## SECOND ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANK 29 FACILITY ID #9-089088 BUILDING 1633 FORT STEWART, GEORGIA

**Prepared** for

U.S. Army Corps of Engineers, Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0016

Prepared by

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

November 2000

#### FINAL

## TABLE OF CONTENTS

| Pa                                                                                                                                                                                                                                                                                                                                                                                                                                           | age                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| LIST OF ABBREVIATIONS AND ACRONYMS                                                                                                                                                                                                                                                                                                                                                                                                           | iii                              |
| I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST<br>CERTIFICATION                                                                                                                                                                                                                                                                                                                                                               | .1                               |
| II. PROJECT SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                |
| <ul> <li>III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS</li> <li>A. Potentiometric Data</li> <li>B. Analytical Data</li> </ul>                                                                                                                                                                                                                                                                                                        | 3                                |
| IV. SITE RANKING                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                |
| V. CONCLUSIONS/RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                |
| VI. REIMBURSEMENT                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                |
| List of Appendices                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| APPENDIX I: REPORT FIGURES1Figure 1Location Map of UST 29 at Fort Stewart, Liberty County, GeorgiaFigure 2aPotentiometric Surface Map of the UST 29 Site (February 2000)Figure 2bPotentiometric Surface Map of the UST 29 Site (July 2000)Figure 3aGroundwater Quality Map for the UST 29 Site (January 2000)Figure 3bGroundwater Quality Map for the UST 29 Site (June 2000)Figure 4Trend of Contaminant Concentrations for the UST 29 Site | [-2<br>[-3<br>[-4<br>[-5<br>[-6] |
| APPENDIX II: REPORT TABLES       II         Table 1       Groundwater Elevations       II         Table 2       Groundwater Analytical Results       II                                                                                                                                                                                                                                                                                      | [-2                              |
| APPENDIX III: LABORATORY ANALYTICAL RESULTS.                                                                                                                                                                                                                                                                                                                                                                                                 | -1                               |
| APPENDIX IV: SITE RANKING FORMS IV                                                                                                                                                                                                                                                                                                                                                                                                           | -1                               |
| APPENDIX V: REIMBURSEMENT APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                        | -1                               |
| Attachments                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |
| A SUMMARY OF FATE AND TRANSPORT MODELING RESULTS                                                                                                                                                                                                                                                                                                                                                                                             | -1                               |
| B REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1                               |

#### List of Abbreviations and Acronyms

| ACL    | alternate concentration limit               |
|--------|---------------------------------------------|
| AT123D | Analytical Transient 1-, 2-, 3-Dimensional  |
| BGS    | below ground surface                        |
| BTEX   | benzene, toluene, ethylbenzene, and xylenes |
| CAP    | Corrective Action Plan                      |
| DAF    | dilution attenuation factor                 |
| GA EPD | Georgia Environmental Protection Division   |
| IWQS   | In-stream Water Quality Standard            |
| NFAR   | No Further Action Required                  |
| UST    | underground storage tank                    |
| USTMP  | Underground Storage Tank Management Program |

## MONITORING ONLY REPORT

| Submittal D  | ate: <u>November 2000</u> Monit              | oring Report N   | lumber: 2nd Annual                                              |  |  |
|--------------|----------------------------------------------|------------------|-----------------------------------------------------------------|--|--|
| For Period C | Covering: July 1999 to Ju                    | une 2000         |                                                                 |  |  |
| Facility Nan | ne: UST 29, Building 1633                    | Street Address   | McFarland Avenue between<br>5: Divarty Avenue and W. 8th Street |  |  |
| Facility ID: | 9-089088 City: Fort Stewart                  | County: <u>I</u> | Liberty Zip Code: 31314                                         |  |  |
| Latitude: _  | Latitude: 32° 15′ 57″ Longitude: 82° 05′ 14″ |                  |                                                                 |  |  |
| Submitted b  | y UST Owner/Operator:                        | Prepared by      | Consultant/Contractor:                                          |  |  |
| Name:        | Thomas C. Fry/ Environmental Branch          | Name:            | Patricia A. Stoll                                               |  |  |
| Company:     | U.S. Army/HQ 3d, Inf. Div. (Mech)            | Company:         | SAIC                                                            |  |  |
| Address:     | Directorate of Public Works, Bldg. 1137      | Address:         | P.O. Box 2502                                                   |  |  |
|              | 1550 Frank Cochran Drive                     | -                |                                                                 |  |  |
| City:        | Fort Stewart State: GA                       | -<br>City:       | Oak Ridge State: TN                                             |  |  |
| Zip Code:    | 31314-4927                                   | Zip Code:        | 37831                                                           |  |  |
| Telephone:   | (912) 767-2010                               | Telephone:       | (865) 481-8792                                                  |  |  |

#### I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

1

| Name: Patricia A. Stoll |
|-------------------------|
| Signature: Tata (1010/  |
| Date: 11/10/00          |

EGIS 22851 Georgia Stam

#### II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

## Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Former Underground Storage Tank (UST) 29, Facility ID #9-089088, was located near Building 1633 at Fort Stewart, Georgia. One UST containing used oil was removed from the site in 1995. Science Applications International Corporation performed a Corrective Action Plan (CAP)–Part A investigation in 1996 and a CAP–Part B investigation in 1997 to determine the extent of petroleum contamination at the site. Five monitoring wells and seven soil borings were installed during these investigations. The CAP–Part B Report (SAIC 1999a) was submitted in March 1999 and recommended semiannual monitoring of four of the seven monitoring wells: 14-08, 14-09, 14-11, and 14-12. The report was approved in correspondence dated June 1, 1999 (McAllister 1999). Two additional monitoring wells (14-13 and 14-14) were installed following the first semiannual monitoring event.

The fate and transport modeling performed as part of the CAP-Part B Report (SAIC 1999a) reflected a continuous source of contamination. The results were summarized in the First Annual Monitoring Only Report (SAIC 1999c). Upon completion of the fourth semiannual monitoring event in June 2000, the fate and transport modeling results were revised using the results from the semiannual monitoring events to calibrate the model. The revised results are provided in Attachment A of this report.

This report documents the third and fourth semiannual sampling events and their associated analytical results. In accordance with the Monitoring Only Plan, the alternate concentration limit (ACL) for benzene has been used to date in the monitoring program as the monitoring end point.

The closest receptor is 500 feet downgradient of the site, which resulted in a benzene ACL of 550  $\mu$ g/L based on the CAP–Part B fate and transport modeling results. Based on the revised fate and transport modeling results presented in Attachment A, the benzene ACL would be infinity; therefore, the original benzene ACL of 550  $\mu$ g/L will remain as the site-specific remedial level. During the last 2 years of semiannual sampling, the benzene concentrations at the site have been below the ACL. In general, the benzene concentrations have been declining in well 14-08 during the monitoring only program. The benzene concentrations in 14-09 have been increasing, but it appears that a plateau has been reached during the last two semiannual monitoring events. The benzene concentration at the downgradient well, 14-12, has remained relatively constant during the last three semiannual sampling events, indicating that the plume is not expanding. Because the benzene concentrations are below the ACL and the plume is not expanding, it is recommended that a No Further Action Required status be granted for the site.

#### III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

#### A. <u>Potentiometric Data</u>:

(Appendix I, Figures 2a and 2b: Potentiometric Surface Maps) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

During the third semiannual sampling event in January/February 2000, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In February 2000, the groundwater flow direction was toward the west-northwest, and the groundwater gradient was approximately 0.0085 foot/foot.

During the fourth semiannual sampling event in June 2000, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In June 2000, the groundwater flow direction was generally toward the northeast, and the average groundwater gradient was approximately 0.0504foot/foot.

#### B. <u>Analytical Data</u>:

(Appendix I, Figures 3a and 3b: Groundwater Quality Maps) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix II, Table 2: Groundwater Analysis Results) (Appendix III: Laboratory Analysis Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the third semiannual sampling event in January 2000, monitoring wells 14-07, 14-08, 14-09, 14-11, 14-12, 14-13, and 14-14 were sampled for benzene, toluene, ethylbenzene, and xylenes (BTEX). Analytical results from the third sampling event showed estimated concentrations below the analytical reporting limits or no detectable BTEX concentrations in wells 14-11, 14-13, and 14-14. BTEX compounds were present in wells 14-07, 14-08, 14-09, and 14-12; however, benzene was the only constituent to exceed its In-stream Water Quality Standard (IWQS). Benzene was detected at 2  $\mu$ g/L in well 14-07, 66.6  $\mu$ g/L in well 14-08, 249J  $\mu$ g/L in well 14-09, and 7  $\mu$ g/L in well 14-12. The benzene concentrations in these wells are all below the ACL of 550  $\mu$ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

During the fourth semiannual sampling event in June 2000, monitoring wells 14-07, 14-08, 14-09, 14-11, 14-12, 14-13, and 14-14 were sampled for BTEX. Analytical results from the fourth sampling event showed estimated concentrations below the analytical reporting limits or no detectable BTEX concentrations in wells 14-11, 14-13, and 14-14. BTEX compounds were present in wells 14-07, 14-08, 14-09, and 14-12; however, benzene was the only constituent to exceed its IWQS. Benzene was detected at 10.6  $\mu$ g/L in well 14-07, 62.5  $\mu$ g/L in well 14-08, 248  $\mu$ g/L in well 14-09, 10.7  $\mu$ g/L in well 14-12, and 0.21J  $\mu$ g/L in well 14-14. The benzene concentrations in these wells are all below the ACL of 550  $\mu$ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells.

The benzene concentrations in well 14-08 have been steadily decreasing since the CAP-Part B investigation in 1997; however, the benzene concentrations in well 14-09 have increased

between the 1997 CAP-Part B investigation and the January 2000 sampling event. The benzene concentrations in 14-09 were relatively constant between the January 2000 and June 2000 sampling events, indicating that the maximum concentration may have been reached. The increased benzene concentrations in well 14-09 indicate that there may have been another source of contamination that was not defined in the CAP-Part B investigation and, therefore, not included in the fate and transport modeling. The revised fate and transport modeling results provided in Attachment A have attempted to account for a source located between wells 14-08 and 14-09.

As recommended in the First Annual Monitoring Only Report (SAIC 1999c), polynuclear aromatic hydrocarbon analysis was discontinued for the site beginning with the second semiannual sampling event in July 1999.

#### IV. SITE RANKING (Note: re-rank site after each monitoring event) (Appendix IV: Site Ranking Form)

| Environmental Site Sensitivity Score:   | 510 (Jan. 1999 – First Semiannual Monitoring Event)    |
|-----------------------------------------|--------------------------------------------------------|
| (April 1999 version of the Site Ranking | 510 (July 1999 – Second Semiannual Monitoring Event)   |
| Form was used for 2000 scores.)         | 2,760 (Jan. 2000 - Third Semiannual Monitoring Event)  |
|                                         | 2,760 (June 2000 – Fourth Semiannual Monitoring Event) |

#### V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

Fort Stewart respectfully requests that the Georgia Environmental Protection Division (GA EPD) Underground Storage Tank Management Program (USTMP) assign Facility ID #9-089088 a No Further Action Required (NFAR) status for the following reasons:

- The Monitoring Only Plan was conducted in accordance with Section III.D of the CAP-Part B Report (SAIC 1999a) and approved by GA EPD USTMP in correspondence dated June 1, 1999 (McAllister 1999). Termination conditions approved in the CAP-Part B Report (SAIC 1999a) and the First Annual Monitoring Only Report (SAIC 1999c) in correspondence dated January 25, 2000 (Logan 2000) indicated that termination would be requested after 2 years if the measured benzene concentrations were below the ACL.
- Both the original fate and transport model and the revised fate and transport model, which used a 5-year, continuous pulse based on the January 2000 benzene groundwater concentration, indicated that benzene will never reach the nearest potential preferential pathway (i.e., a drainage ditch) at a concentration above the IWQS of 71.28 µg/L.
- The benzene concentrations in all wells have been below the ACL of 550  $\mu$ g/L since September 1996.
- The groundwater benzene plume at the downgradient well, 14-12, has remained relatively constant for the last three semiannual sampling events, indicating that the plume is not expanding.

- The closest potential receptor is a drainage ditch located approximately 500 feet downgradient from the site.
- Natural attenuation will continue to take place at the site, and the conservative fate and transport model predicts that the benzene concentrations at the site will be below the IWQS in less than 4 years.

The monitoring only program at the site will be discontinued.

#### VI. REIMBURSEMENT

Attached \_\_\_\_\_ N/A \_\_X\_\_\_

#### (Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the UST 29 site, Building 1633, Facility ID #9-089088 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

Second Annual Monitoring Only Report UST 29, Building 1633, Facility ID #9-089088

#### **APPENDIX I**

#### **REPORT FIGURES**

00-315(doc)/110900

Second Annual Monitoring Only Report UST 29, Building 1633, Facility ID #9-089088



(

Figure 1. Location Map of UST 29 at Fort Stewart, Liberty County, Georgia



Figure 2a. Potentiometric Surface Map of the UST 29 Site (February 2000)



Figure 2b. Potentiometric Surface Map of the UST 29 Site (July 2000)



Figure 3a. Groundwater Quality Map for the UST 29 Site (January 2000)



Figure 3b. Groundwater Quality Map for the UST 29 Site (June 2000)



( )

(

I-7

Second Annual Monitoring Only Report UST 29, Building 1633, Facility ID #9-089088

## **APPENDIX II**

-

## **REPORT TABLES**

(

| Table 1. Groundwater Ele | evations |
|--------------------------|----------|
|--------------------------|----------|

| Well<br>Number | Date of<br>Measurement | Top of Casing<br>Elevation<br>(feet AMSL) | Screened<br>Interval<br>(feet BGS) | Water<br>Depth<br>(feet BTOC) | Groundwater<br>Elevation<br>(feet AMSL) |
|----------------|------------------------|-------------------------------------------|------------------------------------|-------------------------------|-----------------------------------------|
|                | F                      | irst Semiannual Monit                     | oring Event – Jani                 | uary 1999                     |                                         |
| 14-07          | 1/7/99                 | 70.97                                     | 3.0-13.0                           | 4.80                          | 66.17                                   |
| 14-08          | 1/7/99                 | 70.06                                     | 3.0 - 13.0                         | 4.10                          | 65.96                                   |
| 14-09          | 1/7/99                 | 70.47                                     | 3.0 - 13.0                         | 4.57                          | 65.90                                   |
| 14-11          | 1/7/99                 | 69.78                                     | 4.7 - 14.7                         | 3.98                          | 65.80                                   |
| 14-12          | 1/7/99                 | 70.62                                     | 9.7 - 19.7                         | 4.74                          | 65.88                                   |
|                | S                      | Second Semiannual Mo                      | nitoring Event – J                 | uly 1999                      |                                         |
| 14-07          | 8/23/99                | 70.97                                     | 3.0-13.0                           | 3.30                          | 67.67                                   |
| 14-08          | 8/23/99                | 70.06                                     | 3.0 - 13.0                         | 2.54                          | 67.52                                   |
| 14-09          | 8/23/99                | 70.47                                     | 3.0 - 13.0                         | 3.28                          | 67.19                                   |
| 14-11          | 8/23/99                | 69.78                                     | 4.7 - 14.7                         | 2.62                          | 67.16                                   |
| 14-12          | 8/23/99                | 70.62                                     | 9.7 - 19.7                         | 3.43                          | 67.19                                   |
| 14-13          | 8/23/99                | 69.64                                     | 3.2 - 13.2                         | 2.32                          | 67.32                                   |
| 14-14          | 8/23/99                | 69.96                                     | 3.5 - 13.5                         | 2.54                          | 67.42                                   |
|                | Third S                | emiannual Monitoring                      | Event - January/                   | February 2000                 |                                         |
| 14-07          | 2/21/00                | 70.97                                     | 3.0-13.0                           | 4.09                          | 66.88                                   |
| 14-08          | 2/21/00                | 70.06                                     | 3.0-13.0                           | 3.05                          | 67.01                                   |
| 14-09          | 2/21/00                | 70.47                                     | 3.0-13.0                           | 3.67                          | 66.80                                   |
| 14-11          | 2/21/00                | 69.78                                     | 4.7 - 14.7                         | 3.21                          | 66.57                                   |
| 14-12          | 2/21/00                | 70.62                                     | 9.7 - 19.7                         | 4.34                          | 66.28                                   |
| 14-13          | 2/21/00                | 69.64                                     | 3.2 - 13.2                         | 3.63                          | 66.01                                   |
| 14-14          | 2/21/00                | 69.96                                     | 3.5 - 13.5                         | not measured"                 | not measured"                           |
| ,              |                        | rth Semiannual Monite                     | oring Event – June                 | July 2000                     |                                         |
| 14-07          | 7/25/00                | 70.97                                     | 3.0 - 13.0                         | 4.03                          | 66,94                                   |
| 14-08          | 7/25/00                | 70.06                                     | 3.0 - 13.0                         | 2.43                          | 67.63                                   |
| 14-09          | 7/25/00                | 70.47                                     | 3.0-13.0                           | 4.69                          | 65.78                                   |
| 14-11          | 7/25/00                | 69.78                                     | 4.7 - 14.7                         | 3.93                          | 65.85                                   |
| 14-12          | 7/25/00                | 70.62                                     | 9.7 – 19.7                         | 4.90                          | 65.72                                   |
| 14-13          | 7/25/00                | 69.64                                     | 3.2 - 13.2                         | 3.15                          | 66.49                                   |
| 14-14          | 7/25/00                | 69.96                                     | 3.5 - 13.5                         | 2.55                          | 67.41                                   |

" Well temporarily inaccessible during water level measurements because located under a military vehicle.

AMSL Above mean sea level

BGS Below ground surface

BTOC Below top of casing

ĺ

......

| Table 2. Groundwater Analytical Results |                              |                 |                                        |                   |                             |                   |                         |                        |
|-----------------------------------------|------------------------------|-----------------|----------------------------------------|-------------------|-----------------------------|-------------------|-------------------------|------------------------|
| Sample<br>Location                      | Sample<br>ID                 | Date<br>Sampled | Benzene<br>(µg/L)                      | Toluene<br>(μg/L) | Ethyl-<br>benzene<br>(μg/L) | Xylenes<br>(µg/L) | Total<br>BTEX<br>(µg/L) | Total<br>PAH<br>(μg/L) |
|                                         |                              | First S         | Semiannual M                           | tonitoring Ev     | ent – January               |                   | <u>,</u>                | <u> </u>               |
| 14-08                                   | 140822                       | 1/7/99          | 97.7 =                                 | 20 U              | 75.7 =                      | 177 =             | 350.4                   | 32.7                   |
| 14-09                                   | 140922                       | 1/6/99          | 51.2 =                                 | 0.69 J            | 0.59 J                      | 11.1 =            | 63.58                   | ND                     |
| 14-11                                   | 141122                       | 1/7/99          | 4.5 =                                  | 0.52 J            | 2 U                         | 0.52 J            | 5.02                    | 0.85                   |
| 14-12                                   | 141222                       | 1/7/99          | 56.2 =                                 | 2 U               | 2 U                         | 4.2 J             | 60.4                    | ND                     |
|                                         |                              | A               |                                        | I Installation    | – March 1999                | ).                | u                       |                        |
| 14-13                                   | 141312                       | 3/10/99         | 0.86 J                                 | 1.8 J             | 2 U                         | 0.95 J            | 3.61                    | 2.0                    |
| 14-14                                   | 141412                       | 3/10/99         | 2 U                                    | 1.2 J             | 2 U                         | 0.89 J            | 2.09                    | ND                     |
|                                         |                              | Secon           | d Semiannua                            | d Monitoring      | Event – July .              | 1999              | *                       | u                      |
| 14-07                                   | 140732                       | 7/9/99          | 2.4 =                                  | 0.65 J            | 1 J                         | 6.7 =             | 10.75                   | NA                     |
| 14-08                                   | 140832                       | 7/9/99          | 83.9 =                                 | 2.6 =             | 77.5 =                      | 203 J             | 367                     | NA                     |
| 14-09                                   | 140932                       | 7/9/99          | 89.7 =                                 | 2.5 =             | 4.5 =                       | 27.6 =            | 124.3                   | NA                     |
| 14-11                                   | 141132                       | 7/9/99          | 2 U                                    | 0.85 J            | 2 U                         | 3.8 J             | 4.65                    | NA                     |
| 14-12                                   | 141232                       | 7/9/99          | 6.4 =                                  | 0.54 J            | 2 U                         | 3.9 J             | 4.44                    | NA                     |
| 14-13                                   | 141332                       | 7/9/99          | 2 U                                    | 2 U               | 2 U                         | 6 U               | ND                      | NA                     |
| 14-14                                   | 141432                       | 7/9/99          | 2 U                                    | 0.67 J            | 2 U                         | 6 U               | 0.67                    | NA.                    |
|                                         |                              | Third Semia     | innual Monite                          | oring Event –     | January/Feb                 | ruary 2000        |                         |                        |
| 14-07                                   | 140742                       | 1/28/00         | 2 =                                    | 1 U               | 1.3 =                       | 4.2 =             | 7.5                     | NA                     |
| 14-08                                   | 140842                       | 1/27/00         | 66.6 =                                 | 0.87 J            | 61.1 =                      | 92.8 =            | 221.37                  | NA                     |
| 14-09                                   | 140942                       | 1/28/00         | 249 J                                  | 6.9 J             | 30.3 J                      | 178 J             | 464.2                   | NA                     |
| 14-11                                   | 141142                       | 1/27/00         | 1 U                                    | 0.47 J            | 0.22 J                      | 3 J               | 3,8                     | NA                     |
| 14-12                                   | 141242                       | 1/27/00         | 7 =                                    | 0.6 J             | 0.19 J                      | 0.35 J            | 8.14                    | NA                     |
| 14-13                                   | 141342                       | 1/27/00         | 1 U                                    | 0.58 J            | 1 U                         | 3 U               | 0.58                    | NA                     |
| 14-14                                   | 141442                       | 1/27/00         | 1 U                                    | 1 U               | 1 U                         | 3 U               | ND                      | NA                     |
|                                         |                              |                 | ······································ |                   | ent – June/Ju               | ly 2000           |                         |                        |
| 14-07                                   | 140752                       | 6/21/00         | 10.6 =                                 | 0.56 J            | 3.2 =                       | 11.1 =            | 25.46                   | NA                     |
| 14-08                                   | 140852                       | 6/21/00         | 62.5 =                                 | 0.9 J             | 55.6 =                      | 118 =             | 237                     | NA                     |
| 14-09                                   | 140952                       | 6/21/00         | 248 =                                  | 1.7 =             | 32.5 =                      | 186 =             | 468.2                   | NA                     |
| 14-11                                   | 141152                       | 6/21/00         | 1.0 U                                  | 0.37 J            | 0.24 J                      | 3.0 U             | 0.61                    | NA                     |
| 14-12                                   | 141252                       | 6/21/00         | 10.7 =                                 | 1.0 U             | 0.17 J                      | 0.38 J            | 11.25                   | NA                     |
| 14-13                                   | 141352                       | 6/21/00         | 1.0 U                                  | 1.0 U             | 1.0 U                       | 3.0 U             | ND                      | NA                     |
| 14-14                                   | 141452                       | 6/21/00         | 0.21 J                                 | 1.0 U             | 1.0 U                       | 3.0 U             | 0.21                    | NA                     |
|                                         | Water Qualit<br>PD Chapter 1 | -               | 72.18                                  | 200,000           | 28,718                      | NRC               | NRC                     | NRC                    |
|                                         |                              |                 |                                        |                   |                             |                   |                         |                        |

#### Table 2. Groundwater Analytical Results

NOTES:

( )

Bold values exceed IWQSs.

Italic values exceed ACLs.

BGS Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylenes

NA Not analyzed; PAH compounds were not required as part of the Monitoring Only Plan.

ND Not detected

NRC No regulatory criteria

PAH Polynuclear aromatic hydrocarbon

Laboratory Qualifiers

Alternate Concentration Limit

U Indicates that the compound was not detected at the concentration reported.

UJ Indicates that the compound was not detected above an approximated sample quantitation limit.

J Indicates that the value for the compound is an estimated value.

550

= Indicates that the compound was detected at the concentration reported.

Second Annual Monitoring Only Report UST 29, Building 1633, Facility ID #9-089088

## **APPENDIX III**

.

## LABORATORY ANALYTICAL RESULTS

()

The laboratory analytical results for the first and second semiannual monitoring events were presented in the First Annual Monitoring Only Report for UST 29, Facility ID #9-089088 (SAIC 1999c).

,

## THIRD SEMIANNUAL MONITORING EVENT

•

## **JANUARY/FEBRUARY 2000**

ĺ

| IA<br>VOMATILE ORGANICS ANALÝSIS DAT                                                  | A SHEET                                    |
|---------------------------------------------------------------------------------------|--------------------------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Contr                                             | act: N/A                                   |
| Lab Code: N/A Case No.: N/A SAS                                                       | No.: N/A SDG No.: FSBLTM05W                |
| Matrix: (soil/water) WATER                                                            | Lab Sample ID: 21155006                    |
| Sample wt/vol: 5.000 (g/ml) ML                                                        | Lab File ID: 2U420                         |
| Level: (low/med) LOW                                                                  | Date Received: 01/30/00                    |
| % Moisture: not dec.                                                                  | Date Analyzed: 02/03/00                    |
| GC Column: DB-624 ID: 0.25 (mm)                                                       | Dilution Factor: 1.0                       |
| Soil Extract Volume:(uL)                                                              | Soil Aliquet Volume:(uL                    |
|                                                                                       | NCENTRATION UNITS:<br>g/L or ug/Kg) UG/L Q |
| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total) | <u> </u>                                   |
|                                                                                       | 217/00                                     |

FORM L VOA

ĺ

(

DATA VALIDATION OLMO3.D COPY

36

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA SHEET                                            | EPA SAMPLE NO.               |
|----------------------------------------------------------------------------------------|------------------------------|
|                                                                                        | 140842                       |
| Lab Name: GENERAL ENCINEERING LABOR Contract: N/A                                      |                              |
| Lab Code: N/A Case No.: N/A SAS No.: N/A SDG                                           | No.: FSBLTM04W               |
| Matrix: (soil/water) WATER Lab Sample ID                                               | ): 21144007                  |
| Sample wt/vol: 5.000 (g/ml) ML Lab File ID:                                            | 80339                        |
| Level: (low/med) LOW Date Received                                                     | 1: 01/28/00                  |
| <pre>% Moisture: not dec Date Analyzed</pre>                                           | 1: 02/03/00                  |
| GC Column: DB-624 ID: 0.25 (mm) Dilution Fact                                          | or: 1.0                      |
| Soil Extract Volume:(uL) Soil Aliquot                                                  | Volume:(uL                   |
| CONCENTRATION UNITS<br>CAS NO. COMPOUND (ug/L or ug/Kg) UG/                            |                              |
| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4 Ethylbenzene<br>1330-20-7Xylenes (total) | 66.6<br>0.87<br>61.1<br>92.8 |

| 1A<br>VCLATILE ORGANICS ANALYSIS DATA S                                                | EPA SAMPLE NC.                         |
|----------------------------------------------------------------------------------------|----------------------------------------|
| Lab Name: GENERAL ENGINEERING LAECR Contract                                           | 140942 A                               |
| Lab Code: N/A Case No.: N/A SAS No.                                                    | : N/A SDG No.: FSBLTM05W               |
| Matrix: (soil/water) WATER                                                             | Lab Sample ID: 21155007                |
| Sample wt/vcl: 5.000 (g/ml) ML                                                         | Lab File ID: 2U421                     |
| Level: (low/med) LOW                                                                   | Date Received: 01/30/00                |
| % Moisture: not dec.                                                                   | Date Analyzed: 02/03/00                |
| GC Column: DB-624 ID: 0.25 (mm)                                                        | Dilution Factor: 1.0                   |
| Soil Extract Volume:(uL)                                                               | Soil Aliquot Volume:(uL                |
|                                                                                        | INTRATION UNITS:<br>. or ug/Kg) UG/L Q |
| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7 Xylenes (total) | 249191 KD 3 ADS<br>3C.3<br>172 - 3     |

.

(

ĺ

.

ſ

use

FORM I VOA

3.5

| IA<br>VCLATILE ORGANICS ANALYSI                                                      | S DATA SHEET                                    |
|--------------------------------------------------------------------------------------|-------------------------------------------------|
| Lab Name: GENERAL ENGINEERING LABOR                                                  | 141142<br>Contract: N/A                         |
| Lab Code: N/A Case No.: N/A                                                          | SAS NC.: N/A SDG NO.: FSBLTM04W                 |
| Matrix: (soil/water) WATER                                                           | Lab Sample ID: 21144063                         |
| Sample wt/vol: 5.000 (g/ml) ML                                                       | Lab File LD: 50340                              |
| Level: (low/med) LOW                                                                 | Date Received: 01/28/00                         |
| % Moisture: not dec.                                                                 | Date Analyzed: 02/03/00                         |
| GC Column: DB-624 ID: C.25 (mm)                                                      | Dilution Factor: 1.0                            |
| Soil Extract Volume:(uL)                                                             | Soil Aliguot Volume:(ul                         |
| CAS NO. COMPOUND                                                                     | CONCENTRATION UNITS:<br>(ug/I, or ug/Kg) UG/L Q |
| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total | 1.0 U<br>0.47 C<br>J<br>0.22 J<br>3.0 U         |

.

 $\mathbf{j} \rightarrow$ 

-

| la<br>Volatile organics analysi                                                      | EPA SAMPLE NO.                                                                                      |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Lab Name: CENERAL ENGINEERING LABOR                                                  | Contract: N/A                                                                                       |
| Lab Code: N/A Case No.: N/A                                                          | SAS NO.: N/A SDG NO.: FSBLTM04W                                                                     |
| Matrix: (soil/water) WATER                                                           | Lab Sample ID: 21144010                                                                             |
| Sample wt/vol: 5.000 (g/ml) Mi.                                                      | Lab File ID: 8U408                                                                                  |
| Level: (low/med) /LOW                                                                | Date Received: 01/28/00                                                                             |
| % Moisture: not dec.                                                                 | Date Analyzed: 02/03/00                                                                             |
| GC Column: DB-624 ID: 0.25 (mm)                                                      | Dilution Factor: 1.0                                                                                |
| Soil Extract Volume:(uL)                                                             | Soil Aliguot Volume:[u]                                                                             |
| CAS NO. COMPOUND                                                                     | CONCENTRATION UNITS:<br>(ug/L cr ug/Kg) UG/L Q                                                      |
| 71-43-2Benzene<br>103-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total | $ \begin{array}{c} 7.0 \\ 0.60 \\ J \\ J \\ 0.35 \\ J \\ J$ |

.

51

#### DUPLICATE

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA S                                               | EPA SAMPLE NO.                                 |
|---------------------------------------------------------------------------------------|------------------------------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Contract                                          | . <b>14</b> 1244                               |
| Lab Code: N/A Case No.: N/A SAS No.                                                   | .: N/A SDG No.: FSBLTM04W                      |
| Matrix: (soil/water) WATER                                                            | Lab Sample ID: 21144009                        |
| Sample wt/vol: 5.000 (g/ml) ML                                                        | Lab File ID: 30407                             |
| Level: (low/med) .LOW                                                                 | Date Received: 01/28/00                        |
| % Moistures not dec.                                                                  | Date Analyzed: 02/03/00                        |
| GC Column: DB-624 ID: 0.25 (mm)                                                       | Dilution Factor: 1.0                           |
| Soil Extract Volume:(uL)                                                              | Soil Aliquot Volume:(uL                        |
|                                                                                       | ENTRATION UNITS:<br>L or ug/Kg) UG/L Q         |
| 71-43-2Benzere<br>108 88 3Toluenc<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total) | 6.7<br>0.56<br>J<br>0.16<br>J<br>0.32<br>J<br> |

ĺ

53

| 1A<br>VOLATILE ORGANICS ANAI       | LYSTS DATA SHEET                               |
|------------------------------------|------------------------------------------------|
| Lab Name: GENERAL ENGINEERING LABO | DR Contract: N/A                               |
| Lab Code: N/A Case No.: N/A        | SAS NO.: N/A SDG Nc.: FSBLTM04W                |
| Matrix: (soil/water) WATER         | Lab Sample ID: 21144011                        |
| Sample wt/vol: 5.000 (g/ml)        | ML Lab File ID: 80409                          |
| Level: (low/med) LCW               | Date Received: 01/28/00                        |
| % Moisture: not dec.               | Date Analyzed: 02/03/00                        |
| GC Column: DB-624 ID: 0.25 (mm     | Dilution Factor: 1.0                           |
| Scil Extract Volume:(uL)           | Soil Aliquot Volume: (uL                       |
| CAS NO. COMPOUND                   | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L Q |
| 71-43-2 Benzené                    |                                                |

ſ

/\*\*\*

ĺ

•

| 71-43-2       Benzené         105-88-3-      Toluene         100-41-4       Fthylbenzene         1330-20-7Xylènes (total) | 1.0<br>0.59<br>1.0<br>3.0 | U<br>J<br>U | 5 2 21 2 |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|----------|
|                                                                                                                           |                           | ;           | i<br>•   |

DATA VALIDATION COPY DEMOND

| 1A<br>VOLATILE CRGANICS ANALYSIS DATA SI                                              | EPA SAMPLE NO.<br>HEET                                              |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Contract                                          | 141442<br>: N/A                                                     |
| Lab Code: N/A Case No.: N/A SAS No.                                                   |                                                                     |
| Matrix: (soil/water) WATER                                                            | Lab Sample IU: 21144012                                             |
| Sample wt/vol: 5.000 (g/ml) ML                                                        | Lab File ID: 8U410                                                  |
| Level: (low/med) LOW                                                                  | Date Received: 01/28/00                                             |
| % Moisture: not dec.                                                                  | Date Analyzed: 02/03/00                                             |
| GC Column: DB-624 ID: C.25 (mm)                                                       | Dilution Factor: 1.0                                                |
| Soil Extract Volume:(uL)                                                              | Soil Aliquot Volume:(uL                                             |
|                                                                                       | NTRATION UNITS:<br>or ug/Kg) UG/L Q                                 |
| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total) | $ \begin{array}{c} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 3.0 \\ \end{array} $ |

FORM I VOA

•

C

ĺ

 $\gamma_1 I$ 

|                                                                                | COC NO.: SITM 03        | LABOHATORY FIAME:    | General Engineering Laboratory     | LABORATCRY ADDRESS;<br>2040 Savage Raod<br>Charlence of door |                     | PHONE NO: (803) 556-8171 | OVA ORSERVATIONS COMMENTS<br>SCREENING SFECTAL INSTERMENTS |  | -002            | 700-                | -2012          | -200-  | -tai- | -018/   |            |              | 4                                     |             |                |                                           |              |                                        | <u></u> |  |
|--------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------------|--------------------------------------------------------------|---------------------|--------------------------|------------------------------------------------------------|--|-----------------|---------------------|----------------|--------|-------|---------|------------|--------------|---------------------------------------|-------------|----------------|-------------------------------------------|--------------|----------------------------------------|---------|--|
| 2901                                                                           | CHAIN OF CUSTODY RECORD | REQUESTED PAHAMETERS |                                    |                                                              |                     |                          |                                                            |  |                 |                     |                |        |       |         |            |              | Date/Time TOTAL NUMBER OF CONTAINERS: | Cooler ID:  | 1580 SATC # 33 | Date/Tinue                                |              | * Date/TúnH                            |         |  |
| 100 Oak Ridge Turnpha, or Antion 11 - Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti- |                         |                      | ROJECT NUMBER: 01-1624-04-8358-700 | POJECT MANAGER: Party Stoll                                  | igmpler (Skjnatura) | Homeday Lawin Lymber     | Thue Collected Matrix                                      |  | 52 1/27/00 1305 | 309 52 1/27/00 1400 | 52 1/27/w 1055 | 1 nate | 1/27  | 1/27/00 | 2 1/2 7/01 | 1) 00/22/100 | Date/Time REC                         | MPANY NAME. | C12/           | Provenue of the Perindia PELINGUISHED BY: | MAPANY MANEL | UNQUISPED BY: DAILOT INTE RECEIVED BY: | 12.2.2  |  |

7

|                                                          |                                       |                |                   | (                | J.                                     |                                 |                    |                     |              |                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ç                                               |
|----------------------------------------------------------|---------------------------------------|----------------|-------------------|------------------|----------------------------------------|---------------------------------|--------------------|---------------------|--------------|------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                          |                                       | ·              |                   |                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Ś                               |                    |                     |              |                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| . Sectors Applements Barnel and Corporation.             |                                       |                | ·                 |                  | -                                      | 4                               | 1                  | <i>ا</i> نا         | 21155%       | X                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 20 Oat Augu Turnpita, Oat Aidge, IN 27831 14231 451 4600 |                                       | CHJ            | NN                | CHAIN OF CUSTODY | STO                                    |                                 | НЕСОRD             |                     | •            |                                          |            | COC NO.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SLTM d3                                         |
| ROJECT NAME: FL Stewart CAP B LTM                        | ~                                     |                | -                 |                  | REQUES                                 | REQUESTED PARAMETERS            | RAMET              | ERS                 |              |                                          |            | LABORATORY NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ME                                              |
| ROJECT NUMBER: 01-1624-04-8358-700                       | - v                                   |                |                   |                  |                                        | ~                               |                    |                     |              |                                          |            | General Engineering Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 Laburatory                                   |
| ROJECT MANAGER: Patty Stoll                              |                                       |                |                   |                  |                                        |                                 |                    |                     |              |                                          | :sy        | LABORATORY AUDHESS<br>2040 Savage Raxd<br>Charleston, SC 29417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADDHESS.<br>abd<br>29417                        |
| theoler (Stonatura)                                      |                                       |                | ÷                 |                  |                                        |                                 |                    |                     |              |                                          | diV (i     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| Ċ                                                        |                                       | H              |                   | ,:               |                                        |                                 |                    |                     |              |                                          |            | PHONE NO: (803) 556 8171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 666 <b>8</b> 171                                |
| Sample ID Date Califician Time Collected                 | Matth                                 | t<br>T<br>SIEX | й таки .          |                  |                                        |                                 |                    |                     |              |                                          | i 10, of 1 | DVA<br>BCREFNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ODSERVATIONS, COMMENTS,<br>SPECIAL INSTRUCTIONS |
| 030259 1/2%/m 11-10                                      | المتلاد                               | 2 7            |                   | 1                |                                        |                                 |                    |                     |              |                                          | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| 031152 1/28/00 10 30                                     |                                       | ž.<br>N        | Г. с<br>1 с       |                  |                                        | -                               |                    |                     | <br>         |                                          | 11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 3207-12 1/24/00 1325                                     |                                       | 2              | :<br>:;           | i<br>C           |                                        | -<br>                           | <u>.</u> ]]        | 1 · · ·             | -<br>- *     |                                          | 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 321042 1/26/00 1515                                      |                                       | <br>7          |                   | ing.             |                                        | <u>i</u>                        | i,                 |                     | , -<br>,     |                                          | N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 321142 1/24/00 10-20                                     |                                       | N<br>N         |                   |                  |                                        | دریا                            |                    | ية.                 |              |                                          | N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| <u>H2</u> //                                             | · · · · · · · · · · · · · · · · · · · |                |                   |                  |                                        | 4 - 1<br>2 - 9 - 2<br>2 - 9 - 2 |                    | - 55                |              |                                          | N<br>      | are a second and a second and a second area as |                                                 |
| 409 42 1/2 2/00 0045                                     |                                       |                | ેટ                |                  |                                        | 1 I                             | 19. P<br>1         |                     | £ .          |                                          | N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 330642 1/24/00 1157                                      |                                       | <br>N          |                   | . <b>†</b> š     | 3                                      |                                 |                    |                     |              | <br>                                     | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 47 1/24/10                                               |                                       | N              |                   | -<br>FR          |                                        |                                 |                    |                     | *******<br>* |                                          | N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 24942 1/24/00 (                                          |                                       | 7              |                   | <u>;</u> ;;      | ·                                      | . "                             | 4                  |                     |              | ۲                                        | N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 2                                                        |                                       |                |                   | •=               |                                        | ч<br>•                          |                    |                     |              | ,                                        | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 331044 125/00 1326                                       |                                       | 7              | र<br>सन्द         | ·                |                                        |                                 |                    |                     | •            |                                          | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| 1/2 4/ 00 0 24/                                          | >                                     | ন              |                   |                  |                                        |                                 |                    | 12                  |              | · · · · · ·                              | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
|                                                          | REGEIVED BY:                          | 7              | Da                | Date/Time        |                                        | TOTAL NUMBER OF CONTAINERS:     | ABER O             | CONT                | AINERS       |                                          |            | Cooler Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |
| Ino/or / Har                                             | 10" ( V                               | 8. clv         | -   //se          | .)160            | Coo                                    | Coater ID:                      | +                  |                     |              |                                          |            | FEDEX-NUMBER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |
| SATC 1045                                                | LUMPAN NAME                           |                | <u> </u>          | 1330             |                                        | •                               |                    | ງ<br>ງ              |              |                                          |            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| Date/Time                                                | RELÍNOLISHED BY                       | 2 - V          | -O-               | Öatu/Tinja       |                                        |                                 |                    | 56.743<br>56.7 - 7. |              |                                          | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| (1)14 - Wined- 1/33/60                                   |                                       |                |                   |                  | •                                      | • • •                           |                    | •••                 |              | -                                        |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|                                                          | COMPANY NAME:                         |                |                   |                  | · · ·                                  | 1.45<br>1.16                    | ·                  |                     |              | ···.                                     | <i>*</i>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| $C\lambda n/$                                            |                                       |                | . <br>            |                  | •••••••                                |                                 | <u>د</u> .         |                     |              | •••                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                               |
| ELMOUISHED BY. Date Time HECET                           | RECEIVED BY                           |                | <u>.</u>          | Dalu/Time        | * .e                                   | Ч <b>га</b> л                   | . , .              | · ••••              | nan a r      |                                          |            | ۰.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
| NAN(3                                                    | COMPANY NAME                          |                | ·                 |                  | • •                                    | • .<br>• ·                      | - w<br>            | 50                  | •            |                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
|                                                          |                                       |                |                   |                  | ••• ·                                  | с.<br>                          | ~  -~              |                     |              | • • •                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
|                                                          |                                       |                | т 1.44<br>1.97 г. | •                | <br>                                   | •                               | یں۔ در م<br>دیر در | n an se             | <br>         | n an | 124        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
|                                                          |                                       |                |                   | v •              |                                        |                                 |                    |                     |              | •                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |

ĺ

,

## FOURTH SEMIANNUAL MONITORING EVENT

.

## JUNE/JULY 2000

| 1A<br>VOLATILE ORGANICS ANALYS      | IS DATA SHEET                   |
|-------------------------------------|---------------------------------|
| Lab Name: GENERAL ENGINEERING LABOR | Contract: N/A                   |
| Lab Code: N/A Case No.: N/A         | SAS No.: N/A SDG No.: FSBLTM10W |
| Matrix: (soil/water) WATER          | Lab Sample ID: 27385003         |
| Sample wt/vol: 5.000 (g/ml) ML      | Lab File ID: 8P109              |
| Level: (low/med) LOW                | Date Received: 06/22/00         |
| % Moisture: not dec.                | Date Analyzed: 06/25/00         |
| GC Column: DB-624 ID: 0.25 (mm)     | Dilution Factor: 1.0            |
| Soil Extract Volume:(uL)            | Soil Aliquot Volume:(uL         |
|                                     |                                 |

| CAS NO.                                      | COMPOUND | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/I |                             | Q      |          |
|----------------------------------------------|----------|----------------------------------------------|-----------------------------|--------|----------|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 |          | 1)                                           | 10.6<br>0.56<br>3.2<br>11.1 | B<br>J | 11 11 11 |

(

31

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA SI     | EPA SAMPLE NC.           |   |
|----------------------------------------------|--------------------------|---|
|                                              | 140852                   |   |
| Lab Name: GENERAL ENGINEERING LABOR Contract | : N/A                    |   |
| Lab Code: N/A Case No.: N/A SAS No.          | : N/A SEG No.: FSBLTM10W |   |
| Matrix: (soil/water) WATER                   | Lab Sample ID: 27385004  |   |
| Sample wt/vol: 5.000 (g/ml) ML               | Lab File ID: 8P110       |   |
| Level: (low/med) LOW                         | Date Received: 06/22/00  |   |
| % Moisture: not dec.                         | Date Analyzed: 06/26/00  |   |
| GC Column: DB-624 ID: 0.25 (mm)              | Dilution Factor: 1.0     |   |
| Soil Extract Volume:(uL)                     | Soil Aliquot Volume:(uL  | I |
|                                              |                          |   |

| CAS NO.                                      | COMPOUND                                            | CONCENTRATION UNITS<br>(ug/L or ug/Kg) UG/ | :<br>L                      |   |
|----------------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes (tota | al)                                        | 62.5<br>0.90<br>55.6<br>118 | J |

OLM03.0

33

Q

15

===

FORM I VOA

DATA VALIDATION COPY

| 1A<br>VCLATILE ORGANICS ANALYSIS DATA       | EPA SAMPLE NO.            |
|---------------------------------------------|---------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Contrac | 140952                    |
| Lab Code: N/A Case No.: N/A SAS No          | .: N/A SDG No.: FSBL1M10W |
| Matrix: (soil/water) WATER                  | Lab Sample ID: 27385005   |
| Sample wt/vol: 5.000 (g/ml) ML              | Lab File ID: 8P111        |
| Level: (low/med) LOW                        | Date Received: 06/22/00   |
| % Moisture: not dec.                        | Date Analyzed: 06/25/00   |
| GC Column: DE-624 ID: 0.25 (mm)             | Dilution Factor: 1.1      |
| Soil Extract Volume:(uL)                    | Soil Aliquot Volume:(uL   |

| CAS | NO. | COMPOUND | (ug/L |
|-----|-----|----------|-------|
|     |     |          |       |

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L



# 71-43-2-----Benzene\_\_\_\_\_\_ 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 248 <t

OLM03.0

FORM I VOA

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA S      | EPA SAMPLE NO.<br>HEET   |
|----------------------------------------------|--------------------------|
|                                              | 141152                   |
| Lab Name: GENERAL ENGINEERING LABOR Contract | . N/A                    |
| Lab Code: N/A Case No.: N/A SAS No.          | : N/A SDG No.: FSBLTM10W |
| Matrix: (soil/water) WATER                   | Lab Sample ID: 27385006  |
| Sample wt/vol: 5.000 (g/ml) ML               | Lab File ID: 8P311       |
| Level: (low/med) LOW                         | Date Received: 06/22/00  |
| % Moisture: not dec.                         | Date Analyzed: 06/28/00  |
| GC Column: DB-624 ID: 0.25 (mm)              | Dilution Factor: 1.0     |
| Soil Extract Volume:(uL)                     | Soil Aliquot Volume:(uL  |

| CAS NO.                                      | COMPOUND | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L |                            | Q      | 1    |
|----------------------------------------------|----------|----------------------------------------------|----------------------------|--------|------|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | -Toluene |                                              | 1.0<br>0.37<br>0.24<br>3.0 | J<br>J | いううん |

(

ĺ

DATA VALIDA DLMOB. 0 COPY

.

FORM I VOA
| la<br>Volatile organics analysis e      | DATA SHEET                     |
|-----------------------------------------|--------------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Con | 141252                         |
| Lab Code: N/A Case No.: N/A SA          | AS NO.: N/A SDG NO.: FSBLTM10W |
| Matrix: (soil/water) WATER              | Lab Sample ID: 27385007        |
| Sample wt/vol: 5.000 (g/ml) ML          | Lab File ID: 8P113             |
| Level: (low/med) LOW                    | Date Received: 06/22/00        |
| % Moisture: not dec.                    | Date Analyzed: 06/26/00        |
| GC Column: DB-624 ID: 0.25 (mm)         | Dilution Factor: 1.0           |
| Soil Extract Volume:(uL)                | Soil Aliquot Volume:(uL        |

| CAS NO.                                      | COMPOUND | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L |                             | Q      |       |
|----------------------------------------------|----------|----------------------------------------------|-----------------------------|--------|-------|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 |          | al)                                          | 10.7<br>1.0<br>0.17<br>0.38 | U<br>J | 11240 |

FORM I VOA

(

| LA<br>VOLATILE ORGANICS A       |                      | DUPLICATE<br>EPÀ SAMPLE NO. |
|---------------------------------|----------------------|-----------------------------|
| Lab Name: GENERAL ENGINEERING L | ABOR Contract: N/A   | 141254                      |
| Lab Code: N/A Case No.: N       | J/A SAS No.: N/A SDG | No.: FSBLTM10W              |
| Matrix: (soil/water) WATER      | Lab Sample ID        | : 27385008                  |
| Sample wt/vol: 5.000 (g/m       | nl) ML Lab File ID:  | 8P114                       |
| Level: (low/med) LOW            | Date Received        | : 06/22/00                  |
| % Moisture: not dec.            | Date Analyzed        | : 06/26/00                  |
| GC Column: DB-624 ID: 0.25      | (mm) Dilution Fact   | or: 1.0                     |
| Soil Extract Volume:(uL         | Soil Aliquot         | Volume:(uL                  |

| CAS NO.                                      | COMPOUND                                              | CONCENTRATIC<br>(ug/L or ug, |                            | Q      |       |
|----------------------------------------------|-------------------------------------------------------|------------------------------|----------------------------|--------|-------|
| 71-43-2<br>108-89-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylenes (total) |                              | 9.6<br>1.0<br>0.14<br>0.35 | U<br>J | 44211 |

Ć.,

43

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA S      | EPA SAMPLE NO.           |
|----------------------------------------------|--------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Contract | .: N/A                   |
| Lab Code: N/A Case No.: N/A SAS No.          | : N/A SDG No.: FSBLTM10W |
| Matrix: (soil/water) WATER                   | Lab Sample ID: 27385009  |
| Sample wt/vol: 5.000 (g/ml) ML               | Lab File ID: 8P312       |
| Level: (low/med) LOW                         | Date Received: 06/22/00  |
| % Moisture: not dec.                         | Date Analyzed: 06/28/00  |
| GC Column: DB-624 ID: 0.25 (mm)              | Dilution Factor: 1.0     |
| Soil Extract Volume:(uL)                     | Soil Aliquot Volume:(uL  |

| CAS NO.              | COMPOUND                                            | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L |                          | Q      |   |
|----------------------|-----------------------------------------------------|----------------------------------------------|--------------------------|--------|---|
| 108-88-3<br>100-41-4 | Benzere<br>Toluene<br>Ethylberzene<br>Xylenes (tota | a1)                                          | 1.0<br>1.0<br>1.0<br>3.0 | U<br>U | K |

.

\*

| 1A<br>VOLATILE CRGANICS ANALYSIS DATA        | SHEET                      |
|----------------------------------------------|----------------------------|
| Lab Name: GENERAL ENGINEERING LABOR Contract | 141452                     |
| Lab Code: N/A Case No.: N/A SAS No           | D.: N/A SDG No.: FSBLTM10W |
| Matrix: (soil/water) WATER                   | Lab Sample ID: 27385010    |
| Sample wL/vol: 5.000 (g/ml) ML               | Lab File ID: 8P313         |
| Level: (low/med) LOW                         | Date Received: 06/22/00    |
| <pre>% Moisture: not dec</pre>               | Date Analyzed: 06/28/00    |
| GC Column: DB-624 ID: 0.25 (mm)              | Dilution Factor: 1.0       |
| Soil Extract Volume:(uL)                     | Soil Aliquot Volume:(uL    |

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total) | 0.21 J<br>1.0 U<br>1.0 U<br>3.0 U | Fra |
|---------------------------------------------------------------------------------------|-----------------------------------|-----|
|                                                                                       | į                                 |     |

COMPOUND

CAS NO.

FORM I VOA

47

| CHAIN OF CUSTODY RECORD     COC NO.: G L T.M.I.S.       CHAIN OF CUSTODY RECORD     EROUGTED ADMATTERS     LABID AT TOTY MAKE:       RECURST DATAWATERS     LABID AT TOTY ADD FROM ADD FR |                                       | 4   |                                               | 9 °      |            | 7         |          |            |                                               | e <sup>n en e</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|-----------------------------------------------|----------|------------|-----------|----------|------------|-----------------------------------------------|---------------------|
| Пание         Пание <t< td=""><td>\$</td><td>HU</td><td></td><td></td><td></td><td></td><td></td><td></td><td>OC NO. 2</td><td>A NT</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$                                    | HU  |                                               |          |            |           |          |            | OC NO. 2                                      | A NT                |
| Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z <td></td> <td></td> <td></td> <td>S    -</td> <td>UESTED PAP</td> <td>AMETERS</td> <td></td> <td></td> <td>30RATORY NAME:</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |     |                                               | S    -   | UESTED PAP | AMETERS   |          |            | 30RATORY NAME:                                |                     |
| 2     2     2     2     002       2     3     3     3     3     3       2     3     3     3     3     3       2     3     3     3     3     3       2     3     3     3     3     3       2     3     3     3     3     3       2     3     3     3     3     3       2     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3     3     3       3     3     3     3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |     |                                               |          |            |           |          | <br>5      | iloral Engineerung Labora<br>Amatroev Ambesse | ριλ                 |
| Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z <td></td> <td></td> <td></td> <td></td> <td>······</td> <td></td> <td></td> <td><br/></td> <td>10 Savage Raod<br/>Inleston, SC 29417</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |     |                                               |          | ······     |           |          | <br>       | 10 Savage Raod<br>Inleston, SC 29417          |                     |
| 2     2     01500000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |     |                                               |          |            |           |          | <br>       | ONE NO: (843) 556-817                         |                     |
| 7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7     7     7     7     7     7     7     7       7 <td>Tine Collected Matrix</td> <td>ная</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><br/>10 .01</td> <td></td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tine Collected Matrix                 | ная |                                               |          |            |           |          | <br>10 .01 |                                               | 1                   |
| 7     7     7     7     0     0       7     7     7     7     7     7     0       7     7     7     7     7     7     0       7     7     7     7     7     7     0       7     7     7     7     7     7     0       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7     7     7     7     7     7     7       7 <td>water</td> <td></td> <td>P</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>8210</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water                                 |     | P                                             |          |            |           |          | 10         | 8210                                          | 1                   |
| 7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7 <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td></td> <td>002</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 7   |                                               |          |            |           |          | N          |                                               | 002                 |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>eav<br/>A</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |     |                                               |          |            |           |          | 2          |                                               | eav<br>A            |
| 0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0     0       0     0     0     0     0     0    0     0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td>000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |     |                                               |          |            |           |          | 2          |                                               | 000                 |
| 0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td></td> <td>And T</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |     |                                               |          |            |           |          | N          |                                               | And T               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0955 2                                |     |                                               |          |            |           |          | 2          |                                               | SW                  |
| M     M     M     M     M     M     M     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z     Z <td>N<br/></td> <td>88</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td></td> <td>tuo</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N<br>                                 | 88  |                                               |          |            |           |          | N          |                                               | tuo                 |
| M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       M     Z     Z       V2260     Cooler ID:     H       M     Z     EEDEX NUMBER:       M     Z     EEDEX NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |     |                                               |          |            |           |          | h          |                                               | - XOO               |
| M     Z     Z       DataTime     TOTAL NUMBER OF CONTAINERS:     Z       DataTime     TOTAL NUMBER OF CONTAINERS:     Cooler Temparature:       M     V22/60     Cooler ID:       M     V23/60     Cooler ID:       M     DataTime     DataTime       DataTime     DataTime     DataTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                     |     |                                               |          |            |           |          | 2          |                                               | 000                 |
| Date/Time     TOTAL NUMBER OF CONTAINERS:     Z       Date/Time     TOTAL NUMBER OF CONTAINERS:     Cooler Temperature:       V/22/b b     Cooler ID:     H < CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                     |     |                                               |          |            |           |          | N          |                                               | 00                  |
| ■ TOTAL NUMBER OF CONTAINERS: Cooler Temperature: <u>4, 2</u><br>Cooler ID: <u>4, 40</u> 5<br>Cooler ID: <u>4, 40</u> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |     |                                               |          |            |           |          | 2          |                                               | 10                  |
| ■ TOTAL NUMBER OF CONTAINERS: Cooler Temperature:<br>Cooler ID:<br>Cooler ID:<br>A → C → C → C → FEDEX NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                                               |          |            |           |          | N          |                                               | 20                  |
| TOTAL NUMBER OF CONTAINERS:     Cooler Temperature:     X       Cooler ID:     X - CO     FEDEX NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                              |     |                                               |          |            |           |          | 2          |                                               | 012                 |
| Cooler ID: # -CO-5 FEDEX NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RECEIVED BY:                          | Ś   | <u>,                                     </u> | ate/Time | TOTAL NUN  | BER OF CO | NTAINERS | <br>U<br>U | 7                                             | G                   |
| Date/Timo<br>Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KUMPANY NAME:<br>COMPANY NAME:<br>GPC |     | <u>5 3</u>                                    | 30       |            | \$        | τŪ       | <u> </u>   | JEX NUMBER:                                   | 3                   |
| Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RELINQUISHED BY:<br>COMPANY NAME:     |     | ă                                             | ate/Time |            |           |          | -          |                                               |                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AECEIVED BY:                          |     | <u> </u>                                      | ate/Time | ۰.         |           |          |            |                                               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPANY NAME:                         |     |                                               |          |            |           |          | 5.         |                                               |                     |

Ć

ĺ

-

7

.

### **APPENDIX IV**

,

# SITE RANKING FORMS

ĺ

## THIRD SEMIANNUAL MONITORING EVENT

# **JANUARY/FEBRUARY 2000**

### SITE RANKING FORM

| Facility Name: UST 29, Building 1633 |                 |                                                                            |          |                              |         | Rank               | ed by:                                                 | S. Stoller     |               |          |
|--------------------------------------|-----------------|----------------------------------------------------------------------------|----------|------------------------------|---------|--------------------|--------------------------------------------------------|----------------|---------------|----------|
| Count                                | y: Lib          | erty Facility ID                                                           |          | Date                         | Ranked: | 5/16/00            |                                                        |                |               |          |
| <u>SOIL (</u>                        |                 | MINATION                                                                   |          |                              |         |                    |                                                        |                |               |          |
| Α.                                   | Maxim<br>(Assur | PAHs –<br>um Concentration four<br>ne <0.660 mg/kg if onl<br>ored on site) |          |                              | B.      |                    | Benzene -<br>num Concer                                | itration foun  | d on          | the site |
|                                      | Wa5 30          | orea on alter                                                              |          |                              |         |                    | <u>&lt;</u> 0.005 mg                                   | /kg            | Ξ             | 0        |
|                                      |                 | <u>&lt;</u> 0.660 mg/kg                                                    | <u>=</u> | 0                            | *       | $\boxtimes$        | >0.0050                                                | 5 mg/kg        | =             | 1        |
|                                      |                 | >0.66 - 1 mg/kg                                                            | =        | 10                           |         |                    | >0.05 - 1 n                                            | ng/kg          | =             | 10       |
|                                      |                 | >1 - 10 mg/kg                                                              | =        | 25                           |         |                    | >1 - 10 mg                                             | /kg            | =             | 25       |
|                                      |                 | >10 mg/kg<br>CAP Part B sample 141021                                      | =        | 50                           |         |                    | >10 - 50 m                                             | g/kg           | <del>غه</del> | 40       |
|                                      | , i             |                                                                            | [1337    | )                            |         |                    | >50 mg/kg<br>CAP-Part A sa                             |                | =<br>1996     |          |
| С.                                   |                 | to Groundwater<br>pelow land surface)                                      |          |                              |         |                    |                                                        |                | ,             |          |
|                                      |                 | >50' bls =                                                                 | 1        |                              |         |                    |                                                        |                |               |          |
|                                      |                 | >25' - 50' bls =                                                           | 2        |                              |         |                    |                                                        |                |               |          |
|                                      |                 | >10' - 25' bis =                                                           | 5        |                              |         |                    |                                                        |                |               |          |
|                                      | $\boxtimes$     | <u>&lt;</u> 10' bls =                                                      | 10       |                              |         |                    |                                                        |                |               |          |
| Fill in f                            | the blan        | ks: (A. <u>25</u> )+(                                                      | в        | <u> </u> ) = ( <u>26</u> ) > | « (C    | <u>   10    </u> ) | = (D. <u>260</u>                                       | _)             |               |          |
|                                      |                 |                                                                            |          |                              |         |                    |                                                        |                |               |          |
| <u>GROU</u>                          | NDWAT           | ER CONTAMINATIO                                                            | N        |                              |         |                    |                                                        |                |               |          |
| E.                                   | liquid h        | roduct (Nonaqueous-p<br>lydrocarbons; See Gui<br>finition of "sheen").     |          |                              | F,      | Maxin<br>(One v    | lved Benzen<br>num Concen<br>well must be<br>release.) | tration at the |               |          |
|                                      | $\boxtimes$     | No free product = 0                                                        |          |                              |         |                    | <u>_</u> ≤5 µg/L                                       |                |               | = 0      |
|                                      |                 | Sheen - 1/8" = 2                                                           | 50       |                              |         |                    | >5 - 100 µg                                            | J/L.           |               | = 5      |
|                                      |                 | >1/8" - 6" = 50                                                            | 00       |                              | *       | $\boxtimes$        | >100 - 1,00                                            | -              |               | = 50     |

- >1,000 10,000 μg/L = 500
  - >10,000 μg/L = 1500 \* LTM sample 140942 (January 2000)

Fill in the blanks: (E. 0) + (F. 50) = (G. 50)

100 points = <u>1,000 +</u>

= 1,000

For every additional inch, add another

ĺ

>6" - 1ft.

#### Facility Name: UST 29, Building 1633

County: Liberty Facility ID #: 9-089088

#### POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

| Н.                                                       | Public                                                                                                                                                                                  | Water Supply                                               |                                                                                                                       | I.               | Non-P         | ublic Water Sup                    | ply                  |                              |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------------------------------|----------------------|------------------------------|
| *                                                        | □<br>Note:                                                                                                                                                                              |                                                            | = 10<br>= 2<br>= 0<br>areas only:<br>= 0<br>er susceptibility area                                                    |                  | Use the       |                                    | =<br>=<br>/ are<br>= | 5<br>2<br>0<br>as only:<br>0 |
|                                                          | For                                                                                                                                                                                     | justification that                                         | withdrawal point is no                                                                                                | ot hydraul       | ically co     | nnected, see att                   | ache                 | ed text.                     |
| J.                                                       | bound<br>OR UT<br>trench                                                                                                                                                                | ary to downgradi<br><b>FILITY TRENCH</b><br>may be omitted | Contaminant Plume<br>ient Surface Waters<br>ES & VAULTS (a utili<br>from ranking if its inve<br>5 feet above the wate | ert              |               | ce from any Fre<br>ements and crav |                      | aces                         |
|                                                          |                                                                                                                                                                                         | Impacted                                                   | = 500                                                                                                                 |                  |               | Impacted<br><500'                  | =                    | 500<br>50                    |
|                                                          |                                                                                                                                                                                         | <u>&lt;</u> 500'<br>>500' - 1,000'                         | = 50<br>= 5                                                                                                           |                  |               | >500' - 1,000'<br>>1,000' or       | =                    | 5<br>0                       |
|                                                          |                                                                                                                                                                                         | >1,000'                                                    | = 2                                                                                                                   |                  |               | no free produc                     | ct.                  | -                            |
| Fill in the blanks: (H0_) + (I0_) + (J50_) + (K0_) = L50 |                                                                                                                                                                                         |                                                            |                                                                                                                       |                  |               |                                    |                      |                              |
|                                                          |                                                                                                                                                                                         |                                                            | (G                                                                                                                    | <u>50</u> ) x (  | L. <u>50</u>  | ) = M. <u>2500</u>                 |                      |                              |
|                                                          |                                                                                                                                                                                         |                                                            | (M. <u>2</u>                                                                                                          | <u>500</u> ) + ( | D. <u>260</u> | _) = N. <u>2760</u>                |                      |                              |
| Ρ.                                                       | SUSC                                                                                                                                                                                    | EPTIBILITY ARI                                             | EA MULTIPLIER                                                                                                         |                  |               |                                    |                      |                              |
|                                                          |                                                                                                                                                                                         | If site is located                                         | d in a Low Ground-W                                                                                                   | ater Pollu       | tion Sus      | ceptibility Area =                 | = 0.5                |                              |
|                                                          | $\boxtimes$                                                                                                                                                                             | All other sites =                                          | = 1                                                                                                                   |                  |               |                                    |                      |                              |
| Q.                                                       | EXPL                                                                                                                                                                                    | OSION HAZARD                                               | 2                                                                                                                     |                  |               |                                    |                      |                              |
|                                                          | Have any explosive petroleum vapors, possibly originating from this release, been detected in any subsurface structure (e.g., utility trenches, basements, vaults, crawl spaces, etc.)? |                                                            |                                                                                                                       |                  |               |                                    |                      |                              |
|                                                          |                                                                                                                                                                                         | Yes = 200,                                                 | 000                                                                                                                   |                  |               |                                    |                      |                              |
|                                                          | $\boxtimes$                                                                                                                                                                             | No = 0                                                     |                                                                                                                       |                  |               |                                    |                      |                              |
| Fill in                                                  | the blar                                                                                                                                                                                | nks: (N. <u>276</u>                                        | 60_) x (P1_) = (                                                                                                      | <u>2760</u> ) +  | (Q. <u>0</u>  | )                                  |                      |                              |
|                                                          |                                                                                                                                                                                         |                                                            | (January 2000 - Thir<br>CONMENTAL SENSI                                                                               |                  |               | ampling Event)                     |                      |                              |

## FOURTH SEMIANNUAL MONITORING EVENT

•

### JUNE/JULY 2000

ĺ

| SITE | RANKI | NG FORM |
|------|-------|---------|
|------|-------|---------|

| Facilit       | y Name          | : UST 29, Buildin                                                   | g 1633         |                            |      | Rank           | ed by:                                         | S. Stolle                              | r          |         |
|---------------|-----------------|---------------------------------------------------------------------|----------------|----------------------------|------|----------------|------------------------------------------------|----------------------------------------|------------|---------|
| Count         | y: <u>Lib</u>   | erty Facility                                                       | ID #: <u>9</u> | -089088                    |      | Date           | Ranked:                                        | 10/18/00                               |            |         |
| <u>SOIL (</u> |                 |                                                                     |                |                            |      |                |                                                |                                        |            |         |
| A.            | Maxim<br>(Assur | PAHs –<br>um Concentration f<br>ne <0.660 mg/kg if<br>ored on site) |                |                            | В.   |                | Benzene -<br>num Conce<br><u>&lt;</u> 0.005 mg | ntration four<br>g/kg                  | nd or<br>= |         |
|               |                 | <u>&lt;</u> 0.660 mg/kg                                             | #              | 0                          | *    | $\boxtimes$    | >0.005(                                        | 05 mg/kg                               | =          | 1       |
|               |                 | >0,66 - 1 mg/kg                                                     | =              | 10                         |      |                | >0.05 - 1                                      | mg/kg                                  | =          | 10      |
| ,             |                 | >1 - 10 mg/kg                                                       | =              | 25                         |      |                | >1 - 10 m                                      | g/kg                                   | =          | 25      |
|               |                 | >10 mg/kg<br>CAP Part B sample 1410                                 | =              | 50                         |      |                | >10 - 50 n                                     | ng/kg                                  |            | 40      |
|               |                 | SAP Part o sample 1410                                              | 21 (1997       | )                          |      |                | >50 mg/kg                                      | ample 1403A1                           | =<br>(1996 | 50<br>1 |
| C.            |                 | to Groundwater<br>below land surface)                               |                |                            |      |                |                                                |                                        |            | 3       |
|               |                 | >50' bls =                                                          | 1              |                            |      |                |                                                |                                        |            |         |
|               |                 | >25' - 50' bls =                                                    | 2              |                            |      |                |                                                |                                        |            |         |
|               |                 | >10' - 25' bis =                                                    | 5              |                            |      |                |                                                |                                        |            |         |
|               | $\boxtimes$     | <u>&lt;</u> 10' bls =                                               | 10             |                            |      |                |                                                |                                        |            |         |
| Fill in t     | the blan        | iks: (A. <u>25</u> )                                                | + (B           | <u>1_)</u> = ( <u>26</u> ) | x (C | <u> 10  </u> ) | = (D. <u>260</u>                               | )                                      |            |         |
| CDOU          |                 |                                                                     |                |                            |      |                |                                                |                                        |            |         |
|               |                 | ER CONTAMINAT                                                       |                |                            |      |                |                                                |                                        |            |         |
| E.            | liquid h        | roduct (Nonaqueou<br>ydrocarbons; See (<br>finition of "sheen").    |                |                            | F.   | Maxin<br>(One  |                                                | ne -<br>ntration at th<br>e located at |            |         |
|               | $\boxtimes$     | No free product =                                                   | 0              |                            |      |                | <u>&lt;</u> 5 μg/L                             |                                        |            | = 0     |
|               |                 | Sheen - 1/8" =                                                      | 250            |                            |      |                | <u></u> >5 - 100 μ                             | a/l                                    |            | = 5     |
|               |                 | >1/8" - 6" =                                                        | 500            |                            | *    |                | >100 - 1,0                                     | -                                      |            | = 50    |

00-315(doc)110900

Fill in the blanks:

>6" - 1ft.

100 points = <u>1,000 +</u>

= 1,000

(E.\_\_\_) + (F.\_\_\_50\_\_) = (G.\_\_50\_\_)

For every additional inch, add another

= 500

= 1500

>1,000 - 10,000 µg/L

>10,000 µg/L \* LTM sample 140952 (June 2000)

#### Facility Name: UST 29, Building 1633

County: Liberty Facility ID #: 9-089088

#### POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

| Н.      | Public                           | Water Supply                                                                         |                                                                |                                 | ١.               | Non-P                  | ublic Water Sup                                                                                                                                             | oly          |                                    |
|---------|----------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|
| *       | □<br>Note:                       |                                                                                      | = 10<br>= 2<br>= 0<br>/ areas only:<br>= 0<br>/ er susceptibil |                                 |                  | use the                | Impacted<br>$\leq 100'$<br>> 100' - 500'<br>$> 500' - 1'_4 mi$<br>$> 1'_4 - 1'_2 mi$<br>$> 1'_2 mi$<br>ver susceptibility<br>$> 1'_4 mi$<br>e shaded areas. | =            | 25<br>5<br>2<br>0<br>as only:<br>0 |
| J.      | Distan<br>bound<br><b>OR U</b> T | ce from nearest<br>ary to downgrad<br><b>FILITY TRENCH</b>                           | Contaminant F<br>ient Surface W<br>ES & VAULTS                 | Plume<br>/aters<br>S (a utility | K.               | Distan                 | ce from any Free<br>ements and craw                                                                                                                         | e Pro        | oduct                              |
|         | trench<br>elevat                 | may be omitted<br>ion is more than<br>Impacted<br><500'<br>>500' - 1,000'<br>>1,000' | 5 feet above th<br>= 500<br>= 50                               | f its invert<br>he water tab    | ole)             |                        | Impacted<br><500'<br>>500' - 1,000'<br>>1,000' or<br>no free produc                                                                                         | =            | 500<br>50<br>5<br>0                |
| Fill in | the blar                         | nks: (H. <u>0</u> )                                                                  | + (l. <u>0</u> ) +                                             | (J. <u>50</u> )                 | + (              | к. <u>0</u>            | ) = L. <u>50</u>                                                                                                                                            |              |                                    |
|         |                                  |                                                                                      |                                                                | (G. <u>50</u> )                 | ) X (            | L. <u>50</u>           | ) = M. <u>2500</u>                                                                                                                                          |              |                                    |
|         |                                  |                                                                                      |                                                                | (M. <u>2500</u> )               | ) + (            | D. <u>260</u>          | ) = N. <u>2760</u>                                                                                                                                          |              |                                    |
| Ρ.      | <u>SUSC</u>                      | EPTIBILITY AR                                                                        | <u>EA MULTIPLII</u>                                            | ER                              |                  |                        |                                                                                                                                                             |              |                                    |
|         |                                  | If site is locate                                                                    | d in a Low Gro                                                 | ound-Water l                    | Pollut           | tion Sus               | ceptibility Area =                                                                                                                                          | 0.5          |                                    |
|         | $\boxtimes$                      | All other sites                                                                      | = 1                                                            |                                 |                  |                        |                                                                                                                                                             |              |                                    |
| Q.      | EXPL                             | OSION HAZARI                                                                         | 2                                                              |                                 |                  |                        |                                                                                                                                                             |              |                                    |
|         | Have a subsu                     | any explosive pe<br>face structure (e                                                | troleum vapors<br>e.g., utility trend                          | s, possibly o<br>ches, basem    | origina<br>nents | ating fro<br>, vaults, | m this release, b<br>crawl spaces, e                                                                                                                        | een<br>tc.)? | detected in any                    |
|         |                                  | Yes = 200,                                                                           | 000                                                            |                                 |                  |                        |                                                                                                                                                             |              |                                    |
|         | $\boxtimes$                      | No = 0                                                                               |                                                                |                                 |                  |                        |                                                                                                                                                             |              |                                    |
| Fill in | the blar                         | nks: (N. <u>270</u>                                                                  | 60_) x (P. <u>1</u>                                            | ) = (2760                       | <u>)</u> )+      | (Q. <u>0</u>           | )                                                                                                                                                           |              |                                    |
|         |                                  |                                                                                      | <u>(June 2000 - F</u><br>RONMENTAL :                           |                                 |                  |                        | npling Event)                                                                                                                                               |              |                                    |
|         |                                  |                                                                                      |                                                                | <b>D 1</b>                      | <b>C</b> D       |                        |                                                                                                                                                             |              | 1/00                               |

#### OTHER GEOLOGIC AND HYDROLOGIC DATA

The following information is presented to provide supplemental information to Item H of the Site Ranking Form and gives detailed information relating to the geologic and hydrogeologic conditions at Fort Stewart to support determinations of groundwater flow pathway(s) or direction(s) and contaminant transport.

#### 1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward-dipping strata that increase in thickness from 0 feet at the fall line, located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 feet below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 feet thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 feet thick and dominated by limestone with a 175-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-foot section, the lowermost 110 feet of which consisted predominantly of limestone sediments, above which 245 feet of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 feet of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 inches in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 inches. The subsoil is predominantly sandy clay loam and extends to a depth of 72 inches or more (Herrick and Vochis 1963).

#### 2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. These formations are approximately 800 feet thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 feet to 150 feet in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 feet to 10 feet BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 feet to 50 feet BGS; thus, the effective aquifer thickness would be approximately 35 feet to 45 feet. Soil surveys for Liberty and Long counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian Aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 feet to 90 feet. The vertical hydraulic conductivity of this confining unit is on the order of 10<sup>-8</sup> cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie Formation, Markshead Formation, and Parachula Formation, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 feet thick in the Savannah, Georgia, area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 feet thick in the Savannah, Georgia, area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite and is approximately 10 feet thick in the Savannah, Georgia, area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the UST investigation sites is part of the surficial aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Fort Stewart.

### **APPENDIX V**

.

## **REIMBURSEMENT APPLICATION**

Fort Stewart is a federally owned facility and has funded the investigation for the UST 29 site, Building 1633, Facility ID #9-089088, using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

# ATTACHMENT A

.

### SUMMARY OF FATE AND TRANSPORT MODELING RESULTS

#### A.1 FATE AND TRANSPORT MODELING

In summary, the Analytical Transient 1-, 2-, 3-Dimensional (AT123D) Model was used to model contaminant migration to two potential downgradient receptors: a drainage ditch located approximately 500 feet west of the site and Mill Creek located approximately 2,000 feet west of the site. A catch basin for a storm drain is located approximately 60 feet downgradient of the site. The depth of the basin is approximately 2.0 feet BGS; therefore, the storm drain is above the water table and is not a potential preferential pathway for contaminant migration.

The fate and transport modeling that was performed as part of the CAP-Part B Report (SAIC 1999a) was based on the assumption of a continuous source of contamination of infinite duration at the site based on the maximum observed benzene concentration in groundwater (i.e., 238  $\mu$ g/L at well 14-08 during the CAP-Part A investigation in December 1997). Based on the modeling results, the estimated dilution attenuation factor (DAF) for benzene at the drainage ditch was 110, and the DAF at Mill Creek was 400,000. The modeling results indicated that, due to dilution attenuation, benzene would not reach the drainage ditch at concentrations above the IWQS. No detectable concentrations of benzene were predicted to reach Mill Creek. Simulations of a 2-year period were also performed to predict the maximum concentrations of benzene in the downgradient wells that will be used for long-term monitoring.

As a result of the benzene concentrations observed during the 2 years of semiannual monitoring, the fate and transport modeling results have been revised using the maximum observed benzene concentration in groundwater during the semiannual sampling events (i.e., 249  $\mu$ g/L at well 14-09 during the third semiannual sampling event in January 2000). The benzene concentrations in wells 14-08 and 14-09 were used in calibrating the model. Neither well is located within the source area; therefore, the maximum predicted concentration of benzene in the source area (i.e., between wells 14-08 and 14-09) was predicted to be 457  $\mu$ g/L.

A near steady-state source was assumed for conservatism. The source, together with hydraulic conductivity and longitudinal dispersivity, was reevaluated through the calibration process and modified from the original fate and transport modeling presented in the CAP–Part B Report (SACI 1999a). The source was calibrated as a 4.96 mg/hour continuous pulse for 5 years and was assumed to be a 10-foot by 15-foot area located between wells 14-08 and 14-09. The receptor locations remained the same as those in the previous fate and transport modeling. Based on the revised modeling results, the DAF for benzene is infinity at the drainage ditch and Mill Creek. Simulations of a 2-year period were also revised to predict the maximum concentrations of benzene in the downgradient wells in June 2002. The revised predicted maximum concentrations in the wells, based on the maximum observed benzene concentration of 249  $\mu$ g/L in January 2000, are presented in Table A-1. The results of the revised fate and transport modeling are presented in Tables A-2 and A-3 and Figures A-1 and A-2.

Benzene is the only constituent that exceeds its respective IWQS of 71.28 µg/L. An ACL of 550 µg/L was developed during the CAP–Part B Report (SAIC 1999a) and was based on the maximum contaminant level for benzene and the DAF determined during the CAP–Part B fate and transport modeling. The IWQS could have been used as the regulatory level because the surficial aquifer is not a drinking water aquifer and the most likely receptor for the surficial aquifer is a surface water body; however, the use of the IWQS would have just increased the ACL. By using the results of the fate and transport modeling performed as part of this Second Annual Monitoring Only Report, the ACL would become infinity due to the infinite DAF; therefore, it is proposed that the ACL remain the same as that calculated in the CAP–Part B Report (SAIC 1999a).

#### A.2 FATE AND TRANSPORT MODELING CONCLUSIONS

The conclusions presented in the bulleted list below are based on the revised fate and transport model, which assumed that the source was a continuous pulse for 5 years at the site based on the maximum observed benzene concentration (i.e., 249  $\mu$ g/L) in groundwater during the semiannual monitoring events. The continuous pulse was used to calibrate the model based on the results of semiannual sampling.

- Benzene concentrations in groundwater do not exceed the ACL of 550 µg/L in any of the wells at the site and have not exceeded the ACL during the CAP-Part A investigation, CAP-Part B investigation, and the four semiannual sampling events.
- Benzene does not impact the closest downgradient receptor, a drainage ditch located 500 feet downgradient of the site, at concentrations above the IWQS.
- Benzene concentrations in groundwater will be below the IWQS in approximately 3 to 4 years due to natural attenuation.

|       | F        | redicted Max<br>Concentra |          | ne        |
|-------|----------|---------------------------|----------|-----------|
| Well  | Jan 2001 | June 2001                 | Jan 2002 | June 2002 |
| 14-07 | 48.9     | 59.9                      | 66.0     | 67.0      |
| 14-08 | 127.0    | 91.0                      | 66.0     | 48.3      |
| 14-09 | 227.0    | 190.0                     | 154.0    | 123.0     |
| 14-11 | 215.0    | 185.0                     | 152.0    | 122.0     |
| 14-12 | 14.9     | 20.6                      | 26.4     | 31.1      |
| 14-13 | 12.8     | 17.8                      | 23.1     | 27.7      |
| 14-14 | 27.2     | 36.0                      | 43.1     | 47.2      |

#### Table A-1. Revised Predicted 2-Year Maximum Benzene Concentrations in Groundwater at the UST 29 Site

| Distance<br>from the Source <sup>a</sup><br>(feet) | Distance<br>from the Source<br>(meters) | Predicted Maximum Benzene<br>Concentration in Groundwater<br>(µg/L) |
|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|
| 0.0                                                | 0.0                                     | 457                                                                 |
| 16.4                                               | 5.0                                     | 459                                                                 |
| 39.4                                               | 12.0                                    | 254                                                                 |
| 42.5                                               | 13.0                                    | 233                                                                 |
| 88.6                                               | 27.0                                    | 67                                                                  |
| 101.7                                              | 31.0                                    | 48.2                                                                |
| 114.8                                              | 35.0                                    | 34.8                                                                |
| 118.1                                              | 36.0                                    | 32.0                                                                |
| 164.0                                              | 50.0                                    | 10.6                                                                |
| 246.0                                              | 75,0                                    | 1.6                                                                 |
| 328.0                                              | 100.0                                   | 0.2                                                                 |
| 498.6                                              | 152.0                                   | 0.0                                                                 |
| 2,000.0                                            | 609.8                                   | 0.0                                                                 |

| Table A-2. Revised Natural Attenuation Modeling Results  |
|----------------------------------------------------------|
| (Benzene Concentration vs. Distance) for the UST 29 Site |

The source was assumed to be located between wells 14-08 and 14-09.

Table A-3. Revised Natural Attenuation Modeling Results(Benzene Concentration vs. Time) for the UST 29 Site

| Time    | Predicted Benzen<br>in Groundw |        |
|---------|--------------------------------|--------|
| (years) | 14-08                          | 14-09  |
| 0.0 "   | 262,00                         | 249.00 |
| 0.5     | 180.00                         | 254.00 |
| 1.0     | 127.00                         | 227.00 |
| 1.5     | 91.00                          | 190.00 |
| 2.0     | 66.00                          | 154.00 |
| 2.5     | 48.30                          | 123.00 |
| 3.0     | 35.60                          | 96.20  |
| 3.5     | 26.40                          | 75.00  |
| 4.0     | 19.60                          | 58.20  |
| 4.5     | 14.70                          | 45.00  |
| 5.0     | 11.00                          | 34.70  |
| 5.5     | 8.26                           | 26.70  |
| 6.0     | 6.22                           | 20.60  |
| 6.5     | 4.70                           | 15.80  |
| 7.0     | 3.55                           | 12.20  |
| 7.5     | 2.69                           | 9.35   |
| 8.0     | 2.04                           | 7.18   |

Time zero is set at January 2000.

Ą



00-315(doc)/110900



(

Ft Stewart UST 29 Benzene (calibrated plume)

| NO. OF POINTS IN X-DIRECTION 15                       | ú              |
|-------------------------------------------------------|----------------|
|                                                       |                |
| NO OF POINTS IN Z-DIRECTION                           | ج              |
| NO. OF ROOTS: NO. OF SERIES TERMS 400                 | ı o            |
|                                                       |                |
| -                                                     | ŋ              |
|                                                       | 6              |
| INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE   | , m            |
| SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE        | ' c            |
| INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT        | . <del>.</del> |
| CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD    | <sup>م</sup> ا |
|                                                       |                |
| AOUIFER DEPTH. = 0.0 FOR INFINITE DEEP (METERS) 0 107 | 0              |

| 0.1070E+02                                                 | 0.00006+00<br>-0 45706+01                                                                              | 0.00008400                                         | -0.1520E+01                               | 0.1520E+01                                         | 0.0000E+00                                           | 0.0000E400                                         |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS) 0.1070E+02 | ACUTER WIDIN, # 0.0 POK INFINITE WIDE (METERS) 0.0000E+00<br>BEGIN POINT OF X-SOURCE LOCATION (METERS) | END POINT OF X-SOURCE LOCATION (METERS) 0.0000E+00 | BEGIN POINT OF Y-SOURCE LOCATION (METERS) | END POINT OF Y-SOURCE LOCATION (METERS) 0.1520E+01 | BEGIN FOINT OF Z-SOURCE LOCATION (METERS) 0.0000E+00 | END POINT OF Z-SOURCE LOCATION (METERS) 0.0000E400 |

| 0,1000E+00          | 0.4000E-02                          | 0.6000E+01                        | 0.2000E+01                   | 0.6000E+00                    | 0.1620E-03                                        | 0,0000E+00                                                   |
|---------------------|-------------------------------------|-----------------------------------|------------------------------|-------------------------------|---------------------------------------------------|--------------------------------------------------------------|
| POROSITY 0.1000E+00 | HYDRAULIC CONDUCTIVITY (METER/HOUR) | LONGITUDINAL DISPERSIVITY (METER) | LATERAL DISPERSIVITY (METER) | VERTICAL UISPERSIVITY (METER) | UISTRIBUTION COEFFICIENT, KD (M**3/KG) 0.1620E-03 | REAL EXCHANGE COEFFICIENT (KCAL/HR-M**Z-DEGREE C) 0.0000E+00 |

| 0.35308-05                                         | 0,4012E-04                | 0.1000E-02                                              | 0.1000E+04                            | 0.7300E+03                                       | 0.4380E+05                    | 0.4960E-05                                                    |  |
|----------------------------------------------------|---------------------------|---------------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------------------------|--|
| MOLECULAR DIFFUSION MULTIPLY BY POROSITY (M**2/HR) | DECAY CONSTANT (PER HOUR) | ACCURACY TOLERANCE FOR REACHING STEADY STATE 0.1000E-02 | DENSITY OF WATER (KG/M**3) 0.1000E+04 | TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (HR) | DISCHARGE TIME (HR)0.4380E+05 | WASTE RELEASE RATE (KCAL/HR), (KG/HR), OR (CI/HR), 0.4960E-05 |  |

| 0.3897E+01                    | 0.4106E-03                                | . 0.2472E-02                                                | . 0.8302E-03                                                   | U). 0.2554E-03                                                 |
|-------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| RETARDATION FACTOR 0.3897E+01 | RETARDED DARCY VELOCITY (M/HR) 0.4106E-03 | RETARDED LONGITUDINAL DISPERSION COEF. (M*+2/HR) 0.2472E-02 | RETARDED LATERAL DISPERSION COEFFICIENT (M**2/HR) . 0.8302E-03 | RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/HR). 0.2554E-03 |

| DISTRIBUTION OF DISSOLVED CHEMICAL<br>(ADSORBED CHEMICAL CONC. = 0.1<br>Z = 0.00<br>Z = 0.00 | CONC. | 0.00                      | 12.                                 | X<br>13.                                                   | 27.       | 31.       | 35.         | 36.       | 50.       |
|----------------------------------------------------------------------------------------------|-------|---------------------------|-------------------------------------|------------------------------------------------------------|-----------|-----------|-------------|-----------|-----------|
| 0.000 <u>E</u> +00                                                                           | 00+   | 0.000E+00                 | 0,000E+00<br>CONT                   | 00 0 000E+00<br>CONTINUE                                   | 0.000E+00 | 0,0008+00 | 0.000E+00   | 0,000E+00 | 0.000E+00 |
| 100                                                                                          | 0     | 152.                      | 200.                                | 610.                                                       |           |           |             |           |           |
| 0.000E+00                                                                                    | 00    | 0.000E+00                 | 0,000E+00                           | 0.000E+00                                                  |           |           |             |           |           |
| STRIBUTION OF DISSOLVED (ADSORBED CHEMICAL CONC.<br>Z =                                      | VED   | CHEMICAL<br>= 0.1<br>0.00 | T PPM AT 0.4<br>3+00 * DISSOL       | S IN PPM AT 0.4380E+05 HRS<br>620E+00 * DISSOLVED CHEMICAL | CONC.)    |           |             | ,         |           |
|                                                                                              | 0.    | ບ                         | 12.                                 | X<br>13.                                                   | 27.       | 31.       | 35.         | 36.       | 50.       |
| 0.126E+01                                                                                    | 10+   | 0.362E+00                 | 0.109E+00<br>CONT                   | 00 0.945E-01<br>CONTINUE                                   | 0.137E-01 | 0.771E-02 | 0.419E-02   | 0.358E-02 | 0.286E-03 |
|                                                                                              | 100.  | 152.                      | 200.                                | 610.                                                       |           |           |             |           |           |
| 0.000E+00                                                                                    | 00+   | 0.000E+00                 | 0.0005+00                           | 0.000E+00                                                  |           |           |             |           |           |
| STRIBUTION OF DISSOLVED (<br>(ADSORBED CHEMICAL CONC.<br>Z =                                 | OLVED | CHEMICAL<br>= 0.1         | N PPM AT 0.4<br>2+00 * DISSOL       | S IN PPM AT 0.4818E+05 HRS<br>620E+00 * DISSOLVED CHEMICAL | CONC.)    |           |             |           |           |
|                                                                                              | 0.    | ហ្                        | 12.                                 | х<br>13,                                                   | 27.       | 31.       | 35.         | 36.       | 50.       |
| 0.717E+00                                                                                    | 00+   | 0.5558+00                 | 0.181E+00<br>CONT                   | 00 0.151E+00<br>CONTINUE                                   | 0.181E-01 | 0,103E-01 | 0.580E-02   | 0.500E-02 | 0,493E-03 |
|                                                                                              | 100.  | 152°,                     | 200.                                | X<br>610.                                                  |           |           |             |           |           |
| 0.417E-09                                                                                    | 60-   | 0.000E+00                 | 0.000E+00                           | 0,000E+00                                                  |           |           |             |           |           |
| STRIBUTION OF DISSOLVED<br>(ADSORBED CHEMICAL CONC.<br>Z =                                   | LVED  | CHEMICAL<br>= 0.1<br>0.00 | S IN PPM AT 0.5<br>620E+00 * DISSOL | AT 0.5256E+05 HRS<br>* DISSOLVED CHEMICAL                  | CONC.)    |           |             |           |           |
|                                                                                              | Ö     | С                         | 12.                                 | X<br>13.                                                   | 27.       | .1t.      | .25.<br>35. | 36        | 50.       |
| 0.457E+00                                                                                    | +00   | 0.459E+00                 | 0 - 249E+00<br>CONT                 | 00 0.218E+00<br>CONTINUE                                   | 0.245E-01 | 0.138E-01 | 0.780E-02   | 0.676E-02 | 0.773E-03 |
|                                                                                              | 100.  | 152.                      | 200.                                | X<br>610.                                                  |           |           |             |           |           |
| 0.333E+08                                                                                    | 0.0   | 0,000E+00                 | 0000E+00                            | 0.00012+00                                                 |           |           |             |           |           |
|                                                                                              |       |                           |                                     |                                                            |           |           |             |           |           |

00-315(doc)/110900

ĺ

|                                       | 50.      | 0.114E-02                |           |           |                                                                                                         | 50.       | 0.160E-02                |           |           |                                                                                                         | 50.      | 0.223E-02                |           |           |                                                                                                         | 50.          | 0.311E-02                |
|---------------------------------------|----------|--------------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|-----------|--------------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|----------|--------------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|--------------|--------------------------|
|                                       | 36.      | 0.918E-02                |           | ·         |                                                                                                         | 36.       | 0.128E~01                |           |           |                                                                                                         | 36.      | 0.178E-01                |           |           |                                                                                                         | 36           | 0.2318-01                |
|                                       | 35.      | 0,106E-01                |           |           |                                                                                                         | 35.       | 0.149E-01                |           |           |                                                                                                         | 35.      | 0.206E-01                |           |           |                                                                                                         | 35.          | 0.264E-01                |
|                                       | 31.      | 0.192E-01                |           |           |                                                                                                         | 31.       | 0.272E-01                |           |           |                                                                                                         | 31.      | 0.3608-01                |           |           |                                                                                                         | 3 <b>I</b> . | 0.431E-01                |
| covc.)                                | 27.      | 0.355E-01                |           |           | CONC.                                                                                                   | 27.       | 0.489E-01                |           |           | conc.)                                                                                                  | 27.      | 0.599E-01                |           |           | CONC.)                                                                                                  | 27.          | 0,660E-01                |
| VED CHEMICAI                          | х<br>13. | 00 0.233E+00<br>CONTINUE | X<br>610. | 0,000E+00 | 1 AT 0.6132E+05 HRS<br>* DISSOLVED CHEMICAL CONC.)                                                      | X.<br>13. | 00 0.215E+00<br>CONTINUE | A<br>610. | 0.000E+00 | 1 AT 0.6570E+05 HRS<br>* DISSOLVED CHEMICAL CONC.)                                                      | X<br>13. | 00 0.185E+00<br>CONTINUE | X<br>610. | 0.000E+00 | 0.7008E+05 HRS<br>SOLVED CHEMICAL                                                                       | X<br>13.     | 00 0.152E+00<br>CONTINUE |
| TEZUETUU, * PISSOBVED CHEMICAL CONC.) | 12.      | 0.254E+00<br>CONT        | 200.      | 0.000E+00 | V PPM AT 0.6<br>E+00 * DISSOL                                                                           | 12.       | 0.227E+00<br>CONT        | 200       | 0.000E+00 | V PPM AT 0.6<br>3+00 * DISSOL                                                                           | 12.      | 0.190E+00<br>CONT        | 200.      | 0.0005+00 | <i>u</i> )                                                                                              | 12.          | 0.154E+00<br>CONT        |
| ن<br>10,00 ٿ                          | ເກ       | 0.348E+00                | 152.      | 0.000E+00 | CHEMICALS IN PPN<br>0.1620E+00<br>0.00                                                                  | ທ         | 0,259E+00                | 152.      | 0.000E+00 | CHEMICALS IN PPW<br>- = 0.1620E+00<br>0.00                                                              | μ)       | 0.192E+00                | 152.      | 0.000E+00 | CHEMICALS IN<br>. = 0.16201<br>0.00                                                                     | ъ.           | 0.143E+00                |
| NAUSUKBEU LAEMILAL LUNC,<br>Z =       | .0       | 0.309E+00                | 100.      | 0.146E-07 | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT<br>(ADSORBED CHEMICAL CONC. = 0.1620E+00 * DI<br>Z = 0.00 | 0         | 0.216E+00                | 100.      | 0.494E-07 | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT<br>(ADSORBED CHEMICAL CONC. = 0.1620E+00 * DI<br>Z = 0.00 | 0.       | 0.154E+00                | 100.      | 0.139E-06 | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT<br>(ADSORBED CHEMICAL CONC. = 0.1620E+00 * DI<br>Z = 0.00 | 0            | 0.111E+00                |
| (AUSURBEU: U                          | , 9<br>, | 0.180E+00                | 75.       | 0.102E-04 | STRIBUTION (<br>(ADSORBED CI                                                                            |           | 0.127E+00                | 75.       | 0,199E-04 | STRIBUTION (<br>(ADSORBED CI                                                                            | ±9.⊤     | 0.910E-01                | 75.       | 0.354E+04 | STRIBUTION (<br>ADSORBED CH                                                                             | - e<br>-     | 0.660E-01                |
|                                       | Я        | 0                        | Y         | o         | DIC                                                                                                     | ž         | 0                        | ж.        | .0        | JIQ                                                                                                     | ×        | .0                       | ۲         |           | JIQ                                                                                                     | ¥            | 0                        |

00-315(doc)/110900

(

|           |                                                                                           | 50.      | 0.427E-02                |           |           |                                                                                           | 50°.     | 0.5668-02                |           |           |                                                                                           | 50.        | 0.713E-02                |           |           |                                                                                                         | 50.      | 0、848至-02                 |
|-----------|-------------------------------------------------------------------------------------------|----------|--------------------------|-----------|-----------|-------------------------------------------------------------------------------------------|----------|--------------------------|-----------|-----------|-------------------------------------------------------------------------------------------|------------|--------------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|----------|---------------------------|
|           |                                                                                           | .36.     | 0.277E-01                | ٠         |           |                                                                                           | 36.      | 0.307E-01                |           |           |                                                                                           | 36.        | 0.320E-01                |           |           |                                                                                                         | 36.      | 0.317E-01                 |
|           |                                                                                           | 35.      | 0.311E-01                |           |           |                                                                                           | 35.      | 0.3395-01                |           |           |                                                                                           | 35.        | 0,348E-01                |           |           |                                                                                                         | 35.      | 0.340E-01                 |
|           |                                                                                           | 31.      | 0,472E-01                |           |           |                                                                                           | 31.      | 0.482E-01                |           |           |                                                                                           | 31.        | 0.466E-01                |           |           |                                                                                                         | 31,      | 0.433E-01                 |
|           | CONC.)                                                                                    | 27.      | 0.670E-01                |           |           | conc.)                                                                                    | 27.      | 0.640E-01                |           |           | CONC. )                                                                                   | 27.        | 0.585E-01                |           |           | CONC.)                                                                                                  | 27.      | 0.518E-01                 |
| 0.000E+00 | 0.7446E+05 HRS<br>SOLVED CHEMICAL                                                         | х<br>13. | 00 0.122E+00<br>CONTINUE | X<br>610. | 0.000E+00 | 0.7884E+05 HRS<br>SOLVED CHEMICAL                                                         | X<br>13. | 01 0.969E-01<br>CONTINUE | x<br>610. | 0,000E+00 | 0.8322E+05 HRS<br>SOLVED CHEMICAL                                                         | X.<br>13.  | 01 0.761E-01<br>CONTINUE | X<br>610. | 0.000E+00 | 0.8760E+05 HRS<br>SOLVED CHEMICAL                                                                       | х<br>13. | 0.594E-01<br>INUE         |
| 0,000E+00 | PPM AT<br>00 * DIS                                                                        | 12.      | 0.123E+00<br>CONT        | 200.      | 0.000E+00 | PPM AT<br>00 * DIS                                                                        | 12.      | 0.962E-01<br>CONT        | 200.      | 0.000E+00 | PPM AT<br>00 * DIS                                                                        | 12.        | 0.750E-01<br>CONT        | 200.      | 0°000E+00 | 02                                                                                                      | 12,      | 0.582E-01 0.5<br>CONTINUE |
| 00+3000.0 | CHEMICALS IN<br>. = 0.1620E<br>0.00                                                       | IJ       | 0.107E+00                | 152.      | 0.000E+00 | CHEMICALS IN<br>= 0.1620E<br>0.00                                                         | ъ.       | 0,796E-01                | 152.      | 0.000E+00 | CHEMICALS IN<br>= 0.1620E<br>0.00                                                         | ້ທ         | 0.596E~01                | J.52.     | 0.000E+00 | CHEMICALS IN<br>= 0.1620E<br>0.00                                                                       | ທຸ       | 0.448E-01                 |
| 0.338E-06 | DISTRIBUTION OF DISSOLVED CHEMICALS IN<br>(ADSORBED CHEMICAL CONC. = 0.1620E+<br>Z = 0.00 | 0.       | 0.811E-01                | 100.      | 0.729E-06 | DISTRIBUTION OF DISSOLVED CHEMICALS IN<br>(ADSORBED CHEMICAL CONC. = 0.1620E+<br>Z = 0.00 | 0.       | 0.596E-01                | 100,      | 0.143E-05 | DISTRIBUTION OF DISSOLVED CHEMICALS IN<br>(ADSORBED CHEMICAL CONC. = 0.1620E+<br>Z = 0.00 | 0.         | 0.441E-01                | 100.      | 0.258E-05 | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT<br>(ADSORBED CHEMICAL CONC. = 0.1620E+00 * DI<br>Z = 0.00 | 0.       | 0.328E-01                 |
| 0.582E-04 | STRIBUTION (<br>(ADSORBED CF                                                              | - 9 -    | 0.483E-01                | 75.       | 0.902E-04 | STRIBUTION C<br>(ADSORBED CF                                                              | .9       | 0.356E~01                | 75.       | 0.134E-03 | STRIBUTION C<br>(ADSORBED CH                                                              | . e .<br>- | 0,264E-01                | 75.       | 0.1948-03 | STRIBUTION C<br>(ADSORBED CH                                                                            | - 9 -    | 0.1968-01                 |
| 0.        | IQ                                                                                        | ×        | 0                        | ж         | 0         | IQ                                                                                        | X        | 0.                       | ¥         | 0         | Id                                                                                        | Y          | ò                        | ч         | .0        | IQ                                                                                                      | Х        | .0                        |

00-315(doc)/110900

(

(

|           |           |                                                                                  | 50.      | 0.956E+02     |      |           |                                                                                  | 50.          | 0.103E-01                 |           |              |                                                                                                         | 50 ·     | 0.106E-01                 |           |           |                                                                                   | 50.      |
|-----------|-----------|----------------------------------------------------------------------------------|----------|---------------|------|-----------|----------------------------------------------------------------------------------|--------------|---------------------------|-----------|--------------|---------------------------------------------------------------------------------------------------------|----------|---------------------------|-----------|-----------|-----------------------------------------------------------------------------------|----------|
|           |           |                                                                                  | 36.      | 0.302E-01     |      |           |                                                                                  | .36 <b>.</b> | 0.278E-01                 |           |              |                                                                                                         | 36.      | 0.250E-01                 |           |           |                                                                                   | 36.      |
|           |           |                                                                                  | ភូស្     | 0.320E+01     |      |           |                                                                                  | 35.          | 0.292E+01                 |           |              |                                                                                                         | 35.      | 0.260E-01                 |           |           |                                                                                   | 35.      |
|           |           |                                                                                  | 31.      | 0.389E-01     |      |           |                                                                                  | 31.          | 0.342E-01                 |           |              |                                                                                                         | 31.      | 0.294E-01                 |           |           |                                                                                   | 31.      |
|           |           | CONC.)                                                                           | 27.      | 0.448E-01     |      |           | CONC.)                                                                           | 27.          | 0.3806-01                 |           |              | CONC.)                                                                                                  | 27.      | 0.317E-01                 |           |           | conc.)                                                                            | 27,      |
| X<br>610. | 0.000E+00 | S IN PPM AT 0.9198E+05 HRS<br>620E+00 * DISSOLVED CHEMICAL CONC.)                | X<br>13. | 6             | 610. | 0.000E+00 | S IN PPM AT 0.9636E+05 HRS<br>620E+00 * DISSOLVED CHEMICAL CONC.)                | Х<br>13.     | 8                         | X<br>610. | 0,000,000,00 | S IN PPM AT 0.1007E+06 HRS<br>620E+00 * DISSOLVED CHEMICAL CONC.)                                       | X<br>13. | 77                        | X<br>610. | 0,000E+00 | AT 0.1051E+06 HRS<br>* DISSOLVED CHEMICAL                                         | Х<br>13. |
| 200.      | 0,000E+00 | S IN PPM AT 0.9<br>620E+00 * DISSOL                                              | ΤŻ.      | 0.450E-01 0.4 | 200. | 0.000E+00 | S IN PPM AT 0.9<br>620E+00 * DISSOL                                              | 12.          | 0.347E-01 0.3<br>CONTINUE | 200.      | 0,000E+00    | PPM AT 0.1<br>+00 * DISSOL                                                                              | 12.      | 0.267E-01 0.2<br>CONTINUE | 200       | 0.000E+00 |                                                                                   | 12.      |
| 152.      | 0.000E+00 | CHEMICALS IN<br>= 0.1620E<br>0.00                                                | ហំ       | 0.337E-01     | 152. | 0.205E-10 | CHEMICALS IN<br>= 0.1620E<br>0.00                                                | س            | 0.254E-01                 | 152.      | 0.143E-09    | CHEMICALS IN<br>= 0.1620E<br>0.00                                                                       | ы.<br>2  | 0.192E-01                 | 152.      | 0.462E-09 | IN<br>6201                                                                        | Ч        |
| 100.      | 0.438E-05 | DISTRIBUTION OF DISSOLVED CHEMICAL<br>(ADSORBED CHEMICAL CONC. = 0.1<br>Z = 0.00 | 0.       | 0.245E-01     | 100. | 0.704E-05 | DISTRIBUTION OF DISSOLVED CHEMICAL<br>(ADSORBED CHEMICAL CONC. = 0.1<br>Z = 0.00 | 0.           | 0.183E~01                 | 100.      | 0,109E-04    | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT<br>(ADSORBED CHEMICAL CONC. = 0.1620E+00 * DI<br>Z = 0.00 | ò        | 0.138E-01                 | 100.      | Q.162E-04 | DISTRIBUTION OF DISSOLVED CHEMICALS<br>(ADSORBED CHEMICAL CONC. = 0.1<br>Z = 0.00 | .0       |
| 75.       | 0.274E-03 | STRIBUTION C<br>(ADSORBED CH                                                     | 9        | 0.147E-01     | 75.  | 0,380E-03 | STRIBUTION O<br>(ADSORBED CH                                                     | . 9<br>-     | 0,110E-01                 | 75.       | 0.512E-03    | STRIBUTION O<br>(ADSORBED CH.                                                                           | .91      | 0,826E-02                 | 75.       | 0.668E-03 | RRIBUTION OF<br>(ADSORBED CHI                                                     | 9        |
| 7         | 0         | DI                                                                               | ¥        | 0.            | ¥    | 0.        | DI                                                                               | ¥            | 0                         | ¥         | 0            | DI                                                                                                      | х        | .0                        | X         | .0        | DISI                                                                              | Ŕ        |

00-315(doc)/110900

ĺ

(

| 0.10GE-01                     |      |           |                                                                         | 50.      | 0.102E-01                |           |           |                                                                                                         | 50,      | 0.961E-02                |      |           |                                                                                     | 50.           | 0.8878-02                |      |                                                                                |                                               |
|-------------------------------|------|-----------|-------------------------------------------------------------------------|----------|--------------------------|-----------|-----------|---------------------------------------------------------------------------------------------------------|----------|--------------------------|------|-----------|-------------------------------------------------------------------------------------|---------------|--------------------------|------|--------------------------------------------------------------------------------|-----------------------------------------------|
| 0.220E-01                     |      |           |                                                                         | 36.      | 0.190E-01                |           |           |                                                                                                         | 36 .     | 0.162E-01                |      |           |                                                                                     | 36.           | 0.1376-01                |      |                                                                                |                                               |
| 0.227E-01                     |      |           |                                                                         | 35.      | 0.195E-01                |           |           |                                                                                                         | 35.      | 0,1655-01                |      |           |                                                                                     | 35.           | 0.139E-01                |      |                                                                                |                                               |
| 0.250E-01                     |      |           |                                                                         | 31.      | 0,209E-01                |           |           |                                                                                                         | 31.      | 0.173E-01                |      |           |                                                                                     | 31.           | 0.143E-01                |      |                                                                                |                                               |
| 0.262E-01                     |      |           | CONC.)                                                                  | 27.      | 0.215E-01                |           |           | CONC.)                                                                                                  | 27.      | 0.174E-01                |      |           | CONC.)                                                                              | 27.           | 0.141E-01                |      | TIME                                                                           |                                               |
| 01 0.214E-01<br>CONTINUE<br>X | 610. | 0.000E+00 | CALS IN PPM AT 0.1095E+06 HRS<br>0.1620E+00 * DISSOLVED CHEMICAL CONC.) | X<br>13. | 01 0.165E-01<br>CONTINUE | X<br>610. | 0.000E+00 | 1 AT 0.1139E+06 HRS<br>* DISSOLVED CHEMICAL CONC.)                                                      | X<br>13. | 01 0.127E-01<br>CONTINUE | 610. | 0.000E+00 | 1 AT 0.1183E+06 HRS<br>* DISSOLVED CHEMICAL CONC.)                                  | X<br>13.      | 02 0.978E-02<br>CONTINUE | .019 | 0.000E+00<br>L SIMULATING TIME                                                 | 0.1226E+06 HRS                                |
| 0.206E-01<br>CONT             | 200. | 0.000E+00 | PPM AT 0.1<br>+00 * DISSOL                                              | 12.      | 0.158E-01<br>CONT        | 200.      | 0,0005+00 | PPM AT 0.1<br>+00 * DISSOL                                                                              | 12.      | 0.122E~01<br>CONT        | 200. | 0.000E+00 | PPM AT 0,1<br>+00 * DISSOL                                                          | 12.           | 0.935E-02<br>CONT        | 200. | 0.000E+00 C<br>BEFORE FINAL                                                    |                                               |
| 0.145E-01                     | 152. | 0.114E-08 | CHEMI<br>#<br>00                                                        | ណ៍       | 0.1105~01                | 152.      | 0.248E-08 | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT<br>(ADSORBED CHEMICAL CONC. = 0.1620E+00 * D1<br>Z = 0.00 | س        | 0.836E~02                | 152. | 0.499E-08 | CHEMICALS IN PPW<br>= 0.1620E+00<br>0.00                                            | ້ໍ່ມີ         | 0.635E-02                | 152. | 0. 0.133E-02 0.613E-04 0.943E-08<br>STEADY STATE SOLUTION HAS NOT BEEN REACHED | DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT |
| 0.1045-01                     | 100. | 0.235E-04 | STRIBUTION OF DISSOLVED (<br>(ADSORBED CHEMICAL CONC.<br>7.5            | 0.       | 0.781E-02                | 100.      | 0.332E-04 | STRIBUTION OF DISSOLVED<br>(ADSORBED CHEMICAL CONC.<br>Z =                                              | 0.       | 0.590E-02                | 100, | 0.457E-04 | DISTRIBUTION OF DISSOLVED CHEMICALS<br>(ADSORBED CHEMICAL CONC, = 0.162<br>Z = 0.00 | <b>.</b> 0    | 0,447E-02                | 100. | 0.613E-04<br>ION HAS NOT                                                       | STRIBUTION OF DISSOLVED                       |
| 0.622E-02                     | 75.  | 0.838E-03 | STRIBUTION O<br>(ADSORBED CH                                            | - ę .    | 0.470E-02                | 75.       | 0.101E-02 | STRIBUTION O                                                                                            | !        | 0.355E~02                | 75.  | 0,118E-02 | STRIBUTION O<br>(ADSORBED CH                                                        | . 9           | 0.2698-02                | 75.  | 0.133E-02<br>STATE SOLUT                                                       | STRIBUTION O                                  |
| ċ                             | ¥    |           | DI                                                                      | ¥        | 0                        | .,        |           | , IQ                                                                                                    | Ķ        | 0                        | ¥    | .0        | DI                                                                                  | <del>بر</del> | o                        | ¥    | 0.<br>SADY                                                                     | DIG                                           |

00-315(dec)/110900

(

50. 0.803E-02 36 0.115E-01 35. 0.115E-01 31. 0.116E-01 27. 0.113E-01 13. х 610. 0.753E-02 0.000E+00 × 0.718E-02 0.75 CONTINUE 200 12. 0.000E+00 ທ່ 152. 0.483E-02 0.1688-07 0 100. 0.339E-02 0.797E-04 ė 75. 0.204E-02 0.144E-02 0 °. ₽ ≯

00-315(doc)/110900

(

# ATTACHMENT B

,

# REFERENCES

•

-

### REFERENCES

Arora, Ram, 1984. Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Herrick, S.M., and R.C. Vochis 1963. Subsurface Geology of the Georgia Coastal Plain, Georgia Geologic Survey Information Circular 25.
- Logan, William E., 2000. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Branch), January 25.
- Looper, Edward E., 1980. Soil Survey of Liberty and Long Counties, Georgia, U.S. Department of Agriculture, Soil Conservation Service.
- McAllister, A.J., 1999. Letter to Thomas Fry (Fort Stewart Directorate of Public Works, Environmental Branch), June 1.
- Miller, James A., 1990. Groundwater Atlas of the United States, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.
- SAIC (Science Applications International Corporation) 1997. CAP-Part A Report for UST 29, Facility ID #9-089088, Building 1633, Fort Stewart, Georgia, May.
- SAIC 1999a. CAP-Part B Report for UST 29, Facility ID #9-089088, Building 1633, Fort Stewart, Georgia, March.
- SAIC 1999b. First Semiannual Monitoring Progress Report for UST 29, Facility ID #9-089088, Building 1633, Fort Stewart, Georgia, July.
- SAIC 1999c. First Annual Monitoring Only Report for UST 29, Facility ID #9-089088, Building 1633, Fort Stewart, Georgia, October.
- SAIC 2000. Third Semiannual Monitoring Only Report for UST 29, Facility ID #9-089088, Building 1633, Fort Stewart, Georgia, May.