ADDENDUM TO

CORRECTIVE ACTION PLAN - PART A REPORT FOR FACILITY ID #9-089115 UNDERGROUND STORAGE TANK 100 AT BUILDING 1343 FORT STEWART, GEORGIA

Prepared for:

U.S. Army Corps of Engineers - Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0024

Prepared by:

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37831

September 1998

TABLE OF CONTENTS

I.	CORRECTIVE ACTION PLAN - PART A FORM & CERTIFICATION 1
11.	INITIAL RESPONSE REPORTA.Initial Abatement9B.Free Product Removal9C.Tank History9D.Initial Site Characterization9D.1Regulated Substance Released9D.2Source of Contamination9D.3Impacted Environmental Media9D.4Local Water Resources12D.5Other Hydrogeologic Data12D.6Corrective Action Completed or In Progress12D.7.Conclusions and Recommendations13D.8Site Ranking14
Ш.	SITE INVESTIGATION PLAN15A.Horizontal and Vertical Extent of Contamination15A.1Soils15A.2Groundwater15A.3Surface Water15B.Vadose Zone and Aquifer Characteristics15
ÍV.	PUBLIC NOTICE
V.	CLAIM FOR REIMBURSEMENT: GUST TRUST FUND 19
VI.	REFERENCES
ADDE	NDUM TABLES (includes only revised tables with data collected as part of this addendum)
11.6	Geotechnical Results for Soil Samples Collected at UST 100; Facility ID #9-089115 25
ADDE addend	NDUM FIGURES (includes only revised figures with information collected as part of this um)
II-1	Site Location Map for the UST 100 Site, Facility ID #9-089115

98-091P(wpd)/Tank100/090298

ċ.

1)

I. CORRECTIVE ACTION PLAN - PART A FORM & CERTIFICATION

This document represents the Addendum to the Corrective Action Plan (CAP)-Part A Report for underground storage tank (UST) 100 that was located at Building 1343 (Facility ID #9-089115), Fort Stewart, Georgia. The CAP-Part A site investigation for UST 100 was originally conducted in September 1996. Results of this investigation were documented in the original CAP-Part A Report Corrective Action Plan - Part A Report for Facility ID #9-089115, Underground Storage Tank 100 at Building 1343, Fort Stewart, Georgia, submitted to Georgia Environmental Protection Division (GA EPD) in May 1997.

Comments received from GA EPD on March 13, 1998, indicated that the investigation activities performed to date were adequate to delineate the horizontal and vertical extent of contamination. However, GA EPD stated that the soil and groundwater contamination identified at the site had to be addressed. Thus, in correspondence dated April 20, 1998 (Brown 1998), Fort Stewart proposed to collect site-specific geological information and perform fate and transport modeling to demonstrate that soil and groundwater contamination will not adversely affect the downgradient surface water body or any public withdrawal points. These results are summarized in this addendum to the original CAP-Part A Report. Based on the results of the fate and transport modeling, a no-further-action-required status is recommended for this site.

Part I of this addendum contains an updated CAP-Part A form, including re-certification of the plan (with addendums). Supporting documentation related to information indicated on the CAP-Part A form is presented in Parts II through VI of this addendum and in the original CAP-Part A Report submitted in May 1997.

•)) .)

. .

Georgia Department of Natural Resources

Environmental Protection Division

Underground Storage Tank Management Program 4244 International Parkway, Suite 104, Atlanta, Georgia 30354 Lonice C. Barrett, Commissioner Harold Reheis, Director

(404)362-2687

CORRECTIVE ACTION PLAN PART A

Facility Name:	Building 1343 Area, UST	100 Site			
Street Address: _	Wilson Avenue north of W.	. 18th Street	0		
City: Fort Stew	vart County:	Liberty	Facil:	ity ID: _	9-089015
Submitted by UST	Owner/Operator:	Prepared	by:		
Name: Thomas C. F	ry/Environmental Branch	Name:	Patricia St	oll	
Company: U.S. Arm	ny/HQ 3d Inf. Div. (Mech.)	Company:	SAIC		
Address: ATTN: D	OPW ENRD ENV. Br. (Fry)	Address:	P.O. Box 2	502	
	nk Cochran Drive				
City: Fort Stewart	_ State: <u>Georgia</u>	City: 0	ak Ridge	State: _	Tennessee
Zip Code: 31314-	4928	Zip Code	: 37830		

I. PLAN CERTIFICATION:

A. UST Owner/Operator

I hereby certify that the information contained in this plan and in all the attachments is true, accurate, and complete, and the plan satisfies all criteria and requirements of Rule 391-3-15-.09 of the Georgia Rules for Underground Storage Tank Management.

Name:	Thomas C. Fry	1
Signat	ure: Momas C.	Fuy
Dignac		

Date: 09/14/98

B. Professional Engineer or Professional Geologist

I hereby certify that I have directed the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered geologist and/or engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name:	Patricia Stoll	
Signat	ure: Patrin appl	
Date:	9/3/98	

Georgia Stamp or Seal

GUST-CAPA.FOR 98-023MS(015)/090298 November 1995

Please complete the following form, check all of the boxes below that apply, and attached supporting documentation (such as narrative, figures, tables, maps, boring/well logs, etc.) where specified and applicable. Supporting documentation should be three-hole punched and prepared in conformity with the attached guidance document "Underground Storage Tank (UST) Release: Corrective Action Plan - Part A (CAP-A) Content", GUST-7A.

II. INITIAL RESPONSE REPORT:

A. Initial Abatement:

- No Action Required
- Further Release or Migration of Contaminants Prevented
- Fire And Safety Hazards From Vapors And/Or Free Product Monitored and Mitigated

Other (specify)

B. Free Product Removal:

No Free Product Identified As Originating From Release

- Free Product (Non-Aqueous Phase Hydrocarbons) Removed by:
 - Manual Bailing
 - Passive Skimming
 - Automated Skimming
 - Automated Total Fluids Pumping, With Treatment System And Approved Wastewater Discharge

Other (specify)

C. Tank History

- Site Map Attached Identifying Former and/or Existing USTs (see Figure II-1, CAP-Part A)
- Not Applicable

D. Initial Site Characterization:

2	Site	Map:	include the following items on an attached site map
	• Ta	nk Pit	Area • Piping Trenches • Dispensers
		wer Li f pres	
	• Sa	mple I	ocations (with sample numbers and depths)
	• Ta	nks wi	th ID#s, corresponding to Notification Form 7530-1
	• Sc	ale —	<u>1</u> in = <u>40</u> ft
1.	Regul	ated S	Substance Released
		Gasol	ine 🗌 Diesel 🗌 Kerosene 🛛 Waste oil
		Other	
2.	Sourc	e of C	Contamination
	Numbe	r of U	USTs: in use $\underline{0}$; closed/removed $\underline{1}$
		Exist	ing UST System(s): 🗌 piping 🗌 tank 🗌 other
	X	Forme	er UST System(s): 🛛 piping 🖾 tank 🗌 öther
3.	Impac	ted En	vironmental Media
	X	Groun	dwater
	—		Free product
		X	Dissolved (BTEX and/or PAH) contamination exceeding:
			In-stream water quality standards
			Drinking water Maximum Contaminant Levels (MCLs)
	X	Soil	Exceeding:
	KN	_	
			Laboratory Detection Limits, but TPH is vertically delineated to Below Detection Limits (BDL) above the groundwater table or a groundwater sample from the worst-case location has BTEX and/or PAHs below applicable Drinking and/or In-stream water quality standards.
		X	Thresholds listed in Table A, Rule 391-3-1509
•			Thresholds listed in Table B, Rule 391-3-1509
			Alternate Threshold Levels (ATLs) (Reference Appendix I)

1

5

D. Initial Site Characterization (continued):

- Drinking Water Supply Impacted
- Surface Water Impacted
- Attach Laboratory Analytical Data: the following items must be included (see Appendix C)
 - Laboratory Method
 Date of Sampling
 - Date of Analysis
 Detection Limits
 - Signed Chain of Custody Quality Control Data
- 4. Local Water Resources
 - X Drinking Water Supplies Located In:

High or average groundwater pollution susceptibility area*:

- Public water systems within 2.0 miles
- Non-public water systems within 0.5 mile

Low groundwater pollution susceptibility area*:

Public water systems within 1.0 mile

Non-public water systems within 0.25 mile

* As defined by the Groundwater Pollution Susceptibility Map of Georgia.

- 300 (drainage ditch) Surface Water Bodies: Distance (nearest) 1420 (Childpen's Pond) feet (regardless of hydraulic gradient)
- Attach Documentation of Water Supply Survey and Field Reconnaissance
- 5. Other Hydrogeologic Data (specify values)
 - X Depth To Groundwater (shallowest) 6.54 feet BGS
 - Groundwater Flow Direction Southeast to Northwest
 - Hydraulic Gradient 0.0094 feet/feet
- 6. Corrective Action Completed Or In-Progress
 - USTs/Source Removed (after confirmed release)
 - Excavation And Treatment/Disposal Of Contaminated Backfill Materials & Native Soils
 Attach manifest of proper soil disposal
 - Other (specify)

D. Initial Site Characterization (continued):

- 7. Conclusions And Recommendations
 - No Further Action Required, including the preparation or implementation of a Site Investigation Plan. NOTE: Based on additional sampling required by GA EPD and the results of site-specific fate and transport modeling, no further action is required; however, a Site Investigation Plan has been prepared which provides justification for the NFAR status.
 - OR OR

Prepare Corrective Action Plan - Part B, with a schedule for SIP implementation and submittal of CAP-Part B

8. Site Ranking

Environmental Sensitivity Score: 530 (see Appendix II)

III. SITE INVESTIGATION PLAN:

- A. Horizontal And Vertical Extent Of Contaminants In:
 - Soil
 - Groundwater
 - Free product
 - Dissolved phase
 - Surface Water
 - Not applicable since horizontal and vertical extent have been determined.

B. Vadose Zone and Aquifer Characteristics:

- Vertical Soil Permeability (Optional)
- Infiltration Rate (Optional)
- Saturated Horizontal Hydraulic Conductivity
- Total Organic Carbon (Optional)
- Dissolved Iron (Optional)
- Effective Porosity
- Seepage Velocity
- Grain-size Distribution (Optional)
- Total Petroleum Hydrocarbons (Optional)
- Pilot Test(s) (Optional)
- X Other (specify) No Further Investigation Required

IV. PUBLIC NOTICE:

Certified	Letters	to Adjacen	t and	Potentially	Affected	Property
Owners and	l Local	Officials				

- Legal Notice in Newspaper, as pre-approved by EPD
- Other EPD Approved Method (specify):

V. CLAIM FOR REIMBURSEMENT: (For GUST Trust Fund sites only)

- GUST Trust Fund Application (GUST-36), must be attached if applicable
- Cost Proposal
 - Non-Reimbursable Costs
 - OR
 - Reimbursable Costs
 - Invoices and Proofs-of-Payment, per GUST-91
 - Total Projected Costs to implement the Site Investigation Report (SIR) and prepare data for the Site Investigation Review Meeting, per GUST-91
- Payment Schedule for Reimbursement
- X Not Applicable

II. INITIAL RESPONSE REPORT

II.A Initial Abatement

No change from the original CAP-Part A Report submitted in May 1997; no action was required.

II.B Free Product Removal

Temporary piezometers were installed in the boreholes and screened across the water table to monitor for free product. No free product was detected during the 1996 investigation.

II.C Tank History

No change from the original CAP-Part A Report submitted in May 1997.

II.D Initial Site Characterization

No change from the original CAP-Part A Report submitted in May 1997.

II.D.1 Regulated Substance Released

No change from the original CAP-Part A Report submitted in May 1997.

II.D.2 Source of Contamination

No change from the original CAP-Part A Report submitted in May 1997.

II.D.3 Impacted Environmental Media

II.D.3.a Soils

A summary of the analytical results for the soil samples collected during the September/December 1996 CAP-Part A site investigation activities at the site is presented in Table II-3 of the original CAP-Part A Report submitted in May 1997. Laboratory data sheets for the September/December 1996 samples and the project Quality Control Summary Report (QCSR) were presented in Appendices C-1 and C-3 of the original CAP-Part A Report submitted in May 1997.

II.D.3.a.1 Initial Site Characterization

During the initial site characterization by Anderson Columbia, soil samples collected from the tank pit after the tank removal indicated elevated concentrations of total petroleum hydrocarbon (TPH) requiring further investigation.

```
98-091P(wpd)/Tank100/082698
```

II.D.3.a.2 CAP-Part A Investigation (September 1996).

Trace concentrations of toluene, ethylbenzene, and xylenes were detected in samples located in the tank pit and around the perimeter; however, the concentrations were well below the corresponding soil threshold levels. Benzene was detected in sample 4002D1 at a concentration of 0.13 mg/kg, which exceeds the soil threshold level (i.e., Table A, Column 2). In addition, naphthalene was detected in borehole 40-02; however, there are no soil threshold levels for this polynuclear aromatic hydrocarbon (PAH) compound. TPH concentrations ranged from 92.6 mg/kg to 23,100 mg/kg. The extent of contamination appeared to be limited to the immediate vicinity of the tank pit area.

II.D.3.a.3 CAP Part A Investigation (May 1998)

In August 1997, representatives from GA EPD, Fort Stewart Directorate of Public Works (DPW), and Science Applications International Corporation (SAIC) conducted a review of the available data on the site, visited the site, and determined that no additional borings were necessary to determine the extent of contamination. In addition, all parties agreed that site-specific geotechnical parameters would be collected for fate and transport modeling.

Thus, boring 40-06 was installed near the tank pit and a geotechnical soil sample was collected.

II.D.3.a.4 Soil Investigation Conclusions

The nature and extent of the soil contamination at the UST 100 site was evaluated using analytical data from the CAP-Part A site investigation and the initial site characterization (i.e., tank removal). Although benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds were not detected in the tank pit during closure activities at concentrations exceeding their respective threshold levels, the soil samples contained elevated concentrations of TPH. Soil samples collected during the CAP-Part A investigation only indicated the presence of benzene above applicable soil threshold level (i.e., Table A, Column 2) in a borehole located in the tank pit. Benzene was detected at concentration of 0.13 mg/kg in sample 4002D1. This sample was collected above the water table, and the groundwater sample from this borehole did not indicate the presence of benzene.

Therefore, it is concluded that the soil contamination is limited to the immediate area of the tank pit and that the horizontal and vertical extent of contamination has been delineated.

II.D.3.b Groundwater

A summary of the analytical results for the groundwater samples collected during the September/December 1996 CAP-Part A site investigation activities at the site is presented in Table II-4 of the CAP-Part A Report submitted in May 1997. Laboratory data sheets for the September/December 1996 samples and the project QCSR are presented in Appendices C-2 and C-3 of the CAP-Part A Report submitted in May 1997.

II.D.3.b.1 Initial Site Characterization

Groundwater samples were not collected during tank removal activities.

II.D.3.b.2 CAP-Part A Investigation (September/December 1996)

Of the five groundwater samples collected during the 1996 site investigation activities, one sample (4001W2) had detectable concentrations of BTEX compounds; however, only benzene was above its respective MCL. For sample 4001W2, the benzene concentration was 6.9 μ g/L, ethylbenzene was 23.8 μ g/L, toluene was 6.0 μ g/L, and xylene was 84.6 μ g/L. The MCLs for benzene, ethylbenzene, toluene, and xylene are 5 μ g/L, 700 μ g/L, 1000 μ g/L, and 10000 μ g/L, respectively.

Since benzene was the only constituent identified above MCLs and it only exceeded the MCL in one sample, the Installation requested that fate and transport modeling be conducted at the site to determine whether or not groundwater will affect nearby drinking water supply wells or surface water bodies. Comments received from GA EPD on March 13, 1998, indicated that the investigation activities performed to date were adequate to delineate the horizontal and vertical extent of contamination. However, GA EPD stated that the soil and groundwater contamination identified at the site had to be addressed. Thus, in correspondence dated April 20, 1998, the Installation proposed to collect site-specific geological information and perform fate and transport modeling to assess contaminant migration impacts. Site-specific geotechnical data, which is presented in Appendix C and Addendum Table II-6, were collected in May 1998 for use in fate and transport modeling. The results of the potential receptor survey, risk screening, and fate and transport modeling are presented in Appendix G.

II.D.3.b.3 CAP-Part A Investigation (May 1998)

No groundwater samples were collected in May 1998.

II.D.3.b.4 Groundwater Investigation Conclusions

The extent of groundwater contamination was determined to be limited to the tank pit. The results of the potential receptor survey, risk screening, and fate and transport modeling indicate that a no-further-action-required status is warranted for this site.

II.D.3.c Surface Water Impacted

No change from the original CAP-Part A Report submitted in May 1997.

II.D.3.d Drinking Water Impacted

No change from the original CAP-Part A Report submitted in May 1997.

⁹⁸⁻⁰⁹¹P(wpd)/Tank100/090298

II.D.4 Local Water Resources

II.D.4.a Drinking Water Supplies

No change from the original CAP-Part A Report submitted in May 1997.

II.D.4.b Surface Water Bodies

No change from the original CAP-Part A Report submitted in May 1997.

II.D.5 Other Hydrogeologic Data

II.D.5.a Depth to Groundwater

No change from the original CAP-Part A Report submitted in May 1997.

II.D.5.b Groundwater Flow Direction

No change from the original CAP-Part A Report submitted in May 1997.

II.D.5.c Hydraulic Gradient

No change from the original CAP-Part A Report submitted in May 1997.

II.D.5.d Total Organic Carbon (Optional)

No changes from the original CAP-Part A Report submitted in May 1997.

II.D.5.e Grain Size Distribution

No changes from the original CAP-Part A Report submitted in May 1997. Sample 400631, collected July 1, 1998 was analyzed for grain size distribution and the results are presented in Addendum Table II-6 and Appendix C.

II.D.5.f Total Petroleum Hydrocarbons (Optional)

Soil samples were analyzed for TPH and the results are presented in Addendum Table II-3 and were discussed in Section II.D.3.a.2 of this addendum.

II.D.6 Corrective Action Completed or In Progress

II.D.6.a USTs Removed

No change from the original CAP-Part A Report submitted in May 1997.

II.D.6.b Excavation and Treatment/Disposal of Backfill and Native Soils

No change from the original CAP-Part A Report submitted in May 1997.

II.D.7 Conclusions and Recommendations

II.D.7.a Summary of Conclusions

The UST 100 site, Facility ID #9-089115, is located within an average or higher groundwater pollution susceptibility area. Public groundwater supply wells are located within a 2-mile radius of the site; however, the distance between the site and the nearest supply well is greater than 500 feet. Surface water bodies are located within a 1-mile radius of the site; however, the distance between the site and the nearest surface water body is greater than 500 feet. Based on this information, the applicable soil threshold levels for the site are those listed in Table A (GA EPD Rules for Underground Storage Tank Management, Chapter 391-3-15) for the Average or Higher Groundwater Pollution Susceptibility Area (Column 2) greater than 500 feet to a withdrawal point category. Regulatory limits [i.e., maximum contaminant levels (MCLs)] for groundwater contamination at the site are in accordance with the Safe Drinking Water Act.

The site was characterized through soil sampling conducted during the removal of UST 100, and a CAP-Part A site investigation that involved both soil and groundwater sampling. Six soil samples were collected from the tank pit excavation during removal activities. In 1996, five soil boreholes were drilled, two located within the former tank pit and three others around the perimeter of the pit. Two soil samples and one groundwater sample were collected from each of the five boreholes. In 1998, an additional soil boring was drilled to collected a soil sample for site-specific geotechnical information.

Soil analytical data from the tank removal sampling indicated that the soil from the tank pit had elevated concentrations of TPH. Benzene contamination in soil above applicable soil threshold levels was found in boring 40-02 during the CAP-Part A investigation. None of the other borings contained BTEX or PAH compounds above applicable soil threshold levels.

Groundwater analytical data from the site characterization of the CAP-Part A investigation indicate that benzene contamination in the groundwater sample from boring 40-01 exceeds its MCL. However, this contamination was delineated and is limited to an area in the immediate vicinity of the tank pit. Waste oil analytes were not detected above detection limits or MCLs in groundwater samples collected from piezometers installed around the perimeter of the former tank pit (i.e., 40-02 through 40-05).

As a result of the risk screening, benzene was selected as a chemicals of concern (COC) for soils and benzene and lead were selected as COCs for groundwater. However, the lead concentrations in groundwater were attributed to the suspended particles in the samples. Benzene concentrations in groundwater were below the alternate concentration limit (ACL) of 990 μ g/L.

Results of the fate and transport modeling indicate that benzene will not reach a drainage ditch located 300 feet north of the site or Childpen's Pond located 1420 feet northwest of the site. Vertical migration of

the contaminant plume to the Principal Artesian aquifer is improbable due to the thick and impermeable confining unit that separates the surficial aquifer from the Principal Artesian aquifer.

II.D.7.b Recommendations

Analytical results for soil and groundwater samples collected during the site investigation at the site are sufficient to define the nature and extent of petroleum-related contamination at the site. Based on these findings, further investigation of the UST 100 site, Facility ID #9-089115, is not required and a no-further-action-required status is recommended for this site. The rationale for this recommendation is presented in Section III, Site Investigation Plan (SIP).

II.D.8 Site Ranking

No change from the original CAP-Part A Report submitted in May 1997.

III. SITE INVESTIGATION PLAN

This SIP presents the technical approach used to delineate the full extent of soil and/or groundwater contamination as a result of releases from UST 100, Facility ID #9-089115 and provides justification for a no-further-action-required status for this site.

III.A Horizontal and Vertical Extent of Contamination

III.A.1 Soils

Soil contamination was delineated by analyzing soil collected during initial site characterization (i.e., tank removal) and CAP-Part A site investigation. The CAP-Part A investigations consisted of two boreholes in the tank pit, and four boreholes around the perimeter of the tank pit. Soil samples that were collected from the tank pit after the tank removal indicated elevated concentrations of TPH. No BTEX compounds exceeded applicable soil threshold levels during the tank removal. The depth at which the tank removal samples were collected is not known; however, given the fact that the groundwater table is located at a depth of approximately 3 to 4 feet below ground surface (BGS), it is unlikely that these samples were taken from a point at or below the groundwater table. Soil samples collected from boreholes 40-01, 40-03, 40-04, and 40-05 that were located in and around the perimeter of the tank pit did not indicate the presence of BTEX or PAH compounds above applicable soil threshold levels. Benzene was detected in soil boring 40-02 at 0.13 mg/kg.

The extent of the soil contamination was determined during the CAP-Part A site investigations. Therefore, no additional soil borings are recommended as part of the SIP.

III.A.2 Groundwater

Groundwater contamination was delineated by analyzing groundwater from five temporary piezometers installed in and around the contamination source during the CAP-Part A site investigations. Groundwater samples collected from three piezometers that were located around the perimeter of the tank pit did not indicate the presence of BTEX or PAH compounds above applicable MCLs. The groundwater sample collected from the borehole 40-01 (the borehole in the tank pit) indicated that the concentration of benzene exceeded its respective MCL.

The extent of the groundwater contamination was determined during the CAP-Part A site investigation. Therefore, no monitoring wells are recommended as part of the SIP.

III.A.3 Surface Water

No changes from the original CAP-Part A Report submitted in May 1997.

III.B Vadose Zone and Aquifer Characteristics

No changes from the original CAP-Part A Report submitted in May 1997.

)

THIS PAGE INTENTIONALLY LEFT BLANK

98-091P(wpd)/Tank100/082698

.

IV. PUBLIC NOTICE

No change from the original CAP-Part A Report submitted in May 1997.

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

V. CLAIM FOR REIMBURSEMENT: GUST TRUST FUND

No change from the original CAP-Part A Report submitted in May 1997.

.

)

THIS PAGE INTENTIONALLY LEFT BLANK

VI. REFERENCES

-

Brown, Carey, W. 1998. Letter to Kenneth White (GA EPD), April 20, 1998.

(

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

TABLES

98-091P(wpd)/Tank100/090298

.

(

.

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

98-091P(wpd)/Tank100/090298

24

·	40-06
Sample ID	400631
Depth Interval (ft BGS)	8.0 - 10.0
Grain size analysis - % Fines	37
Grain size analysis - % Sand	63
Grain size analysis - % Gravel	0
Liquid Limit	44.5
Plastic Limit	17.3
Plasticity Index	.27.2
Natural Moisture Content (%)	12.1
Permeability (cm/sec)	4.8 × 10 ⁻⁵
Porosity	0.58
Specific Gravity	2.61

Addendum Table II-6. Geotechnical Results for Soil Samples Collected at UST 100; Facility ID #9-089115

NP = Nonplastic.

(

)

THIS PAGE INTENTIONALLY LEFT BLANK

*

FIGURES

(

 \langle

THIS PAGE INTENTIONALLY LEFT BLANK

Addendum Figure II-1. Site Location Map for UST 100, Facility ID #9-089115

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

SOIL BORING LOGS

98-091P(wpd)/Tank100/082698

)

THIS PAGE INTENTIONALLY LEFT BLANK
No changes from the original CAP-Part A submitted to GA EPD in May 1997.

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

TECHNICAL APPROACH FOR FACILITY ID #9-089115

ĺ

)

THIS PAGE INTENTIONALLY LEFT BLANK

No changes from the original CAP-Part A submitted to GA EPD in May 1997.

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

98-091P(wpd)/Tank100/082698

.

.

APPENDIX C

ANALYTICAL DATA SHEETS

98-091P(wpd)/Tank100/082698

ĺ

)

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

GEOTECHNICAL DATA

98-091P(wpd)/Tank100/082698

(

1

THIS PAGE INTENTIONALLY LEFT BLANK

SPECIFIC GRAVITY AND POROSITY

PROJECT: Fort Stewart LOCATION OF PROJECT: CAP Part A DESCRIPTION OF SOIL: Lt. Gravish Brown Clayey Sand TESTED BY: B.J. Vance

JOB NO.: <u>98066</u> SAMPLE NO:<u>400631</u> DEPTH OF SAMPLE: DATE OF TESTING: <u>7/29/98</u>

Wet Density, $Y_m = W / V$

Dry Density, $Y_d = W_s / V$ or	$Y_{d} = Y_{m} / (1+w)$
double check	$Y_{d} = Y_{m} / (1 + w)$
$Y_0 = W_s / V$	Y _m = 80.91 lbs/ft ³
Y _d = 72.18 lbs/ft ³	Y _d = 72.18 lbs/ft ³

Vold Ratio,	$e = V_V / V_S$	
e =	1.2573	

Porosity, $n = V_V N$ n = 0.56

Specific Gravity = 2.61

Degree of Saturation, $S = V_W/V_V$ S = 0.2510

CATLIN Engineers and Scientists Geotechnical Laboratories

PERMEABILITY TEST ANALYSIS (ASTM D5084)

Project : Fort Stewart

Location of Project : CAP Part A

Description of Soil : Lt.Grayish Brown Clayey Sand

Sample Type (Undisturbed or Remolded) Standard Proctor:

> Maximim Dry Density: _____ pcf Optimum Moisture Content: %

Sample Permeation:

	De-Aired Wa	ter
% Saturation:	100	%
Cell Pressure:	65	 psi
Lower Pressure:	61	psi
Upper Pressure;	60	_ psi
Gradient:	12.13	

Job # :	98066
Date of Testing:	7/24-27/98
Tested by:	BV-CA
Boring # :	
Sample # :	400631
Sample Depth :	

% Sample Compaction: % Sample Dry Density: pcf Sample Moisture Content: % Sample Wet Density: pcf

Sample	Dimensions	, <u></u>
	Before	Afler
Length (cm)	5.80	5.80
Diameter (cm)	4.70	4.75
Water Content (%)	13.1	18,5
Weight (g)		188.7

Constant Head Calculation:

 $K = [V(t_1, t_2) LR_T]/[P_BAt] (cm/sec)$

t ₂ (min)	t ₁ (min)	(t ₂ - t ₁)*60 (sec)	V (cm²)	[LR _T]/[P _B A] (cm [.])	K (cm/sec)
57	56	60	0.7	4.42E-03	5.16E-05
58	57	60	0.7	4.42E-03	5.16E-05
59	58	60	0.6	4.42E-03	4.42E-05
60	59	60	0.6	4.42E-03	4.42E-05

Kavg = 4.79E-05 cm/sec

C-6

ATTERBERG LIMITS DETERMINATION (ASTM D4318-93)

		Stewart	<u> </u>			Job N	10. <u>9e</u>	066		
Ļ	cation of Proje	xt <u>CAP p</u>	A - A			Borin	g No	Sample No.	400631	
D	escription of So	sil Ligert	grayist	brown	ط	any si	und		CL	
	epth of Sample									
1	Iguid Limit De	termination							· ·•	
	Can no.			41		C14	27	C5		ľ
	Wt. of soil + c			5,7	0	5.72	5.96	7.84		ĺ
	Wt. of dry soil		5.25	4	10	4.47	4.85	6.04		!
	Wt. of can, M.		2.41	2.9	-0		2,40	2.40		
	Wt of dry soil,	M	2.84	2,	30	2.24	2,45	3.64		
	Vt. of moisture		1.15	1.0		1.05	1.1	1.8		
	Water content,	W%	40.49	43.	98	46.40	45.31	49.45		
1	No. of blows, N	1.200	39	30		20	23	13		
w% Pla	× × × ×		25 30	40 S		60		PLAST	D LIMIT = 4 C LIMIT = <u>1</u> Y INDEX = 2 C L	7.3
С	ad do.	······································	cci	3		CC7	- ccr			
и	/t. of wet soil -	+ can, M _{cm}	2,9			3.13	A.5			
W	/t. of dry soil -	+ can, M _{eda}	2,8			2.94	2.4			
W	t. of can, M _e		1.90			1.91	1.80			
W	t. of dry soil, l	м,	D.	92		1.03	0.4	· · · · · · · · · · · · · · · · · · ·		
- 14	1. of moisture,	M,	0.1	7		0.19	009			
L W	ater content, w	% = w _p	18	. +8		18.45	15.0			

{

.

GRAIN SIZE ANALYSIS-SIEVE (ASTM D422)

Project Fort Stewart	Job No. 98040
Location of Project CAP Part A	Sample No. 400.031
Description of Soil Light grand brown days	Depth of Sample Boring No
Tested By	_ Date of Testing _ 7 ZA 198

Sample preparation procedures outlined in ASTM D421 and D2217.

Nominal diameter of largest particle

No. 10 sieve No. 4 sieve 3/4 in. Approximate minimum Wt. of sample, g 200 500 1500

Weight of sample used, M_m=_____8

Man	M _{ode}	M. XI	M,	M,	w %	M	М,
		113.86					137.40

Sieve analysis and grain shape

Sieve no.	Diam. (mm)	WI retained	% retained	Σ% retained	% passing
3*					
2*			•		
1 1/2 *					<u> </u>
3/4*				· · · · · · · · · · · · · · · · · · ·	
3/8"				······································	
#4					
#10		0.07	0.05	20.0	99,95
#20		3.14	2.28	2.33	97 67
#40		7.71	5.61	7.94	92.00
#60		5.84	6.43	14 37	\$5.03
#140		59.78	43.49	5786	42.14
N200		7.70	5,60	4 3.46	36.54
pan		0.19	0.14	63.6	

% retained = (WI. retained/W.) · 100

% passing = $100 - \Sigma$ % retained.

CATLIN Engineers and Scientists Geotechnical Laboratories

APPENDIX D

DOCUMENTATION OF WATER SUPPLY SURVEY FOR THE FORT STEWART GARRISON AREA

Ĺ

)

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

98-091P(wpd)/Tank100/082698

•

No changes from the original CAP-Part A submitted to GA EPD in May 1997.

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

SITE RANKING FORM OF FACILITY ID #9-089115

)

)

THIS PAGE INTENTIONALLY LEFT BLANK

98-091P(wpd)/Tank100/082698

5

4

No changes from the original CAP-Part A submitted to GA EPD in May 1997.

 $\left(\right)$

)

Ì

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F

PUBLIC NOTIFICATION NEWSPAPER ANNOUNCEMENT FOR FACILITY ID #9-089115

Ĺ

)

THIS PAGE INTENTIONALLY LEFT BLANK

No changes from the original CAP-Part A submitted to GA EPD in May 1997.

ł

,

1

)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX G

RISK-BASED CORRECTIVE ACTION

98-091P(wpd)/Tank100/090298

(

(

)

THIS PAGE INTENTIONALLY LEFT BLANK

98-091P(wpd)/Tank100/090298

•

G. PROVIDE RISK-BASED CORRECTIVE ACTION

G.1Approach

A risk-based approach was utilized to determine the need for further action at the UST 100 site. Due to the nature of the contamination (petroleum hydrocarbon contamination of groundwater), the risk-based approach was limited to human health concerns. Ecological risk concerns are negligible as a result of the lack of habitat available for ecological receptors due to 10 to 12 inches of concrete overlying the site.

The methods for assessing human health concerns for the site were derived primarily from recent Georgia Environmental Protection Division (GA EPD) guidance (GA EPD 1996) and the *Supplemental Guidance to RAGS: Region IV Bulletin Human Health Risk Assessment* (EPA 1994); these were supplemented by additional guidance documents on risk assessment methods referenced in this section. Risk-based remediation threshold levels were identified in two steps: (1) screening against risk-based and applicable, relevant, and appropriate requirement (ARAR)-based screening levels for chemicals of concern (COCs), and (2) development of site-specific alternate concentration limits (ACLs) for the COCs identified during the screening. The following sections present the conceptual model of the exposure setting and potential receptors and the general methodology employed to perform the screening for COCs and the development of ACLs.

G.2 Potential Receptor Survey

G.2.1 Exposure Assessment

The exposure assessment identifies any potentially complete pathways between the contaminant source and potential receptors. This involves identifying potential current and future receptors, release mechanisms through which contamination may come into contact with the receptors, and the routes of exposure through which the receptors may be exposed.

The site is located within an active military installation. The UST 100 site is located within an accesscontrolled fence of a secured motor pool. The land use at the site is currently military industrial. An Installation housing area is located approximately 3000 feet to the northeast. Mill Creek is located upgradient of the site at a distance of approximately 2750 feet to the southwest. Potential downgradient receptors are a drainage ditch and Childpen's Pond, which are located approximately 300 feet north and 1420 feet northwest of the site, respectively.

No current on-site receptors have been identified for the site. Potential current off-site receptors include military residents and children. Potential future on-site receptors may include industrial workers and residential receptors.

No connection between site contamination and current off-site receptors has been identified. It is unlikely that Installation residents will come in contact with contaminated groundwater due to the depth at which drinking water is pumped from the Floridan aquifer and the thick confining layer located between this aquifer and the surficial aquifer. No basements have been identified in the area that could potentially be affected by

vapor intrusion from chemicals in the groundwater. None of the Installation's water supply wells are located downgradient of the UST 100 site. The water supply wells are separated from the surficial aquifer by the Hawthorn Formation, a thick and highly effective confining unit.

Potential future on-site industrial receptors may come in direct contact with site soil contamination during construction or excavation activities. Potential future residential receptors may come in direct contact with groundwater contamination during household water use.

Exposure from *direct contact pathways* represents exposure via direct contact with the source media. For direct contact pathways the exposure point concentration is the concentration source term (EPA 1994) and is represented by data collected at the site. Screening for the direct contact pathways utilize the results of the data collected at the UST 100 site to perform the screens.

Exposure pathways that incorporate chemical migration to a secondary media (groundwater, surface water, sediments, air, and biota) or to an off-site receptor are referred to as *indirect contact pathways*. The exposure point concentrations for the secondary media will be determined using mathematical models that take into consideration chemical-specific and media-specific properties to estimate the chemical concentration in the secondary exposure media.

G.2.2 Screening for Chemicals of Concern

The purpose of a risk evaluation screen is to identify the COCs and areas of concern at a site, and possibly identify sites for which no further action is needed. The first step in the risk process uses screening levels that are readily obtainable and, due to their conservative nature, can be used with a high degree of confidence to indicate sites for which no further action is required.

An American Society for Testing and Materials (ASTM) (ASTM 1995) Tier 1-type risk evaluation process will be applied to the data collected for the UST 100 site to identify any COCs and media for which no further action is needed. The risk evaluation screen involves the following steps:

- Identify potential migration and exposure pathways associated with the site and identify potential exposure scenarios that should be used to select screening levels.
- Identify risk-based and ARAR-based screening levels for each contaminant.
- Compare site-related concentrations to screening levels to determine if any chemicals of potential concern exist at the site.
- Compare detection limits to screening levels to identify potential false negative screening results.

The screening levels for the UST 100 site data have been taken from the following sources based on GA EPD guidance (GA EPD 1996):

• Federal MCLs (EPA 1989);

- GUST Soil Threshold Levels (Table A, Column 2);
- Soil screening levels developed by U.S. Environmental Protection Agency (EPA 1996); and
- Soil and groundwater risk-based concentrations developed by EPA Region 3 (EPA 1996).

These values reflect screening levels based on a combination of ARARs (i.e., MCLs and GUST Soil Threshold Levels), and calculated risk-based values (i.e., EPA Region 3 risk-based concentrations). Soil and groundwater screening levels reflect a combination of both ARAR-based and risk-based values.

Screening levels inherently incorporate assumptions about land use. In identifying COCs, it is generally accepted that screening levels will reflect any potential future land uses and, thus, reflect a conservative residential use scenario (EPA 1991; EPA 1996; ASTM 1995). Based on GA EPD guidance, risk-based screening levels reflect residential land use for groundwater and industrial land use for deep soils (GA EPD 1996).

Default residential exposure scenarios for groundwater assume that use of the land could someday be residential, and that the following exposures could occur:

- Ingestion of groundwater, and
- Inhalation of volatiles during showering.

The default industrial exposure assumptions for deep soils assume that the following exposures could occur:

- Incidental ingestion of soil, and
- Inhalation of volatiles and dust.

The EPA Soil Screening Guidance (EPA 1996) provides two options for selecting soil values that address protection of groundwater. One value assumes no contaminant dilution or attenuation would occur between the soil and groundwater; a second value assumes a 20-fold dilution-attenuation factor (DAF). A DAF of 20 was used to develop soil screening values protective of groundwater at the UST 100 site.

If ARAR- or risk-based values are not available, it generally reflects (1) that the chemical is not considered to be toxic except perhaps at extremely high concentrations (e.g., aluminum, sodium, etc.); (2) no dose-response data indicate a toxic effect; or (3) EPA is currently reviewing toxicity information and no reference dose or cancer slope factor currently is available.

G.2.3 Results

The risk screening process is a systematic screening of sample results to determine site-related COCs. Chemical concentrations below risk- or ARAR-based screening levels are not considered COCs and are not evaluated further. Tables G.1 and G.2 present the results of the risk-based screening for the Part A SI soil and groundwater data, respectively.

Autorical Learching to Carab Autorical Soil Soil Soil <th></th> <th></th> <th>-</th> <th></th> <th>40-01</th> <th>40-01</th> <th>40-02</th> <th>40-02</th> <th>40-03</th>			-		40-01	40-01	40-02	40-02	40-03
(4): Grant for the form th		- 1	Screening Levels		4001B1	4001C1	4002C1	4002D1	4003A1
	sample interval:	Georgia UST			25.' - 5.0'	5.0' - 7.5'	5.0' - 7.5'	7.5' - 10.0'	1.1' - 2.5'
: Action Levels Screening Lacking to the solid Carbo Grab	viedia:	Corrective	Risk-based		Soil	Soil	Soil	Soil	Soil
Ite: Fast of log	ample Type:	Action Levels	Screening	Leaching to	Grab	Grab	Grab	Grab	Grab
Haltenet (ug/kg) u 33800 u 3384 u 3380 u 3384 u 3380 u 3384 u 3380 u 3384 u 3384 u 3384 u 3384 u 3384 u 3384 u u 3380 u 3384 u u 3386 u <thu< th=""> u u <thu<< th=""><th>collection Date:</th><th>for Soil⁴</th><th>Ľevel^o</th><th>Groundwater</th><th>06-Sep-96</th><th>06-Sep-96</th><th>19-Sep-96</th><th>19-Sep-36</th><th>15-Dec-96</th></thu<<></thu<>	collection Date:	for Soil ⁴	Ľevel ^o	Groundwater	06-Sep-96	06-Sep-96	19-Sep-96	19-Sep-36	15-Dec-96
Indent NM* S2000000 5400 374 U 3860 U 3860 <thu< th=""> 1500 U 1500</thu<>	nits:	(ug/kg)	(ug/kg)	(ng/kg)	(ug/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)
N_{1}^{4} 12000000 570000 374 U 356 U<	-Chloronaphthalene ^d	N/A°	82000000	84000					344 L
e N/K 6100000 4200000 374 U 3380 U 3380 </td <td>cenaphthene</td> <td>N/A^e</td> <td>12000000</td> <td>570000</td> <td>374 U</td> <td></td> <td></td> <td></td> <td>344</td>	cenaphthene	N/A ^e	12000000	570000	374 U				344
N/A* F1000000 1200000 1200000 1200000 121 132 1 132 1	cenaphthylene	N/A ^e	6100000	4200000	374 U	384 U			344
8 200000 30 57 U 5.8 U 332.00 10 Inthene N/A* 780 5000 374 U 333.00 U/U 334.1 U 333.00 U/U 334.1 U 336.0 U/U 334.1 U U/U U/U U/U U/U U/U U/U U/U U/U	nthracene	N/A ^e	61000000	1200000					344
Betweet NA* 7800 2000 374 U 384 U 33800 U/L 3860 U/L 386 U/L 180 U/L 180 U/L 18	enzene	Ø	200000	90		5.8 U		130 =	26,6 L
e NA* 780 8000 374 U 384 U 33800 U 3384 U 3384 U 33860 U 3384 U 33860	enzo(a)anthracene	N/A ^e	7800	2000		384 U			344 1
Inthene NM* 780 500 374 U 33800 U 38800 U 3880	enzo(a)pyrene	N/A°	780	8000	374 U	384 U	•		344
rylene NM* 78000 4900 374 U 384 U 33800 UJ 384 U 33800 UJ 384 U 33800 UJ 384 U 388 U 388 U 388 U 388 U 38800 UJ 384 U 38600 UJ 384 U 38600 UJ 38600	enzo(b)fluoranthene	N/A ^c	7800	5000	374 U	384 U			148 148
Influence NM* 78000 49000 374 U 384 U 33800 UJ 384 U 33800 UJ 384 U 33800 UJ 384 U 38800 UJ 384 U 38600 UJ 384 U 38800 UJ 384 U 38600 UJ 384 U 38600 UJ 38600 UJ 384 U 38600 UJ 38	enzo(g,h,ì)perylene	N/A°			374 U	384 U			.4 <u>8</u>
NIA* 780000 160000 374 U 384 U 3360 UJ 384 U 3860 UJ 384 U 3860 UJ 384 U 3360 UJ 384 U 3360 UJ 384 U 3360 UJ 384 U 3860 UJ 3860	enzo(k)fluoranthene	N/A°	78000	49000		_			344
Intracene NM* 780 2000 374 U 388 U 3880 U 3884 U 3884 U 3880 U 3880 U 3880 U 3880 U 3880 U 3884 U 3880 U 3880 </td <td>hrysene</td> <td>N/A^c</td> <td>780000</td> <td>160000</td> <td></td> <td>384 U</td> <td></td> <td></td> <td>344</td>	hrysene	N/A ^c	780000	160000		384 U			344
10000 20000000 13000 5.7 U 5.8 U 340 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 1500 = 334 U 3380 UU	ibenzo(a,h)anthracene	N/A°	780	2000		_			344 1
NM* 8200000 430000 374 U 384 U 3860 UU 384 U 3860 U 485 E U 1500 I U 384 U 3860 U 3860 U 3860 U 386 U	thylbenzene	10000	200000000	13000		_		1500 =	4.5
NM* 82000000 56000 374 U 384 U 384 U d)pyrene N/A* 7800 14000 374 U 33800 UJ 384 U - 5000000 - 500000 374 U 33800 UJ 384 U - 5000000 84000 374 U 384 U 33800 UJ 384 U N/A* 61000000 4200000 374 U 384 U 33800 UJ 384 U N/A* 61000000 4200000 374 U 384 U 33800 UJ 33800 UJ 3380 U 33800	luoranthene	N/A ^c	8200000	4300000	374 U	384. U			344 1
d)pyrene N/4 7800 14000 374 U 384 U 33800 UJ 384 U 33800 UJ 485 = - 5000000 - 5000000 374 U 384 U 33800 UJ 485 = N/A 61000000 4200000 374 U 384 U 33800 UJ 485 = N/A 61000000 4200000 374 U 384 U 33800 UJ 485 = N/A 61000000 410000000 120000 374 U 384 U 33800 UJ 384 U M/A 6000 410000000 120000 57 U 58 U 52 U 120 120 1 Mr 700000 1 70000000 1 13400 U 24000 1 3500000 1 4350000 1 120 1	luorene	N/A°	8200000	560000					344 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ideno(1,2,3-cd)pyrene	N/A*	7800	14000		384° U			344 (
N/4* 82000000 84000 374 U 384 U 33800 UJ 485 = N/4* 61000000 4200000 374 U 384 U 33800 UJ 1300 J N/4* 61000000 4200000 374 U 384 U 33800 UJ 32000 UJ 32000 U 32300 UJ 32000 U 32300 UJ 32000 U 3200 UJ 32000	ead	1	500000	1		2400 =			7200
NIA* 6100000 4200000 374 U 3380 U 1300 J NIA* 61000000 4200000 374 U 3380 U 3380 U 3380 U 3384 U 33800 U 384 U 384 U 384 U 3860 U 384 U 3860 U 384 U 3860 U 384 U 3860 U 3860 <td< td=""><td>aphthalene</td><td>N/A^e</td><td>8200000</td><td>84000</td><td>374 U</td><td></td><td></td><td></td><td>344</td></td<>	aphthalene	N/A ^e	8200000	84000	374 U				344
NIA*61000004200000374U384U3380UJ384U 6000 4100000001200005.7U5.8U5.2U120= 700000 100000000190000190000013400U23100000=4350000= 700000 1000000001900001900001900005.7U5.8U5.8U5.8U100= 700000 1000000001900000190000190000013400U23100000=4900= 700000 1000000001900000019000001900005.7U5.8U5.8U7800= 700000 100000000190000190000190000013400U23100000=4900= 700000 1900001900001900001900001900001900001900019000=4900= 700000 1900100000000190000190000190000190001900019000190001900019000019000019000019000019000019000019000019000019000019000019000019000019000019000019000019000019000019000019000001900000190000019000001900000190000019000001900000190000019000001900000019000000190000001900000190000	henanthrene	N/A ^e	6100000	4200000	374 U	384 U		1300 J	344 1
π Hydrocarbons 6000 410000000 12000 5.7 U 5.8 U 5.2 U 120 $=$ π Hydrocarbons $ -$	yrene	N/A°	6100000	4200000	374 U	384 U		384 U	344 1
m Hydrocarbons -	oluene	6000	41000000	12000	5.7 U	5.8 U	52 U	120 =	8
700000 100000000 190000 6.7 U 5.8 U 800 = 4900 = solit exposure during industrial Land Use. rroundwater ingestion. Used a dilution attenuation factor of 20. in aphthatene as a surrogate obmicat. in aphthatene as a surrogate obmicat. in aphthatene as a surrogate chemicat. in aphthatene as a surrogate chemicat. in aphthatene as a surrogate chemicat. in pyrene as a surrogate chemicat. in aphthatene as a surrogate c	otal Petroleum Hydrocarbons	I	I	ł		13400 U	23100000 =	4350000 =	431000
Average or higher groundwater pollution susceptability area (where public water supply is within 2.0 mi.). Protective of soil exposure during Industrial Land Use. Protective of groundwater ingestion. Used a dilution attenuation factor of 20. Values based on naphthatene as a surrogate chemical. Not applicable. The screening level exceeds the expected soil concentration under free product condition. Values based on pyrene as a surrogate chemical. Not applicable. The screening level exceeding UST action levels. Biold values indicate results exceeding risk-based screening levels. Underfined values indicate results exceeding risk-based screening levels. Indicates that the compound was an estimated value Indicates that the sample wars not detected above the reported sample quantitation limit.	ylenes, Total	700000	1000000000	190000	5.7	5.8 U	800 =		15.9
Protective of groundwater ingestion. Used a dilution attenuation factor of 20. Values based on raphthatene as a surrogate chemical. Values based on pyrente as a surrogate chemical. Values based on pyrente as a surrogate chemical. Dedid values indicate results exceeding risk-based screening levels. 1 Biold values indicate results exceeding risk-based screening levels. 2 Underlined values indicate results exceeding risk-based screening levels. 1 Indicates that the compound was not detected above the reported sample quantitation limit 1 Indicates that the sample vars on detected above an approximate sample quantitation limit 1 Indicates that the sample was not detected above an approximate sample quantitation limit	Average or higher groundwater pollut Protective of soil evocence during and	tion susceptability a distrial Land Lice	rea. (where public v	vater supply is within	1 2.0 mi.).				
Values based on maphthalere as a surrogate chemical. Not applicable. The screening level exceeds the expected soil concentration under free product condition. Values based on pyrene as a surrogate chemical. 3 Bold values indicate results exceeding Georgia UST action levels. 3 Indicate results exceeding fisk-based screening levels. 4 Indicates that the compound was not detected above the reported sample quantitation limit 4 Indicates that the sample vars on detected above an approximate sample quantitation limit 4 Indicates that the sample was not detected above an approximate sample quantitation limit	Protective of groundwater ingestion	lised a dilution aften	ntation factor of 20						
Not applicable. The screening level exceeds the expected soil concentration under free product condition. Values based on pyrene as a surrogate chemical. 9 Bold values indicate results exceeding Georgia UST action levels. 9 Italicized values indicate results exceeding lesching to groundwater screening levels. 10 Underfined values indicate results exceeding lesching to groundwater screening levels. 10 Underfined values indicate results exceeding lesching to groundwater screening levels. 10 Indicates that the compound was not detected above the reported sample quantitation limit 10 Indicates that the value for the compound was an estimated value 10 Indicates that the reample was not detected above an approximate sample quantitation limit	Values based on naphthalene as a st	urrogate chemical.		,					
Values based on pyrene as a surrogate chemical. 3 Bold values indicate results exceeding Georgia UST action levels. 3 Italicized values indicate results exceeding risk-based screening levels. 5 Underfined values indicate results exceeding leaching to groundwater screening levels. 1 Underfined values that the compound was not detected above the reported sample quantitation limit 1 Indicates that the value for the compound was an estimated value 1 Indicates that the reample was not detected above an approximate sample quantitation limit 1 Indicates that the non-non-non-non-non-non-non-non-non-non	Not applicable. The screening level e	exceeds the expecte	ed soil concentratio	w under free produc	t condition.				
D Bold values indicate results exceeding Georgia UST action levels. D Italicized values indicate results exceeding risk-based screening levels. Q Underlined values indicate results exceeding teaching to groundwater screening levels. Indicates that the compound was not detected above the reported sample quantitation limit indicates that the value for the compound was an estimated value. Indicates that the results exceeding leaching to groundwater screening levels. Indicates that the results exceeding leaching to groundwater screening levels. Indicates that the results exceeding leaching to groundwater screening levels. Indicates that the result of the compound was an estimated value. Indicates that the result of the compound was an estimated value. Indicates that the result of the compound was an estimated value. Indicates that the result of the compound was an estimated value. Indicates that the result of the compound was an estimated value. Indicates that the result of the compound was an estimated value.	Values based on pyrene as a surrogi	late chemical.							
Italicized values indicate results exceeding risk-based screening levels. Underlined values indicate results exceeding leaching to groundwater screening levels. Indicates that the compound was not detected above the reported sample quantitation limit indicates that the value for the compound was an estimated value.		ng Georgia UST acti	ion levels.						
2 Underfined values indicate results exceeding leaching to groundwater screening levels. Indicates that the compound was not detected above the reported sample quantitation limit indicates that the value for the compound was an estimated value. J Indicates that the sample was not detected above an approximate sample quantitation limit	 Italicized values indicate results exo. 	seding risk-based s	creening levels.						
Indicates that the compound was not detected above the reported sample quantitation limit Indicates that the value for this compound was an estimated value J Indicates that the sample was not detected above an approximate sample quantitation limit	D. Underlined values indicate results ex	xceeding leaching to	r groundwater screu	ening levels.					
indicates that the value for the compound was an estimated value J indicates that the sample was not detected above an approximate sample quantitation limit Indicates that the same assume second to second the second second second second second second second second sec		ot detected above th	le reported sample	quantitation limit					
u indicates that the sample was not detected above an approximate sample quantitation limit.	indicates that the value for the comp	bound was an estime	ated value						
	Unincides that the sample was not of	elected above an ap	oproximate sample	quantitation limit	- - - -				

,

)

)

98-091P(wpd)/Tank100/082698

G-6

4004B1 4004D1	Station:				40-03	40-04	40-04	40-05	40-05
Interval: Corrections corrections Revents series Solid Solid for bit for Solid for	iample ID:		creening Level	2	4003C1	4004B1	4004D1	400581	4005D1
Type: Type: Circure represents fraction base. Carbon fraction Carbon frac	ample Interval:	Georgia UST			6.0' - 7.6' C - 1	2.5' - 5.0'	7.5' - 10.0'	2.5' - 5.0' Call	7.5 - 10.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	seula: tamnia Tuna-	Corrective Action Lavale	Kisk-pased Screening	l aschine to	Soll	Soll	ool Grah	son Frah	aon Arafi
	collection Date:	for Soil	Level ^a	Groundwater ⁶	15-Dec-96	15-Dec-96	15-Dec-96	15-Dec-96	15-Dec-96
oraphtheters ⁴ MA* 2200000 5400 374 U 351 U 352 U <td>Inits:</td> <td>(uq/kg)</td> <td>(ua/ka)</td> <td>(uq/ka)</td> <td>(uq/ka)</td> <td>(na/ka)</td> <td>(uq/ka)</td> <td>(ug/kg)</td> <td>(ng/kg)</td>	Inits:	(uq/kg)	(ua/ka)	(uq/ka)	(uq/ka)	(na/ka)	(uq/ka)	(ug/kg)	(ng/kg)
NM* 12000000 570000 374 U 355 U	-Chloronaphthalene ^d	N/A*	8200000	84000	I 1	1			388 U
e NM* 6100000 4200000 374 U 353 U 354 U 352 U i i i0000000 12000000 12000000 374 U 353 U 351 U 352 U <t< td=""><td>Acenaphthene</td><td>N/A^e</td><td>120000000</td><td>570000</td><td></td><td>_</td><td>381 U</td><td>352 U</td><td>388 U</td></t<>	Acenaphthene	N/A ^e	120000000	570000		_	381 U	352 U	388 U
NM* 61000000 1200000 374 U 355 U 355 <thu< th=""> 355 <thu< th=""></thu<></thu<>	Acenaphthylene	N/A°	6100000	4200000		_	381 U	352 U	388 U
R 20000 30 5.7 U 5.4 U 5.5 U 381 U 352 U	Anthracene	N/A ^e	61000000	1200000		_	381 U	352 U	388 U
NM* 7800 2000 374 U 355 U 381 U 352 U <t< td=""><td>3enzene</td><td>œ</td><td>20000</td><td>ĝ</td><td></td><td></td><td>5.9 U</td><td>5.4 U</td><td>6 U</td></t<>	3enzene	œ	20000	ĝ			5.9 U	5.4 U	6 U
NM* 780 8000 374 U 355 U 381 U 352 U <th< td=""><td>3enzo(a)anthracene</td><td>N/A°</td><td>7800</td><td>2000</td><td></td><td></td><td>381 U</td><td>352 U</td><td>388 U</td></th<>	3enzo(a)anthracene	N/A°	7800	2000			381 U	352 U	388 U
thene N/K 7800 500 374 U 381 U 382 U 382 U 382 U 381 U 382 U 381 U 382	denzo(a)pyrene	N/A°	780	8000	_		381 U	352 U	388 U
(h) (h) perviete NA* 78000 49000 374 U 353 U 341 U 352 U (h) (horanthene N/A* 78000 49000 374 U 351 U 351 U 352 U 352 U 352 U 351 U 351 U 351 U 351 U 352 U 3	3enzo(b)fluoranthene.	N/A ^e	7800	5000	-	353° U	381 U	352 U	388 1
Mucranthene N/A* 78000 49000 374 U 353 U 352 U a Nuncranthene N/A* 780000 160000 374 U 353 U 351 U 352 U a Nuncranthene N/A* 780000 140000 374 U 353 U 351 U 352 U Terme N/A* 82000000 430000 374 U 353 U 361 U 352 U Theme N/A* 82000000 430000 374 U 353 U 351 U 352	3enzo(g,h,i)perylene	N/A°			-		381 U	352 U	388 U
eff NM* 78000 15000 374 U 353 U 352	3enzo(k)fluoranthene	N/A°	78000	49000			381 U	352 U	388 U
(a,h)anthracene N/A* 780 2000 374 U 353 U 353 U 352 U trene N/A* 82000000 13000 374 U 353 U 351 U 352 U theme N/A* 82000000 430000 374 U 353 U 381 U 352 U theme N/A* 72000000 430000 374 U 353 U 381 U 352 U 1/2.3-cd)pyrene N/A* 70000 4200000 374 U 353 U 353 U 352 U 352 U 352 U 353 U 353 U 352 U 352 U 352 U 352 U 352 U 353 U 353 U 353 U 352 U 352 U 352 U 351 U 353	Chrysene	N/A°	78000	160000	_		381 U	352 U	388 U
Zene 10000 20000000 13000 5.7 U 5.4 U 5.9 U 5.4 U 352 U 353 U 353 U 353 U 352 U 352 U 352 U 353)ibenzo(a,h)anthracene	N/A ^e	780	2000	_		381 U	352 U	388 U
Thene NIA* 82000000 430000 374 U 353 U 381 U 352 U n N/A* 82000000 560000 374 U 353 U 381 U 352 U $1,2,3-col)pyrene N/A* 82000000 400000 374 U 353 U 381 U 352 U 1,2,3-col)pyrene N/A* 61000000 4200000 374 U 353 U 381 U 352 U Ihrené* N/A* 61000000 4200000 374 U 353 U 352 U 352$	Ethylbenzene	10000	20000000	13000			5.9 U	5.4 U	0.9
r_1 NM* 82000000 560000 374 U 353 U 381 U 352 U 1,2.3-col)pyrene N/A* 7800 14000 374 U 353 U 381 U 352 U - 5000000 - 5000000 4100000 374 U 353 U 381 U 352 U Intene ⁴ N/A* 61000000 4200000 374 U 353 U 381 U 352 U Intene ⁴ N/A* 61000000 4200000 374 U 353 U 381 U 352 U Intene ⁴ N/A* 61000000 120000 120000 374 U 353 U 352 U Intene ⁴ Tolo 1 030000 120000 100100000 5.7 U 5.4 U 352 U Intene ⁴ Total Total To	'luoranthene	N/A ^e	8200000	430000	374 U	353 U	381 U	352° U	388 L
1,2,3-cd)pyrene N/A* 7800 14000 374 U 353 U 353 U 352 U alene N/A* 82000000 $-$ 5000000 374 U 353 U 381 U 352 U thene N/A* 61000000 42000000 374 U 353 U 381 U 352 U thene* N/A* 61000000 410000000 374 U 353 U 381 U 352 U through 0 1010000 374 U 353 U 353 U 353 U 352 U 352 U 352 U 352 U 352 U 353 U 353 U 352 U 353 U 352 U 352 U 353 U 352 U 353 U 353 U 352 U 353 U 353 U 353 U 353 U 353 U 353 <td< td=""><td>luorene</td><td>N/A^c</td><td>8200000</td><td>56000</td><td>_</td><td></td><td>381 U</td><td>352 U</td><td>388 U</td></td<>	luorene	N/A ^c	8200000	56000	_		381 U	352 U	388 U
- 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 500000 $-$ 50000 $ -$ 500000 $-$ 50000 $ -$ 500000 $ -$	ndeno(1,2,3-cd)pyrene	N/A°	7800	14000	374 U		381 U	352 U	388 U
altere N/A* 82000000 84000 374 U 353 U 381 U 352 U threne* N/A* 61000000 4200000 374 U 353 U 381 U 352 U threne* N/A* 61000000 4200000 374 U 353 U 381 U 352 U throle 600 410000000 12000 5.7 U 553 U 353 U 352 U 352 <t< td=""><td>ead</td><td>ľ</td><td>500000</td><td>1</td><td></td><td></td><td>6400 =</td><td></td><td>7200 =</td></t<>	ead	ľ	500000	1			6400 =		7200 =
IthenefN/A*61000004200000374U353U381U352UN/A*610000004200000374U353U381U352UN/A*60004100000001200005.7U5.7U552.3J352Uge of higher groundwater70000010000000001900005.7U5.4U5.3J32=4fooleum Hydrocarboins333U381U352Uge of higher groundwater700000100000000019000001900005.7U5.4U5.3J32Eteve of solit exposure during Industrial Land Use4380Uteve of solit exposure during Industrial Land Use5.4U5.3U5.4Uteve of solit exposure during Industrial Land Use4380Uteve of solit exposure during Industrial Land Use4380Uteve of solit exposure during Industrial Land Use2.3U3.4Utere of solit exposure during Industrial Land Use4.4Utere of solit exposure during Industrial Land Use<	Vaphthalene	N/A ^e	8200000	84000	374 U	353 U	381 U	352 U	388 U
N/A*61000000 374 U 353 U 381 U 352 Uatroleum Hydrocarbons $=$ <	² henanthrene ^f	N/A°	6100000	4200000	374 U	353 U	381 U	352 U	388 U
6000 410000000 12000 5.7 U 65 2.3 J 32 $=$ 70000 70000 10000000 10000000 5.7 U 103000 $=$ 4380 U gher groundwater politution susceptability area (where public water supply is within 2.0 mi.) 5.7 U 5.3 U 5.3 U 5.3 U 5.4	yrene	N/A⁵	61000000	420000	374 U		381 U	352 U	388 U
m Hydrocarbons - - - - - 4380 U gher groundwater politution susceptability area (where public water supply is within 2.0 mi.) 5.7 U 5.4 U 5.30 U 5.30 U 5.4 U 5.4 </td <td>loluene</td> <td>6000</td> <td>41000000</td> <td>12000</td> <td>5.7 U</td> <td>65 ¤</td> <td>2.3 J</td> <td>32 =</td> <td>9</td>	loluene	6000	41000000	12000	5.7 U	65 ¤	2.3 J	32 =	9
700000 100000000 1900000 5.7 U 5.4 U 5.9 U soil exposure during industrial Land Use. ion naphthalene as a surrogate chemical. ion naphthalene as a surrogate chemical. 5.7 U 5.4 U 5.9 U ion naphthalene as a surrogate chemical. ion pyrene as a surrogate chemical.	Fotal Petroleum Hydrocarbons	1	ł	1			103000 =		926000 =
Average of higher groundwater pollution susceptability area (where public water supply is within 2.0 mt). Protective of groundwater ingestion. Used a dilution attenuation factor of 20. Values based on naphthalene as a surrogate chemical. Not applicable. The screening level exceeds the expected soil concentration under free product condition. Values based on pyrene as a surrogate chemical. 10 Bold values indicate results exceeding LGT action levels. 10 Indicates that the compound was not detected above the reported sample quantitation limit 11 Indicates that the sample was not detected above the reported sample quantitation limit 11 Indicates that the sample was not detected above the approximate sample quantitation limit	<pre></pre>	700000	1000000000	190000	5.7		5.9 U	5.4 U	6 U
 Protective of groundwater ingestion. Used a dilution attenuation factor of 20. Values based on naphthalene as a surrogate chemical. Not applicable. The screening level exceeds the expected soil concentration under free product condition. Values based on pyrene as a surrogate chemical. 10 Bold values indicate results exceeding risk-based screening levels. 10 Indicates that the values indicate results exceeding textual evels. 11 Indicates that the value for the compound was not detected above the reproted sample quantitation limit 11 Indicates that the sample was not detected above an approximate sample quantitation limit 	 Average or higher groundwater preperties of soil exposure during 	oliution susceptability a Industrial Land Lise	area (where public	water supply is withi	in 2.0 mi.),				
Values based on naphthalene as a surrogate chemical. Not applicable. The screening level exceeds the expected soil concentration under free product condition. Values based on pyrene as a surrogate chemical. 0 Bold values indicate results exceeding Georgia UST action levels. 0 Italicized values indicate results exceeding risk-based screening levels. 1 Indicates that the value for the compound was an estimated value. 2 Indicates that the value for the compound was an estimated value.	Protective of aroundwater indestio	n. Used a dilution atte	nuation factor of 2	Ö					
Not applicable. The screeding level exceeds the expected soil concentration under free product condition, Values based on pyrene as a surrogate chemical. 10 Bold values indicate results exceeding Georgia UST action levels. 10 Indicided values indicate results exceeding reaching levels. 10 Indicates that the compound was not detected above the reported sample quantitation limit 11 Indicates that the value for the compound was an estimated value.	Values based on naphthalene as	a surrogate chemical.							
Values based on pyrene as a surrogate chemical. 10 Bold values indicate results exceeding Georgia UST action levels. 10 Itelicized values indicate results exceeding risk-based screening levels. 10 Indicates that the compound was not detected above the reported sample quantitation limit 11 Indicates that the value for the compound was an estimated value 12 Indicates that the value for the compound was an estimated value 13 Indicates that the value for the compound was an estimated value	Not applicable. The screening lev	ref exceeds the expect	ted soil concentrat	ion under free produ	ct condition,				
 Bold values indicate results exceeding Georgia UST action levels. Italicized values indicate results exceeding risk-based screening levels. Underlined values indicate results exceeding teaching to groundwater screening levels. Indicates that the compound was not detected above the reported sample quantitation limit Indicates that the sample was not detected above an approximate sample quantitation limit 	Values based on pyrene as a sur	rogate chemical.							
10 Italicized values indicate results exceeding risk-based screening levels. 10 Underlined values indicate results exceeding teaching to groundwater screening levels. 10 Indicates that the compound was not detected above the reported sample quantitation limit 11 Indicates that the value for the compound was an estimated value 12 Indicates that the sample was not detected above an approximate sample quantitation limit		eding Georgia UST ac	tion levels.						
10 Underfined values indicate results exceeding teaching to groundwater screening tevels. Undicates that the compound was not detected above the reported sample quantitation limit J Indicates that the value for the compound was an estimated value UL Indicates that the sample was not detected above an approximate sample quantitation limit	10 Italicized values indicate results	exceeding risk-based	screening levels.						
U indicates that the compound was not detected above the reported sample quantitation limit J Indicates that the value for the compound was an estimated value UJ Indicates that the sample was not detected above an approximate sample quantitation limit		s exceeding leaching t	o groundwater scr	eening tevels.					
u indicates that the value on the compound was an estimated value UI indicates that the service are detected above an approximate sample quantitation limit or are to the test the service of the	U indicates that the compound was indicates that the safety for the compound was	s not detected above t	he reported sampl	e quantitation limit					
or instantion that are considered occurred operations of the main minimum. 1. Tairtainte test the security on a security of the	Indicates that the sample was no	urpound was all estin thetected above an a	lateu value innroximate samnli	e grantitation limit					
K Indicates that the sample results are unusable and the presence of the componing control of very resulted	allowed a long of the second				·! :				

98-091P(wpd)/Tank100/082698

÷

(

G-7

			40-01	40-02	40-03	40-04	40-05
Sample ID:	Screening Levels	g Levels	4001W2	4002W2	4003W2	4004W2	4005W2
Media: Samula Tuna:	Fodowal	Risk-based	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
	reactal	Screening	629	Grab	Grab	Grab	Grab
Collection Date:	SDWA MCLs	Level ²	06-Sep-96	19-Sep-96	16-Dec-96	15-Dec-96	16-Dec-96
UIIIS.	(1/gn)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
2-Chloronaphthalene ^b		1500	U 01 .	10 U	10 U	11 01	10 11
Acenaphthene		2200	10 U	10 U			
Acenaphthylene		1100	10 U	10 11		-	
Anthracene		11000	10 U				
Benzene	ŝ	0.36	= 6.9	1			
Benzo(a)anthracene		0.092		2 I C		이 드 이 드	
Benzo(a)pyrene	0.2	0.0092	10 11			÷	기
Benzo(b)fluoranthene		0.092			•••	의 :: 리 :	
Benzo(g,h,i)perylene				2 2 2	• •		의
Benzo(k)fluoranthene		0.92	10 11				
Chrysene		9.2		의 II 의 II			
Dibenzo(a,h)anthracene		0.0092			• •	의 의 의	
Ethylbenzene	200	1300	23.8 =				이 다 의 "
Fluoranthene		1500	10 U				
Fluorene		1500	10 U				
Indeno(1,2,3-cd)pyrene		0.092	10 N				
Lead	15 ^d						
Naphthalene		1500	25.3 =	10 11	11 01	11 017	= 060Y
Phenanthrene [°]		1100	11 01				
Pyrene		1100	10 11				
Toluene	1000	750) <u>1</u> 1 2		0 1		
Xylenes, Total	10000	12000	84.6 =		⊃ ⊏ • •	∋:⊑ n v	
· Protective of tap water ingestion by a resident.	t by a resident.						
^b Values based on naphthalene as a surrogate chemical.	a surrogate chemical.						
 Values based on pyrene as a surrogate chemical. 	rogate chemical.						
Technology Action Level (Federal Register Vol. 56. No. 110, June 7, 1991)	ral Register Vol. 56. No. 1	110. June 7, 1991)					
10 Bold values indicate results exceeding Federal Safe Drinking Water Act Maximum Contaminant Levels.	eding Federal Safe Drinki	ng Water Act Maximur	n Contaminant Levels.				
10 Underlined values indicate results exceeding risk-based screening fevels	is exceeding risk-based scr	cening levels.					
U Indicates that the compound was not detected above the reported sample quantitation limit	is not detected above the r	eported sample quantit:	ation limit				
J indicates that the value for the compound was an estimated value	ompound was an estimated	l value					
UI indicates that the sample was not detected above an approximate sample quantitation limit	f detected above an appro	above an approximate sample quantitation limit	tion limit				
chine of an and the set of the set of the set of the set			Amound could act by				

98-091P(wpd)/Tank100/082698

G-8

Benzene was detected above the GUST corrective action level (8 μ g/kg) and the risk-based screening value based on leaching to groundwater in one soil sample. Ethylbenzene, lead, naphthalene, phenanthrene, toluene, xylenes, and TPH were detected below screening levels. Benzene was selected as a COC for UST 100 site soils.

Soil detection limits for benzene exceeded screening levels for two samples (4002C1 and 4003A1). Detection limits for four PAHs in one sample (4002C1) also exceeded screening levels. The elevated detection limits were the result of analytical dilutions of the samples to account for matrix interference during analysis. Detection limits represent levels of confidence where a reported value above the level is considered an accurate value. It is reasonable to assume that the analysis could measure values at the screening levels if the contaminants were present in soils at screening levels. As such, no COCs for soils were selected based on the detection limit screening.

Benzene was detected above the risk-based screening level (0.36 μ g/L) and the MCL (5 μ g/L) for one sample collected for UST 100 site groundwater. Lead was sampled for and detected in three samples. Two of these detections exceeded the technology action level of lead (15 μ g/L). Ethylbenzene, naphthalene, toluene, and xylenes were detected below screening levels. Benzene and lead were selected as COCs for groundwater.

Detection limits for benzene and several PAHs exceeded risk-based screening levels. For these chemicals, risk-based values represent values below analytically achievable levels. The detection limits for one PAH, benzo(a)pyrene, also exceeded the federal MCL of 0.2 ppb by two orders of magnitude. No COCs for groundwater were selected based on the detection limit screening.

G.2.4 Uncertainties

Groundwater samples collected during the CAP-Part A investigations were collected from hydropunch sampling devices or temporary piezometers and contained a high amount of suspended solids and were very turbid. The lead concentrations in these samples above the technology action level is attributed to the suspended particles and not the contaminated groundwater.

G.2.5 Alternate Concentration Limits

Detections exceeding the conservative generic screening levels are considered COCs. ACLs are developed for the COCs using site-specific information. GA EPD recommends developing risk-based remediation levels using a risk goal at least 1×10^{-6} and not to exceed 1×10^{-4} for all carcinogens, and a hazard quotient (HQ) of 3 for noncarcinogens (GA EPD 1996).

Benzene was selected as a COC for UST 100 soils. A soil detection for benzene exceeded the GUST screening level. The GUST screening value is based on direct contact with contaminated soils. Direct contact with the contamination in the soil will not occur at the site. The former location of UST 100 is completely covered by a high strength concrete pad. Current and future land use for the site indicates that this cement pad will remain in place for the foreseeable future. As such, no actual risks to a on-site receptor will occur as no pathway exists where a receptor will encounter soils beneath the concrete.

If future land use decisions dictate the removal of the cement pad, soil ACLs will need to be developed that reflect the anticipated land use. Since no current or future land use is identified where receptors will encounter soil contamination for the site, no soil ACLs are developed.

The soil detection for benzene also exceeded the risk-based screening level based on leaching to drinking water. The UST 100 has been removed thus no on-going contaminant source exists. Soil contamination is the result of past releases from the USTs. Contaminant levels are expected to decrease over time due to natural attenuation and biodegradation. Soils may act as a limited source to the groundwater beneath the site. Partitioning of the benzene in soils to the groundwater (assuming equilibrium) results in a concentration (381 μ g/L) two orders of magnitude higher than the highest concentration (6.9 μ g/L) detected in the groundwater beneath the site.

Benzene and lead were selected as COCs for UST 100 site groundwater. No risk-based methodology can be employed to develop site-specific cleanup levels for lead in the groundwater at the site. The default screening level of 15 μ g/L for lead based on the technology action level will be used as the ACL for the site. The ACL for benzene was developed using a target risk of 1 × 10⁻⁴. No current receptor for groundwater contamination exists at the site. The most likely potential future exposure would be ingestion of groundwater by an industrial worker. An ACL for an industrial drinking water receptor was calculated using a target risk of 1 × 10⁻⁴ or an HQ of 3 and EPA methodology (EPA 1994). The groundwater ACL calculated for benzene is 990 µg/L and the ACL calculation is presented in Section G.5.

G.3 Fate and Transport Model

The AT123D model was used to determine the impact of dissolved hydrocarbons on potential receptors. Modeling of the leaching of soil contamination to the groundwater was performed because the highest benzene concentration in soil (130 μ g/kg) exceeded the leaching to groundwater screening value (30 μ g/kg). Thus, the benzene groundwater concentration was calculated from the benzene soil concentration by partitioning, which results in a groundwater concentration of 381 μ g/L. Site-specific geotechnical data, which is presented in Appendix C and Addendum Table II-6, was collected in May 1998 for use in the fate and transport modeling. Vertical migration of the contaminant plume through the confining unit to the Principal Artesian aquifer is improbable. The confining unit has a vertical hydraulic conductivity on the order of 10⁻⁸ cm/sec and ranges from 15- to 90-feet thick. The surficial aquifer where the contaminant plume is located is not used as a source of drinking water.

The modeling results for benzene are provided in Section G.6 of this appendix. Two potential downgradient locations where a receptor may encounter migrating groundwater contamination were modeled. A drainage ditch approximately 300 feet north of the site and Childpen's Pond, which is located approximately 1420 feet northwest of the site, are the nearest possible locations where a receptor may encounter migrating groundwater contamination due to a possible hydraulic connection between the groundwater and the surface water in the ditch and the pond. Contaminant migration modeling for 100 years of groundwater migrating to surface water in the ditch and in the pond, when accounting for biodegradation, indicates that benzene will not reach either location in detectable levels. No hydraulic connection between the ditch and the groundwater is known to exist, and ignoring biodegradation and natural attenuation will result in an overly conservative
modeling estimate. If the drainage ditch is receiving influx from the groundwater, benzene levels would not be expected to exceed the MCL under actual site conditions due to biodegradation and natural attenuation.

G.4 Conclusions and Recommendations

The following conclusions are based on a review of the CAP-Part A site investigation results using a riskbased approach:

- Risk-based screening results show that benzene exceeded initial risk-based screening levels in groundwater. Using a site-specific scenario of an industrial worker exposure, benzene does not exceed the ACL of 990 µg/L.
- The extent of soil and groundwater contamination was determined during the CAP-Part A investigation.
- Fate and transport modeling indicates that contamination from existing site conditions at Facility ID #9-089115 will never exceed MCLs at a conservatively defined downgradient receptor.

Considering the site characteristics, natural attenuation will provide the best corrective action. Therefore, based on the results of the risk screening and fate and transport modeling, a no-further-action-required status is recommended for this site. A monitoring program is not recommended to confirm the modeling predictions, since all additional requirements of GA EPD as stated in correspondence dated July 30, 1997, and March 13, 1998, have been completed. In addition, permanent wells do not exist at this site, as they were not required by GA EPD.

G.5 Alternate Concentration Limits Calculations

ACL Calculation for Benzene

CSF	Benzene oral Cancer Slope Factor	$= 0.029 (mg/kg-day)^{-1}$
IR	Ingestion rate	= 1 L/day
EF	Exposure frequency	= 250 days/year
ED	Exposure duration	= 25 years
BW	Body weight	= 70 kg
AT	Averaging time = 70 years \times 365 days/year	= 25550 days
TR	Target Risk	$= 1 \times 10^{-4}$

$$ACL = \frac{TR \times BW \times AT}{IR \times EF \times ED \times CSF} = \frac{10^{-4} \times 70 \times 25550}{1 \times 250 \times 25 \times 0.029}$$

98-091P(wpd)/Tank100/090298

= 0.987 mg/L

~ 0.990 mg/L

~990 µg/L

G.6 Fate and Transport Modeling Results

Following are the data for fate and transport modeling.

98-091P(wpd)/Tank100/082698

Ft Stewart, UST 100, Benzene (calibrated plume)

NO. OF POINTS IN X-DIRECTION NO. OF POINTS IN Y-DIRECTION NO. OF POINTS IN Z-DIRECTION NO. OF ROOTS: NO. OF SERIES TERMS	10 5 1
NO. OF RECENTING THE OTED	400
NO. OF BEGINNING TIME STEP	122
NO. OF ENDING TIME STEP	1215
NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION	
INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE	1
SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE	0
INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT	1
CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	2
AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS)	á (2011) an
AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS)	0.1006E+02
	0.0000E+00
END POINT OF X-SOURCE LOCATION (METERS)	-0.4572E+01
BEGIN POINT OF Y-SOURCE LOCATION (METERS)	
END DOINT OF V-SOURCE LOCATION (METERS)	-0.2286E+01
END POINT OF Y-SOURCE LOCATION (METERS)	0.2286E+01
BEGIN POINT OF Z-SOURCE LOCATION (METERS)	0.0000E+00
END POINT OF Z-SOURCE LOCATION (METERS)	0.2000E+01
POROSITY HYDRAULIC CONDUCTIVITY (METER/HOUR) HYDRAULIC GRADIENT LONGITUDINAL DISPERSIVITY (METER) LATERAL DISPERSIVITY (METER) VERTICAL DISPERSIVITY (METER) DISTRIBUTION COEFFICIENT, KD (M**3/KG) HEAT EXCHANGE COEFFICIENT (KCAL/HR-M**2-DEGREE C). MOLECULAR DIFFUSION MULTIPLY BY POROSITY (M**2/HR) DECAY CONSTANT (PER HOUR) BULK DENSITY OF THE SOIL (KG/M**3) ACCURACY TOLERANCE FOR REACHING STEADY STATE	0.2000E+00 0.7200E-02 0.9400E-02 0.9000E+01 0.1000E+01 0.3410E-03 0.0000E+00 0.3530E-05 0.4012E-04 0.1096E+04
DENSITY OF WATER (KG/M**3)	0.1000E-02
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (HR)	0.1000E+04
DISCHARGE TIME (HR)	0.7200E+03
WASTE RELEASE RATE (KCAL/HR), (KG/HR), OR (CI/HR) .	0.8760E+05
THE RELEASE RATE (REAL/AR), (RU/AR), UR (CI/AR) .	0.2190E-05
RETARDATION FACTOR RETARDED DARCY VELOCITY (M/HR) RETARDED LONGITUDINAL DISPERSION COEF. (M**2/HR) RETARDED LATERAL DISPERSION COEFFICIENT (M**2/HR) . RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/HR).	0.2869E+01 0.1180E-03 0.1068E-02 0.1241E-03 0.1241E-03

	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	100.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		100.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		100.	0.161E-09 0.199E-09 0.234E-09 0.263E-09 0.288E-09 0.288E-09
	91.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		91.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		91.	0.260E-08 0.324E-08 0.384E-08 0.434E-08 0.479E-08 0.479E-08
CONC.)	50.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	CONC.)	50.	0.838E-05 0.105E-04 0.126E-04 0.126E-04 0.143E-04 0.158E-04	CONC.)	50.	0.340E-04 0.477E-04 0.635E-04 0.784E-04 0.933E-04
CCALS IN PPM AT 0.0000E+00 HRS 0.3410E+00 * DISSOLVED CHEMICAL	× 20.	0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00	CALS IN PPM AT 0.8712E+05 HRS 0.3410E+00 * DISSOLVED CHEMICAL	X 20.	0.387E-02 0.565E-02 0.769E-02 0.963E-02 0.116E-01	CALS IN PPM AT 0.1332E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL	X 20.	0.162E-02 0.309E-02 0.585E-02 0.102E-01 0.144E-01 0.144E-01
I PPM AT 0.6	10.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	PPM AT 0.8 +00 * DISSOL	10.	0.154E-01 0.277E-01 0.461E-01 0.677E-01 0.677E-01 0.911E-01	PPM AT 0.13 +00 * DISSOLV	10.	0.236E-02 0.481E-02 0.994E-02 0.187E-01 0.187E-01 0.268E-01
CHEMICALS IN = 0.3410E 0.00	5.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	CHEMICALS IN = 0.3410E 0.00	5.	0.230E-01 0.482E-01 0.100E+00 0.187E+00 0.187E+00 0.269E+00	CHEMICALS IN = 0.3410€+ 0.00	'n	0.228E-02 0.475E-02 0.100E-01 0.192E-01 0.276E-01 0.276E-01
DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (ADSORBED CHEMICAL CONC. = 0.3410E+00 * DI Z = 0.00	2.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	OLVED CONC.	,	0.244E-01 0.545E-01 0.125E+00 0.259E+00 0.378E+00	DLVED CONC.	2.	0.208E-02 0.435E-02 0.924E-02 0.178E-01 0.178E-01 0.257E-01
STRIBUTION OF DISS (ADSORBED CHEMICAL Z =	0.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	stribution of diss (Adsorbed chemical Z =		0.232E-01 0.525E-01 0.124E+00 0.260E+00 0.381E+00	stribution of diss (Adsorbed chemical Z =	Ö	0.189E-02 0.397E-02 0.844E-02 0.163E-01 0.235E-01 0.235E-01
Id	≻		10	×	0 M M V		۲	n t n N O

1

Fort Stewart UST CAP A Report Addendum UST 100, Facility ID: 9-089115

	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0 0 0	.000	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	432	0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00	6 <u>7</u> .7	+ 3 C+	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	100.	0.390E-08 0.500E-08 0.609E-08 0.703E-08 0.788E-08	ç	*nnt	0.144E-07 0.202E-07 0.272E-07 0.345E-07 0.416E-07 0.416E-07	100.	0.193E-07 0.300E-07 0.456E-07 0.456E-07 0.455E-07 0.851E-07 0.851E-07
	91.	0,293E-07 0.385E-07 0.480E-07 0.564E-07 0.644E-07	5	· · ·	0.701E-07 0.103E-06 0.145E-06 0.193E-06 0.193E-06 0.241E-06	5	0.670E-07 0.108E-06 0.173E-06 0.261E-06 0.246E-06 0.346E-06
CONC.)	50.	0.314E-04 0.523E-04 0.856E-04 0.132E-03 0.177E-03 0.177E-03	CONC.)	-00	0.119E-04 0.217E-04 0.396E-04 0.672E-04 0.672E-04 0.934E-04	CONC.) 50.	0.293E-05 0.557E-05 0.106E-04 0.188E-04 0.265E-04
0.1793E+06 HRS SSOLVED CHEMICAL	X. 20.	0.279E-03 0.555E-03 0.111E-02 0.205E-02 0.292E-02	0.2254E+06 HRS SSOLVED CHEMICAL X 20	50.	0.399E-04 0.804E-04 0.163E-03 0.304E-03 0.435E-03	0.2714E+06 HRS SSOLVED CHEMICAL X 10. 20.	0.542E-05 0.1102-04 0.224E-04 0.218E-04 0.418E-04 0.598E-04
	10.	0.287E-03 0.586E-03 0.121E-02 0.229E-02 0.329E-02	<u> </u>	.	0.351E-04 0.716E-04 0.148E-03 0.279E-03 0.279E-03 0.400E-03		0.435E-05 0.887E-05 0.183E-04 0.183E-04 0.344E-04 0.494E-04
DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (Adsorbed chemical conc. = 0.3410E+00 * DI Z = 0.00	ŗ.	0.253E-03 0.520E-03 0.109E-02 0.206E-02 0.206E-02 0.296E-02	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (Adsorbed chemical conc. = 0.3410E+00 * D) Z = 0.00	ċ	0.297E-04 0.608E-04 0.126E-03 0.238E-03 0.342E-03	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (ADSORBED CHEMICAL CONC. = 0.3410E+00 * DI) Z = 0.00 0. 2. 5.	0.359E-05 0.734E-05 0.152E-04 0.152E-04 0.211E-04 0.411E-04
EDISSOLVED (MICAL CONC. Z = (2.	0.224E-03 0.462E-03 0.966E-03 0.184E-02 0.264E-02	: DISSOLVED (MICAL CONC. Z = [0.259E-04 0.532E-04 0.111E-03 0.209E-03 0.300E-03	DISSOLVED C MICAL CONC. Z = C Z.	0.312E-05 0.638E-05 0.132E-04 0.249E-04 0.358E-04
STRIBUTION OF DISSOLVED (ADSORBED CHEMICAL CONC Z =	°.	0.202E-03 0.418E-03 0.875E-03 0.167E-03 0.167E-02 0.240E-02	STRIBUTION OF DISSOLVED (ADSORBED CHEMICAL CONC Z ^{·=}		0.234E-04 0.480E-04 0.998E-04 0.189E-04 0.271E-03	STRIBUTION OF DISSC (Adsorbed chemical Z = 0	0.281E-05 0.575E-05 0.119E-04 0.225E-04 0.322E-04
010	۲	00 M to 20		-	00m+00		in t m N O

G-16

۶

)

)

-

	838	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00	
	100.	0.132E-07 0.221E-07 0.368E-07 0.578E-07 0.578E-07 0.779E-07		100.	0.581E-08 0.102E-07 0.180E-07 0.298E-07 0.410E-07		100.	0.190E-08 0.346E-08 0.633E-08 0.108E-07 0.150E-07 0.150E-07	
	91.	0.353E-07 0.610E-07 0.105E-06 0.171E-06 0.233E-06		91.	0.1276-07 0.2286-07 0.4136-07 0.6996-07 0.9716-07		91.	0.354E-08 0.657E-08 0.123E-07 0.123E-07 0.238E-07 0.298E-07	
CONC.)	50.	0.578E-06 0.112E-05 0.219E-05 0.396E-05 0.361E-05	CONC.)	50.	0.101E-06 0.198E-06 0.392E-06 0.716E-06 0.102E-05	CONC.)	50.	0.163E-07 0.323E-07 0.646E-07 0.119E-06 0.169E-06 0.169E-06	
0.3175E+06 HRS SSOLVED CHEMICA	x 20.	0.722E-06 0.146E-05 0.299E-05 0.259E-05 0.559E-05 0.800E-05	0.3636E+06 HRS SSOLVED CHEMICAL	X 20.	0.953E-07 0.193E-06 0.395E-06 0.740E-06 0.106E-05	0.4097E+06 HRS SSOLVED CHEMICAL	X 20	0.126E-07 0.254E-07 0.521E-07 0.974E-07 0.974E-07 0.140E-06	
CALS IN PPM AT 0.3175E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL	10.	0.546E-06 0.111E-05 0.229E-05 0.431E-05 0.617E-05		10.	0.693E-07 0.141E-06 0.290E-06 0.544E-06 0.780E-06		10.	0.885E-08 0.880E-07 0.369E-07 0.693E-07 0.693E-07 0.994E-07	
CHEMI 0.00	5.	0.445E-06 0.906E-06 0.187E-05 0.352E-05 0.505E-05 0.505E-05	CHEMICALS IN = 0.3410E 0.00	2.	0.558E-07 0.114E-06 0.234E-06 0.440E-06 0.630E-06	CHEMICALS IN = 0.3410E+ 0.00	ъ.	0.707E-08 0.144E-07 0.256E-07 0.555E-07 0.796E-07 0.796E-07	
DF DISSOLVED Hemical conc. Z = 1	2.	0.385E-06 0.784E-06 0.162E-05 0.305E-05 0.437E-05	OL VED CONC.	ъ,	0.481E-07 0.979E-07 0.202E-06 0.380E-06 0.544E-06	DL VED CONC.	5.	0.608E-08 0.124E-07 0.255E-07 0.478E-07 0.685E-07 0.685E-07	
DISTRIBUTION OF DISS (Adsorbed chemical Z =	.	0.346E-06 0.706E-06 0.146E-05 0.274E-05 0.394E-05	stribution of diss (Adsorbed chemical Z =		0.432E-07 0.881E-07 0.182E-06 0.341E-06 0.489E-06 0.489E-06	stribution of diss (Adsorbed chemical Z =	.0	0.547E-08 0.111E-07 0.229E-07 0.430E-07 0.616E-07 0.616E-07	
6	≻ `	ม ์ จำก ณ์อื่	10	≻	<u>ที่ รู้ พ</u> ี่ ณี อี	310 310	≻-	0 4 M N O	

f

p^{re-}

Fort Stewart UST CAP A Report Addendum UST 100, Facility ID: 9-089115

	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.0006+00 0.0006+00 0.0006+00 0.0006+00 0.0006+00
	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	100.	0.509E-09 0.948E-09 0.178E-08 0.310E-08 0.435E-08		100.	0.118E-09 0.224E-09 0.427E-09 0.756E-09 0.106E-08		100.	0.248E-10 0.475E-10 0.917E-10 0.1647E-09 0.232E-09
	91.	0.837E-09 0.158E-08 0.302E-08 0.533E-08 0.751E-08		91.	0.176E-09 0.337E-09 0.652E-09 0.117E-08 0.165E-08		91.	0.340E-10 0.657E-10 0.128E-09 0.232E-09 0.328E-09 0.328E-09
CONC.)	50.	0.252E-08 0.501E-08 0.101E-07 0.186E-07 0.265E-07	CONC.)	50.	0.376E-09 0.750E-09 0.151E-08 0.280E-08 0.400E-08	C-DNOD	50.	0.549E-10 0.110E-09 0.222E-09 0.412E-09 0.588E-09 0.588E-09
CALS IN PPM AT 0.4558E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL	X 20.	0.165E-08 0.334E-08 0.685E-08 0.128E-07 0.128E-07	CALS IN PPM AT 0.5018E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL CONC.) X	20.	0.217E-09 0.440E-09 0.901E-09 0.169E-08 0.241E-08	0.5479E+06 HRS SSOLVED CHEMICAL	X 20.	0.286E-10 0.579E-10 0.119E-09 0.222E-09 0.318E-09
PPM AT 0.4	10.	0.114E-08 0.231E-08 0.474E-08 0.889E-08 0.127E-07	PPM AT 0.51 +00 * DISSOL'	10.	0.147E-09 0.298E-09 0.612E-09 0.115E-08 0.164E-08	· · · ·	10.	0.190E-10 0.386E-10 0.792E-10 0.148E-09 0.213E-09
CHEMICALS IN = 0.3410E- 0.00	5.	0.903E-09 0.183E-08 0.377E-08 0.708E-08 0.101E-07	CHEMICALS IN = 0.3410E- 0.00	<u>،</u>	0.116E-09 0.236E-09 0.484E-09 0.908E-09 0.130E-08	CHEMICALS IN = 0.3410E4 0.00	ŗ.	0.150E-10 0.304E-10 0.624E-10 0.117E-09 0.168E-09 0.168E-09
E DISSOLVED CHEN EMICAL CONC. = Z = 0.00	5.	0.776E-09 0.158E-08 0.324E-08 0.608E-08 0.872E-08	F DISSOLVED (EMICAL CONC. Z = (2.	0.995E-10 0.202E-09 0.415E-09 0.779E-09 0.112E-08	= DISSOLVED (MICAL CONC. Z = (ς.	0.1285-10 0.261E-10 0.535E-10 0.100E-09 0.144E-09
DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (Adsorbed chemical conc. = 0.3410E+00 * DI) Z = 0.00	.0	0.697E-09 0.142E-08 0.291E-08 0.546E-08 0.783E-08	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (ADSORBED CHEMICAL CONC. = 0.3410E+00 * D Z = 0.00	•	0.894E-10 0.181E-09 0.373E-09 0.700E-09 0.100E-08	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (ADSORBED CHEMICAL CONC. = 0.3410E+00 * DI Z = 0.00	0.	0.115E-10 0.234E-10 0.480E-10 0.901E-10 0.129E-09 0.129E-09
	۲	ม่งตั้งเอ่	10	≻	6 4 m k d	10	٦	14 M N O

Fort Stewart UST CAP A Report Addendum UST 100, Facility ID: 9-089115

)

)

	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	100.	0.480E-11 0.928E-11 0.181E-10 0.327E-10 0.463E-10		100.	0.878E-12 0.171E-11 0.336E-11 0.609E-11 0.864E-11		100.	0.153E-12 0.300E-12 0.593E-12 0.108E-11 0.153E-11 0.153E-11
	91.	0.615E-11 0.120E-10 0.236E-10 0.428E-10 0.608E-10 0.608E-10		91.	0.1066-11 0.2086-11 0.4126-11 0.4126-11 0.7516-11 0.1076-10		91.	0.176E-12 0.347E-12 0.691E-12 0.126E-11 0.180E-11 0.180E-11
CONC.)	50.	0.788E-11 0.158E-10 0.320E-10 0.594E-10 0.848E-10	(CONC.)	50.	0.112E-11 0.224E-11 0.455E-11 0.845E-11 0.845E-11 0.121E-10	CONC.)	50.	0.157E-12 0.315E-12 0.640E-12 0.119E-11 0.170E-11
0.5940E+06 HRS SSOLVED CHEMICAL	x 20.	0.377E-11 0.762E-11 0.156E-10 0.292E-10 0.418E-10	0.6401E+06 HRS SOLVED CHEMICAL X	20.	0.497E-12 0.101E-11 0.206E-11 0.385E-11 0.552E-11	0,6862E+06 HRS SOLVED CHEMICAL	x 20.	0.656E-13 0.133E-12 0.272E-12 0.272E-12 0.50E-12 0.728E-12
	10.	0.248E-11 0.502E-11 0.103E-10 0.193E-10 0.193E-10 0.276E-10	20	10.	0.323E-12 0.655E-12 0.134E-11 0.252E-11 0.360E-11	<u> </u>	10.	0.423E-13 0.857E-13 0.176E-12 0.329E-12 0.471E-12 0.471E-12
HEMI	5.	0.194E-11 0.394E-11 0.809E-11 0.152E-10 0.152E-10 0.217E-10	N Q	5.	0.253E-12 0.513E-12 0.105E-11 0.197E-11 0.282E-11	IN O	5.	0.330E-13 0.669E-13 0.137E-12 0.257E-12 0.268E-12 0.368E-12
F DISSOLVED (EMICAL CONC. Z = (`	0.166E-11 0.337E-11 0.693E-11 0.130E-10 0.130E-10 0.186E-10	F DISSOLVED CHE Emical conc. = Z = 0.0	ч. Ч	0.216E-12 0.439E-12 0.900E-12 0.169E-11 0.242E-11	F DISSOLVED CHE EMICAL CONC. = Z = 0.0	\$°.	0.282E-13 0.572E-13 0.117E-12 0.220E-12 0.315E-12
STRIBUTION OF DISS (ADSORBED CHEMICAL Z =	°.	0.149E-11 0.303E-11 0.622E-11 0.117E-10 0.1167E-10	stribution of diss (adsorbed chemical 2 =	o O	0.194E-12 0.394E-12 0.808E-12 0.151E-11 0.217E-11	STRIBUTION OF DISS (Adsorbed chemical Z =	0.	0.253E-13 0.513E-13 0.105E-12 0.197E-12 0.282E-12
10	≯-	0 7 M 4 U	11 0	≻	0 7 M V 0	310 1	≻	0 M M P A

(

(

G-19

	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		432	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
	100.	0.258E-13 0.507E-13 0.101E-12 0.184E-12 0.262E-12		100.	0.421E-14 0.831E-14 0.166E-13 0.304E-13 0.432E-13		100.	0.672E-15 0.133E-14 0.266E-14 0.488E-14 0.488E-14 0.695E-14	
	91.	0.2846-13 0.5616-13 0.112E-12 0.206E-12 0.293E-12		91.	0.447E-14 0.886E-14 0.177E-13 0.326E-13 0.326E-13 0.465E-13		91.	0.690E-15 0.137E-14 0.275E-14 0.507E-14 0.723E-14	
CONC.)	50.	0.219E-13 0.439E-13 0.894E-13 0.166E-12 0.238E-12	CONC.)	50.	0.303E-14 0.609E-14 0.124E-13 0.231E-13 0.330E-13	()	50.	0.418E-15 0.841E-15 0.171E-14 0.171E-14 0.319E-14 0.456E-14 TIME	
CALS IN PPM AT 0.7322E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL	x 20.	0.867E-14 0.175E-13 0.359E-13 0.672E-13 0.962E-13	CALS IN PPM AT 0.7783E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL	X 20	0.115E-14 0.232E-14 0.475E-14 0.888E-14 0.127E-13	CALS IN PPM AT 0.8244E+06 HRS 0.3410E+00 * DISSOLVED CHEMICAL X	20.	0.959E-16 0.152E-15 0.194E-15 0.307E-15 0.398E-15 0.307E-15 0.398E-15 0.629E-15 0.744E-15 0.118E-14 0.107E-14 0.168E-14 0.107E-14 0.168E-14 BEFORE FINAL SIMULATING	
PPM AT 0.7 +00 * DISSOL	10.	0.5556-14 0.1126-13 0.2306-13 0.4316-13 0.6176-13	PPPM AT 0.7	10.	0.729E-15 0.148E-14 0.302E-14 0.566E-14 0.810E-14	РРМ АТ 0.82 00 * DISSOLV	10.	0.959E-16 0.194E-15 0.398E-15 0.744E-15 0.107E-14 BEFORE FINA	
¥ o	'n	0.432E-14 0.876E-14 0.180E-13 0.336E-13 0.481E-13	CHEMICALS IN = 0.3410E4 0.00	5.	0.567E-15 0.115E-14 0.235E-14 0.441E-14 0.631E-14	CHEMICALS IN = 0.3410E+ 0.00	5.	0.745E-16 0.151E-15 0.309E-15 0.579E-15 0.829E-15 0.829E-15 BEEN REACHED	
STRIBUTION OF DISSOLVED CHE (Adsorbed chemical conc. = Z = 0.0	м.	0.369E-14 0.748E-14 0.153E-13 0.287E-13 0.411E-13	F DISSOLVED (EMICAL CONC. Z = (~	0.484E-15 0.981E-15 0.201E-14 0.376E-14 0.539E-14	DISSOLVED C MICAL CONC. Z = 0		E-16 0.636E-16 2-15 0.129E-15 2-15 0.264E-15 2-15 0.264E-15 2-15 0.494E-15 2-15 0.707E-15 Solution HAS Not	
DISTRIBUTION OF DIS (Adsorbed Chemica Z =	0.	0.331E-14 0.671E-14 0.138E-13 0.258E-13 0.369E-13	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (ADSORBED CHEMICAL CONC. = 0.3410E+00 * D Z = 0.00	ö	0.434E-15 0.880E-15 0.180E-14 0.338E-14 0.483E-14 0.483E-14	DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT (ADSORBED CHEMICAL CONC. = 0.3410E+00 * DIS Z = 0.00	.	0.570 0.116 0.237 0.237 0.443 0.634 STATE	
ā	≻ 10/7:11	<u>ที่จำหาญ่อ</u> (100(umd)/082508		≻	ท่งหังเอ่		►	5. 4. 3. 3. 5. 0. 5.	

)

)'

)

Fort Stewart UST CAP A Report Addendum UST 100, Facility ID: 9-089115

÷

	838.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	432.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	100.	0.105E-15 0.208E-15 0.417E-15 0.768E-15 0.109E-14
	91.	0.105E-15 0.208E-15 0.419E-15 0.774E-15 0.110E-14
CONC.)	50.	0.574E-16 0.116E-15 0.236E-15 0.439E-15 0.628E-15
<pre>STRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.8705E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3410E+00 * DISSOLVED CHEMICAL CONC.) Z = 0.00</pre>	X 20.	0.201E-16 0.407E-16 0.833E-16 0.156E-15 0.223E-15
PPM AT 0.87 00 * DISSOLV	10.	0.126E-16 0.256E-16 0.524E-16 0.981E-16 0.140E-15 0.140E-15
CHEMICALS 1% - = 0.3410E+ 0.00	5.	0.981E-17 0.199E-16 0.407E-16 0.761E-16 0.761E-16 0.109E-15
JISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.8705E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3410E+00 * DISSOLVED CHEMICAL Z = 0.00	2.	0.837E-17 0.169E-16 0.347E-16 0.650E-16 0.930E-16
rributión of Adsorbed chei	0.	0.751E-17 0.152E-16 0.311E-16 0.583E-16 0.834E-16 0.834E-16
))	≁	ก่งที่ก่อ

ſ

P

98-091P/Tank100(wpd)/082598

Fort Stewart UST CAP A Report Addendum UST 100, Facility ID: 9-089115)

No. of Concerns, No.

THIS PAGE INTENTIONALLY LEFT BLANK

.

G.7. References

- ASTM (American Society for Testing and Materials), 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, ASTM E 1739-95, approved September 10, 1995.
- EPA (U.S. Environmental Protection Agency), 1989. "Risk Assessment Guidance for Superfund: Human Health Evaluation Manual, Part A, Interim Final," EPA/540/1-89/002, EPA, Office of Emergency and Remedial Response, Washington, DC.
- EPA, 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Standard Default Exposure Factors, Interim Final," OSWER Directive 9285.6-03, EPA, Office of Emergency and Remedial Response, Washington, DC.
- EPA, 1994. Supplemental Guidance to RAGS: Region IV Bulletin: Development of Health based Preliminary Remediation Goals, Remedial Options and Remediation Levels, U.S. EPA Region IV, Waste Management Division.
- EPA, 1996. Soil Screening Guidance, Office of Solid Waste and Emergency Response, EPA/540/R-94/101, available from U.S. Government Printing Office, Washington, DC.
- GA EPD (Georgia Environmental Protection Division), 1996. Guidance for Selecting Media Remediation Levels at RCRA Solid Waste Management Units, Georgia Environmental Division, Atlanta, GA, November.

Fort Stewart UST CAP A Report Addendum UST 100, Facility ID: 9-089115)

1. V. S

)

)

.

THIS PAGE INTENTIONALLY LEFT BLANK