

THIRD ANNUAL MONITORING ONLY REPORT

Underground Storage Tank 82 Facility ID #9-089029 Building 1281 Fort Stewart, Georgia

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-02-D-0004 Delivery Order 0044

January 2007

THIRD ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANK 82 FACILITY ID #9-089029 BUILDING 1281 FORT STEWART, GEORGIA

Prepared for

U.S. Army Corps of Engineers, Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-02-D-0004 Delivery Order 0044

Prepared by

Science Applications International Corporation 151 Lafayette Drive Oak Ridge, TN 37830

January 2007

FINAL

TABLE OF CONTENTS

		Page
LIS	T OF ABBREVIATIONS AND ACRONYMS	iii
I.	REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II.	PROJECT SUMMARY	2
III.	ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS A. Potentiometric Data B. Analytical Data	
IV.	SITE RANKING (Note: Re-Rank Site After Each Monitoring Event.)	4
V.	CONCLUSIONS/RECOMMENDATIONS	5
VI.	REIMBURSEMENT	5
<u>List</u>	t of Appendices	
Figu Figy Figy Figy API Tab Tab Tab API API API	PENDIX I: REPORT FIGURES	I-2 I-3 I-4 I-5 I-6 I-7 II-1 II-2 II-4 II-5 II-1 II-2 II-4 II-5 III-1
A B	achments SUMMARY OF FATE AND TRANSPORT MODELING RESULTS REFERENCES CERTIFICATES OF ANALYSIS	B-1

List of Abbreviations and Acronyms

ACL	alternate concentration limit
BTEX	benzene, toluene, ethylbenzene, and xylene
CAP	Corrective Action Plan
EPA	U. S. Environmental Protection Agency
F&T	fate and transport
GA EPD	Georgia Environmental Protection Division
IWQS	In-Stream Water Quality Standard
MCL	maximum contaminant level
NFAR	no further action required
PAH	polynuclear aromatic hydrocarbon
USACE	U. S. Army Corps of Engineers
UST	underground storage tank
USTMP	Underground Storage Tank Management Program

MONITORING ONLY REPORT

Monitoring Report N	lumber: 3 rd Annual
to July 2005	
Street Address:	McFarland Avenue between Divarty Avenue and W. 8th Street
art County: Lib	erty Zip Code: 31314
05' 08″	
Prepared by	Consultant/Contractor:
anch Name:	Patricia A. Stoll
h) Company:	SAIC
. 1137 Address:	P.O. Box 2502
City:	Oak Ridge State: TN
Zip Code:	37831
Telephone:	(865) 481-8792
	to July 2005

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Pati	ricia A. Stoll	
Signature:_	Pota: a Stal	
Date:	1/8/07	

Georgia Stamp or

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Former Underground Storage Tank (UST) 82, Facility ID #9-089029, was located near Building 1281 at Fort Stewart, Georgia. The tank and piping were excavated and removed on February 15, 1995. Science Applications International Corporation performed a Corrective Action Plan (CAP)–Part A investigation in 1996 and a CAP–Part B investigation in 1997 and 1998 to determine the extent of petroleum contamination at the site. Seven monitoring wells and five soil borings were installed during these investigations. The CAP–Part B Report was submitted in March 1999 and recommended semiannual monitoring of four monitoring wells: 32-07, 32-08, 32-10, and 32-11 (SAIC 1999a).

The fate and transport (F&T) modeling performed as part of the CAP–Part B Report reflected a continuous source of contamination. The results were summarized in the First Annual Monitoring Only Report (SAIC 1999b), and a summary is also presented in Attachment A of this document. Upon completion of the fourth semiannual monitoring event in June 2000, the F&T modeling results were revised using the results from the semiannual monitoring events to calibrate the model. Based on the revised F&T modeling results presented in Attachment A, the benzene alternate concentration limit (ACL) would be infinity at the drainage ditch. To be conservative, a storm drain located 100 ft downgradient of the site and above the water table was considered the closest receptor in the revised F&T modeling; therefore, the site-specific remedial level for benzene was revised to use the dilution attenuation factor at the storm drain, resulting in a revised benzene ACL of 1,990 μ g/L. During the last 2 years of semiannual sampling, the benzene concentrations at the site have been below the revised ACL.

As recommended in the First Annual Monitoring Only Report, a soil boring (32-13) was installed in the vicinity of well 32-08, the location of the highest soil concentrations, and a soil sample was collected from the boring and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAHs). The analytical data from this boring were provided in the Second Annual Monitoring Only Report (SAIC 2000a) and are summarized in Table 3. The soil sample collected from soil boring 32-13, which is adjacent to well 32-08, indicated that BTEX constituents are present in the soil above the soil/water interface at concentrations above the soil threshold levels (Table A, Column 2 of Georgia UST Rule 391-5-15). These soil data will supercede all previous soil data in the Site Ranking Form.

A request for no-further-action-required (NFAR) status was made in the Second Annual Monitoring Only Report because the benzene concentrations were below the ACL and the plume was not expanding. The Georgia Environmental Protection Division (GA EPD) Underground Storage Tank Management Program (USTMP) responded with comments in correspondence dated August 31, 2001 (Logan 2001), and the request for NFAR status was denied due to the presence of free product and no significant decline in benzene concentrations.

The site was returned to the monitoring only program in July 2004. The site was not sampled in January 2005 because Fort Stewart had planned on excavating the former tank pit area. Due to funding limitations, the former tank pit area has not been excavated. The

U. S. Army Corps of Engineers (USACE) sampled the site in July 2005. This document summarizes the results of the July 2004 and July 2005 sampling events.

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

A. <u>Potentiometric Data</u>:

(Appendix I, Figure 2: Potentiometric Surface Map) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Free product was initially observed in well 32-08 in December 1998 during the CAP–Part B investigation. The absorbent socks have been removed and replaced during the monitoring program, as described in Table 1.

During the fifth sampling event in July 2004, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In July 2004, the groundwater flow direction was toward the south, and the groundwater gradient was approximately 0.0066 ft/ft. Free product was present in well 32-08 in July 2004 at a thickness of 0.3 ft (3.6 in.).

During the sixth sampling event in July 2005, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In July 2005, the groundwater flow direction was toward the south, and the groundwater gradient was approximately 0.0059 ft/ft. Free product not observed in any of the wells in July 2005.

B. <u>Analytical Data</u>:

(Appendix I, Figure 3: Groundwater Quality Map) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix II, Table 2: Groundwater Analytical Results) (Appendix II, Table 3: Soil Analytical Results) (Appendix III: Laboratory Analytical Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the fifth sampling event in July 2004, monitoring wells 32-07, 32-08, 32-10, and 32-11 were sampled, and the samples were analyzed for BTEX using U. S. Environmental Protection Agency (EPA) Method 8021B/8260B. Analytical results from the fifth sampling event are summarized below.

- Benzene was detected in two of four groundwater samples at concentrations of 377 µg/L (32-07) and 252 µg/L (37-08). Both of these concentrations exceeded the In-Stream Water Quality Standard (IWQS), but did not exceed the ACL.
- Toluene was detected in two of four groundwater samples at concentrations of 526 µg/L (32-07) and 1,070 µg/L (37-08). The concentrations did not exceed the IWQS.

- Ethylbenzene was detected in two of four groundwater samples at concentrations of $101 \,\mu\text{g/L}$ (32-07) and 160 $\mu\text{g/L}$ (37-08). The concentrations did not exceed the IWQS.
- Total xylenes were detected in two of four groundwater samples at concentrations of 367 μg/L (32-07) and 743 μg/L (37-08). The concentrations did not exceed the maximum contaminant level (MCL).

The benzene concentrations in wells 32-07 and 32-08 were below the ACL of 1,990 μ g/L. None of the other constituents exceeded the respective IWQS. Figure 4 shows the variations in benzene concentrations in groundwater for the wells in the monitoring only program.

During the sixth sampling event in July 2005, monitoring wells 32-07, 32-08, 32-10, and 32-11 were sampled by USACE, and the samples were analyzed for BTEX and naphthalene using EPA Method 8021B/8260B. Analytical results from the sixth sampling event are summarized below.

- Benzene was detected in two of four groundwater samples at concentrations of 329 μ g/L (32-07) and 154 μ g/L (37-08). Both of these concentrations exceeded the IWQS, but did not exceed the ACL.
- Toluene was detected in two of four groundwater samples at concentrations of 513 μ g/L (32-07) and 787 μ g/L (37-08). The concentrations did not exceed the IWQS.
- Ethylbenzene was detected in two of four groundwater samples at concentrations of 96.2 µg/L (32-07) and 154 µg/L (37-08). The concentrations did not exceed the IWQS.
- Total xylenes were detected in two of four groundwater samples at concentrations of $433 \mu g/L$ (32-07) and $833 \mu g/L$ (37-08). The concentrations did not exceed MCL.
- Naphthalene was detected in two of four groundwater samples at concentrations of $121 \,\mu\text{g/L}$ (32-07) and 168 $\mu\text{g/L}$ (37-08). There is no IWQS or ACL for this constituent.

The benzene concentrations in wells 32-07 and 32-08 were below the ACL of 1,990 μ g/L. None of the other constituents exceeded the respective IWQS. Figure 4 shows the variations in benzene concentrations in groundwater for the wells in the monitoring only program.

As recommended in the First Annual Monitoring Only Report, PAH analysis was discontinued for the site beginning with the second semiannual sampling event in July 1999.

IV. SITE RANKING (Note: Re-Rank Site After Each Monitoring Event.) (Appendix IV: Site Ranking Form)

Environmental Site Sensitivity Score:	3,250 (Jan. 1999 – First Monitoring Event)
(April 1999 version of the Site Ranking	15,750 (July 1999 – Second Monitoring Event)
Form was used for January 2000 score.)	25,100 (Jan. 2000 – Third Monitoring Event)
	15,100 (June 2000 – Fourth Monitoring Event)
	27,600 (July 2004 – Fifth Monitoring Event)
	2,600 (July 2005 – Sixth Monitoring Event)

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

The Monitoring Only Plan was conducted in accordance with Section III.D of the CAP–Part B Report (SAIC 1999a) and approved by GA EPD USTMP in correspondence dated January 25, 2000 (Logan 2000a). Termination conditions presented in the CAP–Part B Report and the First Annual Monitoring Only Report (SAIC 1999b), and approved in correspondence dated April 3, 2000, (Logan 2000b) indicated that termination would be requested once the measured benzene concentrations were below the ACL. The monitoring only program was terminated following the June 2000 monitoring event, and NFAR status was requested in the Second Annual Monitoring Only Report (SAIC 2000a). GA EPD denied this request because of the presence of free product at the site and no significant decline in benzene concentrations, even though the benzene concentrations were less than the approved ACL. The site was returned to the monitoring only program in 2004.

Fort Stewart respectfully requests that GA EPD USTMP assign Facility ID #9-089029 an NFAR status for the following reasons:

- The Monitoring Only Plan was conducted in accordance with Section III.D of the CAP-Part B Report (SAIC 1999a) and approved by GA EPD USTMP in correspondence dated April 3, 2000 (Logan 2000b).
- The benzene concentrations in all wells have been below the ACL of 1,990 µg/L since December 1997.
- Free product was not present at the site in July 2005.
- Even though the free product as been present intermittently in 32-08, the benzene concentrations have been declining since January 2000, thus indicating that natural attenuation is taking place.
- Both various F&T models presented in historical documents indicated that benzene will never reach the nearest surface water body (i.e., a drainage ditch) at a concentration above the IWQS of 71.28 μ g/L.
- The closest preferential pathway (i.e., a storm drain) is located approximately 100 ft downgradient of the site, while the closest surface water body is located approximately 1,000 ft downgradient.

The monitoring only program at the site will be discontinued.

VI. REIMBURSEMENT

(Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the UST 82 site, Building 1281, Facility ID #9-089029, using U. S. Department of Defense Environmental Restoration Account Funds. Application for Georgia UST Trust Fund reimbursement is not being pursued at this time.

06-044(E)/010507

5

Attached N/A X

APPENDIX I

REPORT FIGURES

Figure 1. Location Map of UST 82 at Fort Stewart, Liberty County, Georgia

Figure 2a. Potentiometric Surface Map of the UST 82 Site (July 2004)

Figure 2b. Potentiometric Surface Map of the UST 82 Site (July 2005)

Figure 3a. Groundwater Quality Map for the UST 82 Site (July 2004)

Figure 3b. Groundwater Quality Map for the UST 82 Site (July 2005)

APPENDIX II

REPORT TABLES

		Top of	Depth of Screened	Depth to Free	Depth to	Product	Corrected Groundwater		
Well	Date	Casing Elev.	Interval	Product	Water	Thickness	Elevation		
Number	Measured	(ft AMSL)	(ft BGS)	(ft BTOC)	(ft BTOC)	(ft)	(ft AMSL)		
	First Monitoring Event – January 1999								
32-06	01/07/99	76.51	5.0 - 15.0		6.96	0	69.55		
32-07	01/07/99	76.49	5.0 - 15.0		7.00	0	69.49		
32-08 ^{<i>a</i>}	01/07/99	76.67	5.0 - 15.0	_	6.73	0	69.94		
32-09	01/07/99	75.74	4.0 - 14.0		5.93	0	69.81		
32-10	01/07/99	75.84	3.7 - 13.7		6.71	0	69.13		
32-11	01/07/99	76.02	3.8 - 13.8		6.88	0	69.14		
32-12	01/07/99	75.93	4.1 - 14.1		5.67	0	70.26		
		Secon	d Monitoring	Event – July/A	lugust 1999	•			
32-06	08/24/99	76.51	5.0 - 15.0	_	6.10	0	70.41		
32-07	08/24/99	76.49	5.0 - 15.0		6.12	0	70.37		
32-08 ^b	08/24/99	76.67	5.0-15.0	5.80	5.83	0.03	70.87 ^c		
32-09	08/24/99	75.74	4.0 - 14.0		4.96	0	70.78		
32-10	08/24/99	75.84	3.7 - 13.7		5.86	0	69.98		
32-11	08/24/99	76.02	3.8 - 13.8	_	5.86	0	70.16		
32-12	08/24/99	75.93	4.1 - 14.1	_	4.72	0	71.21		
		Third M	onitoring Ev	ent – January/I	February 2000				
32-06	02/22/00	76.51	5.0 - 15.0		6.86	0	69.65		
32-07	02/22/00	76.49	5.0 - 15.0		6.89	0	69.60		
32-08 ^d	02/22/00	76.67	5.0 - 15.0		6.65	0	70.02		
32-09	02/22/00	75.74	4.0 - 14.0		5.89	0	69.85		
32-10	02/22/00	75.84	3.7 - 13.7		6.59	0	69.25		
32-11	02/22/00	76.02	3.8 - 13.8		6.77	0	69.25		
32-12	02/22/00	75.93	4.1 – 14.1		5.58	0	70.35		

Table 1. Groundwater Elevations

NOTES:

^a The absorbent sock was removed from well 32-08 on January 6, 1999. No free product was observed on January 7, 1999, and an absorbent sock was replaced in the well on January 8, 1999.

^b The absorbent sock was removed from well 32-08 on July 7, 1999. Free product approximately 0.03 ft thick was observed on August 24, 1999, and an absorbent sock was replaced in the well on August 24, 1999.

^c The groundwater elevation was corrected using a density of 912 kg/m³ for the product.

^d The absorbent sock was removed from well 32-08 on January 25, 2000, and was not replaced in January/February 2000. ^e On May 26, 2000, a sheen of free product was observed in well 32-08, and an absorbent sock was placed in the well on May 26, 2000. The absorbent sock was removed from well 32-08 before sampling on June 22, 2000, and there was no free product present at that time. The absorbent sock was replaced during water level measurements on June 29, 2000. ⁷An absorbent sock was removed from well 32-08 before water level measurements on July 22, 2004.

AMSL Above mean sea level.

BGS Below ground surface.

BTOC Below top of casing.

Not recorded. NR

		Top of	Depth of Screened	Depth to Free	Depth to	Product	Corrected Groundwater		
Well	Date	Casing Elev.	Interval	Product	Water	Thickness	Elevation		
Number	Measured	(ft AMSL)	(ft BGS)	(ft BTOC)	(ft BTOC)	(ft)	(ft AMSL)		
	Fourth Monitoring Event – June 2000								
32-06	06/29/00	76.51	5.0 - 15.0		6.96	0	69.55		
32-07	06/29/00	76.49	5.0 - 15.0		6.99	0	69.50		
32-08 ^e	06/29/00	76.67	5.0 - 15.0	sheen	6.59	sheen	70.08		
32-09	06/29/00	75.74	4.0 - 14.0		5.87	0	69.87		
32-10	06/29/00	75.84	3.7 - 13.7	—	6.68	0	69.16		
32-11	06/29/00	76.02	3.8 - 13.8		6.76	0	69.26		
32-12	06/29/00	75.93	4.1 - 14.1		5.63	0	70.30		
		I	Fifth Monitor	ing Event – Jul	y 2004				
32-06	07/22/04	76.51	5.0 - 15.0		5.56	0	70.95		
32-07	07/22/04	76.49	5.0-15.0		5.60	0	70.89		
32-08 ^f	07/22/04	76.67	5.0-15.0	5.27	5.57	0.3	71.37 ^c		
32-09	07/22/04	75.74	4.0 - 14.0		4.38	0	71.36		
32-10	07/22/04	75.84	3.7 - 13.7		5.30	0	70.54		
32-11	07/22/04	76.02	3.8 - 13.8		5.20	0	70.82		
32-12	07/22/04	75.93	4.1 - 14.1		4.26	0	71.67		
		S	Sixth Monitor	ing Event – Jul	y 2005	•			
32-06	07/22/05	76.51	5.0-15.0	NR	NR	NR	NR		
32-07	07/22/05	76.49	5.0 - 15.0		5.23	0	71.26		
32-08	07/22/05	76.67	5.0 - 15.0		4.97	0	71.70		
32-09	07/22/05	75.74	4.0 - 14.0	NR	NR	NR	NR		
32-10	07/22/05	75.84	3.7 - 13.7		4.91	0	70.93		
32-11	07/22/05	76.02	3.8 - 13.8		4.79	0	71.23		
32-12	07/22/05	75.93	4.1 - 14.1	NR	NR	NR	NR		

Table 1. Groundwater Elevations (continued)

NOTES:

^{*a*} The absorbent sock was removed from well 32-08 on January 6, 1999. No free product was observed on January 7, 1999, and an absorbent sock was replaced in the well on January 8, 1999.

^b The absorbent sock was removed from well 32-08 on July 7, 1999. Free product approximately 0.03 ft thick was observed on August 24, 1999, and an absorbent sock was replaced in the well on August 24, 1999.

^c The groundwater elevation was corrected using a density of 912 kg/m³ for the product.

^d The absorbent sock was removed from well 32-08 on January 25, 2000, and was not replaced in January/February 2000.

^e On May 26, 2000, a sheen of free product was observed in well 32-08, and an absorbent sock was placed in the well on May 26, 2000. The absorbent sock was removed from well 32-08 before sampling on June 22, 2000, and there was no free product present at that time. The absorbent sock was replaced during water level measurements on June 29, 2000.

^fAn absorbent sock was removed from well 32-08 before water level measurements on July 22, 2004.

AMSL Above mean sea level.

BGS Below ground surface.

BTOC Below top of casing.

NR Not recorded.

Samula	Samula	Date	Benzene	Toluene	Ethyl- benzene	Xylenes	Total BTEX	Total PAH
Sample Location	Sample ID	Sampled	Benzene (μg/L)	foruene (µg/L)	benzene (μg/L)	Aylenes (µg/L)	втел (µg/L)	PAH (μg/L)
Location		*		Event – Jani		(µg/L)	(µg/L)	(µg/L)
32-07	320722	01/08/99	937 =	909 =	146 =	639 =	2,631	ND
32-08	320822	01/08/99	162 =	525 =	72.4 =	370 =	1,129.4	49.1
32-10	321022	01/08/99	1.5 J	2.1 U	2.0 U	1.2 J	2.7	ND
32-11	321122	01/08/99	1.9 J	2.6 U	2.0 U	1.6 J	3.5	ND
		Second	Monitoring	Event – July/	August 199	9		
32-07	320732	07/10/99	282 =	376 =	66.3 =	296 =	1,020.3	NA
32-08	320832	07/10/99	267 =	900 =	113 =	590 =	1,870	NA
32-10	321032	07/10/99	2 U	2 U	2 U	3.2 J	3.2	NA
32-11	321132	07/12/99	2 U	2 U	2 U	3.2 J	3.2	NA
		Third Mo	nitoring Eve	nt – January/	February 2	000		
32-07	320742	01/28/00	1,050 J	1,040 J	154 =	684 =	2,928	NA
32-08	320842	01/28/00	233 =	754 =	122 =	593 =	2,002	NA
32-10	321042	01/28/00	1 U	1 U	0.071 J	3 U	0.071	NA
32-11	321142	01/28/00	1 U	1 U	1 U	3 U	ND	NA
		Fou	urth Monitor	ing Event – J	une 2000			
32-07	320752	06/22/00	892 =	992 =	152 =	689 =	2,655	NA
32-08	320852	06/22/00	334 =	767 =	119 =	563 =	1,783	NA
32-10	321052	06/22/00	1 U	0.27 J	1 U	3 U	0.27	NA
32-11	321152	06/22/00	1 U	0.43 J	1 U	3 U	0.43	NA
				ng Event – Ju			,	
32-07	320762	07/16/04	377 =	526 =	101 =	367 =	1,371	NA
32-08	320862	07/16/04	252 =	1,070 =	160 =	743 =	2,225	NA
32-10	321062	07/16/04	1 U	1.6 U	1 U	1 U	ND	NA
32-11	321162	07/16/04	1 U	2.1 U	1 U	1 U	ND	NA
			1	ng Event – Ju				
32-07	UST-82-32-7-7-05	07/22/05	329 =	513 =	96.2 =	433 =	1,371.2	121
32-08	UST-82-32-8-7-05	07/22/05	154 =	787 =	154 =	883 =	1,978	168
32-10	UST-82-32-10-7-05	07/22/05	2 U	2 U	2 U	2 U	ND	ND
32-11	UST-82-32-11-7-05	07/22/05	2 U	2 U	2 U	2 U	ND	ND
	m Water Quality EPD Chapter 39		71.28	200,000	28,178	NRC	NRC	NRC
Alter	nate Concentration	n Limit	1,990					

Table 2. Groundwater Analytical Results

NOTES:

Bold values exceed In-Stream Water Quality Standards.

BTEX Benzene, toluene, ethylbenzene, and xylenes.

GA EPD Georgia Environmental Protection Division.

NA Not analyzed; PAH compounds were not required as part of the Monitoring Only Plan.

ND Not detected.

NRC No regulatory criteria.

PAH Polynuclear aromatic hydrocarbon.

UST Underground storage tank.

Laboratory Qualifiers

U Indicates that the compound was not detected at the concentration reported.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

Table 3. Soil Analytical Results

Sample Location	-	-	Date Sampled	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	Total PAH (mg/kg)
	Third Semiannual Monitoring Event – January/February 2000								
32-13	321311	3.5 - 5.0	02/21/00	0.942 J	13.2 J	6.06 J	39.2 J	59.402	ND
GU	GUST Soil Threshold Levels				6.0	10.0	700.0	NRC	NRC

NOTES:

BTEX Benzene, toluene, ethylbenzene, and xylenes.

BGS Below ground surface.

GUST Georgia Underground Storage Tank.

ND Not detected; the detection limit for PAH compounds was 0.035 mg/kg.

NRC No regulatory criteria.

PAH Polynuclear aromatic hydrocarbon.

Laboratory Qualifier J Inc

Indicates that the value for the compound is an estimated value.

APPENDIX III

LABORATORY ANALYTICAL RESULTS

ANALYTICAL LABORATORY INFORMATION

The analytical laboratory use by SAIC was General Engineering Laboratories, Inc. (GEL) and the certification information is provided below.

STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

	Name of Laboratory: Address:	General Engineering Laboratories, Inc. P.O. Box 30712 2040 Savage Road Charleston, SC 29407
	Contact: Telephone number: Fax number:	Bob Pullano or Wendy Dimmick (843) 556-8171 (843) 766-1178
#1	Accrediting Authority: Accreditation Number: Effective Date: Expiration Date: Accreditation Scope:	State of South Carolina SC-10120001 Extension granted while recertification in process, January 27, 2003 March 26, 2006 SDWA, CWA, RCRA, CERCLA
#2	Accrediting Authority: Accreditation Number: Effective Date: Expiration Date: Accreditation Scope:	State of Florida E-87156 July 1, 2001 (initial and reaccredited on July 1 each year thereafter) June 30, 2006 SDWA, CWA, RCRA, CERCLA

DATA VALIDATION REASON CODES

Organic, Inorganic, and Radiological Analytical Data

Holdi	ng Times	Gas	Chromatography/Mass Spectroscopy Tuning
A01	Extraction holding times were exceeded.		Mass calibration was in error, even after applying
A02	Extraction holding times were grossly exceeded.	D01	expanded criteria.
A03	Analysis holding times were exceeded.	B02	Mass calibration was not performed every 12 hours.
A03	Analysis holding times were grossly exceeded.		Mass calibration did not meet ion abundance criteria.
A04 A05	Samples were not preserved properly.		Professional judgment was used to qualify the data.
A05 A06	Professional judgment was used to qualify the data.	D04	Toressional judgment was used to quanty the data.
	I/Continuing Calibration – Organics	In:4:	al/Continuing Colibration Inorganias
	5		al/Continuing Calibration – Inorganics
C01	Initial calibration relative response factor (RRF) was	D01	Initial calibration verification (ICV) or continuing
C 02			calibration verification (CCV) was not performed for
C02	Initial calibration relative standard deviation (RSD) was	DOO	every analyte.
G 02	>30%.		ICV recovery was above the upper control limit.
C03	Initial calibration sequence was not followed as required.		ICV recovery was below the lower control limit.
C04	Continuing calibration RRF was <0.05.		CCV recovery was above the upper control limit.
C05	Continuing calibration percent difference (%D) was		CCV recovery was below the lower control limit.
	>25%.	D06	Standard curve was not established with the minimum
C06	Continuing calibration was not performed at the		number of standards.
	required frequency.	D07	Instrument was not calibrated daily or each time the
C07	Resolution criteria were not met.	_	instrument was set up.
C08	Relative percent difference (RPD) criteria were not met.		Correlation coefficient was <0.995.
C09	RSD criteria were not met.		Mid-range cyanide standard was not distilled.
C10	Retention time of compounds was outside windows.	D10	Professional judgment was used to qualify the data.
C11	Compounds were not adequately resolved.		
C12	Breakdown of endrin or dichlorodiphenyltrichloroethane		
	(DDT) was >30%.		
C13	Combined breakdown of endrin/DDT was >30%.		
C14	Professional judgment was used to qualify the data.		
	tively Coupled Plasma and Furnace Requirements	Blan	
E01	Interference check sample recovery was outside the	F01	Sample data were qualified as a result of the method blank.
	control limit.	F02	Sample data were qualified as a result of the field blank.
E02	Duplicate injections were outside the control limit.	F03	Sample data were qualified as a result of the equipment
E03	Post-digestion spike recovery was outside the control limit.		rinsate.
E04	Method of standard additions (MSA) was required but	F04	Sample data were qualified as a result of the trip blank.
	not performed.	F05	Gross contamination exists.
E05	MSA correlation coefficient was <0.995.	F06	
E06	MSA spikes were not at the correct concentration.		below the contract-required quantitation limit (CRQL).
E07	Serial dilution criteria were not met.	F07	Concentration of the contaminant was detected at a level
E08	Professional judgment was used to qualify the data.		less than the action limit, but greater than the CRQL.
		F08	Concentration of the contaminant was detected at a level
			that exceeds the action level.
		F09	No laboratory blanks were analyzed.
		F10	Blank had a negative value >2 times the instrument
			detection limit.
		F11	Blanks were not analyzed at the required frequency.
			Professional judgment was used to qualify the data.
	gate/Radiological Chemical Recovery		rix Spike/Matrix Spike Duplicate
G01	Surrogate/radiological chemical recovery was above the	H01	Matrix spike (MS)/matrix spike duplicate (MSD)
0.0	upper control limit.	1100	recovery was above the upper control limit.
G02	Surrogate/radiological chemical recovery was below the		MS/MSD recovery was below the lower control limit.
	lower control limit.	H03	MD/MSD recovery was <10%. MS/MSD pairs exceeded the RPD limit.
000	C		MN/MND pairs exceeded the RPD limit
G03	Surrogate recovery was <10%.		
G04	Surrogate recovery was zero.	H05	No action was taken on MS/MSD limit.
	Surrogate recovery was zero. Surrogate/radiological chemical recovery data were not	H05 H06	No action was taken on MS/MSD limit. Professional judgment was used to qualify the data.
G04 G05	Surrogate recovery was zero. Surrogate/radiological chemical recovery data were not present.	H05 H06 H07	No action was taken on MS/MSD limit. Professional judgment was used to qualify the data. Radiological MS/MSD recovery was <20%.
G04 G05 G06	Surrogate recovery was zero. Surrogate/radiological chemical recovery data were not present. Professional judgment was used to qualify the data.	H05 H06 H07 H08	No action was taken on MS/MSD limit. Professional judgment was used to qualify the data. Radiological MS/MSD recovery was <20%. Radiological MS/MSD recovery was >160%.
G04 G05	Surrogate recovery was zero. Surrogate/radiological chemical recovery data were not present.	H05 H06 H07 H08	No action was taken on MS/MSD limit. Professional judgment was used to qualify the data. Radiological MS/MSD recovery was <20%.

DATA VALIDATION REASON CODES (continued)

Organic, Inorganic, and Radiological Analytical Data

Matri	x Spike	Laboratory Duplicate
I01	MS recovery was above the upper control limit.	J01 Duplicate RPD/radiological duplicate error ratio (DER)
102	MS recovery was below the lower control limit.	was outside the control limit.
I02 I03	MS recovery was solow the lower control mill. MS recovery was <30%.	J02 Duplicate sample results were >5 times the contract-
105 I04	No action was taken on MS data.	required detection limit (CRDL).
104 105	Professional judgment was used to qualify the data.	J03 Duplicate sample results were <5 times the CRDL.
105	rioressional judgment was used to quanty the data.	J04 Professional judgment was used to qualify the data.
T . 4		
	nal Area Summary	Pesticide Cleanup Checks
K01	Area counts were outside the control limits.	L01 10% recovery was obtained during either check.
K02	Extremely low area counts or performance was	L02 Recoveries during either check were $>120\%$.
	exhibited by a major drop-off.	L03 Gel permeation chromatography cleanup recoveries were
K03	IS retention time varied by more than 30 sec.	outside the control limits.
K04	Professional judgment was used to qualify the data.	L04 Florisil cartridge cleanup recoveries were outside the
		control limits.
		L05 Professional judgment was used to qualify the data.
-	t Compound Identification	Compound Quantitation and Reported CRQLs
M01	Incorrect identifications were made.	N01 Quantitation limits were affected by large off-scale peak
M02	Qualitative criteria were not met.	N02 Method detection limits reported by the laboratory
M03	Cross contamination occurred.	exceeded corresponding CRQLs.
M04	Confirmatory analysis was not performed.	N03 Professional judgment was used to qualify the data.
M05	No results were provided.	
M06	Analysis occurred outside 12-hour gas	
	chromatography/mass spectroscopy window.	
M07	Professional judgment was used to qualify the data.	
M08	The %D between the two pesticide/polychlorinated	
	biphenyl column checks was >25%.	
Tenta	tively Identified Compounds	Laboratory Control Samples
O01	Compound was suspected laboratory contaminant and	P01 Laboratory control sample (LCS) recovery was above the
	was not detected in the blank.	upper control limit.
O02	Tentatively identified compound result was not above	P02 LCS recovery was below the lower control limit.
001	10 times the level found in the blank.	P03 LCS recovery was $<50\%$.
O03	Professional judgment was used to qualify analytical	P04 No action was taken on the LCS data.
005	data.	P05 LCS was not analyzed at the required frequency.
	uuu.	P06 Radiological LCS recovery was <50% for aqueous
		samples, <40% for solid samples.
		P07 Radiological LCS recovery was >150% for aqueous
		samples, >160% for solid samples.
		P08 Professional judgment was used to qualify the data.
Tald	Durghanta	
	Duplicate	Radiological Calibration
Q01	Field duplicate RPDs were >30% for waters and/or >50% for soils.	R01 Efficiency calibration criteria were not met.R02 Energy calibration criteria were not met.
002		
Q02	Radiological DER was outside the control limit.	R03 Resolution calibration criteria were not met.
Q03	Duplicate sample results were >5 times the CRDL.	R04 Background determination criteria were not met.
Q04	Duplicate sample results were <5 times the CRDL.	R05 Quench curve criteria were not met.
		R06 Absorption curve criteria were not met.
		R07 Plateau curve criteria were not met.
		R08 Professional judgment was used to qualify the data.
	logical Calibration Verification	
S01	Efficiency verification criteria were not met.	
	Energy verification criteria were not met.	
S02		
S02 S03	Resolution verification criteria were not met.	
S02		
S02 S03	Resolution verification criteria were not met.	

FIFTH MONITORING EVENT

JULY 2004

VOLATILE	IA ORGANICS ANALYSIS	DATA SHEET	EPA SAMPLE NO.
Lab Name: GEL, LLC.	c	Contract: N/A	320762
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 11-165-1
Matrix: (soil/water)	WATER	Lab Sample ID:	117166308
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	70333
Level: (low/med)	LOW	Date Received:	07/19/04
% Moisture: not dec.		Date Analyzed:	07/29/04
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	r: 20.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)

OLM03.0

DATA VALIDATION COPY

III-4

VOLATILE	_ 1A ORGANICS ANALYSIS DATA :	SHEET	EPA SAMPLE NO.
Lab Name: GEL, LLC.	VOLATILE ORGANICS ANALYSIS DATA SHEET 320862 b Name: GEL, LLC. Contract: N/A b Code: N/A Case No.: N/A SAS No.: N/A SDG No.: 117165-1 trix: (soil/water) WATER mple wt/vol: 5.000 (g/ml) ML Lab Sample ID: 117166012 wel: (low/med) LOW Moisture: not dec. Date Analyzed: 07/29/04 Column: DB-624 ID: 0.25 (mm) Dilution Factor: 20.0		
Lab Code: N/A (Case No.: N/A SAS No	.: N/A 5DG	No.: 117165-1
Matrix: (soil/water)	WATER	Lab Sample ID:	117166012
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	70337
Level: (low/med)	LOW	Date Received:	07/19/04
% Moisture: not dec.		Date Analyzed:	07/29/04
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	r: 20.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

	1	1
71-43-2Benzene	252	=
108-88-3Toluene	1070	= F04, F01
100-41-4Ethylbenzene	160	=
1330-20-7Xylenes (total)	743	=

FORM I VOA

OLM03.0

DATA VALIDATION COPY

.

III-5

VOLATILE	5 1A ORGANICS ANALYSI	S DATA SHEET	EPA SAMPLE NO.
Lab Name: GEL, LLC.		Contract: N/A	320864
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 117165-1
Matrix: (soil/water)	WATER	Lab Sample ID:	117166013
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	7U338
Level: (low/med)	LOW	Date Received:	07/19/04
% Moisture: not dec.		Date Analyzed:	07/29/04
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 20.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

71-43-2Benzene	245	
108-88-3Toluene	1110	= F04, F08
100-41-4Ethylbenzene	161	2
1330-20-7Xylenes (total)	761	=

OLM03.0

÷

	2 1A NICS ANALYSIS DATA S		TPA SAMPLE NO.
Lab Name: GEL, LLC.	Contract	: N/A	321062
Lab Code: N/A Case	No.: N/A SAS No.	: N/A SDG No	0.: 117165-1
Matrix: (soil/water) WATE	R	Lab Sample ID: 1	17166015
Sample wt/vol: 5.00	0 (g/ml) ML	Lab File ID: 7	U417
Level: (low/med) LOW		Date Received: 0	07/19/04
% Moisture: not dec		Date Analyzed: 0	07/29/04
GC Column: DB-624 ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	.ume:(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

71-43-2Benzene	1.0	U	U
108-88-3Toluene	1.6		U F04, F07
100-41-4Ethylbenzene	1.0		U
1330-20-7Xylenes (total)	1.0		U

FORM I VOA

OLM03.0

DATA VALIDATION

a^e

III-7

VOLATILE	1A ORGANICS ANALYSIS	DATA SHEET	EPA SAMPLE NO.
Lab Name: GEL, LLC.	2	Contract: N/A	321162
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 117165-1
Matrix: (soil/water)	WATER	Lab Sample ID:	117166014
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	7U416
Level: (low/med)	LOW	Date Received:	07/19/04
% Moisture: not dec.		Date Analyzed:	07/29/04
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)

CAS NO.

CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/L

			11
71-43-2Benzene	1.0	U	4
108-88-3Toluene	2.1		U FOY, FOT
100-41-4Ethylbenzene	1.0	U	U
1330-20-7Xylenes (total)	1.0	U	4

OLM03.0

DATA VALIDATIGN COPY

1

Q

III-8

SALE	An Employee Oward Company An Employee Oward Company	ned Company											-	2			COC NO -	CUCNO . C / TN/ ND
PO 80% 2501, 161 Lalayelle Dr., Tennesses 37830 (423) 481-4600	r., Tennessee J	17830 (423) 48	1-4600		0	HAI	õ	DO =	STO	DYF	CHAIN OF CUSTODY RECORD	B				ł		READ
PBDJECT NAME: Fort Stewart LTM, D.O. 44	1 Stewart L1	TM. D.O. 44	•						REQUE	STED	REQUESTED PARAMETERS	ETERS					LABORATORY NAME	AME:
					E		-			-						0	General Engineering Laboratory	ing Laboratory
PROJECT NUMBER: 01-1055-04-6991-200	01-1055-04-	6991-200	×													1-10	LABORATORY ADDRESS:	DDRESS:
PROJECT MANAGER: PAHYSIOIL CHORN SUPPLEY	Patty Stol	- Shar	an Stolle	<	1		atshu			şn							Charleston, SC 29407	20%63
Sampler (Signature)	11 11	(Printe		0	1		2,stertil		Dioxide	nonqao						/sethol	PHONE NO: (843) 556-8171	3) 556-8171
3	1941	R	-il	5	Za T	00	trife, N	oni lett	enerite noche	del Ph						B 10 .0	OVA	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
Sample ID	Date Collected	+	Time Callected	-+	-	-	-	91	-	-	1			+	+	N 1		
330866	40/0/12		1450	when	N	-	<u>.</u>		35				-		_	v		
320702			1125		2		10.1	1. 21	÷1.	<u>.</u>	1					2		
334762			1335		2				1			-				N		
334862			1300		4			7.7 -	1	.,74		-t'				2		
334662			1220		2	-	2	2	ц	1						N		
1			1050		2	_	36		1	14	54				-	N		
9320864			050/		N			S.	15	18	- 7					2		
			2945		Ч		1	4	1		494 1		21 1.4	-	-	N		
321062		_	0160		N		• •		2	а ^с .		-34	A.,		-	7		
1 TO0402	~	~	SHEO	>	N		1.1	К.,.	3 ¹ '			•				N		
						N.	Terr		13	2121	1	1		1	11			
						-				Ц.			-					
RELINGUISHED BY	N II	Date/Tir		RECEIVED BY:				Date/Time	-	OTAL	INMBE	A OF C	TOTAL NUMBER OF CONTAINERS:	ERS:	4	22	Cooler Temperature:	ure: 82
Jet - U	1-1	bo/biHt		2. Clem	1		E	yelent	-	Cooler ID:	lä					-	FEDEX NUMBER	V/';
COMPANY NAME:		0411		COMPANY NAME:				14.30			2		5				2	V/VF
RECEDIEDE		Date/Tinge		RELINQUISHED BY:	÷		ă	Date/Time										
COMPANY NAME:		04/1		COMPANY NAME:														
HEAMBURGHERD BY:		DeterTipte	1	RECEIVED BY:			õ	Date/TIme	0									
COMPANY NAME:		1430		COMPANY NAME:													T	

cho hd

III-9

SIXTH MONITORING EVENT

JULY 2005

1A - Equivalent VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: A	nalytical Managment Laboratories	Sample ID:	UST	-82-32-7-7-0	5		
Client ID: Cl	ESAS	Project ID	Ft S	tewart, DO# 0	0005		
Matrix: W		Project Num	n 732	26	i.		
Sample g/ml:	25	Lab Sample	ID:	732617			
% Solids: not de	ЭС.	Date Collect	ted:	7/22/05	Time:	9:42	
Instrument ID	V5973B	Dilution Fac	tor:	25			
Analytical Metho	od: 8260B	Date Analyz	ed: 8	8/3/05	Time:	17:46	
Prep Method:	EPA 5030	Date Receiv	ved: 7	7/26/05 8:00:0	MA 00		
Analytical Batch	n: 2687						
CAS NO.	COMPOUND	RESULT	Units	s Q	LLR	MQL	
71-43-2	Benzene	329	µg/l		3.48	50	
100-41-4	Ethylbenzene	96.2	µg/l		2.5	50	
1634-04-4	Methyl-tert-butyl-ether	76.2	µg/l		2.5	50	
m+p xylene	m-Xylene and p-Xylene	280	µg/l		5.4	50	
91-20-3	Naphthalene	121	µg/l		3.48	50	
95-47-6	o-Xylene	153	µg/l		2.55	50	
108-88-3	Toluene	513	µg/l		2.62	50	

EPA Lab Code:KS00902 Kansas Certification:E-10254

FORM I VOA - Equivalent

1A - Equivalent VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Analytical Managment Laboratories	Sample II): UST-82-	32-8-7-05			
Client ID: CESAS	Project ID	Ft Stewa	art, DO# 00	005		
Matrix: W	Project No	m 7326				
Sample g/ml: 25	Lab Samp	ole ID: 732	2618			
% Solids: not dec.	Date Colle	ected: 7/22	/05	Time:	10:25	
Instrument ID V5973B	Dilution F	actor: 50				
Analytical Method: 8260B	Date Ana	yzed: 8/3/	05	Time:	18:10	
Prep Method: EPA 5030	Date Rec	eived: 7/26	6/05 8:00:0	0 AM		
Analytical Batch: 2687						
CAS NO. COMPOUND	RESULT	Units	Q	LLR	MQL	
71-43-2 Benzene	154	µg∕l		6.95	100	
100-41-4 Ethylbenzene	154	µg⁄l		5	100	
1634-04-4 Methyl-tert-butyl-ether		µg/l	U	5	100	
m+p xylene m-Xylene and p-Xylene	601	μ g/ 1		10.8	100	
91-20-3 Naphthalene	168	µg/l		6.95	100	
95-47-6 o-Xylene	282	µg/1		5.1	100	
108-88-3 Toluene	787	µg/l		5.25	100	

EPA Lab Code:KS00902 Kansas Certification:E-10254

FORM I VOA - Equivalent

III-14

1A - Equivalent VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: An	alytical Managment Laboratories	Sample	Sample ID: UST-82-32-10-7-05					
Client ID: CESAS		Project ID Ft Stewart, DO# 0005						
Matrix: W		Project Num 7326						
Sample g/ml: 25		Lab Sample ID: 732613						
% Solids: not dec.		Date Col	Date Collected: 7/22/05			8:00		
Instrument ID V5973B		Dilution I	actor: 1					
Analytical Method: 8260B		Date Ana	Date Analyzed: 7/27/05		Time:	21:30		
Prep Method: EPA 5030		Date Rec	Date Received: 7/26/05 8:00:00 AM					
Analytical Batch:	2666							
CAS NO.	COMPOUND	RESULT	Units	Q	LLR	MQL		
71-43-2	Benzene		µg/l	U	0.139	2		
100-41-4	Ethylbenzene		µg⁄l	U	0.1	2		
1634-04-4	Methyl-tert-butyl-ether		µg/l	U	0.1	2		
m+p xylene	m-Xylene and p-Xylene		µg/l	U	0.216	2		
91-20-3	Naphthalene		µg/l	U	0.139	2		
95-47-6	o-Xylene		µg/l	U	0.102	2		
108-88-3	Toluene		µg/l	U	0.105	2		

EPA Lab Code:KS00902 Kansas Certification:E-10254

FORM I VOA - Equivalent

<u>8833</u>
Lab Name:	Analytical Managment Laboratories	Sample	ID: UST	Г-82-32-11-7-0	5		
Client ID:	CESAS	Project I	D Ft S	itewart, DO# 00	005		
Matrix: W		Project N	um 73	26			
Sample g/ml:	25	Lab Sam	ple ID:	732614			
% Solids: not	dec	Date Col	lected:	7/22/05	Time:	8:44	
Instrument ID	V5973B	Dilution F	Factor:	1			
Analytical Met	hod: 8260B	Date Ana	alyzed:	7/28/05	Time:	11:51	
Prep Method	EPA 5030	Date Rec	ceived:	7/26/05 8:00:0	0 AM		
Analytical Ba	tch: 2667		-				
CAS NO.	COMPOUND	RESULT	Unit	s Q	LLR	MQL	
71-43-2	Benzene		µg/l	U	0.139	2	
100-41-4	Ethylbenzene		µg/l	U	0.1	2	
1634-04-4	Methyl-tert-butyl-ether		µg/l	U	0.1	2	

µg∕l

µg∕l

µg∕l

µg/l

U

U

U

U

0.216

0.139

0.102

0.105

2

2

2

2

EPA Lab Code:KS00902 Kansas Certification:E-10254

m+p xylene

91-20-3

95-47-6

108-88-3

m-Xylene and p-Xylene

Naphthalene

o-Xylene

Toluene

33722 Page 2 of 3 Chain of Custody Record / Request for Analysis	88 		Please include any information that may be useful in the analysis of the sample. Example: high concentration List analytes MS/MSD		ms/ms0			20/96/EO	ick of this form.
stody Record / I	5 fewerst b5 -Luis	antina Sector de Sector de	ante ante ante ante ante ante ante ante				Date/Time:	by Date/Time:	a conditions on the Da
Chain of Cus	Project Name: FT. STEWCH Project Number: 0005 Purchase Order Number: Project Due Date: Project Comments: Sampler's Signature: <u>ST</u> U.		Arions (specify) Explosives DRO				Shidoed	P Pate/Time: Date/Time: <t< td=""><td></td></t<>	
	Project Name: Project Number: Purchase Order Number: Project Due Date: Project Comments: Sampler's Signature: alyses/Method to be Perfor		Meteis (sbecity) Henbicides PCBs PCBs PCBs PCBs PCBs PCBs PCBs PCB				Received By:	Received By:	
		Specify method #>	à	<u>~~~</u>	-	o www. or www.	0281/Se-X-L	: aboratories, Inc. which	
	visor horpe / Ext:		HCI Total # Containers	<u>~~~</u> ~	22.0		Date/Time:	Date/Time: alytical Management Ls	
15130 South Keeler Olathe, Kansas 66062 Phone (913) 829-0101 Fax (913) 829-1181	1/ K Ha W. Ogle W. Ogle Knnak G 652-5151	1. 1. -	Time	1/ 1	0844	Chan a	wing	rondering work from An	
15130 South Keeler Olathe, Kansas 66062 Phone (913) 829-0101 Fax (913) 829-1181	1-1.00		3	04	4 4 -7-05	the subscription of the local division of the local division of the local division of the local division of the	ed By: Stue	ed By: n of custody) you are	12371557
	Client Contact Name: Company Name: Address: City, State, Zip: Phone #: Eax #:	Actor Mine	Sample Description	0.1.61-61-62-66-164 8.1.62-61-61-65-68-164 8.1.73-73-75-61-65-68-164 8.1.75-63-64-65-68-164	1-1-1-1-1-05-1-1-05 1-1-1-1-1-05 1-1-1-1-1-1-05-1-1-1-05	151-62-5-2-7-05 151-62-32-6-7-05 151-62-51-15-05 151-62-61-12-05 151-610-43-05-105	c u s Relinquished By:	Y Relinquished By:	ATT A DOL LONG TO A DOL TO A DO
K			in the continue of the B					By sig	A Numerican

APPENDIX IV

SITE RANKING FORMS

FIFTH MONITORING EVENT

JULY 2004

SITE RANKING FORM

Facility Name: UST 82, Building 1281			Ranked by: S. Stoller		r								
County	: <u>Libe</u>	erty	Facil	ity ID	#: <u>9-</u>	089029)		Date	Ranked:	09/07/20	04	
<u>SOIL C</u>	ONTAN		<u> (Rev</u>	ised ι	ising	soil da	ata co	lected	d Febru	<u>uary 2000)</u>			
A.	(Assum	AHs – um Conce ne <0.660 pred on si) mg/k				e	B.		Benzene - mum Conce	entration four	าd on	the site
	was sit		ie)							<u><</u> 0.005 m	g/kg	=	0
*	\boxtimes	<u><</u> 0.660 r	mg/kg		=	0				>0.005 -	.05 mg/kg	=	1
		>0.66 - ′	1 mg/k	g	=	10			* 🖂	>0.05 - 1	mg/kg	=	10
		>1 - 10 ı	mg/kg		=	25				>1 - 10 m	ig/kg	=	25
	□ * \$	>10 mg/ ample 3213			=	50	+ P			>10 - 50	mg/kg	=	40
		ample 3278 ample 32081		rsuper	Jedes	CAF-Fan	I D			>50 mg/k Sample 3213 Sample 32081	11 which superc	= :edes (50 CAP-Part B
C.		o Ground elow land		ce)									
		>50' bls		=	1								
		>25' - 50)' bls	=	2								
		>10' - 25	5' bls	=	5								
	\boxtimes	<u><</u> 10' bls		=	10								
Fill in t	he blan	ks: (A. <u>0</u>	_) + (E	8. <u>1</u> 0	<u>0)</u>) = (10	_) x (C	C. <u>10</u>	_) = (D. <u>1</u> (<u>) (00</u>		
CROUI			T A R <i>A</i> IR		NI								
GROUI	NUWAI	ER CON			N								
E.	liquid h	roduct (Norodation of a contract of the second seco	ons; S	ee Gu				F.	Maxi (One		ene - entration at th pe located at		
		No free	produc	ct = 0)								0
		Sheen -	1/8"	= 2	50					<u><</u> 5 µg/L			= 0
*	\boxtimes	>1/8" - 6	5"	= 5	00					>5 - 100	µg/L		= 5
		>6" - 1ft	_	= 1	,000,				* 🖂	>100 - 1,0	000 µg/L		= 50
		For ever				add an	other			>1,000 -	10,000 µg/L		= 500
	山 * 0.3	100 poir ft (3.6 in) in	nts = <u>1</u>	,000 +	-				*	>10,000 LTM Sampl	ug/L /e 320762 (July :	2004)	= 1500
Fill in t	he blan	ks:	(E. <u>5</u>	<u>00</u>)+	(F	<u>50</u>):	= (G	550	_)				

County: Liberty Facility ID #: 9-089029

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

H. Public Water Supply I. Non-Public Water Supply									
*	☐ ¼ mi - ☐ >1 mi ⊠ > 2 m For lower susc ☐ >1 mi Note: If site i	- ¼ mi - 1 mi - 2 mi i ceptibility a is in lowe i	= 0 r susceptibility			□ use the	Impacted $\leq 100'$ >100' - 500' >500' - 1/4 mi >1/4 - 1/2 mi >1/2 mi er susceptibility >1/4 mi shaded areas. ected, see attace	= = area =	25 5 2 0 as only: 0
J.	boundary to de OR UTILITY T trench may be	owngradie F RENCHE e omitted fr	Contaminant Plu ent Surface Wat S & VAULTS (From ranking if it feet above the	ers a utility s invert			e from any Free ments and craw	l spa	aces
	□ Impac □ ≤500' □ >500' □ >1,00	- 1,000'	= 500 = 50 = 5 = 2				<500' >500' - 1,000'	= = =	500 50 5 0
Fill in t	he blanks: (H.) +	(l. <u>0</u>) + ((J. <u>50</u>)	+ (M	(. <u>0</u>)	= L. <u>50</u>		
			((G. <u>550</u>)	х (L	<u>50</u>	= M. <u>27500</u>		
			((M. <u>27500</u>))+ (C	D. <u>100</u>) = N. <u>26700</u>		
Ρ.	SUSCEPTIBI	LITY ARE	A MULTIPLIER	<u>R</u>					
	If site	is located	in a Low Grour	nd-Water F	Polluti	on Susc	eptibility Area =	0.5	
	All oth	ner sites =	1						
Q.	EXPLOSION	HAZARD							
							n this release, be crawl spaces, et		detected in any
	Yes	= 200,0	00						
	🛛 No	= 0							
Fill in t	he blanks:	(N. <u>276</u>	<u>00_</u>) x (P. <u>1</u>	_) = (7	600) + (Q	<u> </u>		
			<u>(July 2004 - Fi</u> ONMENTAL SE						

SIXTH MONITORING EVENT

JULY 2005

SITE RANKING FORM

Facility	Facility Name: UST 82, Building 1281				Ranked by: S. Stoller					
County	: Libe	erty Facil	ity ID #: <u>9</u>	-089029		Date I	Ranked:	02/10/200)6	
<u>SOIL C</u>	ONTAM	<u>IINATION (Rev</u>	ised using	<u>g soil data col</u>	lected	Febru	ary 2000)			
Α.	(Assum	AHs – um Concentratio ne <0.660 mg/kg pred on site)			В.		Benzene - 1um Concer	ntration found	d on	the site
	was sic	fied on site)					<u><</u> 0.005 mg	J/kg	=	0
*	\boxtimes	<u><</u> 0.660 mg/kg	=	0			>0.0050)5 mg/kg	=	1
		>0.66 - 1 mg/k	.g =	10	*	\boxtimes	>0.05 - 1 r	ng/kg	=	10
		>1 - 10 mg/kg	=	25			>1 - 10 mg	j/kg	=	25
	□ * Se	>10 mg/kg	=	50			>10 - 50 m	ng/kg	=	40
		ample 321311 whicl mple 320811	n supercedes	CAP-Pail B			>50 mg/kg Sample 32131 Sample 320811	1 which superce	= des (50 CAP-Part B
C.		o Groundwater elow land surfa								
		>50' bls	= 1							
		>25' - 50' bls	= 2							
		>10' - 25' bls	= 5							
	\boxtimes	<u><</u> 10' bls	= 10							
Fill in t	he blan	ks: (A. <u>0</u>	_) + (B. <u>1</u>	0) = (0	_) x (C.	10) = (D. <u>10</u>	<u>0</u>)		
E.	Free Pr liquid h	ER CONTAMIN roduct (Nonaqu ydrocarbons; S inition of "sheer	eous-phas ee Guideliı		F.	Maxim (One		ne - ntration at the e located at t		
*	\boxtimes	No free produc	ct = 0				<u><</u> 5 µg/L			= 0
		Sheen - 1/8"	= 250				<u>-</u> ο μ ₉ –	a/l		= 5
		>1/8" - 6"	= 500		*		·	•		-
		>6" - 1ft.	= 1,000)	~		>100 - 1,0			= 50
	No f	For every addi 100 points = <u>1</u> ree product in July	,000 +	, add another			>10,000 µ	0,000 μg/L g/L <i>T-82-32-7-7-05</i>	(July	= 500 = 1500 2005)
Fill in tl	he blan	ks: (E. <u>0</u>	_) + (F. <u>5</u>	50_) = (G. <u>5</u>	<u>0</u>)					

County: Liberty Facility ID #: 9-089029

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

H. Public Water Supply I. Non-Public Water Su								oly	
*	□ ≤500 □ >500 □ ½ mi □ >1 m □ >1 m □ >2 n For lower sus >1 m □ >1 m Note: If site)' = i - 1 mi = i - 1 mi = ni - 2 mi = ni = sceptibility are ni = s is in lower s	2000 500 25 10 2 0 eas only: 0 susceptibility a drawal point is p		t use] ≤] >] >] > or lower] > s the sł		= = area =	25 5 2 0 as only: 0
J.	boundary to o OR UTILITY trench may b	downgradient TRENCHES be omitted from	ntaminant Plum Surface Water & VAULTS (a m ranking if its i set above the w	rs utility invert		basem	from any Free ents and craw	/l spa	aces
	<u><</u> 500)' =)' - 1,000' =	500 50 5 2] <] >	mpacted :500' •500' - 1,000' •1,000' or to free product	= = =	500 50 5 0
Fill in t	he blanks: (F	H. <u>0</u>)+([I. <u>0</u>) + (J.	<u>50</u>) +	(K	0)	= L. <u>50</u>		
			(G	. <u>50</u>) x	(L	<u>50</u>)	= M. <u>2500</u>		
			(M	. <u>2500</u>) +	(D	<u>100</u>)	= N. <u>2600</u>		
Ρ.	SUSCEPTIB	ILITY AREA	MULTIPLIER						
	If site	e is located in	a Low Ground	-Water Poll	lution	Susce	ptibility Area =	0.5	
	All ot	ther sites = 1							
Q.	EXPLOSION	I HAZARD							
			eum vapors, po utility trenches						detected in any
	Yes	= 200,000)						
	No No	= 0							
Fill in t	he blanks:	(N. <u>2600</u>	_) x (P. <u>1</u>)	= () + (0	ຊ. <u>0</u>	_)		
			<u>ly 2005 - Sixth</u> IMENTAL SEN						

ADDITIONAL GEOLOGIC AND HYDROGEOLOGIC DATA

The following provides supplemental information to Item H of the Site Ranking Form. It also provides details relating to the geologic and hydrogeologic conditions at Fort Stewart that support Fort Stewart's determination that the water withdrawal points located at the site are not hydraulically connected to the surficial aquifer.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward-dipping strata that increase in thickness from 0 ft at the fall line, located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 ft at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 ft below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 ft thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 ft thick and dominated by limestone, with a 175-ft-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 ft to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately 1/4 mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-ft section, the lowermost 110 ft of which consisted predominantly of limestone sediments, above which 245 ft of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 ft of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 in. in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 in. The subsoil is predominantly sandy clay loam and extends to a depth of 72 in. or more (Herrick and Vochis 1963).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, Ocala Group, and Suwannee Limestone. These formations are approximately 800 ft thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 to 150 ft in thickness. This aquifer is used primarily for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 to 10 ft BGS (Geraghty and

Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 to 50 ft BGS; therefore, the effective aquifer thickness would be approximately 35 to 45 ft. Soil surveys for Liberty and Long Counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian Aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 to 90 ft. The vertical hydraulic conductivity of this confining unit is on the order of 10^{-8} cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie, Markshead, and Parachula, listed from youngest to oldest.

The Coosawhatchie Formation is predominantly composed of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 ft thick in the Savannah, Georgia, area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 ft thick in the Savannah, Georgia, area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite and is approximately 10 ft thick in the Savannah, Georgia, area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the underground storage tank (UST) investigation sites is part of the surficial aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Fort Stewart.

3.0 REFERENCES

Arora, Ram 1984. *Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia*, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Herrick, S.M., and R.C. Vochis 1963. *Subsurface Geology of the Georgia Coastal Plain*, Georgia Geologic Survey Information Circular 25.
- Looper, Edward E. 1980. *Soil Survey of Liberty and Long Counties, Georgia*, U. S. Department of Agriculture, Soil Conservation Service.
- Miller, James A. 1990. *Groundwater Atlas of the United States*, U. S. Department of the Interior, U. S. Geological Survey, Hydrologic Inventory Atlas 730G.

APPENDIX V

REIMBURSEMENT APPLICATION

Fort Stewart is a federally owned facility and has funded the investigation for the Underground Storage Tank (UST) 82 site, Building 1281, Facility ID #9-089029, using U. S. Department of Defense Environmental Restoration Account Funds. Application for Georgia UST Trust Fund reimbursement is not being pursued at this time.

ATTACHMENT A

SUMMARY OF FATE AND TRANSPORT MODELING RESULTS

A.1 FATE AND TRANSPORT MODELING

In summary, the Analytical Transient 1-, 2-, 3-Dimensional Model was used to model contaminant migration to two potential downgradient receptors: a drainage ditch located approximately 1,000 ft southwest of the site and Mill Creek located approximately 3,300 ft southwest of the site. An industrial wastewater line and a storm drain located 5 and 100 ft, respectively, south of the site are above the water table and were not considered potential preferential pathways for contaminant migration during the fate and transport (F&T) modeling conducted during the Corrective Action Plan (CAP)–Part B Report (SAIC 1999).

A.1.1 Summary of CAP-Part B Report Fate and Transport Modeling Results

The F&T modeling performed as part of the CAP–Part B Report reflected a continuous source of contamination of infinite duration at the site based on the maximum observed benzene concentration in groundwater (i.e., $3,450 \ \mu g/L$ in temporary piezometer 32-01 in September 1996). Based on the modeling results, the estimated dilution attenuation factor (DAF) for benzene at the drainage ditch is 84,000, while the DAF at Mill Creek is infinity. The modeling results indicated that benzene would not reach the drainage ditch at concentrations above the In-Stream Water Quality Standard (IWQS). No detectable concentrations of benzene were predicted to reach Mill Creek. An alternate concentration limit (ACL) of 420,000 μ g/L was developed during the CAP–Part B Report based on the maximum contaminant level (MCL) for benzene and the DAF for the drainage ditch determined during the CAP–Part B F&T modeling. The IWQS could have been used as the regulatory level because the surficial aquifer is not a drinking water aquifer, and the most likely receptor for the surficial aquifer is a surface water body.

A.1.2 Summary of Second Annual Monitoring Only Report Fate and Transport Modeling Results

As a result of the benzene concentrations observed during the 2 years of semiannual monitoring, the F&T modeling results were revised in the Second Annual Monitoring Only Report (SAIC 2000) to reflect more recent site conditions assuming a continuous source of contamination and using the maximum observed benzene concentration in groundwater during the semiannual monitoring events (i.e., 1,050 μ g/L in well 32-07 during the third semiannual sampling event in January 2000). The benzene concentrations in wells 32-07 and 32-08 were used in calibrating the model. Well 32-07 is located approximately 50 ft south of the tank pit; therefore, the source area was assumed to be located between wells 32-07 and 32-08, and the maximum predicted concentration of benzene in the assumed source area was 2,440 μ g/L. A near steady-state source was assumed for conservatism. The source, together with hydraulic conductivity and longitudinal dispersivity, was re-evaluated through the calibration process and modified from the original F&T modeling presented in the CAP–Part B Report. The source was calibrated as a 26.8-mg/hr continuous pulse for 5 years and was assumed to be a 20- by 10-ft area located between wells 32-07 and 32-08.

The receptor locations remained the same as those in the previous F&T modeling and included the storm drain to provide a more conservative DAF. Based on the revised modeling results, the DAF for benzene is 27.9 at the storm drain, infinity at the drainage ditch, and infinity at Mill Creek. Benzene is the only constituent that exceeds its IWQS of 71.28 μ g/L. By using the results of the F&T modeling performed as part of this Second Annual Monitoring Only Report, the ACL would become infinity as a result of the infinite DAF at the drainage ditch; therefore, a DAF to the storm drain was calculated and used as a conservative approach to revising the ACL in conjunction with the IWQS. The revised ACL for benzene is 1,990 μ g/L.

A.1.1 FATE AND TRANSPORT MODELING CONCLUSIONS

The conclusions presented in the bulleted list below are based on the revised F&T modeling, which assumed that the source was a continuous pulse for 5 years at the site based on the maximum observed benzene concentration (i.e., 1,050 μ g/L) in groundwater during the semiannual monitoring events. The continuous pulse was used to calibrate the model based on the results of semiannual sampling.

- Benzene concentrations in groundwater do not exceed the ACL of 1,990 µg/L in any of the wells at the site and have not exceeded the ACL during the CAP–Part A investigation, CAP–Part B investigation, and four semiannual sampling events.
- Benzene does not impact the closest downgradient receptors—a storm drain located 100 ft downgradient of the site and a drainage ditch located 1,000 ft downgradient—at concentrations above the IWQS.

A.2 REFERENCES

- SAIC (Science Applications International Corporation) 1999. *CAP–Part B Report for UST 82, Facility ID* #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, March.
- SAIC 2000. Second Annual Monitoring Only Report for UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, November.

ATTACHMENT B

REFERENCES

REFERENCES

- Logan, William E., 2000a. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Branch) with approval of the First Annual Monitoring Only Report for UST 82, January 25.
- Logan, William E., 2000b. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Branch) with Notice to Implement the Corrective Action Plan–Part B for UST 82, April 3.
- Logan, William E., 2001. Letter to Gregory Stanley (Fort Stewart Directorate of Public Works, Environmental Branch) with review comments on the Second Annual Monitoring Only Report for UST 82, August 31.
- SAIC (Science Applications International Corporation) 1997. *CAP–Part A Report for UST 82, Facility ID* #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, May.
- SAIC 1999a. CAP-Part B Report for UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, March.
- SAIC 1999b. First Annual Monitoring Only Report for UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, October.
- SAIC 1999c. First Semiannual Monitoring Progress Report UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, May.
- SAIC 2000a. Second Annual Monitoring Only Report for UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, November.
- SAIC 2000b. Third Semiannual Monitoring Only Report UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, May.
- SAIC 2004. Fifth Semiannual Monitoring Only Report UST 82, Facility ID #9-089029, Building 1281, Fort Stewart, Georgia, Oak Ridge, Tennessee, September.

ATTACHMENT C

CERTIFICATES OF ANALYSIS

CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY FORM

JULY 2004

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Drive	2								
	Oak Ridge, Tenness	see 37831				-				
						Rej	port Date: Aug	ust 30, 2	2004	
Contact:	Ms. Leslie Barbour								c	•
Project:	Ft. Stewart LTM	D.O. 44					Pag	e I	of	2
	Client Sample ID Sample ID: Matrix: Collect Date: Receive Date: Collector:	117166 Water	-04 11:25		Proie Clier		SAIC06001 SAIC060			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Federa	a a constant	· · · · · · · · · · · · · · · · · · ·								
5035/8260B BTEX in Li	quid Federal									
Benzene		377	6.60	20.0	ug/L	20	DLS 07/29/04	0318	352911	l
Ethylbenzene		101	4.20	20.0	ug/L	20				
Toluene		527	7.80	20.0	ug/L	20				
Xylenes (total)		367	5.00	20.0	ug/L	20				
The following Analytics	al Methods were pe	rformed								
Method	Description			A	analyst Comm	ents				
1	SW846 8260B	,								
Surrogate/Tracer recove	ery Test				Recovery%	Accer	otable Limits			
Bromofluorobenzene	5035/82601	3 BTEX in Liquic	Federal		92	(76	5%-115%)			
Dibromofluoromethane	5035/82601	B BTEX in Liquic	I Federal		99	(72	2%-136%)			
Toluene-d8	5035/82601	B BTEX in Liquic	l Federal		101	(80	0%-116%)			
		-								

Notes:

The Qualifiers in this report are defined as follows :

Target analyte was detected in the sample as well as the associated blank. В

Concentration of the target analyte exceeds the instrument calibration range. Ε

Analytical holding time exceeded. Н

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J

The response between the confirmation column and the primary column is >40%D. Ρ

Indicates the target analyte was analyzed for but not detected above the detection limit. U

Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details. Х

Y QC Samples were not spiked with this compound.

Sample preparation or preservation holding time exceeded. h

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831			
	Our Muge, remessee 57657			Report Date: August 30, 2004
Contact:	Ms. Leslie Barbour			
Project:	Ft. Stewart LTM D.O. 44			Page 2 of 2
	Client Sample ID: 320762 Sample ID: 117166008			Project: SAIC06001 Client ID: SAIC060
Parameter	Qualifier Result	DL	RL	Units DF AnalystDate Time Batch Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

len P ain

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC										
Address :	151 Lafayette Driv	e									
	Oak Ridge, Tennes	see 378	31				n				
Contact:	Ms. Leslie Barbou	r					Re	port Date: Aug	gust 30, 2	2004	
Project:	Ft. Stewart LTM	D.O. 44						Pa	ge l	of	2
	~ ~ ~ ~ ~	_						0 + T 00 (00 1			
	Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:):	320862 117166012 Water 16-JUL-04 10:5 19-JUL-04 Client	50		Proie Clier	ect: nt ID:	SAIC06001 SAIC060			
Parameter	Qualifier	Result	t	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Federa	al										
5035/8260B BTEX in Li	iquid Federal										
Benzene		252		6.60	20.0	ug/L	20	DLS 07/29/0	4 0506	352911	1
Ethylbenzene		160		4.20	20.0	ug/L	20				
Toluene		1070		7.80	20.0	ug/L	20				
Xylenes (total)		743		5.00	20.0	ug/L	20				
The following Analytics	al Methods were pe	rformed	đ								
Method	Description					Analyst Comm	ents				
1	SW846 8260B										
Surrogate/Tracer recove	ery Test					Recovery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	B BTEX	in Liquid Federal			93	(7)	6%-115%)			
Dibromofluoromethane	5035/8260	B BTEX	in Liquid Federal			103	(72	2%-136%)			
Toluene-d8	5035/8260	B BTEX	in Liquid Federal			95	(8	0%-116%)			
Notes:											

The Qualifiers in this report are defined as follows :

B Target analyte was detected in the sample as well as the associated blank.

E Concentration of the target analyte exceeds the instrument calibration range.

H Analytical holding time exceeded.

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

P The response between the confirmation column and the primary column is >40%D.

U Indicates the target analyte was analyzed for but not detected above the detection limit.

X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive							
Address .	Oak Ridge, Tennessee 37831			_				
Contact:	Ms. Leslie Barbour			ł	Report Date: A	ugust 30, 2	2004	
Project:	Ft. Stewart LTM D.O. 44				P	age 2	of	2
	Client Sample ID: 320862 Sample ID: 117166012			Project: Client ID:	SAIC06001 SAIC060			
Parameter	Qualifier Result	DL	RL	Units DF	AnalystDate	e Time	Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

ali an

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 3'	7831								
		001				Repo	ort Date: Aug	ust 30, 20()4	
Contact:	Ms. Leslie Barbour									
Project:	Ft. Stewart LTM D.O. 4	4					Pag	je l o	of 2	
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:	320864 117166013 Water 16-JUL-04 10:50 19-JUL-04 Client			Projec Client		AIC06001 AIC060			
Parameter	Qualifier Resu	lt	DL	ŖL	Units	DF A	AnalystDate	Time B	latch N	lethod
Volatile Organics Federa	al									
5035/8260B BTEX in Li	iquid Federal									
Benzene	24	5 (5.60	20.0	ug/L	20 E	DLS 07/29/04	0533 35	2911	1
Ethylbenzene	16	-	4.20	20.0	ug/L	20				
Toluene	111	-	7.80	20.0	ug/L	20				
Xylenes (total)	76	1 :	5.00	20.0	ug/L	20				
The following Analytics	al Methods were perform	ed								
Method	Description			1	Analyst Comme	nts				
1	SW846 8260B	····							• • ••	
Surrogate/Tracer recov	ery Test				Recovery%	Accepta	able Limits			
Bromofluorobenzene	5035/8260B BTE	X in Liquid Federal			93	(76%	-115%)			
Dibromofluoromethane		X in Liquid Federal			105	•	5-136%)			
Toluene-d8		X in Liquid Federal			95	(80%	-116%)			

Notes:

The Qualifiers in this report are defined as follows :

В Target analyte was detected in the sample as well as the associated blank.

Ε Concentration of the target analyte exceeds the instrument calibration range.

Η Analytical holding time exceeded.

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

The response between the confirmation column and the primary column is >40%D. Ρ

U Indicates the target analyte was analyzed for but not detected above the detection limit.

Х Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :									
Address :	151 Lafayette Drive Oak Ridge, Tennessee 37831								
Contact:	Ms. Leslie Barbour			Ŧ	Report Date:	August	30, 2	004	
Project:	Ft. Stewart LTM D.O. 44					Page	2	of	2
	Client Sample ID: 320864 Sample ID: 117166013			Proiect: Client ID:	SAIC060 SAIC060				
Parameter	Qualifier Result	DL	RL	Units DF	AnalystD				Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

1 Ilale. kini

Reviewed by

2040 Savage Road. Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC										
Address :	151 Lafayette Dri	ve									
	Oak Ridge, Tenne	essee 378	31						•••		
Contact:	Ms. Leslie Barbou	ır				K	eport Da	ate: Aug	ust 30, 2	2004	
Project:	Ft. Stewart LTM	I D.O. 44						Pag	e l	of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	321062 117166015 Water 16-JUL-04 09:10 19-JUL-04 Client		Proi Clie	ect: nt ID:	SAIC SAIC				
Parameter	Qualifier	Result	Ľ	DL RL	Units	DF	Analy	ystDate	Time	Batch	Method
Volatile Organics Federal	I										
5035/8260B BTEX in Lig	uid Federal										
Benzene	U	ND	0.3	30 1.00	ug/L	1	DLS	07/29/04	1841	352911	1
Ethylbenzene	U	ND	0.2	10 1.00	ug/L	1					
Toluene		1.57	0.3	90 1.00	ug/L	1					
Xylenes (total)	U	ND	0.2	50 1.00	ug/L	1					
The following Analytical	Methods were p	erformed	l								
Method	Description				Analyst Comm	ents					
1	SW846 8260B										
Surrogate/Tracer recover	ry Test				Recovery%	Acce	ptable]	Limits			
Bromofluorobenzene	5035/8260)B BTEX	in Liquid Federal		93	(7	6%-115	%)			
Dibromofluoromethane	5035/8260)B BTEX	in Liquid Federal		107	(7	2%-136	%)			
Toluene-d8	5035/8260)B BTEX	in Liquid Federal		96	(8	0%-116	%)			

Notes:

The Qualifiers in this report are defined as follows :

В Target analyte was detected in the sample as well as the associated blank.

Ε Concentration of the target analyte exceeds the instrument calibration range.

Analytical holding time exceeded. Η

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J

P The response between the confirmation column and the primary column is >40%D.

U Indicates the target analyte was analyzed for but not detected above the detection limit.

Х Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

Y QC Samples were not spiked with this compound.

Sample preparation or preservation holding time exceeded. h

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 378	31							
Contact:	Ms. Leslie Barbour	51				Report Date:	August 30, 2	2004	
Project:	Ft. Stewart LTM D.O. 44						Page 2	of 2	2
	Client Sample ID: Sample ID:	321062 117166015			Project: Client II				
Parameter	Qualifier Result	-	DL	RL	Units	DF AnalystD			Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

le an Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive							
	Oak Ridge, Tenness	ee 3/831				Report Date: Aug	ust 30, 2004	
Contact:	Ms. Leslie Barbour							
Project:	Ft. Stewart LTM I	0.0. 44				Pag	e 1 of 2	
	Client Sample ID Sample ID: Matrix: Collect Date: Receive Date: Collector:	: 321162 117166014 Water 16-JUL-04 19-JUL-04 Client	09:45		Proie Clier			
Parameter	Qualifier	Result	DŁ	RL	Units	DF AnalystDate	Time Batch Metho	d
Volatile Organics Federa	1					····		
5035/8260B BTEX in Lie	guid Federal							
Benzene	U	ND	0.330	1.00	ug/L	1 DLS 07/29/04	1814 352911 1	
Ethylbenzene	U	ND	0.210	1.00	ug/L	1		
Toluene		2.10	0.390	1.00	ug/L	1		
Xylenes (total)	U	ND	0.250	1.00	ug/L	1		
The following Analytica	l Methods were per	formed						
Method	Description				Analyst Comm	ents		
1	SW846 8260B		-					
Surrogate/Tracer recove	ry Test				Recovery%	Acceptable Limits		
Bromofluorobenzene	5035/8260B	BTEX in Liquid Fe	deral		87	(76%-115%)	· · · · · · · · · · · · · · · · · · ·	
Dibromofluoromethane	5035/8260B	BTEX in Liquid Fe	deral		102	(72%-136%)		
Toluene-d8	5035/8260B	BTEX in Liquid Fe	deral	<i></i>	92	(80%-116%)		

Notes:

The Qualifiers in this report are defined as follows :

В Target analyte was detected in the sample as well as the associated blank.

Ε Concentration of the target analyte exceeds the instrument calibration range.

Н Analytical holding time exceeded.

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J

Ρ The response between the confirmation column and the primary column is >40%D.

U Indicates the target analyte was analyzed for but not detected above the detection limit.

Х Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC								
Address :	151 Lafayette Drive								
	Oak Ridge, Tennessee 37831								
				R	eport Date: A	August	30, 2	.004	
Contact:	Ms. Leslie Barbour								
Project:	Ft. Stewart LTM D.O. 44]	Page	2	of	2
	Client Sample ID: 321162 Sample ID: 117166014			Project: Client ID:	SAIC06001 SAIC060				
Parameter	Qualifier Result	DL	RL	Units DF	AnalystDat	ie Ti	ime	Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

an Reviewed by

PO Box 2501, 151 Lafayette Dr., Tennesi	r., Tennessee 37830 (4	e 37830 (423) 481-4600			AHO	0 N	CHAIN OF CUSTODY RECORD	STO	R YO	E CO	B				COC NO.: (5	COC NO :: G LTN/43
PROJECT NAME: Fort Stewart LTM, D.O. 44	Stewart LTM, D.	.0.	· .		\vdash	E	"								General Engineering Laboratory	ring Laboratory
PROJECT NUMBER: 01-1055-04-8991-200	1-1055-04-8991-:	200													LABORATORY ADDRESS	VDDRESS:
PROJECT MANAGER: Party Stoll- Charan Stoller	Petty Stuff-	Norm SI	bler	1		ətetlu			sn					۸(مر د.	Charleston, SC 29407	00 29407
Sampler (Signature)		(Printed Name)	2	T		S,stertiN	uo.	ebixoid r	nordson					\sethod	PHONE NO: (843) 556-8171	3) 556-8171
Sample ID	Date Collected	1472(c(A /-/- (liected Time Collected	Incred Matrix	XJT8		,etintiv	ebitiu2 ni latoT	Methen	d latoT	<u> </u>				~~ ~N	SCREENING	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
33,0806	7116/04	1450	a with	N										2		
320762		1125		2										4		
334762		1335	5	2										2		
334862		1300	0	7											2	
330662		1220	0	2										2		
320862		1020	p	2										2		
320364		050/		2										•	2	
321162		2945	دی	4										<u>`</u>	2	
321062		0160		2						0			_		2	
700402	>	SHEO	> >	2										2		
					ģ	Ì	A B	11914	کر							
				П		5										
				 												
RELINGUISHED BY		Date/Time	RECEIVED BY:				Date/Time		DTAL N	UMBEF	I OF CO	TOTAL NUMBER OF CONTAINERS:	ŝ	2	_	ture: & C
COMPANY NAME:		at 1/ bolk/4	COMPANY NAME			<u> </u>	versi Versi		Cooler ID:			123				#: W/4
RECEIVED AND	Nº Nº	Date/Time	RELINQUISHED BY:	ž			Date/Time		0	~	3	DRIGINAL	2		SC K	COC LOCATED
COMPANY NAME:		1140	COMPANY NAME:					-	Z		LS1		5			FIFTH ANNUM
RELANDOUGHED BY:		Date/Tinde	RECEIVED BY:			u	Date/Time		Ź	6	E	8	Z	5	oucy	MONITORINA ONLY REPORT
COMPANY NAME:			COMPANY NAME:													

pg 30 3

CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY FORM

JULY 2005

Certificate of Analysis

August 22, 2005

Mr. Mark Harvison Project Chemist, CESAS-EN-GG U.S. Army Corps of Engineers, Savannah District 100 W. Oglethorpe Ave. P. O. Box 889 Savannah, GA 31401-3640 Phone: 912-652-5151 Fax: 912-652-5311

Dear Mr. Harvison:

Project Name: Ft Stewart W912-HN-05-D-0013, Task Order No. 0005 AML Work Order Number: 7326

Attached, please find the hardcopy analytical report (_______ total pages) for environmental samples collected by USACE-SAV for the project described above. Problems encountered in the analysis of these samples are documented in the laboratory case narrative. The electronic data deliverables (EDDs) for this report will be e-mailed within a few days of this report. Please feel free to contact me by phone (913-829-0101-ext. 24), fax (913-829-1181) or email (klindquist@amlabinc.com) if you have any questions.

pectfully Submitted. ndall L. Lindquist, MBA

Operations Manager

The test results contained within this report meet or exceed the requirements of NELAC and/or the specific certification program that is applicable. NELAP Accrediting Authority : Kansas Department of Health and Environment

- Safe Drinking Water Act (Drinking Water)
- Clean Water Act (Waste Water)
- Soil/Hazardous Waste

Certificate Number: E-10254 - Effective Date: 05/01/2005 - Expiration Date: 04/30/2005 Florida: E87892 North Carolina: 627 South Carolina: 76003001

NACCORDA

Lab Name: A	nalytical Managment Laboratories	Sample II): UST-	82-32-7-7-0	5	
Client ID: _Cl	ESAS	Project ID	Ft St	ewart, DO# (0005	·
Matrix: <u>W</u>		Project N				
Sample g/ml:	25	Lab Samp	ke ID:	732617		
% Solids: not de	IC.	Date Colk		/22/05	Time:	9:42
Instrument ID	V5973B	Dilution Fr				
Analytical Metho	od: 8260B	Date Anal		/3/05	Time:	17: 46
Prep Method:	EPA 5030	Date Rece		/26/05 8:00:0		
Analytical Batch	n: <u>2687</u>					
CAS NO.	COMPOUND	RESULT	Units	Q	LLR	MQL
71-43-2	Benzene	329	µg/l	-	3.48	50
100-41-4	Ethylbenzene	96.2	μ g/ Ι		2.5	50
1634-04-4	Methyl-tert-butyl-ether	76.2	μ g/ Ι		2.5	50
m+p xylene	m-Xylene and p-Xylene	280	μg/1		5.4	50
91-20-3	Naphthalene	121	μg/l		3.48	50
95-47-6	o-Xylene	153	µg⁄l		2.55	50
108-88-3	Toluene	513	μgΛ		2.62	50

EPA Lab Code:KS00902 Kansas Certification:E-10254

Lab Name: Ana	alytical Managment Laboratories	Sample ID	UST-	82-32-8-7-05			
Client ID: CES	AS	Project ID	Ft Ste	wart, DO# 00)05		
Matrix: W		Project Nu	m 732	6			
Sample g/ml: 2	5	Lab Samp	le ID: 7	/32618			
% Solids: not dec.	······································	Date Colle	 cted: 7/	22/05	Time:	10:25	
Instrument ID V	5973B	Dilution Fa		0			
Analytical Method:	8260B	Date Analy	/zed: 8/	3/05	Time:	18:10	
Prep Method: _E	EPA 5030	Date Rece	ived: 7/	26/05 8:00:0	0 AM		
Analytical Batch:	2687						
CAS NO.	COMPOUND	RESULT	Units	Q	LLR	MQL	
71-43-2	Benzene	154	μ ο/ Ι		6.95	100	
100-41-4	Ethylbenzene	154	μg/I	,	5	100	
1634-04-4	Methyl-tert-butyl-ether		μ g/ Ι	U	5	100	
m+p xylene	m-Xylene and p-Xylene	601	µ g/1		10.8	100	
91-20-3	Naphthalene	168	μg/l		6.95	100	
95-47-6	o-Xylene	. 282	μ g/		5.1	100	
108-88-3	Toluene	787	μg/l		5.25	100	

EPA Lab Code:KS00902 Kansas Certification:E-10254

Lab Name:	Analytical Managment Laboratories	Sample I	D: UST-82	-32-10-7-0	5		
Client ID:	CESAS	Project II	D Ft Stew	art, DO# 0	005		
Matrix: W		Project N	um 7326				
Sample g/ml:	25	Lab Sam	ple ID: 73	2613			
% Solids: not	dec	Date Col	ected: 7/22	2/05	Time:	8:00	
Instrument ID	V5973B	Dilution F	actor: 1				
Analytical Met	hod: 8260B	Date Ana	lyzed: 7/27	7/05	Time:	21:30	
Prep Method:	EPA 5030	Date Rec	eived: 7/26	5/05 8:00:0	0 AM		
Analytical Ba	tch: 2666						
CAS NO.	COMPOUND	RESULT	Units	Q	LLR	MQL	
71-43-2	Benzene		μg/l	U	0.139	2	
100-41-4	Ethylbenzene		µg/l	U	0.1	2	
1634-04-4	Methyi-tert-butyi-ether		µg/l	U	0.1	2	
m+p xylene	m-Xylene and p-Xylene		µg/l	U	0.216	2	
91-20-3	Naphthalene		µg/l	U	0.139	2	
95-4 7-6	o-Xylene		µg/1	U	0.102	2	
108-88-3	Toluene		µ g/ 1	U	0.105	2	

EPA Lab Code:KS00902 Kansas Certification:E-10254

Lab Name: An	alytical Managment Laboratories	Sample	ID: UST	-82-32-11-7-0	5		
Client ID: CE	SAS	Project I		tewart, DO# 0			
Matrix: W		Project N					
Sample g/ml: _2	25	Lab Sam	iple ID:	732614		·····	<u> </u>
% Solids: not dec		Date Col	lected:	7/22/05	Time:	8:44	
Instrument ID	/5973B	Dilution F	actor:	1			
Analytical Method	i: 8260B	Date Ana	ulyzed: 7	7/28/05	Time:	11:51	
Prep Method:	Prep Method: EPA 5030		zeived: 7	7/26/05 8:00:0	- Contraction of the Contraction		
Analytical Batch:	2667						
CAS NO.	COMPOUND	RESULT	Units	5 Q	LLR	MQL	
71-43-2	Benzene		µg/1	Ŭ	0.139	2	
100-41-4	Ethylbenzene		µg/l	U	0.1	2	
1634-04-4	Methyl-tert-butyl-ether		µg/l	U	0.1	2	
m+p xyiene	m-Xylene and p-Xylene		μg/l	U	0.216	2	
91-20-3	Naphthalene		µg/1	Ū	0.139	2	
95-47- 6	o-Xylene		μg/l	Ŭ	0.102	2	
108-88-3	Toluene		μg/I	Ŭ	0.105	2	

EPA Lab Code:KS00902 Kansas Certification:E-10254

33722 Page 2 of 3 Request for Analysis		Please include any information that may be useful in the analysis of the sample. Example: high concentration List analyses MSAMSD	Comments:	ms/ms0	<u>20/96/F0</u>	ack of this form.
ody Record /	Stewerr bS Thread				Date/Time:	ing conditions on the back of this form.
Page Chein of Custody Record / Reque	ne: F7, S er: D D 0 te: 12, S te: 12, S te: 15, S te: 15, S te: 10, S te: 10	sevies (conversion)	3		Land Charles	
	Project Name: F1. 51 e.M.cu. / Project Number: 0005 Purchase Order Number: 0005 Project Due Date: Project Comments: Sampler's Signature: Analyses/Method to be Performed (check all that apply)	HO HO HO HO HO HO HO HO HO HO HO HO HO H			ed By: 50	
	Purchas F Pr San Analyses/M	^ <u> </u>		- AMM mm	7-15 45/1 500 Received By: Received By:	Inc. which constitu
	r Ave	1. C 1. C			Date/Time: 7-25-65 Date/Time: 7-25-65	ment Laboratories,
	there Ext	K T T T T T T T T T T T T T	C M M G		Date Date	I Analytical Manageme
15130 South Keeler Olathe, Kansas 66062 Phone (913) 829-0101 Fax (913) 829-1181	KAK KAK		0000 0000 0000 0000	103 0 12	eluito	ordering work from
15130 South Keeler Olathe, Kansas 660 Phone (913) 829-01 Fax (913) 829-1181		ption Date	6M.	1-05 7-05 7-05 7-05 7-05	IBy: Btec (of custody) you are
	Client Contact Name: Company Name: Address: City, State, Zp: Fax #: Email:	Sample Description	<u> </u>	Trie Blank 151-82-0401-7-05 151-82-32-7-7-05 151-82-514-7-05 151-82-514-7-05 151-810-43-06-7-05	c s Relinquished By: 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	By signing the request (chain of custody) you are ordering work from Analytical Management Laboratories, inc. which constitutes the acception of the state of the
		C-20				By signing