Hgeana's Copy

FIFTH ANNUAL MONITORING ONLY REPORT

IMA

Underground Storage Tank 94A Facility ID #9-089078 Building 1320 Fort Stewart, Georgia

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-02-D-0004 Delivery Order 0044

June 2005

FINAL

FIFTH ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANK 94A FACILITY ID #9-089078 BUILDING 1320 FORT STEWART, GEORGIA

Prepared for

U. S. Army Corps of Engineers, Savannah District and Fort Stewart Directorate of Public Works under Contract Number DACA21-02-D-0004 Delivery Order 0044

Prepared by

Science Applications International Corporation 151 Lafayette Drive Oak Ridge, TN 37830

June 2005

 $\langle \cdot \cdot \rangle$

.

TABLE OF CONTENTS

	Page
LIST OF ABBREVIATIONS AND ACRONYMS	iii
I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II. PROJECT SUMMARY	2
III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS A. Potentiometric Data	
B. Analytical Data	
IV. SITE RANKING	5
V. CONCLUSIONS/RECOMMENDATIONS	6
VI. REIMBURSEMENT	7
List of Appendices	
APPENDIX I: REPORT FIGURES	
Figure 1. Location Map of UST 94A at Fort Stewart, Liberty County, Georgia	
Figure 2a. Potentiometric Surface Map for the UST 94A Site (July 2004)	
Figure 2b. Potentiometric Surface Map for the UST 94A Site (January 2005)	
Figure 3a. Groundwater Quality Map for the UST 94A Site (July 2004)	
Figure 3b. Groundwater Quality Map for the UST 94A Site (January 2005)	
Figure 4. Trend of Benzene Concentrations at the UST 94A Site	I-7
APPENDIX II: REPORT TABLES	II-1
Table 1. Groundwater Elevations	
Table 2. Groundwater Analytical Results.	
APPENDIX III: LABORATORY ANALYTICAL RESULTS	III-1
APPENDIX IV: SITE RANKING FORM	IV-1
Attachments	
A FATE AND TRANSPORT MODELING RESULTS	Δ_1
B REFERENCES	

List of Abbreviations and Acronyms

ACL	alternate concentration limit
BGS	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	Corrective Action Plan
EPA	U. S. Environmental Protection Agency
GA EPD	Georgia Environmental Protection Division
IRA	interim removal action
IWQS	In-Stream Water Quality Standard
NFAR	No Further Action Required
psi	pounds per square inch
PVC	polyvinyl chloride
SAIC	Science Applications International Corporation
STEP	Solutions To Environmental Problems, Inc.
USACE	U. S. Army Corps of Engineers
UST	underground storage tank
USTMP	Underground Storage Tank Management Program

.

-

MONITORING ONLY REPORT

Submittal D	ate: June 2005 Monit	oring Report N	umber: Fifth Annual		
For Period (Covering: April 2004 to A	pril 2005			
Facility Name: UST 94A, Building 1320 Street Address: Wilson Ave. and W. 18th Street					
Facility ID:	9-089078 City: Fort Stewart	County: L	iberty Zip Code: 31314		
Latitude:	<u>31° 52′ 40″</u> Longitude: <u>81° 37</u>	<u>′ 48″</u>			
Submitted b	y UST Owner/Operator:	Prepared by	Consultant/Contractor:		
Name:	Thomas C. Fry/ Environmental Branch	Name:	Patricia A. Stoll		
Company:	U. S. Army/HQ 3d, Inf. Div. (Mech)	- Company:	SAIC		
Address:	Directorate of Public Works Building 1137	' Address:	P.O. Box 2501		
	1550 Frank Cochran Drive	_	· · · ·		
City:	Fort Stewart State: GA	City:	Oak Ridge State: TN		
Zip Code:	31314-4928	Zip Code:	37831		

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patricia A. Stoll				
Signature:	Pati O. Solo			
Date:	6/1/05	_		

EGIS IERED 22851 Seor

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Underground Storage Tank (UST) 94A, Facility ID #9-089078, was located near Building 1320 at Fort Stewart, Georgia. It had a capacity of 1,000 gal and was used for the storage of used oil. The tank was removed, and the piping was excavated and removed on January 25, 1995. Science Applications International Corporation (SAIC) performed a Corrective Action Plan (CAP)-Part A investigation in 1996. Results of that investigation were documented in the Corrective Action Plan-Part A Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia (SAIC 1997), which was submitted to the Georgia Environmental Protection Division (GA EPD) in March 1997.

GA EPD Underground Storage Tank Management Program (USTMP) conducted a technical review of the CAP-Part A Report, and in correspondence dated July 30, 1997 (White 1997), GA EPD requested that fate and transport modeling be conducted to identify the risk of exposure. In correspondence dated March 19, 1998 (White 1998), GA EPD approved fate and transport modeling at the site using geological information obtained during the CAP-Part A and CAP-Part B investigations for Facility ID #9-089036. The results were summarized in the Corrective Action Plan-Part A Addendum Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, which was submitted to GA EPD in July 1998 (SAIC 1998).

GA EPD conducted a technical review of the CAP-Part A Addendum Report and provided comments in correspondence dated November 16, 1998 (Logan 1998). The comments indicated that the target risk factor used in developing the benzene alternate concentration limit (ACL) was not sufficiently conservative and that three monitoring wells should be installed at the site at which semiannual monitoring would be performed.

On January 27, 1999, representatives from GA EPD USTMP, the Fort Stewart Directorate of Public Works, the U. S. Army Corps of Engineers (USACE), and SAIC met to discuss further action required at 15 former UST sites at Fort Stewart. UST 94A was one of the sites discussed. As a result of the meeting, GA EPD stated that the site would require monitoring. Fort Stewart agreed to re-rank the site using the September 1997 version of the CAP–Part A site ranking score; install a vertical-profile boring and three monitoring wells at the site; and perform semiannual monitoring for benzene, toluene, ethylbenzene, and xylenes (BTEX) only.

In January 2000, four monitoring wells (i.e., 37-06, 37-07, 37-08, and 37-09) were installed at the site. Well 37-09 was not sampled in January 2000 but was installed to obtain groundwater flow information. The results of that sampling effort were summarized in the *Corrective Action Plan–Part A Addendum #2 Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia,* which was submitted to GA EPD in June 2000 (SAIC 2000). The Monitoring Only Plan recommended semiannual monitoring of three monitoring wells (i.e., 37-06, 37-07, and 37-09) for BTEX. GA EPD conducted a technical review of the CAP–Part A Addendum #2 Report and provided comments in correspondence dated September 5, 2000 (Logan 2000a). The comments indicated that well 37-09 should be sampled. Analytical results for well 37-09, which was sampled as part of the first semiannual sampling event in June 2000, were submitted to GA EPD in correspondence dated October 5, 2000. This correspondence was approved by GA EPD in correspondence dated December 18, 2000 (Logan 2000b).

During the second semiannual sampling event, free product in excess of 1/8 in. was observed in well 37-06 on January 9, 2001, and GA EPD USTMP was notified of the product in correspondence dated February 1, 2001 (Stanley 2001). Free product removal using absorbent socks was implemented in January 2001. The absorbent socks were removed in April 2001, and no free product had accumulated within 1 week. Free product was observed again in August 2001, so the absorbent socks were again installed at that time. The absorbent socks have been removed and replaced periodically throughout the monitoring program.

Before the fifth semiannual sampling event, well <u>37-06</u>, which was constructed of 3/4-in. polyvinyl chloride (PVC), was <u>over-drilled in June 2002</u> and reconstructed with 2-in. PVC casing and screen. In accordance with the Monitoring Only Plan, In-Stream Water Quality Standards (IWQSs) cited in Georgia Rule 391-3-6 have been used in the monitoring program as screening criteria and monitoring end points. Because of the close proximity of a storm drain to the former tank pit, the ACLs for this site are equal to the IWQSs.

In November 2004, Solutions To Environmental Problems, Inc. (STEP) completed an interim removal action (IRA) at the site. The IRA consisted of excavating a 22-ft x 15.8-ft x 6-ft deep area around well 37-06R. Prior to excavation, an oily substance was encountered at 3.8 ft and groundwater was measured to be at 4.05 ft below ground surface (BGS) in well 37-06R. During the excavation activities, a black zone that had a petroleum odor (presumably the free product-containing layer) was located at about 4 ft BGS. This layer was typically 4 in. thick and was still present at all four sidewalls. The excavation ceased at 6 ft BGS when the light gray sandy soil was very moist, which is indicative of groundwater. After excavation activities were completed, STEP installed a 4-in diameter well (37-06R2) to replace well 37-06R. The well, constructed with a 5-ft long, pre-packed well screen and riser pipe, was positioned inside the excavation using suitable supports, and gravel backfill was placed around the well to approximately 1 ft above the well screen. The remaining backfill, also #57 stone, was placed using the backhoe and compacted. The top 12 in. of the excavation were filled with 4,000-psi strength concrete and reinforced with #5 reinforcing steel placed at 24 in. on-center each-way. Additional information regarding the IRA was presented in the Final Report for Interim Removal Activities af UST 89, Facility ID #9-089074, Building 1247 and UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia (STEP 2005).

The fate and transport modeling was last revised based on the results of the semiannual monitoring events in the Third Annual Monitoring Only Report, and the results are summarized in Attachment A of this report. The purpose of the monitoring summarized in this report was to confirm that natural attenuation is taking place at the site and to document the results of the ninth and tenth semiannual sampling events.

the Product the Product teappoint.

ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS III.

A. **Potentiometric Data:**

(Appendix I, Figures 2: Potentiometric Surface Map) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Free product was initially observed in well 37-06 at a thickness of 0.1 ft (1.2 in.) on January 9, 2001, and an absorbent sock was placed in the well on January 9, 2001. This How we have the source of the monitoring wells. In July 2004, groundwater flow direction was toward the west-southwest, and the groundwater gradient was approximately 0.05 ft/ft. Free product was not present in well 37-06R during this sampling event beam of the last of observation of free product was the first at the site. GA EPD USTMP was notified of the

measured in all of the monitoring wells. In January 2005, the groundwater flow direction was toward the west, and the groundwater gradient was approximately 0.05 ft/ft. Free product was not present in well 37-06R2 during this sampling event.

Analytical Data: В.

(Appendix I, Figure 3: Groundwater Quality Map) (Appendix II, Table 2: Groundwater Analytical Results) (Appendix III: Laboratory Analytical Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the ninth semiannual sampling event in July 2004, monitoring wells 37-06R, 37-07, and 37-09 were sampled, and the samples were analyzed for BTEX using U.S. Environmental Protection Agency (EPA) Method 8021B/8260B. Analytical results from the sampling event are summarized below.

- Benzene was detected in two of three groundwater samples at concentrations of 32.9 • (37-07) and 146 µg/L (37-06R), the second of which exceeded the ACL and IWOS.
- Toluene was detected in one of three groundwater samples at a concentration of 0.59J μ g/L (37-09). The concentration did not exceed the IWQS.
- Ethylbenzene was detected in one of three groundwater samples at a concentration of $26.8 \mu g/L$ (37-06R). The concentration did not exceed the IWQS.

• Total xylenes were not detected in any the groundwater samples.

The benzene concentration in 37-06R exceeded the IWQS and ACL of 71.28 μ g/L. None of the other constituents exceeded the respective IWQS. Figure 4 shows the variations in benzene concentrations in groundwater for the wells in the monitoring only program.

During the tenth semiannual sampling event in January 2005, monitoring wells 37-06R2, 37-07, and 37-09 were sampled, and the samples were analyzed for BTEX using EPA Method 8021B/8260B. Analytical results from the sampling event are summarized below.

- Benzene was detected in two of three groundwater samples at concentrations of 0.93J and 14.7 µg/L. None of the concentrations exceeded the ACL and IWQS.
- Toluene was not detected in any of the groundwater samples.
- Ethylbenzene was detected in three of three groundwater samples at concentrations ranging from 1.8 to 2.9 µg/L. The concentrations did not exceed the IWQS.
- Total xylenes were detected in three of three groundwater samples at concentrations ranging from 1.3 to 4.7 μ g/L. There is no IWQS, but the concentrations did not exceed the maximum contaminant level of 10,000 μ g/L.

The benzene concentrations in 37-06R2 have decreased to values below the IWQS and ACL of 71.28 μ g/L. None of the other constituents exceeded the respective IWQS. Figure 4 shows the variations in benzene concentrations in groundwater for the wells in the monitoring only program.

As recommended in the CAP–Part A Addendum #2 Report (SAIC 2000), polynuclear aromatic hydrocarbon analysis was not performed as part of the Monitoring Only Plan for the site.

IV. SITE RANKING (Note: Re-rank site after each monitoring event.) (Appendix IV: Site Ranking Form)

Environmental Site Sensitivity Score:	15,100 (Jan. 2000—CAP-Part A Addendum #2 Report)
(April 1999 version of the Site Ranking	2,600 (June 2000 - First Semiannual Monitoring Event)
Form was used.)	25,350 (Jan. 2001 – Second Semiannual Monitoring Event)
	27,600 (June 2001 – Third Semiannual Monitoring Event)
	27,600 (Jan. 2002 - Fourth Semiannual Monitoring Event)
	27,600 (July 2002 - Fifth Semiannual Monitoring Event)
	177,600 (Jan. 2003 – Sixth Semiannual Monitoring Event)
	27,600 (June 2003 – Seventh Semiannual Monitoring Event)
	2,600 (Jan. 2004 – Eighth Semiannual Monitoring Event)
	2,600 (July 2004 – Ninth Semiannual Monitoring Event)
	350 (Jan. 2005 – Tenth Semiannual Monitoring Event)
	X

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

The Monitoring Only Plan was conducted in accordance with Section V of the CAP-Part A Addendum #2 Report (SAIC 2000) and approved by GA EPD USTMP in correspondence dated December 18, 2000 (Logan 2000b). Termination conditions approved in the CAP-Part A Addendum #2 Report indicate that termination will be requested once the measured benzene concentrations are below the ACL. Once the benzene IWQS has been achieved and the product thickness is less than 1/8 in., the Monitoring Only Plan may be terminated regardless of the site ranking score.

Fort Stewart respectfully requests that GA EPD USTMP assign Facility ID #9-089078 a No Further Action Required (NFAR) status for the following reasons:

- The Monitoring Only Plan is being conducted in accordance with Section III of the CAP-Part A Addendum #2 Report (SAIC 2000) and as approved by GA EPD USTMP in correspondence December 18, 2000 (Logan 2000b).
- Fort Stewart excavated an area around well 37-06R to remove any additional free product that was tied up in the soil.
- The site score for the last round of semiannual groundwater sampling was 350, which GA EPD USTMP representatives have indicated is an acceptable score for requesting an NFAR status (i.e., January 27, 1999, meeting between GA EPD, Fort Stewart, USACE, and SAIC representatives).
- The various revisions to the fate and transport model summarized in Attachment A indicate that benzene will never reach the nearest potential preferential pathway (i.e., a drainage ditch) at a concentration above the IWQS of 71.28 µg/L.
- The benzene concentrations in all wells were below the IWQS and ACL of 71.28 μ g/L during the semiannual sampling event following the soil excavation.
- The closest surface water bodies are a drainage ditch located 500 ft west of the site and Mill Creek located 2,212 ft west of the site.
- Natural attenuation will continue to take place at the site, and the benzene concentrations at the site are below the IWQS.

The monitoring only program at this site will be discontinued.

VI. REIMBURSEMENT

Attached N/A X

(Appendix V: Reimbursement Application)

• -

Fort Stewart is a federally owned facility and has funded the investigation for the Former UST 94A site, Building 1320, Facility ID #9-089078, using U. S. Department of Defense Environmental Restoration Account Funds. Application for Georgia UST Trust Fund reimbursement is not being pursued at this time.

Fifth Annual Monitoring Only Report UST 94A, Building 1320, Facility ID #9-089078

APPENDIX I

REPORT FIGURES

ė

1.1

Figure 1. Location Map of UST 94A at Fort Stewart, Liberty County, Georgia

Figure 2a. Potentiometric Surface Map for the UST 94A Site (July 2004)

Figure 2b. Potentiometric Surface Map for the UST 94A Site (January 2005)

Figure 3a. Groundwater Quality Map for the UST 94A Site (July 2004)

Figure 3b. Groundwater Quality Map for the UST 94A Site (January 2005)

05-036(E)/052505

Figure 4. Trend of Benzene Concentrations at the UST 94A Site

I-7

Fifth Annual Monitoring Only Report UST 94A, Building 1320, Facility ID #9-089078

APPENDIX II

•

REPORT TABLES

05-036(E)/052505

.

Well Number	Date Measured	Top of Casing Elevation (ft AMSL)	evation Screened Interval		Depth to Water (ft BTOC)	Product Thickness (ft)	Corrected Groundwater Elevation (ft AMSL)
		Correct	ive Action Plan–Par	rt A Investigatio	n – 2000		
37-06	02/21/00	69.62	1.7 – 11.7		3.49	sheen	66.13
37-07	02/21/00	70.15	3.7 - 13.7		6.28	0	63.87
37-08	02/21/00	69.88	5.7 - 15.7		5.94	0	63.94
37-09	02/21/00	68.78	4.7 - 14.7		5.00	0	63.78
		First S	Semiannual Monitor	ring Event – Ju	ne 2000		
37-06	06/29/00	69.62	1.7 – 11.7		2.75	0	66.87
37-07	06/29/00	70.15	3.7 - 13.7		6.16	0	63.99
37-08	06/29/00	69.88	5.7 – 15.7		6.76	0	63.12
37-09	06/29/00	68.78	4.7 - 14.7		5.56	0	63.22
		Second S	emiannual Monitor	ing Event – Jan	uary 2001		
37-06 ^a	01/09/01	69.62	1.7 – 11.7	4.05	4.15	0.10	65.56 ^b
37-07	01/09/01	70.15	3.7 – 13.7		6.56	0	63.59
37-08	01/09/01	69.88	5.7 – 15.7		5.38	0	64.50
37-09	01/09/01	68.78	4.7 - 14.7		5.11	0	63.67
		Absorbent	Sock Replacement	between Monito	oring Events		
37-06 ^c	04/09/01	69.62	1.7 – 11.7		2.50	0	67.12
		Third	Semiannual Monito	ring Event – Ju	ne 2001		
37-06 ^a	08/09/01	69.62	1.7 - 11.7	2.15	2.33	0.18	67.45 ^b
37-07	08/09/01	70.15	3.7 - 13.7		5.41	0	64.74
37-08	08/09/01	69.88	5.7 – 15.7		4.50	0	65.38
37-09	08/09/01	68.78	4.7 - 14.7		4.29	0	64.49
Fourth Semiannual Monitoring Event – January 2002							
37-06 ^d	01/20/02	69.62	1.7 – 11.7	4.16	4.22	0.06	65.45 ^b
37-07	01/20/02	70.15	3.7 – 13.7		6.82	0	63.33
37-08	01/20/02	69.88	5.7 - 15.7		5.65	0	64.23
37-09	01/20/02	<u>68.</u> 78	4.7 - 14.7		5.44	0	63.34
			Sock Replacement		oring Events		
37-06 ^d	03/20/02	69.62	1.7 – 11.7	3.10	3.11	0.01	66.52

Table 1. Groundwater Elevations

NOTES:

^a An absorbent sock was placed in the well on the date indicated.

^b The groundwater elevation was corrected using a density of 912 kg/m³ for the product.

The absorbent sock was removed before the date indicated and not reinstalled in the well.

^d The absorbent sock was removed and replaced in the month indicated.

^e The 3/4-in. well 37-06 was over-drilled in June 2002, and a 2-in. well was installed; therefore, a new top of casing was surveyed. ^f Absorbent socks were removed and replaced; however, monthly absorbent sock replacement was not within the scope of work of this contractor between June 2003 and January 2005.

⁸ Well construction detail and survey data were not provided in the Final Report for Interim Removal Activities at UST 89, Facility ID #9-089074, Building 1247 and UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia (STEP 2005).

AMSL Above mean sea level.

BGS Below ground surface.

BTOC Below top of casing.

Well Number	Date Measured	Top of Casing Elevation (ft AMSL)	Depth of Screened Interval (ft BGS)	Depth to Free Product (ft BTOC)	Depth to Water (ft BTOC)	Product Thickness (ft)	Corrected Groundwater Elevation (ft AMSL)
		Fifth S	Semiannual Monitor	ring Event – Ju	ly 2002		
37-06R ^c	07/12/02	69.37 ^e	3.9 - 13.9		3.96	0	65.41
37-07	07/12/02	70.15	3.7 – 13.7		5.17	0	64.98
37-08	07/12/02	69.88	5.7 - 15.7		4.28	0	65.60
37-09	07/12/02	68.78	4.7 - 14.7		3.80	0	64.98
		Absorbent	Sock Replacement	between Monito	ring Events		
37-06R ^d	07/15/02	69.37	3.9 - 13.9	4.06	4.10	0.04	65.31
37-06R ^d	08/16/02	69.37	3.9 - 13.9	4.93	5.89	0.96	64.35
37-06R ^d	09/22/02	69.37	3.9 - 13.9	4.51	7.05	2.54	64.64
37-06R ^d	10/22/02	69.37	3.9 - 13.9	4.30	7.51	3.21	64.79
37-06R ^d	12/19/02	69.37	3.9 - 13.9	4.37	7.45	3.08	64.73
		Sixth Se	miannual Monitorii	ng Event – Jani	uary 2003		
37-06R ^d	01/21/03	69.37 ^e	3.9 - 13.9	4.50	7.60	3.1	64.60
37-07	01/21/03	70.15	3.7 – 13.7		5.62	0	64.53
37-09	01/21/03	68.78	4.7 - 14.7		4.31	0	64.47
		Absorbent	Sock Replacement	between Monito	ring Events		
37-06R ^d	02/20/03	69.37	3.9 - 13.9	4.72	5.72	1.0	64.56
37-06R ^d	03/19/03	69.37	3.9 - 13.9	3.60	4.90	1.3	65.66
37-06R ^d	04/25/03	69.37	3.9 - 13.9	4.26	5.05	0.79	65.04
37-06R ^d	05/16/03	69.37	3.9 - 13.9	4.32	4.93	0.61	65.00
			Semiannual Monit	oring Event – J	une 2003		
37-06R ^d	06/21/03	69.37 ^e	3.9 - 13.9	4.16	4.34	0.18	65.19
37-07	06/21/03	70.15	3.7 – 13.7		3.97	0	66.18
37-08	06/21/03	69.88	5.7 - 15.7		3.22	0	66.66
37-09	06/21/03	68.78	4.7 – 14.7		2.73	0	66.05
			emiannual Monitor	ing Event – Jan	uary 2004		
37-06R ^f	01/20/04	69.37 ^e	3.9 - 13.9		5.01	0	64.36
37-07	01/20/04	70.15	3.7 - 13.7		5.79	0	64.36
37-08	01/20/04	69.88	5.7 - 15.7		2.95	0	66.93
37-09	01/20/04	68.78	4.7 - 14.7		4.44	0	64.34

Table 1. Groundwater Elevations (continued)

NOTES:

^a An absorbent sock was placed in the well on the date indicated.

^b The groundwater elevation was corrected using a density of 912 kg/m³ for the product.

^c The absorbent sock was removed before the date indicated and not reinstalled in the well.

^d The absorbent sock was removed and replaced in the month indicated.

^e The 3/4-in. well 37-06 was over-drilled in June 2002, and a 2-in. well was installed; therefore, a new top of casing was surveyed.

^f Absorbent socks were removed and replaced; however, monthly absorbent sock replacement was not within the scope of work of this contractor between June 2003 and January 2005.

⁸ Well construction detail and survey data were not provided in the Final Report for Interim Removal Activities at UST 89, Facility ID #9-089074, Building 1247 and UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia (STEP 2005).

AMSL Above mean sea level.

BGS Below ground surface.

BTOC Below top of casing.

Well Number	Date Measured	Top of Casing Elevation (ft AMSL)	Depth of Screened Interval (ft BGS)	Depth to Free Product (ft BTOC)	Depth to Water (ft BTOC)	Product Thickness (ft)	Corrected Groundwater Elevation (ft AMSL)
		Ninth	Semiannual Monito	ring Event – Ju	ly 2004		
$37-06R^{d}$	07/14/04	69.37 ^e	3.9 - 13.9		3.55	0	65.82
37-07	07/14/04	70.15	3.7 - 13.7		5.44	0	64.71
37-08	07/14/04	69.88	5.7 – 15.7		3.22	0	66.66
37-09	07/14/04	68.78	4.7 - 14.7		3.95	0	64.83
		Tenth Se	miannual Monitori	ng Event – Jani	uary 2005		
37-06R2	01/16/05	unknown ⁸	unknown ⁸		4.37	0	unknown ⁸
37-07	01/16/05	70.15	3.7 – 13.7		5.90	0	64.25
37-08	01/16/05	69.88	5.7 - 15.7		3.81	0	66.07
37-09	01/16/05	68.78	4.7 - 14.7		4.57	0	64.21

Table 1. Groundwater Elevations (continued)

NOTES:

^a An absorbent sock was placed in the well on the date indicated.

^b The groundwater elevation was corrected using a density of 912 kg/m³ for the product.

^c The absorbent sock was removed before the date indicated and not reinstalled in the well.

^d The absorbent sock was removed and replaced in the month indicated.

^e The 3/4-in. well 37-06 was over-drilled in June 2002, and a 2-in. well was installed; therefore, a new top of casing was surveyed. ^f Absorbent socks were removed and replaced; however, monthly absorbent sock replacement was not within the scope of work of this contractor between June 2003 and January 2005.

⁸ Well construction detail and survey data were not provided in the Final Report for Interim Removal Activities at UST 89, Facility ID #9-089074, Building I247 and UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia (STEP 2005).

AMSL Above mean sea level.

BGS Below ground surface.

BTOC Below top of casing.

		Screened					¥7.1	Total
Sample Location	Sample ID	Interval (ft BGS)	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	BTEX (µg/L)
Location		<u> </u>					(µg/L)	(με/1)
37-06	Corrective Action Plan–Part A Investigation - 2000 37-06 370612 1.7 – 11.7 01/15/00 199 J 120 J 59.9 J 217 J 595.9							
37-00	370712	3.7 – 13.7	01/15/00	100 J	120 J	1 U	3 U	ND
37-08	370812	5.7 – 15.7	01/15/00	$\frac{1 \text{ U}}{1 \text{ U}}$	1 U 1 U	1 U	3 U	ND
- 57 00	570012	1	t Semiannua					1,12
37-06	370622	1.7 - 11.7	06/23/00	242 =	$\frac{E r e m - J u}{45} =$	88 =	116 =	491
37-07	370722	3.7 - 13.7	06/23/00	1 U		1 U	3 U	ND
37-09	370822	5.7 - 15.7	06/23/00	1.2 =	1 U	1 U	3 U	1.2
	010022		l Semiannua					
37-06	370632	1.7 – 11.7	01/09/01	97.9 =	5.2 =	49 =	48.2 =	200.3
37-07	370732	3.7 – 13.7	01/09/01	1 U	1 U	1 U	3 U	ND
37-09	370832	5.7 - 15.7	01/09/01	1 =	1 U	1 U	3 U	1
	1	1	d Semiannua	l Monitorin	g Event – Ji	une 2001		L
37-06	370642	1.7 – 11.7	06/08/01	222 =	13.6 =	75 =	98 =	408.6
37-07	370742	3.7 – 13.7	06/08/01	0.82 J	1 U	1.5 =	2.1 J	4.42
37-09	370842	5.7 – 15.7	06/08/01	2.4 =	1 U	3 =	4.1 =	9.5
		Fourth	i Semiannua	l Monitoring	Event – Ja	nuary 2002		
37-06	370652	1.7 – 11.7	01/20/02	167 =	10 U	74.4 =	37.2 =	278.6
37-07	370752	3.7 – 13.7	01/20/02	1 U	1 U	1 U	3 U	ND
37-09	370852	5.7 – 15.7	01/20/02	0.96 J	1 U	1 U	3 U	0.96
			th Semiannu		×			
37-06R	370662	3.9 – 13.9	07/12/02	319 =	5.8 =	134 =	130 =	588.8
37-07	370762	3.7 – 13.7	07/12/02	<u>1 U</u>	<u>1 U</u>	<u>1 U</u>	<u>3 U</u>	ND
37-09	370862	5.7 – 15.7	07/12/02	0.92 J	1 U	1 U	3 U	0.92
			Semiannual					
37-06R	370672	3.9 - 13.9	01/21/03	252 =	<u>5 U</u>	28.6 =	5 U	280.6
37-07	370772	3.7 - 13.7	01/21/03	0.33 J	1 U	<u>1 U</u>	1 U	0.33
37-09	370872	5.7 – 15.7	01/21/03	1.2 =	<u>1 U</u>	1 U	1 U	1.2
In-Stream Water Quality Standards (GA EPD Chapter 391-3-6)			71.28	200,000	28,718	NRC	NRC	
A	lternate Co	ncentration Li	mits	71.28				

NOTES:

Bold values exceed In-Stream Water Quality Standards.

Italic values exceed alternate concentration limits.

BGS Below ground surface.

BTEX Benzene, toluene, ethylbenzene, and xylenes.

- GA EPD Georgia Environmental Protection Division.
- ND Not detected.
- NRC No regulatory criterion.

Data Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

Sample Location	Sample ID	Screened Interval (ft BGS)	Date Sampled	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	Total BTEX (µg/L)
			th Semiannu	al Monitori	ng Event – J	<u>une 2003</u>		
37-06R	370682	3.9 – 13.9	06/21/03	204 =	1 U	34.7 =	1.8 =	240.5
37-07	370782	<u>3.7 – 13.7</u>	06/21/03	8.2 =	1 U	1 U	1 U	8.2
37-09	370882	5.7 – 15.7	06/21/03	1 U	1 U	1 U	1 U	ND
		Eighth	Semiannual	Monitoring	Event – Jar	nuary 2004		
37-06R	370692	3.9 - 13.9	01/20/04	217 =	1.4 =	81 =	14.4 =	313.8
37-07	370792	3.7 - 13.7	01/20/04	6.9 =	1 · U	1 U	1 U	6.9
37-09	370992	5.7 - 15.7	01/20/04	1 U	1 U	1 U	1 U	ND
		Nin	th Semiannu	al Monitorin	g Event – J	uly 2004		
37-06R	370602	3.9 - 13.9	07/20/04	146 =	2 U	26.8 =	2 U	172.8
37-07	370702	3.7 - 13.7	07/20/04	32.9 =	1 U	1 U	1 U	32.9
37-09	370902	5.7 – 15.7	07/20/04	1 U	0.59 J	1 U	1 U	0.59
		Tenth	Semiannual	Monitoring	Event – Jan	uary 2005		
37-06R2	3706A2	unknown	01/16/05	14.7 =	1 U	2.2 =	1.3 =	18.2
37-07	3707A2	3.7 - 13.7	01/16/05	0.93 J	1 U	1.8 =	2.6 =	5.33
37-09	3709A2	5.7 – 15.7	01/16/05	1 U	1 U	2.9 =	4.7 =	7.6
In-Stream Water Quality Standards (GA EPD Chapter 391-3-6)			71.28	200,000	28,718	NRC	NRC	
A	lternate Co	ncentration Li	mits	71.28				

Table 2. Groundwater Analytical Results (continued)

NOTES:

Bold values exceed In-Stream Water Quality Standards.

Italic values exceed alternate concentration limits.

BGS Below ground surface.

BTEX Benzene, toluene, ethylbenzene, and xylenes.

GA EPD Georgia Environmental Protection Division.

ND Not detected.

NRC No regulatory criterion.

Data Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

•

APPENDIX III

-

LABORATORY ANALYTICAL RESULTS

ANALYTICAL LABORATORY INFORMATION AND DATA VALIDATION CODES

ANALYTICAL LABORATORY INFORMATION

The analytical laboratory was General Engineering Laboratories, Inc. (GEL). The analytical data sheets in this appendix are copies of those provided by GEL with the Science Applications International Corporation validation codes. Representatives from the Georgia Environmental Protection Division Underground Storage Tank Management Program and Fort Stewart agreed upon the format of the analytical data sheets and the information they contain during a meeting held on January 27, 1999.

The "original" laboratory data sheets do not include validation qualifiers. The original certificates of analysis and chain-of-custody forms are provided as an attachment to this report. The analytical process is extended beyond providing the analytical data with laboratory qualifiers by also providing a formal laboratory independent data validation, and then goes another step by adding specific reason codes to further identify why data have been designated as estimated, "J," or nondetected, "U." As a result of this extended validation process, copies of the original data sheets are not provided in this report. A summary of the validation and reason codes is provided in this section. Each data package generated for the underground storage tank project at Fort Stewart and Hunter Army Airfield contains a case narrative that is signed by the analytical laboratory project manager. Laboratory information and third-party certification are provided below.

STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

	Name of Laboratory: Address:	General Engineering Laboratories, Inc. P.O. Box 30712 2040 Savage Road Charleston, SC 20407
	Contact: Telephone number: Fax number:	Charleston, SC 29407 Bob Pullano or Wendy Dimmick (843) 556-8171 (843) 766-1178
#1	Accrediting Authority: Accreditation Number: Effective Date: Expiration Date: Accreditation Scope:	State of South Carolina SC-10120001 Extension granted while recertification in process, January 27, 2003 March 26, 2005 SDWA, CWA, RCRA, CERCLA
#2	Accrediting Authority: Accreditation Number: Effective Date: Expiration Date: Accreditation Scope:	State of Florida E-87156 July 1, 2001 (initial and reaccredited on July 1 each year thereafter) June 30, 2005 SDWA, CWA, RCRA, CERCLA

DATA VALIDATION REASON CODES

Organic, Inorganic, and Radiological Analytical Data

Holdi	ng Times		Chromatography/Mass Spectroscopy Tuning
A01	Extraction holding times were exceeded.	B01	Mass calibration was in error, even after applying
A02	Extraction holding times were grossly exceeded.		expanded criteria.
A03	Analysis holding times were exceeded.	B02	Mass calibration was not performed every 12 hours.
A04	Analysis holding times were grossly exceeded.		Mass calibration did not meet ion abundance criteria.
A05	Samples were not preserved properly.	B04	Professional judgment was used to qualify the data.
A06	Professional judgment was used to qualify the data.		
	/Continuing Calibration - Organics	Initia	al/Continuing Calibration – Inorganics
C01	Initial calibration relative response factor (RRF) was		Initial calibration verification (ICV) or continuing
	<0.05.		calibration verification (CCV) was not performed for
C02	Initial calibration relative standard deviation (RSD) was		every analyte.
	>30%.	D02	ICV recovery was above the upper control limit.
C03	Initial calibration sequence was not followed as required.		ICV recovery was below the lower control limit.
C04	Continuing calibration RRF was <0.05.		CCV recovery was above the upper control limit.
C05	Continuing calibration percent difference (%D) was		CCV recovery was below the lower control limit.
005	>25%.		Standard curve was not established with the minimum
C06	Continuing calibration was not performed at the	200	number of standards.
000	required frequency.	D07	Instrument was not calibrated daily or each time the
C07	Resolution criteria were not met.	1007	instrument was set up.
C08	Relative percent difference (RPD) criteria were not met.	000	Correlation coefficient was <0.995.
C09	RSD criteria were not met.		Mid-range cyanide standard was not distilled.
C10	Retention time of compounds was outside windows.		Professional judgment was used to qualify the data.
	Compounds were not adequately resolved.	DIO	Professional judgment was used to quarity the data.
C11	Breakdown of endrin or dichlorodiphenyltrichloroethane		
C12			
011	(DDT) was >30%.	1	
C13	Combined breakdown of endrin/DDT was >30%.		
<u>C14</u>	Professional judgment was used to qualify the data.		
	tively Coupled Plasma and Furnace Requirements	Blan	
E01	Interference check sample recovery was outside the	F01	
	control limit.	F02	1 1
E02	Duplicate injections were outside the control limit.	F03	Sample data were qualified as a result of the equipment
E03	Post-digestion spike recovery was outside the control limit.		rinsate.
E04	Method of standard additions (MSA) was required but	F04	···
	not performed.		Gross contamination exists.
E05	MSA correlation coefficient was <0.995.	F06	Concentration of the contaminant was detected at a level
E06	MSA spikes were not at the correct concentration.		below the contract-required quantitation limit (CRQL).
E07	Serial dilution criteria were not met.	F07	
E08	Professional judgment was used to qualify the data.		less than the action limit, but greater than the CRQL.
		F08	Concentration of the contaminant was detected at a level
			that exceeds the action level.
		F09	
		F10	Blank had a negative value >2 times the instrument
			detection limit.
		F11	Blanks were not analyzed at the required frequency.
		F12	Professional judgment was used to qualify the data.
Surro	ogate/Radiological Chemical Recovery	Mat	rix Spike/Matrix Spike Duplicate
G01	Surrogate/radiological chemical recovery was above the	H01	Matrix spike (MS)/matrix spike duplicate (MSD)
	upper control limit.	1	recovery was above the upper control limit.
G02	Surrogate/radiological chemical recovery was below the	H02	MS/MSD recovery was below the lower control limit.
	lower control limit.		MD/MSD recovery was <10%.
G03	Surrogate recovery was <10%.		MS/MSD pairs exceeded the RPD limit.
G04	Surrogate recovery was zero.		No action was taken on MS/MSD limit.
G05	Surrogate/radiological chemical recovery data were not		Professional judgment was used to qualify the data.
	present.		Radiological MS/MSD recovery was <20%.
G06	Professional judgment was used to qualify the data.		Radiological MS/MSD recovery was <20%.
G00 G07	Radiological chemical recovery was <20%.		
G07 G08	Radiological chemical recovery was <20%.	H09	
000	Ranological chemical recovery was >100%.	1	required frequency.

-

(¹

DATA VALIDATION REASON CODES (continued)

Organic, Inorganic, and Radiological Analytical Data

Matri	x Spike		ratory Duplicate
IO1	MS recovery was above the upper control limit.	J01	Duplicate RPD/radiological duplicate error ratio (DER)
IO2	MS recovery was below the lower control limit.		was outside the control limit.
103	MS recovery was <30%.	J02	Duplicate sample results were >5 times the contract-
104	No action was taken on MS data.		required detection limit (CRDL).
105	Professional judgment was used to qualify the data.	J03	Duplicate sample results were <5 times the CRDL.
	• • -	J04	Professional judgment was used to qualify the data.
		J05	Duplicate was not analyzed at the required frequency.
Intern	nal Area Summary	Pesti	cide Cleanup Checks
K01	Area counts were outside the control limits.		10% recovery was obtained during either check.
K02	Extremely low area counts or performance was	L02	Recoveries during either check were >120%.
	exhibited by a major drop-off.	L03	Gel permeation chromatography cleanup recoveries were
K03	IS retention time varied by more than 30 sec.		outside the control limits.
K04	Professional judgment was used to qualify the data.	L04	Florisil cartridge cleanup recoveries were outside the
	, ,		control limits.
		L05	Professional judgment was used to qualify the data.
Targe	t Compound Identification		pound Quantitation and Reported CRQLs
M01	Incorrect identifications were made.		Quantitation limits were affected by large off-scale peaks.
M02	Qualitative criteria were not met.		Method detection limits reported by the laboratory
M03	Cross contamination occurred.		exceeded corresponding CRQLs.
M04	Confirmatory analysis was not performed.	N03	Professional judgment was used to qualify the data.
M05	No results were provided.		
M06	Analysis occurred outside 12-hour gas		
	chromatography/mass spectroscopy window.		
M 07	Professional judgment was used to qualify the data.	1	
M08	The %D between the two pesticide/polychlorinated		
	biphenyl column checks was >25%.		
Tenta	tively Identified Compounds	Labo	oratory Control Samples
001	Compound was suspected laboratory contaminant and		Laboratory control sample (LCS) recovery was above the
	was not detected in the blank.	1	upper control limit.
002	Tentatively identified compound result was not above	P02	LCS recovery was below the lower control limit.
	10 times the level found in the blank.		LCS recovery was <50%.
O 03	Professional judgment was used to qualify analytical		No action was taken on the LCS data.
	data.		LCS was not analyzed at the required frequency.
			Radiological LCS recovery was <50% for aqueous
			samples, <40% for solid samples.
		P07	Radiological LCS recovery was >150% for aqueous
			samples, >160% for solid samples.
		P08	Professional judgment was used to qualify the data.
Field	Duplicate		iological Calibration
Q01	Field duplicate RPDs were >30% for waters and/or		Efficiency calibration criteria were not met.
	>50% for soils.		Energy calibration criteria were not met.
Q 02	Radiological DER was outside the control limit.		Resolution calibration criteria were not met.
Q03	Duplicate sample results were >5 times the CRDL.		Background determination criteria were not met.
Q04	Duplicate sample results were <5 times the CRDL.		Quench curve criteria were not met.
-	• •		Absorption curve criteria were not met.
			Plateau curve criteria were not met.
			Professional judgment was used to qualify the data.
Radio	blogical Calibration Verification		инна <u>на поделе со </u>
S01	Efficiency verification criteria were not met.		
S02	Energy verification criteria were not met.		
S03	Resolution verification criteria were not met.		
S04	Background verification criteria were not met.		
	such same series and strend more not more	1	
	Cross-talk verification criteria were not met		
S05 S06	Cross-talk verification criteria were not met. Professional judgment was used to qualify the data.		

j

NINTH SEMIANNUAL SAMPLING EVENT

JULY 2004

)	VOLATILE	IA ORGANICS ANALYS	IS DATA SF	IEET		EPA :	SAMPLE	NO.	-
Lab Na	me: GEL, LLC.		Contract:	N/A	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.	70602		
Lab Co	de: N/A	Case No.: N/A	SAS No.:	N/A	SDG	No.:	117444		
Matrix	:: (soil/water)	WATER		Lab S	ample ID:	1174	44003		
Sample	wt/vol:	5.000 (g/ml) ML		Lab F	ile ID:	7920	б		
Level:	(low/med)	LCW		Date	Received:	07/2	2/04		
% Mois	ture: not dec.	4		Date	Analyzed:	08/0	3/04		
GC Col	umn: DB-624	ID: 0.25 (mm)		Dilut	ion Facto	or: 2.0	0		
Soil E	xtract Volume:	(uL)		Soil	Aliquot V	olume	:	'	
	CAS NO.	COMPOUND			ON UNITS: /Kg) UG/I		Q		US
	108-88-3	Benzene Toluene Ethylbenzene Xylenes (tota				146 2.0 26.8 2.0	υ	1012	

DATA VALIDATIUM COPY OLM03.0

FORM I VOA

RINSATE

_ 1A VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
Lab Name: GEL, LLC Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG No.: 117444
Matrix: (soil/water) WATER	Lab Sample ID: 117444004
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 7V111
Level: (low/med) LOW	Date Received: 07/22/04
Moisture: not dec.	Date Analyzed: 08/02/04
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCER	VTR.	ATION	U.	NITS:
(ug/L	or	ug/Kg)	UG/L

Q

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)
--

COMPOUND

FORM I VOA

OLM03.0

.*

یه می د در م CAS NO.

VOLATILE	J IA ORGANICS ANALYSI	S DATA SHEET	EPA SAMPLE NO.
Lab Name: GEL, LLC.		Contract: N/A	370702
Lab Code: N/A	Case No.: N/A	SAS NOL: N/A SDG	No.: 117444
Matrix: (soil/water)	WATER	Lab Sample ID	: 117444002
Sample wt.vol:	5.000 (g/ml) ML	Lab File ID:	7V205
Level: (low/med)	LOW	Date Received	: 07/22/04
Moisture: not dec.		Date Analyzed	: 08/03/04
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL)

CAS NO.	COMPOUND		(ug/L or ug/Kg) UG/L								
108-88-3	Benzene Toluene Ethylbenzene_ Xylenes (tota	.1.)	32.9 1.0 1.0 1.0	U	=						

FORM I VOA

OLM03.0

DATA VALIDATION COPY

IA VOLATILE ORGANICS ANALYS	EPA SAMPLE NC.	-
Lab Name: GEL, LLC.	Contract: N/A	
Lab Code: N/A Case No.: N/A	SAS No.: 3.A SIG No.: 117444	
Macrix: (soil/water) WATER	Lab Sample ID: 117444005	
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 7V112	
Level: (low/med) LOW	Date Received: 07/22/04	
<pre>% Moisture: not dec</pre>	Date Analyzed: 08/02/04	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot Volume:(u	C)

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/Kg		ç	2
100-41-4	Benzene Toluene Ethylbenzene_ Xylenes (tota	al)	0. 1	L.0 U 59 J L.0 U L.0 U	2123

OLM03.0

DATA VALIDATION COPY

.

•

(

PO Box 2501, 151 Lalayelle Dr., Tennesser 37830 (423) 481-4600

CHAIN OF CUSTODY RECORD

COC NO .: GLTM 46

PROJECT NAME: For	Stewart L	.TM, D.O	. 44		-	77	70	44	4	<u>7</u> .	Ri	EQU	EST	ED F	PAR	AMI	ETE 1	RS			1	 1			LABORATORY General Enginee		boralory
PROJECT NUMBER: 0								Sulfate																Viels:	LABORATORY 2040 Savage Ra Charleston, SC	boa	SS:
Sampler (Signature)), [](()	1	Inted Name)	(frage				Nitrate.S		5		Carbon Dioxide	Total Phosphon											Bottles/ V	PHONE NO: (84	13) 556-	8171
Sample ID	Date Co	·	Time Collecter		- ŭ	р Х	Ş	Nitrite. Nitra	- High		1 de la compara de la compa	arbor	otal P											No. of	OVA		RVATIONS, COMMENT
a and a second sec	7/20		6745	weiter	- 🖻 Z		<u> "</u>	<u>z</u>	<u>。</u>	<u> </u>	12	0	4				}—						╢─	2	1		
370707	1/20		1031		2		-		┢		\vdash		_		_		-				┢		┢	2			
3787ØZ 37\$6\$2	1		0947			_	┢	╞	1	-	+	\square								L		┢	╞	2			
3715666			0924		Z		†—				┦─													2		1	
37139102	↓		0900		Z		1		1	T		Π										İ		2		·	
					1	-	1-				1			_		-								Ē	ł	1	
			*								ŀ						1.	J		_	\square			1			
													I	1	11	j)	2	Ŧ									
· ·····	_ ·								A		M	$\overline{\Lambda}$		┦	7										÷		
								4	V	Ĺ		Ľ															
·					_			Ļ		Ľ	<u> </u> .		•											L			
	<u> </u>						\vdash	Ĺ		<u>`</u>																	
								Ļ		Ļ		Ļ															
RELINQUISHED BY	N_b_	Date.	Time RECI	eived BY	P	-			Dat							BER	OF	CON		NE	RS:		10		Cooler Temperat		4°L
	pu		LCOM	PANY NAME:	d i S			- '			24	- C	oole	r ID:					,						FEDEX NUMBE	R:	
COMPANY NAME:		11:	25	Gel-					1	¥1.	<u>ر</u>			•				7	2)					<u>۸</u>	//4	
		Date	/Time RELI	VOUISHED BY	':			╈	Dat	e/Ti	ime	1														<u> </u>	
RECEIVED BY:	Ĩn.	7-22	25 COM																								
COMPANY HAME:		11;	<i>21</i> сом	PANY NAME:																							
RELINOUISHED BY:				EIVED BY:					Dat	e/Ti	ime																
COMPANY NAME:	<u></u>	14	сом	PANY NAME:				-																			
		17																									

III-11

.

Fifth Annual Monitoring Only Report UST 94A, Building 1320, Facility ID #9-089078

TENTH SEMIANNUAL SAMPLING EVENT

JANUARY 2005
VOLATILE	EPA SAMPLE NC.		
Lab Name: GEL, LLC.	Contr	ract: N/A	3706A2
Lab Code: N/A	Case No.: N/A SAS	Nc.: N/A SDG	No.: 128998
Matrix: (soil/water)	WATER	Lab Sample ID:	128998005
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	9U314
Level: (low/med)	LOW	Date Received:	01/17/05
% Moisture: not dec.		Date Analyzed:	01/26/05
GC Column: RTX-VOLAT:	ILES ID: 0.25 (mm)	Dilution F	actor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

÷ Q

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	14.7 _ 1.0 U 2.2 _ 1.3 _	1.1 L
--	-----------------------------------	-------

COMPOUND

CAS NO.

FORM I VOA

OLM03.0

DATA MALLATION ÊD, -

VOLATILE	ATA SHEET		
Lab Name: GEL, LLC.	Cont	3707A2	
Lab Code: N/A	Case No.: N/A SAS	5 No.: N/A SEG No.: 128998	
Matrix: (soil/water)	WATER	Lab Sample ID: 128998003	
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID: 90313	
Level: (low/med)	LOW	Date Received: 01/17/05	
% Moisture: not dec.		Date Analyzed: 01/26/05	
GC Column: RTX-VOLAT	ILES ID: 0.25 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volume:(u	ıL)

· · ·

CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		Q	
100-41-4	Benzene Toluene Ethylbenzene Xylenes (total)_		0.93 1.0 1.8 2.6		サンニカ

FORM I VOA

OLM03.0

L ANT L COPY

RINSATE

IA VOLATILE ORGANICS ANALYSIS DATA :	EPA SANPLE NO.
	370786
Lab Name: GEL, LLC. Contrac	C: N/A
Lab Code: N/A Case No.: N/A SAS No	.: N/A SDG No.: 128998
Matrix: (soil/water) WATER	Lab Sample ID: 128998004
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 90310
Level: (low/med) LOW	Date Received: 01/17/05
% Moisture: not dec.	Date Analyzed: 01/26/05
GC Column: RTX-VOLATILES ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

.

CONCENTRANTON INTOC.

CAS NO.	COMPOUND	(ug/L or ug/Kg) UG	
108-88-3 100-41-4	Benzene Toluene Ethylbenzene Xylenes (tota	al)	1.0 U 8.7 0.94 J 3.2

FORM I VOA

OLM03.0

DATA VALICATION CORY

III-15

la	EPA SAMPLE NO.	
VOLATILE ORGANICS A	NALYBIS DATA SHEET	l
		3709A2
Lab Name: GEL, LLC.	Contract: N/A	
Lab Code: N/A Case No.: N	A SAS No.: N/A SDG	No.: 128998
Matrix: (soil/water) WATER	Lab Sample ID	: 128998002
Sample wt/vol: 5.000 (g/m	l) ML Lab File ID:	90312
Level: (low/med) LOW	Date Received	: 01/17/05
% Moisture: not dec	Date Analyzed	: 01/26/05
GC Column: RTX-VOLATILES ID: 0.1	25 (mm) Dilution	Factor: 1.0
Soil Extract Volume:(uL) Soil Aliquot	Volume:(uL)

.)

CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		Q	
108-88-3	Benzene Toluene Ethylbenzene_ Xylenes (tota		1.0 1.0 2.9 4.7		

FORM I VOA

OLM03.0

86 III-16

page 1af3

COC NO .: GLTM45

CHAIN OF CUSTODY RECORD

	PROJECT NAME: FL S	ROJECT NAME: FL Stewart UST Long Term Monitoring				\vdash	<u> </u>) 		Т	RE	QUES	TED	PAF	RAME	TER	15		Т	П			LABORATORY N General Engineeri		1999 - Carl Carl and Car		
	PROJECT NUMBER: 0			00																					LABORATORY AI 2040 Savage Rao		
	PROJECT MANAGER:	Patty Sto	11																				, in the second s		Charleston, SC 2	9407	
	Sampler (Signature)	(]	D.	Inted Nam	· /	£																			PHONE NO: (843)	556-8171	
	Sample ID	Date Co		KICIA			ntrtx	X	MTBE														1	6	OVA SCREENING	OBSERVATIONS, CO SPECIAL INSTRU	DMMENTS.
<i>[6]</i>	TB(6411	1/16/	65	81	5	Wat	b.	Z							.,				·				2			128198	
	37\$9A2			1410				2			·								:				2	_			
	37ø7A2			143				2				Ļ.	$ \downarrow \downarrow$		1	 			-+	ľ			_ 2	_			
	3707A6	ļļ.		143				2							4-	<u> </u>			·	<u> </u>	+-	┝╌┠	2	-		••••••••••••••••••••••••••••••••••••••	ruut demographic allow
	370642			150				2			<u>. </u>	_	┦╌┤		+	-		_	<u> </u>	<u> - ·</u>		┝╍┨	2				
H	33\$876			154				2		\square			$\left - \right $		÷	╀—		_				┝╌┼		4		- A. (* 144 - 14	
7 111-17	370872			160				2	:	┣	<u> </u>				+-			\dashv			╇	┝┥	2	<u> </u>		21,2,	
-	Ø319 VP				0915			2		┞─┤		╇	┨╌┥		4			_	<u>·</u>			\vdash	2				
	\$314 VP			094				2		┝╌┥	-		┼╼┦		+	+					╇	┝┦		2			
	\$312 VP			102				2		┞──┤			┨╌┥		4-	╄—		-	_			┝╌┠	2	4			
	\$311 VP			11/0				Z				<u></u>	┥┥		4	<u> </u>		_			+-	$\left - \right $	2	-			
	\$3\$5VP			1140				2					-		4	<u> </u>		_	4		-		2				
-15				12/0		١		2			_ _								· I				Z	-			
	RELINGUISHED BY	14	Date	/Time	RECEN	钗	Y: ノ				D	ate/11 / 7	me 5				BER	OF	CONT	TAINE	RS:	10	প্ত		Cooler Temperatu		
	COMPANY NAME:	·/• \	11/1	ru -	COMP						1.	_		Coo	ler IC):)		1	21						FEDEX NUMBER	'h	
	SAIC					ĒĨ					M:	55						1	31						1*	17	
	BEDEIVED BY: Bay, Watty			Time	RELING	QUISH	EO BY:				D	ate/Ti	mə										<u> </u>				
	COMPANY NAME: GEL COMPANY NAME: GEL COMPANY NAME: COMPANY NAM				<u></u>																						
	RELINQUISHED BY: Date/Time RECEIVED BY:			Date/Time			me													0.015017533	fil.						
	COMPANY NAME: 1447 COMPANY NAME:																										

*

-

APPENDIX IV

SITE RANKING FORM

-

NINTH SEMIANNUAL SAMPLING EVENT

JULY 2004

SITE RANKING FORM

Facili	ity Name	e: UST 94A, Buildi	Rank	Ranked by: S. Stoller										
Coun	nty:Lil	perty Facility I	D #:_9		Date	Ranked:	9/7/04							
<u>SOIL</u>	SOIL CONTAMINATION													
Α.	Maxin (Assu	PAHs – num Concentration fo me <0.660 mg/kg if o tored on site)		B.	Total Benzene - Maximum Concentration found on the s									
							<u><</u> 0.005 m	ig/kg	Ŧ	0				
	\boxtimes	<u>≤</u> 0.660 mg/kg	-	0			>0.005 -	.05 mg/kg	=	1				
		>0.66 - 1 mg/kg	-	10	*		>0.05 - 1	mg/kg	=	10				
		>1 - 10 mg/kg	ayanan Kanisan	25			>1 - 10 m	ng/kg	=	25				
		>10 mg/kg	=	50			>10 - 50	mg/kg	=	40				
							>50 mg/k	(g Iple T94A-A-S (=	50				
C.		to Groundwater below land surface)					Closure sam	pie 194A-A-S (1990)					
		>50' bls =	1											
		>25' - 50' bls =	2											
		>10' - 25' bls =	5											
	\boxtimes	≤10' bls =	10											
Fill in	n the bla	nks: (A. <u>0</u>)+	(B. <u>1</u>	<u>0) = (10 </u>	_) x (C	<u> 10 </u>)	= (D. <u>100</u>	_)						
GRO		TER CONTAMINAT	ION											
E.	Free Product (Nonaqueous-phase liquid hydrocarbons; See Guidelines For definition of "sheen").					Maxii (One		ene - entration at t be located a						
	*⊠	No free product =	0				,			= 0				
		Sheen - 1/8" =	250				<u><</u> 5 µg/L			-				
		>1/8" - 6" =	500				>5 - 100	нд/г		= 5				

* ⊠ >100 - 1,000 µg/L = 50

- □ >1,000 10,000 μg/L = 500
- >10,000 μg/L = 1500 * Sample 370602 (July 2004)

Fill in the blanks:

 \Box

>6" - 1ft.

100 points = 1000 +* No free product in July 2004

= 1,000

 $(E._0_) + (F._50_) = (G._50_)$

For every additional inch, add another

Page 1 of 2 IV-3

+ · · .)

County: Liberty Facility ID #: 9-089078

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

H.	Public Water	Supply			I.	Non-P	ublic Water Su	pply		
*	☐ ¼ mi ☐ >1 m ☑ >2 m For lower sus ☐ >1 m Note: If site	' - ¼ mi - 1 mi i - 2 mi icceptibility i is in lowe	= 0 er susceptibi	•		use the	Impacted <100' >100' - 500' >500' - ¼ mi >¼ - ½ mi >¼ mi ver susceptibilit >¼ mi shaded areas	= = ty are =	5 2 0 as only: 0	
	* For justifica	tion that w	vithdrawal poi	nt is not hy	/draulio	cally cor	nnected, see at	tache	d text.	
J.	boundary to c OR UTILITY trench may b	lowngradie TRENCHE e omitted f	Contaminant I ent Surface W ES & VAULT from ranking i 5 feet above t	Vaters S (a utility if its invert	K. able)		ce from any Free ements and cra			
	☐ Impa ⊠ ≤500 □ >500 □ >1,00	' - 1,000'	= 500 = 50 = 5 = 2				Impacted <500' >500' - 1,000 >1,000' or no free produ	=		
Fill in 1	the blanks: (H	. <u>0</u>) +	· (I. <u>0</u>) +	· (J. <u>50</u>	_) -	⊦ (K	<u> </u>	50	<u>)</u>	
				(G. <u>50</u>	_) >	د (L	<u>50</u>) = M.	2,50	<u>o</u>	
				(M. <u>2,5</u>	<u>00</u>) +	+ (D	<u>100</u>) = N	2,60	<u>0</u>	
Ρ.	SUSCEPTIB	LITY ARE	A MULTIPLI	ER						
	If site	is located	l in a Low Gro	ound-Wate	r Pollu	tion Sus	ceptibility Area	= 0.5	5	
	All ot	her sites =	- 1							
Q.	EXPLOSION	HAZARD								
							om this release, , crawl spaces,			in any
	Yes	= 200,0	000							
	No No	= 0								
Fill in	the blanks:	(N. <u>2,6</u>	<u>00</u>) x (P. <u>1</u>	<u>1_) = (_2,6</u>	<u>500</u>) +	- (Q. <u>0</u>	_)			
			<u>(July 2004 –</u> ONMENTAL				itoring Event)			

)

TENTH SEMIANNUAL SAMPLING EVENT

JANUARY 2005

SITE RANKING FORM

Facili	ty Name	: UST 94A, Buildin	Ranked by: S. Stoller					
Coun	ty: <u>Lib</u>	erty Facility IC) #:_9	-089078		Date	Ranked: 3/8/05	
<u>SOIL</u>	CONTA	MINATION						
A.	Maxim (Assu	PAHs – num Concentration for me <0.660 mg/kg if or	Total Maxin	on the site				
	was si	tored on site)					<u><</u> 0.005 mg/kg =	: 0
	\boxtimes	<u><</u> 0.660 mg/kg	=	0			>0.00505 mg/kg =	: 1
		>0.66 - 1 mg/kg	=	10	*		>0.05 - 1 mg/kg =	= 10
		>1 - 10 mg/kg	=	25			>1 - 10 mg/kg =	= 25
		>10 mg/kg	=	50			>10 - 50 mg/kg =	= 40
							>50 mg/kg = Closure sample T94A-A-S (199	= 50
C.		to Groundwater below land surface)						
		>50' bls =	1					
		>25' - 50' bls =	2					
		>10' - 25' bls =	5					
	\boxtimes	<u><</u> 10' bls =	10					
Fill in	the bla	nks: (A. <u>0</u>)+(В. <u>1</u>	<u>0)</u> = (<u>10</u>) x	x (C	<u>10</u>):	= (D. <u>100</u>)	
GPOI			אר					
		<u>TER CONTAMINATION CONTA</u>						
Ε.	liquid	Product (Nonaqueous hydrocarbons; See G efinition of "sheen").			F.	Maxir (One	lved Benzene - num Concentration at the well must be located at th	
	* 🖂	No free product =	0			of the	release.)	- 0
		Sheen - 1/8" =	250				<u>≤</u> 5 μg/L	= 0
		>1/8" - 6" =	500			* 🖾	>5 - 100 µg/L	= 5
		>6" - 1ft. =	1,000)			>100 - 1,000 µg/L	= 50
		For every additiona		, add another			>1,000 - 10,000 µg/L	= 500
	* No fr	100 points = <u>1000</u> ee product in July 2004	+			⊔.	>10,000 µg/L Sample 3706A2 (January 2009	= 1500 5)
Fill in	the bla	nks: (E. <u>0</u>) +	· (F	<u>5</u>) = (G. <u>5</u>	_)			

05-036(E)/052505

т. . ў (.)

County: Liberty Facility ID #: 9-089078

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

H.	Public Water Supply	I.	Non-Public Water Supply
*	$ \begin{array}{ c c c c c } & \text{Impacted} & = 2000 \\ \hline & \leq 500' & = 500 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = 25 \\ \hline & \frac{1}{4} \text{ mi} - 1 \text{ mi} & = 10 \\ \hline & >1 \text{ mi} - 2 \text{ mi} & = 2 \\ \hline & > 2 \text{ mi} & = 0 \\ \hline & \text{For lower susceptibility areas only:} \\ \hline & >1 \text{ mi} & = 0 \\ \hline & Note: If site is in lower susceptibility area, denotes a subset of the subset of th$		
	* For justification that withdrawal point is not hy	/draulic	cally connected, see attached text.
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water ta	K. able)	Distance from any Free Product to basements and crawl spaces
	$ \begin{array}{ c c c c c c c } & Impacted & = 500 \\ \hline & \leq 500' & = 50 \\ \hline & >500' - 1,000' & = 5 \\ \hline & >1,000' & = 2 \end{array} $		□ Impacted = 500 □ <500' = 50 □ >500' - 1,000' = 5 □ >1,000' or = 0 no free product.
Fill in	the blanks: (H0_) + (I0_) + (J50_) +	· (K. <u>0</u>) = L. <u>50</u>
	(G. <u>5</u>		
	(0. <u>250</u>		
-	· <u></u>	<u>,</u> , .	(D. <u>100</u>) - 11. <u></u>
Ρ.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Wate	r Pollut	tion Susceptibility Area = 0.5
	All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possibly subsurface structure (e.g., utility trenches, base		
	Yes = 200,000		
	🖾 No = 0		
Fill in	the blanks: (N. <u>350</u>) x (P. <u>1</u>) = (<u>350</u>) + (Q.	. 0)
	= <u>350 (January 2005 – Tenth S</u> ENVIRONMENTAL SENSITIV		

ADDITIONAL GEOLOGIC AND HYDROGEOLOGIC DATA

The following provides supplemental information to Item H of the Site Ranking Form. It also provides details relating to the geologic and hydrogeologic conditions at Fort Stewart that support Fort Stewart's determination that the water withdrawal points located at the site are not hydraulically connected to the surficial aquifer.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward-dipping strata that increase in thickness from 0 ft at the fall line, located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 ft at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 ft below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 ft thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 ft thick and dominated by limestone, with a 175-ft-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 ft to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately 1/4 mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-ft section, the lowermost 110 ft of which consisted predominantly of limestone sediments, above which 245 ft of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 ft of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 in. in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 in. The subsoil is predominantly sandy clay loam and extends to a depth of 72 in. or more (Herrick and Vochis 1963).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, Ocala Group, and Suwannee Limestone. These formations are approximately 800 ft thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 to 150 ft in thickness. This aquifer is used primarily for domestic lawn and

agricultural irrigation. The top of the water table ranges from approximately 2 to 10 ft BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 to 50 ft BGS; therefore, the effective aquifer thickness would be approximately 35 to 45 ft. Soil surveys for Liberty and Long Counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian Aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 to 90 ft. The vertical hydraulic conductivity of this confining unit is on the order of 10^{-8} cm/second. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie, Markshead, and Parachula, listed from youngest to oldest.

The Coosawhatchie Formation is predominantly composed of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 ft thick in the Savannah, Georgia, area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 ft thick in the Savannah, Georgia, area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite and is approximately 10 ft thick in the Savannah, Georgia, area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the underground storage tank (UST) investigation sites is part of the surficial aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Fort Stewart.

3.0 REFERENCES

Arora, Ram 1984. Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Herrick, S.M., and R.C. Vochis 1963. Subsurface Geology of the Georgia Coastal Plain, Georgia Geologic Survey Information Circular 25.
- Looper, Edward E. 1980. Soil Survey of Liberty and Long Counties, Georgia, U. S. Department of Agriculture, Soil Conservation Service.
- Miller, James A. 1990. Groundwater Atlas of the United States, U. S. Department of the Interior, U. S. Geological Survey, Hydrologic Inventory Atlas 730G.

.

ATTACHMENT A

FATE AND TRANSPORT MODELING RESULTS

-

A.1 FATE AND TRANSPORT MODELING

In summary, the Analytical Transient 1-, 2-, 3-Dimensional Model was used to model contaminant migration to three potential downgradient receptors: a storm drain that runs through the former tank pit; a drainage ditch approximately 500 ft west of the site; and Mill Creek, located approximately 2,120 ft west of the site.

A.1.1 Summary of CAP-Part A Report Fate and Transport Modeling Results

The fate and transport modeling performed as part of the Corrective Action Plan-Part A Addendum Report for UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, (SAIC 1998) was based on the assumption that the source of contamination was continuous for 10 years at the site based on the maximum observed benzene concentration in groundwater [i.e., 260 µg/L in well 37-01 during the Corrective Action Plan (CAP)-Part A in September 1996]. The fate and transport modeling results indicated that the benzene plume would not reach the drainage ditch or Mill Creek at detectable concentrations. Benzene was the only constituent at the site that exceeded its In-Stream Water Quality Standard (IWQS); therefore, an alternate concentration limit (ACL) was developed for only benzene based on risk-based numbers. Comments provided by the Georgia Environmental Protection Division on the CAP-Part A Addendum Report (SAIC 1998) indicated that the target risk factor used in developing the benzene ACL was not sufficiently conservative. As a result, four permanent monitoring wells were installed at the site, and the fate and transport conditions were re-evaluated based on the storm drain that runs through the former tank pit. The fate and transport modeling was not revised as part of the CAP-Part A Addendum #2 Report (SAIC 2000); however, it was concluded that the dilution attenuation factor (DAF) associated with the storm drain would be 1. It was recommended, therefore, that the ACL for benzene be the same as the IWOS of 71.28 µg/L

A.1.2 Summary of First Annual Monitoring Only Report Fate and Transport Modeling Results

As a result of the benzene concentrations observed during the CAP-Part A investigation and 1 year of semiannual monitoring, the fate and transport modeling results were revised in the *First Annual Monitoring Only Report for UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia,* (SAIC 2001) to reflect more recent site conditions assuming a continuous source of contamination and using the maximum observed benzene concentration in groundwater during the semiannual monitoring events (i.e., 242 μ g/L at well 37-06 in June 2000). The source was assumed to be 10 by 15 ft based on the plume and was calibrated as a 1.57-mg/hour continuous pulse for 8 years. The estimated DAFs for benzene were 1 at the storm drain and infinity at the drainage ditch and Mill Creek. Because the DAF for the storm drain remained the same, the ACL of 71.28 μ g/L was not revised.

A.1.3 Summary of Second Annual Monitoring Only Report Fate and Transport Modeling Results

As a result of the benzene concentrations observed during the CAP-Part A investigation and 2 years of semiannual monitoring, the fate and transport modeling results were revised in the *Second Annual Monitoring Only Report for UST 94A*, *Facility ID #9-089078*, *Building 1320*, *Fort Stewart*, *Georgia*, (SAIC 2002) to reflect more recent site conditions assuming a continuous source of contamination and using the maximum observed benzene concentration in groundwater during the semiannual monitoring events (i.e., 222 μ g/L at well 37-06 in June 2001). A near steady-state source was assumed for conservatism. The steady-state source loading for benzene was revised to 1.0 mg/hour, which was developed by calibrating the maximum groundwater concentrations observed during the June 2001 and

January 2002 sampling events (0.222 and 0.167 mg/L, respectively, in well 37-06). Based on the revised modeling results, the DAFs for benzene remained at 1.0 for the storm drain, infinity at the drainage ditch, and infinity at Mill Creek. Because the DAF for the storm drain remained the same, the ACL of 71.28 μ g/L was not revised.

A.1.3 Summary of Third Annual Monitoring Only Report Fate and Transport Modeling Results

As a result of the benzene concentrations observed during the CAP-Part A investigation and 3 years of semiannual monitoring, the fate and transport modeling results were revised in the *Third Annual Monitoring Only Report for UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia,* (SAIC 2003) to reflect more recent site conditions assuming a continuous source of contamination and using the maximum observed benzene concentration in groundwater during the semiannual monitoring events (i.e., 319 μ g/L at well 37-06 in July 2002). A near steady-state source was assumed for conservatism. The steady-state source loading for benzene was revised to 0.08 mg/hour, which was developed by calibrating the maximum groundwater concentrations observed during the July 2002 and January 2003 sampling events (0.319 and 0.252 mg/L, respectively, in well 37-06). Based on the revised modeling results, the DAFs for benzene remained at 1 for the storm drain, infinity at the drainage ditch, and infinity at Mill Creek. Because the DAF for the storm drain remained the same, the ACL of 71.28 μ g/L was not revised.

A.1.5 Fate and Transport Modeling Conclusions

The fate and transport model continues to be revised periodically based on the results of semiannual sampling and assumes a continuous source of contamination of infinite duration at the site based on the most recently observed maximum benzene concentration. The last time the fate and transport modeling was revised, the model was based on the maximum observed benzene concentration of 319 μ g/L in groundwater at the source in July 2002. The fate and transport modeling and semiannual monitoring results led to the conclusions below.

- Benzene concentrations in groundwater exceeded the IWQS and ACL of 71.28 μ g/L in well 37-06 at the site during the semiannual sampling events from June 2000 to July 2004.
- Following the November 2004 interim removal action, the January 2005 concentrations were below the IWQS and ACL.
- Benzene does not impact the closest surface water body, a drainage ditch located 500 ft west of the site, at concentrations above the IWQS.
- Benzene concentrations are not following the concentrations predicted because of the presence of free product at the site in well 37-06R.

A.2 REFERENCES

- SAIC (Science Applications International Corporation) 1998. Corrective Action Plan-Part A Addendum Report for UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, July.
- SAIC 2000. Corrective Action Plan-Part A Addendum #2 Report for UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, June.

- SAIC 2001. First Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.
- SAIC 2002. Second Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.
- SAIC 2003. Third Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.

)

ATTACHMENT B

REFERENCES

.

)

REFERENCES

- Logan, William E. 1998. Letter to John Spears (Fort Stewart Directorate of Public Works, Environmental Branch), November 16.
- Logan, William E. 2000a. Letter to Colonel Gregory V. Stanley (Fort Stewart Directorate of Public Works, Environmental Branch), September 5.
- Logan, William E. 2000b. Letter to Colonel Gregory V. Stanley (Fort Stewart Directorate of Public Works, Environmental Branch), December 18.
- SAIC (Science Applications International Corporation) 1997. Corrective Action Plan-Part A Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, March.
- SAIC 1998. Corrective Action Plan-Part A Addendum Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, July.
- SAIC 2000. Corrective Action Plan-Part A Addendum #2 Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, June.
- SAIC 2001. First Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.
- SAIC 2002. Second Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.
- SAIC 2003. Third Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.
- SAIC 2004. Fourth Annual Monitoring Only Report for Underground Storage Tank 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, Oak Ridge, Tennessee, April.
- Stanley, Gregory V. 2001. Letter to William E. Logan (Georgia Environmental Protection Division, Underground Storage Tank Management Program), February 1.
- STEP (Solutions To Environmental Problems, Inc.) 2005. Final Report for Interim Removal Activities at UST 89, Facility ID #9-089074, Building 1247 and UST 94A, Facility ID #9-089078, Building 1320, Fort Stewart, Georgia, February.
- White, Kenneth F. 1997. Letter to John Spears (Fort Stewart Directorate of Public Works, Environmental Branch), July 30.
- White, Kenneth F. 1998. Letter to John Spears (Fort Stewart Directorate of Public Works, Environmental Branch), March 19.

ļ

ATTACHMENT C

CERTIFICATES OF ANALYSIS

•

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :	SAIC 151 Lafayette Driv											
	Oak Ridge, Tenne	ssec 37831	l				Dat	nort Da	ite: Augu:	+ 30 2	004	
Contact:	Ms. Leslie Barbou	ı۲					Re	portiza		, JU, 2		
Project:	Ft. Stewart LTM	D.O. 44							Page	I	ហ	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:		370602 117444003 Water 20-JUL-04 09:47 22-JUL-04 Client			Proie Clien	ıt ID:	SAIC(SAIC(060			
Parameter	Qualifier	Result	• • •	DI.	RL	Units	DF	Analy	ystDate	Time	Batch	Method
Volatile Organics Federa									-			
5035/8260B BTEX in Li	quid Federal			~~~	2 00	- /1	-	D 1 C	00/02/04	1120	754165	
Benzene		147 26.8		660 420	2.00 2.00	ug/L	2 2	DLS	08/03/04	6611	354105	
Ethylbenzene Toluene	U	20.8 ND		420 780	2.00	ug/L ug/L	2					
Xylenes (total)	U	ND		500	2.00	սց/Լ	2					
Benzene	U	187		1.65	5.00	ug/L	5	DLS	08/02/04	1337	354165	2
Ethylbenzene		38.7		1.05	5.00	ug/L	5	0.00	00/02/07			-
Tahene	U	ND		1.95	5.00	ug/L	5					
nes (total)	υ	ND		1.25	5.00	ug/L	5					
The following Analytic:	al Methods were p	erformed	-									
Method	Description					Analyst Comm	ents					
1	SW846 8260B											
2	SW846 8260B											
Surrogate/Tracer recove	ery Test					Recovery%	Acce	ptable	Limits			
Bromofluorobenzene	5035/826	OB BTEX i	in Liquid Federal			- 89	(7)	6%-11	5%)			
Dibromofluoromethane	5035/826	OB BTEX i	in Liquid Federal			101	(7	2%-13	6%)			
Toluene-d8	5035/826	OB BTEX i	in Liquid Federal			93	. (8	0%-11	6%)			
Bromol'luorobenzene			in Liquid Federal			91	•	6%-11	-			
Dibromofluoromethane			in Liquid Federal			102		2%-13				
Toluene-d8			in Liquid Federal			93		0%-11				
Notes:												

Notes:

The Qualifiers in this report are defined as follows :

Target analyte was detected in the sample as well as the associated blank. В

Concentration of the target analyte exceeds the instrument calibration range. E

Analytical holding time exceeded. Η

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J

The response between the confirmation column and the primary column is >40%D. Ρ

U Indicates the target analyte was analyzed for but not detected above the detection limit.

Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details. х

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

'e above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

rameter	Sample ID: Qualifier R	1 <u>17444003</u> Lesult	DL	RL	Client Units	D: DF	SAIC060 AnalystDate	Time	Batch	Method
	Client Sample ID:	370602			Projec		SAIC06001			
Project:	Ft. Stewart LTM D.	0.44					Pa	ge 2	of	2
Contact:	Ms. Leslie Barbour					Re	eport Date: Au	gust 30, 2	2004	
Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee	e 37831								

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless gualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

un L

Reviewed by

Par

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Driv Oak Ridge, Tenne		31				Re	port Date: Aug	ıst 30, 2	:004	
Contact:	Ms. Leslie Barbou	ſ									
Project:	Ft. Stewart LTM	D.O. 44						Page	e 1	of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	370606 117444004 Water 20-JUL-04 09:24 22-JUL-04 Client	ŧ		Proje Clier	ect: nt ID:	SAIC06001 SAIC060			
Parameter	Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al				*					147 4	**
5035/8260B BTEX in L	iquid Federal										
Benzene	U	ND		0.330	1.00	ug/L	1	DLS 08/02/04	1404	354165	1
Ethylbenzene	U	ND	i	0.210	1.00	ug/L	1				
Toluene	J	0.968	•	0.390	1.00	ug/L	I				
Xylenes (total)	U	ND		0.250	1.00	ug/L	l				
The following Analytic	al Methods were p	erformed	I								
boy	Description					Analyst Comm	ents				
k	SW846 8260B		-			-					
Surrogate/Tracer recov	ery Test					Recovery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	B BTEX	in Liquid Federal			87	(7	(6%-115%)			
Dibromofluoromethane	5035/826)B BTEX	in Liquid Federal			103	G	2%-136%)			
Toluenc-d8			in Liquid Federal			94		30%-116%)			
Notes: The Qualifiers in thi	s report are define	ed as foll	ows :								

В Target analyte was detected in the sample as well as the associated blank.

Concentration of the target analyte exceeds the instrument calibration range. E

Н Analytical holding time exceeded.

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

The response between the confirmation column and the primary column is >40%D. Ρ

Indicates the target analyte was analyzed for but not detected above the detection limit. U

Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details. х

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831						
				R	cport Date: Aug	gust 30, 2	2004
Contact:	Ms. Leslie Barbour				•		
Project:	Ft. Stewart LTM D.O. 44				Pa	ge 2	of 2
	Client Sample ID: 370606 Sample ID: 117444004			Proiect: Client ID:	SAIC06001 SAIC060		
Parameter	Qualifier Result	DL	RL	Units DF	AnalystDate	Time	Batch Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard/operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

alu an -Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Address :	SAIC 151 Lafayette Driv						
	Oak Ridge, Tenne	ssee 37831				Report Date: August 30, 2004	
Contact:	Ms. Leslie Barbou	r				Report Date: 1x0gust 50, 2001	
Project:	Ft. Stewart LTM	D.O. 44				Page 1 of 2	
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	1 1 2 2	370702 117444002 Water 20-JUL-04 10:31 22-JUL-04 Client		Proie Clier	iect: SAIC06001 nt ID: SAIC060	
Parameter	Qualifier	Result	DL	RL	Units	DF AnalystDate Time Batch Method	ł
Volatile Organics Federa	3					and an	
5035/8260B BTEX in Lie	quid Federal						
Benzene		32.9	0.330	1.00	ug/L	1 DLS 08/03/04 1111 354165 1	
Ethylbenzene	U	ND	0.210	1.00	ug/L	1	
Toluene	U	ND	0.390	1.00	ug/L		
Xylenes (total)	U	ND	0.250	1.00	ug/L	l	
The following Analytica	l Methods were p	erformed					
Mond	Description				Analyst Comm	nents	
b	SW846 8260B						
Surrogate/Tracer recove	ry Test				Recovery%	Acceptable Limits	
Bromofluorobenzene	5035/8260	DB BTEX i	n Liquid Federal		91	(76%-115%)	
Dibromofluoromethane	5035/826	DB BTEX i	n Liquid Federal		103	(72%-136%)	
Toluene-d8	5035/826	OB BTEX i	n Liquid Federal		95	(80%-116%)	
Notes: The Qualifiers in this B Target analyte wa	•		ws : well as the associated	blank			

В Target analyte was detected in the sample as well as the associated blank.

Concentration of the target analyte exceeds the instrument calibration range. E

Analytical holding time exceeded. Η

· ...?

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

Ρ The response between the confirmation column and the primary column is >40%D.

U Indicates the target analyte was analyzed for but not detected above the detection limit.

Х Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

Y QC Samples were not spiked with this compound.

h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC 151 Lafayette Drive							
Address :	Oak Ridge, Tennessee 3783	51			. .		2004	
Contact:	Ms. Leslie Barbour			ĸ	eport Date: Aug	gust 30, 2	2004	
Project:	Ft. Stewart LTM D.O. 44				Pa	ge 2	of	2
		370702 11744 <u>4</u> 002		Project: Client ID:	SAIC06001 SAIC060			
Parameter	Qualifier Result	DL	RL	Units DF	AnalystDate	Time	Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard/operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

ku 1

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC										
Address :	151 Lafayette Dri	vc									
	Oak Ridge, Tenno	essee 37831	l			р		ate: Aug	ver 20. 2	2004	
Contact:	Ms. Leslie Barbo	ur				ĸ	epon	ale. Augi	15(
Project:	Ft. Stewart LTM	1 D.O. 44						Pag	e i	of	2
	Client Sample 3 Sample ID: Matrix: Collect Date: Receive Date: Collector:	1 V 2 2	70902 17444005 Water 20-JUL-04 09:00 22-JUL-04 Client		Proie Clien		SAIC SAIC	06001 060			
Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
Volatile Organics Feder	ral							44 B 17 L L			
5035/8260B BTEX in L	iquid Federal										
Benzene	U	ND	0.330	1.00	ug/L		I DLS	08/02/04	1431	354165	1
Ethylbenzene	υ	ND	0.210	1.00	ug/L		l				
Toluene	J	0.594	0.390	1.00	ug/L		1				
Xylenes (total)	υ	ND	0.250	1.00	ug/L		I				
The following Analytic	al Methods were	performed									
bor	Description				Analyst Comm	ents					
• . ¹	SW846 8260B										
Surrogate/Tracer recov	very Test				Kecovery%	Acc	eptable	Limits			
Bromofluorobenzene	5035/826	OB BTEX i	n Liquid Federal		90	(76%-11	5%)			
Dibromofluoromethane	5035/826	OB BTEX i	n Liquid Federal		101	(72%-13	6%)			
Toluene-d8	5035/826	OB BTEX i	n Liquid Federal		91	(80%-11	6%)			
Notes: The Qualifiers in th			ws :								

Target analyte was detected in the sample as well as the associated blank. В

Concentration of the target analyte exceeds the instrument calibration range. E

Analytical holding time exceeded. H

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J

Р The response between the confirmation column and the primary column is >40%D.

Indicates the target analyte was analyzed for but not detected above the detection limit. U

Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details. Х

Y QC Samples were not spiked with this compound.

Sample preparation or preservation holding time exceeded. h

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831			
				Report Date: August 30, 2004
Contact:	Ms. Leslie Barbour			
Project:	Ft. Stewart LTM D.O. 44			Page 2 of 2
	Client Sample ID: 370902 Sample ID: 117444005			Project: SAIC06001 Client ID: SAIC060
Parameter	Qualifier Result	DL	RL	Units DF AnalystDate Time Batch Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

a 1 Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Dri	ve								
	Oak Ridge, Tenne	essee 378	31 -			Da	port Date: Aug	net 30 (2004	
Contact:	Ms. Leslie Barbou	ы				NC	pon Date. Aug	JSC 50, 2	.004	
Project:	Ft. Stewart LTM	I D.O. 4 4					Pag	e l	of 2	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	TB0404 117444001 Water 20-JUL-04 07:45 22-JUL-04 Client		Proie Clier	ect: nt ID:	SAIC06001 SAIC060			
Parameter	Qualifier	Resul	t DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Federal	l									
5035/8260B BTEX in Liq	uid Federal									
Benzene	U	ND	0.330	1.00	ug/L	1	DLS 08/02/04	4 1458	354165	I
Ethylbenzene	U	ND	0.210		ug/L	1				
Tolucne	U	ND	0.390		ug/L	3				
Xylenes (total)	U	ND	0.250	1.00	ug/L	1				
T [*] Collowing Analytica	l Methods were p	erforme	d							
bd	Description				Analyst Comm	ents				
T T	SW846 8260B									
Surrogate/Tracer recover	ry Test				Recovery%	Acce	ptable Limits	4		
Bromofluorobenzene	5035/826	ов втех	(in Liquid Federal		92	(7	76%-115%)			
Dibromofluoromethane	5035/826	OB BTE?	Cin Liquid Federal		102	(7	12%-136%)			
Toluene-d8	5035/826	OB BTEX	(in Liquid Federal		92	(8	30%-116%)			
Notes:	romont and dafin	ad no fol	louve .	-						

The Qualifiers in this report are defined as follows :

Target analyte was detected in the sample as well as the associated blank. В

Е Concentration of the target analyte exceeds the instrument calibration range.

Н Analytical holding time exceeded.

J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

P The response between the confirmation column and the primary column is >40%D.

U Indicates the target analyte was analyzed for but not detected above the detection limit.

Х Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.

OC Samples were not spiked with this compound. Y

Sample preparation or preservation holding time exceeded. h

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : SAIC Address : 151 Lafayette Drive Oak Ridge, Tennessee 37831 Report Date: August 30, 2004 Contact: Ms. Leslie Barbour Page 2 of 2 Project: Ft. Stewart LTM D.O. 44 Client Sample ID: **TB0404** Project: SAIC06001 Sample ID: SAIC060 117444001 Client ID: Qualifier Parameter Result DL RL Units DF AnalystDate Time Batch Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

Reviewed by

PO Box 2501, 151 Lafayette Dr., Tennessee 37830 (423) 481-4600

CHAIN OF CUSTODY RECORD

COC NO .: GLTINI46

PROJECT NAME: Fort Stew	art LTM, D.O. 44				[]	74	14	4	7.	RE	QU	EST	ED F	PAR	AME	TEI	RS							LABORATORY N		
															T					Ι		T		General Engineeri	ing Labo	ratory
PROJECT NUMBER: 01-105 PROJECT MANAGER: Patty		heller					fiste																ia:	LABORATORY AL 2040 Savage Rao Charleston, SC 29	d	:
Sampler (Signature)	(Printed Na		<u>ر</u>				Nitrite, Nitrate, Sulfate				Carbon Diexide	shorus											tties/ Visia:	PHONE NO: (843)	556-81	71
Patri Olh	U PATRICI	A 1.	UTOLL	×		2 2	ja, k	ĝ	Total Iron	Methene	QuQ	Total Phospho											of Bottleav	OVA	OBSERV	TIONS, COMMENTS,
Sample ID Dat	e Collected Time	Collected	Matrix	BTEX	<u>x</u> 00	SVOC	ž	Sulfide	Tot	ł	5	년 전								\square			ź	SCREENING		AL INSTRUCTIONS
TBØ4Ø4 7/	20/04 07	45	water	S									a a st				13711 - 2452 1777 - 2						2			
37\$7\$2	10	31		2				_															2			·····
374662	09	47		2																			2			
3710606	09	24		Z																			2			
376902	V 090	20	¥	Z	1				`.												ŝ		2			
					,				: .										3 75 1025	1		4	1	•		
																4		\downarrow	4	1						
							·						-	12	y	2	*[
								Ы		VI	₹^		4	1			Š.				1817 1917 2					•
							1	2		凹	2				2			10.00								
				_			4	\triangleleft						ļ			nde SS						\square			
					1	\triangleleft												-								
				_1																						
RELINQUISHED BY	Date/Time	RECEIV	EDBY	A)/Tin		т	IATC	L NL	JMB	ER (OF C	CON	TAIN	NER	S:	10	٥		Cooler Temperatur	e: 4	·°L
	7/22/04	14	le Band	2	-		7	-4	2 t	s VC	- Co	oler	ID:					-						FEDEX NUMBER:	_	
COMPANY NAME:	11:25		NY NAME:					14	f13								7	6						N	14	
	Date/Time	RELINC	UISHED BY:					Date	/Tim	18	╉─╴						<u> </u>							<u>v</u>		
RECEIVED BY:	7-22-04	· · · · · · · · · · · · · · · · · · ·							,																	
COMPANY NAME:	11:25	COMPA	NY NAME:																							
RELINQUISHED BY: Rom Wattrace	Date/Time 7-22-04	RECEIV	ED BY:				E	Date	/Tim	10]															
COMPANY NAME:	14:15	COMPA	NY NAME:																							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC									
Address :	151 Lafayette Driv	ve								
	Oak Ridge, Tenne	ssce 37831				Da	port Date: Mar	- 1 2 70	05	
Contact:	Ms. Leslie Barbou	IF				ĸ	qui Date: Mai	CH 0. 20	0.5	
Project:	Ft. Stewart LTM	l					Pag	e 1	of	2
							4 g - 4 A			
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	12 W 16 17	06A2 8998005 ater -JAN-05 15:05 '-JAN-05 ient		Proje Clici	ect: 11 ID:	SAIC06001 SAIC060			
Parameter	Qualifier	Result	DL	RL	Units	ÐF	AnalystDate	Time	Batch	Method
Volatile Organics Federa	1						-			
5035/8260B BTEX in Lie	quid Federal									
Benzene		14.7	0.330	1.00	ug/L	1	GRB2 01/26/0	5 2339	397280	1
Ethylbenzene		2.25	0.210	1.00	ug/L	1				
Toluene	U	ND	0.390	1.00	ug/L	1				
Xylenes (total)		1.27	0.250	1.00	ug/L	1				
The following Analytica	l Methods were p	erformed								
pd	Description			A	Analyst Comm	ents				
1	SW846 8260B									
Surrogate/Tracer recove	ry Test				Recovery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	DB BTEX in	Liquid Federal		100	(7	6%-115%)			
Dibromofluoromethane	5035/8260	DB BTEX in	Liquid Federal		104	(7	2%-136%)			
Toluene-d8	5035/826	OB BTEX in	Liquid Federal		109	(8	60%-116%)			
Notes: The Qualifiers in this	report are define	ed as follow	s :							
* Indicates that a qua	ality control anal	vte recover	y is outside of specific	-d accentar	ce criteria					
the Tall start a ga	•			a acceptua	ee emeria.					

- ** Indicates the analyte is a surrogate compound.
- Target analyte was detected in the sample as well as the associated blank. В
- Concentration of the target analyte exceeds the instrument calibration range. Ε
- Η Analytical holding time exceeded.

)

- Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. 1
- Ρ The response between the confirmation column and the primary column is >40%D.
- R Sample results are rejected due to sample preservation with HCl.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- Х Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- QC Samples were not spiked with this compound. Y
- Sample preparation or preservation holding time exceeded. h

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 378	31			R	leport Date:	March 8. 2	005	
Contact: Project:	Ms. Leslie Barbour Ft. Stewart LTM						Page 2		2
Parameter	Client Sample ID: Sample ID: Qualifier Result	3706A2 128998005	DL	RL	Proiect: Client ID: Units DF	SAIC0600 SAIC060 AnalystDa		e Batch	a Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Driv Oak Ridge. Tenne	ssee 378	31				Re	port Date: Marc	h 8, 20()5	
Contact:	Ms. Leslie Barbou	r						D			•
Project:	Ft. Stewart LTM							Page	; (of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date:	D:	3707A2 128998003 Water 16-JAN-05 14 17-JAN-05	4:35		Proie Clien		SAIC06001 SAIC060			
	Collector:		Client								
Parameter	Qualifier	Result		DL	RI,	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Feder	al										
5035/8260B BTEX in L	iquid Federal										
Benzene	J	0.927		0.330	1.00	ug/L	1	GRB2 01/26/05	2312	397280	1
Ethylbenzene		1.86		0.210	1.00	ug/L	1				
Toluene	U	ND		0.390	1.00	ug/L	1				
Xylencs (total)		2.60		0.250	1.00	ug/L	1				
The following Analytic	al Methods were p	erforme	1								
bo	Description					Analyst Comm	ents			·	
1	SW846 8260B					r					
Surrogate/Tracer recov	ery Test					Recovery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260	B BTEX	in Liquid Feder	al		108	(7	6%-115%)			
Dibromofluoromethane	5035/8260	B BTE	in Liquid Feder	ai		106	(7	2% (136%)			
Toluene-d8	5035/8260	в вте)	in Liquid Feder	al		115	(8	0%-116%)			
Notes: The Qualifiers in thi	s report are define	d as fol	lows :								

- * Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- ** Indicates the analyte is a surrogate compound.
- B Target analyte was detected in the sample as well as the associated blank.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- R Sample results are rejected due to sample preservation with HCl.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

C-15

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	151 Lafayette Drive							
	Oak Ridge, Tennessee 37831			Repor	TDate: Mar	ch 8, 20	05	
Contact:	Ms. Leslie Barbour							
Project:	Ft. Stewart LTM				Pag	e 2	of	2
	Client Sample ID: 3707A2 Sample ID: 128998003				AIC06001 AIC060			
Parameter	Qualifier Result	DI.	RL	Units DF A	nalystDate	Time	Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

au

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	SAIC										
Address :	151 Lafayette Driv	/c									
	Oak Ridge, Tenne	ssee 378	31				P e	port Date: Marc	h 8 204)5	
Contact:	Ms. Leslie Barbou	r					NC	port Date: Mar	Ar 0, ±00	,,	
Project:	Ft. Stewart LTM							Pag			2
	Client Sample ID Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	3707A6 128998004 Water 16-JAN-05 14: 17-JAN-05 Client	:30		Proie Clier		SAIC06001 SAIC060			
Parameter	Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Federa	1		a da ada 19 den Bara da 🧸 a 🖌 a r					•			
5035/8260B BTEX in Lie	guid Federal										
Benzene	U	ND		0.330	1.00	ug/L	I.	GRB2 01/26/05	5 2150	397280	I
Ethylbenzene	J	0.940		0.210	1.00	ug/L	1				
Toluene		8.75		0.390	1.00	ug/L	1				
Xylenes (total)		3.17		0.250	1.00	ug/L	ł				
The following Analytica	i Methods were p	erforme	i								
be	Description		* ar i -			Analyst Comm	ents				
1 · · ·	SW846 8260B		Per de de clande de la								
Surrogate/Tracer recove	ry Test					Recovery%	Acce	ptable Limits			
Bromofluorobenzene	5035/8260)B BTEX	in Liquid Federa	il		109	(7	6%-115%)			
Dibromofluoromethane	5035/8260	B BTEX	in Liquid Federa	d		105	(7	2%-136%)			
Toluene-d8	5035/8260)B BTEX	in Liquid Federa	ıt		112	(8	0%-116%)			
Notes: The Qualifiers in this				£	-						

- * Indicates that a quality control analyte recovery is outside of specified acceptance criteria.
- ** Indicates the analyte is a surrogate compound.
- B Target analyte was detected in the sample as well as the associated blank.
- E Concentration of the target analyte exceeds the instrument calibration range.
- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- R Sample results are rejected due to sample preservation with HCI.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee (37831			R	eport Date: Ma	ch 8 20	05
Contact: Project:	Ms. Leslic Barbour Ft. Stewart LTM				Pai		of 2
					·		
	Client Sample ID: 3707A6 Sample ID: 128998004			Project: Client ID:	SAIC06001 SAIC060		
Parameter	Qualifier Result	DL	RL	Units DF	AnalystDate	Time	Batch Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis.

au Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive	e								
	Oak Ridge. Tennes	sec 37831						L 0 00	05	
Contact:	Ms. Leslie Barbour					кер	bort Date: Marc	∷n 8, 204	72	
Project:	Ft. Stewart LTM						Pag	e I	of 2	2
					х х х					- 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10
	Client Sample IF Sample ID: Matrix: Collect Date: Receive Date: Collector:	12899 Water	8002 N-05 14:10 N-05				SAIC06001 SAIC060			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Federa	at						·			THE REPORT OF THE PARTY OF THE CONTRACT OF THE
5035/8260B BTEX in Li	iquid Federal									
Benzene	L	ND	0.330	1.00	ug/L	t	GRB2 01/26/05	3 2245	397280	L
Ethylbenzene		2.90	0.210	1.00	ug/L	1				
Toluene	U	ND	0.390	1.00	ug/L	1				
Xylenes (total)		4.72	0.250	1.00	ug/L	I				
The following Analytic		rformed								
ođ	Description				Analyst Comm	ents				
1 · ···	SW846 8260B									
Surrogate/Tracer recov	ery Test				Recovery%	Accer	ptable Limits			
Bromofluorobenzene	5035/8260	B BTEX in Liqu	iid Federal		107	(76	5%-115%)			
Dibromofluoromethanc	5035/8260	B BTEX in Liqu	id Federal		108	(72	2%-136%)			
Toluene-d8		B BTEX in Liqu			112	(80	0%-116%)			
Notes: The Qualifiers in thi	s report are defined	d as follows :								
 ** Indicates the anal B Target analyte wa E Concentration of 	ality control analy yte is a surrogate of as detected in the s the target analyte of a time exceeded	compound. ample as well exceeds the ins	as the associated h	lank.	nce criteria.					

- H Analytical holding time exceeded.
- J Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- P The response between the confirmation column and the primary column is >40%D.
- R Sample results are rejected due to sample preservation with HCl.
- U Indicates the target analyte was analyzed for but not detected above the detection limit.
- X Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- Y QC Samples were not spiked with this compound.
- h Sample preparation or preservation holding time exceeded.

The above sample is reported on an "as received" basis.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	SAIC 151 Lafayette Drive Oak Ridge, Tennessee 37831				R	eport Date: Mar	ch 8-20	05	
Contact:	Ms. Leslie Barbour					oport is the state			
Project:	Ft. Stewart LTM					Pag	ge 2	of	2
(2) 1									
and the State of State	Client Sample ID: 3709A2 Sample ID: 128998002			Projec Client		SAIC06001 SAIC060			
Parameter	Qualifier Result	ÐL	RL	Units	DF	AnalystDate	Time	Batch	Method

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard precedures. Please direct any questions to your Project Manager, Valerie Davis.

lin am

Reviewed by

PO Box 2501, 151 Lafayette Dr., Tennessee 37830 (423) 481-4600

CHAIN OF CUSTODY RECORD

page 1 af 3

COC NO .: CL: 145

	PROJECT NAME: Ft. 9	OJECT NAME: Ft. Stewart UST Long Term Monitoring									REQ	JES	TED P	RAM	ETER	s_				- 	LABORATORY	
	PROJECT NUMBER: ()1-1055-()4-8991-2	00		-															General Engine	ering Laboratory
	PROJECT MANAGER:					_														ieler.	LABORATORY 2040 Savage R Charleston, SC	od
	Sampler (Signature)	c/	<i>À</i>	rinted Name)	<u>e</u> .															Viniee/ V	PHONE NO: (84	3) 558-8171
	Sample ID	Date C	719 Collected	TRICIA H.	Matrix		MTBE													0.0		OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
60]	TB(6411		105	815	water	2			1			+			:	+	<u>.</u> #1		1	Z		128998
	37Ø9A2			1410	Want	12						+							-	2		1-0110
	3707A2			1435		2			N.		:	+		- F 1						Z		
	3707A6			1430		2								es - 1 12 let 15 ce					2 2 2	2		
	370042	1		1505		2						T								2		
	330876	1		1549		2						\square								2		
- <u>2</u>	33\$\$872			1600		Z				X 	i i X	1			Ş				7 Jan	2		······································
Ξ	Ø319VP	1		0915		2				i.		Γ							1	2		
	Ø314 VP			0945		2	1		1			Γ				7) 花	an a	1.55 1.55 1.55		2		
	\$312VP			1020		2					· .	Τ			1	10 20 1				2		
	\$311 VP			1110		Z								i kan Line Line						2		
	\$3\$SVP			1140		2		ŀ			2010 1997 1997				2.44					2		
213	Ø318V1	V		1210	V	2						Ι								2		
	RELINQUISHED BY	011	Date		VED BY:				De	ate/Tin	je 1	OT/	AL NUI	IBER	OFC	DNT	AINERS	5: <i>L</i>	08	3	Cooler Tempera	ure: 4°C
	and the state of the	1204	1/17		W_				1.1	113	' T	Cooli	er ID:								FEDEX NUMBE	ᢪᡅ
	COMPANY NAME:] '//	C COMP	ANY NAME:				MS	55	Í				13	5/					/	'A
ł	RECEIVED BY:		Data	/Time RELING						ite/Tim			0									
	Ben Watt	The	-1/11	/		•					~ (0	K	16]7	11	76		Ċ	X		ATED
ĺ	COMPANY NAME:				ANY NAME:																2 NI	
	AFLINQUISHED BY:	3	Date 1/17/	Time RECEIN	/ED BY:				Da	ite/Tim	Ð							lU		ł	. FR C	CR.ESS
	COMPANY NAME:		145	COMP	NY NAME:							Ţ	20	;P	0	2	T					