FINAL

IMA

THIRD ANNUAL MONITORING ONLY REPORT

Underground Storage Tank 122 Facility ID #9-089083 Building 7705 Fort Stewart, Georgia

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-02-D-0004 Delivery Order 0021

November 2003

THIRD ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANK 122 FACILITY ID #9-089083 BUILDING 7705

FORT STEWART, GEORGIA

Prepared for

U.S. Army Corps of Engineers, Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-02-D-0004 Delivery Order 0021

Prepared by

Science Applications International Corporation 151 Lafayette Drive Oak Ridge, TN 37830

November 2003

TABLE OF CONTENTS

		Page
LIS	T OF ABBREVIATIONS AND ACRONYMS	iii
I.	REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II.	PROJECT SUMMARY	2
III.	ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS A. Potentiometric Data B. Analytical Data	3
IV.	SITE RANKING	4
V.	CONCLUSIONS/RECOMMENDATIONS	5
VI.	REIMBURSEMENT	6
List	of Appendices	
Fig Fig Fig Fig Fig APl Tab	PENDIX I: REPORT FIGURES ure 1. Location Map of UST 122 at Fort Stewart, Liberty County, Georgia ure 2a. Potentiometric Surface Map of the UST 122 Site (January 2003) ure 2b. Potentiometric Surface Map of the UST 122 Site (June 2003) ure 3a. Groundwater Quality Map for the UST 122 Site (January 2003) ure 3b. Groundwater Quality Map for the UST 122 Site (June 2003) ure 4. Trend of Contaminant Concentrations for the UST 122 Site PENDIX II: REPORT TABLES le 1. Groundwater Elevations	I-2 I-3 I-4 I-5 I-5 I-6 I-7 II-1 II-2
Tab	le 2. Groundwater Analytical Results	II-3
AP	PENDIX III: LABORATORY ANALYTICAL RESULTS	III-1
AP	PENDIX IV: SITE RANKING FORM	IV-1
AP	PENDIX V: REIMBURSEMENT APPLICATION	V-1
Atta	achments	
A	SUMMARY OF FATE AND TRANSPORT MODELING RESULTS	A-1
В	REFERENCES	B-1
С	CERTIFICATES OF ANALYSIS	C-1

List of Abbreviations and Acronyms

ACL	alternate concentration limit
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	Corrective Action Plan
EPA	U.S. Environmental Protection Agency
GA EPD	Georgia Environmental Protection Division
IWQS	In-Stream Water Quality Standard
MCL	maximum contaminant level
NFAR	no further action required
SAIC	Science Applications International Corporation
UST	underground storage tank
USTMP	Underground Storage Tank Management Program

MONITORING ONLY REPORT

Submittal D	ate: November 2003	Monitoring Report N	umber: 3rd Annual
For Period C	Covering: June 2002	to _June 2003	
Facility Nar	ne: UST 122, Building 7705	Street Address	East Lowe Circle (Wright Army Airfield)
Facility ID:	9-089083 City: Fort Stewa	rt County:Li	berty Zip Code: 31314
Latitude:	<u>30° 13′ 55″</u> Longitude: <u>82° 04</u>	<u>1′ 25″</u>	
Submitted b	y UST Owner/Operator:	Prepared by	Consultant/Contractor:
Name: Thomas C. Fry/ Environmental Branch			Patricia A. Stoll
Company:	U.S. Army/HQ 3d, Inf. Div. (Mech)) Company:	SAIC
Address:	Directorate of Public Works, Bldg.	1137 Address:	P.O. Box 2501
	1550 Frank Cochran Drive		
City:	Fort Stewart State: GA	City:	Oak Ridge State: TN
Zip Code:	31314-4927	Zip Code:	37831
Telephone:	(912) 767-2010	Telephone:	(865) 481-8792
Zip Code:	Fort StewartState:GA31314-4927	Zip Code:	37831

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patricia A. Stoll		
Signature:	And - a Still	
Date:	10/16/03	

22851 Georgia Stamp of

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Former Underground Storage Tank (UST) 122, Facility ID #9-089083 was located near Building 7705 at Fort Stewart, Georgia. The tank and piping were excavated and removed on June 28, 1996. Science Applications International Corporation (SAIC) performed a Corrective Action Plan (CAP)–Part A investigation in 1998 to determine the extent of petroleum contamination at the site. One vertical-profile boring and seven temporary piezometers were installed during the investigation. The CAP–Part A Report (SAIC 1999) was submitted in August 1999 and recommended monitoring only at the site. As recommended in the Monitoring Only Plan, a soil boring (75-10) and three shallow monitoring wells (75-11, 75-12, and 75-13) were installed as part of the first semiannual sampling event in January 2000. The First Semiannual Monitoring Only Report (SAIC 2000a) recommended that two additional downgradient wells be installed to further delineate the leading edge of the groundwater plume, and wells 75-14 and 75-15 were installed in June 2000. The information associated with these well installation activities was provided in the First Annual Monitoring Only Report (SAIC 2000b)

The fate and transport modeling performed as part of the CAP–Part A Report (SAIC 1999) assumed a continuous source of contamination. The fate and transport modeling results were revised in the First Annual Monitoring Only Report (SAIC 2000b) using the results from the semiannual monitoring events to calibrate the model. As a result of the third monitoring event, the fate and transport modeling was recalibrated again, and the revised results are provided in Attachment A.

The Georgia Environmental Protection Division (GA EPD) Underground Storage Tank Management Program (USTMP) conducted a technical review of the First Annual Monitoring Only Report (SAIC 2000b) and provided comments in correspondence dated September 28, 2001 (Logan 2001). GA EPD requested that the monitoring only program be continued because the benzene concentrations for the most impacted wells (75-11 and 75-12) were not below the predicted concentrations for the most recent sampling event. During a phone conversation with William Logan of GA EPD and representatives from Fort Stewart and SAIC on October 24, 2001, Fort Stewart agreed to monitor the site in January 2002, and it was agreed that the benzene alternate concentration limit (ACL) of 713 μ g/L would be used as the termination condition for the site.

The results of the third sampling event conducted in January 2002 indicated that the benzene concentration in one well exceeded the ACL of 713 μ g/L. This was the first time that the benzene ACL had been exceeded, and the Second Annual Monitoring Only Report (SAIC 2002) recommended that the monitoring only program be continued. Funding was not available for the June 2002 sampling event, so sampling was resumed in January 2003.

The purpose of the annual monitoring summarized in this report is to confirm the results of the fate and transport modeling and that natural attenuation is taking place at the site. The benzene concentrations during the sampling events conducted between January 2000 and June 2003, with the exception of those in one well in January 2002, have remained below the ACL, and the latest site ranking score is 110. Thus, a no-further-action-required (NFAR) status is being recommended for the site.

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

A. <u>Potentiometric Data</u>:

(Appendix I, Figures 2a and 2b: Potentiometric Surface Maps) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

During the sampling event in January 2003, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In January 2003, the groundwater flow direction was toward the east to southeast, and the groundwater gradient was approximately 0.0084 ft/ft. No free product was observed at the site.

During the sampling event in June 2003, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In June 2003, the groundwater flow direction was toward the east to southeast, and the groundwater gradient was approximately 0.0172 ft/ft. No free product was observed at the site.

B. <u>Analytical Data</u>:

(Appendix I, Figures 3a and 3b: Groundwater Quality Maps) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix II, Table 2: Groundwater Analytical Results) (Appendix III: Laboratory Analytical Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the fourth sampling event in January 2003, monitoring wells 75-11, 75-12, 75-13, 75-14, and 75-15 were sampled for benzene, toluene, ethylbenzene, and xylenes (BTEX) using U.S. Environmental Protection Agency (EPA) Method 8021B/8260B. Analytical results from the sampling event are summarized below.

- Benzene was detected in well 75-11 at a concentration of 46.9 μ g/L and in well 75-12 at a concentration of 0.6J μ g/L, which did not exceed the In-Stream Water Quality Standard (IWQS) of 71.28 μ g/L or the ACL of 713 μ g/L.
- Toluene was detected in only well 75-11 at a concentration of 0.39J μg/L, which did not exceed the IWQS of 200,000 μg/L.

- Ethylbenzene was detected in only well 75-11 at a concentration of 7 μ g/L, which did not exceed the IWQS of 28,719 μ g/L.
- Total xylenes were detected in only well 75-11 at a concentration of 4.4 µg/L. There is no ACL or IWQS for total xylenes; however, the concentration did not exceed the maximum contaminant level (MCL) of 10,000 µg/L.

BTEX compounds were not detected in wells 75-13, 75-14, and 75-15. The benzene concentrations at the site were below the IWQS of 71.28 μ g/L and the GA EPD–approved ACL of 713 μ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

During the fifth sampling event in June 2003, monitoring wells 75-11, 75-12, 75-13, 75-14, and 75-15 were sampled for BTEX using EPA Method 8021B/8260B. Analytical results from the sampling event are summarized below.

- Benzene was detected in well 75-11 at a concentration of 258 μ g/L and in well 75-12 at a concentration of 0.88J μ g/L. The concentration in 75-11 exceeded the IWQS of 71.28 μ g/L, but did not exceed the ACL of 713 μ g/L.
- Toluene was detected in only well 75-11 at a concentration of 2.9 μg/L, which did not exceed the IWQS of 200,000 μg/L.
- Ethylbenzene was detected in only well 75-11 at a concentration of 28 μ g/L, which did not exceed the IWQS of 28,719 μ g/L.
- Total xylenes were detected in only well 75-11 at a concentration of 134 μ g/L. There is no ACL or IWQS for total xylenes; however, the concentration did not exceed the MCL of 10,000 μ g/L.

BTEX compounds were not detected in wells 75-13, 75-14, and 75-15. The benzene concentrations at the site were below the GA EPD–approved ACL of 713 μ g/L. The benzene concentration in 75-11 exceeded the IWQS of 71.28 μ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

As recommended in the CAP–Part A Report (SAIC 1999), polynuclear aromatic hydrocarbon analysis for groundwater was not suggested as part of the Monitoring Only Plan for the site.

IV. SITE RANKING (NOTE: RE-RANK SITE AFTER EACH MONITORING EVENT.) (Appendix IV: Site Ranking Form)

Environmental Site Sensitivity Score:	600 (CAP-Part A Report)
(April 1999 version of the Site Ranking	105 (Jan. 2000 – First Monitoring Event)
Form was used for all monitoring event	105 (June 2000 – Second Monitoring Event)
scores.)	105 (Jan. 2002 – Third Monitoring Event)
	20 (Jan. 2003 – Fourth Monitoring Event)
	110 (June 2003 – Fifth Monitoring Event)

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

The Monitoring Only Plan is being conducted in accordance with Section III of the CAP– Part A Report (SAIC 1999) and as approved by the GA EPD USTMP in correspondence dated January 25, 2000 (Logan 2000). Conditions agreed to during a teleconference on October 24, 2001, determined that termination would be recommended if the measured benzene concentrations were less than the ACL of 713 μ g/L.

In January 2002, the benzene concentrations in groundwater were above the ACL of 713 μ g/L for the first time; therefore, the termination conditions approved by GA EPD were not met, and it was recommended in the Second Annual Monitoring Only Report (SAIC 2002) that semiannual monitoring be continued at the site for a minimum of one more year. As a result, semiannual sampling events were conducted in January and June 2003.

Fort Stewart respectfully requests that GA EPD USTMP assign Facility ID #9-089083 an NFAR status for the following reasons:

- The Monitoring Only Plan is being conducted in accordance with Section III of the CAP-Part A Report (SAIC 1999) and as approved by GA EPD USTMP in correspondence January 25, 2000 (Logan 2000) and conditions agreed to in a teleconference on October 24, 2001.
- The site scores for the last two rounds of semiannual groundwater sampling have been 20 and 110, which GA EPD USTMP representatives have indicated are acceptable scores for requesting an NFAR status (i.e., January 27, 1999, meeting between GA EPD, Fort Stewart, U.S. Army Corps of Engineers, and SAIC representatives).
- The revised fate and transport model summarized in Attachment A indicates that benzene will never reach the nearest potential preferential pathway (i.e., a drainage ditch) at a concentration above the IWQS of 71.28 µg/L.
- The benzene concentrations in all wells were below the ACL of 713 μ g/L during the semiannual monitoring events from January 2000 to June 2002, with the exception of those in one well in January 2002.
- The closest surface water bodies are a drainage ditch located 450 ft southeast (downgradient) of the site and Goshen Swamp located 7,500 ft southeast (downgradient) of the site.

The monitoring only program at this site will be discontinued.

VI. REIMBURSEMENT

Attached _____ N/A __X___

(Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the UST 122 site, Building 7705, Facility ID #9-089083 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

APPENDIX I

REPORT FIGURES

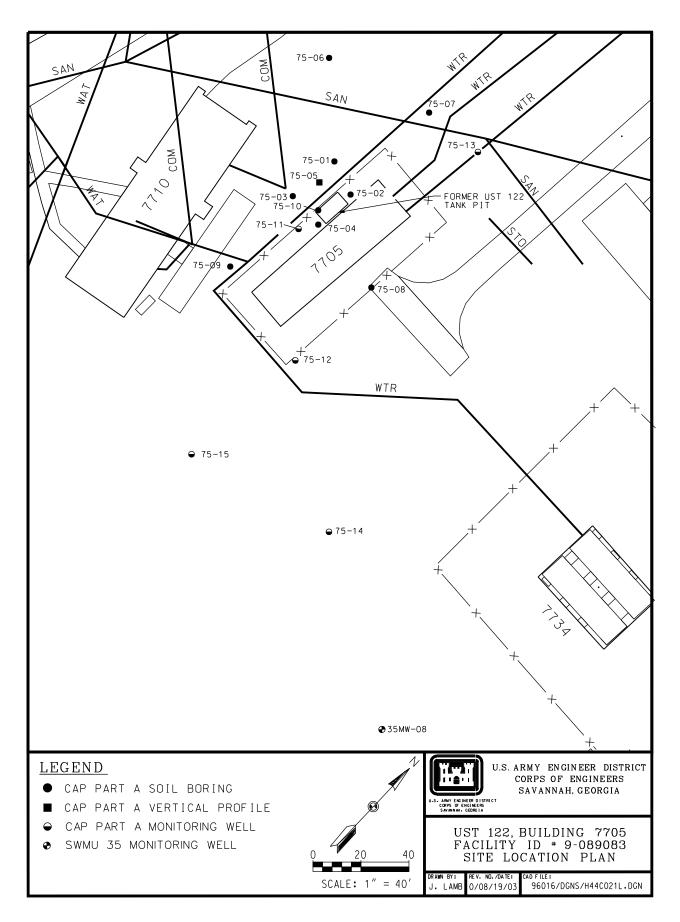


Figure 1. Location Map of UST 122 at Fort Stewart, Liberty County, Georgia

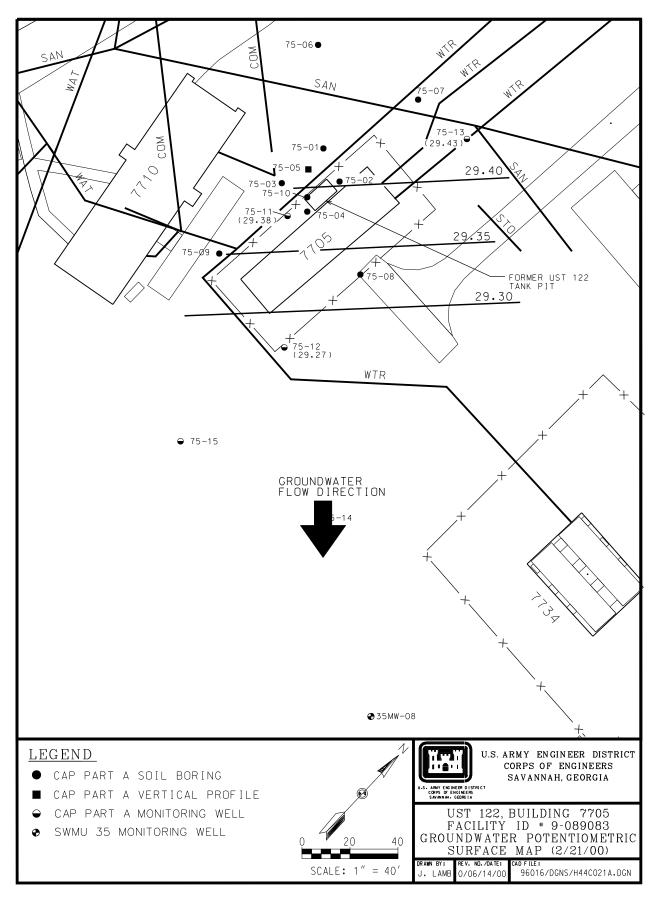


Figure 2a. Potentiometric Surface Map of the UST 122 Site (January 2003)

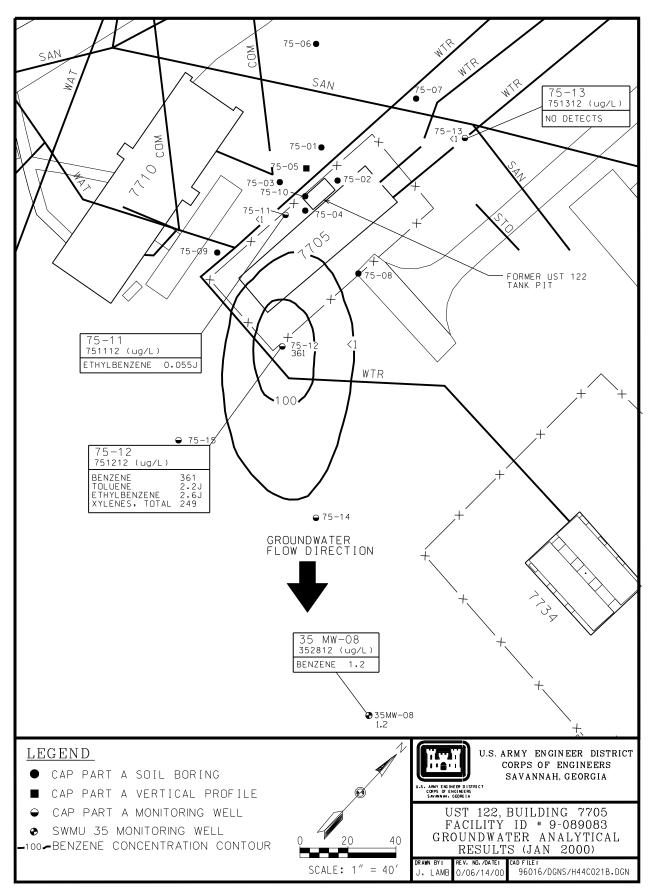


Figure 2b. Potentiometric Surface Map of the UST 122 Site (June 2003)

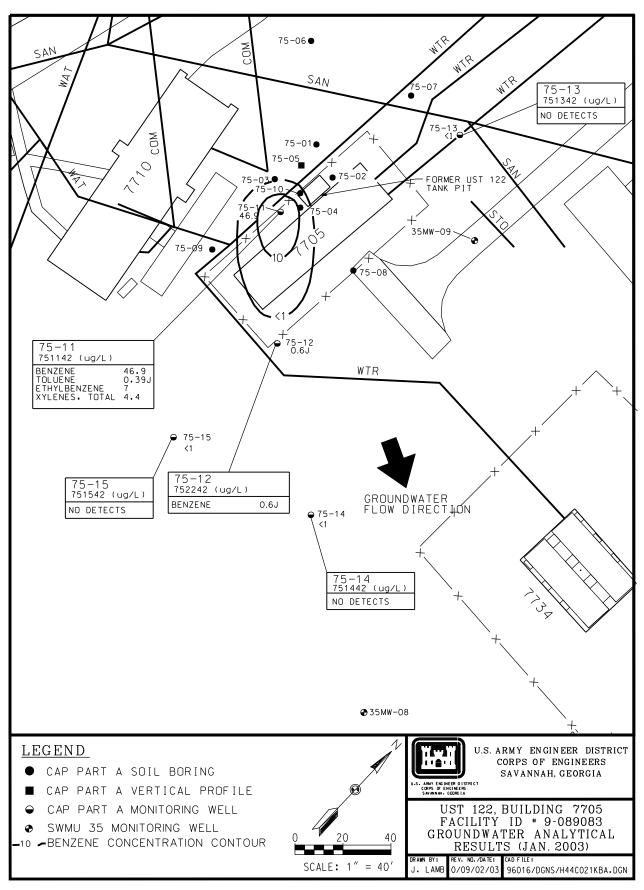


Figure 3a. Groundwater Quality Map for the UST 122 Site (January 2003)

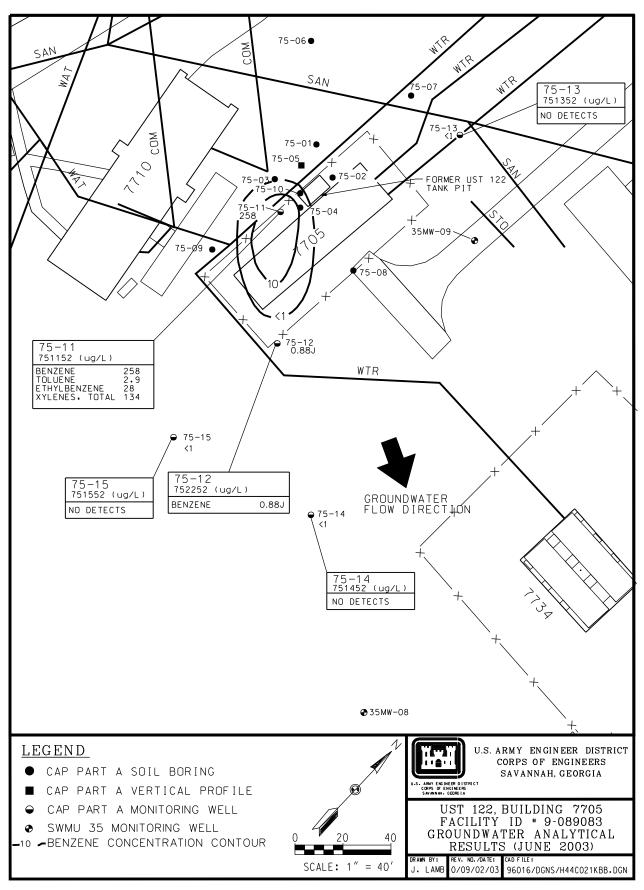
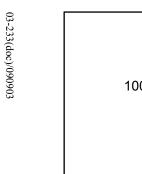



Figure 3b. Groundwater Quality Map for the UST 122 Site (June 2003)

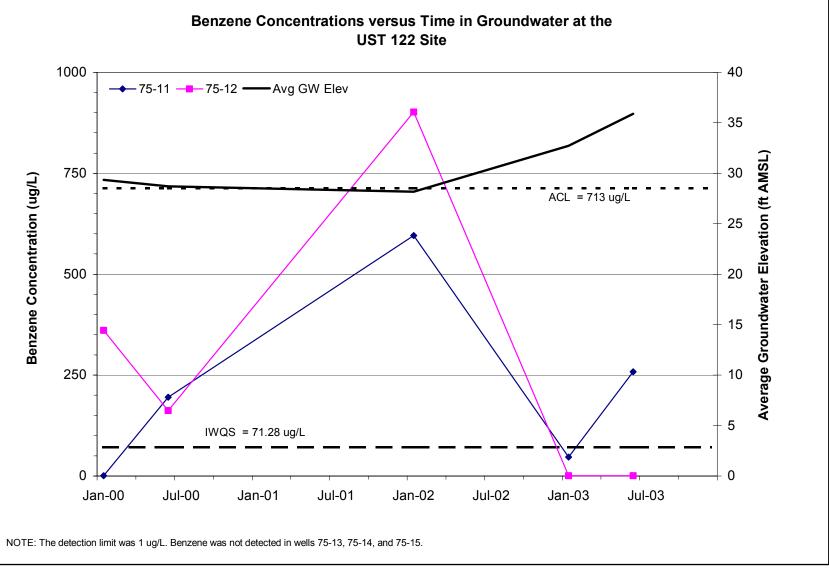


Figure 4. Trend of Contaminant Concentrations for the UST 122 Site

APPENDIX II

REPORT TABLES

Table 1. Groundwater Elevations

		Top of Casing	Screened	Water	Groundwater
Well	Date of	Elevation	Interval	Depth	Elevation
Number	Measurement	(ft AMSL)	(ft BGS)	(ft BTOC)	(ft AMSL)
	1	First Monitoring Event	– January/Februar	y 2000	
75-11	02/21/00	44.05	12.9 - 22.9	14.67	29.38
75-12	02/21/00	43.59	13.2 - 23.2	14.32	29.27
75-13	02/21/00	43.25	13.4 - 23.4	13.82	29.43
		Second Monitoring E	Event – June/July 2	000	
75-11	07/25/00	44.05	12.9 - 22.9	15.71	28.34
75-12	07/25/00	43.59	13.2 - 23.2	15.34	28.25
75-13	07/25/00	43.25	13.4 - 23.4	14.80	28.45
75-14	07/25/00	42.09	8.5 - 18.5	13.93	28.16
75-15	07/25/00	42.63	9.7 - 19.7	14.42	28.21
		Third Monitoring I	Event – January 200	02	
75-11	01/20/02	44.05	12.9 - 22.9	15.84	28.21
75-12	01/20/02	43.59	13.2 - 23.2	15.46	28.13
75-13	01/20/02	43.25	13.4 - 23.4	14.96	28.29
75-14	01/20/02	42.09	8.5 - 18.5	14.01	28.08
75-15	01/20/02	42.63	9.7 - 19.7	14.54	28.09
		Fourth Monitoring	Event – January 20	03	
75-11	01/21/03	44.05	12.9 - 22.9	11.03	33.02
75-12	01/21/03	43.59	13.2 - 23.2	10.94	32.65
75-13	01/21/03	43.25	13.4 - 23.4	10.40	32.85
75-14	01/21/03	42.09	8.5 - 18.5	9.91	32.18
75-15	01/21/03	42.63	9.7 - 19.7	9.75	32.88
		Fifth Monitoring	Event – June 2003		
75-11	06/21/03	44.05	12.9 - 22.9	7.78	36.27
75-12	06/21/03	43.59	13.2 - 23.2	7.43	36.16
75-13	06/21/03	43.25	13.4 - 23.4	6.86	36.39
75-14	06/21/03	42.09	8.5 - 18.5	7.15	34.94
75-15	06/21/03	42.63	9.7 – 19.7	6.97	35.66

NOTES:

Above mean sea level. AMSL

Below ground surface. Below top of casing. BGS BTOC

Sample	Sample	Date	Benzene	Toluene	Ethyl- benzene	Xylenes	Total BTEX	Total PAH
Location	ID	Sampled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
		First	Monitoring I	Event – Janua	ary/February	2000		
75-11	751112	01/16/00	1 U	1 U	0.055 J	3 U	0.055	NA
75-12	751212	01/14/00	361 =	2.2 J	2.6 J	249 =	614.8	NA
75-13	751312	01/14/00	1 U	1 U	1 U	3 U	ND	NA
35MW-08	352812	01/29/00	1.2 =	1 U	1 U	3 U	1.2	ND
			Second Mon	itoring Event	– June 2000			
75-11	751122	06/23/00	195 =	2.3 J	7.1 =	152 =	356.4	NA
75-12	751222	06/23/00	162 =	5 U	5 U	94.9 =	256.9	NA
75-13	751322	06/23/00	1 U	1 U	1 U	3 U	ND	NA
75-14	751422	06/26/00	1 U	1 U	1 U	3 U	ND	ND
75-15	751422	06/26/00	1 U	1 U	1 U	3 U	ND	ND
			Third Monito	ring Event – .	January 2002			
75-11	751132	01/20/02	596 =	4.6 =	40 =	116 =	756.6	NA
75-12	751232	01/20/02	902 =	4.0 =	4.3 =	469 =	1,379.3	NA
75-13	751332	01/20/02	1 U	1 U	1 U	3 U	ND	NA
		I	Fourth Monite	oring Event –	January 200.	3		
75-11	751142	01/21/03	46.9 =	0.39 J	7 =	4.4 =	58.69	NA
75-12	751242	01/21/03	0.6 J	1 U	1 U	1 U	0.6	NA
75-13	751342	01/21/03	1 U	1 U	1 U	1 U	ND	NA
75-14	751442	01/21/03	1 U	1 U	1 U	1 U	ND	NA
75-15	751542	01/21/03	1 U	1 U	1 U	1 U	ND	NA
		r	v	oring Event -				
75-11	751152	06/21/03	258 =	2.9 =	28 =	134 =	422.9	NA
75-12	751252	06/21/03	0.88 J	1 U	1 U	1 U	0.88	NA
75-13	751352	06/21/03	1 U	1 U	1 U	1 U	ND	NA
75-14	751452	06/23/03	1 U	1 U	1 U	1 U	ND	NA
75-15	751552	06/23/03	1 U	1 U	1 U	1 U	ND	NA
	Vater Qual: D Chapter :	ity Standard 391-3-6)	71.28	200,000	28,718	NRC	NRC	NRC
Alternate	Concentra	tion Limit	713					

Table 2. Groundwater Analytical Results

NOTES:

Bold values exceed In-Stream Water Quality Standards.

Italic values exceed alternate concentration limits.

BTEX Benzene, toluene, ethylbenzene, and xylenes.

GA EPD Georgia Environmental Protection Division.

NA Not analyzed; PAH compounds were not required as part of the Monitoring Only Plan.

ND Not detected.

NRC No regulatory criteria.

PAH Polynuclear aromatic hydrocarbon.

Laboratory Qualifiers

U Indicates the compound was not detected at the concentration reported.

J Indicates the value for the compound is an estimated value.

= Indicates the compound was detected at the concentration reported.

APPENDIX III

LABORATORY ANALYTICAL RESULTS

ANALYTICAL LABORATORY INFORMATION AND DATA VALIDATION CODES

ANALYTICAL LABORATORY INFORMATION

The analytical laboratory was General Engineering Laboratories, Inc. (GEL). The analytical data sheets provided in this appendix are copies of those provided by GEL with the Science Applications International Corporation validation codes. Representatives from the Georgia Environmental Protection Division Underground Storage Tank Management Program and Fort Stewart agreed upon the format of the analytical data sheets and the information they contain during a meeting held on January 27, 1999.

The "original" laboratory data sheets do not include validation qualifiers. The original certificates of analysis and chain-of-custody forms are provided as an attachment to this report. The analytical process is extended beyond providing the analytical data with laboratory qualifiers by including a formal laboratory independent data validation, and then goes another step by adding specific reason codes to further identify why data have been designated as estimated, "J," or nondetect, "U." As a result of this extended validation process, copies of the original data sheets are not provided in this report. A summary of the validation and reason codes is included in this section. Each data package generated for the underground storage tank project at Fort Stewart and Hunter Army Airfield contains a case narrative that is signed by the analytical laboratory project manager. Laboratory information and third-party certification are provided below.

STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

Name of Laboratory: Address:	General Engineering Laboratories, Inc. P.O. Box 30712 2040 Savage Road
Contact:	Charleston, SC 29407 Wendy Dimmick
Telephone Number: Fax Number:	(843) 556-8171 (843) 766-1178
Accrediting Authority:	State of South Carolina
Accreditation Number:	SC-10120001
Effective Date:	Extension granted while recertification in process; January 27, 2003
Expiration Date:	March 26, 2004
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA
Accrediting Authority:	State of Florida
Accreditation Number:	E-87156
Effective Date:	July 1, 2001 (initial and reaccredited on July 1 each year there after)
Expiration Date:	June 30, 2004
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA

#1

#2

DATA VALIDATION REASON CODES

Organic, Inorganic, and K		č i
		MS Tuning
	R01	Mass calibration was in error, even after applying
		expanded criteria.
		Mass calibration was not performed every 12 hours.
		Mass calibration did not meet ion abundance criteria.
	B04	Professional judgment was used to qualify the data.
		al/Continuing Calibration – Inorganics
		ICV or CCV was not performed for every analyte.
		ICV recovery was above the upper control limit.
		ICV recovery was below the lower control limit.
		CCV recovery was above the upper control limit.
		CCV recovery was below the lower control limit.
	D06	Standard curve was not established with the minimum
		number of standards.
	D07	Instrument was not calibrated daily or each time the
	D	instrument was set up.
		Correlation coefficient was <0.995.
		Mid-range cyanide standard was not distilled.
	D10	Professional judgment was used to qualify the data.
control limit.	F01	Sample data were qualified as a result of the method blank.
	F02	Sample data were qualified as a result of the field blank.
Post-digestion spike recovery was outside the control limit.	F03	Sample data were qualified as a result of the equipment rinsate.
MSA was required but not performed.	F04	Sample data were qualified as a result of the trip blank.
MSA correlation coefficient was <0.995.	F05	Gross contamination exists.
MSA spikes were not at the correct concentration.	F06	Concentration of the contaminant was detected at a level
Serial dilution criteria were not met.		below the CRQL.
Professional judgment was used to qualify the data.	F07	Concentration of the contaminant was detected at a level less than the action limit, but greater than the CRQL.
	F08	Concentration of the contaminant was detected at a level
		that exceeds the action level.
		No laboratory blanks were analyzed.
		Blank had a negative value >2 times the IDL.
	F11	Blanks were not analyzed at required frequency.
	F12	Professional judgment was used to qualify the data.
gate/Radiological Chemical Recovery		rix Spike/Matrix Spike Duplicate (MS/MSD)
Surrogate/radiological chemical recovery was above the	H01	MS/MSD recovery was above the upper control limit.
upper control limit.		MS/MSD recovery was below the lower control limit.
Surrogate/radiological chemical recovery was below the		MD/MSD recovery was <10%.
lower control limit.		MS/MSD pairs exceeded the RPD limit.
		No action was taken on MS/MSD limit.
Surrogate recovery was zero.		Professional judgment was used to qualify the data.
		Radiological MS/MSD recovery was <20%.
present.		Radiological MS/MSD recovery was >160%.
Professional judgment was used to qualify the data.	H09	Radiological MS/MSD samples were not analyzed at the
Radiological chemical recovery was <20%. Radiological chemical recovery was >150%.		required frequency.
	ng Times Extraction holding times were exceeded. Analysis holding times were grossly exceeded. Analysis holding times were grossly exceeded. Samples were not preserved properly. Professional judgment was used to qualify the data. /Continuing Calibration – Organics Initial calibration RDF was <0.05.	ng Times GC/1 Extraction holding times were exceeded. B01 Extraction holding times were grossly exceeded. B02 Analysis holding times were grossly exceeded. B03 Samples were not preserved properly. B04 Professional judgment was used to qualify the data. ////////////////////////////////////

Organic, Inorganic, and Radiological Analytical Data

DATA VALIDATION REASON CODES (continued)

	Urganic, Inorganic, and R		
	x Spike		oratory Duplicate
I01	MS recovery was above the upper control limit.	J01	Duplicate RPD/radiological duplicate error ratio (DER)
102	MS recovery was below the lower control limit.		was outside the control limit.
103	MS recovery was <30%.	J02	Duplicate sample results were >5 times the CRDL.
I04	No action was taken on MS data.	J03	Duplicate sample results were <5 times the CRDL.
105	Professional judgment was used to qualify the data.	J04	Professional judgment was used to qualify the data.
		J05	Duplicate was not analyzed at the required frequency.
Intern	al Area Summary	Pesti	icide Cleanup Checks
K01	Area counts were outside the control limits.		10% recovery was obtained during either check.
K02	Extremely low area counts or performance was		Recoveries during either check were >120%.
	exhibited by a major drop-off.		GPC cleanup recoveries were outside the control limits.
K03	IS retention time varied by more than 30 sec.		Florisil cartridge cleanup recoveries were outside the
K04	Professional judgment was used to qualify the data.	20.	control limits.
1101	rorossionar judgmont was used to quanty the data.	1.05	Professional judgment was used to qualify the data.
Targe	t Compound Identification		pound Quantitation and Reported CRQLs
M01	Incorrect identifications were made.		Quantitation limits were affected by large off-scale peaks.
M02	Qualitative criteria were not met.		MDLs reported by the laboratory exceeded corresponding
M02	Cross contamination occurred.	1102	CRQLs.
		N02	
M04	Confirmatory analysis was not performed	1003	Professional judgment used to qualify the data.
M05 M06	No results were provided.		
	Analysis occurred outside 12-hour GC/MS window.		
M07	Professional judgment was used to qualify the data.		
M08	The %D between the two pesticide/PCB column checks		
-	was >25%.		
	tively Identified Compounds (TICs)		oratory Control Samples (LCSs)
O01	Compound was suspected laboratory contaminant and		LCS recovery was above upper control limit.
~ ~ ~	was not detected in the blank.		LCS recovery was below lower control limit.
O02	TIC result was not above 10 times the level found in the		LCS recovery was <50%.
	blank.		No action was taken on the LCS data.
O03	Professional judgment was used to qualify analytical		LCS was not analyzed at required frequency.
	data.	P06	Radiological LCS recovery was <50% for aqueous samples, <40% for solid samples.
		P07	Radiological LCS recovery was >150% for aqueous samples, >160% for solid samples.
		P08	Professional judgment was used to qualify the data.
Field 1	Duplicate		iological Calibration
Q01	Field duplicate RPDs were >30% for waters and/or		Efficiency calibration criteria were not met.
×~1	>50% for soils.		Energy calibration criteria were not met.
Q02	Radiological field duplicate error ratio (DER) was		Resolution calibration criteria were not met.
×**	outside the control limit.		Background determination criteria were not met.
Q03	Duplicate sample results were >5 times the CRDL.		Quench curve criteria were not met.
Q03 Q04	Duplicate sample results were <5 times the CRDL.		Absorption curve criteria were not met.
204	Dupreate sample results were ~5 times the CRDL.	R00	Plateau curve criteria were not met.
			Professional judgment was used to qualify the data.
Radia	logical Calibration Verification	100	reressionar judgment was used to quanty the data.
S01	Efficiency verification criteria were not met.		
S01 S02	Energy verification criteria were not met.		
S02 S03	Resolution verification criteria were not met.		
S04	Background verification criteria were not met.		
S05	Cross-talk verification criteria were not met.		
S06	Professional judgment was used to qualify the data.		

Organic, Inorganic, and Radiological Analytical Data

FOURTH MONITORING EVENT

JANUARY 2003

VOLATILE	1A ORGANICS ANALYSIS DATA S	HEET	EPA SAMPLE NO.	
Lab Name: GENERAL ENG	GINEERING LABS Contract	:: N/A	751142	
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG	No.: 73973	
Matrix: (soil/water)	WATER	Lab Sample ID:	: 73973006	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	5U433	
Level: (low/med)	LOW	Date Received:	01/24/03	
% Moisture: not dec.		Date Analyzed:	01/31/03	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot N	Volume:	(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

•

71-43-2Benzene 46.9 108-88-3Toluene 0.39 100-41-4Ethylbenzene 7.0 1330-20-7Xylenes (total) 4.4
--

.

÷.,

. . .

COMPOUND

• . *

CAS NO.

.

FORM I VOA

OLM03.0

Q

VOLATILE	1A ORGANICS ANALYSIS DATA S	HEET	EPA SAMPLE NO.	-,
Lab Name: GENERAL ENG	GINEERING LABS Contract	: N/A	751242	
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG	No.: 73973	
Matrix: (soil/water)	WATER	Lab Sample ID:	73973007	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	5U434	
Level: (low/med)	LOW	Date Received:	01/24/03	
<pre>% Moisture: not dec.</pre>		Date Analyzed:	01/31/03	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:	(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

-

Q

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	0.60 1.0 1.0 1.0	U U	54
			IL

COMPOUND

•.*

CAS NO.

. 4° .

٩.

. . _Sr

FORM I VOA

OLM03.0

DATA VALIDATION COPY

	1A		EPA SAMPLE NO.
VOLATILE	ORGANICS ANALYSIS DAT	A SHEET	
			751342
Lab Name: GENERAL EN	GINEERING LABS Contr	act: N/A	
Lab Code: N/A	Case No.: N/A SAS	No.: N/A SDG	No.: 73973
Matrix: (soil/water)	WATER	Lab Sample ID:	73973010
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	5U437
Level: (low/med)	LOW	Date Received:	01/24/03
<pre>% Moisture: not dec.</pre>		Date Analyzed:	01/31/03
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL)

 CAS NO.
 COMPOUND
 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L
 Q

 71-43-2-----Benzene_______
 1.0 U
 U

 108-88-3-----Toluene_______
 1.0 U
 U

 100-41-4-----Ethylbenzene_______
 1.0 U
 U

 1330-20-7----Xylenes (total)_________
 1.0 U
 U

4

•. 1

--*-, ,

FORM I VOA

.

OLM03.0

DATA VALIDATION

VOLATILE	1A ORGANICS ANALYSIS DA	TA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENG			751442
Lab Code: N/A	Case No.: N/A SAS	NO.: N/A SDG	No.: 73973
Matrix: (soil/water)	WATER	Lab Sample ID	: 73973008
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	5U435
Level: (low/med)	LOW	Date Received	: 01/24/03
% Moisture: not dec.		Date Analyzed	: 01/31/03
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL)

 CAS NO.
 COMPOUND
 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L
 Q

 71-43-2-----Benzene
 1.0 U
 U

 108-88-3-----Toluene
 1.0 U
 U

 100-41-4-----Ethylbenzene
 1.0 U
 U

 1330-20-7-----Xylenes (total)
 1.0 U
 1.0 U

FORM I VOA

DATA VALIDATION COPY

٠

	1A		EPA SAMPLE NO.
VOLATILE	ORGANICS ANALYSIS DA	TA SHEET	
Lab Name: GENERAL ENG	GINEERING LABS Cont	ract: N/A	751542
Lab Code: N/A	Gase No.: N/A SAS	No.: N/A SDG	No.: 73973
Matrix: (soil/water)	WATER	Lab Sample ID:	73973009
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	5U436
Level: (low/med)	LOW	Date Received	01/24/03
<pre>% Moisture: not dec.</pre>		Date Analyzed	: 01/31/03
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL)

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L

.

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.0 1.0 1.0 1.0	บ บ	u
---	--------------------------	--------	---

•

.

DATA VALIDATION COPY

Q

III-11

CHAIN OF CUSTODY RECORD

- ----

COC NO .: GLTM32

	800 Oak Ridge Tumpike, Oak R			I								_											Τ.			
	PROJECT NAME: Ft. St	tewart LTM-D.O. 2	1								REC		STEE		T	T	T	T-				Т		ABORATORY NA ieneral Engineerit		
	PROJECT NUMBER: 01	-1624-04-5213-20	0																				2	LABORATORY ADDRESS: 2040 Savage Raod		
	PROJECT MANAGER:	Patty Stoll																					V13	charleston, SC 29	9417	
	Sampler (Signature)	LI PAR	nted Name) ICIA A. C				Grease	Total Phnols															BOR	2HONE NO: (843)		
	Sample ID	Date Collected	Time Collected	Matrix	BTEX	voc	Oil & (Total	Æ														No. of	OVA SCREENING	OBSERVATIONS, COMME SPECIAL INSTRUCTIO	
	060942	1/21/03	1005	WATER	Ζ																	1	2			
	\$6\$642	1/11/03	1030	WATER	2																	Ż	2			
	Ø60644	1/21/03	1036	WATER	2																	_	2			
	060842	1/21/03	1025	WATER	2																	1	2			
	\$6\$742	1/21/03	1045	WATER	2																	12	2			
III-12	751142	1/21/03	1500		Ζ																	Ŀ	<u> </u>			
2	751242	1/2/03	1540	WATER	2																	-	2			
	751442	1/21/03	1620	UATER.	z							\square										_	Z			
	751542	1/21/03	11025	WATER	2							_										_	2			
	751342	1/21/03	1710	WATER	Z							_		\bot	\rightarrow							-	2			
	TB\$31\$	1/21/03	0743	LATER	2							_		\square	ŀ	·			-		_	ŀ	2			
							b	k	4			,	4	\downarrow	_	_	-	+	╞	-	=	1	·			
					-	1	E	Ż	U		1/2												_			
	RELINCUISHED BY	() // Date		VED BY:	1				Dat	e/Tir	ne	т	DTAL	NU	IMBE	RC	DF C	ONT		RS:	27	2		Cooler Temperatu	иге: 4°С	
	Tatin A	1/2	+/03 M	and the second se	M			-	(-,	LK	-03	L Co	ooler	ID:		17	7						1	FEDEX NUMBER	1	
	COMPANY NAME:	12	-UO COMP	ANY NAME:					1	SI	5	-			-	ŧ	-4							N Je	4	
	RECEIVED BY	Date 1/2		QUISHED BY:					Dat	le/Tir	ne						 	•								
	COMPANY MAME	/12	COMP	ANY NAME:											-											
	RELINGUISHED D:	Date 1/2	Time RECE	VED BY:					Dat	te/Tir	ne															
	COMPANY NAME	- 1/15	TS TOMP	ANY NAME:											~											

FIFTH MONITORING EVENT

JUNE 2003

1A VOLATILE ORGANICS ANALYSIS DATA SHE	EPA SAMPLE NO.
Lab Name: GEL, LLC. Contract:	N/A 751152
Lab Code: N/A Case No.: N/A SAS No.:	N/A SDG NO.: \$2800 82890
Matrix: (soil/water) WATER	ab Sample ID: 82889003
Sample wt/vol: 5.000 (g/ml) ML	ab File ID: 7P411
Level: (low/med) LOW E	Date Received: 06/24/03
% Moisture: not dec	ate Analyzed: 06/26/03
GC Column: DB-624 ID: 0.25 (mm)	ilution Factor: 1.0
Soil Extract Volume:(uL) S	oil Aliquot Volume:(uL)
	TRATION UNITS: Dr ug/Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	258 299 ED = 2.9 = 28.0 = 134 =

FORM I VOA

.

OLM03.0

DATA VALIDATION COPY

VOLATILE	1A ORGANICS ANALYSI	IS DATA SHEET	EPA SAMPLE	NO .
Lab Name: GEL, LLC,		Contract: N/A	751252	
Lab Code: N/A	Case No.: N/A	SAS No.: N/A SDG	No.: 8 2869	82890
Matrix: (soil/water)	WATER	Lab Sample ID	: 82889002	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	7P410	
Level: (low/med)	LOW	Date Received	: 06/24/03	
% Moisture: not dec.		Date Analyzed	: 06/26/03	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:	(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/		Q		
	Benzene		0.88	1	5	
100-41-4	Toluene		1.0 1.0	!	L 1	
1330-20-7	Xylenes (tota	al)	1.0	U	L	

OLM03.0

· • •

DATA VALIDATION COPY

	1A			EPA SAMPLE	NO.
VOLATILE	ORGANICS ANALYSI	S DATA SHEET			
Lab Name: GEL, LLC,		Contract: N/A	ł	751352	
Lab Code: N/A	Case No.: N/A	SAS No.: N/A	A SDG	No.: 82889	82890
Matrix: (soil/water)	WATER	Lab	Sample ID	82889001	
Sample wt/vol:	5.000 (g/ml) ML	Lab	File ID:	7P409	
Level: (low/med)	LOW	Date	Received:	06/24/03	
% Moisture: not dec.		Date	Analyzed:	06/26/03	
GC Column: DB-624	ID: 0.25 (mm)	Dilu	tion Facto	or: 1.0	
Soil Extract Volume:	(uL)	Soil	Aliquot V	Volume:	(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
	Benzene	1.0 U 1.0 U
100-41-4	Ethylbenzene_	1.0 U
		llllll

FORM I VOA

OLM03.0

~.<u>.</u>

DATA VALIDATION COPY

VOLATILE	1A ORGANICS ANALYSI	S DATA SHEET	EPA SAMPLE	NO.
Lab Name: GEL, LLC.		Contract: N/A	751452	
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 82889	3289D
Matrix: (soil/water)	WATER	Lab Sample ID:	82889015	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	7P418	
Level: (low/med)	LOW	Date Received:	06/24/03	
<pre>% Moisture: not dec.</pre>		Date Analyzed:	06/26/03	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:	(uL)

CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		Q		
71-43-2 108-88-3 100-41-4 1330-20-7	Toluene		1.0 1.0 1.0 1.0	บ บ	u ļ	

-

OLM03.0

...-

VOLATILE	1A ORGANICS ANALYSI	S DATA SHEET	EPA SAMPLE	NO.
 Lab Name: GEL, LLC.		Contract: N/A	751552	
Lab Code: N/A	Case No.: N/A	SAS No.: N/A SDG	No.: 82889	82890
Matrix: (soil/water)	WATER	Lab Sample ID	: 82889014	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	7P417	
Level: (low/med)	LOW	Date Received	: 06/24/03	
<pre>% Moisture: not dec.</pre>		Date Analyzed	: 06/26/03	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:	(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L		Q		
		1)	1.0 1.0 1.0 1.0	U U	u ↓	

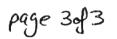
.

FORM I VOA

OLM03.0

....

DATA VALIDATION


page 2of 3

CHAIN OF CUSTODY RECORD

COC NO .: GLTM35

PROJECT NAME: FL	Stewart LTM-D.O.	21		Τ-								ועי	-											OLTH(S)	\geq
				\vdash			1	r	T	- AE	EQU	ESTE	D P/	ARA	MET	ERS	3						LABORATORY N	NAME:	
PROJECT NUMBER:	01-1624-04-5213-2	800																					General Enginee	ring Laboratory	
PROJECT MANAGER:	Patty Stoll																						LABORATORY A 2040 Savage Rad Charleston, SC 2	od	
Sampler (Signature)	CIII P	rinted Name)	0	1																		s/ Vials:			
Takin (K	161 PA	KIGA A.	Store			Grease	Phnols		MTRE													Bottles	PHONE NO: (843	3) 556-8171	
Sample ID	Date Collected	Time Collected	Matrix		2 Vo	Oil &	Total F	H	F													No. of		OBSERVATIONS, COM	MENIS
141226	6/20/03	1350	with	2			-		Z	++		-	+	+	+	+	+-	+	+	-		z 4		SPECIAL INSTRUCT	IONS
1A\$626	6/2/03	1100	water	Z	++				2				+		+	+	+	+	\vdash	-		7 4			
1AØ622	6/21/03	1035	Water	2					2			-+-	+	+-	╋	╋	+	+		–		<u> </u>			
140522	6/21/03	0945	wake	2					2		$\left - \right $		+	+	+	╋	+-	-	+		-	Y			
14\$822	6/21/03	0905	apti	2		-		-	2				+		+-	+	+-		-			Ľ			
751352	6/2/03	1714	water	2					F		$\left \right $		+-		+	+-	+-	+	+	+		۶			
751252	6/2/03	1826	wet	Z	\vdash	-	-		-		$\left \right $		+		+	+		+	+			Ζ			
751152	4/2/03	1836	Water	Z				-	-		$\left - \right $		+	+	+	+-		+	+	-		Ζ			
\$6\$952	6/21/03	1456	water	Z	++	-	-		-				+		+-	+	+	+-	-			2			
464852	6/21/03	1541	water	2		-		_	-	$\left - \right $			+		+-			+	-			2			
Ø60752	6/21/03	1534	water	2		-			-					+-	+-	+	-	+-	-			2			
Ølegele 52	6/21/03	1450	water	2				-	-		$\left \right $		+		+-	+		+		┣		2			
Øleøle 54	6/21/03	1450	water	Z	+				-		$\left - \right $		+		+		+	-	-			2			
RELINDWISHED BY	Date	Time RECE	WED DY.	-				Day		L] me												Ś			
Par- VI		103 10		Er	_		4			03		ooler								14		02	Cooler Temperat		
COMPANY NAME:	121		ANY NAME:	_				12					D .			#	ł				3				
RECEIVED BY:	Date	Time RELIN	OUISHED BY:					Daty	p/Ti	mer														/	
COMPANY NAME:			~ at	2	,		16	1-	sf	h	>														
SOME ANT NAME:		ĊOMP	ANY NAME:				1/		//	5															
RELINQUISHED BY:	Date	Time RECEI	The				4	_	3	-															:
	Date	14.	VED BY	1_				Date																	
COMPANY NAME:			ANY NAME:	س ا			6	-	¥.	03	·														
			(el					1	5	30															
			Car	-	an an an			1	- ر																

BDO UFOT NAME	ek Ridge, TN	37831 (423) 481-4600				С	HA	IN	0	FC	US	то	DY	RE	CC	R	D						COC NO.:	EIT	1.25
PROJECT NAME: FI	. Stewart L	.TM-D.O.	21											STE	_	-										<u>د د</u> ۲
PROJECT NUMBER:	01-1624-0	4-5213-2	:00			-										T	T		Γ					LABORATORY I General Enginee	NAME: Bring Labora	ltory
PROJECT MANAGER	I: Patty St	oli				-																		LABORATORY 2040 Savage Ra	od	
Sempler (Signature)	Hall	PATRI		4) Sp		-		Pase	Phnois														Bottles/ Viale:	Charleston, SC PHONE NO: (84		
Semple ID	-	oliected	T	collected	Matrix	BTEX	VOC	Oll & Grea	Total P														of Bot			
37\$682	6/21/		1310		water	_		ð	<u>۽</u>	Ŧ	+	$\left - \right $	_		\perp	-		1					No.		OBSERVAT	IONS, COMMENT
370684	6/21		13/0		water water	ZZ	-					-		+	-	\bot							2			
370982	4/21/		122		water	2	-	\vdash		-	+	$\left \right $	-+	_		-							2	-		
37\$782	6/21/	the second s	123		hat	Z		-	-	-		$\left \right $				\vdash	\vdash				_		2			
TB\$313	6/201		07		wels	Z		-	-	-	+		-+		+-	+-	-			$ \rightarrow $	-+		Z			
751552	6/23	103	162		when	2		\vdash	\vdash	-			+			+-	-			-	-+	-	2			
751452	6123	103	161		wet	2		-		-			+			-				-+	_		2			
TBØZIS	6/2		160		Lake	Z	-	-		-	-		+	+-		+-	_	$\left - \right $		-	_		2			
						1-	t			-			\rightarrow		+	-				_			2			
					1		Å	#		to		7	-2-			-			-	=	-+-	===	\pm	·		
						D	77	-		-	F	4	4	+-	+	\vdash	-	$\left - \right $	_	_	-+					
						F								+-	+	\vdash	-	$\left - \right $	_				+			
						+-		-							+	\vdash				-+						
RELINDUISHED BY	J.U	Gate	Time	RECEN	ED BY	-				Date	J 9/Tin			TAL	1											
COMPANY NAME:	JAN U	6/24/	103 -	101	E ANTE	R	_				z fi			ler ID		DEH	UF	CON	I All	VER	S:	102	2	Cooler Temperatu	1ro: 4	C
SOMPANT NAME:		125	0	COMP	ANY NAME:				/		1			ner 1L) :			#	-1					FEDEX NUMBER		
RECEIVED BY:		Date	/Time						μ		SA														NIA	
		Data			UISHED BY		/		1/	1	e/Tin	/														
COMPANY NAME:		1		COMPA	NY NAME:	5			17	12	ŦJ.	3														
					EL.				1	15	30															
RELINQUISHED BY:		Date/	Time	RECEIV	ED/BY:	/			Í.	Dete	/Tim															ì
				1	e Con	lus																				
OMPANY NAME:				COMPA	NY NAME:				1																	
		I			bel					12	53	0														

APPENDIX IV

SITE RANKING FORM

FOURTH MONITORING EVENT

JANUARY 2003

SITE RANKING FORM

Facility Name: UST 122, Building 7705							Ranked by: S. Stoller				
County	/: Libe	erty Facil	ity ID #:	9-	089083		Date	Ranked:	4/24/03		
SOIL C		IINATION (bas	ed on J	anu	iary 2000 soi	l data	that su	uperceded of	closure soil	data	<u>a)</u>
A.	(Assum	um Concentratione <0.660 mg/kg				B.		Benzene - num Concei	ntration found	d on	the site
	was sic	ored on site)						<u><</u> 0.005 mg	g/kg	=	0
*	\boxtimes	<u><</u> 0.660 mg/kg		=	0		* 🖂	>0.005()5 mg/kg	=	1
		>0.66 - 1 mg/k	g	=	10			>0.05 - 1 r	ng/kg	=	10
		>1 - 10 mg/kg		=	25			>1 - 10 mg	g/kg	=	25
		>10 mg/kg oil sample 751011		=	50			>10 - 50 m	ng/kg	=	40
				2000	"		□ *	>50 mg/kg Soil sample 7) 51011 (January	= 2000	50 "
C.		o Groundwater elow land surfa									
		>50' bls	= 1								
		>25' - 50' bls	= 2								
		>10' - 25' bls	= 5								
	\boxtimes	<u><</u> 10' bls	= 10	D							
Fill in t	he blan	ks: (A. <u>0</u>	_) + (B	1	_) = (<u>1</u>) x	(C. <u>´</u>	<u> 0</u>)=	(D. <u>10</u>)			
<u>GROUI</u>	NDWAT	ER CONTAMIN		(ba	sed on CAP	-Part	A groui	ndwater dat	<u>a)</u>		
E.	liquid h	roduct (Nonaqu ydrocarbons; S inition of "sheer	ee Guid			F.	Maxir (One		ne - ntration at the e located at t		-
	\boxtimes	No free produc	ct = 0					<u><</u> 5 µg/L			= 0
		Sheen - 1/8"	= 250	0			* 🖂	<u>-</u> ∘ µg/⊏ >5 - 100 µ	a/l		= 5
		>1/8" - 6"	= 500	0				>100 - 1,0	-		= 50
		>6" - 1ft.	= 1,0	000					0,000 μg/L		= 50 = 500
		For every addi 100 points = <u>1</u>		ch,	add another			>10,000 µ		· 200:	= 1500
Fill in t	he blan	ks: (E. <u>0</u>	_) + (F.	5	<u>)</u> = (G. <u>5</u>	_)					

Facility Name: UST 122, Building 7705

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Η.	Public Water Supply	١.	Non-Public Water Supply
*	$ \begin{array}{ c c c c c } & \text{Impacted} & = 2000 \\ \hline & \leq 500' & = 500 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = 25 \\ \hline & \frac{1}{4} \text{ mi} - 1 \text{ mi} & = 10 \\ \hline & >1 \text{ mi} - 2 \text{ mi} & = 2 \\ \hline & & >2 \text{ mi} & = 0 \\ \hline & \text{For lower susceptibility areas only:} \\ \hline & & >1 \text{ mi} & = 0 \\ \hline & \text{Note: If site is in lower susceptibility area, definition} \end{array} $	lo not	$ \begin{array}{ c c c c c c c c } Impacted & = & 1000 \\ \hline & \leq 100' & = & 500 \\ \hline & > 100' - 500' & = & 25 \\ \hline & > 500' - \frac{1}{4} \text{ mi} & = & 5 \\ \hline & >\frac{1}{4} - \frac{1}{2} \text{ mi} & = & 2 \\ \hline & >\frac{1}{2} \text{ mi} & = & 0 \\ \hline For lower susceptibility areas only: \\ \hline & >\frac{1}{4} \text{ mi} & = & 0 \\ \hline use the shaded areas. \\ \end{array} $
	* For justification that withdrawal point is not h	ydrauli	cally connected, see attached text.
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water ta	K. able)	Distance from any Free Product to basements and crawl spaces
*	$ \begin{array}{c cccc} & \text{Impacted} & = 500 \\ \hline & \leq 500' & = 50 \\ \hline & >500' - 1,000' & = 5 \\ \hline & > 1,000' & = 2 \\ ^* & \text{Utilities and drainage ditch are located > 5 feet above } \end{array} $	ve the w	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Fill in t	the blanks: (H. <u>0</u>) + (I. <u>0</u>) + (J. <u>2</u>	_)+ (K. <u>0</u>) = L. <u>2</u>
	(G. <u>5</u>	_) x (L. <u>2</u>) = M. <u>10</u>
	(M. <u>10</u>	_)+ (D. <u>10</u>) = N. <u>20</u>
Ρ.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Water	r Pollut	tion Susceptibility Area = 0.5
	\boxtimes All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possibly any subsurface structure (e.g., utility trenches, I		
	☐ Yes = 200,000		
	\square No = 0		
Fill in t	the blanks: (N. <u>20</u>) x (P. <u>1</u>) = (<u>20</u>)) + (Q. <u></u>	0)
	= <u>20 (January 2003 – Fourth S</u> ENVIRONMENTAL SENSITIV		

FIFTH MONITORING EVENT

JUNE 2003

SITE RANKING FORM

Facility	Facility Name: <u>UST 122, Building 7705</u>						Ranke	ed by: _	S. Stoller		
County	/: Libe	erty Faci	lity ID a	#: <u>9-</u>	089083		Date I	Ranked:	8/6/03		
<u>SOIL C</u>		IINATION (bas	ed on	Janu	iary 2000 soi	il data	that su	perceded o	losure soil	data	<u>a)</u>
A.	(Assum	um Concentrati ne <0.660 mg/k				В.		Benzene - 1um Concer	ntration found	l on	the site
	was sic	ored on site)						<u><</u> 0.005 mg	/kg	=	0
*	\boxtimes	<u><</u> 0.660 mg/kg		=	0	•	* 🖂	>0.0050	95 mg/kg	=	1
		>0.66 - 1 mg/ł	٨g	=	10			>0.05 - 1 n	ng/kg	=	10
		>1 - 10 mg/kg		=	25			>1 - 10 mg	ı/kg	=	25
		>10 mg/kg oil sample 751011	(lanuar	=	50			>10 - 50 m	ıg/kg	=	40
		·		/ 2000	"		*	>50 mg/kg Soil sample 75	51011 (January :		50)
C.		o Groundwater elow land surfa									
		>50' bls	= '	1							
		>25' - 50' bls	= 2	2							
		>10' - 25' bls	= {	5							
	\boxtimes	<u><</u> 10' bls	= '	10							
Fill in t	he blan	ks: (A. <u>0</u>	_) + (B	. 1	_) = (<u>1</u>) x	(C. <u>1</u>	<u>0)</u> = (D. <u>10</u>)			
<u>GROUI</u>	NDWAT	ER CONTAMI		N (ba	sed on CAP	-Part A	A groun	dwater dat	<u>a)</u>		
E.	liquid h	roduct (Nonaqu ydrocarbons; S inition of "shee	see Gui			F.	Maxim (One v		ne - ntration at the located at tl		
	\boxtimes	No free produ	ct = 0					<u><</u> 5 µg/L			= 0
		Sheen - 1/8"	= 2	50				<u>-</u> 5 µg/∟ >5 - 100 µg	a/I		= 5
		>1/8" - 6"	= 5	00			* 🖂	>100 - 1,00	-		= 50
		>6" - 1ft.	= 1	,000							
		For every add 100 points = <u>1</u>			add another			>1,000 - 1 >10,000 لو <i>LTM sample 7</i>		03)	= 500 = 1500
Fill in t	he blan	ks: (E. <u>0</u>) + (F	F. <u>5</u>	<u>60</u>) = (G. <u>5</u>	0_)					

Facility Name: UST 122, Building 7705

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Η.	Public Water Supply	١.	Non-Public Water Supply
*	$ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$		
	* For justification that withdrawal point is not h	iyarau	
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water ta		Distance from any Free Product to basements and crawl spaces
*	$ \begin{array}{ c c c c } & Impacted & = 500 \\ \hline & \leq 500' & = 50 \\ \hline & >500' - 1,000' & = 5 \end{array} $		$ \begin{array}{ c c c } & \text{Impacted} & = & 500 \\ \hline & <500' & = & 50 \\ \hline & >500' - 1,000' & = & 5 \\ \hline & >1,000' \text{ or } & = & 0 \\ \hline & \text{no free product.} \\ \hline \\ $
Fill in t	the blanks: (H. <u>0</u>) + (I. <u>0</u>) + (J. <u>2</u>	_)+	(K. <u>0</u>) = L. <u>2</u>
	(G. <u>50</u>	_) x	(L. <u>2</u>) = M. <u>100</u>
	(M. <u>10</u>	<u>0</u>)+	(D. <u>10</u>) = N. <u>110</u>
Ρ.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Wate	er Pollu	ution Susceptibility Area = 0.5
	\boxtimes All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possibly any subsurface structure (e.g., utility trenches,		
	☐ Yes = 200,000		
	⊠ No = 0		
Fill in t	the blanks: (N. <u>110</u>) x (P. <u>1</u>) = (<u>11</u>	<u>0</u>)+	(Q. <u>0</u>)
	= <u>110 (June 2003 – Fifth Sam</u> ENVIRONMENTAL SENSITIV		

ADDITIONAL GEOLOGIC AND HYDROGEOLOGIC DATA

The following is presented to provide supplemental information to Item H of the Site Ranking Form and details relating to the geologic and hydrogeologic conditions at Fort Stewart to support determinations of groundwater flow pathway(s) or direction(s) and contaminant transport.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward-dipping strata that increase in thickness from 0 ft at the fall line, located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 ft at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 ft below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 ft thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 ft thick and dominated by limestone, with a 175-ft-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 ft to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-ft section, the lowermost 110 ft of which consisted predominantly of limestone sediments, above which 245 ft of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 ft of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 in. in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 in. The subsoil is predominantly sandy clay loam and extends to a depth of 72 in. or more (Herrick and Vochis 1963).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian Aquifer and the surficial aquifer. The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, Ocala Group, and Suwannee Limestone. These formations are approximately 800 ft thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 to 150 ft in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 to 10 ft BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 to 50 ft BGS; thus, the effective aquifer thickness would be approximately 35 to 45 ft. Soil surveys for Liberty and Long Counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian Aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 to 90 ft. The vertical hydraulic conductivity of this confining unit is on the order of 10^{-8} cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie, Markshead, and Parachula, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 ft thick in the Savannah, Georgia, area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 ft thick in the Savannah, Georgia, area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite and is approximately 10 ft thick in the Savannah, Georgia, area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the underground storage tank (UST) investigation sites is part of the surficial aquifer system. Based on the facts that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Fort Stewart.

3.0 REFERENCES

Arora, Ram 1984. *Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia*, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Herrick, S.M., and R.C. Vochis 1963. *Subsurface Geology of the Georgia Coastal Plain*, Georgia Geologic Survey Information Circular 25.
- Looper, Edward E. 1980. Soil Survey of Liberty and Long Counties, Georgia, U.S. Department of Agriculture, Soil Conservation Service.

Miller, James A. 1990. *Groundwater Atlas of the United States*, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.

APPENDIX V

REIMBURSEMENT APPLICATION

Fort Stewart is a federally owned facility and has funded the investigation for the Underground Storage Tank 122 site, Building 7705, Facility ID #9-089083 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

ATTACHMENT A

FATE AND TRANSPORT MODELING RESULTS

A.1 FATE AND TRANSPORT MODELING

In summary, the Analytical Transient 1-, 2-, 3-Dimensional Model was used to model contaminant migration to two potential downgradient receptors: a drainage ditch located approximately 450 ft southeast of the site and Goshen Swamp located approximately 7,500 ft southeast of the site.

A.1.1 Summary of CAP-Part A Report Fate and Transport Modeling Results

The fate and transport modeling performed as part of the *Corrective Action Plan–Part A Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia,* (SAIC 1999) was based on the assumption of a continuous source of contamination at the site based on the maximum observed benzene concentration in groundwater [i.e., 1,670 μ g/L in well 75-04 during the Corrective Action Plan (CAP)–Part A in May 1998]. A near steady-state source was assumed for conservatism. The steady-state source loading for benzene was calibrated as a 2.1 mg/hour continuous pulse for 100 years. The source area was assumed to be the size of the tank pit, which was 12 ft × 18 ft. Based on the modeling results, the estimated dilution attenuation factor (DAF) for benzene was infinity at the drainage ditch and at Goshen Swamp, indicating that the predicted concentrations at these receptors, an alternate concentration limit (ACL) was not developed for benzene.

A.1.2 Summary of First Annual Monitoring Only Report Fate and Transport Modeling Results

As a result of the benzene concentrations observed during the semiannual monitoring, the fate and transport modeling results were revised in the *First Annual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia,* (SAIC 2000) to reflect more recent site conditions assuming a continuous source of contamination. The maximum observed benzene concentration in groundwater during the semiannual monitoring events (i.e., 361 µg/L in well 75-12 in January 2000) was used in the model. A near steady-state source was assumed for conservatism. The source, together with hydraulic conductivity and longitudinal dispersivity, were characterized through calibration. The steady-state source loading for benzene was revised to a 31.5 mg/hour continuous pulse for 5 years, which was developed by calibrating the groundwater concentrations observed during the June 2002 sampling event (195 µg/L in well 75-11 and 162 µg/L in well 75-12). The source area, located between wells 75-11 and 75-12, was assumed to be 7.5 ft × 12.5 ft based on model calibration. The estimated DAF for benzene was infinity at the drainage ditch and Goshen Swamp. ACLs were not developed for the drainage ditch or Goshen Swamp because the ACLs would be infinite for benzene. It was proposed that the site-specific ACL for benzene be an order of magnitude above the In-Stream Water Quality Standard (IWQS), resulting in an ACL of 713 µg/L.

A.1.3 Summary of Second Annual Monitoring Only Report Fate and Transport Modeling Results

As a result of the benzene concentrations observed during the semiannual monitoring, the fate and transport modeling results were revised in the *Second Annual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia* (SAIC 2002) to reflect more recent site conditions assuming a continuous source of contamination. The maximum observed benzene concentration in groundwater during the semiannual monitoring events (i.e., 902 μ g/L at well 75-12 in January 2002) was used in the model. A near steady-state source was assumed for conservatism. The source size and source loading were characterized through calibration. The steady-state source loading for benzene was revised to a 56.9 mg/hour continuous pulse for 11 years, which was developed by calibrating the maximum groundwater concentrations observed during the January 2002 sampling event (596 μ g/L in well 75-11 and 902 μ g/L in well 75-12). The source area, located between wells 75-11

and 75-12, was assumed to be 10 ft \times 47.5 ft based on model calibration. Based on the revised modeling results, the DAFs for benzene were 1,287 at the drainage ditch and infinity at Goshen Swamp. If the DAF of 1,287 were used to calculate an ACL, the value would be unreasonable; therefore, the ACL for the site remained at 713 μ g/L.

A.1.3 Third Annual Monitoring Only Report Fate and Transport Modeling Results

The fate and transport modeling is being revised as part of this document to reflect the most recent site conditions assuming a continuous source of contamination. A near steady-state source was assumed for conservatism. The source size and source loading were characterized through calibration. The source was calibrated as a 30.7 mg/hour continuous pulse for 10 years located around well 75-11. The model was calibrated by matching the benzene concentration of 258 μ g/L in well 75-11 during the June 2003 sampling event and assuming steady-state conditions. The soil properties remained the same as assumed in the last modeling performed for the Underground Storage Tank (UST) 122 site. The hydraulic gradient was recalculated based on the June 2003 potentiometric surface map. The recent increase in groundwater elevation had caused an increase in the hydraulic gradient (from 0.0013 in January 2002 to 0.0086 in June 2003). As a result, the dispersivity values were recalibrated for the modeling to reflect the current hydrogeologic conditions in the site.

Based on the revised modeling results, the DAFs for benzene were 40 at the drainage ditch and infinity at Goshen Swamp. Simulations of a 2-year period were conducted to predict the maximum concentrations of benzene in the downgradient wells through June 2005. The predicted maximum concentrations in the wells, based on the maximum observed benzene concentration of 258 μ g/L in June 2003, are presented in Table A-1. The results of the revised fate and transport modeling are presented in Tables A-2 and A-3 and Figures A-1 and A-2.

The DAF at the drainage ditch is significantly reduced when compared with the DAF estimated from the previous modeling. This significant reduction of DAF is a result of the horizontal hydraulic gradient in groundwater having increased by approximately an order of magnitude during this period, thereby increasing the groundwater velocity in the same proportion. Therefore, the modeling results indicate higher contaminant migration because of both increased advection and dispersion. It should be noted, however, that this could be a temporary condition caused by severe wet conditions that existed in the past year. With normal (average-condition) precipitation, the water table would be lowered and the horizontal hydraulic gradient would decrease, thereby decreasing contaminant migration and increasing the DAF.

The ACL for benzene should remain an order of magnitude above the IWQS at 713 μ g/L because the original DAF developed during the CAP–Part B report was infinite. The change in the site conditions has greatly reduced the DAF for benzene, and using the recalculated DAF would result in an ACL higher than the existing ACL. Because these site conditions might be temporary and the benzene concentrations have remained below the existing ACL, there is no need to recalculate the ACL.

A.2 FATE AND TRANSPORT MODELING CONCLUSIONS

The conclusions below are based on the revised fate and transport model, which assumed that the source is a continuous pulse for 10 years at the site based on the maximum observed benzene concentration (i.e., 258 μ g/L) in groundwater during the last semiannual sampling event. The continuous pulse was used to calibrate the model based on the results of semiannual sampling.

- Benzene concentrations in groundwater in well 75-12 exceeded the ACL of 713 μ g/L in January 2002; however, the ACL has not been exceeded in well 75-12 in the two subsequent monitoring events. None of the benzene concentrations in any of the other wells at the site has exceeded the ACL during the monitoring events.
- Benzene does not impact the closest downgradient receptor, a drainage ditch located 450 ft downgradient of the site, at concentrations above the IWQS.

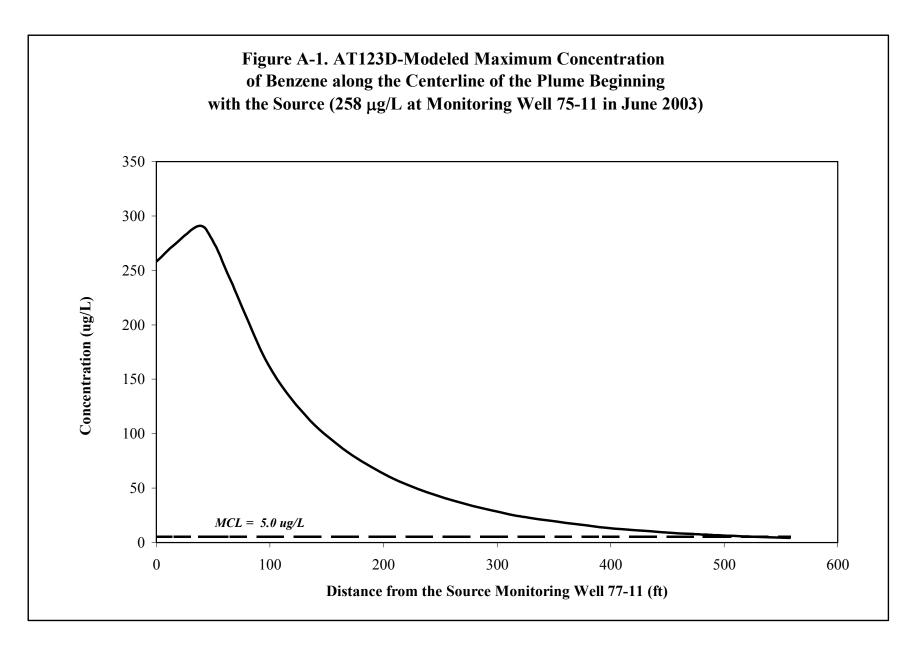
A.3 REFERENCES

- SAIC (Science Applications International Corporation) 1999. Corrective Action Plan–Part A Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, August.
- SAIC 2000. First Annual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, December.
- SAIC 2002. Second Annual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, May.

	Predicte	Predicted Maximum Benzene Concentration (µg/L)									
Well	Jan. 2004	June 2004	Jan. 2005	June 2005							
75-11	127	76.7	48.2	31							
75-12	26.2	17.1	11.3	7.5							
75-13	3.1	2.1	1.4	0.9							
75-14	6.1	4.4	3.1	2.2							
75-15	1.6	1	0.7	0.5							

Table A-1. Predicted Maximum Benzene Concentrationsin Groundwater at the UST 122 Site

Table A-2. Natural Attenuation Modeling Results(Benzene Concentration versus Distance) for the UST 122 Site


Distance from the Source	Distance from the Source	Predicted Maximum Benzene Concentration in Groundwater
(ft)	(m)	(µg/L)
0.0	0.0	258
16.4	5.0	274
37.7	11.5	291
49.2	15.0	278
65.6	20.0	240
98.4	30.0	164
131.2	40.0	117
164.0	50.0	86
196.9	60.0	64.9
229.7	70.0	49.6
262.5	80.0	38.1
295.3	90.0	29.5
328.1	100.0	23
393.7	120.0	13.9
426.5	130.0	10.9
459.3	140.0	8.56
482.3	147.0	7.2
492.1	150.0	6.74
524.9	160.0	5.31
557.7	170.0	4.19
7,500.0	2,286.0	0

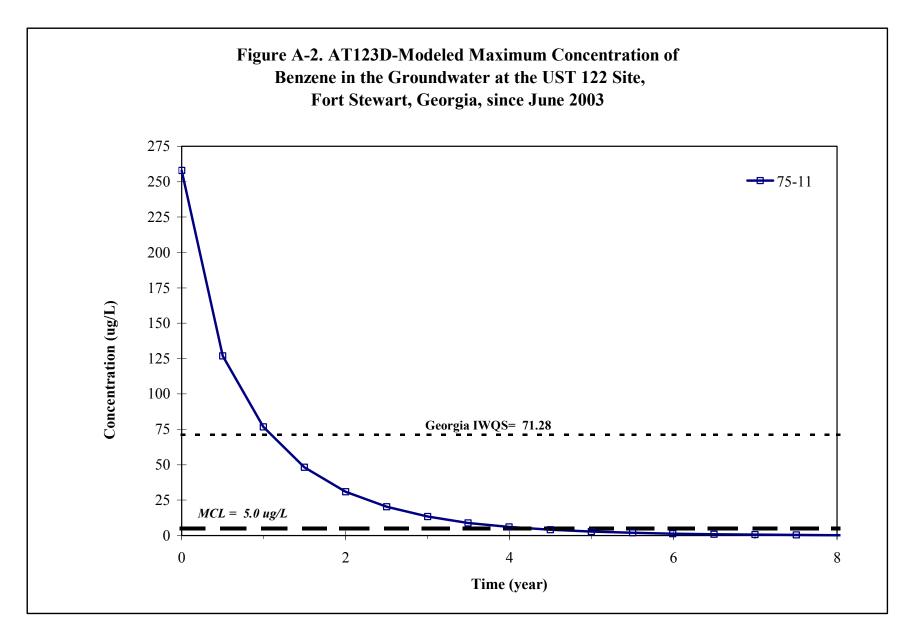

Time		ene Concentration water (μg/L)
(years)	75-11	75-12
0.0^a	258	40.7
0.5	127	26.2
1.0	76.7	17.1
1.5	48.2	11.3
2.0	31	7.51
2.5	20.3	5.03
3.0	13.4	3.39
3.5	8.96	2.3
4.0	6.01	1.56
4.5	4.06	1.06
5.0	2.75	0.727
5.5	1.87	0.498
6.0	1.28	0.342
6.5	0.873	0.235
7.0	0.599	0.162
7.5	0.411	0.112
8.0	0.283	0.0773
8.5	0.195	0.0535

Table A-3. Natural Attenuation Modeling Results(Benzene Concentration versus Time) for the UST 122 Site

NOTE:

^{*a*} Time zero is set at June 2003.

Ft Stewart UST 122 Benzene (calibration: August 2003)

NO. OF POINTS IN X-DIRECTION	
NO. OF POINTS IN Y-DIRECTION	3
NO. OF POINTS IN Z-DIRECTION	1
NO. OF ROOTS: NO. OF SERIES TERMS	400
NO. OF BEGINNING TIME STEP	121
NO. OF ENDING TIME STEP	235
NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION	6
INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE	1
SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE	0
INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT	1
CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	2
AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS)	0.1070E+02
AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS)	0.0000E+00
BEGIN POINT OF X-SOURCE LOCATION (METERS)	-0.5000E+01
END POINT OF X-SOURCE LOCATION (METERS)	0.5000E+01
BEGIN POINT OF Y-SOURCE LOCATION (METERS)	-0.3000E+01
END POINT OF Y-SOURCE LOCATION (METERS)	0.3000E+01
BEGIN POINT OF Z-SOURCE LOCATION (METERS)	0.0000E+00
END POINT OF Z-SOURCE LOCATION (METERS)	0.0000E+00
POROSITY	0.2000E+00
HYDRAULIC CONDUCTIVITY (METER/HOUR)	0.7500E-01
HYDRAULIC GRADIENT	0.8600E-02
LONGITUDINAL DISPERSIVITY (METER)	0.1000E+02

HYDRAULIC GRADIENT	0.8600E-02
LONGITUDINAL DISPERSIVITY (METER)	0.1000E+02
LATERAL DISPERSIVITY (METER)	0.3000E+01
VERTICAL DISPERSIVITY (METER)	0.1000E+01
DISTRIBUTION COEFFICIENT, KD (M**3/KG)	0.1620E-03
HEAT EXCHANGE COEFFICIENT (KCAL/HR-M**2-DEGREE C)	0.0000E+00

MOLECULAR DIFFUSION MULTIPLY BY POROSITY (M**2/HR)	0.3530E-05
DECAY CONSTANT (PER HOUR)	0.4012E-04
BULK DENSITY OF THE SOIL (KG/M**3)	0.1340E+04
ACCURACY TOLERANCE FOR REACHING STEADY STATE	0.1000E-02
DENSITY OF WATER (KG/M**3)	0.1000E+04
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (HR)	0.7300E+03
DISCHARGE TIME (HR)	0.8760E+05
WASTE RELEASE RATE (KCAL/HR), (KG/HR), OR (CI/HR) .	0.3070E-04

 RETARDATION FACTOR
 0.2085E+01

 RETARDED DARCY VELOCITY (M/HR)
 0.1546E-02

 RETARDED LONGITUDINAL DISPERSION COEF. (M**2/HR)
 0.1547E-01

 RETARDED LATERAL DISPERSION COEFFICIENT (M**2/HR)
 0.4648E-02

 RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/HR)
 0.1555E-02

			CHEMICALS IN = 0.1620E			CONC.)				
		Z =	0.00							
Y	0.	5.	12.	15.	X 20.	30.	40.	50.	60.	70.
0. -1.	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00
-12.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
				CONT	INUE X					
Y	80.	90.	100.	120.	130.					
0.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
-1.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
-12.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
			CHEMICALS IN = 0.1620E			CONC				
	(ADSORBED CH.	Z =		+00 ~ DISSOL	VED CHEMICAL	CONC.)				
	0	_	1.0	1 -	Х	20	10	5.0	60	20
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
0.	0.596E+00	0.563E+00	0.306E+00	0.214E+00		0.791E-01		0.330E-01	0.231E-01	
-1. -12.	0.576E+00 0.504E-01	0.546E+00 0.596E-01	0.300E+00 0.622E-01	0.211E+00 0.599E-01	0.143E+00 0.544E-01	0.787E-01 0.416E-01		0.329E-01 0.230E-01	0.231E-01 0.172E-01	0.167E-01 0.130E-01
12.	0.3046 01	0.5501 01	0.0225 01	CONT		0.4105 01	0.5056 01	0.2301 01	0.1725 01	0.1305 01
	0.0	0.0	100	100	X					
Y	80.	90.	100.	120.	130.					
0.	0.123E-01	0.919E-02		0.390E-02						
-1. -12.	0.123E-01 0.994E-02	0.917E-02 0.760E-02	0.689E-02 0.582E-02	0.390E-02 0.338E-02	0.291E-02 0.255E-02					
-12.	0.9946-02	0.700E-02	0.302E-02	0.330E-02	0.2556-02					
DT			CHEMICALS IN							
			= 0.1620E			CONC.)				
		Z =	0.00							
Y	0.	5	12.	15.	X 20.	30.	40.	50.	60.	70.
÷	0.		12.							
0. -1.	0.229E+00 0.222E+00	0.274E+00 0.266E+00	0.291E+00 0.283E+00	0.278E+00 0.271E+00	0.240E+00 0.234E+00	0.144E+00 0.141E+00	0.765E-01 0.757E-01	0.439E-01 0.436E-01	0.281E-01 0.280E-01	0.193E-01 0.192E-01
-12.	0.277E-01	0.342E-01	0.407E-01	0.429E-01	0.440E-01	0.403E-01		0.249E-01	0.187E-01	0.140E-01
				CONT						
Y	80.	90.	100.	120.	X 130.					
0. -1.	0.137E-01 0.137E-01	0.101E-01 0.100E-01	0.747E-02 0.745E-02	0.419E-02 0.419E-02	0.314E-02 0.314E-02					
-12.	0.106E-01	0.805E-02	0.615E-02	0.358E-02	0.272E-02					

		F DISSOLVED (EMICAL CONC.				CONC.)				
			0.00	DISSOL		00110.)				
	2	_	1.0	4.5	Х			5.0	5 0	
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
Ο.	0.127E+00	0.156E+00	0.185E+00	0.193E+00	0.194E+00	0.164E+00	0.112E+00	0.677E-01	0.397E-01	0.245E-01
-1.	0.123E+00		0.180E+00	0.188E+00					0.393E-01	
-12.	0.169E-01	0.211E-01	0.262E-01	0.286E-01 CONT:		0.329E-01	0.303E-01	0.253E-01	0.198E-01	0.151E-01
				CONT	X					
Y	80.	90.	100.	120.	130.					
0.	0.162E-01	0.114E-01	0.823E-02	0 4527 02	0 3305 03					
-1.		0.114E-01 0.113E-01								
-12.		0.859E-02								
DTS	STRIBUTION O	F DISSOLVED (CHEMICALS IN	РРМ АТ 0 10	007E+06 HBS					
		EMICAL CONC.				CONC.)				
		Z = 0	.00							
Y	0.	5	12.	15.	X 20.	30.	40.	50	60.	70.
1	0.	5.	12.	10.	20.	50.		50.	.00	/0.
0.			0.118E+00			0.139E+00				
-1. -12.			0.115E+00		0.134E+00	0.135E+00		0.836E-01		0.339E-01
-12.	0.107E-01	0.134E-01	0.171E-01	0.190E-01 CONT:		0.248E-01	0.253E-01	0.2328-01	0.1968-01	0.157E-01
				00111	X					
Y	80.	90.	100.	120.	130.					
0.	0 2138-01	0.138E-01	0 9/85-02	0 4968-02	0 3678-02					
-1.		0.138E-01								
-12.	0.121E-01	0.919E-02	0.696E-02	0.402E-02	0.306E-02					
DIS	TRIBUTION OF	DISSOLVED C	HEMICALS IN :	PPM AT 0.10	51E+06 HRS					
		EMICAL CONC.				CONC.)				
		Z =	0.00							
v	0.	5.	12.	15.	X 20.	30.	40.	50.	60.	70.
1	••	÷.	12.	10.	20.		10.			,
0.	0.482E-01	0.605E-01	0.767E-01	0.849E-01		0.106E+00				0.443E-01
-1. -12.	0.469E-01 0.691E-02	0.589E-01 0.872E-02	0.747E-01 0.113E-01	0.826E-01 0.127E-01		0.103E+00 0.179E-01		0.845E-01 0.196E-01		0.436E-01 0.153E-01
-12.	0.0916-02	0.0/2E-02	0.1136-01	CONT:		0.1/96-01	0.19/8-01	0.1906-01	0.1/96-01	0.1006-01
					Х					
Y	80.	90.	100.	120.	130.					
0.	0.286E-01	0.182E-01	0.118E-01	0.560E-02	0.405E-02					
-1.	0.282E-01	0.180E-01		0.558E-02						
-12.	0.124E-01	0.965E-02	0.740E-02	0.427E-02	0.325E-02					

			CHEMICALS IN = 0.1620E			CONC)				
			0.00	TOO DIBBOH		conc.)				
	0	F	10	1 5	Х	20	10	5.0	C 0	7.0
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
0.	0.310E-01	0.391E-01	0.504E-01			0.773E-01		0.769E-01		0.496E-01
-1. -12.	0.302E-01 0.454E-02	0.381E-01 0.575E-02	0.490E-01			0.753E-01 0.128E-01				0.486E-01
-12.	0.4548-02	0.5/5E-02	0.751E-02	CONT:		0.1288-01	0.148E-01	0.15/E-01	0.154E-01	0.140E-01
					Х					
Y	80.	90.	100.	120.	130.					
Ο.	0.350E-01	0.234E-01	0.152E-01	0.668E-02	0.465E-02					
-1.	0.344E-01	0.231E-01	0.151E-01	0.665E-02	0.463E-02					
-12.	0.119E-01	0.975E-02	0.769E-02	0.454E-02	0.345E-02					
			CHEMICALS IN			>				
	(ADSORBED CH	EMICAL CONC. Z =	= 0.1620E	+00 * DISSOL	VED CHEMICAL	CONC.)				
			0.00		Х					
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
0.	0.203E-01	0.257E-01	0.334E-01	0.378E-01	0.440E-01	0.552E-01	0.623E-01	0.634E-01	0.585E-01	0.493E-01
-1.	0.198E-01					0.538E-01				
-12.	0.302E-02	0.382E-02	0.503E-02			0.898E-02	0.109E-01	0.121E-01	0.125E-01	0.121E-01
				CONT	INUE X					
Y	80.	90.	100.	120.						
0.	0.381E-01	0 2755 01	0.189E-01	0 0305 00	0 5507 02					
-1.			0.189E-01							
-12.			0.769E-02							
DIS	STRIBUTION O	F DISSOLVED	CHEMICALS IN	PPM AT 0.1	183E+06 HRS					
	(ADSORBED CH		= 0.1620E	+00 * DISSOL	VED CHEMICAL	CONC.)				
		Z =	0.00		Х					
Y	0.	5.	12.	15.		30.	40.	50.	60.	70.
0. -1.	0.134E-01 0.131E-01			0.254E-01 0.247E-01		0.389E-01 0.379E-01		0.499E-01 0.486E-01		
-12.		0.256E-02		0.389E-02		0.628E-02		0.914E-02		
				CONT						
v	80.	90.	100.	120.	X 130					
Ŧ			100.	120.	100.					
0.				0.103E-01						
-1. -12.	0.369E-01 0.954E-02	0.289E-01 0.859E-02		0.102E-01 0.486E-02	0.683E-02 0.381E-02					
14.	0.0046-02	0.0096-02	0.1316-02	0.3006-02	0.0018-02					

		EMICAL CONC.	CHEMICALS IN = 0.1620E			CONC.)				
		Z =	0.00		x					
Y	0.	5.	12.	15.		30.	40.	50.	60.	70.
0. -1. -12.	0.896E-02 0.872E-02 0.136E-02	0.114E-01 0.111E-01 0.173E-02		0.167E-01	0.199E-01 0.318E-02	0.273E-01 0.266E-01 0.439E-02	0.327E-01		0.389E-01	0.377E-01
				00111	X					
Y	80.	90.	100.	120.	130.					
0. -1. -12.	0.339E-01	0.285E-01		0.121E-01 0.119E-01 0.481E-02	0.825E-02					
			CHEMICALS IN = 0.1620E 0.00		VED CHEMICAL	CONC.)				
Y	0.	5.	12.	15.	X 20.	30.	40.	50.	60.	70.
0.	0.601E-02	0.763E-02	0.101E-01	0.116E-01	0.140E-01	0.191E-01	0.241E-01	0.284E-01	0.311E-01	0.317E-01
-1. -12.		0.743E-02 0.117E-02		0.113E-01 0.180E-02 CONT	0.218E-02	0.186E-01 0.306E-02		0.277E-01 0.496E-02	0.304E-01 0.576E-02	
					Х					
Y	80.	90.	100.	120.	130.					
0.	0.302E-01	0.269E-01		0.134E-01						
-1. -12.		0.264E-01 0.642E-02		0.132E-01 0.460E-02						
		EMICAL CONC. Z =	CHEMICALS IN = 0.1620E 0.00		VED CHEMICAL X	·				
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
0. -1. -12.	0.406E-02 0.395E-02 0.624E-03	0.516E-02 0.502E-02 0.795E-03			0.932E-02 0.150E-02 INUE	0.133E-01 0.129E-01 0.213E-02	0.168E-01	0.209E-01 0.204E-01 0.360E-02		0.247E-01
Y	80.	90.	100.	120.	X 130.					
0. -1. -12.	0.253E-01 0.247E-01 0.520E-02	0.237E-01 0.232E-01 0.530E-02	0.205E-01	0.139E-01 0.137E-01 0.424E-02	0.104E-01					

		EMICAL CONC.	CHEMICALS IN = 0.1620E			CONC.)				
		Z =	0.00							
Y	0.	5.	12.	15.	X 20.	30.	40.	50.	60.	70.
0. -1. -12.	0.275E-02 0.268E-02 0.425E-03	0.341E-02		0.526E-02	0.639E-02 0.103E-02 INUE	0.925E-02 0.901E-02 0.148E-02	0.119E-01		0.174E-01	0.192E-01
77	80.	90.	100.	100	X					
Y	80.	90.	100.	120.	130.					
0. -1. -12.	0.205E-01 0.200E-01 0.406E-02	0.201E-01 0.197E-01 0.427E-02	0.183E-01	0.137E-01 0.134E-01 0.380E-02	0.107E-01					
			CHEMICALS IN = 0.1620E 0.00		VED CHEMICAL	CONC.)				
Y	0.	5.	12.	15.	X 20.	.30.	40.	50.	60.	70.
0. -1.	0.187E-02 0.182E-02	0.238E-02 0.232E-02	0.319E-02		0.451E-02	0.643E-02 0.626E-02	0.866E-02	0.110E-01 0.107E-01	0.133E-01	0.151E-01
-12.		0.370E-03			0.710E-03 INUE	0.103E-02		0.186E-02		
v	80.	90.	100.	120.	X 130					
1	00.	50.	100.	120.	150.					
0.		0.166E-01		0.129E-01						
-1. -12.		0.162E-01 0.338E-02		0.126E-01 0.330E-02						
-12.	0.312E-02	0.3308-02	0.550E-02	0.330E-02	0.303E-02					
			CHEMICALS IN = 0.1620E 0.00			CONC.)				
Y	0.	5.	12.	15.		30.	40.	50.	60.	70.
0.	0.128E-02	0 163〒-02	0.218E-02	0 25/〒-02	0 3105-02	0.447E-02	0 6115-02	0.793E-02	0.975E-02	0.114E-01
-1.	0.124E-02		0.213E-02	0.247E-02		0.436E-02		0.772E-02	0.951E-02	
-12.	0.199E-03	0.254E-03	0.342E-03	0.398E-03 CONT	INUE	0.716E-03			0.169E-02	0.205E-02
Y	80.	90.	100.	120.	x 130.					
0.	0.126E-01	0.133E-01	0.134E-01	0.116E-01	0.101E-01					
-1.	0.123E-01	0.130E-01		0.114E-01	0.991E-02					
-12.	0.237E-02	0.264E-02	0.280E-02	0.281E-02	0.265E-02					

			CHEMICALS IN = 0.1620E			CONC.)				
		Z =	0.00							
Y	0.	5.	12.	15.	X 20.	30.	40.	50.	60.	70.
0. -1. -12.	0.873E-03 0.850E-03 0.137E-03	0.111E-02 0.108E-02 0.174E-03	0.150E-02 0.146E-02 0.235E-03	0.174E-02 0.170E-02	0.208E-02		0.419E-02	0.553E-02	0.712E-02 0.694E-02 0.122E-02	0.830E-02
-12.	0.1376-03	0.1/4E-03	0.233E-05	CONT:	INUE	0.490E-05	0.7016-05	0.945E-05	0.1226-02	0.1316-02
Y	80.	90.	100.	120.	X 130.					
0. -1. -12.	0.945E-02	0.105E-01 0.103E-01 0.203E-02		0.102E-01 0.995E-02 0.233E-02	0.900E-02					
			CHEMICALS IN = 0.1620E [.] 0.00			CONC.)				
Y	0.	5.	12.	15.		30.	40.	50.	60.	70.
0. -1. -12.		0.763E-03 0.743E-03 0.120E-03	0.103E-02 0.100E-02 0.162E-03	0.117E-02	0.144E-02 0.234E-03	0.216E-02 0.211E-02 0.347E-03	0.295E-02	0.394E-02		
					Х					
Y	80.	90.	100.	120.	130.					
	0.734E-02			0.867E-02						
-1. -12.				0.847E-02 0.191E-02						
		EMICAL CONC.	CHEMICALS IN = 0.1620E 0.00			CONC.)				
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
0. -1. -12.			0.708E-03 0.690E-03 0.112E-03	0.826E-03 0.805E-03 0.131E-03 CONT	0.994E-03 0.162E-03	0.151E-02 0.147E-02 0.241E-03	0.207E-02	0.288E-02 0.280E-02 0.476E-03	0.363E-02	
Y	80.	90.	100.	120.	, 130.					
0. -1. -12.	0.550E-02 0.537E-02 0.986E-03	0.627E-02 0.612E-02 0.116E-02		0.722E-02 0.705E-02 0.153E-02	0.681E-02					

			CHEMICALS IN = 0.1620E			CONC				
	(ADSORBED CH.	Z =		+00 ^ DISSOL	VED CHEMICAL	CONC.)				
					Х					
Y	0.	5.	12.	15.	20.	30.	40.	50.	60.	70.
0.	0.283E-03	0.361E-03	0.488E-03	0.570E-03	0.706E-03	0.105E-02	0.149E-02	0.204E-02	0.268E-02	0.338E-02
-1.		0.352E-03		0.556E-03		0.102E-02				
-12.	0.447E-04	0.570E-04	0.773E-04			0.168E-03	0.243E-03	0.337E-03	0.452E-03	0.583E-03
				CONT	X					
Y	80.	90.	100.	120.						
0	0 4105 00	0.476E-02	0 5227 02	0.590E-02						
0. -1.			0.532E-02 0.519E-02							
-12.			0.101E-02							
TU	STRIBUTION O	F DISSOLVED	CHEMICALS IN	РРМ АТ 0 1	664E+06 HBS					
			= 0.1620E			CONC.)				
		Z =	0.00							
v	0.	5.	12.	15.	X 20.	30.	4.0	5.0	60.	70.
1	0.	5.	12.	10.	20.	50.	40.	50.	00.	/0.
0.			0.337E-03							
-1. -12.		0.243E-03 0.394E-04		0.384E-03 0.626E-04		0.711E-03 0.117E-03				
-12.	0.3098-04	0.394E-04	0.535E-04	0.626E-04 CONT		0.11/E-03	0.1/0E-03	0.2388-03	0.323E-03	0.421E-03
					X					
Y	80.	90.	100.	120.	130.					
0	0 303E-02	0 359E-02	0.409E-02	0 474E-02	0 483E-02					
-1.			0.399E-02							
-12.		0.648E-03		0.956E-03						
STEADY	STATE SOLUT	ION HAS NOT	BEEN REACHED	BEFORE FINA	L SIMULATING	TIME				
			CHEMICALS IN							
	(ADSORBED CH	EMICAL CONC. Z =	= 0.1620E	+00 * DISSOL	VED CHEMICAL	CONC.)				
		Ζ =	0.00		х					
Y	170820.	5.	12.	15.		30.	40.	50.	60.	70.
0. -1.		0.172E-03 0.167E-03	0.233E-03 0.227E-03	0.273E-03 0.266E-03		0.508E-03 0.495E-03				
-12.		0.273E-04				0.816E-04				
				CONT						
V	9.0	0.0	100.	120	X 120					
Ţ	80.	90.	T00.	120.	130.					
0.		0.268E-02		0.376E-02						
-1.		0.261E-02		0.367E-02						
-12.	0.388E-03	0.479E-03	0.573E-03	0.743E-03	0.806E-03					

ATTACHMENT B

REFERENCES

REFERENCES

- Logan, William E. 2000. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Branch) providing notice to implement the recommendations of the Corrective Action Plan–Part A Report, January 25.
- Logan, William E. 2001. Letter to Gregory Stanley (Fort Stewart Directorate of Public Works, Environmental Branch) providing comments on the First Annual Monitoring Only Report, September 28.
- SAIC (Science Applications International Corporation) 1999. Corrective Action Plan–Part A Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, August.
- SAIC 2000a. First Semiannual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, June.
- SAIC 2000b. First Annual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, December.
- SAIC 2002. Second Annual Monitoring Only Report for Underground Storage Tank 122, Facility ID #9-089083, Building 7705, Fort Stewart, Georgia, May.

ATTACHMENT C

CERTIFICATES OF ANALYSIS

GENERAL ENGINEERING LABORATORIES, LLC

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Dr									
	Oak Ridge, Tenn	essee 3/831				Re	port Date: Febru	iary 11	2003	
Contact:	Leslie Barbour					ite	pont Dute. Teon	aury 11	, 2005	
Project:	Ft. Stewart LTM	-UST 94A					Page	e 1	of	2
	Client Sample	ID:	751142		Proj		SAIC00103			
	Sample ID: Matrix: Collect Date: Receive Date: Collector:		73973006 Water 21-JAN-03 24-JAN-03 Client	15:00	Clier	nt ID:	SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al									
5035/8260B BTEX in L	iquid Federal									
Benzene		46.9	0.330	1.00	ug/L	1	CDS1 01/31/03	0024	230558	1
Ethylbenzene		6.95	0.210	1.00	ug/L	1				
Toluene	J	0.393	0.390	1.00	ug/L	1				
Xylenes (total)		4.42	0.250	1.00	ug/L	1				
The following Prep Me		med								
Method	Description			Analyst	Date	Time	Prep Batch			
SW846 8260B	8260B Volatile	s In Liquid Federal		CDS1	01/31/03	0024	230558			
The following Analytic	al Methods were p	performed								
Method	Description			A	analyst Comm	ents	ì.			
1	SW846 8260B									
Surrogate recovery	Test		Reco	very%	Acceptab	le Limits	L · ·			
Bromofluorobenzene	5035/826	0B BTEX in Liquid Fe	dei	105%	(67	%-136%)				
Dibromofluoromethane	5035/826	0B BTEX in Liquid Fe	de	114%	(62	%-148%)	÷			
Toluene-d8	5035/826	0B BTEX in Liquid Fe	de	117%	(58	%-139%)				
Notes:										
The Qualifiers in thi	s report are define	ed as follows :								

The Qualifiers in this report are defined as follows :

- < Actual result is less than amount reported
- Actual result is greater than amount reported >
- В Analyte found in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration exceeds instrument calibration range
- H Holding time exceeded
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- Р The response between the confirmation column and the primary column is >40%D
- U Indicates the compound was analyzed for but not detected above the detection limit
- UI Uncertain identification for gamma spectroscopy.
- Х Lab-specific qualifier - must be fully described in case narrative and data summary package
- Y QC Samples were not spiked with this compound.

The above sample is reported on an "as received" basis.

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Parameter	Sample ID: Oualifier Result	73973006	Client ID:					
Project:	Ft. Stewart LTM-UST 94A Client Sample ID:	751142	Project:	SAIC00103	age 2	of	2	
Contact:	Leslie Barbour				age 2		2	
Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831			Report Date: Fo	bruary 11	2003		

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

a

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Dri Oak Ridge, Tenn									
	Oak Ridge, Tellin	essee 57851				Rep	port Date: Febru	ary 11,	2003	
Contact:	Leslie Barbour									
Project:	Ft. Stewart LTM	-UST 94A					Page		of	2
	Client Sample	ID:	751242		Proje		SAIC00103			
	Sample ID: Matrix: Collect Date: Receive Date: Collector:		73973007 Water 21-JAN-03 24-JAN-03 Client	15:40	Clier	nt ID:	SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al									
5035/8260B BTEX in L	iquid Federal									
Benzene	J	0.598	0.330	1.00	ug/L	1	CDS1 01/31/03	0053 2	230558	1
Ethylbenzene	U	ND	0.210	1.00	ug/L	1				
Toluene	U	ND	0.390	1.00	ug/L	1			*	
Xylenes (total)	U	ND	0.250	1.00	ug/L	I				
The following Prep Me Method		med		A a l a4	Dete	Time	Dream Datak			
	Description			Analyst	Date	Time	Prep Batch			
SW846 8260B	8260B Volatile	s In Liquid Federal		CDS1	01/31/03	0053	230558			
The following Analytic	al Methods were p	performed								
Method	Description			A	Analyst Comm	ents				
1	SW846 8260B									
Surrogate recovery	Test		Reco	very%	Acceptab	le Limits				
Bromofluorobenzene	5035/826	0B BTEX in Liquid F	ede	100%	(67	%-136%)				
Dibromofluoromethane	5035/826	0B BTEX in Liquid F	ede	111%	(62)	%-148%)				
Toluene-d8	5035/826	0B BTEX in Liquid F	ede	117%	(58)	%-139%)	×			
Notes: The Qualifiers in thi	s report are defin	ed as follows :								

The Qualifiers in this report are defined as follows :

- Actual result is less than amount reported <
- Actual result is greater than amount reported >
- B Analyte found in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration exceeds instrument calibration range
- H Holding time exceeded

- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- The response between the confirmation column and the primary column is >40%D Р
- U Indicates the compound was analyzed for but not detected above the detection limit
- UI Uncertain identification for gamma spectroscopy.
- Х Lab-specific qualifier - must be fully described in case narrative and data summary package
- Y QC Samples were not spiked with this compound.

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Parameter	Qualifier Result	DL	RL	Units DF AnalystDate Time Batch Method
	Client Sample ID: Sample ID:	751242 73973007		Project: SAIC00103 Client ID: SAIC038
Project:	Ft. Stewart LTM-UST 94A			Page 2 of 2
Contact:	Leslie Barbour			Report Date: February 11, 2003
Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831			

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

alen Dani

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Dri	ive								
	Oak Ridge, Tenne	essee 37831				Dee	aart Datas – Eabe		2002	
Contact:	Leslie Barbour					Re	port Date: Feb	uary 11	, 2003	
Project:	Ft. Stewart LTM-	-UST 94A					Pag	ge l	of	2
	Client Sample I	ID:	751342		Proje		SAIC00103			
	Sample ID: Matrix: Collect Date: Receive Date: Collector:		73973010 Water 21-JAN-03 24-JAN-03 Client		Clier	nt ID:	SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	ral									
5035/8260B BTEX in I	Liquid Federal									
Benzene	U	ND	0.330	1.00	ug/L	1	CDS1 01/31/03	3 0219	230558	1
Ethylbenzene	U	ND	0.210	1.00	ug/L	1				
Toluene	U	ND	0.390	1.00	ug/L	1				
Xylenes (total)	U	ND	0.250	1.00	ug/L	1				
The following Prep M	ethods were perfor	med								
Method	Description			Analyst	Date	Time	Prep Batch	l		
SW846 8260B	8260B Volatile	s In Liquid Federal		CDS1	01/31/03	0219	230558			
The following Analytic	cal Methods were p	erformed								
Method	Description			1	Analyst Comm	ents				
1	SW846 8260B									
Surrogate recovery	Test		Rec	overy%	Acceptab	le Limits				
Bromofluorobenzene	5035/826	0B BTEX in Liquid Fe	ede	104%	(67)	%- 1 36%)				
Dibromofluoromethane	5035/826	0B BTEX in Liquid Fe	ede	111%	(62)	%-148%)				
Toluene-d8	5035/826	0B BTEX in Liquid Fe	ede	118%	(58)	%-139%)				

Notes:

The Qualifiers in this report are defined as follows :

Actual result is less than amount reported <

Actual result is greater than amount reported >

B Analyte found in the sample as well as the associated blank.

BD Flag for results below the MDC or a flag for low tracer recovery.

E Concentration exceeds instrument calibration range

H Holding time exceeded

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

Ρ The response between the confirmation column and the primary column is >40%D

U Indicates the compound was analyzed for but not detected above the detection limit

UI Uncertain identification for gamma spectroscopy.

Х Lab-specific qualifier - must be fully described in case narrative and data summary package

Υ QC Samples were not spiked with this compound.

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Parameter	Qualifier Result	DL	RL	Units DF AnalystI	Date Time Batch Method
	Sample ID:	73973010		Client ID: SAIC038	3
	Client Sample ID:	751342		Project: SAIC001	
Project:	Ft. Stewart LTM-UST 94A				Page 2 of 2
Contact:	Leslie Barbour			Report Date:	February 11, 2003
Address :	151 Lafayette Drive Oak Ridge, Tennessee 37831			Papart Data:	February 11, 2002
Company :	SAIC				

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

Valeri Dan

GENERAL ENGINEERING LABORATORIES, LLC

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Dri								
	Oak Ridge, Tenne	essee 37831				Re	port Date: Febr	uary 11, 2003	
Contact:	Leslie Barbour						P		
Project:	Ft. Stewart LTM-	UST 94A					Pag	e I of	2
	Client Sample I	D:	751442		Proj		SAIC00103		
	Sample ID: Matrix: Collect Date: Receive Date: Collector:		73973008 Water 21-JAN-03 24-JAN-03 Client		Clie	nt ID:	SAIC038		
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time Batc	h Method
Volatile Organics Feder	al								
5035/8260B BTEX in L	iquid Federal								
Benzene	U	ND	0.330	1.00		1	CDS1 01/31/03	0122 23055	8 1
Ethylbenzene	U	ND	0.210	1.00	0	1			
Toluene	U	ND	0.390	1.00	0	1			
Xylenes (total)	U	ND	0.250	1.00	ug/L	1			
The following Prep Me	thods were perform	med							
Method	Description			Analyst	Date	Time	Prep Batch		
SW846 8260B	8260B Volatiles	In Liquid Federal		CDS1	01/31/03	0122	230558		
The following Analytic	al Methods were p	erformed							
Method	Description				Analyst Comm	ents			
1	SW846 8260B								
Surrogate recovery	Test		Reco	overy%	Acceptat	le Limits			
Bromofluorobenzene	5035/8260)B BTEX in Liquid	Fede	101%	(67	%-136%)			
Dibromofluoromethane	5035/8260	B BTEX in Liquid	Feder	116%	(62	%-148%)			
Toluene-d8	5035/826	B BTEX in Liquid	Feder	119%	(58	%-139%)			
Notes: The Qualifiers in thi	s report are define	ed as follows :							

The Qualifiers in this report are defined as follows :

- Actual result is less than amount reported <
- Actual result is greater than amount reported >
- B Analyte found in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration exceeds instrument calibration range
- H Holding time exceeded
- Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J
- Р The response between the confirmation column and the primary column is >40%D
- U Indicates the compound was analyzed for but not detected above the detection limit
- UI Uncertain identification for gamma spectroscopy.
- Х Lab-specific qualifier - must be fully described in case narrative and data summary package
- Y QC Samples were not spiked with this compound.

a Member of THE GEL GROUP, INC. Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Parameter	Client Sample ID: Sample ID: Oualifier Result	751442 73973008 DL	RL	Project: SAIC00103 Client ID: SAIC038 Units DF AnalystDate Time Batch Method
Contact: Project:	Leslie Barbour Ft. Stewart LTM-UST 94A			Page 2 of 2
Company : Address :	151 Lafayette Drive Oak Ridge, Tennessee 37831			Report Date: February 11, 2003

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

Valeni Wain

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Dri Oak Ridge, Tenne								
Contact:	Leslie Barbour					Rej	port Date: Feb	ruary 11, 2003	
Project:	Ft. Stewart LTM-	UST 94A					Pa	ge 1 of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	751542 73973009 Water 21-JAN-03 24-JAN-03 Client	16:25	Proi Clie		SAIC00103 SAIC038		
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time Batc	h Method
Volatile Organics Feder	ral								
5035/8260B BTEX in L	Liquid Federal								
Benzene	U	ND	0.330	1.00	ug/L	1	CDS1 01/31/0	3 0150 23055	8 1
Ethylbenzene	U	ND	0.210	1.00	ug/L	1			
Toluene Xylenes (total)	U U	ND ND	0.390 0.250	1.00 1.00	ug/L ug/L	1 1			
The following Prep Me	ethods were perfor	med							
Method	Description			Analyst	Date	Time	Prep Batcl	h	
SW846 8260B	8260B Volatiles	s In Liquid Federal		CDSI	01/31/03	0150	230558		
The following Analytic	cal Methods were p	erformed							
Method	Description				Analyst Comm	ents			
1	SW846 8260B								
Surrogate recovery	Test		Reco	overy%	Acceptab	ole Limits			
Bromofluorobenzene	5035/826	B BTEX in Liquid	Fede	103%	(67	%-136%)			
Dibromofluoromethane	5035/8260	OB BTEX in Liquid	Fede	117%	(62	%-148%)			
Toluene-d8	5035/826	OB BTEX in Liquid	Fede	119%	(58	%-139%)			
Notes: The Qualifiers in thi	is report are define	ed as follows :							
> Actual result is gB Analyte found inBD Flag for results		t reported Il as the associated r a flag for low tra							

- E Concentration exceeds instrument calibration range
- H Holding time exceeded
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D
- U Indicates the compound was analyzed for but not detected above the detection limit
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier must be fully described in case narrative and data summary package
- Y QC Samples were not spiked with this compound.

a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

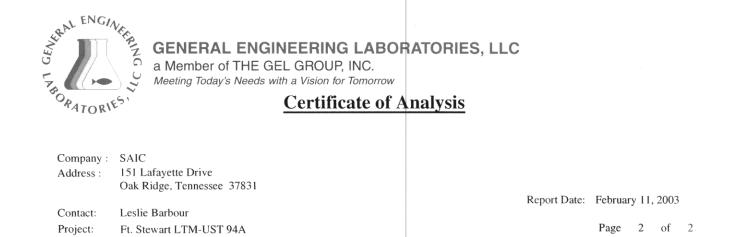
Parameter	Oualifier Result	DL	RL	Units DF	AnalystD	ate Tir	ne B	atch	Method
	Client Sample ID: Sample ID:	751542 73973009		Proiect: Client ID:	SAIC0010 SAIC038	03			
Project:	Ft. Stewart LTM-UST 94A					Page	2 0	of	2
Contact:	Leslie Barbour			,	Report Date.	reoruary	11, 20	505	
Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831				Report Date:	February	11 20	203	

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

lich. al Kun

GENERAL ENGINEERING LABORATORIES, LLC


a Member of THE GEL GROUP, INC.

Meeting Today's Needs with a Vision for Tomorrow

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Dri Oak Ridge, Tenno					D		11, 2002	
Contact:	Leslie Barbour					Кер	ort Date: Feb	ruary 11, 2003	
Project:	Ft. Stewart LTM-	UST 94A					Pa	ge l of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	ID:	TB0310 73973011 Water 21-JAN-03 24-JAN-03 Client		Proie		SAIC00103 SAIC038		
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time Batc	h Method
Volatile Organics Feder	al								
5035/8260B BTEX in L	iquid Federal								
Benzene	U	ND	0.330	1.00	ug/L	1	CDS1 01/31/0	3 0248 23055	8 1
Ethylbenzene	U	ND	0.210	1.00	ug/L	1			
Toluene	U	ND	0.390	1.00	ug/L	1			
Xylenes (total)	U	ND	0.250	1.00	ug/L	I			
The following Prep Me	thods were perfor	med		construction and a substance of the state of		-			
Method	Description			Analyst	Date	Time	Prep Batcl	h	
SW846 8260B	8260B Volatile	s In Liquid Federal		CDS1	01/31/03	0248	230558		
The following Analytic	al Methods were p	erformed							
Method	Description				Analyst Comm	ents			
1	SW846 8260B			- we see the constraint of the second processing of the second processing of the second processing of the second sec					
Surrogate recovery	Test		Reco	overy%	Acceptab	le Limits			
Bromofluorobenzene	5035/826	0B BTEX in Liquid	Fede	109%	(67	%-136%)			
Dibromofluoromethane	5035/826	0B BTEX in Liquid	Fede	119%	(62	%-148%)			
Toluene-d8	5035/826	0B BTEX in Liquid	Feder	123%	(58	%-139%)			
Notes: The Qualifiers in thi	s report are define	ed as follows :							
 Actual result is le Actual result is gr B Analyte found in BD Flag for results 	reater than amoun the sample as we	t reported Il as the associated							

- Concentration exceeds instrument calibration range Е
- Holding time exceeded Η
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- The response between the confirmation column and the primary column is >40%D Р
- U Indicates the compound was analyzed for but not detected above the detection limit
- UI Uncertain identification for gamma spectroscopy.
- Х Lab-specific qualifier - must be fully described in case narrative and data summary package
- Y QC Samples were not spiked with this compound.

	Client Sample I Sample ID:	D:	TB0310 73973011		Projec Client		SAIC00103 SAIC038				
Parameter	Qualifier	Result	DL I	RL	Units	DF	AnalystDate	Time	Batch	Method	

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

Valen Wan

CHAIN OF CUSTODY RECORD

COC NO .: GLTM32

800 Oak Ridge Turnpike, Oak I	Ridge, TN 37831 (423)	481-4600			CI		N	OF	- 0	03		יטנ	R	EC	OR	U				1			701120
PROJECT NAME: Ft. S	tewart LTM-D.O.	21						—	Г	RI	equ T	IEST	ED P		MET	ERS	3	П		T	\square	LABORATORY General Enginee	
	ROJECT NUMBER: 01-1624-04-5213-200 ROJECT MANAGER: Patty Stoll																				Vials:	LABORATORY 2040 Savage Ra Charleston, SC	aod
Sampler (Signature)		inted Name)	Sou	×		Grease	I Phnols														of Bottles/ V	PHONE NO: (84	3) 556-8171 OBSERVATIONS, COMME
Sample ID	Date Collected	Time Collected	Matrix	втех	20 V	Oil &	Total	펍													No.	SCREENING	SPECIAL INSTRUCTION
060942	1/21/03	1005	WATER	2				1						10 1 10 10 10 10 10 10 10 10 10 10 10 10	19				a Edite		2		S
\$6\$642	1/21/03	1030	WATER	2																	2		
Ø60644	1/21/03	1036	WATER	2					3											01	2		
Ø6\$842	1/21/03	1025	WATER	z										2	90 90 80 - 90			149. N. 249.047	1999 1995		2		
060742	1/21/03	1045	WATER	2													1773 8729	Sec.	1		2		
Ø60742 751142	1/21/03	1500	WATER	Z					and the second		de la					1					2		
751242	1/21/03	1540	WATER	2					3.27 30-1						13.						2		
751442	1/21/03	1620	WATER	z					10.10		Artic Sc Interface							Talia Talia			2		
751542	1/21/03	1025	WATER	2					14.24		in the second							20			2		
751342	1/21/03	1710	WATER	Z			4								NACE.				135		2		
TB\$31\$	1/21/03	0743	WATER	2			1.5										_	1000		1	2		
					1	2	S	4		17	29	10	5		and a second sec	-			-	F	1		
RELINQUISHED BY:)	/// Date	e/Time RECE	VED BY:	1	Z			L	te/Ti			-		JMB	ER C	DF C	ONT	AINER	RS: 2	22	1	Cooler Tempera	ature: 4°C
COMPANY NAME:	5/1 1/2	4/03 M	ANY NAME:	n	_				LK		_	Coole	er ID:	:	#	4							1
RECEIVED BY		e/Time RELIN	QUISHED BY:	:				Dat	te/Ti	me													
COMPANY MAME	/ 12	COMP	ANY NAME:																				
RELINGUISHED BY:	Date	e/Time RECE	VED BY:	-				Dat	te/Ti	me													
COMPANY NAME:	- 15	IS COMP	ANY NAME:									-											

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Dri	ve								
	Oak Ridge, Tenne	essee 37831				р	en ent Datas Inde	. 20. 200	2	
Contact:	Leslie Barbour					K	eport Date: July	50, 200	13	
Project:	Ft. Stewart Long	Term Monitorin	g				Pa	ge l	of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	8288 Wate 21-Л	9003 er UN-03 18:36 UN-03		Proi Clie	ect: ent ID:	SAIC03902 SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al									
5035/8260B BTEX in L	iquid Federal					-				
Benzene Ethylbenzene	Е	299 28.0	0.330 0.210	1.00 1.00	ug/L ug/L	1 1	TLW 06/26/0	3 0827	259848	1
Toluene		2.92	0.390	1.00	ug/L	1				
Xylenes (total)		134	0.250	1.00 5.00	ug/L	1		2 1525	250040	2
Benzene Ethylbenzene		258 21.8	1.65 1.05	5.00	ug/L ug/L	5		5 1555	259848	Z
Toluene	J	2.20	1.05	5.00	ug/L	5				
Xylenes (total)	5	89.5	1.25	5.00	ug/L	5				
The following Analytic	al Methods were p	erformed								
Method	Description			Α	nalyst Comn	nents				
1	SW846 8260B									
2	SW846 8260B									
Surrogate recovery	Test			Rec	overy%	Acce	eptable Limits			
Bromofluorobenzene	5035/8260	B BTEX in Liq	uid Federal		82%		(69%-137%)			
Dibromofluoromethane	5035/8260	OB BTEX in Liq	uid Federal		85%		(74%-144%)			
Toluene-d8	5035/8260	B BTEX in Liq	uid Federal		83%		(76%-129%)			
Bromofluorobenzene	5035/8260	OB BTEX in Lic	juid Federal		88%		(69%-137%)			
Dibromofluoromethane	5035/8260	OB BTEX in Lic	juid Federal		90%		(74%-144%)			
Toluene-d8	5035/8260	OB BTEX in Lic	juid Federal		83%		(76%-129%)			
Notes: The Qualifiers in thi	is report are define	ed as follows :								
	n amount reported									

Result is greater than amount reported.

B Target analyte was detected in the sample as well as the associated blank.

BD Flag for results below the MDC or a flag for low tracer recovery.

E Concentration of the target analyte exceeds the instrument calibration range.

H Analytical holding time exceeded.

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

P The response between the confirmation column and the primary column is >40%D.

U Indicates the target analyte was analyzed for but not detected above the detection limit.

UI Uncertain identification for gamma spectroscopy.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831							
Contact: Project:	Leslie Barbour Ft. Stewart Long Term Monitoring			F	Report Date:	July 30, 20 Page 2	03 of	2
	Client Sample ID: 751152 Sample ID: 82889003			Project: Client ID:	SAIC0390 SAIC038			
Parameter	Qualifier Result	DL	RL	Units DF	AnalystD	ate Time	Batch	Method

X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

ale h ain

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Dri	ve								
	Oak Ridge, Tenne	essee 37831								
						Re	port Date: July	30, 200	13	
Contact:	Leslie Barbour						_			
Project:	Ft. Stewart Long	Term Monitoring	5				Pag	e l	of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	82889 Wate 21-Л	9002 r JN-03 18:26 JN-03		Proi Clie	ect: nt ID:	SAIC03902 SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al									
5035/8260B BTEX in L	iquid Federal									
Benzene	J	0.876	0.330	1.00	ug/L	1	TLW 06/26/03	3 0800	259848	1
Ethylbenzene	U	ND	0.210	1.00	ug/L	1				
Toluene	U	ND	0.390	1.00	ug/L	1				
Xylenes (total)	U	ND	0.250	1.00	ug/L	1				
The following Analytic	al Methods were p	erformed								
Method	Description			A	analyst Comm	nents				
1	SW846 8260B									
Surrogate recovery	Test			Rec	covery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	0B BTEX in Liq	uid Federal		85%		(69%-137%)			
Dibromofluoromethane	5035/8260	0B BTEX in Liq	uid Federal		86%		(74%-144%)			
Toluene-d8	5035/8260	0B BTEX in Liq	uid Federal		81%		(76%-129%)			
Notes: The Qualifiers in the	is report are define	ed as follows :								
< Result is less that	n amount reported									

- Result is greater than amount reported.
- B Target analyte was detected in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Sample ID: 82889002 Oualifier Result	DL	RL	Client II Units		IC038 alvstDate	Time	Batch	Method
	Client Sample ID: 751252			Project:	SA	IC03902			
Project:	Ft. Stewart Long Term Monitoring					Pag	e 2	of	2
Contact:	Leslie Barbour				Report	Date. July	50, 200		
Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831				Report	Date: July	30, 200)3	

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard øperating prosedures. Please direct any questions to your Project Manager, Valerie Davis.

aler hain

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Driv Oak Ridge, Tenne		31										
	C ·							Re	port Da	te: July	30, 200	13	
Contact:	Leslie Barbour												
Project:	Ft. Stewart Long 7	ferm Mo	nitoring							Pag	ge l	of	2
	Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	751352 82889001 Water 21-JUN-03 1' 24-JUN-03 Client	7:14			Proje Clier	ect: nt ID:	SAIC(SAIC(
Parameter	Qualifier	Result		DL	RI	L	Units	DF	Analy	stDate	Time	Batch	Method
Volatile Organics Fede	ral												
5035/8260B BTEX in 1	Liquid Federal												
Benzene	U	ND		0.330	1.0	0	ug/L	1	TLW	06/26/03	3 0733	259848	1
Ethylbenzene	U	ND		0.210	1.0		ug/L	1					
Toluene	U	ND		0.390	1.0	0	ug/L	1					
Xylenes (total)	U	ND		0.250	1.0)0	ug/L	1					
The following Analyti	cal Methods were pe	erformed	1										
Method	Description					ł	Analyst Comm	ents					
1	SW846 8260B												
Surrogate recovery	Test					Re	covery%	Acce	ptable I	Limits			
Bromofluorobenzene	5035/8260	B BTEX	in Liquid Feder	ral			87%		(69%-1	37%)			
Dibromofluoromethane	5035/8260	B BTEX	in Liquid Feder	ral			87%		(74%-1	44%)			
Toluene-d8			in Liquid Feder				82%		(76%-1				
Notes: The Qualifiers in th	is report are define	d as foll	ows :										
< Result is less that	n amount reported												

- < Result is less than amount reported.
- > Result is greater than amount reported.
- B Target analyte was detected in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831				Re	eport Date: J	uly 30, 20	03	
Contact:	Leslie Barbour						2		
Project:	Ft. Stewart Long Term Monitoring]	Page 2	of	2
	Client Sample ID: 751352 Sample ID: 82889001			Project: Client I		SAIC03902 SAIC038			
Parameter	Qualifier Result	DL R	L	Units	DF	AnalystDat	e Time	Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

h ai lu

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Driv	ve								
	Oak Ridge, Tenne	ssee 37831							-	
Contact:	Leslie Barbour					Re	eport Date: July	30, 200	3	
							Pag	e 1	of	2
Project:	Ft. Stewart Long	Ferm Monitor	ing				Pag	C I	01	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	828 Wa 23-	JUN-03 16:15 JUN-03		Proi Clie	ect: nt ID:	SAIC03902 SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	ral									
5035/8260B BTEX in I	Liquid Federal									
Benzene	U	ND	0.330	1.00	ug/L	1	TLW 06/26/03	3 1137	259848	1
Ethylbenzene	U	ND	0.210	1.00	ug/L	1				
Toluene	U	ND	0.390	1.00	ug/L	1				
Xylenes (total)	U	ND	0.250	1.00	ug/L	1				
The following Analytic	cal Methods were p	erformed								
Method	Description			A	nalyst Comm	nents				
1	SW846 8260B									
Surrogate recovery	Test			Rec	overy%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	B BTEX in L	iquid Federal		85%		(69%-137%)			
Dibromofluoromethane	5035/8260	B BTEX in L	iquid Federal		88%		(74%-144%)			
Toluene-d8	5035/8260)B BTEX in L	iquid Federal		81%		(76%-129%)			
Notes: The Qualifiers in th	is report are define	ed as follows	:							

- < Result is less than amount reported.
- > Result is greater than amount reported.
- B Target analyte was detected in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831	Report Date: July 30, 2003
Contact:	Leslie Barbour	
Project:	Ft. Stewart Long Term Monitoring	Page 2 of 2
	Client Sample ID: 751452 Sample ID: 82889015	Project: SAIC03902 Client ID: SAIC038
Parameter	Qualifier Result DL	RL Units DF AnalystDate Time Batch Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

alen' Dain

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Driv	/e								
	Oak Ridge, Tenne	ssee 37831				-				
Contact:	Leslie Barbour					Re	eport Date: July	30, 200	3	
							Dog	o 1	of	2
Project:	Ft. Stewart Long 7	erm Monitoring					Pag	e l	01	2
	Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:	82889 Wate 23-Л	9014 r JN-03 16:20 JN-03		Proje Clier	ect: nt ID:	SAIC03902 SAIC038			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al									
5035/8260B BTEX in L	iquid Federal									
Benzene	U	ND	0.330	1.00		1	TLW 06/26/03	3 1110	259848	1
Ethylbenzene	U	ND	0.210	1.00	0	1				
Toluene	U	ND	0.390	1.00	0	1				
Xylenes (total)	U	ND	0.250	1.00	ug/L	1				
The following Analytic	al Methods were p	erformed								
Method	Description				Analyst Comm	ents				
1	SW846 8260B									
Surrogate recovery	Test			F	Recovery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	B BTEX in Liq	uid Federal		87%		(69%-137%)			
Dibromofluoromethane	5035/8260	B BTEX in Liq	uid Federal		89%		(74%-144%)			
Toluene-d8	5035/8260	B BTEX in Liq	uid Federal		83%		(76%-129%)			
Notes: The Qualifiers in thi	s report are define	d as follows :								

- < Result is less than amount reported.
- > Result is greater than amount reported.
- B Target analyte was detected in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831			I	Report Date:	July 30, 20	03	
Contact:	Leslie Barbour				•			
Project:	Ft. Stewart Long Term Monitoring					Page 2	of	2
	Client Sample ID:751552Sample ID:82889014			Project: Client ID:	SAIC039 SAIC038			
Parameter	Qualifier Result	DL I	RL	Units DF	AnalystD	Date Time	e Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

leve h acin

Reviewed by

82889 , 82890

pg/d3

Employee-Owned Company nal Corporation Science Applications Interna

CHAIN OF CUSTODY RECORD

COC NO .: GLTM35

800 Oak Ridge Turnpike, Oak I	Ridge, TN 37831 (42	3) 481-4600			C	HA	IN	OF	- 0	:05	10	DY	RE	CO	RD								4211.00	
PROJECT NAME: Ft. S	tewart LTM-D.O	. 21		-		1	1	1	Т	RE		STED	PAR	RAM	ETE	RS						LABORATORY N General Engineer		
PROJECT NUMBER: 0	1-1624-04-5213-	200																				LABORATORY A		
PROJECT MANAGER:	Patty Stoll																					2040 Savage Rao Charleston, SC 2		
Sampler (Signature)	N/II /	Printed Name)	Smi			Grease	Total Phnols		1	20											B	PHONE NO: (843	Г	
Sample ID	Date Collected	Time Collected	Matrix	BTEX	20 V		Total	표	ATT	r11 d											No. of	OVA SCREENING	OBSERVATIONS, COMME SPECIAL INSTRUCTION	
TBØ314	6/21/03	0745	water	2					1000		н Солиг П	يوني بري بري								·	S			
141822	6/20/03	1415	water	2					2				4.4				200		10.00	4	4			
1A2222	6/20/03	1315	Water	2					Z				(5) 61	and the st					in the second		¥			
1AØ122	6/20/03	1710	water	2			1		2		1925 21 2010 - 5					100-	10			4	4			
14\$722	6/20/03	1805	water	2					2	2				1						•	4			
142\$22	6/20/03	1610	walci	Z					2	-	n 14									•	4			
1A2\$24	6/20/03	1610	Water	2					2	2	41.11						1				Y			6
1AØ322	6/20/03	1725	water	Z					2					1						ľ	4		- Aleren	
140422	6/20/03	1640	water	2					2		1									4	4			
1A\$222	6/20/03	1510	water	2					Z											4	2			
14\$224	4/20/03	1510	water	Z					Z											1	4		and the second se	6-
1AZ122	4/20/03	1335	water	2					2	2											4			
1A1222	6/20/03	1420	wet	Z	1				2	2				6.18							2			
RELIMOUISHED BY:			WED BY	2				Dat			_	the second s		IBER	OF	CON	TAIN	ERS	12	f fe		Cooler Temperatu	1	
COMPANY NAME:		COMF	ARTZ PANY NAME:					0 12		D		oler I	D:	#	=/				γD	•		FEDEX NUMBER	VIA	
RECEIVED BY:	Da	te/Time RELIN		72	, ~~	,	L	100 2/2		ime or														
COMPANY NAME:		Сомг	GEL	1			1		5															Þ.
RELINQUISHED BY:	Da	te/Time RECE		lus	~					ime ´ ~\$ \$													Ð	
COMPANY NAME:		COMF	ANY NAME:	-				15	53	30														

page 2f3

COC NO .: GLTM35

CHAIN OF CUSTODY RECORD

800 Oak Ridge Turnpike, Oak Ridge, TN 37831 (423) 481-4600								UF		121	OD	YR			U							42/1		
PROJECT NAME: Ft. S	tewart LTM-D.O.	21		\vdash						REQ	UEST	ED P	ARA	MET	ERS					LABORATO General Eng			tory	
PROJECT NUMBER: 0	1-1624-04-5213-20	00																		LABORATO 2040 Savage	e Rao	d		
PROJECT MANAGER:	Patty Stoll																		Vials:	Charleston,	SC 2	9417		
Sampler (Signature)		inted Name) XICIA A.	Spec			Grease	Phnols		BF										of Bottles/	PHONE NO	: (843)) 556-8171 OBSERVAT		MENTS
Sample ID	Date Collected	Time Collected	Matrix	BTEX	voc	Oil &	Total	Hd	MTB										No.	SCREENING	G		INSTRUCT	
1A1226	6/20/03	1350	weter	2					Z						i si i Shi Male		ist Ang		4	1				
1AØ626	6/2/03	1100	water	Z					2	1		en an		4.05	1		in de la composition Carladad		4	·				
1A\$622	6/21/03	1035	Water	Z	Dedrace Mark				2									i de de combre	4	/				
14\$522	6/21/03	0945	wake	2	ge de la composition de la composition de la composition de la				Z						1 () (() () () () () () () () (4	1				
1AØ822	6/21/03	0905	water	2					г				3		1				4	,				
751352	6/2/03	1714	water	2															Z					
751252	6/2/03	1826	water	Z															2					
751152	4/2/03	1836	water	2					elate i								1.1.1		2	2				
\$6\$952	6/21/03	1456	water	2								in and the second			Sheet.				2				1	in.
464852	6/21/03	1541	water	2					ante en					and and a second se					2	2				
\$6\$752	6/21/03	1534	water	2															2				3. 	4
Ølecolosz	6/21/03	1450	water	2							1		ŝ						2				19. J	2 /3
\$6\$654	6/21/03	1450	water	Z					1999 - 1999 1995 - 1999 1997 - 1999	8 4 5 5 8 5									2					
RELINGUISHED BY			VED BY	72.				Dat	e/Tim	e	TOT	AL NU	MBE	ER O	FCC	NTA	INERS		1/02	Cooler Tem	peratu	ire:	4°C	and the
COMPANY NAME:	9 <u>6</u> [24] 2		ANNY NAME:	_			4	9Ø 12:	1/4	23	Cool	er ID:		-	#(p	0/24/03		FEDEX NU				15
RECEIVED BY:	Date	VO		te			ļ	Date	#Tim	101														
COMPANY NAME:							ľ		30	- 1														
RELINQUISHED BY:	Date		ECEIVED BY					Date	e/Tim	ie														
COMPANY NAME:		COMP	ANY NAME:					1	4-1 53	0														

page 3of 3

CHAIN OF CUSTODY RECORD

COC NO .: 6LTM35

800 Oak Ridge Turnpike, Oak I	Ridge, TN 37831 (4.	23) 481-4600			CI	HA	IN	O	- C	US	10	יטי	R	-C(JH	D								YE MAD	
PROJECT NAME: Ft. Stewart LTM-D.O. 21						T	T	1	1	RE		ESTI	ED P/	ARA	MET	ERS	-	<u>г т</u>					LABORATORY N General Engineer		
PROJECT NUMBER: 01-1624-04-5213-200																							LABORATORY A 2040 Savage Rac		
PROJECT MANAGER: Patty Stoll																					Viale.		Charleston, SC 2		
Sampler (Signature) (Printed Name) Parts-C. Holl PATRICIA A. STOLL						Grease	Total Phnols															ğ _	PHONE NO: (843	1	0011151170
Sample ID	Date Collected		Matrix	BTEX	Noc Voc	Oil &	Total	펍														NO. OI	OVA SCREENING	OBSERVATIONS, SPECIAL INST	
37\$682	6/21/03	1316	water	Z			4.4														Ź	2			
370684	6/21/03	1316	wake	Z														a fasi			2	2			
370982	6/21/03	1225	water	2	6., 23. s. i				i harri A Mari											2	2	2			
37\$\$782	6/21/03	1235	hate	Z														15. 15. st				z			
TB\$313	6/20/03	0745	week	2	100 C 100 C 100													ine di			2	_			
751552	6/23/03	1620	water	2															_	in a	2	2			
751452	6123/03	1615	Water	2					P.S.S. Webb							1.5					2	_			
TBØ315	6123/03	1600	o chiki						et part i na									C. A.			2	2			
					h		1		1		(-					-	-	\pm				
				11	#	4	-	4	B	10	23							3.5				\perp			
			91	\downarrow					1										-			\perp			
									1															1.1.1	
RELINDUISHED BY. ALL Date/Time RECEIVED BY.			× .2			Date/Time				ΟΤΑ	LNU	MBE	R OI	ONTAINERS: 102				2	(Cooler Temperature: 4°C					
COMPANY NAME:		6/24/03 100 (ATT 1250 COMPANY NAME: GEL				.K			924/03 1250				Cooler ID:									FEDEX NUMBER:			
RECEIVED BY: D		Pate/Time RELINQUISHED BY					ķ	Date/Time													· · · · · · · · · · · · · · · · · · ·				
COMPANY NAME:		COMPANY NAME:						1530																	
RELINQUISHED BY:		Date/Time RECEIVED/BY:					Date/Time																		
COMPANY NAME:		COMPANY NAME:							53																