FIRST ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANK 100B FACILITY ID #9-089081 BUILDING 1350 FORT STEWART, GEORGIA

Prepared for

U.S. Army Corps of Engineers – Savannah District and Fort Stewart Directorate of Public Works Under Contract Numbers DACA21-95-D-0022/DACA63-97-D-0041 Delivery Orders 0061/CV01

Prepared by

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

May 2001

FINAL

TABLE OF CONTENTS

	<u>Page</u>
LIST OF ABBREVIATIONS AND ACRONYMS	iii
I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II. PROJECT SUMMARY	2
 III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS A. Potentiometric Data B. Analytical Data 	2
IV. SITE RANKING	3
V. CONCLUSIONS/RECOMMENDATIONS	4
VI. REIMBURSEMENT	4
List of Appendices	
APPENDIX I: REPORT FIGURES Figure 1 Location Map of UST 100B at Fort Stewart, Liberty County, Georgia Figure 2 Potentiometric Surface Map of the UST 100B Site (January 2001) Figure 3 Groundwater Quality Map for the UST 100B Site (January 2001) Figure 4 Trend of Benzene Concentrations at the UST 100B Site APPENDIX II: REPORT TABLES Table 1 Groundwater Elevations Table 2a Groundwater Analytical Results (VOCs) Table 2b Groundwater Analytical Results (PAHs) Table 3 Well Construction Details APPENDIX III: LABORATORY ANALYTICAL RESULTS APPENDIX IV: SITE RANKING FORM APPENDIX V: REIMBURSEMENT APPLICATION Attachments	I-2 I-3 I-4 I-5 II-1 II-2 II-2 II-3 II-4 II-5 III-1 IV-1
A REFERENCES	A-1 B-1

List of Abbreviations and Acronyms

ACL	alternate concentration limit
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	Corrective Action Plan
GA EPD	Georgia Environmental Protection Division
IWQS	In-stream Water Quality Standard
PAH	polynuclear aromatic hydrocarbon
SAIC	Science Applications International Corporation
UST	underground storage tank
USTMP	Underground Storage Tank Management Program

MONITORING ONLY REPORT

Submittal Date: May 2001 N	Aonitoring Report 1	Jumber: 1st Annual
For Period Covering: January 2000 to	January 2001	
Facility Name: UST 100B, Building 1350	Street Address	: Divarty Rd. and McFarland Ave.
Facility ID: 9-089081 City: Fort Stewart	County:]	Liberty Zip Code: <u>31314</u>
Latitude: 31° 52' 53" Longitude: 81	<u>° 37′ 58″</u>	
Submitted by UST Owner/Operator:	Prepared by	Consultant/Contractor:
Name: Thomas C. Fry/Environmental Bran	ch Name:	Patricia A. Stoll
Company: U.S. Army/HQ 3d, Inf. Div. (Mech)	Company:	SAIC
Address: Directorate of Public Works, Bldg. 1	137 Address:	P.O. Box 2502
1550 Frank Cochran Drive		
City: Fort Stewart State: GA	City:	Oak Ridge State: TN
Zip Code: 31314-4927	Zip Code:	37831

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patri	cia A. Stoll	
Signature:	Pak-	allol
Date:	4/2	0/01

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Underground Storage Tank (UST) 100B, Facility ID #9-089081 was located near Building 1350 at Fort Stewart, Georgia. UST 100B had a capacity of 1,000 gallons and was used for the storage of used oil. The tank was excavated and removed on July 30, 1996, and the ancillary piping was closed in place. Science Applications International Corporation (SAIC) performed a Corrective Action Plan (CAP)–Part A investigation in 1998 and 1999. Results of the 1998/1999 investigation were documented in the *Corrective Action Plan–Part A Report for Underground Storage Tank 100B, Facility ID #9-089081, Building 1350, Fort Stewart, Georgia*, which was submitted to the Georgia Environmental Protection Division (GA EPD) in October 1999 (SAIC 1999). The GA EPD Underground Storage Tank Management Program (USTMP) conducted a technical review of the CAP–Part A Report (SAIC 1999) and approved the recommendation for further investigation in correspondence dated January 25, 2000 (Logan 2000).

The CAP-Part B investigation was conducted in January 2000, and the results of that sampling effort were summarized in the *Corrective Action Plan-Part B Report for Underground Storage Tank 100B, Facility ID #9-089081, Building 1350, Fort Stewart, Georgia*, which was submitted to GA EPD in September 2000 (SAIC 2000). The CAP-Part B Report recommended annual sampling of wells 62-11, 62-12, 62-13, 62-14, 62-15, and 62-16 for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAHs) until the concentrations of benzene, benzo(*a*)anthracene, chyrsene, naphthalene, and phenanthrene in groundwater were below the alternate concentration limits (ACLs) of 71.28 μ g/L; 4.4 μ g/L; 442 μ g/L; 312 μ g/L; and 8,760 μ g/L, respectively, and the free product in well 62-11 was less than an eighth of an inch. The CAP-Part B Report was approved by GA EPD in correspondence dated February 28, 2001 (Logan 2001).

This report documents the first annual sampling event and analytical results. In accordance with the Monitoring Only Plan, ACLs calculated as part of the CAP-Part B Report have been used in the monitoring program as the monitoring endpoints. The benzene and PAH concentrations have declined during the monitoring only program and are below their respective In-stream Water Quality Standards (IWQSs) and ACLs. As a result, it was not necessary to revise the fate and transport model. Because the benzene concentrations are below the IWQS and ACL and the plume is not expanding, it is recommended that a no-further-action-required status be granted for the site.

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

A. <u>Potentiometric Data</u>:

(Appendix I, Figure 2: Potentiometric Surface Map) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Free product was observed in well 62-11 during the CAP–Part B investigation, and absorbent strips were removed and replaced periodically between the CAP–Part B sampling and the first annual monitoring only event, as indicated in Table 1.

During the first annual sampling event in January 2001, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In January 2001, the groundwater flow direction was toward the southwest, and the groundwater gradient was approximately 0.0385 foot/foot. The absorbent strips in well 62-11 were removed on January 9, 2001. After removal of the absorbent strips, no measurable free product was observed in the well. New absorbent strips were installed on January 9, 2001.

On March 9, 2001, well 62-11 was overdrilled and a 2-inch polyvinyl chloride well (62-17) was installed. The well was developed and allowed equilibrate for 3.5 weeks before free product measurements were conducted. On April 3, 2001, depth to water was measured at 3.32 feet below top of casing, which was comparable to other readings, and no free product was observed.

B. <u>Analytical Data</u>:

(Appendix I, Figure 3: Groundwater Quality Map) (Appendix II, Table 2: Groundwater Analytical Results) (Appendix III: Laboratory Analytical Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the first annual sampling event in January 2001, monitoring wells 62-11, 62-12, 62-13, 62-14, 62-15, and 62-16 were sampled for BTEX and PAHs. BTEX and PAH compounds were present in wells 62-11, 62-12, 62-13, 62-14, and 62-15. BTEX and PAH constituents were not detected in well 62-16. In well 62-11, benzene was detected at 7.3 μ g/L, toluene was detected at 38.8 μ g/L, ethylbenzene was detected at 8.8 μ g/L, and total xylenes were detected at 46.3 μ g/L. There was insufficient volume in the well for analysis of PAHs. In well 62-12, benzene was detected at 22.1 μ g/L, toluene was detected at 2.2 μ g/L, ethylbenzene was detected at 7.5 μ g/L, total xylenes were detected at 34.4 μ g/L, acenaphthene was detected at 1.1 µg/L, fluorene was detected at 1.8 µg/L, naphthalene was detected at 35.2 µg/L, and phenanthrene was estimated at 0.57J μ g/L. In well 62-13, benzene was detected at 1.5 μ g/L, total xylenes were estimated at 0.43J µg/L, and naphthalene was detected at 8.8 µg/L. In well 62-14, benzene was detected at 1.0 μ g/L, and naphthalene was detected at 4.6 μ g/L. In well 62-15, benzene was estimated at 0.40 µg/L, ethylbenzene was estimated at 0.53J µg/L, and naphthalene was detected at 3.2 μ g/L. None of the constituent concentrations exceeded the respective IWQSs or ACLs. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

IV. SITE RANKING (Note: re-rank site after each monitoring event.) (Appendix IV: Site Ranking Form)

Environmental Site Sensitivity Score:13,350 (CAP-Part B Report)(April 1999 version of the Site Ranking
Form was used.)850 (Jan. 2001 – First Annual Monitoring Event)

Note: The site ranking score was incorrectly reported in the CAP-Part B Report at 63,100.

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

Fort Stewart respectfully requests that GA EPD USTMP assign Facility ID #9-089081 a no-further-action-required status for the following reasons:

- The Monitoring Only Plan has been conducted in accordance with the requirements outlined in the CAP-Part B Report (SAIC 2000) and approved by GA EPD USTMP in correspondence February 28, 2001 (Logan 2001).
- The site score for the last round of annual groundwater sampling was 850. Of the 850 points, 600 points were a result of soil samples collected during the 1996 tank removal and 1998/1999 CAP-Part A investigation activities; therefore, 250 points were associated with the current groundwater contamination.
- The approved Monitoring Only Plan indicated that the monitoring only program would be terminated if the benzene, benzo(*a*)anthracene, chyrsene, naphthalene, and phenanthrene concentrations were below their respective ACLs and the free product was less than an eighth of an inch. The achievement of these criteria would take precedence over the site ranking score.
- The benzene and PAH concentrations in all wells were below their respective IWQSs and ACLs during the annual monitoring event in January 2001.
- There was no measurable free product in 62-11 in January 2001 or in the overdrilled well (i.e., 62-17) in April 2001.
- The closest potential receptor is a storm drain located 100 feet south of the former tank pit. The closest surface water bodies are a drainage ditch located 900 feet southwest (downgradient) of the site and Mill Creek located 2,500 feet southwest (downgradient) of the site.
- Natural attenuation has continued to take place at the site, as indicated by the low benzene concentrations.

The monitoring only program at this site will be discontinued. The wells at the site will be abandoned upon GA EPD's concurrence with the recommendation for no further action.

VI. REIMBURSEMENT

Attached N/A X

(Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the former UST 100B site, Building 1350, Facility ID #9-089081 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

((

APPENDIX I

REPORT FIGURES

Figure 1. Location Map of UST 100B at Fort Stewart, Liberty County, Georgia

Figure 2. Potentiometric Surface Map of the UST 100B Site (January 2001)

Figure 3. Groundwater Quality Map for the UST 100B Site (January 2001)

Figure 4. Trend of Benzene Concentrations at the UST 100B Site

APPENDIX II

REPORT TABLES

C. .

Table	1.	Groundwater	Elevations
-------	----	-------------	------------

Well	Date	Ground Surface Elev.	Top of Casing Elev.		Depth of Free Product	Water Depth	Product Thickness	Corrected Groundwater Elevation				
Number Measured (feet AMSL) (feet AMSL) (feet BGS) (feet BTOC) (feet BTOC) (feet) (feet AMSL												
62-11	CAP-Part B Investigation - 2000 62-11 02/21/00 68.91 68.57 2.7 - 7.7 3.85 3.88 0.03 64.69											
62-12	02/21/00	68.50	68.24	2.7 - 7.7 2.9 - 12.9	NA	6.29	0.05	61.95				
62-13	02/21/00	68.66	68.42	2.9 - 12.9 2.9 - 12.9	ŇA	6.47	0	61.95				
62-14	02/21/00	68.86	68.52	2.9 - 12.9 2.9 - 12.9	NA	6.49	0	62.03				
62-15	02/21/00	69.12	68.76	2.9 - 12.9 2.9 - 12.9	NA	6.62	0	62.14				
62-16	02/21/00		68.33	3.2 - 13.2	NA	5.62	0	62.71				
62-11 ^{<i>u</i>}	04/06/00	68.91	68.57	$\frac{3.2-13.2}{2.7-7.7}$	sheen	4.28	sheen	64.29				
62-12	04/06/00	68.50	68.24	2.9 - 12.9	NA	5.82	0	62.42				
62-13	04/06/00	68.66	68.42	2.9 - 12.9	NA	6.01	0	62.41				
62-14	04/06/00	68.86	68.52	2.9 - 12.9	NA	6.04	0	62.48				
62-15	04/06/00	69.12	68.76	2.9 - 12.9	NA	5.98	Ó	62.78				
62-16	04/06/00		68.33	$\frac{2.9}{3.2 - 13.2}$	NA	5.17	0	63,16				
	0 11 00.00	Ahsor			ween Monitor			03,10				
62-11"	9/29/00	68.91	68.57	2.7 – 7.7	3.33	3.34	0.01	65.23				
62-11 ^c	12/06/00	68.91	68.57	2.7 – 7.7	3.95	4.20	0.25	64.62				
					ent – January							
62-11"	01/09/01	68.91	68.57	2.7 - 7.7	NA	3.93	0	64.64				
62-12	01/09/01	68.50	68.24	2.9 - 12.9	NA	6.41	0	61.83				
62-13	01/09/01	68.66	68.42	2.9 - 12.9	NA	6.61	0	61.81				
62-14	01/09/01	68.86	68.52	2.9 - 12.9	ŇA	6.68	0	61.84				
62-15	01/09/01	69.12	68.76	2.9 - 12.9	NA	6.81	0	61.95				
62-16	01/09/01		68.33	3.2 - 13.2	NA	6.01	0	62.32				
			Product	Removal Wei	ll Installation	I						
62-17 ^e	04/03/01	69.03	68.66	3.0 - 8.1	NA	3.32	0	65.34				

NOTES:

On April 5, 2000, 0.3 foot of product was measured in well 62-11. The well was pumped dry several times, and a sheen was measured on April 6, 2000. Absorbent strips were placed in the well on May 25, 2000. The absorbent strips were removed and replaced on June 28, 2000.

The absorbent strips were removed and replaced on September 29, 2000.

The absorbent strips were removed and replaced on December 6, 2000.

^d There was no measurable free product after removal of the absorbent strips on January 9, 2001. The absorbent strips were replaced again on January 9, 2000.

Well 62-11 was overdrilled and well 62-17 was installed in the same location on March 9, 2001, but constructed of 2-inch PVC. Following development of well 62-17 in March 2001, the well was allowed to equilibrate for 3.5 weeks before being checked for free product. No free product was observed on April 3, 2001; therefore, absorbent socks were not installed.

AMSL Above mean sea level

BGS Below ground surface

BTOC Below top of casing

CAP Corrective Action Plan

NA Not applicable PVC Polyvinyl chloride

Sample Location	Sample ID	Screened Interval (feet BGS)	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	Total BTEX (µg/L)
			CAP-P	art B Investi	igation – 20	00		
62-11	621112	2.7 - 7.7	01/17/00	23.1 =	110 =	27.7 =	133 =	293.8
62-12	621212	2.9 - 12.9	01/17/00	3 =	0.28 J	2.2 =	9.1 =	14.58
62-13	621312	2.9 - 12.9	01/17/00	17.2 =	0.58 J	8.3 =	27.9 =	53.98
62-14	621412	2.9 - 12.9	01/17/00	<u> </u>	1 U	2.2 =	5.4 =	7.60
62-15	621512	2.9 - 12.9	01/17/00	0.22 J	0.32 J	2.3 =	9.I =	11.94
62-16	621612	3:2 - 13:2	01/17/00	1 U	ΙŬ	1 U	3 U	ND
		F	irst Annual N	Aonitoring E	Event – Janu	ary 2001		
62-11	621122	2.7 - 7.7	01/09/01	7.3 =	38.8 =	8.8 =	46.3 =	101.2
62-12	621222	2.9 - 12.9	01/09/01	22.1 =	2.2 =	7,5 =	34.4 =	66.2
62-13	621322	2.9 - 12.9	01/09/01	1.5 =	1 U	1 U	0.43 J	1.93
62-14	621422	2.9 - 12.9	01/09/01	1.0 =	1 U	1 U	3 U	1.0
62-15	621522	2.9 - 12.9	01/09/01	0.40 J	1 U	0.53 J	3 U	0.93
62-16	621622	3.2 - 13.2	01/08/01	1. U	1 U	1 U	3 U	ND
In-stream Water Quality Standards (GA EPD Chapter 391-3-6)			71.28	200,000	28,718	NRC	NRC	
Alt	ernate Con	centration Li	mits	71.28				

Table 2a. Groundwater Analytical Results (VOCs)

NOTES:

Bold values exceed IWQSs.

Italic values exceed ACLs.

ACL Alternate concentration limit

BGS Below ground surface

- BTEX Benzene, toluene, ethylbenzene, and xylenes
- CAP Corrective Action Plan

GA EPD Georgia Environmental Protection Division

IWQS In-stream Water Quality Standard

- ND Not detected
- NRC No regulatory criteria
- VOC Volatile organic compound

Laboratory Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

UJ Indicates that the compound was not detected above an approximated sample quantitation limit.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

Table 2b. Groundwater Analytical Results (PAHs)

					Detected PAH Compounds (µg/L)								
Sample Location	Sample ID	Screened Interval (feet BGS)	Date Sampled	Acenaphthene	Anthracene	Benzo(<i>a</i>)anthrace ne	Chrysene	Fluoranthene	Fluorenc	Naphthalene	Phenanthrene	Pyrene	Total PAHs (µg/L)
····· 1			·		Part B II				1		,		
62-11	621112	2.7 - 2.7	01/17/00	24.2 =	22.3 =	19.8 =	12.5 J	94.6 =	21.5 =	47.9 =	117 =	67.2 =	414.5
62-12	621212	2.9 - 12.9								15.1 =			15.1
62-13	621312	2.9 - 12.9				ļ			1.2 J	32.6 =			32.6
62-14	621412	2.9 - 12.9	Professional Contraction of Contract										ND
62-15	621512	2.9 - 12.9		l						3.2 =			3.2
62-16	621612	3.2 - 13.2	01/17/00										ND
			First	Annual	Monitor	ing Even	it – Jan	uary 200	1				
62-11	621112	2.7 - 2.7	01/09/01										IS
62-12	621212	2.9 - 12.9	01/09/01	1.1 =					1.8 =	35.2 =	0.57 J		38,67
62-13	621312	2.9 - 12.9	01/09/01							8.8 =			8.8
62-14	621412	2.9 – 12.9	01/09/01							4.6 =			4.6
62-15	621512	2.9 - 12.9	01/09/01							3.2 =			3.2
62-16	621612	3:2 - 13.2	01/08/01										ND
	In-stream Water Quality Standards (GA EPD Chapter 391-3-6)		NRC	110,000	0.0311	0.0311	370	14,000	NRC	NRC	11,000	NRC	
Alte	rnate Conc	entration Lir	nits			4.4	442			312	8,760		

NOTES:

Bold values exceed IWQSs.

Italic values exceed ACLs.

BGS Below ground surface

CAP Corrective Action Plan

GA EPD Georgia Environmental Protection Division

IS Insufficient sample volume for analysis

IWQS In-stream Water Quality Standard

ND Not detected

NRC No regulatory criteria

PAH Polynuclear aromatic hydrocarbon

Laboratory Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

UJ Indicates that the compound was not detected above an approximated sample quantitation limit.

J Indicates that the value for the compound was an estimated value.

= Indicates that the compound was detected at the concentration reported.

		Boring	Screened		Coordinates (NAD83)		Elevation	(NAVD 88)
Well Number	Date Installed	Depth (feet BGS)	Interval (feet BGS)	Type of Completion	Northing	Easting	Ground Surface	Top of Casing
Additional Free Product Removal Activities – March 2001								
62-17	3/9/01	8.4	3.0 - 8.1	2-inch PVC	684650.2	821857.3	69.7	68.66

Table 3. Well Construction Details

NOTES:

ĺ

Below ground surface Polyvinyl chloride BGS

PVC

APPENDIX III

LABORATORY ANALYTICAL RESULTS

1A VOLATILE ORGANICS ANALYSI	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR	Contract: N/A
Lab Code: N/A Case No.: N/A	SAS No.: N/A SDG No.: 36246
Matrix: (soil/water) WATER	Lab Sample ID: 36246007
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8S311
Level: (low/med) LOW	Date Received: 01/10/01
% Moisture: not dec.	Date Analyzed: 01/17/01
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

C.T. Vindualium

FORM I VOA

OLM03.0

1A VOLATILE ORGANICS ANALYSIS DATA	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contra	.ct: N/A 621222
Lab Code: N/A Case No.: N/A SAS N	O.: N/A SDG No.: 36246
Matrix: (soil/water) WATER	Lab Sample ID: 36246001
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8S224
Level: (low/med) LOW	Date Received: 01/10/01
% Moisture: not dec.	Date Analyzed: 01/15/01
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

NETA VILLOZITION . < **

QLM03.0

FORM I VOA

 IB
 EPA SAMPLE NO.

 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET
 621222

 Lab Name: GENERAL ENGINEERING LABOR Contract: N/A
 SDG No.: 36246

 Lab Code: N/A
 Case No.: N/A
 SAS No.: N/A
 SDG No.: 36246

 Matrix: (soil/water) WATER
 Lab Sample ID: 36246001

 Sample wt/vol:
 1000 (g/mL) ML
 Lab File ID: 7D119

 Level: (low/med)
 LOW
 Date Received: 01/10/01

 % Moisture:
 decanted: (Y/N)
 Date Extracted:01/12/01

 Concentrated Extract
 1.00 (mL)
 Date Analyzed: 01/16/01

 Injection Volume:
 1.0 (uL)
 Dilution Factor: 1.0

 GPC Cleanup:
 (Y/N) N
 N

CAS NO.	COMPOUND	(ug/L or ug/	Kg) UG/L	Q	
$\begin{array}{c} 91-58-7\\ 208-96-8\\ 83-32-9\\ 85-01-8\\ 120-12-7\\ 206-44-0\\ 129-00-0\\ 56-55-3\\ 218-01-9\\ 205-99-2\\ 207-08-9\\ 50-32-8\\ 193-39-5\\ 53-70-3\end{array}$	Naphthalene 2-Chloronaphtha Acenaphthylene Fluorene Fluorene Phenanthrene Phenanthrene Pyrene Pyrene Benzo (a) anthrac Benzo (b) fluorar Benzo (a) pyrene Benzo (a) pyrene Dibenz (a, h) anth Benzo (g, h, i) per	cene	35.2 1.0 1.0 1.1 1.8 0.57 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ववववददददददद	112311115
L					4

CONCENTRATION UNITS:

FORM I SV-1

s September 199

LA VOLATILE ORGANICS ANALYSIS I	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR Cor	1tract: N/A 621322
Lab Code: N/A Case No.: N/A SA	AS No.: N/A SDG No.: 36246
Matrix: (soil/water) WATER	Lab Sample ID: 36246002
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 85223
Level: (low/med) LOW	Date Received: 01/10/01
% Moisture: not dec.	Date Analyzed: 01/16/01
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND

t

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.5 1.0 1.0 0.43	-	11225
			ź.

EPA SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

621322

Lab Name: GENERAL ENG	GINEERING LABOR Contract	: N/A
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG No.: 36246
Matrix: (soil/water)	WATER	Lab Sample ID: 36246002
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: 7D120
Level: (low/med)	LOW	Date Received: 01/10/01
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Extracted:01/12/01
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 01/16/01
Injection Volume:	1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N	

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene 91-58-72-Chloronaphthalene 208-96-8Acenaphthylene 83-32-9Acenaphthene 86-73-7Fluorene 85-01-8Phenanthrene 120-12-7Anthracene 206-44-0Fluoranthene 129-00-0Pyrene 56-55-3Benzo (a) anthracene 218-01-9Benzo (b) fluoranthene 205-99-2Benzo (c) fluoranthene 207-08-9Benzo (c) pyrene 193-39-5Indeno (1, 2, 3-cd) pyrene 191-24-2Benzo (g, h, i) perylene	8.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ਰ ਰ ਕ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ ਰ	15
--	---	---	----

DATA VALIDATION COPY 2 n 1•

FORM I SV-1

OLM03.0

1A VOLATILE ORGANICS ANALYSIS	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR C	Contract: N/A
Lab Code: N/A Case No.: N/A	SAS No.: N/A SDG No.: 36246
Matrix: (soil/water) WATER	Lab Sample ID: 36246003
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8S222
Level: (low/med) LOW	Date Received: 01/10/01
<pre>% Moisture: not dec</pre>	Date Analyzed: 01/16/01
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

	CONCEN	JTRA	\T]
COMPOUND	(ug/L	or	ug

CAS NO.

71-43-2-----Benzene_____ 108-88-3-----Toluene_____ 100-41-4-----Ethylbenzene_____ 1330-20-7----Xylenes (total)_ ONCENTRATION UNITS: ug/L or ug/Kg) UG/L

DATA VALIDATION COPY

OLM03.0

FORM I VOA

*

EPA SAMPLE NO. 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET 621422 Lab Name: GENERAL ENGINEERING LABOR Contract: N/A Lab Code: N/A Case No.: N/A SAS No.: N/A SDG No.: 36246 Matrix: (soil/water) WATER Lab Sample ID: 36246003 Sample wt/vol: 1000 (g/mL) ML Lab File ID: 7D121 Level: (low/med) LOW Date Received: 01/10/01 % Moisture: _____ decanted: (Y/N) ____ Date Extracted:01/12/01 Concentrated Extract Volume: 1.00(mL) Date Analyzed: 01/16/01 Injection Volume: 1.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q	
91-20-3 91-58-7 208-96-8 83-32-9 86-73-7 85-01-8	Naphthalene 2-Chloronaphth Acenaphthylene Fluorene Phenanthrene Phenanthrene Pyrene Pyrene Benzo (a) anthra Benzo (b) fluora Benzo (b) fluora Benzo (c) fluora Benzo (c) pyrene Benzo (c) pyrene Benzo (c) pyrene 	alene	4.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ਰਰਰਰਰਰਰਰਰ ਰਹ	=2
191-24-2	Benzo(g,h,i)pe	rylene	1.0	U'	$ \downarrow $

SATA VALIDATIC. COPY

FORM I SV-1

OLM03.0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET			EPA SAMPLE NO.	
Lab Name: GENERAL EN	GINEERING LABOR Conti	ract: N/A	621522	
Lab Code: N/A	Case No.: N/A SAS	No.: N/A SDG	No.: 36246	
Matrix: (soil/water)	WATER	Lab Sample ID	: 36246004	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	85517	
Level: (low/med)	LOW	Date Received	: 01/10/01	
<pre>% Moisture: not dec Date Analyzed: 01/19/01</pre>				
GC Column: DB-624	ID: 0.25 (mm)	Dilution Fact	or: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL	

(

ĺ

ĺ

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L		Q	
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene -Ethylbenzene		0.40 1.0 0.53 3.0	U J	5363

FORM I VOA

OLM03.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: GENERAL ENGINEE	RING LABOR Contract	: N/A
Lab Code: N/A Case	No.: N/A SAS No.	: N/A SDG No.: 36246
Matrix: (soil/water) WATE	R	Lab Sample ID: 36246004
Sample wt/vol: 1000	(g/mL) ML	Lab File ID: 7D122
Level: (low/med) LOW		Date Received: 01/10/01
% Moisture: deca	nted: (Y/N)	Date Extracted:01/12/01
Concentrated Extract Volu	me: 1.00(mL)	Date Analyzed: 01/16/01
Injection Volume: 1.0	(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N		

CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/	
$\begin{array}{c} 91-58-7\\ 208-96-8\\ 83-32-9\\ 85-01-8\\ 120-12-7\\ 206-44-0\\ 129-00-0\\ 56-55-3\\ 218-01-9\\ 205-99-2\\ 207-08-9\\ 50-32-8\\ 193-39-5\\ 53-70-3\end{array}$	Naphthalene 2-Chloronaphth Acenaphthylene Fluorene Phenanthrene Phenanthrene Pyrene Pyrene Benzo(a)anthra Chrysene Benzo(b)fluora Benzo(k)fluora Benzo(a)pyrene Indeno(1,2,3-c Dibenz(a,h)ant Benzo(g,h,i)pe	cene	3.2 1.0 UU UU 1.0 UU UU 1.0 UU UU 1.0 UU UU 1.0 UU UU UU UU UU UU UU UU UU U

DATE MALIDATION

FORM I SV-1

OLM03.0

1A VOLATILE ORGANICS ANALYSI	S DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR	Contract: N/A
Lab Code: N/A Case No.: N/A	SAS NO.: N/A SDG No.: 36246
Matrix: (soil/water) WATER	Lab Sample ID: 36246005
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 85221
Level: (low/med) LOW	Date Received: 01/10/01
% Moisture: not dec.	Date Analyzed: 01/16/01
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NC.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
71-43-2 108-88-3 100- <u>41</u> -4 1330-20-7		 [)	1.0 U 1.0 U 1.0 U 3.0 U

DATA VALIDATION COPY

FORM I VOA

ĺ

OLM03.0

EPA SAMPLE NO.

1

	lB			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

Lab Name: GENERAL EN	GINEERING LABOR Contract	: N/A
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG No.: 36246
Matrix: (soil/water)	WATER	Lab Sample ID: 36246005
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: 7D123
Level: (low/med)	LOW	Date Received: 01/10/01
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Extracted:01/12/01
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 01/16/01
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N	

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene 91-58-72-Chloronaphthalene 208-96-8Acenaphthylene 83-32-9Acenaphthene 86-73-7Fluorene 85-01-8Phenanthrene 120-12-7Anthracene 206-44-0Fluoranthene 129-00-0Pyrene 56-55-3Benzo (a) anthracene 218-01-9Benzo (b) fluoranthene 205-99-2Benzo (b) fluoranthene 207-08-9Benzo (c) pyrene 193-39-5Benzo (a) pyrene 193-39-5	1.0 U 1.0 U
--	--

DATA . JATION UN 1

FORM I SV-1

DUPLICATE

.

EPA SAMPLE NO.

VOLATILE	1A ORGANICS ANALYSIS	DATA SHEET	EPA SAMPLE NO.
		Contract. N/D	621624
Lab Name: GENERAL ENG	SINGERING LABOR (Concrace: N/K]
Lab Code: N/A	Case No.: N/A	SAS No.: N/A SI	OG No.: 36246
Matrix: (soil/water)	WATER	Lab Sample I	D: 36246006
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	85220
Level: (low/med)	TOM	Date Receive	ed: 01/10/01
% Moisture: not dec.	<u> </u>	Date Analyze	ed: 01/16/01
GC Column: DB-624	ID: 0.25 (mm)	Dilution Fac	tor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	: Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION U (ug/L or ug/Kg)		Q
		.1)	1.0 1.0 1.0 3.0	บ บ

DATA VALIDATION FORM I VOA

OLM03.0

COPY

U

1B SEMIVOLATILE ORGANICS ANALYSIS DATA	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract	621624
Lab Code: N/A Case No.: N/A SAS No.	
Matrix: (soil/water) WATER	Lab Sample ID: 36246006
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: 7D124
Level: (low/med) LOW	Date Received: 01/10/01
% Moisture: decanted: (Y/N)	Date Extracted:01/12/01
Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 01/16/01
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L		Q
$\begin{array}{c} 91-58-7\\ 208-96-8\\ 83-32-9\\ 85-01-8\\ 120-12-7\\ 206-44-0\\ 129-00-0\\ 56-55-3\\ 218-01-9\\ 205-99-2\\ 207-08-9\\ 50-32-8\\ 193-39-5\\ 53-70-3\end{array}$	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthra	acene	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

DUPLICATE

FORM I SV-1

	~ 1	[୨୦୨)//(•	010	1	1	<u></u>				Ι	<u></u>		≥	-			-		1				
(COC NO.:GL7, 722	AME:	ing Laboratory	DDRESS:	od 29417	200 - C	3) 556-8171	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS		100947900						A A						L					
	COC NO.:(LABORATORY NAME:	General Engineering Laboratory	LABORATORY A	2040 Savage Raod Charleston, SC 29417		PHONE NO: (843) 556-8171	OVA SCREENING												والمحافظة والمحافظ	-	Cooler Temperature:	FEDEX NUMBER:				
					:slai)	V (sa	lttoB	10 . ol	t v	T	· 4	+	1	7	2	2					17						
			 																			74	$\hat{\mathbf{O}}$				
																						INERS:	ŝ.				
	-	RS																				TOTAL NUMBER OF CONTAINERS: Z	P				
	CUMICODY RECORD	REQUESTED PARAMETERS																				BER OF	Ť				
	REC	ED PAR		· · · ·																		r numi	ä				
e ^{nte}	YOO)	DUESTE					•													L		TOTA	Cooler ID;				
(CUJ	REC						•										-		0		Time		Time		Time	
	OF	-					0114	///							•							Date/Time		Date/Time		Date/Time	
	HAIN						080 ,	хэта ,ная	18:0324										7							-	
	HO	ľ					,	втех ная	1.1.1	2 2	<u>2</u> Z	77	22	22	N	N			Ŧ								
		4		,				Matrix	5	<u> </u>									D				ME:	O BY:	ME		Ш Х
							I a)	water	-			╼╼╼┧			}	ł	-	ł,)			COMPANY NAME	RELINQUISHED BY:	COMPANY NAME:	RECEIVED BY:	NY NA
							د بر ا	lected	32	0	<u>5</u>	Q	Q	g	5	200			V			RECEIV	COMPAN COMPAN	RELINC	COMP	RECEIV	COMPANY NAME:
	81-4600					(Printed Name)	Swfor L	Time Collected	M3\$	1410	1345	1320	1720	1720	1515	Й						a D i		Date/Time	5.8	ine	1,
d Company	P-[EZP]	B LTM	725-20			(Print	\$ 			_			_									Date/Time		Date/Time	15:00	Date/Time	
ilayee-Unne Istical	Jak Ridge, TN, 37831 1423) 481-4600	art CAF	4-04-2		Stol		0 2 2	Date Cohepted	19/01	90			2/2	8/01	10/5	1016							ţ)	100			
📷 e An Employee silonut Corporation	Ridge, T	rt Stew	01-162		: Patty		0	Da	-	$\overline{\neg}$		4			-		_	$\frac{1}{1}$				Ŏ		Roy		-	
d D	nt, Ja	ME: Fo	ABER:		NAGER	urel	Ž)_	NN	22	2 N N N		22	5 I I	N 2	5		/			1	S	H	icie)	IME:) Bγ:	ME:
Science Applicae	800 Oak Ridge Turn.	PROJECT NAME: Fort Stewart CAP B LTM	PROJECT NUMBER: 01-1624-04-2725-200		PROJECT MANAGER: Patty Stoll	Sampler (Signature)	كريد	Sample ID	12	ω	긔	<u>d</u>	9	9		551	Å	-				ELINGUISHED 67	COMPANY NAME	REDENVEDADY:	COMPANY NAME	RELINQÚISHED BY:	COMPANY NAME:
N	800 Oak	PROJE	PROJE		PROJE	Sampler	Þ,		le Z	<u>6</u> 2	2 9 - 12	ין <i>ר</i> פ	י ע פ		2 0 1-11	2	/						COMP	Teolen Tal	COMP.	RELINC	COMP/

,

APPENDIX IV

SITE RANKING FORM

Facility Name: UST 100B, Building 1350				Ranked by:		S. Stoller				
County: <u>Li</u>	unty: Liberty Facility ID #: 9-089081				Date Ranked:		3/29/01			
SOIL CONTA	MINATION									
Maxii (Assı	Total PAHs – Maximum Concentration found on the site (Assume <0.660 mg/kg if only gasoline was stored on site)			B.	Total Benzene - Maximum Concentration found on the site					
						<u>≤</u> 0.005 m	g/kg	=	0	
	<u>≤0.660 mg/kg</u>	=	0			>0.005	05 mg/kg	=	1	
	>0.66 - 1 mg/k	g =	10	*	\boxtimes	>0.05 - 1	mg/kg	=	10	
	>1 - 10 mg/kg	=	25			>1 - 10 m	g/kg	=	25	
* 🖾	* >10 mg/kg = 50 * Closure sample TK100B-S1 (1996)				>10 - 50 r	ng/kg	=	40		
	iosure sample TK100	B-ST (1990 <u>)</u>	-57 (1996)		□_, , c	>50 mg/kg CAP-Part A soil sample 6208		= 1 (199	50 9)	
	to Groundwater below land surfa	ce)								
	>50' bis	= 1								
	>25' - 50' bls	= 2								
	>10' - 25' bls	= 5								
\boxtimes	<u><</u> 10' bis	= 10								
-ill in the bla	nks: (A. <u>50</u>	_) + (B1	0) = (<u>60</u>	_) x (C.	10) = (D. <u>60</u>	<u>0</u>)			
GROUNDWA	TER CONTAMIN	ATION								
liquid	Free Product (Nonaqueous-phase F. liquid hydrocarbons; See Guidelines For definition of "sheen").			F.	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release.)					
\boxtimes	No free produc	t = 0							- 0	
	Sheen - 1/8"	= 250				<u><</u> 5 μg/L			= 0	
	>1/8" - 6"	= 500		*	\boxtimes	>5 - 100 µ	g/L		= 5	
	>6" - 1ft.	= 1,000				>100 - 1,0	00_µg/L		= 50	
		ional inch, add another				>1,000 - 1	0,000 µg/L		= 500	
	100 points = $1,000 +$				□.	>10,000 µg/L * LTM Sample 621222 (January 20			= 1500 1)	

SITE RANKING FORM

Ć

County: Liberty Facility ID #: 9-089081

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public Water Supply	I.	Non-Public Water Supply				
	Impacted = 2000 ≤500' = 500 >500' - ¼ mi = 25 ¼ mi - 1 mi = 10 >1 mi - 2 mi = 2		$ \begin{array}{ c c c c c c c } & Impacted & = & 1000 \\ \hline & \leq 100' & = & 500 \\ \hline & >100' - 500' & = & 25 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = & 5 \\ \hline & >\frac{1}{4} - \frac{1}{2} \text{ mi} & = & 2 \end{array} $				
*	 ➢ > 2 mi = 0 For lower susceptibility areas only: ☐ >1 mi = 0 Note: If site is in lower susceptibility area, 	do not	 ➢ >½ mi = 0 For lower susceptibility areas only: ☐ >¼ mi = 0 use the shaded areas. 				
	* For justification that withdrawal point is not	hydrauli	cally connected, see attached text.				
J.	Distance from nearest Contaminant Plume K. boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water table)						
*	$ \begin{array}{ c c c } & Impacted & = 500 \\ \hline & \leq 500' & = 50 \\ \hline & >500' - 1,000' & = 5 \\ \hline & >1,000' & = 2 \\ \hline & * Industrial wastewater line is located at or below the way$	ter table, b	$ \begin{array}{ c c c } & \text{Impacted} & = & 500 \\ \hline & <500' & = & 50 \\ \hline & >500' - 1,000' & = & 5 \\ \hline & >1,000' \text{ or } & = & 0 \\ \hline & \text{no free product.} \\ \hline \\ enzene \ concentrations \ less \ than \ IWQS. \end{array} $				
Fill in t	:he blanks: (H0_) + (I0_) + (J50	_) +	(K. <u>0</u>) = L. <u>50</u>				
	(G. <u>5</u>	_) x	(L. <u>50</u>) = M. <u>250</u>				
	(M. <u>25</u>	<u>)</u>) +	(D. <u>600</u>) = N. <u>850</u>				
Ρ.	SUSCEPTIBILITY AREA MULTIPLIER						
	If site is located in a Low Ground-Water Pollution Susceptibility Area = 0.5						
	All other sites = 1						
Q.	EXPLOSION HAZARD						
	Have any explosive petroleum vapors, possibly originating from this release, been detected in any subsurface structure (e.g., utility trenches, basements, vaults, crawl spaces, etc.)?						
	☐ Yes = 200,000						
	🔀 No = 0						
Fill in th	* For justification that withdrawal point is not hydraulically connected, see attached text. Distance from nearest Contaminant Plume K. Distance from any Free Product Doundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water table.						
	= <u>850 (January 2001 - First Annu</u> ENVIRONMENTAL SENSITIV	al Moni	toring Event) ORE				

ADDITIONAL GEOLOGIC AND HYDROGEOLOGIC DATA

The following information is presented to provide supplemental information to Item H of the Site Ranking Form and details relating to the geologic and hydrogeologic conditions at Fort Stewart that support Fort Stewart's determination that the water withdrawal points located at Fort Stewart are not hydraulically connected to the surficial aquifer.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward-dipping strata that increase in thickness from 0 feet at the fall line, located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 feet below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 feet thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 feet thick and dominated by limestone, with a 175-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-foot section, the lowermost 110 feet of which consisted predominantly of limestone sediments, above which 245 feet of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 feet of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 inches in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 inches. The subsoil is predominantly sandy clay loam and extends to a depth of 72 inches or more (Herrick and Vochis 1963).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. These formations are approximately 800 feet thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 feet to 150 feet in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 feet to 10 feet BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 feet to 50 feet BGS; thus, the effective aquifer thickness would be approximately 35 feet to 45 feet. Soil surveys for Liberty and Long counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian Aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 feet to 90 feet. The vertical hydraulic conductivity of this confining unit is on the order of 10⁻⁸ cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie Formation, Markshead Formation, and Parachula Formation, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 feet thick in the Savannah, Georgia, area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 feet thick in the Savannah, Georgia, area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite and is approximately 10 feet thick in the Savannah, Georgia, area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the underground storage tank (UST) investigation sites is part of the surficial aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Fort Stewart.

3.0 REFERENCES

Arora, Ram, 1984. Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

Herrick, S.M., and R.C. Vochis 1963. Subsurface Geology of the Georgia Coastal Plain, Georgia Geologic Survey Information Circular 25.

Looper, Edward E., 1980. Soil Survey of Liberty and Long Counties, Georgia, U.S. Department of Agriculture, Soil Conservation Service.

Miller, James A., 1990. Groundwater Atlas of the United States, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.

APPENDIX V

REIMBURSEMENT APPLICATION

Fort Stewart is a federally owned facility and has funded the investigation for the former UST 100B site, Building 1350, Facility ID #9-089081 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

((Ć

ATTACHMENT A

REFERENCES

C

REFERENCES

- Logan, William, 2000. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Branch), January 25.
- Logan, William, 2001. Letter to Colonel Gregory V. Stanley (Fort Stewart Directorate of Public Works, Environmental Branch), February 28.
- SAIC (Science Applications International Corporation) 1999. Corrective Action Plan Part A Report for Underground Storage Tank 100B, Facility ID# 9-089081, Building 1350, Fort Stewart, Georgia, October.
- SAIC 2000. Corrective Action Plan Part B Report for Underground Storage Tank 100B, Facility ID# 9-089081, Building 1350, Fort Stewart, Georgia, September.

(

(

ATTACHMENT B

BORING LOG AND WELL CONSTRUCTION DIAGRAM

	HOLE NUMBER 62-13								
PROJEC	T:		ING LOG ISPECTOR T.Coffey				SHEET 1 OF 1		
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO (F)		REMARKS (G)		
Ar 1	1	Silty CLAV, slightly plastic weak, moist, mottled, red (10 R4/0) to weak red (10 R4/3)	0.3ррт						
	3		16.9ррт						
	5 11 11 11 11	Silty CLAY, non plastic to slightly plastic, massive, moist to wet, pale red.	65.9ppn			- ω	ET BELOW 6.0 FT		
	7	silty SAND, fine tomedium grained, soft, massive, wet, dark gray (N4) Refusal at 8.4 fl. bgs				Stron Odor	ng petroleum		
	9 10								

