

Underground Storage Tanks 5 & 6 Facility ID #9-089066 Building 1824 Fort Stewart, Georgia

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-95-D-0022 Delivery Order 0055

December 2001

FIRST ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANKS 5 & 6 FACILITY ID #9-089066 BUILDING 1824 FORT STEWART, GEORGIA

Prepared for

U.S. Army Corps of Engineers – Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0055

Prepared by

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

December 2001

FINAL

TABLE OF CONTENTS

		Page
LIS	T OF ABBREVIATIONS AND ACRONYMS	iii
I.	REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II.	PROJECT SUMMARY	2
III.	ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS A. Potentiometric Data B. Analytical Data	2
IV.	SITE RANKING	
V.	CONCLUSIONS/RECOMMENDATIONS	4
VI.	REIMBURSEMENT	4
List	t of Appendices	
Fig Fig Fig Fig Fig	 PENDIX I: REPORT FIGURES	I-2 I-3 I-4 I-5 I-6
Tab	PENDIX II: REPORT TABLES ble 1. Groundwater Elevations ble 2. Groundwater Analytical Results	II-2
AP	PENDIX III: LABORATORY ANALYTICAL RESULTS	III-1
AP	PENDIX IV: SITE RANKING FORM	IV-1
Atta	achments	
А	SUMMARY OF FATE AND TRANSPORT MODELING RESULTS	A-1
В	REFERENCES	B-1
С	CERTIFICATES OF ANALYSIS	C-1

List of Abbreviations and Acronyms

ACL	alternate concentration limit
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	Corrective Action Plan
GA EPD	Georgia Environmental Protection Division
IWQS	In-Stream Water Quality Standard
UST	underground storage tank

MONITORING ONLY REPORT

Submittal Date: December 2001	Monitoring Report Number: 1st Annual					
For Period Covering: January 2001	to December 2001					
Facility Name: USTs 5 & 6, Building 1824	Street Address:W, 18th Street & McFarland Ave.					
Facility ID: 9-089066 City: Fort Stewar	t County: Liberty Zip Code: 31314					
Latitude: <u>31° 52′ 38″</u> Longitude:						
Submitted by UST Owner/Operator:	Prepared by Consultant/Contractor:					
Name: Thomas C. Fry/Environmental Bra	nch Name: Patricia A. Stoll					
Company: U.S. Army/HQ 3d, Inf. Div. (Mech	n) Company: SAIC					
Address: Directorate of Public Works, Bldg	. 1137 Address: P.O. Box 2501					
1550 Frank Cochran Drive						
City: Fort Stewart State: GA	City: Oak Ridge State: TN					
Zip Code: 31314-4927	Zip Code: 37831					

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patricia A. Stoll Signature: Hota R. Stell Date:

22

Georgia Stamp or Seal

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Underground Storage Tanks (USTs) 5 & 6, Facility ID #9-089066 were located near Building 1824 at Fort Stewart, Georgia. UST 5 had a capacity of 6,000 gallons and was used for storing gasoline, and UST 6 had a capacity of 25,000 gallons and was used for storing diesel fuel. The tanks were excavated and removed on August 6, 1996, and the ancillary piping was closed in place. Science Applications International Corporation performed a Corrective Action Plan (CAP)–Part A investigation in 1998. Results of the 1998 investigation were documented in the *CAP–Part A Report, Underground Storage Tanks 5 & 6, Facility ID #9-089066, Building 1842, Fort Stewart, Georgia*, which was submitted to the Georgia Environmental Protection Division (GA EPD) in June 1999 (SAIC 1999).

The GA EPD Underground Storage Tank Management Program (USTMP) conducted a technical review of the CAP–Part A Report (SAIC 1999), and in correspondence dated January 19, 2000 (Logan 2000), GA EPD approved the recommendation for additional investigation. The CAP–Part B investigation was performed in 2000, and the results were documented in the *CAP–Part B Report, Underground Storage Tanks 5 & 6, Facility ID #9-089066, Building 1842, Fort Stewart, Georgia*, which was submitted to GA EPD in November 2000 (SAIC 2000). The CAP–Part B Report recommended semiannual sampling of wells 71-10, 71-11, and 71-12 for benzene, toluene, ethylbenzene, and xylenes (BTEX) for a period of 1 year to ensure that the benzene concentrations remain below the alternate concentration limit (ACL) of 1,782 μ g/L. The CAP–Part B Report was approved by GA EPD in correspondence dated February 9, 2001 (Logan 2001).

The fate and transport modeling performed as part of the CAP–Part B Report (SAIC 2000) reflected a continuous source of contamination. The fate and transport modeling results were revised using the results from the semiannual monitoring events to calibrate the model. The revised fate and transport modeling results are provided in Attachment A.

The purpose of the semiannual monitoring, summarized in this report, is to confirm the results of the fate and transport modeling and that natural attenuation is taking place at the site. The benzene concentrations during the January 2001 and June 2001 sampling events have remained below the ACL; therefore, a no-further-action-required (NFAR) status is being recommended for the site.

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

A. <u>Potentiometric Data</u>:

(Appendix I, Figure 2: Potentiometric Surface Map) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

During the first semiannual sampling event in January 2001, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In January 2001, the groundwater flow direction was toward the west-northwest, and the groundwater gradient was approximately 0.0179 foot/foot.

During the second semiannual sampling event in June 2001, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In June 2001, the groundwater flow direction was toward the west and the groundwater gradient was approximately 0.026 foot/foot.

B. <u>Analytical Data</u>:

(Appendix I, Figure 3: Groundwater Quality Map) (Appendix II, Table 2: Groundwater Analytical Results) (Appendix III: Validated Laboratory Analytical Results) (Attachment C: Certificates of Analysis)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the first semiannual sampling event in January 2001, monitoring wells 71-10, 71-11, and 71-12 were sampled for BTEX using U.S. Environmental Protection Agency (EPA) Method 8021B/8260B. BTEX compounds were present in wells 71-11 and 71-12. In well 71-11, benzene was detected at 267 μ g/L, the toluene detection limit was 10 μ g/L, the ethylbenzene detection limit was 10 μ g/L, and total xylenes were detected at 6.2J μ g/L. In well 71-12, benzene was detected at 31.2 μ g/L. The benzene concentration in well 71-11 exceeded the In-stream Water Quality Standard (IWQS) of 71.28 μ g/L, but was below the GA EPD-approved ACL of 1,782 μ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

During the second semiannual sampling event in June 2001, monitoring wells 71-10, 71-11, and 71-12 were sampled for BTEX using EPA Method 8021B/8260B. BTEX compounds were present in wells 71-11 and 71-12. In well 71-11, benzene was detected at 125 μ g/L, toluene was detected at 2.3 μ g/L, ethylbenzene was detected at 2.3 μ g/L, and total xylenes were detected at 4J μ g/L. In well 71-12, benzene was detected at 19.4 μ g/L and toluene was detected at 0.22J μ g/L. The benzene concentration in well 71-11 exceeded the IWQS of 71.28 μ g/L, but was below the GA EPD-approved ACL of 1,782 μ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

As recommended in the CAP–Part B Report (SAIC 2000) and approved by GA EPD, polynuclear aromatic hydrocarbon analysis was not performed as part of the Monitoring Only Plan for the site.

IV. SITE RANKING (Note: re-rank site after each monitoring event.) (*Appendix IV: Site Ranking Form*)

Environmental Site Sensitivity Score:2,750 (CAP–Part B Report)(April 1999 version of the Site Ranking
Form was used.)2,750 (Jan. 2001 – First Semiannual Monitoring Event)2,750 (June 2001 – Second Semiannual Monitoring Event)

V. **CONCLUSIONS/RECOMMENDATIONS**

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

Fort Stewart respectfully requests that GA EPD USTMP assign Facility ID #9-089066 an NFAR status for the following reasons:

- The Monitoring Only Plan was conducted in accordance with Section III.D of • the CAP-Part B Report (SAIC 2000) and was submitted to GA EPD USTMP in November 2000 and approved by GA EPD USTMP in correspondence dated February 9, 2001 (Logan 2001).
- The revised fate and transport model, which uses a continuous source of contamination • and is summarized in Attachment A, indicates that benzene will never reach the nearest potential preferential pathway (i.e., an industrial wastewater line) at a concentration above the IWQS of 71.28 μ g/L.
- The benzene concentrations in all wells were below the GA EPD-approved ACL of $1,782 \mu g/L$ during the semiannual monitoring events in January and June 2001.
- The closest surface water bodies are a drainage ditch and Mill Creek located at 800 feet • and 1,600 feet, respectively, downgradient from the site.
- Natural attenuation has continued to take place at the site, as shown by the lower benzene concentrations observed during the semiannual monitoring events and those observed during the CAP-Part A and CAP-Part B investigations.

The monitoring only program at this site will be discontinued.

VI. REIMBURSEMENT

(Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the former USTs 5 & 6 site, Building 1824, Facility ID #9-089066 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

Attached N/A X

APPENDIX I

REPORT FIGURES

Figure 1. Location Map of USTs 5 & 6 at Fort Stewart, Liberty County, Georgia

Figure 2a. Potentiometric Surface Map of the USTs 5 & 6 Site (January 2001)

Figure 2b. Potentiometric Surface Map of the USTs 5 & 6 Site (June 2001)

Figure 3a. Groundwater Quality Map for the USTs 5 & 6 Site (January 2001)

Figure 3b. Groundwater Quality Map for the USTS 5 & 6 Site (June 2001)

Figure 4. Trend of Benzene Concentrations at the USTs 5 & 6 Site

APPENDIX II

REPORT TABLES

Table 1. Groundwater Elevations

		Ground Surface	Top of Casing	Depth of Screened	Depth of Free	Water	Product	Groundwater
Well	Date	Elevation	Elevation	Interval	Product	Depth	Thickness	Elevation
Number	Measured	(feet AMSL)	(feet AMSL)	(feet BGS)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)
			CAP-P	art A Investig	gation – 1998			
71-01	5/10/98	69.37	69.06 ^{<i>a</i>}	4.0 - 14.0	—	5.26	0	63.80
71-02	5/10/98	69.34	69.26 ^{<i>a</i>}	1.2 - 16.2	—	5.61	0	63.65
71-03	5/10/98	69.23	68.89 ^{<i>a</i>}	2.5 - 12.5		5.63	0	63.26
71-04	5/10/98	69.06	71.75 ^{<i>a</i>}	2.0 - 12.0		7.23	0	64.52
71-05	5/10/98	69.30	72.15 ^{<i>a</i>}	2.0 - 12.0	—	7.52	0	64.63
71-06	11/19/98	67.67	68.98 ^{<i>a</i>}	0.0 - 13.5	—	7.18	0	61.80
71-07	11/19/98	69.17	70.92 ^{<i>a</i>}	0.0 - 13.0		6.34	0	64.58
71-08	11/19/98	67.64	67.93 ^{<i>a</i>}	0.0 - 14.5		6.93	0	61.00
			CAP-P	art B Investig	ation – 2000			
71-10	2/21/00	69.27	69.07	4.8 - 14.8		6.61	0	62.46
71-11	2/21/00	69.33	69.14	4.8 - 14.8	—	7.52	0	61.62
71-12	2/21/00	67.25	67.05	4.8 - 14.8		6.32	0	60.73
71-13	2/21/00	67.45	67.28	4.8 - 14.8		6.91	0	60.37
71-14	2/21/00	66.97	66.66	4.8 - 14.8	—	5.87	0	60.79
71-15	2/21/00	66.96	66.75	4.8 - 14.8	—	6.93	0	59.82
71-16	2/21/00	69.38	69.08	24.8 - 34.8		8.67	0	60.41
			st Semiannua	l Monitoring	Event – Janua	try 2001		
71-10	1/10/01	69.27	69.07	4.8 - 14.8		5.78	0	63.29
71-11	1/10/01	69.33	69.14	4.8 - 14.8		7.90	0	61.24
71-12	1/10/01	67.25	67.05	4.8 - 14.8		6.90	0	60.15
71-13	1/10/01	67.45	67.28	4.8 - 14.8		7.06	0	60.22
71-14	1/10/01	66.97	66.66	4.8 - 14.8		6.33	0	60.33
71-15	1/10/01	66.96	66.75	4.8 - 14.8		6.95	0	59.80
71-16	1/10/01	69.38	69.08	24.8 - 34.8		9.10	0	59.98
			cond Semiann	ual Monitori	ng Event – Ju	ne 2001		
71-10	6/8/01	69.27	69.07	4.8 - 14.8		4.76	0	64.31
71-11	6/8/01	69.33	69.14	4.8 - 14.8		7.60	0	61.54
71-12	6/8/01	67.25	67.05	4.8 - 14.8		6.98	0	60.07
71-13	6/8/01	67.45	67.28	4.8 - 14.8		7.30	0	59.98
71-14	6/8/01	66.97	66.66	4.8 - 14.8		5.96	0	60.70
71-15	6/8/01	66.96	66.75	4.8 - 14.8		6.94	0	59.81
71-16	6/8/01	69.38	69.08	24.8 - 34.8		9.34	0	59.74

NOTES:

^a Top of casing is for temporary piezometers that were field surveyed and based on ground surface elevation for 71-01 and 71-06.

AMSL Above mean sea level

BGS Below ground surface

BTOC Below top of casing

CAP Corrective Action Plan

Sample Location	Sample ID	Screened Interval (feet BGS)	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethyl - benzene (µg/L)	Xylenes (µg/L)	Total BTEX (µg/L)
			CAP-H	Part A Investige	ution – 1998			
71-01	710112	4.0 - 14.0	5/11/98	1.1 J	2 U	2 U	6 U	1.1
71-02	710212	1.2 - 16.2	5/11/98	2 U	2 U	2 U	6 U	ND
71-03	710312	2.5 - 12.5	5/11/98	2 U	2 U	2 U	6 U	ND
71-04	710412	2.0 - 12.0	5/11/98	140 J	84 J	9.8 UJ	530 J	754
71-05	710512	2.0 - 12.0	5/11/98	2,730 =	205 =	253 =	610 J	3,798
71-06	710612	0.0 - 13.5	11/16/98	2 U	2 U	2 U	3 U	ND
71-07	710712	0.0 - 13.0	11/16/98	2 U	2 U	2 U	3 U	ND
71-08	710812	0.0 - 14.5	11/16/98	123 =	2 U	0.78 J	3 U	123.78
71-09	710912	11.0 - 15.0	11/14/98	150 =	2.6 =	10.5 =	21.9 =	185
71-09	710922	16.0 - 20.0	11/14/98	51.7 =	2 U	2.2 =	1.1 J	55
71-09	710932	21.0 - 25.0	11/14/98	1.2 J	2 U	2 U	3 U	1.2
71-09	710942	26.0 - 30.0	11/14/98	1.4 J	2 U	0.64 J	0.9 J	2.94
71-09	710952	31.0 - 35.0	11/14/98	2.1 =	2 U	0.81 J	0.99 J	3.9
71-09	710962	35.0 - 35.5	11/14/98	5.7 =	2 U	2 U	0.56 J	6.26
				Part B Investiga	tion – 2000			
71-10	711012	4.8 - 14.8	1/13/00	0.64 J	0.57 J	0.64 J	2.8 J	4.65
71-11	711112	4.8-14.8	1/13/00	294 =	7.9 =	30.9 =	41.4 =	374.2
71-12	711212	4.8-14.8	1/13/00	30.5 =	1 U	0.26 J	3 U	30.76
71-13	711312	4.8-14.8	1/13/00	1.9 =	1.8 =	0.39 J	1.7 J	5.79
71-14	711412	4.8-14.8	1/13/00	1.6 =	1 U	0.32 J	3 U	1.92
71-15	711512	4.8-14.8	1/13/00	1 U	1 U	1 U	3 U	ND
71-16	711612	24.8 - 34.8	1/13/00	0.35 J	1 U	0.1 J	3 U	0.45
				ul Monitoring I		•		
71-10	711022	4.8 - 14.8	1/09/01	1 U	1 U	1 U	3 U	ND
71-11	711122	4.8 - 14.8	1/09/01	267 =	10 U	10 U	6.2 J	273.2
71-12	711222	4.8 - 14.8	1/09/01	31.6 =	1 U	1 U	3 U	31.6
	Second Semiannual Monitoring Event – June 2001							
71-10	711032	4.8 - 14.8	6/8/01	1 U	1 U	1 U	3 U	ND
71-11	711132	4.8 - 14.8	6/8/01	125 =	2.3 =	2.3 =	4 J	133.6
71-12	711232	4.8 - 14.8	6/8/01	19.4 =	0.22 J	1 U	3 U	19.62
		er Quality Star Chapter 391-3-		71.28	200,000	28,718	NRC	NRC
A	Alternate Concentration Limits				_			

Table 2. Groundwater Analytical Results

NOTES:

Bold values exceed In-stream Water Quality Standards.

Italic values exceed alternate concentration limits.

BGS Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylenes

CAP Corrective Action Plan

GA EPD Georgia Environmental Protection Division

ND Not detected

NRC No regulatory criteria

Laboratory Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

UJ Indicates that the compound was not detected above an approximated sample quantitation limit.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

APPENDIX III

VALIDATED LABORATORY ANALYTICAL RESULTS

ANALYTICAL LABORATORY INFORMATION AND DATA VALIDATION CODES

The analytical laboratory was General Engineering Laboratories (GEL). The analytical data sheets provided in this appendix are copies of those provided by GEL with the Science Applications International Corporation validation codes. Representatives from the Georgia Environmental Protection Division (GA EPD) Underground Storage Tank Management Program (USTMP) and Fort Stewart agreed upon the format of the analytical data sheets and the information they contain during a meeting held on January 27, 1999. During the same meeting it was agreed that copies of the analytical data sheets and chain-of-custody forms could be provided in the reports submitted by Fort Stewart. In a subsequent phone conversation between representatives from the GA EPD USTMP and Fort Stewart, it was agreed that certificates of analysis would also be included. The original certificates of analysis and chain-of-custody forms are provided in Attachment C.

STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

	Name of Laboratory: Address:	General Engineering Laboratories, Inc. P.O. Box 30712 2040 Savage Road
	Contact: Telephone number: Fax number:	Charleston, SC 29407 Bob Pullano or Wendy Dimmick (843) 556-8171 (843) 766-1178
	Accrediting Authority: Accreditation Number: Effective Date: Expiration Date: Accreditation Scope:	State of South Carolina SC-10120001 extension granted while re-certification in process — SDWA, CWA, RCRA, CERCLA ¹
2	Accrediting Authority: Accreditation Number: Effective Date: Expiration Date: Accreditation Scope:	State of Florida E-87156 July 1, 2001 June 30, 2002 SDWA, CWA, RCRA, CERCLA

#1

#2

¹Safe Drinking Water Act of 1974, Clean Water Act of 1972, Resource Conservation and Recovery Act of 1976, and Comprehensive Environmental Response, Compensation, and Liability Act of 1980.

DATA VALIDATION REASON CODES

Organic, Inorganic, and Radiological Analytical Data

Holding Times

- A01 Extraction holding times were exceeded.
- A02 Extraction holding times were grossly exceeded.
- A03 Analysis holding times were exceeded.
- A04 Analysis holding times were grossly exceeded.
- A05 Samples were not preserved properly.
- A06 Professional judgment was used to qualify the data.

GC/MS Tuning

- B01 Mass calibration was in error, even after applying expanded criteria.
- B02 Mass calibration was not performed every 12 hours.
- B03 Mass calibration did not meet ion abundance criteria.
- B04 Professional judgment was used to qualify the data.

Initial/Continuing Calibration – Organics

- C01 Initial calibration RRF was < 0.05.
- C02 Initial calibration RDS was > 30%.
- C03 Initial calibration sequence was not followed as required.
- C04 Continuing calibration RRF was < 0.05.
- C05 Continuing calibration %D was > 25%.
- C06 Continuing calibration was not performed at the required frequency.
- C07 Resolution criteria were not met.
- C08 RPD criteria were not met.
- C09 RDS criteria were not met.
- C10 Retention time of compounds was outside windows.
- C11 Compounds were not adequately resolved.
- C12 Breakdown of endrin or DDT was > 30%.
- C13 Combined breakdown of endrin/DDT was > 30%.
- C14 Professional judgment was used to qualify the data.

Initial/Continuing Calibration – Inorganics

- D01 ICV or CCV were not performed for every analyte.
- D02 ICV recovery was above the upper control limit.
- D03 ICV recovery was below the lower control limit.
- D04 CCV recovery was above the upper control limit.
- D05 CCV recovery was below the lower control limit.
- D06 Standard curve was not established with the minimum number of standards.
- D07 Instrument was not calibrated daily or each time the instrument was set up.
- D08 Correlation coefficient was <0.995.
- D09 Mid range cyanide standard was not distilled.
- D10 Professional judgment was used to qualify the data.

ICP and Furnace Requirements

- E01 Interference check sample recovery was outside the control limit.
- E02 Duplicate injections were outside the control limit.
- E03 Post digestion spike recovery was outside the control limit.
- E04 MSA was required but not performed.
- E05 MSA correlation coefficient was <0.995.
- E06 MSA spikes were not at the correct concentration.
- E07 Serial dilution criteria were not met.
- E08 Professional judgment was used to qualify the data.

Blanks

- F01 Sample data were qualified as a result of the method blank.
- F02 Sample data were qualified as a result of the field blank.
- F03 Sample data were qualified as a result of the equipment rinsate.
- F04 Sample data were qualified as a result of the trip blank.
- F05 Gross contamination exists.
- F06 Concentration of the contaminant was detected at a level below the CRQL.
- F07 Concentration of the contaminant was detected at a level less than the action limit, but greater than the CRQL.
- F08 Concentration of the contaminant was detected at a level that exceeds the action level.
- F09 No laboratory blanks were analyzed.
- F10 Blank had a negative value $>2\times$'s the IDL.
- F11 Blanks were not analyzed at required frequency.
- F12 Professional judgment was used to qualify the data.

Surrogate/Radiological Chemical Recovery

- G01 Surrogate/radiological chemical recovery was above the upper control limit.
- G02 Surrogate/radiological chemical recovery was below the lower control limit.
- G03 Surrogate recovery was <10%.
- G04 Surrogate recovery was zero.
- G05 Surrogate/radiological chemical recovery data was not present.
- G06 Professional judgment was used to qualify the data.
- G07 Radiological chemical recovery was <20%.
- G08 Radiological chemical recovery was >150%.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

- H01 MS/MSD recovery was above the upper control limit.
- H02 MS/MSD recovery was below the lower control limit.
- H03 MD/MSD recovery was <10%.
- H04 MS/MSD pairs exceed the RPD limit.
- H05 No action was taken on MS/MSD limit.
- H06 Professional judgment was used to qualify the data.
- H07 Radiological MS/MSD recovery was <20%.
- H08 Radiological MS/MSD recovery was >160%.
- H09 Radiological MS/MSD samples were not analyzed at the required frequency.

Matrix Spike

- I01 MS recovery was above the upper control limit.
- I02 MS recovery was below the lower control limit.
- I03 MS recovery was <30%.
- I04 No action was taken on MS data.
- I05 Professional judgment was used to qualify the data.

Laboratory Duplicate

- J01 Duplicate RPD/radiological duplicate error ratio (DER) was outside the control limit.
- J02 Duplicate sample results were $>5\times$ the CRDL.
- J03 Duplicate sample results were $<5\times$ the CRDL.
- J04 Professional judgment was used to qualify the data.
- J05 Duplicate was not analyzed at the required frequency.

Internal Area Summary

- K01 Area counts were outside the control limits.
- K02 Extremely low area counts or performance was exhibited by a major drop off.
- K03 IS retention time varied by more than 30 seconds.
- K04 Professional judgment was used to qualify the data.

Pesticide Cleanup Checks

- L01 10% recovery was obtained during either check.
- L02 Recoveries during either check were >120%.
- L03 GPC Cleanup recoveries were outside the control limits.
- L04 Florisil cartridge cleanup recoveries were outside the control limits.
- L05 Professional judgment was used to qualify the data.

Target Compound Identification

- M01 Incorrect identifications were made.
- M02 Qualitative criteria were not met.
- M03 Cross contamination occurred.
- M04 Confirmatory analysis was not performed
- M05 No results were provided.
- M06 Analysis occurred outside 12 hr GC/MS window.
- M07 Professional judgment was used to qualify the data.
- M08 The %D between the two pesticide/PCB column checks was >25%.

Compound Quantitation and Reported CRQLs

- N01 Quantitation limits were affected by large off-scale peaks.
- N02 MDLs reported by the laboratory exceeded corresponding CRQLs.
- N03 Professional judgment used to qualify the data.

Tentatively Identified Compounds (TICs)

- O01 Compound was suspected laboratory contaminant and was not detected in the blank.
- O02 TIC result was not above $10 \times$ the level found in the blank.
- O03 Professional judgment was used to qualify analytical data.

Laboratory Control Samples (LCSs)

- P01 LCS recovery was above upper control limit.
- P02 LCS recovery was below lower control limit.
- P03 LCS recovery was <50%.
- P04 No action was taken on the LCS data.
- P05 LCS was not analyzed at required frequency.
- P06 Radiological LCS recovery was <50% for aqueous samples; <40% for solid samples.
- P07 Radiological LCS recovery was >150% for aqueous samples; >160% for solid samples.
- P08 Professional judgment was used to qualify the data.

Field Duplicate

- Q01 Field duplicate RPDs were >30% for waters and/or >50% for soils.
- Q02 Radiological field duplicate error ratio (DER) was outside the control limit.
- Q03 Duplicate sample results were $>5\times$ the CRDL.
- Q04 Duplicate sample results were $<5\times$ the CRDL.

Radiological Calibration

- R01 Efficiency calibration criteria were not met.
- R02 Energy calibration criteria were not met.
- R03 Resolution calibration criteria were not met.
- R04 Background determination criteria were not met.
- R05 Quench curve criteria were not met.
- R06 Absorption curve criteria were not met.
- R07 Plateau curve criteria were not met.
- R08 Professional judgment was used to qualify the data.

Radiological Calibration Verification

- S01 Efficiency verification criteria were not met.
- S02 Energy verification criteria were not met.
- S03 Resolution verification criteria were not met.
- S04 Background verification criteria were not met.
- S05 Cross-talk verification criteria were not met.
- S06 Professional judgment was used to qualify the data.

FIRST SEMIANNUAL MONITORING EVENT

JANUARY 2001

VOLATILE	LA ORGANICS ANALYSIS DATA SH	IEET	EPA SAMPLE NO.
Lab Name: GENERAL ENG	SINEERING LABOR Contract:	N/A	711022
Lab Code: N/A	Case No.: N/A SAS No.:	N/A SDG 1	No.: 36245
Matrix: (soil/water)	WATER	Lab Sample ID:	36245007
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	1R515
Level: (low/med)	LOW	Date Received:	01/10/01
% Moisture: not dec.		Date Analyzed:	01/12/01
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto:	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Ve	olume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/		Q	
71-43-2 108-88-3 100-41-4 1330-20-7			1.0 1.0 0 .98 1 3.0	U J	U U U F04,F06 U

DATA VALIDATION COPY

OLM03.0

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

····

____ |

Lab Name: GENERAL ENG	SINEERING LABOR	Contract: N/A	711122	
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 36245	
Matrix: (soil/water)	WATER	Lab Sample ID:	36245006	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	18533	
Level: (low/med)	LOW	Date Received:	01/10/01	
<pre>% Moisture: not dec.</pre>		Date Analyzed:	01/13/01	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 10.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(ul	-

CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/1	
		/ 0	267 -3.0 J -3.0 J -4.6 J -5.0 J -

DATA VALIDATION COPY OLMO3.0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: GENERAL ENGINEERING LABOR	Contract: N/A 711126
Lab Code: N/A Case No.: N/A	SAS NO.: N/A SDG No.: 36245
Matrix: (soil/water) WATER	Lab Sample ID: 36245005
Sample wt/vol: 5.000 (g/ml) ML	
Level: (low/med) LOW	Date Received: 01/10/01
<pre>% Moisture: not dec</pre>	Date Analyzed: 01/12/01
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/1	: L Q	
71-43-2	Benzene	·	1.0 U	4
108-88-3	Toluene		0.32 J	U FOY,FOG
100-41-4	Ethylbenzene		0.059 J	U FOY,FOG
1330-20-7	Xylenes (total)		0.32 J	J

DATA VALIDATICH COPY

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

---- I

1

Lab Name: GENERAL ENG	GINEERING LABOR C	ontract: N/A	711222
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 36245
Matrix: (soil/water)	WATER	Lab Sample ID:	36245008
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	1R516 ·
Level: (low/med)	LOW	Date Received:	01/10/01
<pre>% Moisture: not dec.</pre>		Date Analyzed:	01/12/01
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	r: 1.0
Soil Extract Volume:_	(uL)	Soil Aliquot V	olume:(uL

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K		(×	
71-43-2 108-88-3 100-41-4 1330-20-7		1)	31. 1.0 00 1.0 0-2 3.	58 J	- U FOY, FOG U FOY, FOG 4

DATA VALICIO

OLM03.0

FORM I VOA

	t te - An Employre Owned Comput vel Corporation	ŝ						6	2							•
800 OAK ANGS TUINDAS. OAK ANGS. TN 37831 1423) 481 4600	(62) 1831 1423)	481-4600			Ч	AIN	CHAIN OF CUSTODY RECORD	STOD	Y REC	ORD				COC NO.:	COC NO.: C=LTM 23	\sim
PROJECT NAME: Fort Stewart CAP B LTM	tewart CAP B LT	N					- - -	REQUEST	REQUESTED PARAMETERS	METERS				LABORATORY NAME:	AME:	
PROJECT NUMBER: 01-1624-04-2725-200	1624-04-2725-2	00												General Engineer	ing Laboratory	<u> </u>
PROJECT MANAGER: Pally Stol	itty Stafl								- <u> </u>					LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417		رىي
Sampler (Signeture)	[Prin	[Printed Name]	-				<u></u>	~					N /#9(1)	PHONE NO: (843) 556-8171		<u>2111 (</u>
Samo Church	the brance	-4			лн Lex	т <mark>н, </mark>				· · · · · · · · · · · · · · · · · · ·				OVA	45. COMMENTS	0010
		lima Collactad		Matrix	44								'°N	SCREENING	SPECIAL INSTRUCTIONS	0
7701001	10/01/1	0905	<u></u>	5757	N								7		362115 ~~	1.
17750000	10 01	<u> (;;) 0</u>	D D										1			
1274000	10151	E241	Ю		7								3		ONZ	
Ĵ.	10/01/1	0320	0	-			-						120			
07111t	10/0/1	1035	3	_	7								N			≥Ś
	14/01	OE all	Q		N								2			
220112	10 61	1530	Q		2								N		and /	
222115	1014/1	02 E I	Q		7								7		L DA	
370634	1991	2761	5		5							 	2		647	
370632	19/11	751	5		N								N			
370732	10/6/1	0491	0		7								2			
370932	19/01	1715	5		2								IN			
705516	110/01/1	0 74(Ģ	2	2								N	×.	1/ 012	
ULINGUISHED BY:	Date	Date/Time F	RECEIVED BY:	۲: ۲:			Date/Time	TOTA	TOTAL NUMBER OF CONTAINERS:	A OF CON	ITAINER			Coolar Temperature:	3.3	ı
COMPANY NAME:	р Т		MISTUTT COMPANY NAME: (rEC	NAME:				Coolar ID		# 22	~ 1			FEDEX NUMBER:		
RECEIVED BY.	UN DATATIMA	+	RELINQUISHED BY	HED BY:			Date/Time						-			
COMPANY NAME:	15:00		COMPANY NAME:	NAME:		Ţ									·	
RELINQUISHED BY:	Date/Time		RECEIVED BY:	:		۵ 	Date/Time									
COMPANY NAME:		10	COMPANY NAME:	NAME:												
								_		,						

SECOND SEMIANNUAL MONITORING EVENT

JUNE 2001

VOLATILE (1A DRGANICS ANALYSIS DAT	TA SHEET	EPA SAMPLE NO.	
Lab Name: GENERAL ENGI	INEERING LABOR Contr	act: N/A	711032	
Lab Code: N/A Ca	ase No.: N/A SAS	No.: N/A SDG	No.: 43823	
Matrix: (soil/water) W	NATER	Lab Sample ID:	43823018	
Sample wt/vol: 5	5.000 (g/ml) ML	Lab File ID:	5N444	
Level: (low/med) 1	WOL	Date Received:	06/09/01	
% Moisture: not dec		Date Analyzed:	06/15/01	
GC Column: DB-624 I	ID: 0.25 (mm)	Dilution Facto	r: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:	(u

COMPOUND				Q	
Benzene Toluene Ethylbenzene Xylenes (total)		1.0	0.2 9 1.0	UB U	U 4 F01,F06 4
	Benzene Toluene Ethylbenzene	COMPOUND (ug/L or ug/Kg Benzene	COMPOUND (ug/L or ug/Kg) UG/L Benzene Toluene Ethylbenzene /. 0	Benzene 1.0 Toluene /.0 0.29 Ethylbenzene 1.0	COMPOUND (ug/L or ug/Kg) UG/L Q Benzene 1.0 U Toluene 1.0 U Ethylbenzene 1.0 U

WAP -1/11/01

OLMUB.O

1A	EPA	SAMPLE	NO.	
VOLATILE ORGANICS ANALYSIS DATA SHEET				, .
	-	711132		

Lab Code: N/A Case No.: N/A SAS No.: N/A SDG N	No.: 43823
Matrix: (soil/water) WATER	43823019
Sample wt/vol: 5.000 (g/ml) ML Lab File ID:	5N515
Level: (low/med) LOW Date Received:	06/09/01
<pre>% Moisture: not dec Date Analyzed:</pre>	06/15/01
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor	r: 2.0
Soil Extract Volume:(uL) Soil Aliquot Vo	olume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L		Q	
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene		125 2.3 2.3 4.0		

DATA VALIDARIO I. Copy

VOLATILE	1A ORGANICS ANALYSIS	DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENG	INEERING LABOR C	Contract: N/A	711136
Lab Code: N/A C	lase No.: N/A	SAS No.: N/A SDG	No.: 43823
Matrix: (soil/water)	WATER	Lab Sample ID:	43823020
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	5N445
Level: (low/med)	LOW	Date Received:	06/09/01
% Moisture: not dec.		Date Analyzed:	06/15/01
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	r: 1.0
Soil Extract Volume:_	(uL)	Soil Aliquot V	olume:(uL

CAS NO.	COMPOUND	CONCENTR (ug/L or	 		Q	
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene			0.41 2.1 0.15 0.58	В J	J U FOI,FO7 J

o Alika Indonesia COPY

VOLATILE	1A ORGANICS ANALYSIS	5 DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENG	SINEERING LABOR (Contract: N/A	711232
Lab Code: N/A	lase No.: N/A	SAS No.: N/A SDG	No.: 43827
Matrix: (soil/water)	WATER	. Lab Sample ID	43827001
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	50217
Level: (low/med)	LCW	Date Received	: 06/09/01
∛ Moisture: not dec.		Date Analyzed	06/19/01
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot N	Volume:(uL

 CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene -Ethylbenzene		19.4 0.22 1.0 3.0 U	- J L L L L L

DATA VALIDATION COPY

FORM I VOA

OLM03.0
	24			; 	1 ÷	: , , , 	<u></u>			 J): [†		م م	- 20	<u>3</u> <	2	18		<u>.</u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2		·····				
	COC NO .: GLT NZY	IAME	ing Laboratory	DDRESS	od 29417		3) 556 8171	OBSFRZATE G COMMENT SPECIAL TRUE FORMER	1302 Cm		5 2	5: C) <	12801 0 0		3 KC	۲ _. ۲	יי בי 		 *						
	COC NO.:	LABURATORY NAME	General Engineering Laboratory	LABORATORY ADDRESS			PHONE NO: (843)	INVA SCREENING							-							Cooler Temperature:	FEDEX NUMBER:					
					:sls					2	2		<i>c</i> .)		L)	12			2		2	RS:						
	ORD	METERS							-													TOTAL NUMBER OF CONTAINERS	#S94					
M	TODY REC	REQUESTED PARAMETERS						· · · · · ·														TOTAL NUMBF	Cooler ID: 🕈					
2013	CHAIN OF CUSTODY RECORD	RI						,µ∆q														Date/Time	10/d/01	Date/Time			Date/Time	
	CHZ						080	ХЭТ8 НА9 ХЭТ8	2	2	Ν	2	2	N	2	3	N	2	N	7	2		man	\ \ \				
								Matrix	when												<u>(</u>		COMPANY NAME:	FLINQUISHED BY	COMPANY NAME		RECEIVED BY:	COMPANY NAME:
(ur	1 481 4600	ΓM	المان لمرا	200 210		(Printed Name)		Time Collected	1630	1630	16 2C	<u>୦୦</u> ୩	1325	1405	1415	1500	06.90	0930	1039	140	1310	Date/Time RECEI		· • • · · · · ·			Lech	COMP COMP
an Laquoyee Owned Company	anemalicated Contraction . Oak Ridge, IN 37831 1420	Hewart OAP.B.L	Teim Monitorin	1624-04-2725-	atty Stoll	4	~ °°	Date College	10/% ما	4/01	4/2/01	u 12/01	4 1 4 0 1	10/8/3	ا م) کما ما	4 4/01	10/2 م	10/2 5	10/101	10/8/91	1089			yed -	6/9/22	0230	C) Bytel	2. D
) MK	and the second structure of th	PROJECT NAME: Fort Stewart OAPLE LTIM	Long Tei	PROJECT NUMBER: 01-1624-04-2725-200- 2-4	PROJECT MANAGER: Patty Stoll	maler (Signature)	Ň	Sample ID	37 buyy	D4 42	27 20		1032	132	11 3 la	2821	-11	2			2F Ø1	RELINDUISHED BY:	COMPANY NAME:		ZULLOU	196	Step Brief	IV NAME.
	BOU Oak R	PROJEC		PROJEC	PROJEC	Sapribler (Ż	3	37	3706	3707	34	11	4	= r+		AD	AD9	A O A	AD	R	REEMON	COMPAN	RECEIVED B	COMPANY NAME		RELINGUIS	COMPANY NAME.

.

APPENDIX IV

SITE RANKING FORM

FIRST SEMIANNUAL MONITORING EVENT

JANUARY 2001

SITE RANKING FORM

Facility Name: USTs 5 & 6, Building 1824	Ranked by: S. Stoller											
County: Liberty Facility ID #: 9-089066	Date Ranked: 3/8/01											
SOIL CONTAMINATION (based on soil closure and CAP-F	Part A data)											
A. Total PAHs – B. Maximum Concentration found on the site (Assume <0.660 mg/kg if only gasoline	Total Benzene - Maximum Concentration found on the site											
was stored on site)	* 🖂 <u><</u> 0.005 mg/kg = 0											
☐ <u><</u> 0.660 mg/kg = 0	>0.00505 mg/kg = 1											
□ >0.66 - 1 mg/kg = 10	>0.05 - 1 mg/kg = 10											
* 🖂 >1 - 10 mg/kg = 25	>1 - 10 mg/kg = 25											
\sim >10 mg/kg = 50	>10 - 50 mg/kg = 40											
C. Depth to Groundwater (bls = below land surface)												
□ >50' bls = 1												
>25' - 50' bls = 2												
>10' - 25' bls = 5												
\boxtimes <a> <												
Fill in the blanks: (A. <u>25</u>) + (B. <u>0</u>) = (<u>25</u>) x (C.	<u>10</u>) = (D. <u>250</u>)											
GROUNDWATER CONTAMINATION (based on CAP-Part A	A groundwater data)											
E. Free Product (Nonaqueous-phase F. liquid hydrocarbons; See Guidelines For definition of "sheen").	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release.)											
No free product = 0	□ <u><</u> 5 μg/L = 0											
Sheen - 1/8" = 250	🗌 >5 - 100 μg/L = 5											
☐ >1/8" - 6" = 500	× >100 - 1,000 μg/L = 50											
□ >6" - 1ft. = 1,000	>1,000 - 10,000 μg/L = 500											
For every additional inch, add another 100 points = <u>1,000 +</u>	□ >10,000 µg/L = 1500											
Fill in the blanks: (E. <u>0</u>) + (F. <u>50</u>) = (G. <u>50</u>)												

County: Liberty Facility ID #: 9-089066

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Η.	Public Water Supply	Ι.	Non-Public Water Supply
	$ \begin{array}{ c c c c c c } & Impacted & = 2000 \\ \hline \leq 500' & = 500 \\ \hline >500' - \frac{1}{4} \text{ mi} & = 25 \\ \hline \frac{1}{4} \text{ mi} - 1 \text{ mi} & = 10 \\ \hline >1 \text{ mi} - 2 \text{ mi} & = 2 \end{array} $		$ \begin{array}{ c c c c c c c } & Impacted & = & 1000 \\ \hline & \leq 100' & = & 500 \\ \hline & >100' - 500' & = & 25 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = & 5 \\ \hline & >\frac{1}{4} - \frac{1}{2} \text{ mi} & = & 2 \end{array} $
*	⊠ > 2 mi = 0		≥ >½ mi = 0
	For lower susceptibility areas only:		For lower susceptibility areas only:
	☐ >1 mi = 0 Note: If site is in lower susceptibility area	. do not	\square > ¹ / ₄ mi = 0 use the shaded areas.
	* For justification that withdrawal point is not		
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its inve elevation is more than 5 feet above the water	rt	Distance from any Free Product to basements and crawl spaces
	$ \begin{array}{c cccc} & & & & & & & \\ \hline & & & & & \\ * & & & & \leq 500' & = 50 \\ \hline & & & >500' - 1,000' & = 5 \\ \hline & & & >1,000' & = 2 \\ \hline & & & & \\ * & & & & \\ \hline & & & & & \\ \end{array} $		$ \begin{array}{ c c c c c } & \text{Impacted} & = & 500 \\ \hline & <500' & = & 50 \\ \hline & >500' - 1,000' & = & 5 \\ \hline & >1,000' \text{ or } & = & 0 \\ \hline & & \text{no free product.} \\ \hline \\ $
Fill in	the blanks: (H. <u>0</u>) + (I. <u>0</u>) + (J. <u>5</u>	<u>0)</u> +	· (K. <u>0</u>) = L. <u>50</u>
	(G. <u>5</u>	<u>0)</u> >	α (L. <u>50</u>) = M. <u>2500</u>
	(M. <u>2</u>	<u>500</u>) +	(D. <u>250</u>) = N. <u>2750</u>
P.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Wa	ter Pollut	ion Susceptibility Area = 0.5
	\square All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possib any subsurface structure (e.g., utility trenches		
	Yes = 200,000		
	⊠ No = 0		
Fill in	the blanks: (N. <u>2750</u>) x (P. <u>1</u>) = (<u>275</u>	<u>50</u>) + (Q)
	= 2750 (First Semiannual Samr	lina Eve	ont - January 2001)

ENVIRONMENTAL SENSITIVITY SCORE

in

SECOND SEMIANNUAL MONITORING EVENT

JUNE 2001

SITE RANKING FORM

Facility	Facility Name: USTs 5 & 6, Building 1824						Rank	ed by:	S. Stoller		
County	: Libe	rty Faci	lity ID #	:_9-(089066		Date	Ranked:	11/2/01		
SOIL C	ONTAM	INATION (bas	ed on s	oil c	closure and	CAP-Pa	art A d	<u>ata)</u>			
Α.	(Assum	AHs – um Concentrati ie <0.660 mg/k ired on site)				В.	Total Maxin	nd on	the site		
						*	\boxtimes	<u><</u> 0.005 m	ig/kg	=	0
		<u><</u> 0.660 mg/kg		=	0			>0.005 -	.05 mg/kg	=	1
		>0.66 - 1 mg/	kg	=	10			>0.05 - 1	mg/kg	=	10
*	\boxtimes	>1 - 10 mg/kg	I	=	25			>1 - 10 m	ig/kg	=	25
	□ * CAF	>10 mg/kg P-Part A sample 7	10511 (19	= 98)	50			>10 - 50	mg/kg	=	40
	0/11	r arr r oumpie r	10011 (10	,			□ * No	>50 mg/k benzene de	g tected during C	= AP-Pa	50 rt A
C.		o Groundwater elow land surfa									
		>50' bls	= 1								
		>25' - 50' bls	= 2								
		>10' - 25' bls	= 5								
	\boxtimes	<u><</u> 10' bls	= 1	0							
Fill in tl	he blanl	ks: (A. <u>2</u>	<u>5</u>) + (E	8. <u>0</u>	_) = (<u>25</u>)) x (C	<u>10</u>)	= (D. <u>250</u>)_)		
GROUN	DWAT	ER CONTAMII	NATION	(ba	sed on CAP	-Part A	groun	dwater da	<u>ta)</u>		
E.	liquid h	oduct (Nonaqu ydrocarbons; S inition of "shee	ee Guic			F.	Maxin (One		ene - entration at th be located at		
	\boxtimes	No free produ	ct = 0					<u><</u> 5 µg/L			= 0
		Sheen - 1/8"	= 25	0					···~//		-
		>1/8" - 6"	= 50	0				>5 - 100			= 5
		>6" - 1ft.	= 1,0	000		*	\boxtimes	>100 - 1,	000 µg/L		= 50
		For every add			add another			>1,000 -	10,000 µg/L		= 500
		100 points = $\underline{1}$			_		*	>10,000 LTM Sample	ug/L 711132 (June 2	2001)	= 1500
Fill in t	he blanl	ks: (E. <u>(</u>)_) + (F	. 5	<u>0</u>) = (G	<u>50</u>)					

County: Liberty Facility ID #: 9-089066

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public	Water S	upply				I		Non	-Public	Wat	er Sup	ply	
		Impacta <u><</u> 500' >500' - ¼ mi - >1 mi -	¼ mi 1 mi		10					<u><</u> 10 >10 >50)0' - <u>(</u>	500' ¼ mi	= = = =	1000 500 25 5 2
*	\boxtimes	> 2 mi		= (0				\boxtimes		mi		=	0
	For low	/er susce >1 mi	eptibility a	area = (-				For		usce . mi	ptibilit	y area =	as only: 0
	Note:		in lowe		sceptibi	lity area	a, do	not	use t			areas.		0
	* For j	justificati	on that v	/ithd	Irawal po	int is no	ot hydr	aulio	cally o	connect	ed, s	ee att	ache	d text.
J.	bounda OR UT trench	ary to do ILITY TI may be (wngradie RENCHE omitted f	nt S S & rom	aminant I Surface W VAULTS ranking i t above t	/aters S (a utili if its inv	ity ert	<. e)		ance fro asemer				
*		Impacto <u><</u> 500' >500' - >1,000	ed 1,000'	= = =	500 50 5				benzer	<5(>5(>1, no	00' - ` 000' free	1,000' or produe	= ct.	500 50 5 0 WQS.
Fill in t	he blan	ks: (H	0)+	(I. <u></u>	0)+	+ (J	<u>50</u>)	+	(K.	<u> </u>	=	L	<u>50</u>	
						(G	<u>50</u>)	x	(L.	<u>50</u>)	=	M	<u>2500</u>	
						(M. <u>2</u>	<u>2500</u>)	+	· (D.	250) =	N	<u>2750</u>	
Ρ.	SUSCE	EPTIBIL	TY ARE	<u>A M</u>	ULTIPLI	<u>ER</u>								
		If site is	s located	in a	Low Gro	ound-W	ater P	ollut	ion S	uscepti	bility	Area :	= 0.5	
	\boxtimes	All othe	er sites =	1										
Q.	EXPLO	DSION H	AZARD											
					ım vapor .g., utility									
		Yes	= 200,0	00										
	\boxtimes	No	= 0											
Fill in t	he blan	ks: (N.	2750) x ((P. <u>1</u>)	= (<u>27</u>	<u>′50</u>) ·	+ (Q	. 0	_)				
	= <u>2750 (Second Semiannual Sampling Event - June 2001)</u> ENVIRONMENTAL SENSITIVITY SCORE													

in

ADDITIONAL GEOLOGIC AND HYDROGEOLOGIC DATA

The following information is presented to provide supplemental information to Item H of the Site Ranking Form and details relating to the geologic and hydrogeologic conditions at Fort Stewart that support Fort Stewart's determination that the water withdrawal points located at Fort Stewart are not hydraulically connected to the surficial aquifer.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward-dipping strata that increase in thickness from 0 feet at the fall line, located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 feet below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 feet thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 feet thick and dominated by limestone, with a 175-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-foot section, the lowermost 110 feet of which consisted predominantly of limestone sediments, above which 245 feet of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 feet of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 inches in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 inches. The subsoil is predominantly sandy clay loam and extends to a depth of 72 inches or more (Herrick and Vochis 1963).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. These formations are approximately 800 feet thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 feet to 150 feet in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 feet to 10 feet BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 feet to 50 feet BGS; thus, the effective aquifer thickness would be approximately 35 feet to 45 feet. Soil surveys for Liberty and Long counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian Aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 feet to 90 feet. The vertical hydraulic conductivity of this confining unit is on the order of 10^{-8} cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie Formation, Markshead Formation, and Parachula Formation, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 feet thick in the Savannah, Georgia, area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 feet thick in the Savannah, Georgia, area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite and is approximately 10 feet thick in the Savannah, Georgia, area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the UST investigation sites is part of the surficial aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Fort Stewart.

3.0 REFERENCES

Arora, Ram, 1984. *Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia*, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller, 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Herrick, S. M., and Vochis, R. C., 1963. Subsurface Geology of the Georgia Coastal Plain, Georgia Geologic Survey Information Circular 25.
- Looper, Edward E., 1980. Soil Survey of Liberty and Long Counties, Georgia, U.S. Department of Agriculture, Soil Conservation Service.

Miller, James A., 1990. *Groundwater Atlas of the United States*, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.

ATTACHMENT A

SUMMARY OF FATE AND TRANSPORT MODELING RESULTS

A.1 FATE AND TRANSPORT MODELING

The fate and transport modeling that was performed as part of the *Corrective Action Plan (CAP) – Part B Report for USTs 5 & 6, Facility ID #9-089066, Building 1824, Fort Stewart, Georgia* (SAIC 2000) was based on the assumption of a continuous source of contamination of infinite duration at the site given the maximum observed benzene concentration in groundwater (i.e., 2,730 µg/L in well 71-05 during the CAP–Part A in May 1998). Modeling of leaching to groundwater by percolating rainwater was not performed because there was no soil contamination above the water table. The modeling was performed to develop alternate concentration limits (ACLs) for the site. Benzene was the only constituent at the site that exceeded its In-stream Water Quality Standard (IWQS); therefore, an ACL was developed for only benzene.

The fate and transport modeling is being revised as part of the First Annual Monitoring Only Report in order to reflect more recent site conditions and the maximum observed benzene concentration of $267 \,\mu$ g/L in well 71-11 during the first year of monitoring.

A.1.1 Fate and Transport Modeling Results

In summary, lateral migration of contaminant from the source to the receptor was performed using the Analytical Transient 1-, 2-, 3-Dimensional Model (AT123D). AT123D was used to model contaminant migration to three potential downgradient receptors: an industrial wastewater line located 50 feet northwest of the site, a drainage ditch located 800 feet northwest of the site, and Mill Creek located approximately 1,600 feet northwest of the site. The steady-state model was calibrated using the maximum groundwater concentration (i.e., 2,730 μ g/L in well 71-05 during the CAP–Part A in May 1998) and matching observed concentrations in 71-11 and 71-12 during the sampling events in 2001. The calibrated model also represents the conditions after the source removal (i.e., the source loading was discontinued after steady-state condition was reached).

The revised modeling results indicated that, due to dilution attenuation, benzene does not impact the drainage ditch and Mill Creek at detectable concentrations. The dilution attenuation factor (DAF) at the receptor location was calculated by dividing the source term concentration with the predicted concentration at the receptor. Based on revised modeling results, the estimated DAF for benzene at the industrial wastewater line is 67 and the DAFs for the drainage ditch and Mill Creek both remained infinity. Simulations of a 2-year period were also performed to predict the maximum concentrations of benzene in the downgradient wells on a semiannual basis through June 2003. The predicted maximum concentrations in the wells are based on the maximum observed benzene concentration of 2,730 μ g/L in May 1998 and the recently observed maximum concentration of 267 μ g/L in January 2001 and are presented in Table A-1. The results of the revised fate and transport model are presented in Tables A-2 and A-3. Figures A-1a and A-1b are plots of concentration versus downgradient distance from the edge of the source. Figure A-2 is a plot of predicted concentration versus time for the monitoring wells 71-11 and 71-12 used in the model calibration process. For comparison purposes, the observed data from these monitoring wells are presented in this figure. The time period necessary to attain concentration of 71.28 μ g/L for benzene through natural attenuation is predicted to be 2 years from January 2001.

During fate and transport modeling conducted as part of the CAP–Part B Report, the DAF was estimated to be 25 at the industrial wastewater line and infinity for the drainage ditch and Mill Creek. The infinite DAF indicates that the contamination will never reach these locations; thus, no ACLs were developed for the tributary because the ACLs would be infinite for each constituent of potential concern. However, the

site ranking score of 2,750 during the CAP–Part B indicated that a corrective action for groundwater was warranted. The CAP–Part B Report proposed that the ACL for benzene be 1,782 μ g/L. The Georgia Environmental Protection Division (GA EPD) approved the CAP–Part B Report in correspondence dated February 9, 2001. The ACL for the site could be recalculated based on the revised DAF; however, since the DAF is higher, the ACL would also increase. Since concentrations at the site are below the ACL approved in the CAP–Part B Report, the ACL will not be revised.

A.1.2 Fate and Transport Modeling Conclusions

The conclusions below are based on fate and transport modeling that assumed a continuous source of contamination of infinite duration at the site, based on the maximum observed benzene concentration in groundwater (i.e., $2,730 \mu g/L$) in May 1998 and the observed benzene concentrations in groundwater in wells 71-11 and 71-12 during sampling events conducted in 2001.

- An ACL of 1,782 μg/L was proposed in the CAP-Part B Report and approved by GA EPD in correspondence dated February 9, 2001.
- Benzene concentrations in groundwater did not exceed the ACL of $1,782 \mu g/L$ in any of the wells at the site during the two semiannual sampling events.
- Benzene does not impact the closest downgradient receptor, a industrial wastewater line located 50 feet east of the site, above the IWQS.

Monitoring	Predicted Maximum Benzene Concentration (µg/L)									
Wells	Jan-02	Jul-02	Jan-03	Jul-03						
71-10	0.019	0.019	0.018	0.018						
71-11	140	99	70.2	49.9						
71-12	23.8	20.2	16.9	13.8						
71-13	0.008	0.007	0.006	0.005						
71-14	0.033	0.025	0.018	0.014						
71-15	0.011	0.010	0.009	0.009						
71-16	0.63	0.45	0.32	0.23						
71-10	0.019	0.019	0.018	0.018						

Table A-1. Predicted 2-Year Maximum Benzene Concentrations in Groundwater at the USTs 5 & 6 Site

Distance from the Source (feet)	Distance from the Source (meters)	Predicted Maximum Benzene Concentration in Groundwater (μg/L)
0.0	0.0	2,940
3.3	1.0	2,940
6.6	2.0	2,870
9.8	3.0	2,690
13.1	4.0	2,350
16.4	5.0	1,830
23.0	7.0	866
29.5	9.0	411
39.4	12.0	135
50.9	15.5	44.2
65.6	20.0	7.07
82.0	25.0	1.14
98.4	30.0	0.183
114.8	35.0	0.0297
131.2	40.0	0.0048
147.6	45.0	0
800.0	243.8	0
1,600.0	487.7	0

Table A-2. Natural Attenuation Modeling Results (Benzene Concentration vs. Distance) for the USTs 5 & 6 Site

 Table A-3. Natural Attenuation Modeling Results

 (Benzene Concentration vs. Time) for the USTs 5 & 6 Site

Time	Predicted Benzene Concentration in Groundwater (µg/L)							
(years)	71-11	71-12						
-3.0	2,700	27.4						
-2.0	1,230	31						
-1.0	583	33.1						
0.0^a	284	30.2						
1.0	140	23.8						
2.0	70.2	16.9						
3.0	35.5	11.1						
4.0	18	7.01						
5.0	9.21	4.26						
6.0	4.72	2.52						
7.0	2.43	1.47						
8.0	1.26	0.84						

NOTES:

^a Time zero is set at January 2001.

NO. OF POINTS IN X-DIRECTION	15
NO. OF POINTS IN Y-DIRECTION	5
NO. OF POINTS IN Z-DIRECTION	1
NO. OF ROOTS: NO. OF SERIES TERMS	400
NO. OF BEGINNING TIME STEP	79
NO. OF ENDING TIME STEP	187
NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION	6
INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE	1
SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE	0
INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT	1
CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	2
AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS)	0.1070E+02
AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS)	0.0000E+00
BEGIN POINT OF X-SOURCE LOCATION (METERS)	-0.5000E+01
END POINT OF X-SOURCE LOCATION (METERS)	0.5000E+01
BEGIN POINT OF Y-SOURCE LOCATION (METERS)	-0.3810E+01
END POINT OF Y-SOURCE LOCATION (METERS)	0.3810E+01
BEGIN POINT OF Z-SOURCE LOCATION (METERS)	
END POINT OF Z-SOURCE LOCATION (METERS)	0.3000E+01
POROSITY	0.2000E+00 0.8000E-03
HYDRAULIC GRADIENT	0.2600E-01
LONGITUDINAL DISPERSIVITY (METER)	0.1000E+02
LATERAL DISPERSIVITY (METER)	
VERTICAL DISPERSIVITY (METER)	0.1000E+01
DISTRIBUTION COEFFICIENT, KD (M**3/KG)	0.1620E-03
HEAT EXCHANGE COEFFICIENT (KCAL/HR-M**2-DEGREE C)	0.0000E+00
MOLECULAR DIFFUSION MULTIPLY BY POROSITY (M**2/HR)	
DECAY CONSTANT (PER HOUR)	
BULK DENSITY OF THE SOIL (KG/M**3)	0.1782E+04
ACCURACY TOLERANCE FOR REACHING STEADY STATE	0.1000E-02
DENSITY OF WATER (KG/M**3)	
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (HR)	
DISCHARGE TIME (HR)	
WASTE RELEASE RATE (KCAL/HR), (KG/HR), OR (CI/HR) .	0.2925E-04
RETARDATION FACTOR	0 24428.01
RETARDATION FACTOR RETARDED DARCY VELOCITY (M/HR)	
RETARDED LONGITUDINAL DISPERSION COEF. (M**2/HR)	0.4329E-03
KEIMADE BONGIIODINAL DISCENSION COEF. (MZ/MK)	0.40296-03

RETARDED LATERAL DISPERSION COEFFICIENT (M**2/HR) . 0.1349E-03 RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/HR). 0.4979E-04

	STRIBUTION OF (ADSORBED CHI		CHEMICALS IN		000E+00 HRS VED CHEMICAL	CONC				
	(ADSORBED CH		= 0.1820E- 0.00	+00 ~ DISSOL		CONC.)				
					Х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Ο.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-2.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-3.	0.000E+00	0.000E+00	0.000E+00	0.000E+00 CONT	0.000E+00 INUE	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
					Х					
Y	7.	10.	15.	16.	18.					
2.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
1.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
Ο.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
-2.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
-3.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
ידת	מיייד מייינים איי	ם הדפפחו זעפה	CHEMICALS IN	ע את א	CONFINE UDC					
	(ADSORBED CH				VED CHEMICAL	CONC.)				
		Z =	0.00							
37	0.7	2	2	0	X	2	2	4	F	c
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2.	0.720E-05	0.224E+01	0.248E+01	0.269E+01	0.270E+01	0.263E+01	0.246E+01	0.215E+01	0.166E+01	0.114E+01
1.	0.781E-05	0.239E+01	0.264E+01	0.288E+01	0.288E+01	0.281E+01	0.263E+01	0.230E+01	0.178E+01	0.123E+01
Ο.	0.802E-05	0.243E+01	0.269E+01	0.293E+01	0.293E+01	0.285E+01	0.267E+01	0.234E+01	0.182E+01	0.126E+01
-2.	0.720E-05	0.224E+01	0.248E+01	0.269E+01	0.270E+01	0.263E+01	0.246E+01	0.215E+01	0.166E+01	0.114E+01
-3.	0.630E-05	0.188E+01	0.207E+01	0.224E+01	0.225E+01	0.219E+01	0.206E+01	0.180E+01	0.138E+01	0.935E+00
				CONT	INUE X					
Y	7.	10.	15.	16.	18.					
				0 0055 01						
2. 1.	0.760E+00 0.832E+00	0.228E+00 0.252E+00	0.290E-01 0.320E-01	0.207E-01 0.227E-01	0.692E-02 0.757E-02					
1. 0.	0.854E+00	0.252E+00 0.260E+00	0.320E-01 0.330E-01	0.227E-01 0.234E-01	0.780E-02					
-2.	0.760E+00	0.2280E+00 0.228E+00	0.290E-01	0.234E-01 0.207E-01	0.692E-02					
-2.	0.622E+00	0.189E+00	0.246E-01	0.176E-01	0.593E-02					
-5.	0.0226+00	0.1095+00	0.240E-01	0.1/86-01	0.595E-02					
DIS	STRIBUTION O	F DISSOLVED	CHEMICALS IN	PPM AT 0.6	132E+05 HRS					
	(ADSORBED CHI		= 0.1620E- 0.00	+00 * DISSOL	VED CHEMICAL	CONC.)				
		2 -	0.00		х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	б.
2.	0.934E-05	0.224E+01	0.248E+01	0.270E+01	0.270E+01	0.263E+01	0.246E+01	0.216E+01	0.166E+01	0.114E+01
1.	0.101E-04	0.239E+01	0.265E+01	0.288E+01	0.289E+01	0.281E+01	0.263E+01	0.230E+01	0.179E+01	0.124E+01
0.	0.104E-04	0.243E+01	0.269E+01	0.293E+01	0.294E+01	0.286E+01	0.268E+01	0.234E+01	0.182E+01	0.127E+01
-2.	0.934E-05	0.224E+01	0.248E+01	0.270E+01	0.270E+01	0.263E+01	0.246E+01	0.216E+01	0.166E+01	0.114E+01
-3.	0.819E-05	0.188E+01	0.207E+01	0.225E+01	0.225E+01	0.219E+01	0.206E+01	0.180E+01	0.138E+01	0.938E+00

				CONT						
Y	7.	10.	15.	16.	X 18.					
2. 1. 0. -2. -3.	0.764E+00 0.836E+00 0.858E+00 0.764E+00 0.626E+00	0.231E+00 0.255E+00 0.263E+00 0.231E+00 0.191E+00	0.303E-01 0.333E-01 0.343E-01 0.303E-01 0.257E-01	0.217E-01 0.238E-01 0.245E-01 0.217E-01 0.185E-01	0.747E-02 0.816E-02 0.840E-02 0.747E-02 0.642E-02					
		EMICAL CONC.	CHEMICALS IN = 0.1620E- 0.00			CONC.)				
					Х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2. 1. 0. -2. -3.	0.115E-04 0.124E-04 0.127E-04 0.115E-04 0.101E-04	0.225E+01 0.239E+01 0.243E+01 0.225E+01 0.188E+01	0.248E+01 0.265E+01 0.269E+01 0.248E+01 0.208E+01	0.270E+01 0.289E+01 0.294E+01 0.270E+01 0.225E+01 CONT	0.270E+01 0.289E+01 0.294E+01 0.270E+01 0.225E+01	0.263E+01 0.281E+01 0.286E+01 0.263E+01 0.220E+01	0.247E+01 0.263E+01 0.268E+01 0.247E+01 0.206E+01	0.216E+01 0.231E+01 0.235E+01 0.216E+01 0.181E+01	0.167E+01 0.179E+01 0.182E+01 0.167E+01 0.139E+01	0.114E+01 0.124E+01 0.127E+01 0.114E+01 0.941E+00
				CONT	X					
Y	7.	10.	15.	16.	18.					
2. 1. 0. -2. -3.	0.767E+00 0.839E+00 0.861E+00 0.767E+00 0.628E+00	0.233E+00 0.257E+00 0.265E+00 0.233E+00 0.193E+00	0.312E-01 0.343E-01 0.353E-01 0.312E-01 0.265E-01	0.225E-01 0.246E-01 0.254E-01 0.225E-01 0.192E-01	0.792E-02 0.864E-02 0.889E-02 0.792E-02 0.682E-02					
		EMICAL CONC.	CHEMICALS IN = 0.1620E- 0.00		VED CHEMICAL	CONC.)				
Y	-27.	-3.	-2.	0.	X 1.	2.	3.	4.	5.	б.
2. 1. 0. -2. -3.	0.136E-04 0.146E-04 0.149E-04 0.136E-04 0.120E-04	0.225E+01 0.239E+01 0.243E+01 0.225E+01 0.188E+01	0.249E+01 0.265E+01 0.270E+01 0.249E+01 0.208E+01	0.270E+01 0.289E+01 0.294E+01 0.270E+01 0.225E+01 CONT	0.270E+01 0.289E+01 0.294E+01 0.270E+01 0.226E+01	0.263E+01 0.282E+01 0.286E+01 0.263E+01 0.220E+01	0.247E+01 0.264E+01 0.268E+01 0.247E+01 0.206E+01	0.216E+01 0.231E+01 0.235E+01 0.216E+01 0.181E+01	0.167E+01 0.179E+01 0.183E+01 0.167E+01 0.139E+01	0.115E+01 0.124E+01 0.127E+01 0.115E+01 0.943E+00
				CONT	X					
Y	7.	10.	15.	16.	18.					
2. 1. 0. -2. -3.	0.769E+00 0.841E+00 0.863E+00 0.769E+00 0.630E+00	0.234E+00 0.259E+00 0.267E+00 0.234E+00 0.194E+00	0.319E-01 0.350E-01 0.361E-01 0.319E-01 0.272E-01	0.231E-01 0.253E-01 0.261E-01 0.231E-01 0.197E-01	0.827E-02 0.902E-02 0.928E-02 0.827E-02 0.715E-02					

			CHEMICALS IN			CONC				
	(ADSORBED CH.		= 0.1620E- 0.00	+00 * DISSOL	VED CHEMICAL	CONC.)				
					Х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2.	0.155E-04	0.225E+01	0.249E+01	0.270E+01	0.271E+01	0.264E+01	0.247E+01	0.216E+01	0.167E+01	0.115E+01
1.	0.166E-04	0.240E+01	0.265E+01	0.289E+01	0.289E+01	0.282E+01	0.264E+01	0.231E+01	0.179E+01	0.124E+01
Ο.	0.170E-04	0.243E+01	0.270E+01		0.294E+01			0.235E+01	0.183E+01	0.127E+01
-2.	0.155E-04	0.225E+01	0.249E+01	0.270E+01	0.271E+01			0.216E+01		0.115E+01
-3.	0.137E-04	0.188E+01	0.208E+01	0.225E+01 CONT	0.226E+01 INUE	0.220E+01	0.207E+01	0.181E+01	0.139E+01	0.944E+00
					Х					
Y	7.	10.	15.	16.	18.					
2.	0.770E+00	0.235E+00	0.324E-01	0.235E-01	0.856E-02					
1.	0.842E+00		0.356E-01		0.932E-02					
0.	0.864E+00	0.268E+00	0.367E-01	0.266E-01	0.959E-02					
-2.	0.770E+00	0.235E+00	0.324E-01		0.856E-02					
-3.	0.631E+00	0.195E+00	0.276E-01	0.201E-01	0.740E-02					
DTS	STRIBUTION O	F DISSOLVED	CHEMICALS IN	PPM AT 0.7	884E+05 HRS					
			= 0.1620E-			CONC.)				
		Z =	0.00							
					Х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2.	0.172E-04	0.225E+01	0.249E+01	0.270E+01	0.271E+01	0.264E+01	0.247E+01	0.216E+01	0.167E+01	0.115E+01
1.	0.185E-04	0.240E+01	0.265E+01					0.231E+01	0.179E+01	0.124E+01
0.	0.189E-04	0.244E+01	0.270E+01		0.294E+01			0.235E+01	0.183E+01	0.127E+01
-2.	0.172E-04	0.225E+01	0.249E+01	0.270E+01	0.271E+01	0.264E+01	0.247E+01	0.216E+01	0.167E+01	0.115E+01
-3.	0.153E-04	0.188E+01	0.208E+01	0.225E+01	0.226E+01	0.220E+01	0.207E+01	0.181E+01	0.139E+01	0.945E+00
				CONT						
					Х					
Y	7.	10.	15.	16.	18.					
2.	0.771E+00	0.236E+00	0.328E-01	0.239E-01	0.878E-02					
1.	0.843E+00	0.261E+00	0.360E-01	0.261E-01	0.955E-02					
0.	0.865E+00	0.269E+00	0.371E-01	0.269E-01	0.982E-02					
-2.	0.771E+00	0.236E+00	0.328E-01		0.878E-02					
-3.	0.632E+00	0.196E+00	0.280E-01	0.205E-01	0.760E-02					
ידת	STRIBITION O	F DISSOLVED	CHEMICALS IN	א חיד איסק	322E+05 HPS					
			= 0.1620E-			CONC.)				
		Z =	0.00							
					Х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2.	0.187E-04	0.225E+01	0.249E+01	0.270E+01	0.271E+01	0.264E+01	0.247E+01	0.216E+01	0.167E+01	0.115E+01
1.	0.201E-04	0.240E+01	0.266E+01	0.289E+01	0.289E+01	0.282E+01	0.264E+01	0.231E+01		0.125E+01
0.	0.205E-04	0.244E+01	0.270E+01		0.295E+01			0.235E+01		0.127E+01
-2.	0.187E-04	0.225E+01	0.249E+01	0.270E+01	0.271E+01	0.264E+01		0.216E+01	0.167E+01	0.115E+01
-3.	0.167E-04	0.189E+01	0.208E+01	0.226E+01	0.226E+01	0.220E+01	0.207E+01	0.181E+01	0.139E+01	0.945E+00

				CONT						
Y	7.	10.	15.	16.	X 18.					
2. 1. 0. -2. -3.	0.772E+00 0.844E+00 0.866E+00 0.772E+00 0.632E+00	0.237E+00 0.261E+00 0.269E+00 0.237E+00 0.196E+00	0.331E-01 0.363E-01 0.374E-01 0.331E-01 0.283E-01	0.241E-01 0.264E-01 0.272E-01 0.241E-01 0.207E-01	0.894E-02 0.973E-02 0.100E-01 0.894E-02 0.776E-02					
		EMICAL CONC.	CHEMICALS IN = 0.1620E- 0.00			CONC.)				
					Х					
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.
2. 1. 0. -2. -3.	0.201E-04 0.215E-04 0.220E-04 0.201E-04 0.179E-04	0.225E+01 0.240E+01 0.244E+01 0.225E+01 0.189E+01	0.249E+01 0.266E+01 0.270E+01 0.249E+01 0.208E+01	0.270E+01 0.289E+01 0.294E+01 0.270E+01 0.226E+01 CONT	0.271E+01 0.289E+01 0.295E+01 0.271E+01 0.226E+01	0.264E+01 0.282E+01 0.287E+01 0.264E+01 0.220E+01	0.247E+01 0.264E+01 0.269E+01 0.247E+01 0.207E+01	0.216E+01 0.231E+01 0.235E+01 0.216E+01 0.181E+01	0.167E+01 0.180E+01 0.183E+01 0.167E+01 0.139E+01	0.115E+01 0.125E+01 0.127E+01 0.115E+01 0.946E+00
				CONT	X					
Y	7.	10.	15.	16.	18.					
2. 1. 0. -2. -3.	0.772E+00 0.845E+00 0.866E+00 0.772E+00 0.633E+00	0.237E+00 0.262E+00 0.270E+00 0.237E+00 0.197E+00	0.333E-01 0.365E-01 0.376E-01 0.333E-01 0.285E-01	0.243E-01 0.266E-01 0.274E-01 0.243E-01 0.209E-01	0.907E-02 0.987E-02 0.101E-01 0.907E-02 0.787E-02					
		EMICAL CONC.	CHEMICALS IN = 0.1620E- 0.00		VED CHEMICAL	CONC.)				
Y	-27.	-3.	-2.	0.	X 1.	2.	3.	4.	5.	6.
2. 1. 0. -2.	0.221E-04 0.237E-04 0.243E-04 0.221E-04 0.196E-04	0.147E+01 0.157E+01 0.160E+01 0.147E+01 0.123E+01	0.167E+01 0.178E+01 0.181E+01 0.167E+01 0.139E+01	0.187E+01 0.200E+01 0.204E+01 0.187E+01 0.157E+01	0.188E+01 0.201E+01 0.204E+01 0.188E+01 0.157E+01	0.182E+01 0.195E+01 0.198E+01 0.182E+01 0.152E+01	0.169E+01 0.181E+01 0.184E+01 0.169E+01 0.141E+01	0.149E+01 0.160E+01 0.163E+01 0.149E+01 0.125E+01	0.125E+01 0.134E+01 0.137E+01 0.125E+01 0.104E+01	0.986E+00 0.106E+01 0.108E+01 0.986E+00 0.819E+00
				CONT						
Y	7.	10.	15.	16.	X 18.					
T	/.	10.	10.	το.	10.					
2. 1. 0. -2. -3.	0.738E+00 0.798E+00 0.816E+00 0.738E+00 0.611E+00	0.251E+00 0.275E+00 0.283E+00 0.251E+00 0.207E+00	0.353E-01 0.388E-01 0.400E-01 0.353E-01 0.299E-01	0.258E-01 0.283E-01 0.292E-01 0.258E-01 0.219E-01	0.965E-02 0.105E-01 0.108E-01 0.965E-02 0.830E-02					

			CHEMICALS IN			CONC)					
(ADSORBED CHEMICAL CONC. = $0.1620E+00 * DISSOLVED$ CHEMICAL CONC.) Z = 0.00											
					Х						
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.	
2.	0.241E-04	0.100E+01	0.113E+01	0.128E+01	0.130E+01	0.126E+01	0.118E+01	0.107E+01	0.925E+00	0.768E+00	
1.	0.260E-04	0.107E+01	0.121E+01	0.137E+01	0.138E+01	0.135E+01	0.127E+01	0.114E+01	0.992E+00	0.825E+00	
Ο.	0.266E-04		0.123E+01		0.141E+01			0.116E+01		0.842E+00	
-2.		0.100E+01	0.113E+01		0.130E+01		0.118E+01	0.107E+01		0.768E+00	
-3.	0.213E-04	0.836E+00	0.945E+00	0.107E+01 CONT:	0.108E+01	0.105E+01	0.987E+00	0.890E+00	0.770E+00	0.639E+00	
				CONT	X						
Y	7.	10.	15.	16.	18.						
2.	0.611E+00	0.248E+00	0.374E-01		0.102E-01						
1. 0.	0.659E+00 0.673E+00	0.270E+00 0.276E+00	0.412E-01 0.424E-01		0.112E-01 0.116E-01						
-2.	0.611E+00	0.248E+00	0.374E-01		0.102E-01						
-3.			0.314E-01		0.873E-02						
DI			CURNEQUE IN								
			CHEMICALS IN = 0.1620E-			CONC					
	(ADSORBED CH		0.00	+00 " DISSOL	VED CREMICAL	CONC.)					
		-			Х						
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.	
2.	0.261E-04	0.691E+00	0.776E+00	0 9925,00	0.895E+00	0.878E+00	0.834E+00	0.766E+00	0.679E+00	0.582E+00	
2. 1.	0.281E-04 0.282E-04	0.738E+00	0.829E+00		0.956E+00	0.939E+00		0.820E+00		0.626E+00	
0.	0.289E-04		0.844E+00		0.973E+00	0.956E+00		0.835E+00		0.638E+00	
-2.	0.261E-04	0.691E+00	0.776E+00	0.882E+00	0.895E+00	0.878E+00	0.834E+00	0.766E+00	0.679E+00	0.582E+00	
-3.	0.230E-04	0.577E+00	0.648E+00	0.737E+00	0.747E+00	0.733E+00	0.696E+00	0.638E+00	0.566E+00	0.485E+00	
				CONT							
Y	7.	10.	15.	16.	X 18.						
I	7.	10.	15.	10.	10.						
2.	0.482E+00	0.224E+00	0.391E-01	0.288E-01	0.109E-01						
1.	0.519E+00	0.243E+00	0.429E-01	0.316E-01	0.119E-01						
0.	0.529E+00	0.249E+00	0.441E-01	0.325E-01	0.123E-01						
-2.		0.224E+00	0.391E-01		0.109E-01						
-3.	0.401E+00	0.186E+00	0.326E-01	0.240E-01	0.918E-02						
DIS	STRIBUTION OF	F DISSOLVED	CHEMICALS IN	PPM AT 0.1	051E+06 HRS						
	(ADSORBED CHI			+00 * DISSOL	VED CHEMICAL	CONC.)					
		Z =	0.00								
Y	27	-3.	-2.	0.	X 1.	2	3.	4.	5.	6.	
ĭ	-21.	-3.	-2.	υ.	1.	۷.	3.	4.	5.	ь.	
2.	0.281E-04	0.480E+00	0.536E+00	0.609E+00	0.620E+00	0.614E+00	0.589E+00	0.549E+00	0.496E+00	0.435E+00	
1.	0.305E-04	0.514E+00	0.573E+00	0.651E+00	0.663E+00	0.656E+00	0.630E+00	0.588E+00		0.467E+00	
0.	0.313E-04	0.523E+00	0.583E+00	0.663E+00	0.675E+00	0.668E+00	0.642E+00	0.599E+00		0.476E+00	
-2.	0.281E-04	0.480E+00	0.536E+00	0.609E+00	0.620E+00	0.614E+00	0.589E+00	0.549E+00	0.496E+00	0.435E+00	
2											
-3.	0.245E-04	0.401E+00	0.448E+00	0.508E+00	0.518E+00	0.512E+00	0.491E+00	0.458E+00	0.414E+00	0.363E+00	

				CONT									
Y	7.	10.	15.	16.	X 18.								
2. 1. 0. -2. -3.	0.371E+00 0.398E+00 0.406E+00 0.371E+00 0.308E+00	0.192E+00 0.208E+00 0.212E+00 0.192E+00 0.159E+00	0.394E-01 0.431E-01 0.442E-01 0.394E-01 0.327E-01	0.294E-01 0.322E-01 0.331E-01 0.294E-01 0.245E-01	0.114E-01 0.125E-01 0.129E-01 0.114E-01 0.958E-02								
	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT $0.1095E+06$ HRS (ADSORBED CHEMICAL CONC. = $0.1620E+00 \times$ DISSOLVED CHEMICAL CONC.) Z = 0.00												
					Х								
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.			
2.	0.301E-04	0.336E+00	0.373E+00	0.423E+00	0.432E+00	0.430E+00	0.417E+00	0.393E+00	0.361E+00	0.322E+00			
1.	0.327E-04	0.359E+00	0.399E+00	0.452E+00	0.462E+00	0.460E+00	0.446E+00	0.421E+00	0.387E+00	0.346E+00			
0. -2.	0.336E-04 0.301E-04	0.366E+00 0.336E+00	0.406E+00 0.373E+00	0.460E+00 0.423E+00	0.471E+00 0.432E+00	0.468E+00 0.430E+00	0.454E+00 0.417E+00	0.429E+00 0.393E+00	0.394E+00 0.361E+00	0.353E+00 0.322E+00			
-3.	0.261E-04	0.280E+00	0.311E+00	0.353E+00	0.361E+00	0.359E+00	0.348E+00	0.328E+00	0.301E+00	0.269E+00			
				CONT									
Y	7.	10.	15.	16.	X 18.								
2.	0.281E+00	0.158E+00	0.378E-01	0.288E-01	0.117E-01								
1.	0.301E+00	0.170E+00	0.412E-01	0.315E-01	0.128E-01								
0.	0.307E+00	0.174E+00	0.423E-01	0.323E-01	0.132E-01								
-2. -3.	0.281E+00 0.234E+00	0.158E+00	0.378E-01	0.288E-01	0.117E-01								
-3.	0.234E+00	0.131E+00	0.314E-01	0.240E-01	0.979E-02								
		EMICAL CONC.	CHEMICALS IN = 0.1620E- 0.00			CONC.)							
					Х								
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.			
2.	0.321E-04	0.236E+00	0.261E+00	0.295E+00	0.302E+00	0.303E+00	0.295E+00	0.281E+00	0.261E+00	0.237E+00			
1.	0.350E-04	0.253E+00	0.279E+00	0.316E+00	0.324E+00	0.324E+00	0.316E+00	0.301E+00	0.280E+00	0.254E+00			
0. -2.	0.360E-04 0.321E-04	0.257E+00 0.236E+00	0.284E+00 0.261E+00	0.321E+00 0.295E+00	0.329E+00 0.302E+00	0.330E+00 0.303E+00	0.322E+00 0.295E+00	0.307E+00 0.281E+00	0.285E+00 0.261E+00	0.259E+00 0.237E+00			
-2.	0.276E-04	0.197E+00	0.201E+00 0.218E+00	0.246E+00	0.252E+00	0.252E+00	0.246E+00	0.235E+00	0.218E+00	0.198E+00			
				CONT	INUE								
37	-	1.0	1 -	1.0	X 1.0								
Y	7.	10.	15.	16.	18.								
2.	0.210E+00	0.126E+00	0.348E-01	0.271E-01	0.116E-01								
1.	0.226E+00	0.136E+00	0.378E-01	0.295E-01	0.127E-01								
0. -2.	0.230E+00 0.210E+00	0.139E+00 0.126E+00	0.387E-01 0.348E-01	0.302E-01 0.271E-01	0.131E-01 0.116E-01								
-2.	0.175E+00	0.105E+00	0.289E-01	0.225E-01	0.970E-02								

			HEMICALS IN H			CONC)						
(ADSORBED CHEMICAL CONC. = 0.1620E+00 * DISSOLVED CHEMICAL CONC.) Z = 0.00												
					Х							
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.		
2.	0.340E-04	0.166E+00	0.183E+00	0.207E+00	0.212E+00	0.213E+00	0.210E+00	0.201E+00	0.189E+00	0.174E+00		
1.	0.372E-04	0.178E+00	0.196E+00	0.221E+00	0.227E+00	0.228E+00	0.224E+00	0.216E+00	0.203E+00	0.186E+00		
Ο.	0.383E-04	0.181E+00	0.199E+00	0.225E+00	0.231E+00	0.232E+00	0.228E+00	0.220E+00	0.206E+00	0.190E+00		
-2.	0.340E-04	0.166E+00	0.183E+00	0.207E+00	0.212E+00	0.213E+00	0.210E+00	0.201E+00	0.189E+00	0.174E+00		
-3.	0.291E-04	0.139E+00	0.153E+00	0.173E+00 CONT	0.177E+00	0.178E+00	0.175E+00	0.168E+00	0.158E+00	0.145E+00		
				CONT	X							
Y	7.	10.	15.	16.	18.							
2.	0.156E+00	0.993E-01	0.308E-01	0.245E-01	0.112E-01							
2. 1.	0.156E+00 0.168E+00	0.107E+00	0.308E-01 0.334E-01	0.245E-01 0.266E-01	0.122E-01 0.122E-01							
1. 0.	0.171E+00	0.109E+00	0.342E-01	0.272E-01	0.125E-01							
-2.	0.156E+00	0.993E-01	0.308E-01	0.245E-01	0.1125E-01							
-3.	0.130E+00	0.826E-01	0.256E-01	0.204E-01	0.929E-02							
	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1226E+06 HRS (ADSORBED CHEMICAL CONC. = 0.1620E+00 * DISSOLVED CHEMICAL CONC.) Z = 0.00											
					Х							
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.		
2.	0.357E-04	0.118E+00	0.129E+00	0.145E+00	0.150E+00	0.151E+00	0.149E+00	0.144E+00	0.137E+00	0.127E+00		
1.	0.391E-04	0.126E+00	0.138E+00	0.156E+00	0.160E+00	0.161E+00	0.160E+00	0.154E+00	0.146E+00	0.136E+00		
Ο.	0.402E-04	0.128E+00	0.140E+00	0.158E+00	0.163E+00	0.164E+00	0.162E+00	0.157E+00	0.149E+00	0.139E+00		
-2.	0.357E-04	0.118E+00	0.129E+00	0.145E+00	0.150E+00	0.151E+00	0.149E+00	0.144E+00	0.137E+00	0.127E+00		
-3.	0.303E-04	0.981E-01	0.107E+00	0.121E+00	0.125E+00	0.126E+00	0.124E+00	0.120E+00	0.114E+00	0.106E+00		
				CONT								
	_	1.0			X							
Y	7.	10.	15.	16.	18.							
2.	0.115E+00	0.769E-01	0.265E-01	0.214E-01	0.103E-01							
1.	0.124E+00	0.827E-01	0.287E-01	0.232E-01	0.112E-01							
Ο.	0.126E+00	0.844E-01	0.294E-01	0.238E-01	0.115E-01							
-2.	0.115E+00	0.769E-01	0.265E-01	0.214E-01	0.103E-01							
-3.	0.961E-01	0.640E-01	0.220E-01	0.178E-01	0.860E-02							
	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1270E+06 HRS (ADSORBED CHEMICAL CONC. = 0.1620E+00 * DISSOLVED CHEMICAL CONC.) Z = 0.00 X											
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.		
2.	0.369E-04	0.833E-01	0.910E-01	0.103E+00	0.106E+00	0.107E+00	0.106E+00	0.103E+00	0.986E-01	0.924E-01		
1.	0.404E-04	0.892E-01	0.974E-01	0.110E+00	0.113E+00	0.114E+00	0.114E+00	0.111E+00	0.106E+00	0.990E-01		
0.	0.415E-04	0.908E-01	0.992E-01	0.112E+00	0.115E+00	0.117E+00	0.116E+00	0.113E+00	0.108E+00	0.101E+00		
-2.	0.369E-04	0.833E-01	0.910E-01	0.103E+00	0.106E+00	0.107E+00	0.106E+00	0.103E+00	0.986E-01	0.924E-01		
-3.	0.312E-04	0.695E-01	0.759E-01	0.855E-01	0.882E-01	0.892E-01	0.885E-01	0.861E-01	0.822E-01	0.770E-01		

CONTINUE													
Y	7.	10.	15.	16.	X 18.								
2.	0.849E-01	0.589E-01	0.222E-01	0.183E-01	0.929E-02								
1.	0.911E-01	0.633E-01	0.241E-01	0.198E-01	0.101E-01								
0.	0.928E-01	0.646E-01	0.246E-01	0.202E-01	0.103E-01								
-2.	0.849E-01	0.589E-01	0.222E-01	0.183E-01	0.929E-02								
-3.	0.707E-01	0.490E-01	0.185E-01	0.152E-01	0.773E-02								
	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1314E+06 HRS (ADSORBED CHEMICAL CONC. = 0.1620E+00 * DISSOLVED CHEMICAL CONC.)												
	(ADSORBED CHI		= 0.1620E+ 0.00	-00 * DISSOLV	VED CHEMICAL	CONC.)							
		2 =	0.00		х								
Y	-27.	-3.	-2.	0.	1.	2.	3.	4.	5.	6.			
2.	0.374E-04	0.591E-01	0.644E-01	0.725E-01	0.749E-01	0.759E-01	0.756E-01	0.740E-01	0.711E-01	0.671E-01			
1.	0.409E-04	0.633E-01	0.690E-01	0.776E-01	0.801E-01	0.813E-01	0.810E-01	0.793E-01	0.762E-01	0.720E-01			
0. -2.	0.420E-04	0.645E-01	0.702E-01	0.790E-01	0.816E-01	0.828E-01 0.759E-01	0.825E-01 0.756E-01	0.807E-01	0.776E-01	0.733E-01			
-2.	0.374E-04 0.315E-04	0.591E-01 0.493E-01	0.644E-01 0.538E-01	0.725E-01 0.605E-01	0.749E-01 0.625E-01	0.633E-01	0.756E-01 0.631E-01	0.740E-01 0.617E-01	0.711E-01 0.593E-01	0.671E-01 0.560E-01			
-3.	0.3156-04	0.4936-01	0.536E-01	CONT		0.033E-01	0.031E-01	0.01/E-01	0.5938-01	0.500E-01			
				00111	X								
Y	7.	10.	15.	16.	18.								
			0 1005 01	0 1 5 0 5 0 1	0 0105 00								
2.	0.623E-01	0.447E-01	0.183E-01	0.153E-01	0.813E-02								
1.	0.668E-01	0.481E-01	0.198E-01	0.165E-01	0.881E-02 0.902E-02								
0. -2.	0.681E-01 0.623E-01	0.490E-01 0.447E-01	0.202E-01 0.183E-01	0.169E-01 0.153E-01	0.902E-02 0.813E-02								
-2.	0.519E-01	0.373E-01	0.152E-01	0.127E-01	0.676E-02								
STEADY	STATE SOLUT	ION HAS NOT	BEEN REACHED	BEFORE FINAL	L SIMULATING	TIME							
DIS	STRIBUTION OF	F DISSOLVED	CHEMICALS IN	PPM AT 0.13	358E+06 HRS								
	(ADSORBED CHI			+00 * DISSOLV	VED CHEMICAL	CONC.)							
		Z =	0.00										
Y	-27.	-3.	-2.	0.	X 1.	2.	3.	4.	5.	6.			
I	-27.	-3.	-2.	0.	1.	۷.	5.	4.	5.	0.			
2.	0.371E-04	0.421E-01	0.457E-01	0.514E-01	0.531E-01	0.540E-01	0.540E-01	0.531E-01	0.513E-01	0.488E-01			
1.	0.405E-04	0.450E-01	0.490E-01	0.550E-01	0.569E-01	0.578E-01	0.578E-01	0.568E-01	0.550E-01	0.523E-01			
0.	0.415E-04	0.459E-01	0.499E-01	0.560E-01	0.579E-01	0.589E-01	0.589E-01	0.579E-01	0.560E-01	0.532E-01			
-2.	0.371E-04	0.421E-01	0.457E-01	0.514E-01	0.531E-01	0.540E-01	0.540E-01	0.531E-01	0.513E-01	0.488E-01			
-3.	0.311E-04	0.351E-01	0.381E-01	0.429E-01	0.443E-01	0.450E-01	0.450E-01	0.442E-01	0.428E-01	0.406E-01			
				CONTI									
Y	7.	10.	15.	16.	X 18.								
T	7.	IU.	10.	το.	10.								
2.	0.456E-01	0.338E-01	0.148E-01	0.125E-01	0.696E-02								
1.	0.489E-01	0.363E-01	0.160E-01	0.135E-01	0.754E-02								
0.	0.498E-01	0.370E-01	0.163E-01	0.138E-01	0.771E-02								
-2.	0.456E-01	0.338E-01	0.148E-01	0.125E-01	0.696E-02								
-3.	0.380E-01	0.281E-01	0.123E-01	0.104E-01	0.579E-02								

ATTACHMENT B

REFERENCES

REFERENCES

- Logan, William E., 2000. Letter to Thomas Fry (Fort Stewart Directorate of Public Works, Environmental Branch), January 19.
- Logan, William E., 2001. Letter to Colonel Gregory V. Stanley (Fort Stewart Directorate of Public Works, Environmental Branch), February 9.
- SAIC (Science Applications International Corporation) 1999. CAP–Part A Report, Underground Storage Tanks 5 & 6, Facility ID #9-089066, Building 1824, Fort Stewart, Georgia, June.
- SAIC 2000. *CAP–Part B Report, Underground Storage Tanks 5 & 6, Facility ID #9-089066, Building 1824, Fort Stewart, Georgia*, November.
- SAIC 2001. First Semiannual Monitoring Only Report, Underground Storage Tanks 5 & 6, Facility ID #9-089066, Building 1824, Fort Stewart, Georgia, March.

ATTACHMENT C

CERTIFICATES OF ANALYSIS

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Com Addr	pany : ess :	SAIC 800 Oak Ridge Tu Oak Ridge, TN 3			Report Date: November 5, 2001						
Cont	act:	Ms. Leslie Barbo	ur								
Proje		Fort Stewart CAF						Page	2 1	of	2
Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:				711022 36245007 Ground Wa 09-JAN-01 10-JAN-01 Client		roject: SAIC00400 lient ID: SAIC010					
Parameter		Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics	Feder	al									
VOABTXB_LF									_		
Benzene		U	ND	0.140	1.00	ug/L	l	RMB 01/12/01	1618	60637	I
Ethylbenzene		U	ND	0.150	1.00	ug/L	1				
Toluene		U	ND	0.220	1.00	ug/L	1				
Xylenes (total)		U	ND	0.440	3.00	ug/L	1				
The following P	rep Me	thods were perfor	međ								
Method		ription			Analyst	Date	Time	Prep Batch			
546 8260B	8260	B Volatiles In Liqu	id Federal		RMB	01/12/01	1618	60637			
The following A Method		al Methods were p ription	performed								
I	SW8	46 8260B									
Surrogate recov	егу	Test		Reco	overy %	Acceptable Limit					
Bromofluorobenz	ene	VOABT	KB_LF		95%	(59	%-129%)				
Dibromofluoromo		VOABT			98%	(66	%-130%)				
Toluene-d8		VOABT	-		87%	(64	%-130%)				
Notes: The Qualifier	e in thi	is report are defin	ed as follows								

The Qualifiers in this report are defined as follows :

Indicates the analyte is a surrogate compound. **

Actual result is less than amount reported <

Actual result is greater than amount reported >

B Analyte found in the sample as well as the associated blank.

E Concentration exceeds instrument calibration range

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J

U Indicates the compound was analyzed for but not detected above the detection limit

Lab-specific qualifier - must be fully described in case narrative and data summary package Х

The above sample is reported on an "as received" basis.

