:2"
Evacuation Volume (x 3) = Low Flow	Casing Volume <u>1"=0.04 gal gal/ft</u> , <u>2"=0.16 gal/ft</u>

Field Parameters:

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1145	start	18.39	5.38	3.39	103	8.47	32.7	5.86
150	0.1	17.90	4.58	2.33	101	8.14	24.5	5.99
1155	0.2	17.81	4.49	2.04	160	20.1	29.6	6.10
1200	0.3	17.79	4.39	1.89	160	23.4	19.6	6.19
1205	0.4	18.11	4.37	1.73	00	22.5	5.6	6.19
1210	0.5	18.11	4.37	1.75	100	19.7	19.1	6.19
1215	0.6	18,12	4.35	1.73	160	17.5	+7-19.1	6.19
				DBM	9			
V								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE 8760	3X 40 mL glass vial	HCl

Remarks_

Sampling Personnel Jared Fino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blank	No
Weather Sur	nny, 6015
Evacuation Data	0
Depth to bottom o	f well (ft bls)
	om top of casing <u>4, 32</u>
Water Column 9.6	(ft) Gallons in well 1.55
Evacuation Volun	$ne (x 3) = \underline{Low Flow}$

WATER SAMPLING LOG

	Date 4-2-13
Monitoring Well Nun	nber MW-47
Sample Collection Tim	me_ 17.26
Sampling Method	Low Flow Peristaltic

Casing stick-up above con	ncrete (feet)
Screened Interval (ft bls)	39-13.5
Casing Diameter:	20
Casing Volume 1"=0.04	gal gal/ft, 2"=0.16 gal/ft

Field Para	meters:	Start 11	56		1.s/cm			
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1201	0.1	18.10	6.44	2 22	966	>1000	1177	5.85
1206	0.2	18.10	6.41	2,92	904	16711	P. 189.0	10.40
1211	0.3	18.06	6.39	3.30	878	1450	106.1	6.60
1216	0.4	18.31	6.32	3,06	SIPV.P.		97.8	6.81
1221	0.5	18.02	6.24	3.03	805	3618	96,4	6.81
1226	0.6	18,37	6.25	3.01	798	-31	92.1	6.80
C						212	/	
				A	A.	2-13		
	1	1	V	hour	and the second s			
	L	Lat	yp					-
		-0	J				1	

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks Veri

ted - Carlotte

Sampling Personnel

Danny Mays J Jaced Fino/Valyn Paouncic

Project No.	Project No. <u>GP08HAFS.2012.N26GM</u>					
Site Location:	Ft. Stewart, GA (FST-26)					
Rep./Field Blan Weather 5						
Evacuation Da Depth to bottom	nof well (ft bls) 26.15					
Depth to water	from top of casing					
Water Column	(ft) Gallons in well					

Evacuation Volume (x 3) = <u>Low Flow</u>

 WATER SAMPLING LOG

 Date 4-2-13

 Date 4-2-13

 Monitoring Well Number 26 - MW- 39

 Sample Collection Time 300

 Sampling Method Low Flow Peristaltic

Casing stick-up above concrete (feet) _____ Screened Interval (ft bls) _____ Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (umhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
	18.69	6.38	1.15	571	3.34	14,1	5.90
0.]	18.50	6.54	0.73	578	3.15	10.6	5.90
0.2	18.72	6.63	0.64	581	3.30	4.2	5.88
0.3	18.70	6.67	0.57	582	3.71	-2.4	5.88
0.4	18.92	6.68	0.55	582	4.44	-9.2	5.88
0.5	18.94	6.69	0.53	582	4.57	-11.8	5.88
0.6	19.05	6.69	0.5(582	4.90	-16.5	5.88
e		4.1			/		
		OBM	2				
	/						
	Purged 5.1 0.1 0.2 0.3 0.4 0.5	Purged (°C) Start 18.69 0.1 18.50 0.2 18.72 0.3 18.70 0.4 18.92 0.5 18.94	Purged (°C) (SU) Stat 18.69 6.38 0.1 18.50 6.54 0.2 18.72 6.63 0.3 18.70 6.67 0.4 18.92 6.68 0.5 18.94 6.69 0.6 19.05 6.64	Purged(°C)(SU)(mg/L) $$xtat$ $$8.69$ 6.38 1.5 0.1 $$8.50$ 6.54 0.73 0.2 $$8.72$ 6.63 0.64 0.3 $$18.70$ 6.67 0.57 0.4 $$8.92$ 6.68 0.55 0.5 $$18.94$ 6.69 0.53 0.6 $$19.05$ 6.64 0.51	Purged (°C) (SU) (mg/L) (µmhos/cm) Stat 18.69 6.38 1.15 571 0.1 18.50 6.54 0.73 578 0.2 18.72 6.63 0.64 581 0.3 18.70 6.67 0.57 582 0.4 18.92 6.68 0.55 582 0.5 18.94 6.69 0.53 582 0.5 18.94 6.64 0.55 582 0.5 18.94 6.69 0.53 582 0.5 18.94 6.69 0.53 582 0.5 18.94 6.69 0.55 582 0.5 18.94 6.69 0.55 582	Purged(°C)(SU)(mg/L)(μ mhos/cm)(NTU)Stat18.696.381.155713.340.118.506.540.735783.150.218.726.630.645813.300.318.706.670.575823.710.418.926.680.555824.440.518.946.690.535824.570.619.056.640.515824.90	Purged(°C)(SU)(mg/L)(μ mhos/cm)(NTU)(mV)Stat18.696.381.155713.3414.10.118.506.540.735783.1510.60.218.726.630.645813.304.20.318.706.670.575823.71-2.40.418.926.680.555824.44-9.20.518.946.690.535824.57-11.80.619.056.640.515824.40-16.5

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks_

Sampling Personnel Jared Fino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blar	ık No
Weather	onny, 7015
Evacuation Da	ata:
Depth to bottor	n of well (ft bls) <u><u>1</u>4</u>
	from top of casing 5.04
Water Column	(ft) Gallons in well
Evacuation Vol	ume (x 3) = <u>Low Flow</u>

WATER SAMPLING LOG

	Date 4-2-13
Monitoring Well Numb	er MW-33
Sample Collection Time	1315
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet)
Screened Interval (ft bls) 3.6-13.6
Casing Diameter: 7"

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

up

Field Para	meters:	start!	1244					-
Time	Gallons	Temp	pH	DO	Spec. Cond.	Turb	Redox	Depth to Water (ft)
	Purged	(°C)	(SU)	(mg/L)	(µmhos/cm)	(NTU)	(mV)	water (it)
1249	0.1	18,52	4.63	0.78	142	87.7	- 79.3	58.37
1254	0.2	18.41	4.56	0.82	1-11	60.2	82.2	\$813F
1259	0.3	18.30	4,43	0,28	141	416.2	Q7.8	5.37
1304	0,4	18,20	4.34	0.90	140	39.2	93.6	5.37
1309	0.5	18.18	4.28	0.92	1411	35.5	98,6	5.37
1314	0.6	18,25	4.25	0.96	140	35.8	100,1	5.37
		200						
			(7	4-2-1	2		
		~		round				
		Clark	10					
		V	/					
/								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl

Water Remarks_ loude 1Gh H

Sampling Personnel ______ GAWY MAR Jared Eine Valyn Paouncic

WATER SAMPLING LOG

Project NoGP08HAFS.2012.N26GM	Date 4-2-1.3
Site Location:Ft. Stewart, GA (FST-26)	Monitoring Well Number MLD -99 43
Rep./Field Blank No	Sample Collection Time 1410
Weather Sunny, 70's	Sampling Method Low Flow Peristaltic
Evacuation Data:	
Depth to bottom of well (ft bls)	Casing stick-up above concrete (feet)
Depth to water from top of casing 6.59	Screened Interval (ft bls)
Water Column (ft) Gallons in well	Casing Diameter: 2 ^M
Evacuation Volume (x 3) = <u>Low Flow</u>	Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft
Field Decomptores (1.1.) (22.0	(Crew

ield Parar	neters:	start - 1	338		NSICH			
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft
1343	0.1	19,15	5,77	0.97	492	119	116,8	6,70
1348	0.2	19.22	5.80	0.82	495	80.7	108,7	6.7
1353	0,3	19,50	5.80	0.75	496	37.9	103.5	6.70
1358	04	19.50	5.79	0.68	497	79.9	99,4	6.7
1403	0.5	19.78	5,79	0,69	498	18.8	94.1	6.7
1400	0.6	19.28	5.79	0.67	- 497	19.7	90:3	6.H
		1997 A						
			1	Am	m 4-	2-13		
	-		lyp	famme				
		-7	Ĵ			1.1		-
/								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks NH cG Janny Mus Jared Fino/Valyn Paouncic

Sampling Personnel

WATER SAMPLING	JLOG
----------------	-------------

Project No. <u>GP08HAFS.2012.N26GM</u>	
Site Location: Ft. Stewart, GA (FST-26)	Monitorin
Rep./Field Blank No	Sample Co
Weather	Sampling
Evacuation Data:	
Depth to bottom of well (ft bls) 25.22	Casing sti
Depth to water from top of casing	Screened 1
Water Column (ft) Gallons in well	Casing Di

Evacuation Volume (x 3) = Low Flow

	Olimit Funder Food
	Date 4-2-13
Monitoring Well Numbe	er 26-MW-42
Sample Collection Time	1420
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) ______ Screened Interval (ft bls) ______

Casing Diameter:

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1350	Start	20.50	5.39	5.02	806	25.7	-1:3	6.92
1355	0.1	20.38	5.24	4.79	804	26.4	20,4	7.00
1400	0.2	20.35	5.16	4.72	803	26.9	26.1	7.09
1405	03	20.22	5.10	4.49	802	25.8	46.0	7.11
1,41,0	0.4	20.01	5.07	4.48	803	25.9	59.3	210
1415	0.5	20.42	5.07	4.52	803	24.4	77.4	7.12
1420	0.6	20.60	5.08	4.34	802	24.2	78.8	7.13
	1							
_			DBM					
		\bigcirc						
/								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks____

Sampling Personnel _____ Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	
Weather	Sunny, 70's
Evacuation Da	ata:
Depth to botton	n of well (ft bls)
Depth to water	from top of casing <u>5,46</u>
Water Column	254(ft) Gallons in well 1, 37
Evacuation Vol	ume $(x 3) = $ <u>Low Flow</u>

Date 4-2-13 Monitoring Well Number Mco-51 Sample Collection Time 1445 Sampling Method Low Flow Peristaltic

Casing stick-up above con	crete (feet) <u>21</u>
Screened Interval (ft bls) _	5.9-13.9
Casing Diameter:	2''
Casing Volume 1"=0.04 g	al gal/ft, 2"=0.16 gal/ft

Field Paran Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1418	0.1	19.40	5,82	1.10	233	39.6	76,5	5.94
1423	0.7	19.35	5.79	0.80	230	33,9	74.3	5.94
1428	0.3	19.19	5.77	0,80	226	268	70.1	5.96
1433	0.4	19.13	6,74	0.64	223	21.4	64.2	5.99
1438	0,5	19,13	5,74	0.62	723	21.4	63.5	5.99
14143	0.6	19.16	5.72	0.63	222	23.1	61.3	5.99
			C					-
				\cap		4-2-17		1
			1 1	Laos	man			
		A	bly	. 1			L	1
		0	1				<u></u>	

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
Remarks	Slightly (1)	Dudy / Slightly	torbd.
		J ronging	<u> </u>
Sampling P	ersonnel Jared I	aug Sipo/Valyn Paouncic	

WATER SAMPLING LOG

Project No. <u>GP08HAFS.2012.N26GM</u>	Date 4-2-13
Site Location: <u>Ft. Stewart, GA (FST-26)</u>	Monitoring Well Number 26-MW-32
Rep./Field Blank No	Sample Collection Time 4505 510
Weather	_ Sampling Method Low Flow Peristaltic
Evacuation Data:	
Depth to bottom of well (ft bls) 17.82	Casing stick-up above concrete (feet)
Depth to water from top of casing	Screened Interval (ft bls)
Water Column (ft) Gallons in well	Casing Diameter:
Evacuation Volume (x 3) = <u>Low Flow</u>	Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

	Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
	1440	start	20.48	5.76	3.28	160	95.1	41.2	7.10
	1445	0.1	20.98	5,72	3.17	138	99.8	19.3	7.05
	450	0.2	2.30	5.69	3.02	130	97.8	14.2	7.02
	1455	0.3	21.36	5.68	3.21	128	90.8	7.2	203
	1500	0.4	21.26	5.67	3.13	126	87.5	4.1	7.03
1505	NENO.	0.5	21.26	5.63	3.6	123	82.3	1,6	7.04
	1510	0.6	21.28	5.63	3.19	123	82,1	2011.4	2.05
							/		
			at 11	A	7				
	-		pom						

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks_

Sampling Personnel _____ Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No GP08HAFS	.2012.N26GM
Site Location: Ft. Stewart	, GA (FST-26)
Rep./Field Blank No	
Weather Sunny/	7013
Evacuation Data:	
Depth to bottom of well (ft bls	s)
Depth to water from top of cas	
Water Column 25 (At) Gallo	ons in well $4,03$
Evacuation Volume (x 3) =	Low Flow

	Date 4-2-13
Monitoring Well Number	MU-52
Sample Collection Time	1520
Sampling Method	Low Flow Peristaltic

Casing stick-up above conc	erete (feet) _ 2
Screened Interval (ft bls)	26.9-30.4
	21)
Casing Volume 1"=0.04 ga	1 gal/ft, 2"=0.16 gal/ft

Field Parar	meters:	Start	1447-		NSICM	-		
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1452	\mathcal{O} , \	20.42	6.66	3.00	1870	22.1	718	5,85
1457	6.2	70.42	6.60	2.05	1993	11,3	48.5	585
150Z	0.3	20.47	- 6.61	0.94	2044	7.77	29.5	5.85
1507	0.4	20.48	663	0.69	2075	5,34	5.2	5,85
1512	0.5	20,43	645	0.60	2092	4.38	7.8	5.85
1507	0.4	20.37	(o.U.	0,51	2108	2.64	- 20.5	5.85
								/
				~		1-12		
1000		/		$\left(\right)$	1 4	jere		
		1		fanno				
		H	My	1				

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1
			· · · · · · · · · · · · · · · · · · ·

Remarks

Sampling Personnel

Downy Moralyn Paouncic

WATER SAMPLING LOG

Project No GP08HAFS.2012.N26GM	Date 2- 4/-2-13
Site Location: Ft. Stewart, GA (FST-26)	Monitoring Well Number MW-31
Rep./Field Blank No	Sample Collection Time550
Weather Sonny, 70-S	Sampling Method Low Flow Peristaltic
Evacuation Data:	
Depth to bottom of well (ft bls)	Casing stick-up above concrete (feet) 2.5
Depth to water from top of casing $(2 + 3)$	Screened Interval (ft bls) $- 4 - 4$
Water Column (ft) Gallons in well	Casing Diameter: 2 ¹
Evacuation Volume (x 3) = <u>Low Flow</u>	Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
18-625	O.I	18.62	5.64	3.24	370	1870 AU	79.6	7.87
NE P	0.2	18.93	5.55	1,91	274	SEA AU	35,2	7.87
1635	0.3	19,04	5,22	1-31	251	No71 AL	34.5	7.87
1540	OU	18.93	5,07	-1.05	247	189(AL	48.0	7.87
1545	0.5	18.93	5.07	1.01	246	1926 AV	49.7	7.88
1550	0.0	18,92	5.05	0,99	244	2067AV	53.3	7.98
00								
						2-13		
			\cap	N.A.	24			
	<i>f</i> ti		D	ouver				
		a ALAA						
	t	the 1						

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl

Very Remarks_

Sampling Personnel

Jared Fino/Valyn Paouncic (1

turbi

G	-	<i><u>n</u> i</i>	-	i e
0	AR	(Δ	D	IS
LILL	m			-

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather	
Evacuation Da	ita:
Depth to bottom	n of well (ft bls) 4.00
Depth to water t	from top of casing
Water Column	(ft) Gallons in well

Evacuation Volume (x 3) = _____ Low Flow

Field Parameters:

	Date 4-2-13
Monitoring Well Numl Sample Collection Tim	ber 26-MW-49 1e 1615
Sampling Method	Low Flow Peristaltic

......

Casing stick-up above concrete (feet)

Screened Interval (ft bls)

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1545	start	21.25	6.19	8.62	164	220	-12.9	6.50
1550	0.1	20.19	5.95	3.31	158	179	-13.6	6.95
1555	0.2	20.25	5.84	3.09	156	170	-7.5	6.95
1600	0.3	20.50	5.82	2.90	156	174	-6.2	6.95
605	6.4	20.81	5.83	2.74	155	173	-7.6	6.95
1610	0,5	20,69	5.8	2.73	154	167	-11.6	6.96
165	0.6	20.60	5.78	2.59	154	161	-13.6	697
							/	
				\bigcirc				
	2		BBM	\mathcal{T}			1	
			/			1	E	
-	1							

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1
	1		

Remarks_

Sampling Personnel Jared Fino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather 5	enny 7015
Evacuation Da	ata:
Depth to botton	n of well (ft bls) <u>31.7</u>
Depth to water	from top of casing <u>6.5</u>
	(ft) Gallons in well
Evacuation Vol	ume $(x 3) = $ <u>Low Flow</u>

WATER SAMPLING LOG

	Date 4-2-13
Monitoring Well Num	ber_MW-57
Sample Collection Tin	ne162(p
Sampling Method	Low Flow Peristaltic

Casing stick-up above co	ncrete (feet) 2.5
Screened Interval (ft bls)	25.9-30,4
Casing Diameter:2))

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parar	meters:	1356 5	- Start					
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1601	0.1	19.98	2.02	4,79	716	68.7	343.1	6.68
16000	0.2	19.88	2.20	4,77	719	8.29	337,5	6.68
llen	0.3	20.00	2,36	4,57	729	1.90	337.7	6.68
1616	0.4	20.24	2.52	4.34	735	1.04	323.7	6.73
1621	0.5	26.28	2.53	4.40	730	1,14	323,1	673
11026	0.6	20.33	2.47	4.47	7-39	0.67	823.9	675
201								/
						4-2	-13	
				Da	inclu			
		1/	Jula	the	1		S	
		-19			1	1		-

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative	
	BTEX, MTBE	3X 40 mL glass vial	HCl	

Remarks

Sampling Personnel

Jarny (Hay) Jared Fino/Valyn Paouncic

6	AD	C	-	C
	AK	CA	D	S
No CEFT	A. BR.B.	100 10 10		-

Project NoG	P08HAFS.2012.N26GM	
Site Location:	Ft. Stewart, GA (FST-26)	Monito
Rep./Field Blank No	0	Sample
Weather		Sampli
Evacuation Data:	- 1 -	
Depth to bottom of	well (ft bls) 34.5	Casing
	top of casing	Screene
Water Column	(ft) Gallons in well	Casing
Evacuation Volume	(x 3) = Low Flow	Casing

WATER SA	MPLING LOG
Dat	
Monitoring Well Number	26-MW-50
Sample Collection Time	655
Sampling MethodLow	Flow Peristaltic

Salasha ana

Casing stick-up above concrete (feet)

Screened Interval (ft bls) _____

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1625	Stant	20.71	6.93	4.15	1333	14.8	8.	6.78
1630	0.1	20.75	7.04	3.97	1336	13.7	6.2	6.79
635	0.2	20.74	7.08	3.94	1340	12.2	6.0	6,519
1640	0.3	20.52	7.07	4.08	350	11.9	6.6	6.80
645	0.4	20.43	6.96	3.83	14,52	15.7	7.9	6.80
1650	0.5	20.55	6.67	1.79	1700	32.4	5.7	6.79
1655	0.6	20.60	6.64	0.61	1931	10.5	-49.0	6.79
-				0				
			ØBM	9				
,	_			/				
-								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks_

Sampling Personnel Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	nk No. MS /MISD
Weather	my 17025
Evacuation D	N N
Depth to botton	m of well (ft bls)3
Depth to water	from top of casing $(0,9]$
Water Column	2419(ft) Gallons in well 3.85
Evacuation Vo	$lume (x 3) = \underline{Low Flow}$

D	ate <u> </u>
Monitoring Well Number_	MW-58
Sample Collection Time_	1710
Sampling MethodLo	w Flow Peristaltic

Casing stick-up above concrete (feet)	2.5
Screened Interval (ft bls) 26 - 31	
Casing Diameter:2 ¹¹	

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parar	meters: 5	7018 11	lon 0		NSICM			
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (μmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1645	0.1	1995	7.09	4.22	1771	37.1	59.7	6.93
16450	6.2	20.03	7.05	4.00	1729	36.5	64.9	6.93
1655	0.3	20.09	7.04	3,72	1736	31.1	55,2	6.95
16° 1700	1.4	19.96	7.75	3.7te	2127	78.2	13.6	6.9
1705	0.5	19.94	6.67	1.31	7468	15,7	761.4	6.93
1710	0.6	19.89	6.60	0.58	2656	10, Fe	-B.6	6,93
1715	OF	19.08	Le Ido	1.01	2551	7.31	-70.L	Le.g.
			\cap	(4-201	3		
			La	MARCH	t			
		alit	- Par	0.0			L	
	1	How						
		1						

Analyses:

Sampling Personnel

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
-	BTEX, MTBE	3X 40 mL glass vial	HCl

@ 1715 MISA 1712: MS Remarks_ Mater

Janny Mays Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM	
Site Location:	Ft. Stewart, GA (FST-26)	Monitoring
Rep./Field Bla	nk No	Sample Coll
Weather	Sunny 50's	Sampling M
Evacuation D	ata:	
Depth to bottom	m of well (ft bls)	Casing stick
Depth to water	from top of casing 6.05	Screened In
Water Column	(ft) Gallons in well	Casing Dian
Evacuation Vo	lume (x 3) = Low Flow	Casing Volu

Date <u>4-3-</u>	13
Monitoring Well Number MW-32	9
Sample Collection Time 0850	
Sampling Method Low Flow Peristaltic	2

Casing stick-up above concrete (feet) _	S
Screened Interval (ft bls)	
Casing Diameter:7	

ume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Para	Gallons Purged	Start Temp (°C)	0819 pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1874	0.1	17.72	6.77	3.45	2131	28.1	188.2	6.27
0829	0.2	17.52	6.77	3,41	21.31	7.97	157.0	6.27
0834	0.3	17.54	6.78	3,25	2136	6.19	147.7	6.27
0839	0.4	17.68	6,79	3:17	2137	6,30	134.0	6.28
0844	0.5	17.97	6.79	3.13	2135	7.11	126.2	6.28
2849	0.6	17.72	6.79	3.09	2137	8.72	120.6	6.78
						13		
			\wedge	12-	11-3-	15		
	1		Pan	Not				
		lut		i ha				
		1						

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks

Sampling Personnel

Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No. <u>GP08HAFS.2012.N26GM</u>	Date <u>4-3-13</u>			
Site Location: Ft. Stewart, GA (FST-26)				
Rep./Field Blank No	Sample Collection Time <i>855</i>			
Weather	Sampling Method <u>Low Flow Peristaltic</u>			
Evacuation Data:				
Depth to bottom of well (ft bls)	Casing stick-up above concrete (feet)			
Depth to water from top of casing <u>34.24</u>	Screened Interval (ft bls)			
Water Column (ft) Gallons in well	Casing Diameter:			
Evacuation Volume (x 3) = <u>Low Flow</u>	Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft			

Field Parameters: Gallons pH DO Spec. Cond. Turb Depth to Time Temp Redox Water (ft) Purged (SU) (mg/L)(µmhos/cm) (NTU) (mV) $(^{\circ}C)$ 825 RE 7.02 7.14 start 6.25 7.29 5.21 39.3 743 830 0. 4.93 6.48 7.48 742 127.9 7.11 71 6 0.2 5.81 35 7.54 4.77 740 12.2 7.09 66 7.12 7.58 6.46 40 4.65 138 81.6 0.3 05 4.62 845 6.4 7.59 7.13 6.66 66.6 736 850 7.60 13 60 736 5.58 .5 53.7 Ô 855 0.6 4. 22 737 4 7,22 6 PBM

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks

Sampling Personnel _____ Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No GP08HAFS.2012.N26GM					Date <u>4 - 3 - 13</u>				
Site Location: Ft. Stewart, GA (FST-26)				Monitoring Well Number MW- 41					
Rep./Field B	Rep./Field Blank No				Sample Collection Time 6925				
Weather Sunny / 4015				1	Sampling Me	thod	Low Flow Perista	ltic	
Evacuation		1 -							
Depth to bot	ttom of we	ll (ft bls)			Casing stick-up above concrete (feet)				
Depth to water from top of casing 5.90			20	Screened Interval (ft bls)					
Water Column (ft) Gallons in well				Casing Diameter:					
Evacuation	Volume (x	3) =]	Low Flow	_	Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft				
Field Parar	neters:	Stort	0853		usicm				
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)	
1958	0,1	16.94	5,02	3.58	207	46.7	135.2	6.25	
1903	0.7	16.86	4.39	333	180	422	V386	6.25	
0908	0.3	16.88	4.70	329	173	43.4	135.9	6,26	
0913	0.4	1488	4.09	3.39	166	210.1	135.8	6.45	

UTIS	0,7	400	1.01	2.21	166	HUI	100.0	6,70
NYIR	0.5	16.93	3.99	3.21	158	31.8	135.7	6.45
1923	0.0	16.90	4.01	3.30	158	29.5	134.6	6.45
Care	0							
				1	0 4-3	-13		
		- 1-		Chorine	Q T			
		lu	yn					
		V	1				1	
/	F	-						

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl
			· · · · · · · · · · · · · · · · · · ·

Remarks____

turbio Water Blightly

V

Sampling Personnel

Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
	Ft. Stewart, GA (FST-26)
Rep./Field Blan	nk No. DUP-1
Weather	
Evacuation D	ata:
Depth to botton	n of well (ft bls) <u>34.40</u>
	from top of casing
Water Column	(ft) Gallons in well
Evacuation Vo	lume (x 3) = Low Flow

	Date 4-3-13
Monitoring Well Number	26-11-54 54
Sample Collection Time_	955
Sampling MethodI	Low Flow Peristaltic

Casing stick-up above concrete (feet)

Screened Interval (ft bls)

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Time	Gallons	Temp	pH	DO	Spec. Cond.	Turb	Redox	Depth to
	Purged	(°C)	(SU)	(mg/L)	(µmhos/cm)	(NTU)	(mV)	Water (ft)
925	start	17.11	7.53	2.36	897	12.]	-6.9	6.77
930	0.1	17.31	7.46	2.07	898	13.	-9.7	6.74
935	0.2	17.44	7.44	2.01	898	11.7	-14.2	6.74
940	0.3	17.57	7.43	.85	898	14.5	-13.5	6.74
945	0.4	17.77	7.42	1.91	897	13.7	-18.9	6.75
950	0.5	17.90	242	1.90	898	10.4	-20.	6.75
955	0.6	18.04	7.42	1.87	898	13.2	-20.5	6.78
			DBM.					
			-	2				
		/	/					
_								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1
		1	

Remarks

Sampling Personnel _____ Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	nk No
Weather 5	inny 15013
Evacuation Da	
	m of well (ft bls)
Depth to water	from top of casing $5,72$
Water Column	D.26(ft) Gallons in well 1.65
Evacuation Vo	$lume (x 3) = \underline{Low Flow}$

	Date 4-3-13
Monitoring Well Num	ber MW-20
Sample Collection Tim	ne_/000
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) $2 \cdot 5$ Screened Interval (ft bls) 6.0 - 16.0Casing Diameter: 2^{11}

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

eld Parar Time	Gallons Purged	<u>0930 ≲</u> Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1035	(D ·)	18.20	4.53	2.16	138	84.8	144.7	6.45
1940	0.7	1799	4.50	2.17	127	58	147.4	6.45
1945	0.3	18.10	41.56	2,36	126	75	150.9	6.45
MASD	0.4	18.10	4.56	2.30	124	72	151.6	6.45
1955	0.5	18.14	4.56	2.35	125	107	153.8	
1000	0.6	18.18	4,50	2.40	125	VIFTOAL	155.7	6.70
			0		4-3-13			
				we	4-2-4			
		1/	lac	produce		· · · · · · · ·		
	12.20	Jalys	1		hi		-	

Analyses:

Sampling Personnel

Analytical Parameter	Sample Bottles	Preservative
BTEX, MTBE	3X 40 mL glass vial	HCl
	Analytical Parameter BTEX, MTBE	

Water turbid - cloudy Remarks

Jared Find/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	nk No. DUP-02
Weather Su	nny 150's
Evacuation D	C .
Depth to botton	m of well (ft bls) 32.0
Depth to water	from top of casing l_{c} - l_{l}
Water Column	25.59(ft) Gallons in well 4.09
Evacuation Vo	$lume (x 3) = \underline{Low Flow}$

Date <u>4-3-13</u>
Monitoring Well Number 142-55
Sample Collection Time 1035
Sampling Method Low Flow Peristaltic

Casing stick-up above concrete (feet)
Screened Interval (ft bls) 24.9 - 31.4
Casing Diameter: Z ' '

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Para	meters:	1005	Start					D (1)
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1010	0.1	18.97	10.84	4.16	615	19.7	148.4	6.50
1015	OZ	18.91	6.97	4.12	638	7.99	145,4	6.52
10:20	0.3	19.17	7.27	3.98	441	4.32	131.1	6.50
1025	0.4	19.24	7.28	3.83	lelel	4.02	130.0	6.50
10200H	0.5	19.24	7.79	3.90	662	3.92	179.2	6.50
1035	0.6	19-29	7.33	3.91	663	3.38	126.7	6.50
							12	
	75.3			\square	\sum	4-3	-1-	-
			1	Na	auto			
	1		1 hus	for		1		
		-	for					
						· · · · · ·		

Analyses:

Sampling Personnel

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HC1

26-Aup-02(040313) Remarks 4 0 1038

Danny Mays Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather	
Evacuation Da	ita:
Depth to bottom	n of well (ft bls) <u>14,50</u>
	from top of casing
Water Column	(ft) Gallons in well

Evacuation Volume (x 3) = <u>Low Flow</u>

Date <u>4-3-13</u>
Monitoring Well Number 26-MW-19
Sample Collection Time_1040
Sampling Method Low Flow Peristaltic

Casing stick-up above concrete (feet)

Screened Interval (ft bls) _____

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)	
010	Ostant	17.06	6.77	3.68	302	7999	-0.1	6.05	Lowen then
1015	0.1	16.99	6.30	3.68	297	7999	-3.5	7.50	reute "
1020	0.2	17.17	6.08	3.30	296	7999	-2.5	7.70	
1025	Chan	apel	Tubin	4					
1030	0.3	17.54	5.86	3.77	299	79.99	-1.8	8.3	5 - 7-
1035	0.4	8.42	5.48	3.78	279	7999	1.)	8.7 -	Howened
1040	0.5	18.42	5.48	3.68	278	7999	22	8.8	the
1045	0.6	1840	5.5	3,63	279	7999	5.7	9.2	
1050	0.7	18.38	5.53	3.49	28	79999	8.3	2.4	
1055	0.8	18.39	5.56	3.24	283	799A	8.6	2.6	1 m m
	010		fremely	Turb	(7999) took	sample	3 march	glass
~		10			0				40 ml

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
Sumptou	BTEX, MTBE	3X 40 mL glass vial	HCl

when sampled Extremely turbed Remarks_

Sampling Personnel _____ Jared Fino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather 5	unny, 60's

Evacuation	Data:
------------	-------

Depth to bottom of well (ft bls) _____

Depth to water from top of casing 4.30

Water Column ____ (ft) Gallons in well_____

Evacuation Volume (x 3) = <u>Low Flow</u>

	Date 4/ - 3-13
Monitoring Well Numbe	- MW-23
Sample Collection Time	1125
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) _____

Screened Interval (ft bls)

Casing Diameter: _____ `

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

eld Parar Time	Gallons	Start: Temp	105 = pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
INFA	Purged	(°C) Kanz	6.59	0.49	375	932AU	97.8	7.41
1112	0.Z	18.93	Le.58	0.49	376	143	95.7	7-41
1108	6.3	18.93	6.50	0.51	414	68:3	87.9	7.02
1(13	0.4	18.96	6.57		415	38.6	85.6	7.00
1118	0.5	19.05	6.56	6,53	1/24	107.0	79.1	6.99
1123	0.6	19.01	6.55	0.53	419	68.5	¥ 7.1	0.7
					0	-	4-3-13	
					140	the		
_	1			alyn				
			V		12			
	-	1				-		

nalyses:	1 1 1 Deventor	Sample Bottles	Preservative
Check if	Analytical Parameter	Sumple Demos	
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl
V	DILX, MIDD		

Remarks Nerry furbid

Sampling Personnel

Dan 19 Navs Jared Find-Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM	
Site Location:	Ft. Stewart, GA (FST-26)	Monitor
Rep./Field Blan	k No	Sample
Weather		Samplin
Evacuation Da		
Depth to botton	n of well (ft bls) <u>33.72</u>	Casing
	from top of casing	Screene
Water Column	(ft) Gallons in well	Casing
Evacuation Vol	ume $(x 3) = $ Low Flow	Casing

Date <u>4-3-13</u> ring Well Number 26 - MW-54 Collection Time ng Method Low Flow Peristaltic

stick-up above concrete (feet) ed Interval (ft bls)

Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

	Time	Gallons	Temp	pH	DO (ma/L)	Spec. Cond.	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1115	XXXA	Purged Start	(°C) 19.88	(SU) 6.94	(mg/L) 5./3	(µmhos/cm)	110	18.8	7.05
1.10	1120	0.1	19.93	7.20	4.99	134(70.4	15.3	7.05
	1125	0,2	19.80	7.51	4.65	1341	37.7	10.6	7.09
	1130	0.3	19.80	7.64	4.56	1340	38.1	7.1	7.09
	1135	0.4	19.86	7.69	4.74	1342	30.6	5.1	7.09
	1140	0.5	19.84	7.72	4.69	1346	26.5	3.9	7.13
- 0	145	0.6	19.78	7.73	4.68	1357	25.8	2.6	7.10
				1				-	
		1 I)		DBM	0		-		
		i					1		
							1.1		

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
1	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks

Sampling Personnel Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Bla	
Weather	loudy 1:5 7015
Evacuation D	ata:
Depth to botto	m of well (ft bls) $\underline{19}$
Depth to wate	r from top of casing <u>4,78</u>
	n (ft) Gallons in well
Evacuation Vo	blume (x 3) = <u>Low Flow</u>

	Date <u>4-3-13</u>
Monitoring Well Numbe	r_MW -09
Sample Collection Time	1215
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) 2^{\prime} Screened Interval (ft bls) $1_{0.0-1}_{0.0}_{0.0}$ Casing Diameter: 2^{11}

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Gallons	Temp	pH	DO (mg/L)	Spec. Cond. (umhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
	17.49	2		82	43.6	81.0	5.53
	17.67	5.08		84	33.8	86.2	5.53
0.3	17,72	- 41.97	0.45	82	28.9	84.5	5.5
0.4	17.73	4.90	0.48	81	15.F	84.0	5.63
0.5	17.81	4.87	6.54		11.9		6.53
0.6	17.81	4.82	0.46	80	13.1	77.9	5.55
				6	4-3-	13	
		1	1 AM	march			
-		Jalan	- th			-	
	t	F I					-
			-				
		Gallons Temp Purged (°C) O.1 17.44 O.2 17.62 O.3 17.72 O.4 17.73 O.5 17.81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gallons Temp (°C) pH (SU) DO (mg/L) 0.1 17.49 5.30 0.48 0.2 17.62 5.08 0.414 0.3 17.72 4.97 0.45 0.4 17.72 4.97 0.45 0.4 17.72 4.97 0.45 0.5 17.81 4.87 0.54 0.5 17.81 4.87 0.46 0.6 17.81 4.87 0.46 0.6 17.81 4.82 0.46	Gallons Temp pH DO Spec. Cond. Purged (°C) (SU) (mg/L) ($\mu mhos/cm$) O.1 17.49 5.30 D.48 ΘZ O.2 17.62 5.08 0.414 ΘH O.3 17.72 4.97 0.45 ΘZ O.4 17.72 4.97 0.48 ΘI O.5 17.81 4.90 0.48 ΘI O.5 17.81 4.92 0.46 ΘO O.5 17.81 4.92 0.46 ΘO O.4 0.5 17.81 4.92 0.46 ΘO O.5 17.81 4.92 0.46 ΘO O.6 17.81 4.92 0.46 ΘO	Gallons Temp pH DO Spec. Cond. Turb Purged (°C) (SU) (mg/L) (μ mhos/cm) (NTU) 0.1 17.49 5.30 0.48 BZ 43.6 0.2 17.62 5.08 0.44 BH 33.8 0.3 17.72 4.97 0.45 BZ 28.9 0.4 17.73 4.90 0.48 $B1$ 15.7 0.5 17.81 4.87 0.54 $B1$ 11.9 0.5 17.81 4.87 0.46 $B0$ 15.1 0.6 17.81 4.82 0.46 80 15.1 0.4 17.81 4.92 0.46 80 15.1	Gallons Temp pH DO Spec. Cond. Turb Redox Purged (°C) (SU) (mg/L) (μ mhos/cm) (NTU) (mV) 0.1 17.49 5.30 0.48 92 43.6 81.0 0.2 17.62 5.08 0.44 94 33.8 86.2 0.3 17.72 4.97 0.45 82 28.9 84.5 0.4 17.73 4.97 0.45 82 28.9 84.5 0.4 17.73 4.97 0.45 81 75.7 84.0 0.5 17.81 4.87 0.54 81 11.9 79.5 0.6 17.81 4.87 0.46 80 15.1 77.9 0.6 17.81 4.87 0.46 80 15.1 77.9 0.6 17.81 4.87 0.46 80 15.1 77.9

Analyses:

Check if	Analytical Parameter	Sample Bottles	Preservative
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks Slightly turbid

Sampling Personnel

Daniel Hous Jared Fino Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather	
Evacuation Da	ita:
Depth to botton	n of well (ft bls) 6.75
	from top of casing
Water Column	(ft) Gallons in well

Evacuation Volume (x 3) = Low Flow

Field Parameters:

WATER SAMPLING LOG

	Date <u>7-3-13</u>
Monitoring Well Nur	mber <u>26-MW-21</u>
Sample Collection Ti	ime_325
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) _____

Screened Interval (ft bls) _____

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
255	Start	19.32	5.26	2.95	216	95.5	-3.7	6.40
1300	0.1	19.30	4.69	2.43	210	39.7	12.9	6.79
1305	0.2	19.27	4.43	2.38	201	40.4	19.9	6.90
1310	0.3	19.46	4.35	2.20	196	49.9	22.5	7.00
1315	0.4	19.42	4.27	2.18	193	78.	19.9	7.00
1320	0.5	19.18	4.22	2.19	191	68.0	20.5	7.15
1325	0.6	18.86	4.17	2.18	190	\$60.7	22.1	7.32
-				-	5	/		
			DE	M				1
								1
-						1		

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
-	BTEX, MTBE	3X 40 mL glass vial	HC1
	1		

Remarks_

Sampling Personnel Jared Fino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No. MS/MSD
Weather	Dartly Cloudy/70's
Evacuation Da	ata:
Depth to bottom	n of well (ft bls)
Depth to water	from top of casing <u>4.08</u>
Water Column	(ft) Gallons in well

Evacuation Volume (x 3) = _____ Low Flow

WATER SAMPLING LOG

	Date <u>4-3-13</u>
Monitoring Well Numbe	1 MW-24R
Sample Collection Time	111-70
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) HUSh wound

Screened Interval (ft bls)

211 Casing Diameter:

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parar Time	Gallons Purged	Temp (°C)	<u>236</u> pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1335	()	27.70	7.24	3.06	17039	5.31	287.5	5.20
1240	0.2	22,75	2.16	2,74	16426	361	296.9	5.20
1345	R3	2293	2.10	2.21	15597	3.24	302.3	5.40
1350	0.4	22,75	2.03	1.85	14806	3,27	320.6	5.40
1355	0.6	77.71	1.99	1.75	14544	3.97	330.4	5.40
-1400	0.6	27.79	1.98	1.75	14467	2,64	333,6	5.40
11105	DI	27.75	1.97	1.71	14393	2.54	3375	5.40
1400	Cr.	0						
1.0			0	\square	INAT	4-3-13		
			1 Jalya	1 di	MAIL			
			Harry.		1			
					1000			

Analyses:

Check if	Analytical Parameter	Sample Bottles	Preservative
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl
Remarks	MS fallon a	1402.	MSD falen a 1405

Sampling Personnel

Dania Mays Jared Pino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM			
Site Location: Ft. Stewart, GA (FST-26)				
Rep./Field Blan	k No			
Weather				
Evacuation Da	ita:			
Depth to bottom	n of well (ft bls) 6.00			
	from top of casing			
Water Column	(ft) Gallons in well			

Evacuation Volume (x 3) = Low Flow

Date 4-3-13

Monitoring Well Nur	mber MW-06K
Sample Collection Ti	ime_1445
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) _____

Screened Interval (ft bls)

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Gallons	Temp	pH	DO	Spec. Cond.	Turb	Redox	Depth to Water (ft)
Purged	(°C)	(SU)		1	(NTU)		
start	19.36	3.59	9.14	8792	RUDA	206.2	5.50
0.1	19.20	3.36	0.61	8442	9.81	340.	5.70
0.2	19.13	3.45	0.71	7527	9.80	334.7	5.59
	19.08	3.74	1.00	6815	9.62		5.65
	18.58	4.15	1.70	59.69	9.95		5.75
0.5		4.36	2.03	5685	9.51	263.2	5.75
0.6	and the second sec	4.49	2.46	5494	8.26	229.8	5.78
			[]		1-1	/	
11.7.7			DBM	1			
11.11		9	2				
	P						
	Purged 5 Tank 0.1 0.2 0.3 0.4	Purged (°C) Start 19.36 0.1 19.70 0.2 19.13 0.3 19.08 0.4 18.58 0.5 18.42	Purged (°C) (SU) Start 19.36 3.59 0.1 19.70 3.36 0.2 19.13 3.45 0.3 19.08 3.74 0.4 18.58 4.15 0.5 18.42 4.36	Purged(°C)(SU)(mg/L) $STOM4$ 19.36 3.59 9.14 0.1 19.36 3.59 9.14 0.2 19.70 3.36 0.61 0.2 19.13 3.45 0.71 0.3 19.08 3.74 1.00 0.4 18.58 4.15 1.70 0.5 18.42 4.36 2.03 0.6 18.24 4.49 2.46	Purged(°C)(SU)(mg/L)(μ mhos/cm)Start19.363.599.1487920.119.703.360.6184420.219.133.450.7175270.319.083.741.0068150.418.584.151.7059690.518.424.362.0356850.618.244.492.465494	Purged(°C)(SU)(mg/L)(μ mhos/cm)(NTU)Start19.363.599.148792Multiple0.119.703.360.6184429.310.219.133.450.7175279.800.319.083.741.0068159.620.418.584.151.7059699.950.518.424.362.0356854.570.618.244.492.4654948.26	Purged(°C)(SU)(mg/L)(μ mhos/cm)(NTU)(mV)Start19.363.599.14879211.00206.20.119.703.360.6184429.31340.10.219.133.450.7175279.80334.70.319.083.741.0068159.62313.20.418.584.151.7059699.62313.20.518.424.362.0356859.57263.20.618.244.492.4654948.26229.8

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks_

Sampling Personnel _____ Jared Fino/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Bla	
Weather D	irty Chordy/7013
Evacuation D	
	m of well (ft bls)
Depth to water	r from top of casing <u>5,45</u>
	n (ft) Gallons in well
Evacuation Vo	$rac{1}{2}$ blume (x 3) = Low Flow

	Date <u>4-3-13</u>
Monitoring Well Numb	per_M(w) -16
Sample Collection Tim	ie1458
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) Flush maint

Screened Interval (ft bls)

Casing Diameter: ________

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

ield Parar Time	Gallons Purged	Start Temp (°C)	<u>141</u> 7 pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1422	D.1	22.99	4.05	1,39	900	82.1	134.2	5.48
1427	0.7.	22,94	4.43	1.45	795	46,7	114.6	5.48
432	0.3	22,71	4.80	1.46	1098	31.6	90.7	5,48
1437	0.4	22,41	5.06	1.44	591	13.0	61.9	Site
1442	0.5	22.49	5.09	1.43	551	11.2	60.3	5.70
1447	0.6	22.51	5,12	1.40	4198	8.40	59.3	5.7
		1			-	4-3-1	3	
				No	mo	4-2-		
			alips	- And				
		V						i
/								

nalyses:		Sample Bottles	Preservative
Check if	Analytical Parameter	Sample Boules	
Sampled		3X 40 mL glass vial	HCl
V	BTEX, MTBE	SX 40 mill glubb vita	
	12 A		

Remarks (identer Stightly

Sampling Personnel

ghty furbia

Daniel Mays Jared Find/Valyn Paouncic

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather	
Evacuation Da	
Depth to bottom	n of well (ft bls) 2.5'
	from top of casing
Water Column	(ft) Gallons in well

Evacuation	Volume	(x 3)	=	Low Flow	

	Date 4-3-13
Monitoring Well Nur	nber 26-MW-36R
Sample Collection Ti	me525
Sampling Method	Low Flow Peristaltic

	Casing stick-up above concrete (feet)	
Screened Interval (ft bls)	Screened Interval (ft bls)	

Casing Diameter:

1

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
455	start	19.63	6.55	0.81	848	99.2	-51.9	7.30
1500	0.1	19,96	6.71	0.43	1796	80.9	-74.0	7.30
1505	0.2	19.99	6.80	0.34	VUTO	73.3	-84.3	7.30
1510	03	20.48	6.87	0.30	1744	52.0	-101.7	7.30
1515	0.4	20.51	6.90	0.26	1738	51.2	-101.6	7.30
1520	0.5	20.42	6.93	9108:33	1726	43.3	-99.8	7.30
1525	0.6	20.67	6.94	0.21	1723	38.8	-98.2	7.30
								/
					DBM			
		C	2					

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
-			

Remarks

Sampling Personnel _____ Jared Fino/Valyn Paouncic

Project No GP08HAFS.2012.N26GM	Date <u>4-3-13</u>
Site Location: <u>Ft. Stewart, GA (FST-26)</u>	Monitoring Well Number MUS-35
Rep./Field Blank No	Sample Collection Time 1525
Weather Cloudy / 7015	Sampling Method <u>Low Flow Peristaltic</u>
Evacuation Data:	V all and with
Depth to bottom of well (ft bls)	Casing stick-up above concrete (feet) Hush mount
Depth to water from top of casing 6.44	Screened Interval (ft bls)
Water Column (ft) Gallons in well	Casing Diameter:
Evacuation Volume (x 3) = <u>Low Flow</u>	Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft
	115/cm

Field Para	meters:	Start:	1452		112/cm		-	Douth to
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1457	O.I	22.63	5.70	1.56	440	15,6	36.6	6.63
1502	0.2	23.12	5,71	1,46	440	11.14	51.3	6.63
1507	6,3	23.23	5,73	1.44	436	10.10	58,9	6.63
1512	D.4	73.40	5,73	1,34	11.34	8.73	64.5	6653
1111-	0.5	23.27	5,74	1.27	436	8.55	67.9	6.60
1517	0.6	23.32	5,73	1.24	436	8,30	70.6	6.64
1000	0.4					1		
				.0	into	27-3-1	2	
			1.	La	amére			
		1	Jalya		1		1	
		1	1					
/					1			

Analyses:

Check if	Analytical Parameter	Sample Bottles	Preservative
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks

Sampling Personnel

Daniel Mays Jared Fino/Valyn Paouncic

1

Sampling Personnel

WATER SAMPLING LOG

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blas	
Weather	BIFLY CLOUDY 70'S
Evacuation D	ata:
Depth to botto	m of well (ft bls)
Depth to water	r from top of casing <u>4,89</u>
Water Column	(ft) Gallons in well
Evacuation Vo	$blume (x 3) = \underline{Low Flow}$

	Date <u>4-3-13</u>
Monitoring Well Number	r MW - 25R
Sample Collection Time	1600
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) Flush mount

Casing Diameter: _____ 2¹¹

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

ield Parar Time	Gallons Purged	Stort Temp (°C)	; 152 pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1532	$O_{,}$	22.85	5,10	0,69	337	15.2	60.1	5:35
1538	0.2	22,82	5.05	0.80	335	.14.3	56.5	5,35
1543	0.3	22.82	5.04	1.02	334	35,5	45.5	5.35
1548	0.4	22,76	5,04	0.96	332	23.8	39.9	3,70
1553	0.5	22,69	4.60	0.95	330	16.5	76.9	5,70
1558	0.6	7792	4.51	0.97	329	15.2	69.9	5.70
1603	0.7	22.87	4,57	0.97	328	15,7	57.1	5.70
			. 1		(Infil)	H-3-1	8	
	1 - 2		falyn		ouncil)			
	-		0 1				1	1
							1	

nalyses: Check if	Analytical Parameter	Sample Bottles	Preservative	
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl	
V				
			1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

forbid ader Sligh Remarks / /

Daniel Mars Jared Find/Valyn Paouncic

6	AR	CAI	DIS
The second second	# 10.00 %		

WATER	SAMPLING LOG
	41

Project No.	GP08HAFS.2012.N26GM				
ite Location:					
Rep./Field Blan	k No				
Weather					
Evacuation Da	ita:				
Depth to botton	n of well (ft bls) <u>17</u>				
Depth to water	from top of casing				
Water Column	(ft) Gallons in well				

Evacuation Volume (x 3) = _____ Low Flow_____

WATER SAMITLING LOO
Date 4-3-13
Monitoring Well Number <u>26-MW-07</u> Sample Collection Time <u>1605</u>
Sampling Method <u>Low Flow Peristaltic</u>

Casing stick-up above concrete (feet) Screened Interval (ft bls) _____

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

eld Parar Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)	
1535	SAMA	17.99	6,98	0.69	726	64.5	-50.2	4.80	
1540	0.1	18.11	6.93	0.54	725	35.5	-50.5	5.55 -	-slowfl
1545	0.2	18.28	6.82	0.35	722	22.0	-50.0	5.90	
1550	0.3	18.37	6.80	0.35	717	17.4	-49.1	6.0	lowest flo setting
1555	0.4	18.26	6.78	0.24	705	14.8	-49.7	6.30	- IS
1600	0.5	18.31	6.74	0.22	697	12.4	-50.8	6.40	
1605	0.6	18.22	6.73	0.22	695	125	-52.7	6.50	
1000								-	
				\bigcirc	DBM				
				7				1	
								1.000	1

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks

Sampling Personnel _____ Jared Fino/Valyn Paouncic

Project No GP08HAFS.2012.N260		Multiver		Date $4-3$	
Site Location: Ft. Stewart, GA (FST	Monitoring Well Number <u>1635</u> Sample Collection Time <u>1635</u>				
Rep./Field Blank No	Sample Colle	ction Time_		14:0	
Weather Darthy clarky 15	70'5	Sampling Me	thod1	Low Flow Perista	
Evacuation Data:				(0 x)	Eline h un
Depth to bottom of well (ft bls)				ncrete (feet) <u>/</u>	
Depth to water from top of casing $2/$.	07	Screened Inte	erval (ft bls)	11	
Water Column (ft) Gallons in well_		Casing Diam	eter: <u>Z</u>	10	
Evacuation Volume (x 3) = $_$ Low Fl		Casing Volur	ne <u>1"=0.04</u>	gal gal/ft, 2"=	0.16 gal/ft
Field Parameters: Start: 1(005		Austan			
Time Gallons Temp pH		Spect Cond. (umhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
$\begin{array}{c c} Purged (°C) (SU \\ 1(a f) (O, 1) (20, 39) (5, 1) \\ \hline \end{array}$) (mg/L) 19 1 : 15	(µmhos/cm) 361	23.0	46.0	4.40
1615 0.2 20.36 5.	19 1.12	363	21.9	50.1	4.40
100 0	1 1 1 1 1 1	363	19.7	51.3	4.40
New Collect	20 1.09		19.8	55.6	4.41
1000		0.1	200	57.1	4.75
		The first of	19.8	56.8	4.75
1635 0.6 20.36 5	2 1.0+	300	1100		/
	\wedge		-3-13		
		Mar 4	55		
	A Para	autor			
tott					
		_			1

Analyses: Analytical Parameter Check if Sampled

Preservative Sample Bottles HC1 3X 40 mL glass vial BTEX, MTBE

Slightly Nater furbid Remarks

Daniel Mays Clared Fino/Valyn Paouncic Sampling Personnel

Project No.	GP08HAFS.2012.N26GM				
Site Location: Ft. Stewart, GA (FST-26)					
Rep./Field Blan	k No				
Weather					
Evacuation Da					
Depth to bottom	of well (ft bls) <u>3'</u>				
	from top of casing				
Water Column	(ft) Gallons in well				

Evacuation Volume (x 3) = Low Flow

Monitoring Well Number 26-MW-28R

Sample Collection Ti	ime 1000 1650
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet)

Screened Interval (ft bls)

Casing Diameter: _____

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters:

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1420	Stowl	19.80	3.20	0.41	14558	8.8(314.5	6.80
1925	0-1	19.81	3.19	0.33	13832	5.66	306.1	6.90
130	0.2	19.79	3.21	0.30	12902	3.69	302.3	6.95
1935	0.3	19.75	3.26	0.45	12166	3.77	296.0	7.00
1440		19.65	3.34	0.76	1738	4.86	291.1	7.05
1445	0.5	19.59	3.40	1.11	11520	3.51	284.7	7.09
450	0.6	19.49	3.48	1.25	11301	2.80	280.4	7.18
								-
				0	/			
			DBM	7				
					U			
1								

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
_	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks____

Sampling Personnel _____ Jared Fino/Valyn Paouncic

,0

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Bla	nk No
Weather (100dy, 75's
Evacuation D	
Depth to botto	m of well (ft bls) 13.0
Depth to water	from top of casing 4.03
Water Column	697(ft) Gallons in well 1.12
	lume(x 3) = <u>Low Flow</u>

	Date $2-3-13$
Monitoring Well Nun	nber MW -15R
Sample Collection Tin	me 1720
Sampling Method	Low Flow Peristaltic

Casing stick-up above conc	crete (feet) _2
Screened Interval (ft bls) _	3.0-13.0
Casing Diameter:	

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

ield Parar Time	Gallons Purged	Stourt Temp (°C)	<u>164</u> 6 pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1650	0.1	19.33	#3.01	0.87	14451	4.87	. 370.6	(0.34
1655	0.2	19.29	2.11	0.97	13830	4.06	373,1	6.34
1700	0.3	19.21	2.10	0.80	+3539	41.35	374,2	6.36
1706	0.4	19.22	2.13	0.86	13250	3.07	367.3	6.50
1710	0.5	19.18	2.14	0.93	13130	2.96	364.9	6.50
1715	0.6	19.15	2.24	1.15	13056	2.20	361.9	6.50
1 4 000		1010					/	
						/		
	1	DBM	9			1		

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
Sampled	BTEX, MTBE	3X 40 mL glass vial	HCl
1			

Remarks

Sampling Personnel

Danny Mags Jared Fino/Valyn Paouncic

Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blank	
Weather 70	ge Sunny
Evacuation Dat	
Depth to bottom	of well (ft bls)7
	rom top of casing 7.38
Water Column 4.	4 ^(ft) Gallons in well 0.79
Evacuation Volu	me(x 3) = Low Flow

WATER SA	MPLING LOG
Dat	te 10/17/17
Monitoring Well Number	MW-40
Sample Collection Time	3915
Sampling Method <u>Low</u>	Flow Peristaltic

Casing stick-up above con	ncrete (feet) -7
Screened Interval (ft bls)	1.3-12.7
Casing Diameter:	2"
Casing Volume 1"=0.04 g	val gal/ft 2"=0 16 gal/ft

Field Parameters: Stat 0143

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
0848	0.1	28.91	4.39	2.45	93	33.4	252.5	7.84
0153	0.2	20.95	4.39	2-29	91	28.8	251-4	7.91
OPTP	0.3	21.02	4.39	2.28	89	17.3	258.6	8.03
0903	0.4	21-13	4.41	1.87	88	12.3	254.4	8.08
9080	0.5	21.22	4.45	1.70	88	9.90	240.3	A.14
0913	0.6	21.27	4.48	0.79	88	7.97	234.3	8.18
			A					
	-		JUL	Int				
				10/17	12			
					9			

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
	JANK	10/17/17	
Remarks	Flow Rate = 100 ml	min	

Sampling Personnel

Jared Fino Dan Rhodes

Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blank	
Evacuation Dat	
Depth to bottom	
Depth to water fi	rom top of casing β_{r91}
Water Column 9.	19 (ft) Gallons in well 0.73
Evacuation Volu	$me(x 3) = \underline{Low Flow}$

0

WATER SAMPLING LOG
Date 10/14/13
Monitoring Well Number MW - 49
Sample Collection Time 1809
Sampling Method <u>Low Flow Peristaltic</u>

Casing stick-up above concrete (feet) \sim 3 Screened Interval (ft bls) 3.9 - 13.52" Casing Diameter: _

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1737	0.1	23.24	6.03	4.28	153	686	194.5	9.40
1742	0.2	23.29	5.45	3.74	157	71060	216.3	9.37
1747	0.3	23.27	5.60	3.25	159	71000	212.7	9.39
1952	0.4	23.23	5.55	2.76	161	71000	210.9	9.41
1757	0.5	23.19	5.50	2.56	161	2100	218.4	9.41
1802	0.6	23.19	5-47	2.45	166	411	21-1.8	9.40
1807	0.7	23.21	5.46	2.27	160	332	219.4	9.40
			SAR	10/16/				
				116/1	3			32-2

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
	TMA	colicii 3	
	1. ₁₂ .		

Sampling Personnel

Jared Pino/Dan Rhodes

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	
Weather 65°	Surry
Evacuation Da	
Depth to bottom	of well (ft bls) ZS. 1
	rom top of casing 9.21
Water Column	$5.\tilde{b}^{(\text{ft})}$ Gallons in well 2.54
Evacuation Volu	me(x 3) = <u>Low Flow</u>

WATEN SAMIFLING LUG
Date 10/17/13
Monitoring Well Number <u>Mw - 39</u>
Sample Collection Time 0928
Sampling Method Low Flow Peristaltic

Casing stick-up above concrete (feet)	2.5
Screened Interval (ft bls)	25.1
Casing Diameter: <u>2"</u>	
Casing Volume 1"=0.04 gal gal/ft. 2"	=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
0900	0.1	20.92	6.49	0.68	351	6.39	-16.7	9.72
0405	0.2	20.87	6.52	0.46	352	5.06	-23.3	9.71
0410	0.3	20.82	6.53	0.38	349	4.03	- 23.8	9.71
0915	0.4	20.88	6.54	0.31	345	3.99	=23.2	9.71
6920	0.5	20.88	6.54	0.28	342	3.20	-22.6	9.70
0925	0-6	20.88	6.53	6.27	336	.S-88	-17.6	9.71
			D	6				
				2	10	111		
						413		
_								

Analyses:

Analytical Parameter	Sample Bottles	Preservative
BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks

Sampling Personnel _____ Jared Fino/Dan Rhodes

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather 20°	Smy
Evacuation Da	
Depth to bottom	of well (ft bls) 22.0
	rom top of casing9.78
Water Column	2.22 (ft) Gallons in well 1.96
Evacuation Volu	ame(x 3) = <u>Low Flow</u>

	Date 10/16/13
Monitoring Well Numb	per Mu-42
Sample Collection Tim	e 1730
Sampling Method	Low Flow Peristaltic

Casing stick-up above cond	crete (feet) _ Z · S
Screened Interval (ft bls) _	17.0-22.0
Casing Diameter:	
Casing Volume <u>1"=0.04 ga</u>	1 gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1703	0.1	22.95	6.42	6.48	333	46.0	190.7	10.17
1708	0.2	ZZ.84	6.42	6.55	333	11.0	191.8	10.24
1713	0.3	22.77	6.43	6.28	333	5.32	192.6	10.27
1718	0.4	22.69	6.43	6.74	332	4.62	193.3	10.31
1723	0.5	22.63	6.44	6.53	331	4.69	194.5-	10.33
1728	0.6	22.57	6.44	6.26	33/	6.96	194.9	10.36
				-				
			A	ZA	20			
					5 10	14/13		
						43		1
							~	

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks_

Flan rafe -100 me/min

Sampling Personnel _____ Jared Fino/Dan Rhodes

Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blanl	k No.
Weather 80°	Sonny
Evacuation Da	ta:
Depth to bottom	of well (ft bls)/3.6
Depth to water f	rom top of casing9.53
Water Column	$\frac{0.07}{(\text{ft})}$ Gallons in well 0.65
Evacuation Volu	(x 3) = <u>Low Flow</u>

et - 11.00

WATER SAMPLING LOG

	Date Lo/10/13
Monitoring Well Nur	mber Mw-32
Sample Collection Ti	me/632
Sampling Method	Low Flow Peristaltic

Casing stick-up above cor	ncrete (feet) 3.0
Screened Interval (ft bls)	3.6-13.6
Casing Diameter: 2	1
Casing Volume 1"=0 04 o	al gal/ft 2"=0 16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1605	0.1	23.37	5.52	3.12	86	0.64	207.0	10.24
1610	0.2	23.32	5.45	3.18	87	533	219.1	10.23
1615	0.3	23.36	5.40	3.43	35	650	235.1	10,25
1620	0.4	23.27	5.38	3,76	85	865	240.4	10.27
1625	0.5	23.26	5.38	3.94	85	>1000	Z454	10.23
1630	0.6	23.14	5.36	3.93	83	71000	249.2	10.31
			7					
				X		,		
					- CA	13		

Analyses:

Print I.

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
/	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks_

Flow rate - 100 ml fain

Sampling Personnel Jared Fino/Dan Rhodes

Project No GP08HAFS.2012.N26GM
Site Location:Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather 80° Sunny
Evacuation Data:
Depth to bottom of well (ft bls) 30.9
Depth to water from top of casing $i0.49$
Water Column $\frac{9.91}{(ft)}$ Gallons in well 3.19
Evacuation Volume (x 3) = <u>Low Flow</u>
Field Paramatara: 1457

Date 10/16/13
Monitoring Well Number Mw-S2
Sample Collection Time 1530
Sampling Method Low Flow Peristaltic

Casing stick-up above con	icrete (feet) _2.5
Screened Interval (ft bls)	25,9-30.4
Casing Diameter:	11
Casing Volume 1"=0.04 g	al gal/ft. 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1502	0.1	22.33	6.70	0.65	1185	2.73	-66.7	10.97
1507	0.2	22.43	6.79	0.46	1190	1.66	- 57.0	10.46
1512	6.3	22.34	6.84	0.40	1195	1.42	= 59.5	10.46
1517	0.4	22.24	6.87	0,33	1197	0.98	-62.3	10.44
1522	0.5	22.31	6.89	0,30	1196	1.26	-63.1	10,44
1527	0.6	22.39	6.89	6.29	1196	0.88	-62.3	10.43
To			-	5				
			$-\phi$	the	7 ,			
	-			Y	Z	10/16/1		1
						13		
1								
								/

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
~	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks flow rack - 100 ml/min

Sampling Personnel _____ Jared Finø/Dan Rhodes

Project No GP08HAFS.2012.N26GM
Site Location:Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather 80°, Surry
Evacuation Data:
Depth to bottom of well (ft bls)
Depth to water from top of casing 7.46
Water Column $b^{\dot{b}4}$ (ft) Gallons in well 0.97
Evacuation Volume (x 3) = <u>Low Flow</u>

	Date 10/16/13
Monitoring Well Nur	mber MW-51
Sample Collection Ti	ime <u>1446</u>
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) 2.5
Screened Interval (ft bls) 3.9 - 13.5
Casing Diameter: \mathbb{Z}^{ν}
0 ' TT 1

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons	Temp	pH	DO	Spec. Cond.	Turb	Redox	Depth to
	Purged	(°C)	(SU)	(mg/L)	(µmhos/cm)	(NTU)	(mV)	Water (ft)
1419	0-1	22.59	5.88	1. 29	243	15.6	1241	8.06
1424	0.2	22.65	5.79	1.81	:240	12.0	142.1	8.21
1429	0.3	22.68	5.77	1.77	236,	10.1	154.0	8.28
1434	0.4	22.71	5.75	1,69	232	7.51	156.7	8.30
1439	0.5	22.65	5.74	1.75	232	9.39	165.2	8.39
1444	0.6	22.64	5.74	1.68	233	7.39	163.6	8.42
the second				0				1
				Za				·
					10/16	13		
		1	1					

Analyses:

Check if Sampled		Sample Bottles	Preservative
1	BTEX, MTBE	3X 40 mL glass vial	HCl
	1		4 17

Remarks flow rate _ low me/min

Sampling Personnel

Jared Fino/Dan Rhodes

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blank	k No
Weather 7	0°, Sump
Evacuation Da	ta:
Depth to bottom	of well (ft bls) <u>31,4</u>
Depth to water f	rom top of casing <u>9.33</u>
Water Column	(ft) Gallons in well 3.53
Evacuation Volu	ume (x 3) = <u>Low Flow</u>

WATER SAMPLING LOG

Monitoring Well Number $Mw-57$	D	ate 10/16/13
Sample Collection Time 1244	Monitoring Well Number_	Mw-57
Sample Collection Time	Sample Collection Time	1244
Sampling Method Low Flow Peristaltic	Sampling Method	w Flow Peristaltic

Casing stick-up above concrete (feet) $\underline{2}_{e}$
Screened Interval (ft bls) <u>26.9 - 31.4</u>
Casing Diameter: "
Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1216	0-1	22.81	6.83	1.56	744	881	-58.8	9.61
1221	0.2	22.91	6.96	1.40	756	2.09	-47.0	9.62
1226	0.3	23 12	7.01	1.08	777	1.07	- 26.5	9.62
231	0.4	22.77	7.04	1.03	803	1.70	-1.8	9.63
1236	0.5	22.72	7.06	0.92	306	0.64	14.1	9.62
1241	0.6	22.65	7.06	0.84	811	0.68	30.2	9.62
		/	5	\geq	-			
		2		X		0/16/13		
_		1	2 <u> </u>			THE		

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks Flow rate - 100 milmin

Sampling Personnel _____ Jared Fino Dan Rhodes

Project No. <u>GP08HAFS.2012.N26GM</u>
Site Location: Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather 70° Sunny
Evacuation Data:
Depth to bottom of well (ft bls) $/\mathcal{U}, \mathcal{O}$
Depth to water from top of casing
Water Column $\frac{6.15}{1}$ (ft) Gallons in well 0.22
Evacuation Volume (x 3) = <u>Low Flow</u>

Monitoring Well Nur	Date <u>10/16/13</u> mber Mw-31
Sample Collection Ti	ime 1154
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) 2.5 Screened Interval (ft bls) 4.0 - 14.02" Casing Diameter:

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

\$12 sturt - 1121 Field Parameters:

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1126	Osl	22.53	5.51	6.21	292	71000	78.6	9.77
1131	0-Z	22.50	5.51	0.48	223	21000	84.7	10.38
1136	0.3	22.53	5.50	0.42	283	> 1000	87.3	10.57
1141	0.4	22.56	5.51	0.45	283	>1000	86.8	10.71
1146	0.5	22.56	5.51	0.39	281	71000	83.6	10.76
1151	0.6	22.54	5.51	0.41	267	>1000	76.2	10.78
-								
			7)				
			D	K			V	
					101	16/13		
	1- 5-	11			1			

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
_			
_			

Remarks Flow rule - loome/min se very silty

Sampling Personnel

Jared Fing/Dan Rhodes

Project NoGP08HAFS.2012.N26GM
Site Location:Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather 70° - Surry
Evacuation Data:
Depth to bottom of well (ft bls) 22.7
Depth to water from top of casing & & 2
Water Column (3.26 (ft) Gallons in well 2.22
Evacuation Volume (x 3) = <u>Low Flow</u>

	Date 10/16/1
Monitoring Well Nur	mber Mw-43
Sample Collection Ti	ime 1104
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) _	3.5
Screened Interval (ft bls)	22.7
Casing Diameter: 2"	
Casing Volume 1"=0.04 gal gal/ft, 2"=().16 gal/ft

Field Parameters: Start - 1032

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1037	01	21.42	5.99	321	219	3.28	93.2	8.93
1042	0.2	21.41	5.91	1.76	216	2.43	87.1	8.92
1047	0.3	21.41	5.78	1.43	211	9.39	57.1	8.94
1052	0.4	21.38	5.62	1.48	200	7.50	43.4	8.97
1057	6.5	21.34	5.64	0,30	204	3.09	37.1	8.96
1102	0.6	21.33	5.61	0.60	204	3.33	35.7	8.92
							1	
				Day	2			
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0/1.1		
						elie 13	_	
								_

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
/	BTEX, MTBE	3X 40 mL glass vial	HC1

Remarks

Sampling Personnel _____ Jared Fing Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blank	: No
Weather 650	Sump
Evacuation Dat	a:
Depth to bottom	of well (ft bls) 13 6
Depth to water fr	rom top of casing 6.37
Water Column 6.	73(ft) Gallons in well 1.08
Evacuation Volu	$me(x 3) = \underline{Low Flow}$

## Field Parameters: Sturt - 0942

## WATER SAMPLING LOG

E	Date <u>[0/16/13</u>
Monitoring Well Number_	mm - 33
Sample Collection Time	1014
Sampling MethodLo	w Flow Peristaltic

Casing stick-up above concrete (feet) <u>Z-S</u>
Screened Interval (ft bls) <u>36 - / 36</u>
Casing Diameter: Z'
Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
0947	0.1	21.17	5.35	0:70	129	ZZB	84.1	7,83
0952	0.2	21.20	5.28	0.60	129	50.3	79.1	7.81
0457	0.3	21.22	5.26	0.54	131	24.0	77.9	7.92
1002	6.4	21.29	5.23	0. 41	132	2515,6	73.0	7.93
1007	0.5	21.33	5.23	0,37	134	9.20	72.3	7.95
1012	0.6	21.36	5.24	0.32	137	6.04	72.3	7.95
and								
			$\square$	)				
			A	m	0			
					13	161		
		11				43		

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
0	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks____

Alow rate _ loo ml /min

Sampling Personnel Jared Fino/Dan Rhodes



Field Deremeters

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather 66	Sung
Evacuation Da	ta:
Depth to bottom	of well (ft bls)7.5
Depth to water f	rom top of casing <u>4.58</u>
Water Column ⁸	$\mathcal{I}^{\mathcal{U}}(\mathrm{ft})$ Gallons in well $/, 43$
Evacuation Volu	ame(x 3) = <u>Low Flow</u>

Start - 0909

### WATER SAMPLING LOG

	Date 10/16/13
Monitoring Well Num	nber <u>MW-47</u>
Sample Collection Tir	me
Sampling Method	Low Flow Peristaltic

Casing stick-up above c	concrete (feet) $\underline{-5}$
Screened Interval (ft bls	5) 3.9-13.5
Casing Diameter:	2"
Casing Volume 1"=0.04	1 gal gal/ft 2"=0 16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
0914	0.1	20.91		) ——	611	11000	177.7	-
9419	6.2	4						
0924	0.3	PLR						
2979	0.4	~~~				40		1
	0.9							1
	A							
				Den				
		· · · · · · ·		-ng	10/16/13			
				1	- //3			
						_		
					1	-		

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1
		Sec. 1	
		*	

Remarks

marks mable to sample - well filled with silt/clay

Sampling Personnel _____ Jared Fino/Dan Rhodes

Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No.
Weather 75	F Senny
Evacuation Da	ta:
Depth to bottom	
Depth to water f	rom top of casing <u>11. 31</u>
Water Column	(ft) Gallons in well 3.21
Evacuation Volu	time $(x 3) = $ <u>Low Flow</u>

	SAMPLING LOG
I	Date 10/16/17
Monitoring Well Number	MW-56
Sample Collection Time_	1017
Sampling Method	ow Flow Peristaltic
1 0	

Casing stick-up above con	ncrete (feet) ~/
Screened Interval (ft bls)	26.9-31.4
Casing Diameter: <u>2"</u>	
Casing Volume 1"=0.04 g	gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
6949	0.1	21.36	6.98	4.69	1705	26.8	126.6	11.61
0954	0.2	21.33	7.11	4.28	1710	17.0	116.2	11-62
0959	0.7	21.34	7.15	4.20	1715	17.7	109.8	11.62
1004	8.4	21.37	7.11	4.23	1803	33.9	61.7	11.62
009	0.5	21.38	7.09	3.52	1828	21.6	39.1	11.62
1614	0.6	21.40	7-10	3.26	1837	19.4	31.3	11.62
		<u></u>	JM	E 10/16				
				10/16	13			
				( (	1			

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HC1
	JAK	1	
	Sight	11/17	

Remarks Flow Role: 100 m/min

Sampling Personnel

Jared Fino/Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan Weather 70%	
Evacuation Da	ata:
Depth to botton	n of well (ft bls) <u>15.1</u>
Depth to water	from top of casing 10.05
Water Column	(ft) Gallons in well 0.81
Evacuation Vol	ume (x 3) = Low Flow

NIL

WATER SAMPLING LUG
Date 10/16/13
Monitoring Well Number <u>MW</u> -21
Sample Collection Time 0937
Sampling Method Low Flow Peristaltic

WATER SAMPLING LOG

Casing stick-up above cond	
Screened Interval (ft bls) _	5.1-15.1
Casing Diameter: 2	'n
Casing Volume 1"=0.04 ga	l gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
0910	0.1	21.18	3.67	3.29	568	94.8	397.9	10.64
0915	0.2	21.25	3.62	2.94	571	130	419.5	10.86
0920	0.3	21.36	3.61	2.98	572	132	420.0	10.99
0925	0.1	21.51	3.62	2.92	577	148	423.7	11.25
0930	0.5	21.66	3.62	2.94	580	170	419.3	11-33
(1935	0.6	21.78	3.61	2.87	591	197	417.3	11-46
			5	The				
_				110	10/16/1			
					1.0/1			

Analyses:

Check if Samplød	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
	JME 10	14/13	

Remarks Flow Role : 100 ml min

Sampling Personnel _____ Jared Fino Dan Rhodes



Project No. <u>GP08HAFS.2012.N26GM</u>
Site Location:Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather FOF Sunny
Evacuation Data:
Depth to bottom of well (ft bls) $3/-4/$
Depth to water from top of casing $12.00$
Water Column 19.1 (ft) Gallons in well 3.10
Evacuation Volume (x 3) = <u>Low Flow</u>

WATER SAMPLING, LOG
Date 10/16/13
Monitoring Well Number MW-57
Sample Collection Time 1723
Sampling Method <u>Low Flow Peristaltic</u>

Casing stick-up above	concrete (feet) ~3
Screened Interval (ft b	ls) 29.6-31.4
Casing Diameter:	2 "

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

		itat: 16		1	1			
Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1656	0-1	22.89	7.01	0.89	1535	2-36	-78.4	12.05
1701	0.2	23.13	6.98	0.63	1534	1.19	-77.1	12.04
1706	0.3	23.13	6.94	0.52	1541	1.43	-76.6	12.03
1711	0.4	23.07	6.92	0.50	1545	1.72	-79.1	12-03
1716	0.5	22.94	6.91	0.41	1546	1.49	-10.7	12.03
1721	0.6	22-80	6.89	0.36	1549	1.64	-77-6	12.03
_								1.
			JAR	- inti	,			
				10/10	1/13			
	1		-		<u></u>			

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
	Shp	dirt-	
		1. Ell 1	

Remarks Flow Role: 100 ml min

Sampling Personnel

Jared Fine/Dan Rhodes

6	1	n	0	n D	10
0	ŀ	١К		41)	1
LILL	1	## #			

Project No GP08HAFS.2012.N26GM
Site Location: Ft. Stewart, GA (FST-26)
Rep./Field Blank No. MS/MSIS
Weather PSP Sinny
Evacuation Data:
Depth to bottom of well (ft bls)
Depth to water from top of casing 12.68
Water Column ^{[8.32} (ft) Gallons in well <u>2.93</u>
Evacuation Volume (x 3) = <u>Low Flow</u>

~ .

WATER SAMPLING LOG
Date 10/16/13
Monitoring Well Number <u>MW -58</u>
Sample Collection Time_1625
Sampling Method <u>Low Flow Peristaltic</u>

Casing stick-up above c	oncrete (feet) ~ 3
Screened Interval (ft bls	26-31
Casing Diameter:	2 "

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1557	0.1	22.96	7.08	1.21	1206	4.54	54.2	12.71
1602	0.2	17.04	7.07	0.83	1214	2.19	44.6	12.71
1607	6-3	22.99	7.03	0.68	1220	2.19	42.5	12.71
1612	0.4	23.05	6.97	0.68	1220	1.45	43.0	1271
1617	0.5	22.77	6.91	0.41	1225	2.43	44.7	12-71
1622	0.6	22.62	6.95	0.60	1233	1.90	45.9	12.71
			E					
			JA	Fidi	el.			
					113			

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
	Th	Fullation	
		1.0/15	

Remarks Flow Pate: 100 ml/min

Sampling Personnel

Jared Fino Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather 13	of Jenny
Evacuation Da	ta:
	of well (ft bls) 31.1
Depth to water f	rom top of casing <u>11.81</u>
Water Column	(ft) Gallons in well 3.16
Evacuation Volu	ame(x 3) = <u>Low Flow</u>

1

10

1-1-1

	AMPLING LOG
Da	ate 10/6/13
Monitoring Well Number_	MW-53
	1537
Sampling Method	v Flow Peristaltic

Screened Interval (ft bls) 26-7-71.1	Casing stick-up abo	ove concrete (feet) ~3
Screened interval (ft bis)	Screened Interval (f	ft bls) 26-7-71.1
Casing Diameter: <u>2"</u>	Casing Diameter: _	2"

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond.	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1510	0.1	22.60	7.27	635-	71.15	10.5	-111.2	11.90
1515	0.2	23.00	7.21	1000 0.	5 GAS	4.12	-120.0	11.90
1520	0.3	23-08	7.10	0-42	718	2.53	-118.0	10.89
1525	6.4	23.21	7.04	0-41	735	2.17	~112.1	11.90
1530	0.5	22.98	7-01	0.37	740	2.22	-110.0	11.90
1535	0.6	22.00	7.02	0-41	744	1.92	-107.4	11.90
			TA			_		
_			529	F 101	T			
			-	/ .	0113			
				1				

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
	JAP	esteliz	

Remarks Flow Rete = 100 ml/min

Sampling Personnel

Jared Fino/Dan Rhodes

Project No GP08HAFS.2012.N26GM
Site Location: Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather 807 Sunny
Evacuation Data:
Depth to bottom of well (ft bls) 29.1
Depth to water from top of casing 9.53
Water Column [19.57] (ft) Gallons in well 3.13
Evacuation Volume (x 3) = <u>Low Flow</u>

WATER SAMPLING LOG
Date 10/16/13
Monitoring Well Number MW - 38
Sample Collection Time 1433
Sampling Method <u>Low Flow Peristaltic</u>

Casing stick-up above con	crete (feet)
Screened Interval (ft bls) _	24.1-29.1
Casing Diameter: 2"	
Casing Volume 1"=0.04 ga	al gal/ft, 2"=0.16 gal/ft

Field Parameters: Start ! 1400 Time Gallons Temp pH DO Spec. Cond. Turb Redox Depth to Purged (°C) (SU)Water (ft) (mg/L)(µmhos/cm) (NTU) (mV) 12.98 1405 86.4 7.00 1680 0.1 3.30 517 10.08 1410 22.78 7.22 457 78.9 G.L 1694 3.14 10.11 1415 22.66 2.94 0.3 7.27 493 1698 77.5 10.14 22.59 2-81 1692 1420 0.4 7.31 504 77.2 10.14 22.53 1-125 0.5 7.32 2.79 1686 537 76.5 10.16 22.55 2.69 1687 7.33 0.6 588 75.5 1430 10.16 JME 10/16/13

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
		Joyp Inter	
		10/16/13	

Remarks Flow Rate: 100 nd Junin

Sampling Personnel

Jared Fino Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	nk No.
Weather	OF Sunny
Evacuation D	ata:
Depth to bottor	n of well (ft bls)
Depth to water	from top of casing 7.87
Water Column	from top of casing $7.87$ 1.13 (ft) Gallons in well $0.66$
Evacuation Vol	lume (x 3) = <u>Low Flow</u>

1

1.

10

WATER SAMPLING LOG
Date _10/16/13
Monitoring Well Number MW-41
Sample Collection Time 1239
Sampling Method Low Flow Peristaltic

Casing stick-up above con	crete (feet) 3
Screened Interval (ft bls) _	2.0-12.0
Casing Diameter:	2"
Casing Volume <u>1"=0.04 ga</u>	al gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1210	6.1	23.06	3.98	4.08	867	39.9	476.6	8.36
1215	8-2	23.14	3.82	3.77	870	74.4	444.4	8.41
1220	0.3	23.14	3.80	3.73	868	947	441.4	8.45
1225	0.4	23.15	3.76	7.86	872	84.3	449.1	8.50
1230	0.5	23.13	3.75	3.88	878	60.8	447.6	8.53
1235	0.6	23.18	3.75	4.04	878	41.7	444.8	F.56
			1					
			JA	2			1	
				10/1	2/2			
	4 11				13			

Analyses: /

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HC1
	JAR	idility	
Remarks	Flas Rete: 100ml	min	



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	ik No. Dr 2
Weather DP	Sinny
Evacuation Da	ata:
Depth to bottor	n of well (ft bls) <b>31-4</b>
	from top of casing <u>10.78</u>
Water Column	(ft) Gallons in well 3.23
Evacuation Vol	ume $(x 3) = $ <u>Low Flow</u>

01

1

110-

WATER SAMPLING LOG
Date 10/16/13
Monitoring Well Number <u>MW-54</u>
Sample Collection Time 1155
Sampling Method <u>Low Flow Peristaltic</u>

Casing stick-up above cond	crete (feet) <u>*3</u>
Screened Interval (ft bls) _	26.9-31.4
Casing Diameter:2	к
Casing Volume <u>1"=0.04 ga</u>	al gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1128	0.1	22.56	6.99	6.98	864	8.13	-75.6	10.94
1133	0.2	22.81	7.06	0.78	86.1	5.45	-19.8	10.95
1138	0.3	22.89	7.11	0.66	887	5.71	-94.1	10.95
1143	0.4	22.85	7.11	0.56	921	6.07	-100.8	10.95
1148	0.5	22.92	7.10	0-48	929	4.54	-103.4	10.95
1157	0.6	23.03	7.09	0.47	935	4.63	-162.8	10.95
		/						·
			J	MF 10				
				1	16/13			
	_							

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative	
	BTEX, MTBE	3X 40 mL glass vial	HCl	
	JAP	10/10/12		
				_

Remarks Flow Robe : 100ml Min

Sampling Personnel

Jared Fino Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	
Weather 75	°F Sunny
Evacuation Da	
Depth to bottom	of well (ft bls)
Depth to water f	rom top of casing 8.51
Water Column	(ft) Gallons in well 1.25
Evacuation Volu	lime(x 3) = <u>Low Flow</u>

WATER SAMPLING LOG
Date 10/16/13
Monitoring Well Number MW-19
Sample Collection Time 1111
Sampling Method Low Flow Peristaltic

Casing stick-up above con	crete (feet) ~3
Screened Interval (ft bls)	6.3-16.3
Casing Diameter:	)(
Casing Volume <u>1"=0.04 g</u>	al gal/ft, 2"=0.16 gal/ft

Field Parameters: Pt-L: 1030

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1035	0.1	23.11	6.22	5.57	383	>1000	157.2	9.83
1640	0.2	23.02	5.76	4.71	381	71000	173.5	10.16
1045	0.3	22.95	5.57	4.26	378	71000	185.9	10.60
1050	0.4	22.94	5.50	4.11	377	71000	120.6	16-20
1055	0.5	22.86	5.31	5-35	288	71000	263.2	10.95
1100	0.6	22.85	5.10	5.96	272	71000	270.4	11.24
1105	0.7	22.91	5.18	4-00	271	71000	271.6	11.35
1110	0.8	22.95	5.16	5.95	268	71000	272.3	11.46
			1111					
_			JAP	1				
			./	10/16/1	3			

## Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
	Jup	10/16/13	
emarks	Flow Roke = 100 ml/w	Win	

1



Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No.
Weather 7	5°, Sunny
Evacuation Da	/
Depth to bottom	of well (ft bls)
Depth to water f	rom top of casing $3.54$
Water Column 7	(ft) Gallons in well 1. 19
	me(x 3) = <u>Low Flow</u>

## Field Parameters: Start - 1702

## WATER SAMPLING LOG

	Date 10/15/13
Monitoring Well Number	er_Mw-20
Sample Collection Time	1734
Sampling Method	Low Flow Peristaltic
Casing stick-up above co	oncrete (feet) _2.5
Screened Interval (ft bls)	6.0-16.0

Casing Diameter: ____ Z"

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1707	0.1	22.65	5.80	3.90	108	290	226.4	1.34
1712	0.2	22.61	5.37	3.45	120	>1000	264.1	9.72
1717	0.3	22.59	5.09	3.15	140	71000	291.4	10.22
1722	0.4	22.53	4.94	3.03	153	>1000	310.9	10.89
1727	0.5	22.50	4.95	4.05	145	>4000	311.6	11.75
1732	0.6	22.46	4,99	3.67	138	71000	297.9	12.47
/								
				Rez				
					10	15/13		1
					1	43		
		11.11	1					

## Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
~	BTEX, MTBE	3X 40 mL glass vial	HCl
	A		

2

Remarks

flow rate - 100 ml /min

Sampling Personnel _____ Jared Fino/Dan Rhodes

# **ARCADIS**

Project No GP0	8HAFS.2012.N26GM
Site Location:	Stewart, GA (FST-26)
Rep./Field Blank No	mo Dup-01
Weather $75^{\circ}$ –	sinny
Evacuation Data:	/
Depth to bottom of well	ll (ft bls) 31.4
Depth to water from to	p of casing <u>12.61</u>
Water Column [8.74(ft)	Gallons in well 3.00
Evacuation Volume (x	3) = <u>Low Flow</u>

#### Start - 1611 Field Parameters:

## WATER SAMPLING LOG

	Date 10/15/13
Monitoring Well Nur	mber MW-55
Sample Collection T	ime 1644
Sampling Method	Low Flow Peristaltic

Casing stick-up above concrete (feet) 2.5
Screened Interval (ft bls) $26.9 - 31.9$
Casing Diameter: Z ⁴
Casing Volume <u>1"=0.04 gal gal/ft, 2"=0.16 gal/ft</u>

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1616	0.1	22.08	7.05	2.33	739	2.88	-26,4	12.57
1621	0.2	22.00	7.06	0.79	746	1.18	-42.9	12.55
1626	0.3	21.88	7.05	0.43	754	0.93	-62.3	12.54
1631	6.4	21-84	7.06	0.29	762	1.11	-64.6	12.52
1636	0.5	21.82	7.06	6,24	768	1.10	- 55.0	12.52
1641	6.6	21.80	7.06	0.21	774	0.76	- 47.9	12.51
					1			
		<u></u> /					/	
					4			
		1						

## Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
/	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks flow rate - 100 mk/min

Sampling Personnel _____ Jared Fing/Dan Rhodes

# **ARCADIS**

Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	
Weather 8	35F Jinny
Evacuation Da	/
Depth to bottor	n of well (ft bls)2 3
Depth to water	from top of casing $11.31$
Water Column	1.69 (ft) Gallons in well 1.87
Evacuation Vol	ume $(x 3) = $ <u>Low Flow</u>
Field Derem A	det: 1 m

WATER 3	AMPLING LUG
Da	ate 10/15/13
Monitoring Well Number_	MW-23
Sample Collection Time	1729
Sampling Method	w Flow Peristaltic

WATED CAMPLING I

a

1

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1701	0.1	22.31	6.20	5-32	796	62.8	48.2	12.36
1706	0.2	22.25	6.19	4.84	796	55.2	51.0	12.41
1711	0.3	22.20	6.20	5.11	791	57.1	52.4	17.48
1716	0.4	22.14	6.21	4.72	788	53.1	57.1	12.55
1721	0.5	22.09	6.20	5.14	786	56.5	55.4	12.59
1726	0.6	22.03	6.20	4.96	785	52.4	57.4	12.62
	-		/					
			JAN	11				
				10/15/1	~			1

## Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCI
	Jup	10/15/17	

Remarks Flas Role : 1Wmi/mia

Sampling Personnel

Jared Fino/Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blank Weather	
Evacuation Data	a:
Depth to bottom	of well (ft bls)
Depth to water fr	om top of casing <u>6. 49</u>
Water Column 9.	61(ft) Gallons in well 1.52
Evacuation Volum	me (x 3) = <u>Low Flow</u>

WATER SAMPLING LUG
Date 10/15/13
Monitoring Well Number MW-09
Sample Collection Time 1627
Sampling Method Low Flow Peristaltic
Casing stick-up above concrete (feet) 7

Screened Interval (ft bls)	6-16
Casing Diameter:	2"
Casing Volume <u>1"=0.04 g</u>	al gal/ft, 2"=0.16 gal/ft

Field Parameters: Stat: 1550

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1555	0.1	23.00	5.78	6.97	140	101	31.1	7.37
1600	0.2	23.26	5.64	491.92	97	89.6	39.2	7.19
1605	0.3	27.70	5.62	1.64	89	59.9	39.5	7.16
1610	0.4	23.21	5-62	1.26	83	41.2	39.5	7.17
1615	0.5	23.08	5.61	1.05	74	28.4	37.3	7.19
1620	0.6	22.96	5.57	O.Pg	70	22.3	36.8	7.21
1625	0.7	22.83	5.55	0.76	70	21.6	37.0	7:23
			D.					1
			Dyp	10/15	1			
					13			

## Analyses:

Analytical Parameter	Sample Bottles	Preservative
BTEX, MTBE	3X 40 mL glass vial	HCl
Jrs	F 10/10/13	

Remarks Da Flow Robe: 100 ml/min

Sampling Personnel ______ Jared Fino Dan Rhodes ______



Project No. <u>GP08HAFS.2012.N26GM</u>
Site Location: Ft. Stewart, GA (FST-26)
Rep./Field Blank No.
Weather 75°, partly
Evacuation Data:
Depth to bottom of well (ft bls) 15.25
Depth to water from top of casing $5.85$
Water Column $\frac{q.q}{l.f}$ (ft) Gallons in well <u>l. 5</u>
Evacuation Volume (x 3) = Low Flow

## WATER SAMPLING LOG

D	ate 10/15/13
Monitoring Well Number_	MW-07
Sample Collection Time	1546
Sampling Method	w Flow Peristaltic

Casing stick-up above con-	crete (feet) $2.5$
Screened Interval (ft bls) _	5.25-15.25
Casing Diameter: $2''$	
Casing Volume 1"=0.04 ga	al gal/ft, 2"=0.16 gal/ft

Field Parameters: 1513

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1528	0 . (	22,23	6.12	0.29	897	3.84	- 84.0	8.40
1523	0.2	22.23	6.19	0.18	875	23.7	-89.1	8.38
1528	0.3	22.24	6.22	0.12	859	13.7	-87.2	8.51
1533	0.4	22.20	6.23	0.09	849	12.5	- 89.5	8.66
1538	0.5	22.17	6.25	0.08	844	11.4	- 89.6	8:78
1543	6.6	22.10	6.27	0.08	831	11.3	-29.0	8.88
					-			
			7	22				
						0/10/		
						0/15/1	3	
	1			1				
						1	1	

## Analyses:

Analytical Parameter	Sample Bottles	Preservative
BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks Flow rate - 100 ml/min

Sampling Personnel Jared Fino/Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Bland Weather $70^{\circ}$	k No partly cloudy
Evacuation Da	/ /
Depth to bottom	of well (ft bls) 70 130
Depth to water f	rom top of casing 7.3
Water Column	(ft) Gallons in well 0.91
Evacuation Volu	me(x 3) = <u>Low Flow</u>

## WATER SAMPLING LOG

E	Date 10/15/13
Monitoring Well Number_	MW-28R
Sample Collection Time_	1458
Sampling Method	w Flow Peristaltic

Casing stick-up above concre	ete (feet) $2.5f$
Screened Interval (ft bls)	3-0-13.0
Casing Diameter:Z'	1
Casing Volume 1"=0.04 gal	gal/ft, 2"=0.16 gal/ft

Field Parameters: Start - 1425

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1430	0.1	25.46	3.54	0.24	7461	7.10	237.5	7.66
1435	0.2	25.87	3.55	0.15	75-99	2.79	237,5	7.94
1440	0.3	25.24	3.53	0.13	7757	342	230.2	8.22
1445	6.4	25.68	3.50	0.11	8033	349	232.4	8.42
1450	0.5	25.95	3.50	0.13	8201	3.46	239.2	3.61
1455	0.6	25.62	3.48	0.14	8489	3.84	239.4	6.83
				A				1
1					N/	la i		1
						10/15/	3	
			1					

## Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
1	BTEX, MTBE	3X 40 mL glass vial	HCl

Remarks flow rate - 100ml/min

Sampling Personnel _____ Jared Fing/Dan Rhodes

# **ARCADIS**

Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blank	: No
Weather 857-	Sinny
Evacuation Dat	a:
Depth to bottom	of well (ft bls)
Depth to water fi	com top of casing <u>5.89</u>
Water Column	(ft) Gallons in well 1.14
Evacuation Volu	$me(x 3) = \underline{Low Flow}$

WATER SAMPLING LOG
Date 10/15/13
Monitoring Well Number <u>MW-06 R</u>
Sample Collection Time 1533
Sampling Method <u>Low Flow Peristaltic</u>
(Fre -

Casing stick-up above concrete (feet) Screened Interval (ft bls) 3-13 11

Casing Diameter:

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

1

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1505	0.1	23.88	6.20	0.61	2852	29.8	-25.4	6.34
1510	0.2	23.65	6.16	0.50	2846	27.6	-24.4	6.32
1515	0.3	23.66	6.15	0.86	2843	21.3	-76.8	6.32
1520	0.4	23.418	6.14	0.43	2844	19.0	-16.5	6.34
1525	0.5	23.58	6.13	0.44	2865	12.9	-17.7	6.38
1530	0.6	23.53	6.10	0.37	2896	10.7	9.5	6.38
	1							
			Jy	F In				1
		1.75		101.	5/13			
		! ***!						

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
$\checkmark$	BTEX, MTBE	3X 40 mL glass vial	HC1
110.2		FIR With	

Remarks Flow Refe : 100ml/min

Sampling Personnel _

Jared Fino Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location: _	Ft. Stewart, GA (FST-26)
Rep./Field Blank	
Weather 854	> Junny
Evacuation Dat	
Depth to bottom	of well (ft bls) <u>25</u>
Depth to water fi	rom top of casing 10.12
Water Column	(ft) Gallons in well 2.38
Evacuation Volu	ume (x 3) =Low Flow

WATER	SAMPLING LOG
	Date 10/15/13
Monitoring Well Numbe	
Sample Collection Time	1455
Sampling Method	Low Flow Peristaltic
Casing stick-up above co	
Screened Interval (ft bls)	20-25
Casing Diameter: 2"	

Casing Volume 1"=0.04 gal gal/ft, 2"=0.16 gal/ft

Field Parameters: 1421

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1426	6.1	23.65	6.63	1.36	1389	11.4	-110.2	10-18
1431	6.2	23.49	6.71	0.94	1350	3.23	-133.2	10.17
1-136	6.3	23.57	6.75	0.69	1317	2.30	-124.2	10.17
1441	0.4	23.19	6.76	0.57	1306	1.89	-137.9	10.18
1446	0.5	23.29	6.77	6.39	1301	1.86	-130.6	10-18
1451	0.6	23.32	6.76	0.35	1304	1.70	-135.7	10-19
			~					
			Jup	10/15/				
				1				

## Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
V	BTEX, MTBE	3X 40 mL glass vial	HCl
		Dye 10/15/17	
		,	

Remarks Flow Refe - 100 ml/min

Sampling Personnel

Jared Find Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	ik No
Weather \$5	P Sung
Evacuation Da	ata:
Depth to bottom	n of well (ft bls)
Depth to water	from top of casing <u>6.34</u>
Water Column	(ft) Gallons in well 1.06
Evacuation Vol-	ume $(x 3) = $ <u>Low Flow</u>

WATER SAMPLING LOG
Date 10/15/13
Monitoring Well Number <u>MW-1512</u>
Sample Collection Time 1159
Sampling Method Low Flow Peristaltic

Casing stick-up above conc	erete (feet)
Screened Interval (ft bls)	3-13
Casing Diameter:	2"
Casing Volume <u>1"=0.04 ga</u>	l gal/ft, 2"=0.16 gal/ft

## Field Parameters: Stat: 1226

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1231	0.1	26.40	3.40	0.66	8160	5.86	331.1	6.60
1236	0.2	26-44	3.52	0.37	7422	6.56	315-3	6.66
1241	0.3	26.50	3.59	6.27	7128	6.05	300.5	6.70
1246	0.4	26.13	3.61	0.23	7090	5.71	293.1	6.75
1251	0.5	26.21	3.59	0.21	7099	4.60	283.1	6.81
1256	6.6	25.Po	3-61	0.17	7114	4.91	276.4	6.86
					1			
			Jur,	6/15/1-				
_				113/15	>			1
_								
					deciments.			

### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HC1
	JAK	1/15/17	

Remarks to Flow Refe ! 100 ml/min

Sampling Personnel ______ Jared Fino/Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blank	No
Weather 70°	partly cloudy
Evacuation Data	
Depth to bottom c	of well (ft bls) / 3. 0
Depth to water fro	om top of casing <u>4.32</u>
Water Column 8-6	(ft) Gallons in well 1.32
Evacuation Volun	$me(x 3) = \underline{Low Flow}$

	2 H	
Field Parameters	Start - 1232	

## WATER SAMPLING LOG

Mo	nitoring Well Nu	A CONTRACTOR OF
	mitoring wen nu	mber Mw-59
Sar	mple Collection Ti	ime <u>1304</u>
Sar	npling Method	Low Flow Peristaltic

Casing stick-up above conci	rete (feet) <u>Flush</u>
Screened Interval (ft bls)	30-130
Casing Diameter: $\underline{Z''}$	
Casing Volume 1"=0.04 gal	gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1237	0.1	28.12	5.74	0.42	671	6.70	51.2	9.83
1242	0.2	28.10	5.74	0.26	670	3.89	35,0	4.92
1247	0.3	27.98	5.73	0.75	665	5.49	20.5	9.98
1252	0.4	22.08	5.73	0.23	658	6.60	16.2	5.03
1257	0.5	27.87	5.73	0.20	656	7.06	12.2	5.17
1302	0.6	28.12	5.74	0-18	653	3.10	8.2	5.24
		/	4	2				
				~	X	elite		
				1		AL	2	

Analyses:

Analytical Parameter	Sample Bottles	Preservative
BTEX, MTBE	3X 40 mL glass vial	HCl

Flow rufe - looml/min Remarks

Sampling Personnel _____ Jared Fino Dan Rhodes

# **ARCADIS**

Project No GP08HAFS.2012.N26GM
Site Location:Ft. Stewart, GA (FST-26)
Rep./Field Blank No
Weather zo" Smary Breezy
Evacuation Data:
Depth to bottom of well (ft bls) $130$
Depth to water from top of casing $4.97$
Water Column $\frac{2.03}{(ft)}$ Gallons in well $1.28$
Evacuation Volume (x 3) = <u>Low Flow</u>
Field Parameters: Stut - 1146

## WATER SAMPLING LOG

	Date 10/15/13
Monitoring Well Nun	nber MW-25R
Sample Collection Ti	me_/218
Sampling Method	Low Flow Peristaltic

Casing stick-up above cond	crete (feet) _ flush_
Screened Interval (ft bls) _	
Casing Diameter:	//
Casing Volume <u>1"=0.04 ga</u>	l gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1151	0.1	28.26	5.66	0.34	487	0.38	34,60	5.23
1156	0.2	28.35	5.57	0.18	478	3.04	47.8	5.43
1201	0.3	28.38	5,50	0.16	472	4.87	59.2	5.64
1206	6.4	27.88	5.53	0.14	485	5.72	48.4	5.88
1211	0.5	27-96	5.59	0.08	414	6.62	39.7	6.10
1216	0.6	28.67	5.65	0.10	513	6.70	23.1	6.23
				R	6			
					101	\$13		
		N						

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles Preservative	
	BTEX, MTBE	3X 40 mL glass vial	HC1
			~

Remarks Flow rate - 100 mil / minute

Sampling Personnel _____ Jared Fino/Dan Rhodes



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	ik No
Weather 70	", Partly cloudy
Evacuation Da	1
Depth to botton	n of well (ft bls)28.0
Depth to water	from top of casing .8.56
Water Column	(f, Y) (ff) Gallons in well <u>3.11</u>
Evacuation Vol	ume $(x 3) = $ <u>Low Flow</u>

WATER	SAMPLI	NGI	LOG
		1	

Monitoring Well Nun	Date $10/15/13$ aber $10/15/13$
Sample Collection Tim	
Sampling Method	Low Flow Peristaltic

Casing stick-up above con	crete (feet)
Screened Interval (ft bls) _	23.0-28.0
Casing Diameter: <u>2</u> "	
Casing Volume 1"=0.04 ga	al gal/ft, 2"=0.16 gal/ft

1106 Start Field Parameters: Spec. Cond. Time Gallons Temp pH DO Turb Redox Depth to Water (ft) (SU) (mg/L)(NTU) (mV) Purged (°C) (µmhos/cm) 1.02 26,41 6.21 470 1.55 1111 0.1 -55.6 8.68 26.33 8.67 6.23 0.58 486 48 -55.4 1116 6.2 1121 26.24 6.24 0.44 491 0.3 -50.7 1.61 8.71 25.85 6.23 492 1.23 8.69 0.36 -48.3 1126 Oiy 492 8.68 25.60 6.23 - 42.9 1131 19.5 6.30 1.21 0.6 -38.1 1136 6.23 0.28 493 8.70 25.73 6.88 to Is Az

Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
2	BTEX, MTBE	3X 40 mL glass vial	HCl
	2		

Remarks Flow- Pate - 100ml - havinge

Sampling Personnel _____ Jared Fino/Dan Rhodes



Project No. <u>GP08HAFS.2012.N26GM</u>
Site Location: <u>Ft. Stewart, GA (FST-26)</u>
Rep./Field Blank No. MSMSD
Weather 75°F Partly Cludy
Evacuation Data:
Depth to bottom of well (ft bls)13
Depth to water from top of casing 4.78
Water Column P. 22 (ft) Gallons in well 1-31
Evacuation Volume (x 3) = <u>Low Flow</u>

## WATER SAMPLING LOG

D	ate 10/15/17
Monitoring Well Number_	MW-24R
Sample Collection Time	1215
Sampling Method	w Flow Peristaltic

Casing stick-up above con	crete (feet)
Screened Interval (ft bls)_	3-13
Casing Diameter:	2"
Casing Volume <u>1"=0.04 g</u>	al gal/ft, 2"=0.16 gal/ft

.7 5.01
0 5.07
1 5.10
9 5.14
\$ 5.17
2 5.20

#### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
	5	AF IDIS/17	

Remarks_

Flow Rohe : 100 m L/min

Sampling Personnel ______ Jared Fiho/Dan Rhodes _____



Project No.	GP08HAFS.2012.N26GM
Site Location:	Ft. Stewart, GA (FST-26)
Rep./Field Blan	k No
Weather 75	overcast
Evacuation Da	
Depth to botton	n of well (ft bls)
	from top of casing <u>5.51</u>
Water Column	16.49 (ft) Gallons in well 1.68
Evacuation Vol	ume $(x 3) = $ <u>Low Flow</u>

11.00

n 1

WATER	SAMPLING LUG
	Date 10/15/17
Monitoring Well Number	er_MW-16

Sample Collection Time 1131
Sampling Method Low Flow Peristaltic

Casing stick-up above co	oncrete (feet)
Screened Interval (ft bls)	6-16
Casing Diameter:	2"
Casing Volume <u>1"=0.04</u>	gal gal/ft, 2"=0.16 gal/ft

Time	Gallons Purged	Temp (°C)	pH (SU)	DO (mg/L)	Spec. Cond. (µmhos/cm)	Turb (NTU)	Redox (mV)	Depth to Water (ft)
1103	0.1	26.34	6.24	2.58	566	5.67	-61.4	5.90
1108	0.2	26.42	6.23	6.80	562	6.34	-58.6	6.01
113	0.3	26.58	6.23	0.52	560	06.96	-54.6	6.08
111	04	27.24	6.21	0.26	551	14.7	-51.8	6.14
1123	0.5	26.72	6.19	0.23	526	34.5	-62.0	6.15
1128	0.6	26.45	6.19	6.21	525	35.8	-63.0	6-10
_				1.00		(14		
			JAN					1
				10/15	1.			
				/	12			
					1			

### Analyses:

Check if Sampled	Analytical Parameter	Sample Bottles	Preservative
	BTEX, MTBE	3X 40 mL glass vial	HCl
	She 1		
		13/13	

Remarks Floy Pole = 100 me/min

Sampling Personnel

Jared Fino/Dan Rhodes



Appendix G

O&M Data Logs

 Site:
 Fort Stewart, FST-26, Former Tanker Purging Area
 Corner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woods.

 Sampler:
 Ivan Jenkins
 Date:
 Ivan Jenkins
 Pg 1 of 3

Well ID	TIME	Press. (PSI)	Flow (CFH)	TEMP Deg. F	NOTE(S) check/listen for air leakage or water in manifold
SYSTEM	1015 AM	12.2	NM	231°F	in manifold on arrival
SYSTEM					
BSP-01	1119	10.3	110		
BSP-02	1110	10	180		
BSP-03	1122	10.2	70-80		_
BSP-04	1125	10.3	55-40		
BSP-05	1121	10.2	55-		Flowmater clisty bot
BSP-06	1123		507		Flow ball bocneing in meter Bol
BSP-07	off				
BSP-08	1128	10.2	110		Flowingthe dirty water is meter
BSP-09	1130	10.2	120		IL IT
BSP-10	1(33	10,2	250		nato is flowmithe
BSP-11	1208	10.4	55		water flow in flowmeter
BSP-12	1210	10.11	55		R St Is Is dirty
BSP-13	1238	10.5	50		barneing water flow in write dirty
BSP-14	1241	10.5	X 30		J
BSP-15	1243	10,5	250		
BSP-16	1243	10.9	<50		
	1247		200		
					stem. Each well has a flowmeter installed. A comman gauge with quick connect is in traile
					Also found tubing to Marcil switch broke metho
					of manifold This take is HOPE-needs to be copper,
	1	. //		1	tat bypassed structy. Fallo Brahu in centrel
/	helly	× /	-	/	Mid Attantic / control. fill 1105
	hit Re	1	open		Shawn Evens
			1. repl	here Di .	sensor rap + restact calibration
1.50 v	endings	s dore	sys	. of	. Fan not working again let Shilly know.
e 1	polli	y 32 -	23 An	nps on	of 15 Amp breaker. Fan blade turns tright.
GI 2	Shun	IN EU	ans-	leave	message - Call Openine Pipe - closest men is s. At
1 00	100 110	3 65.3	14/11	10 14	I.C. 25-54 (2) 1138 7. 14 augh DOC 26.42 F I put away. I work on Fan. See pg 2

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Screen	Start	IM							GPOILNDWATED
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Time	W.L. Depth (feet)	Reading Depth	Temp (°C)	OD (I)	SC*		ORP*	BUNAIER OST - YSI Cable Hapul @
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14	1	14 50	101	655	100		(AIII)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			K	14 50	11/01	1 AL	101	1114	515-	A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.0		1	15.00.1	Unill	Q	100	6.18	5 1-45	I umping SP Coud, D) @ 1542 00 26, 73 SPC: 199, pite.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5.1	-		14.00	71.01	20	1112	11.11	10.4	good pringing 45- 400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.0	-	1-	12.00	10 21	1	113	5.02		6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13.0	1	211	1000	5747	761	116	4.57	-50.0	CO10 Meanuments (2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.6	121	12 2	15.00	1000	1.01	1440	'i	24.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.1	45.3	14.5	26.00	20:70	10.10	11118		264	Believe well still avertury same up
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	1532	13	14 B-6"	19.1.3	7.45	16	101	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0	1526	12,5-13	20.00	20.58	9.66	1176	4.47	N 2 M	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.9	-	1205	14.00	1985	162	121	1 July	20	11111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	26.9	1504	13.5	29.00	21.35	1.80	666	1 97	11 ~ 1	Danch bedow water level, catt dotter- Silta
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	26.7	14:0024	13	1	20.57	1.10	644	177	12-71	1) - c/ i u 8 of the 6 min a 1508
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W-52			1				5	j	fraction the tes min.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	26.9 -		15'	1	Xp	1	664	7.06		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	7	14 @	29.00	1			172		
260-310 /572 /3,5 28.50 /2014 /1,14 /341 /4.74 /24 /24 /24 /24 /24 /24 /24 /24 /24 /2	-	-	13 2	1		10		611	10	
The following meter was rented from Price of the state of	26.0 -		3,5	) ;		1	13341	6.74	2d	
The following meter was rented from Pine and used for the readings YSI MPS 556-02 WB arometer and a 20 meter cable. The following meter was rented from Pine and used from PSE-02 WB arometer and a 20 meter cable. 9 12 Mar We channelled Old collideations of History with conferences ESC. Then DO set hild and the set of		-	4				-			
5 restrict 00 cal from Membrane. Not 555 1057 24.53 ( Jan & Jine RE 00 The Membrane and 20 ment of the Membrane Not 100 00 410 membrane. Not 555 1057 256 ( Jan & Jine RE 00 The Membrane Called a 1100 00 410 membrane. Not 255 4 1057 0 25 ( Jan & Jine RE 00 The Membrane Called a 1100 00 10 10 10 10 10 50 10 10 50 10 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10	ily collect if you have t		he following r	neter was ren	ted from Pine	and used for th	The reading of	The second second		
10000 10 m/v we chimited on collocations C the score bulk where press ESC Then DO settled to 140,000 Nor 1000 map & Cons 255 & entre and 100 2000 2.25 Then DO settled Collocade all other 151 then year to Cons 12.55 & entre and 100 2000 2.50 and to Collocade 2.51 chand & Spee Cons 12.55 & entre and 100 2000 2.50 and to techings done 151 chand & Spee Cons 12.55 & entre and 100 2000 2.50 and to techings done 151 chand & anage watersorting freek of tools 0.1525 "Spee body techings done 151 chand & anage watersorting freek of tools 0.1525 "Spee body to the transcream from while notes the map into the set of the tools of the tools of the tools of the to shall about the transcream of the weat through 50000 dust tinsick of the to Shall about the trans teching is nin.	1205 MS	t DU	al. wh	ten Ma	mbrane	Service Tory	ne readings: Y	51 MPS 556-02	WBarometer a	AT Calination Press land
Callert all other YST dad 15, Spee Card, pH 74-14 012Pall-good, Congle - Pobe covered in sitt in vernoral from well. Ceedings dave YST cheard & pit away, waterprofing Truck & foods. Of 1525 "gracter take of from wire ranks distry hard to Shad labels, chear of labels & philitograph, offen beckerhead - 2 of the wire rules above due to all the way through Some seller dust this ich peckeenhead from wire ranks above due to all the way through Some seller dust this ich set it all back food about from rules is on the peckee but of labels of the sector fall to Shully about from rules is min.	1. A	200	dot.	10	1 mi retue	- 6	colibras	1145 - C	H Score	bull where press ESC. Then Do
- Ploke current in sitt in vernoral from well. redines dave 152 cleaned + pit away, waterprofing Truck of Allo OLISUS "Apres beed to be fransorien from is dirty out have way the off about the first of the point	Callib	Na call	ather	YST	l'dal)	15 5	Dec. Con	W. PH	744.0	Pall sond.
redings clave YSI i heaved & alt a way, water wing Truck & tools to be at transcream Fan is dirty clubby hard to Bha labels, chan at labels & phintagraph, open becker had - 2 at the wire nots about not all the way through Some yellind dust Inside pecker head from wire 1975, All are tight & No wires lader method, bittle, but hat or lanse. Put it all back too the about two reding is nin.	T		and in	t	1	N		11		U CISZ "question
take att transcrien. Fan is dirty dubby hard to Grad labols, chan att labels of OPEN Peckentrad- 2 at the wire mits abreviated nat all the very through Some yellow du peckentrad trum wire with all are tight & No wires laker method, bin the, too hat or art it all back trouther.			10	5	1	X	10	Water	2 coting	the we strates
entread from wire with a fill are tight & No wires later method, brittle, for hat of low it all back too the , too reduce is min.	0	Peckey	21	10	the win	re nots	chrende	hard wat	to Cha	else clean off labels of
Talk to Sheldy about fran, realings	Peck Put	t all	× 2	tree in	its .	All are	tight	No		method, brittle, bee hat or law
	1730-1800	16	" Shel	1 al	wet the	1 7	1.1	Smin.	+	

Sampler:	Ivan Jenk	ins 🖌			Arr site 1400 Date: 3-27-13 Pg 1 of:
Well ID	TIME	Press. (PSI)	Flow (CFH)	TEMP Deg. F	NOTE(S) check/listen for air leakage or water in manifold
SYSTEM	1424	12,3	NN	90	w/oil filled Tempgun remp@ dilu. 96/18: 11
SYSTEM	1620	11.2-	NM	95	w/field gauge 1705
BSP-01	1701	11.4	650		wait < 1 pint
BSP-02	1055	11.2	550		dry bouncing
BSP-03	1451	11.2	<50		dry blew (402
BSP-04	1647	11.2	250		dry " none"
BSP-05	1642	11.5	<50		blew out 1-2 gts water in flowmeter
BSP-06	1637	11.2	250		dry
BSP-07	0	F	£		
BSP-08	1643		450		blew out I pint water in flowmeter
BSP-09	1631	10.5	<50		blew out about 1-1+ gts water in flowmeter
BSP-10	1600	10.8	<50		1-2gts
BSP-11	1550		<50		1/2 gt blown out, water in flowbeter
BSP-12	1540		250		dry - little blown out
BSP-13	1530		CUZ		blew out < 1/pint flow = 50-55 cfh
BSP-14	1520	11.7	650		no water blow out & I cup.
BSP-15	1512	11.Z	< 50		slight water in meter 6low at < 1 gt
BSP-16	1455				
BSP-17	1430	11.5	\$ 450		dry Al blow out 5 times - orlways get initial we water no flow double ck. blower.
/e use a T	SI 9555 for	r measure	ment of flo		stem. Each well has a flowmeter installed. A comman gauge with quick connect is in trail
a sys	@ 14	105, 1	Nalk	site.	No with wells. Check sys. readings about &
1 5/0	g water	total	1 1gt-2	gts bu	it then blows day w/in a min.
105 1	ret. H	d sys	liste	ning +	or leaks none heard, checked 16/15 on each
M	noter	share	- all	480	DV. changed out psi gauge w/one Im using in 15. gauge reads higher. by 1-1.25 psi.
P D	reld.	1-1.5	psi o	1 54	3. 2/13.3 on oil garge. Take tamp. above.
					a blowing it out Mast time.
					BSP 2 - none seen
					from area. Drems covered + grass doesn't need
	wth	ing .		Not	e sign on the new BSP3
1745	off b	ase	/		
			Aa	furte	al.

Fort Stewart, FST-26, Former Tanker Purging Area Corner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woods. Site:

Fort Stewart, FST-26, Former Tanker Purging Area Corner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woods. Site: Date: 3-28-13 Sampler: Ivan Jenkins Pa 1 of 3 Amive 1135 TEMP Flow Press. TIME NOTE(S) check/listen for air leakage or water in manifold Well ID (PSI) (CFH) Deg. F Temp. 90/186 + on dischy pipe = 941. NR 95 13.5 1147 SYSTEM SYSTEM off peg@ 55 1880 1200 BSP-05 12 50 @ 180 @ 1830 BSP-02 110 1153 17_ off py@551830 50 BSP-03 1150 12.2 <50 BSP-06 1203 12 150 BSP-061120012,5 (50 412 121 BSP-00 1830 55-60 blen out 1 p mater 1910 flowe 70-80 steady lite water vapor BSP-08 1215 12.2 554 BSP-087 0 No more water spor than yesterday Cend of blowout ZX **BSP-09** 122 50 1217 BSP-10 123012.2 AC 12.4 BSP-11 1235 50? BSP-12 12411 11.7 50: 1910 flow 55-60 BSP-13 1238 11.8. 50 NO Flow 1830 BSP-14 12412121 150 buncing blew out 1 gt water 1830 1245121 BSP-15 150 1530 Shew art 2-3 gts nates Flow = 60 80 125312 60 BSP-16 1257 121 GD BSP-17 We use a TSI 9555 for measurement of flow at the system. Each well has a flowmeter installed. A comman gauge with quick connect is in traile M cvm flowing C wells. w/ 13.5 PSL. Take makings & start calibration of USE DO, Psi still@ 13.5 psi. Check DO also Check sys. 1250 1310 Blower off for DO readings 1320 32 min discuss site ops - flows/psi w/ shelley + Chris 1750 Blower back on 1825 Last @ Plous 1820 2X NO Flow BSP9 MWZZ is dry. Raise PRESS to 14.5 - Was @19 18.50 *3 Blew over 1 gt maybe 2 from 9 again - no flow 1900 Shew out 14, 11, 10, 5 8 ~ 5 c O Star bornthy 1910 BSP 13@, 60-70 Sts. psi @ 14,2 increase to 14,5 1922 BSP Flows #1 60-70, #2 160, #3 55-60, 1930 off site

DATE/TIME:	Wunderground bars 30.32 @ 1300	nkins
		arest intersection is W 18th St. and FS Road 40.
cility, 87th Support Battalion, 3rd Inf. Div is at the	in the woods behind the 135 QM CO Tank Farm which is next to 831 West 18th St. The Tactical Equipment Maint. Fac	in the woods behind the 135 QM CO Tank Farm which
. pg 2 of 3		ewart, FST-26, Biosparge, Former Tanker Purging Area

.

IIID         Screen Interval (ft bis)         Interval (ft bis)           V-18         4.9 - 14.9 (6.0 - 16.0 V-20         1           V-19         6.3 - 16.3 5.1 - 15.1 V-22         1           V-22         4.0 - 14.0 V-22         1           V-23         1.3.0 - 23.0 V-22         1           V-22         4.0 - 14.0 V-22         1           V-23         3.6 - 13.6 V-38         1           V-24         17.0 - 22.0 V-49         1           V-41         2.0 - 12.0 V-49         1           V-42         17.0 - 22.0 V-49         1           V-50         26.9 - 31.4 V-55         1           V-52         26.9 - 31.4 V-56         1           V-56         26.9 - 31.4 V-56         1           V-58         26.0 - 31.0 V-50         1           V-58         20.0 V-7         1           V-50         2.0 V-7         1           V-50         7         7           V-50         7         <							leve	c. Curt	00 00	La yo	11100
							ha	that	Hind	6.20 9	good a
MID         Interval (https://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (http://metabolic.com/ (htttp://metabolic.com/ (htttp://metabolic.com/ (http://met		,						1.0	int w/v	7/10200	stat pl
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	taway	dr pd	2	4	182	1805		2110	10081	9	30 do doe
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		a	17	2	start .	Re		rutters	oatip	1	305
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		where a	rech	X	ones	(P) Loso		10	2 17	101=0	301 A
Time         Depth (res)         remp response         DO (mgl)         SC* (MSCm ² )         pH (su)         Opp- (mgl)         GROUNDWATER           1100 $5.c$ 14.50 $8.5$ $6.6$ $30.10^{\circ}$ $50.0^{\circ}$ $mn$ NOTES           1123 $5.7$ 14.50 $8.5^{\circ}$ $6.6$ $30.10^{\circ}$ $5.7^{\circ}$ $3.7$ $9.3$ $7$ $u_{1L}$ $mn_M$ NOTES           1123 $5.7^{\circ}$ 15.00 $NK$ $9.4^{\circ}$ $32.7^{\circ}$ $3.7^{\circ}$ $3.5^{\circ}$ $3.5^{\circ}$ $7.4^{\circ}$ $7.4^{\circ}$ $7.4^{\circ}$ $7.4^{\circ}$ $5.6^{\circ}$ $7.4^{\circ}$ $7.5^{\circ}$	1	\$ 120	MW A	NWN 23	tween ,	Colori		14	7 17	25 10.4	2540
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ for /ling	= 30,	2	5		E Ba		45	17.	2 10.	240 DU
Time         ULL (test)         Reading Depth (test)         Temp Depth (test)         Do (test)         Temp Depth (test)         DO (test)         SC (test)         pH' (test)         ORP (test)		OK	this is	1	T	Tin		20%	C 17.	510.	1228 00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	out of well, 98-98.5. In VSI cap = 84-85.	1 00	? Chu	1 MW SS	coding 1	OH.		duns	brake	O in Ca	1220 0
		00 w/Dommo	VOI MDC FED	r the readings:	he and used fo	ented from Dir	meter was r	The following	4	f vou have fine	Only collect
		15.1	7.44	1159	in	1.	28.50	5.8	8221	26.0 - 31.0	MW-58
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-36	6.97	1602	0.98	20.38	29.00	6.05	1459	1	100
		162	7,50	28/7	5:55	20.94	29.00	7.57	1459	1	MW-55
		1	7.35	887	2.17	81:02	28.50	6.4	1741	1 1	MW-54
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							29.00				MW-52 -
		~	7.32	757	1.32	20.09	29.00	5.88	1610	1	MW-53
		e/		1703	1.12	20.65	29.00	5.75	1621	1	MW-50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Danging	41-	5.45	27-90	2.31	17.63	12.00	5.8	1616	1	MW-49
	Darg	X	6.08	1	7.80+	18:84	20.00	1 .	16.45	1	MW-42
Screen Interval (ft bis)         Time Time         W.L. Depth (feet)         Reading Depth (feet)         Temp (feet)         DO (feet)         SC* (feet)         pH* (%)         ORP* (mg/L)         SC* (%)         pH* (%)         ORP* (mg/L)         ORP* (%)         ORP* (mg/L)         ORP* (%)         ORP* (mg/L)         ORP* (%)         ORP* (mg/L)         ORP* (%)         ORP* (mg/L)         ORP* (%)         ORP* (mg/L)         ORP* (%)         ORP* (%) </td <td>1 above bottom to</td> <td>-3.0</td> <td>5</td> <td>60</td> <td>4.82</td> <td>17.65</td> <td>B-6"≸</td> <td>5.2</td> <td>1721</td> <td></td> <td>MW-41</td>	1 above bottom to	-3.0	5	60	4.82	17.65	B-6"≸	5.2	1721		MW-41
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C4V	7.13	52 /11/3	A.S.85	20.05	26.00	5.3	1723	- T	MW-38
Screen Interval (ft bis)         Time Time         W.L. Depth (feet)         Reading Depth (feet)         Temp (°C)         DO (mg/L)         SC* MS/cm ² ) $pH^*$ (SU)         ORP* (mV)           4.9 - 14.9         //O/ $5.C$ 14.50 $8.57$ $6.0$ $8.57$ $6.0$ $8.57$ $6.0$ $8.57$ $5.00$ $8.57$ $5.00$ $8.57$ $3.0-103$ $5.2$ $3.7.1$ $3.50$ $8.57$ $1.70$ $7.5$ $5.09$ $9.3$ $7$ $5.1 - 15.1$ $1.50$ $7.17$ $13.50$ $7.25$ $4.03$ $1.74$ $3.57$ $7.17$ $7.17$ $7.17$ $7.14$ $7.53$ $7.74$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$ $7.17$		NOY	5.47	~ 1	3.04	15.77	15.00	919	1641	1.1	MW-32
		26	6.83		4.9%	02:81	15.00	5.7'	1531	1 1	MW-23
Screen Interval (ft bis)         Time Time         W.L. Depth (feet)         Reading Depth (feet)         Temp Depth (°C)         DO (mg/L)         SC* MS/cm²)         pH* (SU)         ORP* (mV)           4.9 - 14.9         ///// //// 6.3 - 16.3         ///// //// /// /// 5.2         5.2         14.50         /8.57         /./O (MS/cm²)         SC* (SU)         pH* (mV)         ORP* (mV)           6.0 - 16.0         ///55         5.7         14.50         /8.57         /./O (MS/cm²)         37./ (SU)         37./ (mV)         37./ (SU)         37./ (mV)         37./ (SU)         37./ (mV)         37./ (SU)         37./ (SU) <td< td=""><td></td><td>-126</td><td>2.87</td><td>49</td><td>1.17</td><td>17.11</td><td>10.00</td><td>3.47</td><td>1527</td><td>4.0 - 14.0</td><td>MW-22</td></td<>		-126	2.87	49	1.17	17.11	10.00	3.47	1527	4.0 - 14.0	MW-22
Screen Interval (ft bis)         Time Time         W.L. Depth (feet)         Reading Depth (feet)         Temp Depth (°C)         DO (mg/L)         SC* (MS/cm ² )         pH* (SU)         ORP* (mV)           4.9 - 14.9         /LOL         5.4         14.50         /8.57         6.20         30-103         5.72         37.1         3           6.3 - 16.3         /3.32         5.87         14.50         /8.37         1.70         /7.55         5.09         37.1         3           6.0 - 16.0         /453         5.72         15.00         N/K         9.49         572         4.144         /364         7	1	235	3.54	841-11	4.03	18.25	13.50	4.7	1654	1	MW-21
Screen Interval (ft bls)         Time Time         W.L. Depth (feet)         Reading Depth (feet)         Temp Depth (°C)         DO (mg/L)         SC* M S/cm ² )         pH* (SU)         ORP* (mV)           4.9 - 14.9         /////         5.2         14.50         /8.57         2.60         30-103         5.72         37.1         3           6.3 - 16.3         //////         5.81         14.50         /8.37         1.70         /75         5.09         9.3         7		1324	4.14	2g	9.49	NR	15.00		1453	0	MW-20
Screen     W.L.     Reading     Temp     DO     SC*     pH*     ORP*       Interval     Time     Depth     Depth     Temp     DO     SC*     pH*     ORP*       (ft bls)     (feet)     (feet)     0     (°C)     (mg/L)     (ff S/cm²)     (SU)     (mV)		93	5.09	175	1.70	18.37	14.50	5.87	1732	ω	MW-19
Screen     W.L.     Reading     Temp     DO     SC*     pH*     ORP*       Interval     Time     Depth     Depth     Temp     DO     SC*     pH*     ORP*       (ft bls)     (feet)     (feet)     (°C)     (mg/L)     (ff S/cm²)     (SU)     (mV)	0	37.1		30-103	6.10	18:57	14.50	5.6	2021	4.9 - 14.9	MW-18
Screen W.L. Reading	NOTES	ORP* (mV)	pH* (SU)	SC* (M S/cm ² )	DO (mg/L)	Temp (°C)	Depth	Depth (feet)	Time	Interval (ft bls)	Well ID
	GROUNDWATER						Reading	W.L.		Screen	

,

FST-26 Biosparge System Fort Stewart, GA

Site: Fort Stewa Location: This is in the The neares Employee: Ivan Jenki

Well ID	TIME	Press. (PSI)	Flow (CFH)	TEMP Deg. F	NOTE(S) check/listen for air leakage or water in manifold
SYSTEM		15/7		108	manifold bypass temp 187. Manifold Temp 104 reduced psi to 14.5-
SYSTEM					
BSP-01		13	70-80		
BSP-02		12,5	170		
BSP-03		13.	55	te te ne frate ite to	
BSP-04					
BSP-05					
BSP-06					
BSP-07					
BSP-08		12.75	55-60		
BSP-09		782	80		12.75,051
BSP-10					
BSP-11					
BSP-12			1		
BSP-13		12,75			
BSP-14		13,8	50		
BSP-15			-55-		
BSP-16		13.0	55		
BSP-17		12.5	70		

Site: Fort Stewart, FST-26, Former Tanker Purging Area Corner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woods

MW 23 22 week of 23 site into 1113 = 1148. Shut down 5x5 after to 13,5 1155 5x5 set @ 13.5. discuss 545. ist up some 1300 @ 13.5 - Lack up 20 bene site trailer lower. 1.307 m

÷

DAILY LOG Date: 4.24.-13 Page: 1 of Z Project: Ot M bibsparge Project No: Hinesville GA Client: FT Stein Site Location: ARCADIS Prepared By: I Jankins Other Emp: TIME @ past store p/v supplies 1120 check our power meter + text Shelley 1155 catch up messages & emails sys. running temps = 120 PSI = 12.7 No well overflow formed @ any wells 1210 1230 Flow PSI 55 11.5 RWXI water in meter blowout lot. RW2 RW3 100 11.3 1pt 11 50 11.2 11 50 11.5 RW 4 19++ 19++ 11 250 11.Z RUS 11 'hgal 650 11.7 RWG off il n if Filzgal 50 10-5 RWE 71/2gal 55 9.8 9.8 15 RW9 1/ 11 4 Scorpian Mater full & flow og 11 11 4 11 Banely >1/2gal RWID 550 10.6 11.5 250 RWII Meter fill air flow the water face Meter fill - was or filow the water 1gt <50 /1.5 RWII 250 11.3 ZWIZ <0 10,75 Air bubbing thru full meter RW13 Cod 113 RWIH 250 11.3 RW15 60 11.1 85-90 11.0 15 14 1117 Calibrate DO from 2-4. Calother - pott sp cond & okp all to appropriate #5. all good Sys. ott for YSI readings 1640 Start YSI readings 1735 down puter



D	AILY L	OG	Date: 4-24-13
	Project:	orm	Biospange

Page: Z of Z Project No: Honesville GA

Client: FT Stew. Prepared By: I Jankens

Other Emp:

Site Location:

TIME NOTES pH 15IDpth Temp SP 00% ORP N2 72" 18,57 66 3,62 5,521 3107 1813 MW 18 14.5 6'4" 14.5 0,33 6.03 1371 18,20 275 1856 NW 19 6'4" 4.45 2881 No bubbling head 15 1742 MW20 18.84 14 10,89 5.9" 3981 18.21 2.75 3.98 13.5 125 1803 21 53" 4.60 4.97 378 pr 3:76 1749 22 17.90 89 10 73" 345 8.09 6.15 2971 23 18:41 1757 15 8.10 6.64 238 15 7.5 1834 32 18.61 116 7.5 1834 0,69 6.41 347 19.87 18.81 38 1539 26 BH6" 100 3.03 4,31 4001 1849 18:23 41 7'3" 18.98 946 8.71 4,85 367 not aventing 1838 42 20 areating (879) 18:19 122 9.25 6.80 2.54 1821 6'11" 49 14 20,20 1391 2,42 4.71 254 4 826 50 8 29 19,88 713 1.53 6.60 2781 1820 7'10" 53 29 547'8" 1903 19.91 831 0.28 6.50 444 28:5 6.47 2424 20,57 7.14 2.51 1746 NM 55 29 8'3" 20.02 2.5 2.5 6.26 330 ¥ 1724= 5P Cond 1807 56 ES 1117 3.20 6.89 2471 58 8,5 18:30 2815 19.36 dean up + particip YSI, Store equip in traiter 1900 check at condition the 1855 W to down area. Drow area needs burning 1915 off base Vare 1 . Tom Darby

DAILY LOG Date: 1-25-13 Page: ______ of _____ Project: Bio Sparge 04M Project No: GP08HAFS.00 Client: Army Ft. Stewart Site Location: Hines ville, GA ARCADIS Prepared By: I Junkins Other Emp: -Exebott Complete TIME NOTES Only on base 1200 @ site Sys, running reason for 8-9 AM email unknown. 1230 start install of MW well seal wives photos of MW32+ 42 MW-32 MW-18 MW-22 MW-49 MW-18 MN-1 111-23 > Discuss site w/ Shelley ter 30 min + send pics motel of fir. meter blew all wells except mus, 10,15, 13 + 9? till day 2-3 times in but at theme changed meter out in MW-2 9-10 +4 5 trouble wells are sealed fight & Changed oil in blower 1 hr. 523-630pm 17 wells fortal. - 20 sets, Need: wire ferrells crimper (checke) Air Hi male adapt part & Cort. have List Noter (2- RB Galv or PVC change or 2 mipples grease blown of motor try drilling evit organge well seals Sysem is @ 150°FY 13psi Flow PSI 60 11.5 BSP I dry meter 2 NEED CHG Meter looks dry 11.2 120 3 dry meter 11.4 50 4 water meter 15-70 11.7 50+ 5 water in meter 11.3 6 diy 250 11.5 off 7 15.3 water in meter 8 55 5055 11.3 9 10 water in meter blew to a clear vapor 2 x. not. umin 20 650 11.2 dry meter bleviday 3-4 min (50 11-6 11 Blew dry - was dry - 1- Junin 250 11.5 12 1) " dry meter R3) 250 11.4 250 11.3 15 blew put 3 times for 2-3 min. Water stream not stopping 650 11.5 16 meter is water free, duy whin 1-2min. quick for this well \$5 BSP 17 " " " a bit wet-no wet stream - just spitting dreps 100 55 11,5 11.2 1840 off site

9127674895

## Site: Fort Stewart, FST-26, Former Tanker purg

#### Sampler: Ivan Jenkins

pg 3 of 3 Date: 6-5-13

.....

Well ID	TIME	Press. (PSI)	Flow (cfh)	TEMP Deg. F	NOTE(S) check for leakage
SYSTEM	1030	12.2	not meas.	132	
SYSTEM					
BSP-01	1157.0	10.2	50.0		
BSP-02	1200.0	10.2	120.0	B	wster in FM.
BSP-03	1202.0	10.2	<50		no water
BSP-04	1208.0	10.5	100.0	в	fluctuating
BSP-05	1211.0	8.5	50.0	в	water heard in manifold seen in FM. BOLT.
BSP-06	1206.0	10.5	<50		no water. BOLT
BSP-07	off				
BSP-08	1225.0	10.5	55.0		water in manifold?
BSP-09	1234.0	10.1	80.0	B	warer in FM. change out FM.
BSP-10	1237.0	10.7	<50		
BSP-11	1241.0	10.1	<50		check manifold.
BSP-12	1251.0	10.3	<50		
BSP-13	1255.0	10.3	<50		water in manifold
BSP-14	1257.0	10.3	51.0		check manifold
BSP-15	1302.0	10.3	<50		dry
BSP-16	1306.0	10.1	100.0		dry but a vibration.
BSP-17	1310.0	9.9	140.0		dry

* Instructions: Record initial press B4 connecting flow meter assembly. Attach flow assembly and record pressure again. Adjust valve to match initial pressure. Record flow rate. Readjust pressure back to the flow pressure (2od reading). Move to next we

on site 10 am. work with new gauges. new ones not liq fillid. old sys one is.

non liq filled shows 10.5 psi. old liq filled shows 12.5. old gauge 0-30. new are 0-15.

calibrating di since 1130. at 1253 T28.35 n do = 8.86.

1210 calibrate do start ph. 1245 calibrate sp cond

1317 system off.. 1hr til readings. mowed area while walting

raining at 1410. still mowing. 1430 raining steady. mowing complete. had to cool off w trk ac.

1720 system restarted. mowed 30 more min. 1755 set psi on new gauge at 12.2.

load mower. check well for overflow sparging. off to drum area.

1820 til 1910 mow drum area.

1918 leave base.

Area
urging
anker P
Former 1
Biosparge,
FST-26,
Fort Stewart,
Site:

Sampler Ivan Jenkins

DATE: 6-5-13

	Screen		IM							GROUNDWATER
Well ID	Interval (ft bls)	Time	Depth (feet)	Reading Depth	Temp (oC)	DO (mg/L)	SC* (mS/c m2)	pH*	ORP* (mV)	NOTES
MW-18	4.9 - 14.9	9 1548.0	10.00	14.50	19.25	3.94	68	5.29	311^	0101
MW-19	6.3 - 16.3	3 1653.0	11.00	14.50	19.55	8.21	286	5.85	315	
MW-20	6.0 - 16	6.0 - 16.0 xxxxxx	XXXXXXX	15.00	×	×	×	×	×	
MW-20	6.0 - 16	6.0 - 16.0 1504	9.00	15.00	19.71	9.76	142	4.25	332 ^A	
MW-21	5.1 - 15	5.1 - 15.1 1526.0	9.50	13.50	19.29	9.31	222	3.84	483^	
MW-22		1515.0	7.00	2	19.33	7.39	110	3.87	414^	
MW-23		1519.0	19.00	ċ	19.21	8.53	320	5.87	350	
MW-32	3.6 - 13.6	.6 1630.0	103	14.00	19.44	8.17	150	594.00	261	
MW-32	3.6 - 13	3.6 - 13.6 xxxxxx	XXXXXXX	15.00	×	×	×	×	×	
MW-38	24.1 - 29	24.1 - 29.1 1648.0	12.00	26.00	19.65	10.85	2197	6.74	303	
MW-41	2.0 - 12	2.0 - 12.0 1642.0	11.00	B-6"	19.5	3.34	107	4.28	352	
MW-42	17.0 - 22.0	.0 1636.0	10.80	20.00	19.46	8.79	987	4.50	399	
-	3.9 - 13	3.9 - 13.5 1558.0	10.00	14.00	19.35	6.73	125	5.75	253^	
MW-50	26.9 - 31.4	.4 1603.0	12.00	29.00	20.08	1.14	1437	6.56	171	
	26.7 - 31.2	.2 1551.0	12.00	29.00	19.37	0.36	733	6.48	20	
	26.7 - 31.2	.2 xxxxxxx	XXXXXX	15.00	×	×	×	×	×	
-	26.9 - 31.4	.4 1659.0	13.00	28.50	19.84	0.39	1042	6.60	-67	
-	26.9 - 31.4	.4 xxxxxxx	XXXXXXX	15.00	×	×	×	×	×	
	26.9 - 31.4	.4 1510.0	12.00	29.00	20.37	0.63	750	6.43	70	
MW-56	26.9 - 31.4	.4 1529.0	12.00	29.00	19.85	0.52	1694	6.27	-42	
MW-56	26.9 - 31	26.9 - 31.4 xxxxxx	XXXXXXX	17.00	×	×	×	×	×	
MW-58	26.0 - 31.0	.0 1623.0	12.00	28.50	19.53	2.02	1147	6.80	187	

1720 blower turned back on.

pg 2 of 3

 Site:
 Fort Stewart, FST-26, Former Tanker Purging Area
 Corner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woods.

 Sampler: Ivan Jenkins
 Arrive at 1100 am. Date: 6-6-2013
 Pg 1 of 3

Well ID	TIME	Press. (PSI)	Flow (CFH)	TEMP Deg. F	NOTE(S) check/listen for air leakage or water in manifold
SYSTEM	1100	14.0	NM	138	No over flowing wells. All were checked.
SYSTEM	1350	14.0	NM	132	
BSP-01	1135	13.0	140.0		
BSP-02	1130	13.0	180.0		
BSP-03		12.9	90.0		
BSP-04		12.9	100.0		
BSP-05		12.6	60.0		
BSP-06		13.5	50.0		
BSP-07	o	f	f		
BSP-08	_	12.5	110.0		
BSP-09		12.5	150.0	() of the research of the loss	
BSP-10		13.5	50.0		
BSP-11		13.2	<50		
BSP-12		13.0	50.0		
BSP-13		12.8	60.0		
BSP-14		12.5	70.0	-	
BSP-15		12.7	<50		
BSP-16		12.7	100.0		
BSP-17		12.7	120.0		

We use a TSI 9555 for measurement of flow at the system. Each well has a flowmeter installed. A comman gauge with quick connect is in traile

I blew the water out of each well as I went and then redid a few.

Discussed site opservations withh Shelley. We decide to leave the pressure at 13-14 as it was found. No reduction made.

close and seal all the wells.

pick up mower and gas can from drum storage.

left site about 1455.

Tried to send the electronic frm I filled out to Shelley. T didn't work. Not to me either. I can open and read it just can't open it after sending.

DAILY LOG Date: 7-24-13 Page: / of / Project No: GPO8 HAFS Project: 0+M Client: ARMY FT STEWART Site Location: MZCOM ARCADIS Prepared By: IVAN Jonkins Other Emp: None TIME NOTES 1600 1603 cm site. There is a lake in the road- beyound 1555 @ Gate oz the sys. building 7.531 kw, "11211 kw H = Elect. Meter readings PSI = > 1500 old gauge of 12, 8 on new 3 "0-15 System Temp - 148 garge I installed today Found MW 38 sparging - overflow, No others. The big lake above comes to whin a remuzz Press flow Mambule Heo Flow Manhole Hel Flow BSP 140 12.7 1 12.3 240 2 140 3 125 55 Uibrating 4 12.8 W 12,2 140 W 128 6 W 60 7 off W 12.2 150 W 180 Owell leak in ver 9 W 12.3 Corner ILO 255 NO MOVING 10 Wit 255 10 moury 255 11 125 55 11 blew out 12 125 X Well leak a well 13 11 127 11 12.5 55-655 14 11 12.8 55-60 blew out 15 11 16 12.0 slew out 11 hcovered 122 150 normal amout water during blow out of lines. * when well shot off heavy pubbling in wailt continued for 1-2 min. then well torned back on OTre BSR 13 OF Tres -50 - bubbling Well bubbling BSP9 Swell 1800 LV BSP site to drum arcq. Have used weed eater at BSP site to trim grass + weeds the grown in last 5 weeks 1930 Leaving site, have cert around fonce & in side fence w/ weedlater, Grass was shin to knee high, 2000 @ motel equip. secured. Checkeling 00 on meter. registers a little han fortime

DAILY LOG Date: 7-25-13 Page: / of / Project: Og M Air Sporge Project No: GPOBHAFS. ZOIZ. MZLOM Client: ARMY Site Location: Hinesville, GA FST26 ARCADIS Prepared By: JUAN JENKINS Other Emp: None 1220 on base . 1240@ Site TIME NOTES system running in 38 still over Howing though at a much reduced 1241 rate Sys Pressure gauge is shet again Sys is off. 1305 Water qual readings done MW 38 covered 155 probe in mind. 1638 Sys running @ 12 psi. Oil changed in blower, Air filter YSI cleaned & packed. Trick packed. 1705 1809 bashed out Adjust Sys, pressure to 12 again, It was @ 12.5, 1820 No piton @ BSPS 5 or 8 yet. No overflow @ MW38 1840 5XS. Pressure @ 11.8-12 so increase it slighty Still no visible flow @ BSP 5 or 8.1 1900 Pressure @ 12 (average) for sys No visible flow @8. Ball bouncing ins PILSS MW Read N.L wig ORP pH Time Well Desta Temp ,00 50 148 r 4'10" 61.89 14.5 21,20 78 1514 18 3.31 N 1558 22.37 7.80 311 6.22 1341 19 11.5 46" #1 3,90 1438 20 2.2.05 15Cr 15 8.58 2136 744 - 4'4" Yas sparging a little 21.47 8.05 311. 3,73 21 13,5 4.18 3.70 178A 2911 23.08 143 N 22 10, 100000 23 492 235 r 15-20' 20,59 9.46 1545 32 9.05V 108V 6.48 52" 50.50 22.41 15 38 91 20,39 12,42 12861 7.38 151F 1628 24 1931 48" 1623 2,65 1183 4.07 N 41 B-6 22.89 1550 42 21.11 9.62. 549 5,51 147 1 20 N 1525 49 10,05 6.92 82 120 Y 21.85 2004 SPArging 141 -497 8'3" 1,54 1548 6.70 29 20,32 N 53 25.915 8'4" N 6.78 1518 19.92 2.07 741 29 1604 54 1.87 1023 6.11 9'8' -101f 785 DOB8 N 819 -40 £ 911" N 1.75 55 6,81 29 20.51 109" -5-2f 1501 20,19 4.52 N 1.69 16417 54 29 38 28,5 19,89 1631 6.83 714 83" N 1.91 YSI calibrated @ motel except for DO pH 4,0,7.07 SP, Coud 4.49 greed Call A.I.R. regards D.O. C. site 18430. Do g Fresh air onlivetion, cause athe several trys / checks P.U. V= varies F= Falling ORP r= rising holes low to me. S= stable 1910 off site

 
 DAILY LOG
 Date: 7-76-15
 Page: 1 of _____
 Project: OAM Air Sparge Project No: BPD8 HAFS, FS26 Client: Army FT Struct Site Location: Hinesville, SA Prepared By: IVAN Jonkins Other Emp: TIME NOTES 11.8. DESD ON Site Sys running check Sys Press = 12,0 pertito of increase to 12,25. Flow ( 12,25 + RW8 borch bouncing to still ( ballin Flow increased to 12,25 45 Discuss w/ Shelly, Give ter Das, Discuss tick bite. 1050 ott site to gate + ST. Joseph's Immediate Caro 1115 Arr. ST. Joe. Das LU. ST Jge 1220-1350 cm. ? check 1335 @ Ace handware 1000 @ Dalge Dualer. Hok parts & repair 1600 return to site install retaining cabels on MW 38, 41, 22, 18, 32, 49, 1220 MW 23, 21, 19, 18 have them, Need a second fund for mw28. * Need to at MW42 down ir leave it. Need Ferrals for Swells = 16 total. Check on eyest nots. Sys press was 12,5 reduced to 12,2-12,3 1833 RSP 5= 80 + low BSP8=55 or less 1840 off site mobe to Atlanta 313191

 Site:
 Fort Stewart, FST-26, Former Tanker Purging Area
 Corner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woods.

 Sampler: Ivan Jenkins
 Image: Area
 Arrival Time: Area
 Image: Area
 Pg 1 of \$ Z_a

Well ID	TIME	Press. (PSI)	Flow (CFH)	TEMP Deg. F	NOTE(S) check/listen for air leakage or water in manifold
SYSTEM	0945	12.5-13.0		12.2.	
SYSTEM					
BSP-01	1001	12,5	140	-	dry
BSP-02		12,2	150		Flowmeter has noter - not much flow
BSP-03		12.5	110		water flow three potellizer
BSP-04		12.25	120		dry
BSP-05		11.8	<50		water in totalizer w/ Air bubbling the it
BSP-06		12.4	<.50		1111111111111111
BSP-07	0	f	F		
BSP-08		12.0	80		nater flow in Flowmater
BSP-09		12.1	170		water Plan & flormetre
BSP-10		12.0	-50		11.9 water flow the flowmeter
BSP-11		12.25	90		A1 1/ 1/ 1
BSP-12		12,2	60		11 11 11 11
BSP-13		12.4	501-		11 11 11 Bubbling heard in manifold
BSP-14		12,2	110		1, 11 11 11 VIII
BSP-15		12.3	7:50		11 11 11 " V Can hear boobling in manifold
BSP-16		/	110		f PREMACIO
BSP-17	1107	11.5	200		

No well's damaged weiflowing 1202 system off for Blear DO 1505 545 tem or wer an 2 28 an lot lia Pe avea mg m

FST-26 Biosparge System Fort Stewart, GA Fort Stewart, FST-26, Biosparge, Former Tanker Purging Area Site:

pg 2 of 3 Location: This is in the woods behind the 135 QM CO Tank Farm which is next to 831 West 18th St. The Tactical Equipment Maint. Facility, 87th Support Battalion, 3rd Inf. Div is at the 8 The nearest intersection is W 18th St. and FS Road 40.

n leave Employee: Ivan Jenkins

.

DATE/TIME: 12-9-15

	Coros		101							GROUNDWALER	
Well ID	ocreen Interval (ft bls)	Time	w.L. Depth (feet)	Reading Depth	Temp (°C)	DO DO	SC* (MS/cm ² )	pH* (SU)	ORP* (mV)	NOTES	er er
MW-18	4.9 - 14.9	1355	6.6'	14.50	21.14	6.00	63	4.57	118	aliabit amore suched out	Ť
MW-192	6.3 - 16.3	1439	6.91	14.50	21.22	9.42	11	4.77	159	and front 14/11 cont i line	June
MW-20	6.0 - 16.0	1326	6.9"*	16.00	21.79	9.50	707	4.78	HLI	110 MADIO SI 1200 11000 (	242
MW-21	5.1 - 15.1	1344	0-6	13.50	67.12	8.67	623	25.5		ore saltrade achod that at	
MW-22	4.0 - 14.0	1334	4.81	10.00	21.75	6.80	KIRDF.	3.34	1954	clicht overe litted art	\ ·
MW-23	13.0 - 23.0	137	1.3'	15.00	20.96	9.77	5300 F	4.19	183	RI DC	10
MW-32	3.6 - 13.6	1419	1.75	15.00	2512	667	184	52.2	1.34	process - miched ant which hand	
MW-38	24.1 - 29.1	14.33	9.9	26.00	20.66	11.21	2026	7.7.7	1 chel L	aressiried 1107- He car I. A.	- de
MW-41	2.0 - 12.0	1428	L.H	14B-6"	21.95	2,87	959	1212	181	A line of 1. 1Sediment on	Sello
MW-42	17.0 - 22.0	12/2	7.37	20.00	21.39	8.97	47.7	212	1.25	Proc Sugar	27 2
MW-49	3.9 - 13.5	Innel	101	14.00	1	20.8	125	4.92	1010	Source in hand will	
MW-50	26.9 - 31.4	1409	9.41	29.00	20	0.2	52.2	6.10	110	more ween.	Ø
MW-53	26.7 - 31.2	1401	9.6	29.00	14.61	0,22		6.78	129	No Pres Terri. Seal well	)(
MW-54	26.9 - 31.4	1	40.6	- 28.50	20.60	12.0	878	6.87	184	110 Porce Well sent of	J (
MW-55	26.9 - 31.4	1	9.9'	29.00	20.26	0.3	810	6.78	125	NID Porks	)(
MW-56	26.9 - 31.4	1350	10.305	1.4.	20.14	2.0	16.7.5	6.57	hhl	Neid 1	3 (
MW-58	26.0 - 31.0		8.71		19.79	0,3	1500	6.44	116	NO Press felt weed seal to	20
Only collec	- Only collect if you have time.		The following	t meter was re	anted from Pine	and used for t	he readings: Y	SI MPS 556-02	? w/Barometer	The following meter was rented from Pine and used for the readings: YSI MPS 556-02 wBarometer and a 20 meter cable.	٦
1130	Start C	Calibration DO class	tion of	45T .	mp H -	1 good	1 + pHe. H. 49 MS	- 7 H 4.0 @ 4.31 Was	1.0 @ 4.31 Was	ales at a frange. I gecepted	1 1
1202	syles Ban	188. Dress	45/cm + for	n Va	22/X2		2 72	rund wa	eter those	sectioned with Anorow 19 on probe when verneved	
1505	Sys.	04.								Ekc. Meter @ 1650	
RS	2112	6.10		1	11.1	0 1	1 100			02 7344 19/5	

DAILY LOG Date: 10-10-13 Page: _____ of ____ Project: Ft. Stewart bidsparge Project No: BPOSHAFS-ZOR Client: US Army Site Location: Hinesville, GA Prepared By: Ivan Jankins Other Emp: -ARCADIS TIME bits @ LOWES 3/16 rells no over flim. System pross is @ 12,0-12,5 1000 raising slightly completion of the downs - Don't have a good enough companies new compan & ton Check wells + press again files! about even on 1205. on MW/s 20, 53, 54 (recnimp), 53, 56 + 58. well casing on nw 42. + install last He down, re ends of elec tape. Biosparge monitoring are clore 1300 tie downs on ove 0,22 d to tape MUS 13:35 to Atlanta

	-0	vart, FST-	26, Former	r Tanker F	Purging AreaCorner of W 18th St. & FS Road 40 behind 135 QM CO Tank Farm in woo
	Jeni	kins 0	fof		Arrival Time: , Date: , Date: 1254-13 Pg 1 o
	TIME	Press. (PSI)	Flow (CFH)	TEMP Deg. F	NOTE(S) check/listen for air leakage or water in manifold
SYSTEM	1050	12.5	NM	127	103- db in building w/ blower running
SYSTEM	1710	11.5-12	NN	132	will check in AM. It not @ 12.5 will increase, Running over nite may be enough
BSP-01	1030	12	140		merered, Running over nite may be enough
BSP-02		11.75	190	4. e.a. 14.	
BSP-03	1033	12	110		
BSP-04	1040	12	150	****	
BSP-05	1048	11.5	100		
BSP-06	1052	11.5	50		water flow in mater
BSP-07	off				well open checked. of
BSP-08	1058	11.75	90		
BSP-09		11.0	200		
BSP-10	1120	680	250		the bubbling this water in Aloumeter
BSP-11	1128	12	50		water flow in meter
BSP-12	Contraction of the second s	11.5	90		1 1 V V
BSP-13	1204	11.5	50		11 A 11 11 Cam water in line
BSP-14	1209	BRE	1.70	SCH	30 CFH Water Water in mitter
BSP-15	229	11.7.	<50		water in meter
BSP-16 [	Z 34	12	80		
BSP-17 /2		X	190	C	ant read our - weed new Female filling
e use a TS	19555 for n	neasureme normal	ent of flow a	at the syste	em. Each well has a flowmeter installed. A comman gauge with quick connect is in trail
30 54	A cali	brotton	YST	556	SN 0741477 AF from A.I.R.
ime	Tomp	DU	120	pan 1	tq
222	19.26	8.1 7	324		pr 15I
	20.54	7.1		1169.	3 per wordiged
zull	21.11	6.9	20	771.6	
46	2136	6.9	10		
- 1	21.38	4.8	30	reman	e from cylinder-for open on'r cal. + Sys. Off, for
.1	19.63	7.5	4	орен	ing news to vent water qual, reade
·····	9.74	7.20			
17 /	9.57	7.4	2	calibr	the good to 9.4 (see pg2)

Fort Stewart, FST-26, Biosparge, Former Tanker Purging Area Site:

pg 2 of 3

Location: This is in the woods behind the 135 QM CO Tank Farm which is next to 831 West 18th St. The Tactical Equipment Maint. Facility, 87th Support Battalion, 3rd Inf. Div is at the 8 he nearest intersection is W 18th St. and FS Road 40.

Sar B3 AM 7. 21 120 4 blew off + billed / Sp Cond = 133 / Cabler Senser MiRs, 711 3.28 166 A NO. F. 16.1. H. Pai NAME 116 & Blew att to build , Slight auchilde bulding & steas. time HIZ F rep NP din S.F. d 152 A Stow Soil, for Filling 6 OF ather I win " I win 640 again P 1352-1517 take vadings Then clean cario. + Store 1523-1517 take vadings Then clean cario. + Store Chan SIU / Replace 2 guick somethe C Wells opened to vort from 1252 to 1317. NP or No12 means no press in Number Nell when opened. H. Press means well seal blow off the water in well was a volling toil & Q. Must lifted act of well. P. fress means well seal blow off the water in well was a volling toil & Q. Must light bubbling based. P. fress means well seal blow off of well seal t in some bases a slow or light bubbling based. Blew of boiled & overflowed slup full with well still buildling bubbles C C' when can't Tell. 6.15 87.04 NO Divernable PST 18.98-9.87-10.33 20 DATE/TIME: 12-4-13 5415- w Dicernalle PST / W.L = 10,85 4. F= Photo Ang NOTES NO DIEVANDEL press No clicentable piess GROUNDWATER The following meter was rented from Pine and used for the readings: YSI MPS 556-02 w/Barometer and a 20 meter cable. Stow beil 414 1434 714 70 4 426 4657 (Mm)ORP* 221 1659 All BSP wells blown oct of water & Seefel 5.09 3.25 4.23 6.71 4.56 3.30 6.68 6.73 82% 3,83 6.60 100-2 (SU) 940F 195 1554 641  $(m S/cm^2)$ 1575 139 0432 1040 1840 268 736 164 22 213 B. 985 43 SC* HL.6 19.80 3.20 14.50 20, 20 9.83 9.84 15.00 / 20.02 7.70 02.0 0,23 10.00, P.45 8.57 29.00/ 20.46 0,22 20.510,23 (mg/L) 25-2-34 22,02 00.41 10,83 20.38 6.44 14.50- 20,04 8.05 00 15.00' 60,42 20.35 29.00 - 20.15 15.00/ 20.16 29.00/2060 29.00 / 19.95 28.50 / 19.95 Temp (0°) Reading 13.50 Depth 20.00 26.00 28.50 B-6" 152.8 SE. L the set 1,2,1 Depth 7 6.0' 10'21 14, 4.0 - 14.0 1402 6'8" 10.9' 5.2 13.2 (feet) 8.2 6.3 - 16.3 LSOG 8.7' 52.5 11.5 W.L. 80 0 14.16 Juppel 1932 4.9 - 14.9 14.23 125451 8/1/01 1251 6.0 - 16.0 1352 Instal 1437 14:26 LIEI Op hi Time 5.1 - 15.1 14/1 13.0 - 23.0 1407 sys. of 1250. Employee: Ivan Jenkins 3.6 - 13.6 3.9 - 13.5 26.9 - 31.4 26.7 - 31.2 26.9 - 31.4 26.9 - 31.4 17.0 - 22.0 26.9 - 31.4 26.0 - 31.0 2.0 - 12.0 - Only collect if you have time. 24.1 - 29.1 Interval (ft bls) Screen MW-49 Well ID MW-19 MW-23 MW-38 MW-32 MW-42 **MW-18** MW-50 MW-53 MW-20 MW-21 **NW-22** MW-41 MW-56 MW-54 MW-55 MW-58

Elec. 01 23718 @ 1707 with 02 7, 218 @ 1707

Drum Area - dues not need morning. Drum(1) is about 's full mked when so a

1730



Appendix H

Waste Disposal Manifest

A&D Environmental Services –GA, LLC 100 Waste Research Drive Macon, Ga 31206 (478) 788 – 8899 (Phone) / (478) 788 – 7881 (fax)



Dear Valued A&D Environmental Customer:

Enclosed is your original manifest from your recent waste disposal load with the following referenced work order number 82055. The manifest number is 76428 and date of disposal is 4/25/13. Please keep this document with your environmental records. If you have any questions, please feel free to contact us. We appreciate your business and hope we can further service all of your environmental needs. Let this certificate serve as evidence that all waste was properly disposed of at our facility located in Macon, GA at the address shown below.

Sincerely yours, **Daniel Nulf** Facility Manager A&D Environmental Services – GA, LLC

> Main Office 4943 Austin Park Ave Buford, GA 30518

Ph-678-714-8420 Fax - 678-714-8425

Check out our website:

www.adenviro.com

## Macon Office/Facility

100 Waste Research Drive Macon, GA 31206

> Ph- 478-788-8899 Fax - 478-788-7881

Pla	nge plaff or your you damignest fra uner om ekke (12-)										
A	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number GA92100208	72	2. Page 1 of 1	3. Emergency Respon 770/3	se Phone 384-6663	4. Waste Tracking Number 76428		nber		
	5. Generator's Name and Mailing		OMPLIANCE B	RANCH (FST	Generator's Site Addre		an mailing add	and the series of the			
11	Generator's Phone: 6. Transporter 1 Company Name						U.S. EPA II	D Number		-	
П		RONMENTAL SERVIC	ES (SC), LL	C				SCE	0987598331		
Н	7. Transporter 2 Company Name						U.S. EPA II	O Number			
	8. Designated Facility Name and Facility's Phone:	Site Address A&D ENVIRONMENT/ 100 WASTE RESEAR MACON, GA 31206 476/ 788-8899	AL SERVICES CH DRIVE	(GA), LLC			U.S. EPA II		R000007484		
	9. Waste Shipping Name a	and Description			10. Cor	ntainers	11. Total	12. Unit			
	1.				No.	Туре	Quantity	Wt./Vol.		_	
GENERATOR	NON-REGULAT	ED MATERIAL, LIQUID (IDW	WATER)		801	Dh	55	4			
GEN	2.										
	3.								1997		
	4.				-				-	-	
	13. Special Handling Instructions 1. 2. 3. 4. 14. GENERATOR'S/OFFEROR'S	CERTIFICATION: I hereby declare tha	t the contents of this	consignment are			10442.01		and are classified packaged		
	marked and labeled/placarded	d, and are in all respects in proper cond	lition for transport acc	cording to applicat	international and h	ational governme	ntal regulation	ns.		_	
V	Generator's/Offeror's Printed/Type	AUADO	m	Signa	VAn X.	<x.< th=""><th>).</th><th></th><th>Manth Bay</th><th>ear</th></x.<>	).		Manth Bay	ear	
<u> </u>	15. International Shipments			Export from U.S	File	you	m	_		4	
INT'L	Transporter Signature (for exports			_ Export from U.S		entry/exit: wing U.S.:					
E	16. Transporter Acknowledgment			0.							
DR.	Transporter 1 Printed/Typed Nam			Signa	IUI S				Month Day Y	S	
TRANSPORTER	Transporter 2 Printed/Typed Nam	pe		Signa	ture				Month Day Y	ear	
4	17. Discrepancy 17a. Discrepancy Indication Space				_		_			_	
		L Quantity	Туре		Residue	l	Partial Re	ejection	Full Rejection		
	L.M. 19 Kim. J. S FS + 130 Manifest Reference Number:										
È.											
ACII											
B	Facility's Phone: 17c. Signature of Alternate Facility	(or Generator)							Month Day Y	ear	
NAT				1							
- DESIGNATED FACILITY											
	18. Designated Facility Owner or	Operator: Certification of receipt of mate	erials covered by the	manifest except a	s noted in Item 17a					-	
	Printed/Typed Name	RHUNZ		Signa		- 11	> 1	~		'ear	
V		and the second s				$\sim v$	Part	Dialest a	and and the set of	3	
2	C Labels • Printed 1-800-997-69	990	DESIGNATED	FACILITY T	O GENERATOR		veoraa		MANIFEST-CONH 197-6966	VAC	

A&D Environmental Services –GA, LLC 100 Waste Research Drive Macon, Ga 31206 (478) 788 – 8899 (Phone) / (478) 788 – 7881 (fax)



Dear Valued A&D Environmental Customer:

Enclosed is your original manifest from your recent waste disposal load with the following referenced work order number 82054. The manifest number is 76427 and date of disposal is 4/25/13. Please keep this document with your environmental records. If you have any questions, please feel free to contact us. We appreciate your business and hope we can further service all of your environmental needs. Let this certificate serve as evidence that all waste was properly disposed of at our facility located in Macon, GA at the address shown below.

Sincerely yours, **Daniel Nulf** Facility Manager A&D Environmental Services – GA, LLC

> Main Office 4943 Austin Park Ave Buford, GA 30518

Ph-678-714-8420 Fax - 678-714-8425

Check out our website:

www.adenviro.com

## Macon Office/Facility

100 Waste Research Drive Macon, GA 31206

> Ph- 478-788-8899 Fax - 478-788-7881

tent or type	-puton) (yprevertien.)							
NON-HAZARDOUS	1. Generator ID Number	L.C.F.	2. Page 1 of 3	. Emergency Respon	se Phone	4. Waste	Tracking Nu	mber
WASTE MANIFEST	GA921002	0872	1	770/3	384-6663		76427	,
Generator's Phone:	ng Address DPW PREVENTION 8 1550 FRANK COCHR/ FORT STEWART, GA	AN DRIVE BLDG	BRANCH (FST #1137	Senerator's Site Addre	ss (if different t	nan mailing add	fress)	
6. Transporter 1 Company Nan			10			U.S. EPA II		0007500004
7. Transporter 2 Company Nan	VIRONMENTAL SERV	/ICES (SC), L	LC			U.S. EPA II		D987598331
Designated Facility Manager								
- Designated Facility Name an	AGD ENVIRONME AGD ENVIRONME 100 WASTE RESE MACON, GA 3120 478/ 788-8899	NTAL SERVICES ARCH DRIVE	(GA), LLC	k.		U.S. EPA II		R000007484
9. Waste Shipping Name	e and Description	~		10. Con	tainers	11. Total	12. Unit	
1.		1.072.07		No.	Туре	Quantity	Wt./Vol.	-
APPROVAL	TED MATERIAL, LIQUID (II	DW WATER)		001	Om	55	G	
2.								
3.								
								1. 2.1.
4.								in the second
1.								
2. 3. 4. 4. 4. GENERATOR'S/OFFEROR	'S CERTIFICATION: I hereby declare	that the contents of this	consignment are fu	WORK ORE	secibed above t	y the proper st	hipping name	, and are classified, packa
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard	led, and are in all respects in proper c	that the contents of this ondition for transport ac	consignment are fice consigning to appricate Signat	illy and accurately de	secibed above t	y the proper st	hipping name	, and are classified, packa Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerady's/Offeror's Printed/Ty	red, and are in all respects in proper c	SO	signat	ully and accurately de	secibed above t atighal governm	y the proper st	hipping name	
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerators/Offeror's Printed/Ty 5. International Shipments	ped Name Story Ch Import to U.S.	SO	cording to applicable	ully and accurately de pinternational and na he Port of e	secibed above to atighal governm	y the proper st	hipping name	
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerators/Offeror's Printed/Ty 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer	red, and are in all respects in proper c ped Name Import to U.S. rts only): nt of Receipt of Materials	SO	Export from U.S.	lly and accurately de pinternational and na Port of e Date lear	secibed above t atighal governm	y the proper st	hipping name	Month Pay
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerator's/Offeror's Printed/Ty 5. International Shipments ransporter Signature (for expoon 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na	red, and are in all respects in proper c ped Name Story Ch Import to U.S. rts only): th of Receipt of Materials reference of Materials	SO	signat	lly and accurately de pinternational and na Port of e Date lear	secibed above to atighal governm	y the proper st	hipping name	Month Day Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerato's/Offeror's Printed/Ty b. International Shipments ansporter Signature (for expo b. Transporter Acknowledgmer ransporter 1 Printed/Typed Na	red, and are in all respects in proper c ped Name Story Ch Import to U.S. rts only): th of Receipt of Materials reference of Materials	SO	Export from U.S.	Illy and accurately de eninternational and na le Port of e Date lear	secibed above to atighal governm	y the proper st	hipping name	Month Pay
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerator's/Offeror's Printed/Type 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na ransporter 2 Printed/Typed Na 7. Discrepancy	ed, and are in all respects in proper c ped Name Import to U.S. rts only): nt of Receipt of Materials me	SO	Export from U.S.	Illy and accurately de eninternational and na le Port of e Date lear	secibed above to atighal governm	y the proper st	hipping name	Month Day Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerator's/Offeror's Printed/Ty 5. International Shipments ransporter Signature (for expo 5. Transporter Acknowledgmer ransporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na 7. Discrepancy 7a. Discrepancy Indication Spa	Import to U.S. Import to U.S. Int of Receipt of Materials Import to U.S. Int of Receipt of Materials	SO	Export from U.S.	Illy and accurately de eninternational and na le Port of e Date lear	secibed above to atighal governm	y the proper st	nipping name	Month Day Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerator's/Offeror's Printed/Ty 5. International Shipments ransporter Signature (for expo 5. Transporter Acknowledgmer ransporter 1 Printed/Typed Na The Company 7. Discrepancy 7. Discrepancy 7. Discrepancy	Import to U.S. Import to U.S. Int of Receipt of Materials Import Import to U.S. Int of Receipt of Materials Import Import Import to U.S. Import to U.		Export from U.S.	Illy and accurately de entremational and na le Port of e Date lear	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day 9 24 Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerator's/Offeror's Printed/Type 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na 7. Discrepancy 7a. Discrepancy Indication Spa	Import to U.S. Import to U.S. Int of Receipt of Materials Import Import to U.S. Int of Receipt of Materials Import Import Import to U.S. Import to U.		Export from U.S.	Illy and accurately de international and na Port of e Date lea	segibed above to ational governm wing U.S.:	by the proper st ental regulation	hipping name	Month Day Month Day 9 24 Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerators/Offeror's Printed/Type 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na 7. Discrepancy 7a. Discrepancy 7b. Alternate Facility (or General acility's Phone:	ed, and are in all respects in proper of peed Name         peed Name         Import to U.S.         rts only):         nt of Receipt of Materials         imme         imme     <		Export from U.S.	Illy and accurately de international and na Port of e Date lea	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day 9 24 Month Day
2. 3. 4. 4. 4. GENERATOR'S/OFFEROR	ed, and are in all respects in proper of peed Name         peed Name         Import to U.S.         rts only):         nt of Receipt of Materials         imme         imme     <		Export from U.S.	Illy and accurately de international and na Port of e Date lea	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day 9 24 Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerators/Offeror's Printed/Type 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na 7. Discrepancy 7a. Discrepancy 7b. Alternate Facility (or General acility's Phone:	ed, and are in all respects in proper of peed Name         peed Name         Import to U.S.         rts only):         nt of Receipt of Materials         imme         imme     <		Export from U.S.	Illy and accurately de international and na Port of e Date lea	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day Y 24 Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerators/Offeror's Printed/Type 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na 7. Discrepancy 7a. Discrepancy 7b. Alternate Facility (or General acility's Phone:	ed, and are in all respects in proper of peed Name         peed Name         Import to U.S.         rts only):         nt of Receipt of Materials         imme         imme     <		Export from U.S.	Illy and accurately de international and na Port of e Date lea	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day Y 24 Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerators/Offeror's Printed/Type 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na 7. Discrepancy 7a. Discrepancy 7b. Alternate Facility (or General acility's Phone: 7c. Signature of Alternate Facil	ed, and are in all respects in proper of peed Name         peed Name         Import to U.S.         rts only):         nt of Receipt of Materials         imme         imme     <	SO C	Export from U.S. Signat	Illy and accurately de international and na Port of e Date lear JIP JIP IRESIDUE Manifest Reference Manifest Reference	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day Month Day Month Day
2. 3. 4. 4. GENERATOR'S/OFFEROR marked and labeled/placard enerator's/Offeror's Printed/Ty 5. International Shipments ransporter Signature (for expo 6. Transporter Acknowledgmer ransporter 1 Printed/Typed Na 7. Discrepancy 7. D	led, and are in all respects in proper of ped Name Sector Charles in proper of the U.S. Its only): Int of Receipt of Materials International I	SO C	Export from U.S. Signat	Illy and accurately de international and na Port of e Date lear JIP JIP IRESIDUE Manifest Reference Manifest Reference	segibed above to ational governm wing U.S.:	Partial Re	hipping name	Month Day Month Day Y 24 Month Day

1 (7) N.H		ental Services (G		
		arch Drive, Macon, GA		
		399 FAX: 478-788-788		
Reserved for Facility Use Approva	Il Date:	By:	Expiration Date:	
Solidification	] Recovery	Profile Number		
A. Billing Information				
Company <u>A&amp;D Environment</u> Address			count #	
City/State Buford, C		943 Austin Park Aver Zip 3051		
Phone 678-714-8420		ax	I8 Contact Jeff Sturged 678-714-8425	on
B. Generator Information/Location of	ElManto			
Generator Name DPW Prevention		ce Branch Site	e Contact Algeana Stevens	on
Address		nk Cochran Drive, Bldg		
	ort Stewart, G/		Zip 31314-4927	
Contact Phone 912-695-2102 Type of Business		EPD ID	GA9210020872	
	US	Army	SIC Code	
C. Waste Description				
	ter (FST-13)			
	tive Derived W	Vaste		
D. Physical Properties Physical State Odor	· · · · · · · · · · · · · · · · · · ·			
Physical State Odor		Color Describe:	Viscosity Specific Grav	lity
✓ 100% Liquid		characteristic		lb/acilon
Sludge Strong	q			lb/gailon
% Free Liquid Describe:				
Flash Point	рН		Water	
□ <73 F □ 140-199 F	□ < 2	9.1 - 12.4	□ < 5% □ 30-80%	
□ 73-99 F □ >199 F	2.1 - 4.9	2 > 12.5	□ 5-10%  80-100%	1
☐ 100-139 F ☐ N/A		N/A	□ 10-30% □ N/A	
Is this waste incompatibile with other E. Volume	material? 🗸	No Yes If Yes,	explain:	
Anticipated Volume: 1	☑ Drums	5 - Gallon 🗆 ;	30-Gallon 🗹 55-Gallon 🔲 1	
	. Douns		Pump Truck Other:	lote
Estimated Frequency: Ueekly	Semin		v □ Quarterly ☑ Other	
F. Constituents	·····		G. Other Hazards	
Total must be equal to 100%. All constituents, inclu			Radioactive	
Constituents Water	Actual % 100%	Range	Water Reactive	
Tratol .	100%		☐ Oxidizer ☐ OSHA	
See attached analytical			Carcinogen	
			Pesticide	
			Polymerizable	
			Organic Peroxide	
	100%		└┘ Infectious □ Pyrophoric	
H. Process Flow Chart				
Using the space provided, draw a flow	v chart showin	g how waste is genera	ited	

I. Constituents These values are bas	ed on 🔲 Gener	ator Knowledge	Analytical	l Resulte		
		-		ories that have NELPA/NE	LAC accreditat	lon.
Accreditation Number:	E87653	Name:		aly Environmental Serv		
Address:	106 Vantage Point	Drive, West Col	umbia, SC 29172	Phone:	803-791-9	9700
Inorganic Metals D004 Arsenic D005 Barium D006 Cadmium D007 Chromium D008 Lead D009 Mercury D010 Selenium D011 Silver	Level (mg/l) 5.0 0 100.0 0 1.0 0 5.0 0 5.0 0 0.2 0 1.0 0 5.0 0 5.0 0	Other Ammonia Phosphorus Formaldehyde Total Solids PCBs Copper Nickel Zinc	Conc. 0 0 0 0 0 0 0 0 0 0 0 0 0	Pesticides/Herbicides D012 Endrin D013 Lindane D014 Methoxychlor D015 Toxaphene D016 2,4-D D017 2,4,5-TP D020 Chlordane D031 Heptachlor	Level	(mg/i) 0 0 0 0 0 0 0 0
Organic Volatife Compounds D018 Benzene D019 Carbon Tetrachlori D021 Chlorobenzene D022 Chloroform D028 1,2-Dichloroethane D029 1,1-Dichloroethylen D035 Methyl Ethyl Keton D039 Tetrachloroethylene D040 Trichloroethylene D043 Vinyl Chloride	100.0 6.0 0.5 1e 0.7 e 200.0	(mg/l) 0 0 0 0 0 0 0 0 0 0 0	D030 2,4-Dinii D032 Hexachl D033 Hexachl D034 Hexachl D036 Nitroben D037 Pentach D038 Pyridine D041 2,4,5-Tri	ol ol ol hitorobenzene lorobenzene lorobutadiene toroethane nzene nlorophenol	Level 200.0 200.0 200.0 7.5 0.13 0.13 0.5 3.0 2.0 100.0 5.0 400.0 2.0	(mg/l) 0 0 0 0 0 0 0 0 0 0 0 0 0
J. General Informati 1 ☑ No □ Yes	Is this waste a hazardo		ed in 49 CFR Section 1 ard class and packaging			
2	Is this waste a marine ( Is this hazardous waste	pollutant as defined i e, as determined by j	in 49 CFR Section 172. performing the Hazardo	FR Section 172.101 Append .101 Appendix B? ous Waste Determination pro		
5 ⊻No □Yes	Does this waste contai Non-specific Sources;	261.32, Hazardous	ed Hazardous Waste in Waste from Specific Sc	n 40 CFR 261.31, Hazardous ources; and 261.33, Discard		
6 ☑ No □ Yes 7 ☑ No □ Yes	Chemical Products, Of Does waste fail any of toxicity, as defined in 4 Is this waste state regu	the four Hazardous V 0 CFR 261.21, 261.2	Wasle Characteristics o 22, 261.23, 261.23, resp	of ignitibility, corrosivity, read	livity, and	
8 □ No ☑ Yes 9 ☑ No □ Yes	Are Material Safety Dat	la Sheets and/or all a	analylical data relevant	to this profile data sheet atta rage Tank release (IDW)?	ached?	
K. Sample Has a sample been inc	luded? 🗌 Yes	☑ No If y	ves, sampled by:		Date:	······································
L. Generator's Certifi I hereby certify that all inform any samples submitted are ro the approval process, Gener Services (GA), LLC deems n	alion submitted in this ar epresentative of the actu- ator grants A&D Environ	al waste. If A&D Env mental Services (GA	vironmental Services (O	GA), LLC discovers a discrep	pancy during	
Generator Signature	len-	Print Nam	e Algeana Stevenso	Date on 20	10p	3

A&D Environmental Services (GA 100 Waste Research Drive, Macon, GA 478-788-8899 FAX: 478-788-788	31206								
Reserved for Facility Use Approval Date: By:	Expiration Date:								
Solidification Recovery Profile Number:									
A. Billing Information         Company       A&D Environmental Services (GA), LLC       Acc         Address       4943 Austin Park Aven         City/State       Buford, GA       Zip       3051         Phone       678-714-8420       Fax       Fax									
B. Generator Information/Location of Waste         Generator Name       DPW Prevention & Compliance Branch       Site         Address       1550 Frank Cochran Drive, Bldg         City/State       Fort Stewart, GA         Contact Phone       912-695-2102       EPD ID         Type of Business       US Army	e Contact Algeana Stevenson g #1137 Zip 31314-4927 GA9210020872 SIC Code								
C. Waste DescriptionCommon Name of WasteIDW Water (FST-26)Process Generating WasteInvestigative Derived Waste									
D. Physical Properties         Physical State       Odor       Color         100% Solid       None       Describe:         100% Liquid       Mild       characteristic         Sludge       Strong       Kree Liquid	Viscosity     Specific Gravity       Image: Specific Gravity     Image: Specific Gravity       Ima								
Flash Point       pH         □       <73 F	Water         □       < 5%								
Is this waste incompatibile with other material?	, explain:								
E. Volume         Anticipated Volume:       1       Image: Drums       5-Gallon       Image: Drums       5-Gallon       Image: Drums       Image: Drums       1mage: Drums       1mage: Drums       Image: Drums	30-Gallon								
F. Constituents	G. Other Hazards								
Total must be equal to 100%. All constituents, including debris must be identified.         Constituents       Actual %       Range         Water       100%       100%	Water Reactive     Oxidizer     OSHA								
See attached analytical	<ul> <li>Carcinogen</li> <li>Explosive</li> <li>Pesticide</li> <li>Polymerizable</li> <li>Organic Peroxide</li> <li>Infectious</li> <li>Pyrophoric</li> </ul>								
H. Process Flow Chart Using the space provided, draw a flow chart showing how waste is gene	erated								

Accreditation Number:	E87653	Name:	onducted by laboratories Shealy Er	nvironmental Serv		
Address:	106 Vantage Poin	t Drive, West Colu	imbia, SC 29172	Phone:	803-791	-9700
Inorganic Metals D004 Arsenic D005 Barium D006 Cadmium D007 Chromium D008 Lead D009 Mercury D010 Selenium D011 Silver	Level (mg/l) 5.0 0 100.0 0 1.0 0 5.0 0 5.0 0 0.2 0 1.0 0 5.0 0 1.0 0 5.0 0	Other Ammonia Phosphorus Formaldehyde Total Solids PCBs Copper Nickel Zinc	Conc.         Pes           0         D01           0         D03	<ul> <li>Lindane</li> <li>Methoxychlor</li> <li>Toxaphene</li> <li>2,4-D</li> <li>2,4,5-TP</li> <li>Chlordane</li> </ul>	Level	(mg/) 0 0 0 0 0 0 0
Organic Volatile Compounds D018 Benzene D019 Carbon Tetrachlori D021 Chlorobenzene D022 Chloroform D028 1,2-Dichloroethane D029 1,1-Dichloroethyler D035 Methyl Ethyl Keton D039 Tetrachloroethylen D040 Trichloroethylene D043 Vinyl Chloride	100.0 6.0 9 0.5 ne 0.7 e 200.0	0 0 0	Semi-Volatile Comp D023 o-Cresol D024 m-Cresol D025 p-Cresol D026 Cresol D027 1,4-Dichlorol D030 2,4-Dinitrotol D032 Hexachlorob D033 Hexachlorob D034 Hexachloroo D036 Nitrobenzen D037 Pentachloroo D038 Pyridine D041 2,4,5-Trichlo D042 2,4,6-Trichlo	penzene luene enzene uladiene thane e ohenol rophenol	Level 200.0 200.0 200.0 7.5 0.13 0.13 0.5 3.0 2.0 100.0 5.0 400.0 2.0	(mg/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J. General Informati 1 ☑ No □ Yes	Is this waste a hazar		ed in 49 CFR Section 172.1			
	Is this waste a hazar If yes, include shippin Is this waste regulate Is this waste a marin Is this hazardous wa at 40CFR262.11? Does this waste cont Non-specific Source	ng name, placard haza ed as a reportable quar e pollutant as defined i ste, as determined by (Attach Documentati tain any amount of List s; 261.32, Hazardous	nd class and packaging gro nity as defined in 49 CFR S in 49 CFR Section 172.101 performing the Hazardous on) ed Hazardous Waste in 40 Waste from Specific Sourc	Section 172.101 Apper Appendix 8? Waste Determination p CFR 261.31, Hazardo es; and 261.33, Discar	prescribed bus Waste from	
1 ☑ No ☐ Yes 2 ☑ No ☐ Yes 3 ☑ No ☐ Yes 4 ☑ No ☐ Yes	Is this waste a hazar If yes, include shippin Is this waste regulate Is this waste a marin Is this hazardous wa at 40CFR262.11? Does this waste conf Non-specific Source: Chemical Products, o Does waste fail any o toxicity, as defined in Is this waste state re Are Material Safety [	ng name, placard haza ed as a reportable quar e pollutant as defined i ste, as determined by (Attach Documentati tain any amount of List s; 261.32, Hazardous Off specification Speci of the four Hazardous 1 a 40 CFR 261.21, 261.2 gulated? If Yes, o Data Sheets and/or all	nd class and packaging gro nity as defined in 49 CFR S in 49 CFR Section 172.101 performing the Hazardous on) ed Hazardous Waste in 40 Waste from Specific Sourc es, Container Residues, an Waste Characteristics of Ig 22, 261.23, 261.23, respeci	Section 172.101 Apper Appendix 8? Waste Determination p CFR 261.31, Hazardo es; and 261.33, Discar d Spill Residues? nitibility, corrosivity, re- ively?	prescribed ous Waste from rded Commerc activity, and attached?	
1 ☑ No ☐ Yes 2 ☑ No ☐ Yes 3 ☑ No ☐ Yes 4 ☑ No ☐ Yes 5 ☑ No ☐ Yes 6 ☑ No ☐ Yes 7 ☑ No ☐ Yes 8 ☐ No ☑ Yes	Is this waste a hazar If yes, include shippin Is this waste regulate Is this waste a marin Is this hazardous wa at 40CFR262.11? Does this waste cont Non-specific Source: Chemical Products, o Does waste fail any o toxicity, as defined in Is this waste state re Are Material Safety I Is this waste derived	ng name, placard haza ed as a reportable quar e pollutant as defined i ste, as determined by (Attach Documentati tain any amount of List s; 261.32, Hazardous Off specification Speck of the four Hazardous 1 a 40 CFR 261.21, 261.2 gulated? If Yes, o Data Sheets and/or all from an Investigation of	Ind class and packaging grown hity as defined in 49 CFR S in 49 CFR Section 172.101 performing the Hazardous on) ed Hazardous Waste in 40 Waste from Specific Sources, Container Residues, an Waste Characteristics of ig 22, 261.23, 261.23, respect define:	Section 172.101 Apper Appendix 8? Waste Determination p CFR 261.31, Hazardo es; and 261.33, Discar d Spill Residues? nitibility, corrosivity, re- ively?	prescribed ous Waste from rded Commerc activity, and attached?	
1	Is this waste a hazar If yes, include shippin Is this waste regulate Is this waste a marin Is this hazardous wa at 40CFR262.11? Does this waste cont Non-specific Source Chemical Products, 0 Does waste fail any of toxicity, as defined in Is this waste state re Are Material Safety f Is this waste derived cluded? Ye fication mation submitted in this representative of the ar arator grants A&D Envir	ng name, placard haza ed as a reportable quar e pollutant as defined i ste, as determined by (Attach Documentati tain any amount of List s; 261.32, Hazardous Off specification Speck of the four Hazardous 1 a 40 CFR 261.21, 261.2 gulated? If Yes, o Data Sheets and/or all from an Investigation of the four an Investigation of the four anti- tion an Investigation of the four anti- the four an	Indiciass and packaging grown in the section of the	Section 172.101 Apper Appendix B? Waste Determination p CFR 261.31, Hazardo es; and 261.33, Discar d Spill Residues? nitibility, corrosivity, re- ively? his profile data sheet a b Tank release (IDW)?	prescribed bus Waste from rded Commerce activity, and attached? Date:	sła1

			ntal Services (G) ch Drive, Macon, GA		
		478-788-889	9 FAX: 478-788-788		
Reserved for Facility	<b>Use</b> Approva	al Date:	By:	Expiratio	n Date:
	Solidification	] Recovery	Profile Number		
A. Billing Information Company A&	) D Environment	al Services (G	A), LLC Ace	count #	
Address			43 Austin Park Aver		
City/State	Buford, (		Zip3051	8 Contact 678-714-8425	Jeff Sturgeon
Phone	678-714-8420	Fa	IX	670-7 14-8425	
B. Generator Informa Generator Name Address	tion/Location of DPW Prevention	on & Compliand	ce Branch Site k Cochran Drive, Bldg		lgeana Stevenson
City/State	F	ort Stewart, GA		Zip	31314-4927
Contact Phone	912-315-S	144	EPD ID		0020872
Type of Business		US /	Army	S	IC Code
C. Waste Description Common Name of Wa Process Generating W	ste IDW W	ater (FST-26) ative Derived V	Vaste		
D. Physical Propertie	1				
Physical State ☐ 100% Solid ☑ 100% Liquid ☐ Sludge _% Free Liquid	Odor ☑ Non ☑ Mild ☑ Stro Describe:		Color Describe: characteristic	Viscosity Low Medium High	Specific Gravity
	140-199 F >199 F	pH □ < 2 □ 2.1 - 4.9	□ 9.1 - 12. <b>4</b> □ > 12.5	Water □ < 5% □ 5-10%	□ <b>3</b> 0-80% ☑ 80-100%
	N/A	<b>⊴</b> 5-9		□ 10-30%	
Is this waste incompa	atibile with othe	er material? 🖸	No∏ Yes If Yes,	explain:	
E. Volume					5-Gallon 🛛 Tote
Anticipated Volume:	4	☑ Drum: □ Bulk □ Semir	🗆 Tanker 🛛	Bu-Gallon ⊡ 5 Pump Truck □ O ly □ Quarterly	
Estimated Frequency:				-	
F. Constituents	All openfilmente fo	aludina dabria mua	t he identified		er Hazards adioactive
Total must be equal to 100% Constitu		Actual %	Range		/ater Reactive
Water		100%			xidizer
					SHA
See attached analytica					arcinogen
					xplosive esticide
					olymerizable
					rganic Peroxide
·····			·		fectious
		100%		_ П Р	yrophoric
H. Process Flow Cha Using the space p	nt rovided, draw a	flow chart show	<i>v</i> ing how waste is ger	nerated	

I. Constituents These values are bas	ed on 🛛 Generat	or Knowledge	Analytical	Results				
	provided relevant to this g		-		LAC accreditation.			
Accreditation Number:	E87653	Name:	Shealy	/ Environmental Serv	vices,Inc.			
	106 Vantage Point Di	rive, West Colu	mbia, SC 29172	Phone:	803-791-9700			
Inorganic Metats D004 Arsenic D005 Barium D006 Cadmium D007 Chromium D008 Lead D009 Mercury D010 Selenium D011 Silver	Level (mg/l) 5.0 0 100.0 0 1.0 0 5.0 0 0.2 0 1.0 0 5.0 0 0.2 0 1.0 0 5.0 0 0.2 0 1.0 0 5.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Other Ammonia Phosphorus Formaldehyde Total Solids PCBs Copper Nickel Zinc		Pesticides/Herbicides D012 Endrin D013 Lindane D014 Methoxychlor D015 Toxaphene D016 2,4-D D017 2,4,5-TP D020 Chlordane D031 Heptachlor	Level (mg/l) 0 0 0 0 0 0 0 0 0 0 0 0 0			
Organic Volatile Compounds D018 Benzene D019 Carbon Tetrachlor D021 Chlorobenzene D022 Chloroform D026 1,2-Dichloroethan D029 1,1-Dichloroethyle D035 Methyl Ethyl Ketor D039 Tetrachloroethylene D040 Trichloroethylene D043 Vinyl Chloride	100.0 6.0 e 0.5 ne 0.7 ne 200.0	(mg/l) 0 0 0 0 0 0 0 0 0 0 0 0 0	D030 2,4-Dinit D032 Hexachle D033 Hexachle D034 Hexachle D036 Nitroben D037 Pentachl D038 Pyridine D041 2,4,5-Tria	lorobenzene rotoluene probenzene probutadiene probutadiene	Level         (mg/l)           200.0         0           200.0         0           200.0         0           200.0         0           200.0         0           200.0         0           7.5         0           0.13         0           0.5         0           3.0         0           2.0         0           100.0         0           5.0         0           400.0         0           2.0         0			
J. General Informat 1 ☑ No □ Yes 2 ☑ No □ Yes 3 ☑ No □ Yes 4 ☑ No □ Yes 5 ☑ No □ Yes 6 ☑ No □ Yes 7 ☑ No □ Yes 8 □ No ☑ Yes 9 ☑ No □ Yes 9 ☑ No □ Yes	Is this waste a hazardou If yes, include shipping r Is this waste regulated a Is this waste a marine po Is this hazardous waste, at 40CFR262.11? (A Does this waste contain Non-specific Sources; 2 Chemical Products, Off Does waste fail any of th toxicity, as defined in 40 Is this waste state regula Are Material Safety Data	name, placard haza is a reportable quar ollutant as defined i as determined by attach Documentatio any amount of List 261.32, Hazardous specification Speci- ne four Hazardous N CFR 261.21, 261.2 ated? If Yes, d a Sheets and/or all a	ntity as defined in 49 C in 49 CFR Section 172 performing the Hazaro on) ed Hazardous Waste Waste from Specific S es, Container Residue Waste Characteristics 22, 261.23, 261.23, re efine:	ng group: CFR Section 172.101 Appendix B? dous Waste Determination in 40 CFR 261.31, Hazard Sources; and 261.33, Disc es, and Spill Residues? of Ignitibility, corrosivity, r spectively?	a prescribed dous Waste from arded Commercial eactivity, and attached?			
9 ☑ No ☐ Yes       Is this waste derived from an Investigation of an Underground Storage Tank release (IDW)?         K. Sample         Has a sample been included?       ☐ Yes       ☑ No       If yes, sampled by:								
Lifeon to k	<u> </u>		Algeana Stevens	on	20-Jun-14			

			ntal Services (C		
			9 FAX: 478-788-78		
Reserved for Facility	Use Approva	Date:	By:	Expiration Date; _	
	Solidification	Recovery	Profile Numbe	r:	
A. Billing Information	n D Environmenta	l Comison /C		ccount #	
Company <u>A&amp;</u> Address	DEnvironinenta		43 Austin Park Ave		
City/State	Buford, G		Zip 305		turgeon
Phone	678-714-8420	Fa		678-714-8425	
B. Generator Informa	tion/Location o	f Waste			
Generator Name	DPW Preventio			te Contact Algeana S	tevenson
Address	_ · ·		k Cochran Drive, Blo		
City/State		rt Stewart, GA	EPD ID	Zip 31314-	
Contact Phone	912-315-51		_ EPD ID Army	GA9210020872 SIC Code	
Type of Business		03.	Army		<u></u>
C. Waste Description	I				
Common Name of Wa		(FST-26)			
Process Generating W	aste Investiga	tive Derived V	Vaste		······
D. Physical Propertie	S				
Physical State	Odor		Color		c Gravity
✓ 100% Solid	None		Describe:	└── Low	
100% Liquid	Mild	~	<u>characteristic</u>	-	lb/gallon
┘ Sludge % Free Liquid	└── Stron Describe:	g			
	Describe.				
Flash Point	140-199 F	pH □ < 2	9.1 - 12.4	₩ater	2004
」 <73 F □ □ 73-99 F □	140-199 F >199 F	□ <2 □ 2.1-4.9	□ 9.1 - 12.4 □ > 12.5		00%
	N/A	□ <u>5</u> -9	✓ N/A	□ 10-30%  N/A	
s this waste incompa					
E. Volume				· · · · · · · · · · · · · · · · · · ·	······································
Anticipated Volume:	1	🖸 Drum	s 🗆 5-Gallon 🗆	30-Gallon 🗹 55-Gallon	🗆 Tote
		- 🗆 Bulk		Pump Truck DOther:	
Estimated Frequency:	🗆 Weekly	🗆 Semir	nonthly 🗆 Monti	nly 🗆 Quarterly 🗹 Oth	er
Constituents				G. Other Hazard	s
Fotal must be equal to 100%.	Alt constituents, incl	uding debris mus	t be identified.	Radioactive	Э
Constitue	ents	Actual %	Range	U Water Rea	ctive
Soil		100%			
				OSHA	_
See attached analytical				Carcinoger	1
0.10.0000.0000.00000000000000000000000				Explosive     Pesticide	
				□ Polymeriza	ble
		1		Organic Pe	
		1			
		100%		Pyrophoric	
H. Process Flow Cha	rt				
		ow chart show	ving how waste is ge	nerated	

I. Constituents These values are based on  Generator Knowledge  Analytical Results								
These values are based on Generator Knowledge Generator Knowledge Analytical Results <u>All analytical data provided relevant to this profile must be conducted by laboratories that have NELPAINELAC accreditation.</u>								
Accreditation Number:	E87653	Name:	Sh	ealy Environmental Ser	vices,Inc.			
	106 Vantage Point	Drive, West Co	lumbia, SC 291	72 Phone:	803-791-9700			
Inorganic Metals D004 Arsenic D005 Barium D006 Cadmium D007 Chromium D008 Lead D009 Mercury D010 Selenium D011 Silver	Level (mg/i) 5.0 0 100.0 0 1.0 0 5.0 0 5.0 0 0.2 0 1.0 0 5.0 0 5.0 0	Other Ammonia Phosphorus Formaldehyde Total Solids PCBs Copper Nickel Zinc	Conc. 0 0 0 0 0 0 0 0	Pesticides/Herbicides D012 Endrin D013 Lindane D014 Methoxychlor D015 Toxaphene D016 2,4-D D017 2,4,5-TP D020 Chlordane D031 Heptachlor	Level (mg/l) 0 0 0 0 0 0 0 0 0			
Organic Volatile Compounds D018 Benzene D019 Carbon Tetrachlorid D021 Chlorobenzene D022 Chloroform D028 1,2-Dichloroethane D029 1,1-Dichloroethylen D035 Methyl Ethyl Ketone D039 Tetrachloroethylene D040 Trichloroethylene D043 Vinyl Chloride	100.0 6.0 0.5 e 0.7 e 200.0	(mg/l) 0 0 0 0 0 0 0 0 0 0	D023         o-C           D024         m-C           D025         p-C           D026         Cre           D027         1,4-           D030         2,4-           D032         Hex           D033         Hex           D034         Hex           D038         Nitro           D037         Penn           D038         Pyrin           D031         2,4-	le Compounds resol cresol sol Dichlorobenzene Dinitrotoluene achlorobenzene achlorobutadiene achloroethane obenzene tachlorophenol dine 5-Trichlorophenol 6-Trichlorophenol	Level (mg/l) 200.0 0 200.0 0 200.0 0 200.0 0 7.5 0 0.13 0 0.5 0 3.0 0 2.0 0 100.0 0 5.0 0 400.0 0 2.0 0			
J. General Information         1 □ No □ Yes       Is this waste a hazardous material as defined in 49 CFR Section 172.101?         If yes, include shipping name, placard hazard class and packaging group:         2 □ No □ Yes       Is this waste regulated as a reportable quantity as defined in 49 CFR Section 172.101 Appendix A?         3 □ No □ Yes       Is this waste a marine pollutant as defined in 49 CFR Section 172.101 Appendix A?         4 □ No □ Yes       Is this hazardous waste, as determined by performing the Hazardous Waste Determination prescribed at 40CFR262.11? (Attach Documentation)         5 □ No □ Yes       Does this waste contain any amount of Listed Hazardous Waste in 40 CFR 281.31, Hazardous Waste from Non-specific Sources; 261.32, Hazardous Waste from Specific Sources; and 261.33, Discarded Commercial Chemical Products, Off specification Species, Container Residues, and Spill Residues?         6 □ No □ Yes       Does waste fail any of the four Hazardous Waste Characteristics of ignitibility, corrosivity, reactivity, and toxicity, as defined in 40 CFR 261.21, 261.22, 261.23, 261.23, 261.23, respectively?         7 □ No □ Yes       Is this waste state regulated? If Yes, define:         8 □ No □ Yes       Yes								
9 ☑ No □ Yes       Is this waste derived from an Investigation of an Underground Storage Tank release (IDW)?         K. Sample         Has a sample been included?       □ Yes       ☑ No       If yes, sampled by:       □ Date:								
any samples submitted are r the approval process, Gener Services (GA), LLC deems r Generator Signature	rator grants A&D Enviro	nmental Services (	GA), LLC the autho	ices (GA), LLC discovers a d rity to amend the profile, as A Dat	&D Environmental			
Uppar	Sh	<del>مر</del>	Algeana Stev	enson	20-Jun-14			