Hunter Army Airfield, Georgia

U.S. Army Environmental Command

Site Investigation Work Plan HAA-15 (MCA Barracks Site)

HSI Site #10521

April 2009

Site Investigation Work Plan HAA-15 (MCA Barracks Site)

C C. Scott Bostian, PE Senior Engineer

n

Charles A. Bertz, PE Senior Project Manager

n

Prepared for: U.S. Army Environmental Command

Prepared by: ARCADIS, Inc. 801 Corporate Center Drive Suite 300 Raleigh, North Carolina 27607 Tel 919.854.1282 Fax 919.854.5448

Our Ref.: GP08HAFS.H15A

Date: Aprll 2009

ARCADIS

Ac	ronyms			iv
1.	Introdu	iction		1-1
2.	Regula	tory Sta	atus	2-1
3.	Site De	scriptio	on and Setting	3-1
	3.1	Site De	escription	3-1
	3.2	Physica	al Setting of the Airfield	3-1
	3.3	Region	al Geology/Hydrogeology	3-1
4.	Previou	us Inves	stigations	4-1
	4.1	Special (USACI	Operations Forces Facility: 1996 Pre-construction Investigation E)	4-1
	4.2	MCA B (USACI	arracks Facility: 1998 Pre-construction Investigation and Delineation E)	4-1
	4.3		Operations Forces Facility: 1999 Well Installation and Confirmation ng (Metcalf and Eddy)	4-2
	4.4	MCA B	arracks: 1999, 2000, and 2001 Delineation Investigations (SAIC)	4-2
	4.5	MCA B	arracks: 2002 and 2003 Delineation Investigations (USACE)	4-3
	4.6	MCA B	arracks: 2005 and 2006 Site Investigations (HGL)	4-3
5.	Curren	t Under	standing of HAA-15 Hydrogeologic Conditions	5-1
	5.1	Hunter	Army Airfield Depositional Model	5-1
	5.2	HAA-15	5 Local Geology/Hydrogeology	5-2
	5.3	Extent	of Impacts	5-3
		5.3.1	Groundwater Impacts	5-3
		5.3.2	Soil Impacts	5-4
	5.4	Data G	aps for TCE Sources	5-4
6.	Propos	ed Inve	estigation	6-1
	6.1	Phase I	I Source Area Investigation	6-1
		6.1.1	Water-level measurements	6-1
		6.1.2	Surface Water Drainage Assessment	6-2

Site Investigation Work Plan

HAA-15 (MCA Barracks Site)

ARCADIS

8.	Referer	nces		8-1
7.	Closing	g Summ	nary	7-1
	6.2	Phase	II Delineation Investigation	6-5
		6.1.7	Vapor Intrusion - Indoor Air Pathway	6-5
		6.1.6	Baseline Sampling of New and Existing Monitor Wells	6-4
		6.1.5	Groundwater Monitor Wells	6-4
		6.1.4	Temporary Borings	6-3
		6.1.3	Membrane Interface Probe (MIP)	6-2

Tables

Table 1a	Summary of Groundwater Analyses - 1999, 2000, and 2001 Vertical Profile Samples
Table 1b	Summary of Groundwater Analyses -2002 Vertical Profile Samples
Table 1c	Summary of Groundwater Analyses -2003 Vertical Profile Samples
Table 1d	Summary of Groundwater Analyses - 2005 and 2006 Vertical Profile Samples
Table 1e	Summary of Groundwater Analyses – 2006 Monitor Well Sampling
Table 2	Summary of Soil Analyses – 2005 and 2006 Site Investigations
Table 3	Summary of Water Level Elevations
Table 4	Proposed Schedule
F igures	
Figures	
Figures Figure 1.	Site Location Map
•	Site Location Map Site Map
Figure 1.	
Figure 1. Figure 2.	Site Map
Figure 1. Figure 2. Figure 3.	Site Map Monitor- Well Locations Observed TCE Concentrations in Groundwater – Shallow Zone (8 –
Figure 1. Figure 2. Figure 3. Figure 4	Site Map Monitor- Well Locations Observed TCE Concentrations in Groundwater – Shallow Zone (8 – 16 feet bgs) Observed TCE Concentrations in Groundwater – Intermediate Zone

Site Investigation Work Plan

HAA-15 (MCA Barracks Site)

ARCADIS

- Figure 8 Cross Section of Typical Beach Sediments
- Figure 9 Groundwater Elevation Map Shallow Zone (April 2006)
- Figure 10 Groundwater Elevation Map Deep Zone (April 2006)
- Figure 11 Geologic Cross-Section (A to A')
- Figure 12 Vertical Hydraulic Gradient at HGL-8 Well Pair
- Figure 13 Proposed MIP Boring Locations

ARCADIS

Acronyms

cis-1,2-DCE	cis-1,2-dichloroethene
CSR	Compliance Status Report
DNAPL	Dense nonaqueous phase liquid
DOT	Department of Transportation
DPT	Direct-push technology
bgs	Below ground surface
ECD	Electron capture detector
FID	Flame ionization detector
FS	Fort Stewart
GAEPD	Georgia Environmental Protection Division
HAAF	Hunter Army Airfield
HGL	HydroGeoLogic, Inc.
HSI	Hazardous Sites Inventory
HSRA	Hazardous Site Response Act
MCA	Military Construction Account
MCL	Maximum Contaminant Level
MIP	Membrane interface probe
mg/L	Milligrams per liter
µg/L	Micrograms per liter
msl	Mean sea level
PID	Photo ionization detector
RCRA	Resource Conservation Recovery Act
RRS	Risk Reduction Standards
SAIC	Science Applications International Corporation
SESD	Science and Ecosystem Support Division
SOF	Special Operations Forces
SVOCs	Semivolatile organic compounds
TCE	Trichloroethene
USACE	U.S. Army Corps of Engineers
USAEC	U.S. Army Environmental Command
USEPA	U. S. Environmental Protection Agency
VOCs	Volatile organic compounds

ARCADIS

1. Introduction

The U.S. Army Environmental Command (USAEC) has retained ARCADIS on behalf of Fort Stewart/Hunter Army Airfield (FS/HAAF) to investigate and remediate impacted soil and groundwater at the Military Construction Account (MCA) Barracks Site, also known as site HAA-15. The Georgia Environmental Protection Division (GAEPD) has required FS/HAAF to pursue delineation and clean up of degraded soil and groundwater at HAA-15 under the Georgia Hazardous Sites Response Act (HSRA). HAA-15 is Hazardous Sites Inventory (HSI) Site # 10521. A Compliance Status Report will be generated based on the historical data sets and data generated in this investigation. Upon approval of the Compliance Status Report, a Corrective Action Plan will be developed for FS/HAAF approval.

Based on historical data, the primary constituent in groundwater at HAA-15 is trichloroethene (TCE) and its degradation product cis-1,2-dichloroethene (cis-1,2-DCE). Previous investigations have not fully delineated the source(s) of the TCE impacted groundwater. This work plan describes further investigation to delineate the potential source(s). The proposed approach is to perform this investigation utilizing vertical profiling with membrane interface probe (MIP) technology, direct push technology (DPT) installed temporary borings and sampling and installation of additional monitor wells.

ARCADIS

2. Regulatory Status

In 1998, HAA-15 was defined as an area of concern when a pre-construction environmental site assessment identified volatile organic compounds (VOCs) in groundwater. The site was subsequently added to the HSI as site No. 10521. As a HSRA site, the first goal at HAA-15 is to complete a Compliance Status Report (CSR) that meets all GA EPD requirements. Extensive investigations of groundwater quality at HAA-15 have previously been performed. The results of these previous investigations and this investigation will be utilized to prepare a revised CSR.

ARCADIS

3. Site Description and Setting

3.1 Site Description

HAAF is an active military installation located in Savannah, Georgia, encompassing areas of industrial, commercial, and temporary residential property occupied by a variety of administrative, maintenance, and barracks facilities as well as a 10-acre, man-made storm water retention pond and active air field (Figure 1). HAA-15 is located in the northeastern portion of Hunter Army Air Field (HAAF). Historical investigations have identified a plume of dissolved VOCs in groundwater beneath HAA-15. A site map depicting the HAA-15 area is included as Figure 2 and the current monitor well network is shown on Figure 3.

3.2 Physical Setting of the Airfield

The HAAF is located on a southwest-northeast trending ridge of about 20 feet to 40 feet elevation above sea level and is surrounded on all sides by lower topography of about 10 to 15 feet elevation. The first runways were probably constructed on the highest part of the ridge when first built in 1928. These first runways were probably constructed at the highest part of the ridge to allow for surface water drainage away from runways.

3.3 Regional Geology/Hydrogeology

HAAF is located on the lower coastal plain physiographic province, which is typified by very low relief that slopes toward the Atlantic Ocean. The geology is composed of a seaward thickening sequence of unconsolidated sediments. Previous regional investigations suggest that there has been minor structural deformation in the Savannah, Georgia area during deposition of the sediments starting in the early Cretaceous Period. The sediments form a thickening wedge into the Atlantic Ocean deposited from sediment erosion of the Blue Ridge Mountains. The total thickness of the sediments in the Savannah, Georgia, area is over 2,000 feet.

The most important water supply aquifer in the lower coastal plain of Georgia and Florida is the Floridan Aquifer. The Floridan Aquifer is a regionally extensive aquifer that is approximately 800 feet thick at Savannah. The top of the Floridan Aquifer at HAAF is approximately 200 feet below ground surface (bgs). It is composed primarily of Oligocene age and Eocene age porous limestones. The Floridan Aquifer is the principal water supply aquifer throughout coastal Georgia and most of Florida.

ARCADIS

This investigation focuses on groundwater quality in the uppermost aquifer system only. The uppermost aquifer system at and surrounding Savannah, Georgia is underlain by two continuous clay units, which are effective confining units that preclude downward groundwater migration of shallow groundwater to the deeper Floridan water supply aquifer. These two clay units are named the Coosawhatchie Formation and Berryville Clay member of the Hawthorne Group (Huddlestun 1988). Lithologic samples and fossils suggest that these two units were deposited during the Middle Miocene Period in a low energy open marine environment over a wide area. The open ocean depositional environment resulted in the widespread and continuous nature of these clay units. A deep test well in Savannah (GGS-3139) shows that the clay units extend from 45 feet depth to 167 feet depth near HAAF. Due to the thick confining unit that separates the uppermost aquifer system from the underlying Floridan Aquifer, there is minimal potential for shallow groundwater to impact deeper groundwater quality in the underlying Floridan Aquifer.

After deposition of the Hawthorne Clays there was no preserved deposition of sediments at the study area until the late Pleistocene Period. The sediments overlying the Hawthorne Group clays to land surface are composed of a sequence of near shore to shoreface (barrier island) sediments that prograde over the Hawthorne Group marine clays. Published investigations have identified nine sets of overlapping relict beach ridges of Pleistocene age to Holocene age on the lower coastal plain that prograde towards the Atlantic Ocean. Each barrier sequence forms a ridge (also termed terrace) that is progressively lower and closer to the modern barrier island. The ancient beaches formed during higher sea levels and are parallel to the modern beach. Each barrier system is at a consistent elevation above sea level with about 20 feet relief above surrounding land. HAAF is located on a relict beach ridge named the Pamlico Terrace from about 20 feet msl to 40 feet msl. This abandoned beach ridge was formed during the late Pleistocene (>10,000 years) age. The Pamlico Terrace sediments are about 50 feet thick at HAAF.

ARCADIS

4. Previous Investigations

4.1 Special Operations Forces Facility: 1996 Pre-construction Investigation (USACE)

The volatile organic compounds (VOCs) in groundwater that underlie HAA-15 were first discovered in 1996 when the U.S. Army Corps of Engineers (USACE) collected soil and groundwater samples at a proposed new Special Operations Forces (SOF) facility, located north of Lightning Road. This sampling was conducted as part of the clearance process initiated before construction activities at the site. Initially, the SOF facility was treated as a separate site from the MCA Barracks site; however, the sites were subsequently combined into one unit (HSI #10521, MCA Barracks site), because the impacted groundwater was likely associated one contiguous plume.

During the 1996 study, USACE sampled groundwater and soil. Samples were collected from temporary wells and analyzed for VOCs, semivolatile organic compounds (SVOCs), total petroleum hydrocarbons, diesel range organics, and Resource Conservation and Recovery Act (RCRA) metals. The sampling results indicated that TCE, tetrachloroethene (PCE), total lead, and total chromium were present in groundwater at concentrations exceeding their respective primary drinking water standards. Cis-1,2-DCE also was detected in two groundwater samples. The elevated levels of total lead and total chromium were thought to be caused by highly turbid groundwater samples. Subsequent low-flow groundwater sampling detected total lead and total chromium at lower levels.

4.2 MCA Barracks Facility: 1998 Pre-construction Investigation and Delineation (USACE)

The MCA Barracks site was identified as an area of concern in 1998, when an environmental assessment was conducted in the area where new barracks were slated for construction. The investigation was conducted by the USACE-Savannah District in April 1998 and consisted of six composite soil samples and 12 groundwater samples. The groundwater samples were collected from temporary wells at a screened depth of 9.8 to 13.1 feet (3 to 4 meters) and analyzed for VOCs and SVOCs. The results of the groundwater sampling indicated the presence of TCE at three locations, naphthalene at one location, and acetone at another location. Only TCE was detected at concentrations exceeding the Georgia Environmental Protection Division (GA EPD) Primary Maximum Contaminant Level (MCL). Methylene chloride was detected in the composite soil samples but was determined to be a laboratory contaminant.

ARCADIS

USACE conducted a second site investigation in May 1998 to determine the extent of impacted groundwater in the area of the proposed barracks construction project. A total of 39 groundwater samples (35 samples and 4 duplicates) were collected from temporary wells screened across the water table. The samples were collected on a grid and analyzed for VOCs. TCE was detected at five locations at concentrations ranging from 5.9 ug/L to160 µg/L, all of which exceeded the GA EPD MCL concentration of 5 µg/L. Cis-1,2-DCE, a common degradation product of TCE, was detected at low levels in two groundwater samples. Constituents related to petroleum hydrocarbons (benzene; toluene; ethylbenzene; isopropylbenzene; n-propylbenzene; 1,3,5-trimethylbenzene; 1,2,4-trimethylbenzene; sec-butylbenzene; p-isopropyltoluene; n-butylbenzene; naphthalene; acetone; 2-butanone, and xylene) were detected in two isolated groundwater sampling locations. The isolated nature of the petroleum hydrocarbon compounds suggested that there is not a significant petroleum hydrocarbon plume underlying the site.

4.3 Special Operations Forces Facility: 1999 Well Installation and Confirmation Sampling (Metcalf and Eddy)

In September 1999, Metcalf and Eddy installed four shallow monitor wells (less than 20 feet bgs) at the SOF facility and collected groundwater samples for the analysis of VOCs, SVOCs, and metals (SAIC 2004). The wells were installed at the same locations as the temporary sampling points that were used to sample groundwater in 1996. The primary purpose of the permanent wells was to determine whether the high lead and chromium concentrations detected in 1996 were a result of turbidity or were indicative of a contaminant release. The sampling results confirmed that the metals were naturally occurring and not related to a release. The sampling results also confirmed the presence of organic contaminants that were detected in 1996, including TCE, cis-1,2-DCE, PCE, 1,2-dichloroethane, 1,3-dichloroethene, bis (2-ethylhexyl) phthalate, and chloroform. TCE and bis (2-ethylhexyl) phthalate were the only constituents detected above the GA EPD target concentration.

4.4 MCA Barracks: 1999, 2000, and 2001 Delineation Investigations (SAIC)

Science Applications International Corporation (SAIC) conducted vertical profiling of groundwater at 26 locations (XX-01 through XX-26) between 1999 and 2001 in an effort to characterize the vertical and horizontal extent of VOC-impacted groundwater. The vertical contaminant profiling was conducted by collecting groundwater samples using direct-push technology (DPT). The boring locations are shown on Figure 2. Vertical profile borings XX-01 through XX-15 were sampled every 5 feet from the water

ARCADIS

table to a depth of 45 to 50 bgs and the samples were submitted for laboratory analysis. For borings XX-16 through XX-26, groundwater samples were collected at 5foot intervals from the water table to a total depth of 36 to 45 feet bgs, but only selected samples were submitted for laboratory analysis (approximately three at each location). The selection of the samples for laboratory analysis was based on soil conductivity data. Table 1a provides a summary of analytical results for groundwater samples collected at XX-01 through XX-26. Figures 4 through 6 illustrate the distribution of TCE detected at various depth intervals. Several VOCs were detected in groundwater samples with TCE exceeding the GA EPD HSRA groundwater target concentration in numerous samples. Cis-1,2-DCE was also detected at levels that exceed the MCL. Permanent monitor wells were subsequently installed at boring locations XX-04 through XX-26 (Figure 3).

4.5 MCA Barracks: 2002 and 2003 Delineation Investigations (USACE)

In 2002 and 2003, USACE conducted additional groundwater profiling to delineate the boundary of the chlorinated solvent plume. As part of these investigations, USACE installed 13 vertical-profile borings (MVP-1 through MVP-5 and MCA-VP-1 through MCA-VP-8 (Figure 2)). Groundwater was sampled every five feet to a total depth of approximately 45 feet and analyzed for VOCs. Approximately eight samples were collected from each boring. Table 2a provides a groundwater analytical summary for borings MVP-1 through MVP-5, which were sampled in 2002. Table 2b provides a groundwater analytical summary for borings MCA-VP-8, which were sampled in 2003. VOCs were detected in eight of the thirteen borings in samples collected between 10 feet bgs and 45 feet bgs. TCE and cis-1,2-DCE were the most frequently detected VOCs. Only TCE and VC exceeded their respective GA EPD groundwater target concentrations. Figures 4 through 6 illustrate the distribution of TCE detected at various depth intervals.

4.6 MCA Barracks: 2005 and 2006 Site Investigations (HGL)

Between October 2005 and April 2006, HydroGeoLogic, Inc. (HGL) performed a site investigation in accordance with the Final Site Investigation Work Plan for the MCA Barracks site (HGL 2005). Groundwater plume delineation and source area assessment activities included direct-push technology (DPT) groundwater and soil sampling, monitor well installation and sampling, and surface water/sediment sampling at the stormwater retention pond. Groundwater samples were collected from 78 vertical profile borings and from 30 permanent monitor wells (Figure 2). Soil samples were collected from 18 locations (Figure 7). Additionally, surface water and sediment

ARCADIS

samples were collected from the pond. Hydraulic conductivity testing and an enhanced reductive dechlorination (ERD) pilot study were also performed. HGL prepared a draft document summarizing the 2005 to 2006 investigation activities and results that was not submitted to the GA EPD. Groundwater analyses for the vertical profile locations are included in Table 1d. Groundwater analyses for the monitor wells are included on Table 1e. Soils analyses are summarized in Table 2. Figures 4 through 6 illustrate the distribution of TCE detected at various depth intervals.

ARCADIS

5. Current Understanding of HAA-15 Hydrogeologic Conditions

The following is an overview of the geologic setting and groundwater quality conditions at HAA-15 based on previous investigations. The complete data set generated from the recent HGL investigations will be included within a revised CSR.

5.1 Hunter Army Airfield Depositional Model

A depositional model of how shallow sediments were deposited at HAAF may be a valuable tool to predict the distribution of sand units and clay beds in the uppermost aquifer system at HAAF. HAAF is located on top of the relict Pamlico beach ridge that was the shoreline during late Pleistocene time. The shallow sediments at HAAF are comparable to sediments that form the nearby modern barrier islands along the Atlantic coast. Pamlico Terrace is only a little older (in geologic time) and higher than the modern beach. The depositional processes and sediments that form barrier islands are well researched by coastal geomorphologists and clastic sedimentologists. Published investigations of modern barrier islands can be used to predict the shallow stratigraphy at HAAF. Figure 8 shows the general distribution of clay and sand in a typical barrier system. The highest part of the ridge is the beach composed of fine to medium well sorted quartz sand. The beach itself is a massive sand with little clay and silt because it is reworked by the constant wave action and migration of tidal inlets.

In front of the beach to the east was the shallow open Atlantic Ocean. Deposited sediments should be finer sands that are constantly reworked to form massive but finer sands compared to the beach. Grain size should decrease with increasing water depth due to the limited winnowing in deeper water by reduced wave action with depth. There should be only minor clay units unless the beach has prograded over a remnant of marsh clay.

Behind the barrier to the west were marshes and bays that deposited lower energy silts and silty clay units. Clay beds are interbedded with sand units. The sand units were deposited from tidal inlets that migrated along the barrier and wash-over fans from storms. Individual units will drape off of the central barrier massive sands. Clays will compact more than sands with time to form somewhat continuous but thin units.

ARCADIS will compare the shallow sediments at HAAF to the typical beach depositional model as we pursue closure at the site. Currently, our evaluation of the shallow geology at HAA-15 closely matches the depositional environment behind and up to the former beach, which is where the runways are located.

ARCADIS

5.2 HAA-15 Local Geology/Hydrogeology

Previous studies at HAA-15 are sufficient to interpret the detailed hydrogeology of this site. Groundwater flows towards the west away from the runway complex to small creeks. The small creeks are discharge boundaries for the shallow groundwater. Shallow groundwater flow in April 2006, as shown on Figure 9, was generally to the north-northwest. Deep groundwater flow in April 2006, as indicated on Figure 10, was also generally to the north-northwest.

The observed depth to groundwater ranges from 2 feet to 15 feet across the site. Groundwater flow within the uppermost aquifer exists under unconfined conditions. A geologic cross section at HAA-15 shows a massive homogeneous sand unit at the surface that extends from land surface at the runway down to about 10 to 20 feet depth. This is illustrated in Figure 11 which shows southwest to northeast cross section A-A'. The massive fine grained sand unit at the top of the sequence (14 feet thick at the HGL-9 well cluster) is part of the beach. The water table is about 2 to 4 feet deep in this sand. A 10-acre man-made lake at HAA-15 is the surface expression of the water table as shown on the cross section. A series of silty clay units interbedded with fine sand units and silt units underlies the massive sand unit. These units are interpreted as marsh and bay or lagoon deposits behind the Pamlico barrier. Individual clay units are often laterally extensive in the marsh behind the barrier.

A persistent clay unit at HAA-15 divides the shallow aquifer system into separate aquifers. Although previous investigations define the upper 60 to 70 feet as a single shallow aquifer, significant downward vertical hydraulic gradients suggest that the uppermost aquifer system at HAA-15 is composed of at least two distinct aquifers north of the hangers. Table 3 summarizes groundwater-level elevations at well pairs. Vertical hydraulic gradients exceed 1 foot downward at four well pairs (HGL-1, HGL-6, HGL-7, and HGL-8) in nested wells where the screen intervals are separated by 10 feet. Figure 12 shows the downward gradient of 6.03 feet at well pair HGL-8 based on March 16, 2006, water levels. The laterally extensive clayey silt unit separates the shallower well HGL-8B from the deeper well HGL-8C. This robust downward gradient suggests that the aquifers are separated at this well pair by the clayey silt unit acting as a confining unit. The two aquifers will be termed the "Upper" and Lower" units of the uppermost aquifer system. Water -elevations show minor gradients at the runways to the east and at the property boundary to the west, which suggests the two units of the split aquifer system are limited in extent.

ARCADIS

Previous investigations calculated hydraulic conductivities at HAA-15 to vary from 8 feet/year to 250 feet/year. Widely varying hydraulic conductivities in sediments are typical in back barrier sequences and represent the variation from low energy marsh deposits of clays and silts to high energy tidal channel deposits of well sorted sands. Overall, the local stratigraphy of HAA-15 closely fits the depositional environment of a lagoon and/or marsh behind a barrier island up to a beach.

5.3 Extent of Impacts

5.3.1 Groundwater Impacts

Initial investigations at HAA-15 included heavy metals, VOCs, and SVOCs. These investigations reported elevated total metals that were subsequently shown to be analytical aberrations or related to turbid groundwater samples from temporary borings. Petroleum hydrocarbons were detected in soil in a limited area. All valid detections will be evaluated as part of the CSR investigation. The primary concern at HAA-15 is the TCE impacted groundwater plume at the MCA Barracks site.

Previous investigations delineated the TCE impacts in groundwater down gradient to non-detectable concentrations. As previously discussed, the requirement of HSRA to verify background concentrations (non-detect for TCE) in all directions was an important driver for the investigations. Overall TCE impacts to groundwater in the shallow zone are depicted on Figure 4 and represent approximately 8 to 16 feet bgs. TCE impacted groundwater in the intermediate zone is depicted on Figure 5 and represents approximately 19 to 30 feet bgs. TCE impacts to groundwater in the deep zone are depicted on Figure 6 and represent approximately 32 to 55 feet bgs. The intermediate zone and lower zone are roughly equivalent to the Upper Unit and Lower Unit of the shallow aquifer system.

TCE concentrations in groundwater analyses from two wells are consistently elevated relative to all other groundwater analyses at HAA-15. In March 2006, dissolved TCE in groundwater was detected at 16.0 mg/L in a sample from monitor well HGL-7C and at 3.8 mg/L in a sample from monitor well HGL-6C (Table 1e). These two wells may be the only wells at HAA-15 that monitor the core of the TCE impacted groundwater immediately down gradient of the source(s). Figure 6 shows a possible scenario for the distribution of dissolved TCE in Lower Unit groundwater near the hangers. These monitor wells with the two most elevated TCE concentrations suggest that Hangers T-811 and/or T-813 may be primary sources of TCE in groundwater at HAA-15.

ARCADIS

5.3.2 Soil Impacts

On April 12, 2007, a grease trap was drained and partially removed from T-811 by FS/HAAF personnel. Prior to removal of the grease trap, the liquids inside the trap were sampled and three soil samples were collected in the vicinity of the trap. Laboratory analysis of these samples resulted in detection of TCE, cis-1,2-DCE, and vinyl chloride in the grease trap liquid and TCE in soil at concentrations above HSRA notification concentrations.

In surface soil sampling results from 2005 and 2006 HGL investigations, all constituents except lead and mercury were in compliance with Type 1 Risk Reduction Standards (RRS) values or were below background values. Mercury was in compliance with Type 2, 3 and 4 RRS values. The maximum detected concentration of lead was 5,300 mg/kg, which was detected in the area of the former boiler room within the Old Hospital Area. That maximum detection was the only lead detection in surface soil that was above the screening value of 400 mg/kg.

All subsurface soil (2 to 8 ft bgs) sampling results from the 2005 and 2006 HGL investigation were in compliance with Type 1 RRS screening values. Soils analyses from the 2005/2006 investigation are summarized in Table 2.

5.4 Data Gaps for TCE Sources

Previous investigations successfully delineated the down gradient extent of the TCE impacted groundwater at HAA-15 to non-detect concentrations. These investigations utilized numerous temporary borings and nested monitor wells and focused on the extent of impacts to address requirements of HSRA.

However, the source(s) of the TCE release to groundwater remains unknown. The primary source of the TCE release is apparently up gradient of monitor wells HGL-6 and HGL-7, the wells with the highest TCE concentrations in groundwater. Total VOCs in these two wells were 4.26 mg/L and 19.59 mg/L respectively in the deeper "C" wells of each well pair in 2006 analyses. The "C" wells of most well pairs are screened in the Lower Unit of the shallow aquifer system. Total VOCs in the "B" wells of these two well pairs were 0.21 mg/L and 0.51 mg/L, respectively.

There have been few temporary borings and monitor wells installed up gradient of the HGL-6 and HGL-7 monitor wells between the suspected source area (T-811 and T-813) and the highest detects. Total VOCs in XX-19 (located between T-811 and T-813)

Site Investigation Work Plan

HAA-15 (MCA Barracks Site)

ARCADIS

and screened in the Upper Unit) were below detection limits. Total VOCs in XX-21 (screened in the Lower Unit) analyses were 1.21 mg/L. However, a high percentage of the VOCs in the XX-21 analyses were cis-1,2-DCE, which contrasts with the high percentage of TCE found in HGL-6 and HGL-7. The dominance of the degradation product cis-1,2-DCE suggests that XX-21 may be side gradient to a source. Previous investigations speculated that the dissolved TCE in groundwater has separated from the source leaving only low residual VOC concentrations at the source. ARCADIS believes that there are insufficient data to conclude that the TCE release has dispersed to the extent that minor TCE remains at the source. The limited up gradient monitor wells do not provide conclusive evidence that the source has dissipated. In addition, the dissolved TCE concentrations in groundwater detected at HGL-6C (3.8 mg/L) and 7C (16 mg/L) are likely indicative of a separate phase (DNAPL) source. No other monitor wells sampled during the HAA-15 investigation manifest TCE concentrations indicative of DNAPL source mass.

ARCADIS

6. Proposed Investigation

An investigation to finalize delineation of the source(s) of TCE impacts in groundwater at HAA-15 is proposed. The initial focus is to determine if the T-811 and T-813 Hangars or other locations up-gradient of HGL-6 and HGL-7 monitor wells are the primary source(s) of TCE in groundwater at HAA-15. All procedures and techniques utilized for this investigation will conform to EPA Region 4 Science and Ecosystem Support Division (SESD) guidance. All soil and groundwater samples collected will be analyzed by Shealy Environmental Services, Inc., a certified Georgia Laboratory.

The activities comprising the investigation of the TCE plume at HAA-15 include the following:

Collection of water–level measurements from selected monitor wells associated with HAA-15 and wells at HAA-17

Evaluation of Surface Water Drainage

Vertical profiles using Membrane Interface Probe (MIP) technology followed by soil and groundwater sampling

Installation of approximately 4 groundwater monitor wells

Sampling of new and selected existing groundwater monitor wells

The vertical profile of contamination in soil and groundwater will be investigated using MIP technology followed by confirmation soil borings for the collection of soil and groundwater samples. The MIP and installation of soil borings for soil and groundwater sampling will be conducted under one mobilization. The MIP investigation will be performed initially to determine and delineate the source(s) and focus the subsequent assessment effort.

6.1 Phase I Source Area Investigation

6.1.1 Water-level measurements

A complete set of water-level measurements will be collected from selected monitor wells installed for the investigation of the TCE plume at HAA-15 as well as monitor

Site Investigation Work Plan

HAA-15 (MCA Barracks Site)

ARCADIS

wells installed for HAA-17. These water-level measurements will be taken to provide a comprehensive view of relative groundwater flow directions in the area.

6.1.2 Surface Water Drainage Assessment

The investigation will include an evaluation of former and existing surface water drainage patterns from the area around Hangars T-813 and T-811. Aerial photos and old design drawings will be reviewed to accomplish this task. A source of TCE at HAA-15 may be related to surface water drainage from the hangar area. TCE was historically used to clean both the outside and inside of aircraft. Although most of the TCE probably evaporated after use, a portion of the solvent may have drained to soil and into storm water drains.

6.1.3 Membrane Interface Probe (MIP)

Approximately 16 MIP borings will be installed in two rows perpendicular to groundwater flow direction between the monitor wells with highest concentrations and Hangars T-811 and T-813. The locations will follow roads in the area and will be adjusted based on facility requirements and access. The MIP borings will be advanced to the confining layer (40 to 45 ft bgs). In addition, as part of the proposed initial MIP investigation, approximately 5 MIP borings will be located in and around Hangar T-811, specifically in the vicinity of the former grease trap, and 4 MIP borings will be located in the area around vertical profile sampling point MVP-3 in the vicinity of the former Industrial Waste Treatment Plant and the wash racks. The approximate locations are presented on Figure 13.

Other potential MIP locations will be cleared in advance to allow flexibility to adjust to new data. The approximate locations of these potential MIP points are also presented on Figure 13.

MIP is an in-situ tool installed with DPT. The MIP unit heats the soil and groundwater adjacent to the probe thereby increasing volatility and causing the vapor phase to diffuse across the membrane into an inert gas loop. The gas carries the vapors to a series of detectors housed at the surface. Continuous (2-ft increment) chemical profile logs are generated from each hole. The detectors used will include a photo-ionization detector (PID), a flame ionization detector (FID), and an electron capture detector (ECD). The MIP unit includes a tool to measure sediment conductivity, which should accurately locate the clay beds within the silty sands and sand units. Sediment conductivities will be compared to existing nearby well logs of HGL-6 to

ARCADIS

verify lithologies. MIP vapor concentration measurements and conductivity tests will be performed at 2-ft intervals from approximately 5 ft bgs to the underlying silty-clay confining layer at approximately 40 ft bgs. The initial MIP points will provide real-time data that will be used to locate subsequent MIP locations, soil borings and monitor wells. Concrete coring may be required for some locations and permission will be obtained prior to any intrusive activities.

The intent of the MIP investigation is to initially determine relatively elevated VOC concentrations at milligram/liter concentrations near the source of the release. The MIP will not detect low VOC concentrations. The MIP data will be used to locate temporary borings and ultimately permanent wells from which groundwater samples will be collected for accurate laboratory analysis of specific VOCs.

6.1.4 Temporary Borings

A GeoProbe or equivalent DPT equipment will be utilized to install temporary borings. The data from the MIP evaluation will be used to locate soil borings for collection of soil and groundwater samples to confirm the delineation of the source area(s). At least one soil boring will be installed around Hangar T-811 to confirm the results of the MIP investigation in this area. The temporary borings will be installed to the base of the Lower Unit aquifer at approximately 40 to 45 ft bgs. All temporary borings will be split spooned to total depth and lithologies recorded by a qualified geologist on lithologic logs. Unsaturated soil samples will be screened with a PID. The soil and groundwater samples will selected for off-site analysis by U.S. Environmental Protection Agency (USEPA) Method 8260B based on PID readings, intervals identified by the MIP and/or evaluation of drainage pathways and other potential solvent sources.

In addition to the temporary borings installed to assess VOCs, approximately three borings will be installed in the Old Hospital Area to collect samples for delineation of vertical and horizontal extent of lead. Lead was detected in a soil sample from the area at 5,300 mg/kg (MCA-SO018C2). Soil and groundwater samples will analyzed by U.S. Environmental Protection Agency (USEPA) Method 6010B. Approximate boring locations are presented in Figure 7.

The soil waste from the installation of soil borings for MIP and soil and groundwater sampling will be collected in U. S. Department of Transportation (DOT)-approved 55-gallon drums. A soil sample will be collected from each drum for characterization for disposal purposes. The locations of the soil borings will be surveyed by a land

Site Investigation Work Plan

HAA-15 (MCA Barracks Site)

ARCADIS

surveyor registered in the state of Georgia. All temporary borings will be grouted with cement from total depth to land surface to protect separation of aquifers.

6.1.5 Groundwater Monitor Wells

An estimated four 2-inch-diameter monitor wells will be installed in the source area and downgradient of the source area as necessary to define the contaminant distribution. The most likely scenario will be that the monitor wells will be installed in the deep surficial groundwater at approximately 35 to 40 ft bgs. The monitor well locations will be based on the results of the soil and groundwater investigations previously described. The number of wells installed to delineate the source area will be adjusted based on the investigation results. The wells will be constructed of 2inch-diameter Schedule 40 PVC. The wells will be installed to a maximum depth up to approximately 40 to 45 ft bgs. Specific depths will be based on lithologic logs from temporary borings and the MIP conductivity logs. Deep wells shall have a 5-foot screen set to sample a specific interval identified with MIP and DPT results. Well screens will consist of a 2-inch inside diameter, flush threaded, 0.010-in, slotted PVC. Clean, inert, siliceous material shall be used to construct a uniform and continuous filter pack. Grain size will be applicable to the screen used. A seal measuring 1-foot thick consisting of a bentonite grout shall be pumped into the annular space above the filter pack. Monitor wells will be completed at ground surface within steel meter boxes painted to FS/HAAF standards. The surface completions will be flush because the wells will be located around buildings or in populated areas. The monitor wells will be surveyed for location and elevation by a land surveyor registered in the state of Georgia. All soil wastes from installation of monitor wells will be segregated by borehole and collected in DOT-approved 55gallon drums.

6.1.6 Baseline Sampling of New and Existing Monitor Wells

Groundwater samples will be collected from the new monitor wells installed as described. Approximately ten existing wells will also be sampled to more fully delineate the source area based on the results of previous soil and groundwater investigations. Low-flow techniques will be used to collect groundwater samples from the selected monitor wells. Field measurements will include pH, specific conductance, temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity. The groundwater will be sent to an off-site analytical laboratory for analysis of VOCs in accordance with U.S. EPA Method 8260.

ARCADIS

6.1.7 Vapor Intrusion - Indoor Air Pathway

After source delineation is complete, buildings in the area will be evaluated for susceptibility to vapor intrusion. Building construction relative to distribution of contaminant mass and potential exposure pathways will be analyzed.

6.2 Phase II Delineation Investigation

The intention of the Phase I source area investigation is to fully delineate the source(s). If gaps in the Conceptual Site Model are discovered after the Phase 1 scope is complete, an additional investigation of soil or groundwater will be performed as determined to complete delineation. Additional soil sampling, monitor well installations and groundwater sampling may be performed to fully characterize the HAA-15 TCE release. Phase II investigation activities will be discussed informally with the GA EPD prior to implementation.

ARCADIS

7. Closing Summary

The downgradient extent of groundwater impacted by TCE at HAA-15 is believed to be sufficiently defined. The intent of this investigation is to determine the location and fully delineate the primary TCE source(s) that have impacted groundwater at HAA-15. The source(s) are most likely in the area of Hangers T-811 and T-813. Therefore, the initial investigation is focused on the two hangers and areas immediately downgradient. Flexibility has been built into the scope to allow the investigation to be adapted to newly acquired data that may indicate other source scenarios including DPT/MIP investigation and/or monitor well installation upgradient of T-811 and T-813 if warranted.

When sufficient data have been obtained to provide a consistent and complete Conceptual Site Model that includes source and extent, the results of the investigation will be included in a revised CSR. A proposed schedule for this investigation is included as Table 4.

ARCADIS

8. References

- HGL. 2005. Final Site Investigation Work Plan, Hunter Army Airfield, Savannah, Georgia, prepared for USACE-Savannah District. September.
- HGL. 2007. Draft Compliance Status Report, MCA Barracks Site, Hunter Army Airfield, Savannah, Georgia. Prepared for USACE-Savannah District, January.
- Huddleson, Paul. 1988. "A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia," Georgia Geologic Survey Bulletin 104.
- SAIC. 2004. Report of Findings for the MCA Barracks Site (HAA-15), Hunter Army Airfield, Georgia, USACE-Savannah District, July.
- USACE. 2004. Archive Search Report for MCA Barracks Site (HAA-15), prepared by the USACE-St. Louis District for Fort Stewart, Directorate of Public Works.

.

Tables

· · ·

.

Location ID		XX-01	XX-01	XX-01	XX-01	XX-01	XX-01	XX-01	XX-02	XX-02	XX-02	XX-02	XX-02	XX-02	XX-02	XX-02	XX-02	XX-03	XX-03	XX-03	XX-03	XX-03
Sample ID		XX0112	XX0122	XX0132	XX0142	XX0162	XX0172	XX0182	XX0212	XX0222	XX0232	XX0242	XX0252	XX0262	XX0272	XX0282	XX0292	XX0312	XX0322	XX0332	XX0342	XX0352
Sample Date		9/26/1999		9/26/1999	9/26/1999	9/26/1999	9/26/1999		9/26/1999		9/26/1999				9/26/1999	9/26/1999	9/26/1999	9/26/1999	9/26/1999	9/26/1999	9/26/1999	
Sample Depth (ft bgs)	Units	11 - 15	16 - 20	21 - 25	26 - 30	36 - 40	41 - 45	46 - 50	6 - 10	11 - 15	16 - 20	21 - 25	26 - 30	31 - 35	35 - 40	41 - 45	46 - 50	10 - 15	16 - 20	21 - 25	26 - 30	31 - 35
Chemical Name	01110	11 10	10 20	21 20	20 00	00-40		40-00	0-10	11-10	10-20	21-20	20-00	01-00	00-40	41-40	40-00	10-10	10-20	21-20	20-00	- 31-33
1.1.1-Trichloroethane	ua/L	<20	< 20 U	1.4 J	<2U	<2U	<2U	<2U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 Ü	<2U	<20
1.1.2.2-Tetrachloroethane	µa/L	<20	< 20 U	<2U	<20	<2U	<20	<2U	<20	<2U	<2U	<2U	<20	<20	<20	<20	<2U	<2U	<20	<20	<20	<20
1,1,2-Trichloroethane	ua/L	<20	< 20 U	<20	<20	< 2 U	<20	< 2 U	< 2 U	<2U	<2U	<2U	<20	<2U	< 2 U	< 2 U	<2U	<2U	<20	<2U	<2U	<20
1,1-Dichloroethane	µq/L	< 2 U	< 20 U	<2U	0.52 J	<2U	<2U	<20	< 2 U	<2U	< 2 U	<2U	< 2 U	<2U	< 2 U	<2U	<2U	<2U	<20	< 2 U	<20	<20
1,1-Dichloroethene	µg/L	< 2 U	< 20 U	<2U	<2U	< 2 U	<2U	< 2 Ü	< 2 U	<2U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	<2U	2.2	9.8
1,2-Dichloroethane	µg/L	< 2 U	< 20 U	<2U	<2U	< 2 U	<2U	<2U	< 2 U	<2U	<2U	<2U	<20	<20	< 2 U	< 2 Ų	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U
1,2-Dichloroethene	µg/L	2.9	403	98.2 D	69.5	41.8	2	0.71 J	< 2 U	1.5 J	0.54 J	<2U	<2U	<2U	2.1	< 2 U	<2U	1.4 J	11.2	2	80.7	274 D
1,2-Dichloropropane	µg/L	< 2 U	< 20 U	< 2 U	< 2 U	<2U	<2U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	<2U	< 2 U
cis-1,3-Dichloropropene	µg/L	< 2 U	< 20 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<20
trans-1,3-Dichloropropene	µg/L	< 2 U	< 20 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U	<20
2-Butanone	µg/L	< 5 UR	< 50 UR	< 5 UR	< 5 U	< 5 UR	< 5 UR	< 5 UR	1.9 J	< 5 UR	< 5 UR	< 5 UR	< 5 UR	< 5 UR	< 5 UR	< 5 UR	< 5 UR	5 JR	< 5 UR	< 5 UR	< 5 UR	< 5 UR
2-Hexanone	µg/L	< 5 ប	< 50 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U	<5U
4-Methyl-2-pentanone	µg/L	< 5 U	< 50 U	<5U	< 5 U	<5U	<5U	< 5 U	< 5 U	<5U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U
Acetone	µg/L	< 5 UR	< 50 U	< 5 UR	5 JBU	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 UR	< 5 U	< 5 UR	< 5 UR
Benzene	µg/L	< 2 U	< 20 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U	<2U	<2U	<20	<2U	<2U	< 2 U	<2U	4.8	1.6 J	1.2 J	1.1 J	0.83 J
Bromodichloromethane	µg/L	< 5 U	< 50 U	<5U	< 5 U	< 5 ປ	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Bromoform	µg/L	<2U	< 20 U	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U
Bromomethane	µg/L	<2U	< 20 U	<2U	<2U	< 2 U	<2U	<2U	< 2 U	<2U	_<2U	<2U	<2U	< 2 U	<2U	<2Ų	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U
Carbon disulfide	µg/L	< 5 U	< 50 U	<5U	< 5 U	< 5 U	1.3 J	3.8 J	< 5 U	< 5 U	< 5 U	<5U	< 5 U	<5∪	<5U	< 5 U	< 5 U	<5U	1.2 J	< 5 U	0.82 J	< 5 U
Carbon tetrachloride	µg/L	< 2 U	< 20 U	<2U	<2U	<2U	<20	<2U	< 2 U	<2U	<2U	<2U	< 2 U	<2U	<2U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U
Chlorobenzene	µg/L	<2 U	< 20 U	<2U	< 2 U	<2U	<2U	< 2 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U
Chloroethane	µg/L	< 2 U	< 20 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	<2Ų	< 2 Ų	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U
Chloroform	µg/L	0.71 J	< 20 U	<2U	<2U	< 2 U_	<2U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	< 2 U ·	.<20	< 2 U	< 2 U	<20
Chloromethane	µg/L	< 2 U	< 20 U	<2U	<2U	<2U	<2U	<2U	< 2 U	<2U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	<2U	<2U
Dibromochloromethane	µg/L	< 2 U	< 20 U	<2U	< 2 U	<2U	<2U	<2U	< 2 U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<20	< 2 U
Ethylbenzene	µg/L	<2U	< 20 U	< 2 U	<2U	0.53 J	<2U	<2U	< 2 U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	1.4 J	< 2 U	< 2 U	< 2 U	<2U
Methylene chloride	µg/L	4.5 BU	9 J	4.6 BU	< 2 U	<2U	<2U	1.1 J	<2U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	2 JBU	4.3 BU	0.75 J	3.5 BU	4.4 BU
Styrene	μg/L	< 2 U	< 20 U	<2U	<2U	<2U	<2U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<20
Tetrachloroethene	µg/L	< 2 U	< 20 U	1 J	1.2 J	<20	<20	<2U	<2U	<2U	<2U	<2U	<20	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<2U	<20
Toluene	µg/L	< 2 U	< 20 U	< 2 U	< 2 U	0.71 J	<20	< 2 U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Trichloroethene	µg/L	33.9	560	258 D	139 D	39.4	<20	<2U	<2U	21.9	1 J	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	36.5	116 D	85.3	674 D	2440 D
Vinyl chloride	µg/L	< 2 U	< 20 U	<2U	< 2 U	<2U	<20	<2U	< 2 U	<2U	< 2 U	<2U	< 2 Ü	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<20	< 2 U
Xylenes (total)	µg/L	< 6 U	< 60 U	<6U	< 6 U	2.8 J	0.7 J	<6U	<6U	<6U	< 6 U	<6U	<6U	<6U	<6U	<6U	<6U	2.6 J	<6U	<6U	<6U	<6U

Notes:

Bolded concentrations indicate detections J = estimated result

D = result is from a sample dilution

U = result is non-detect IS = insufficient sample

Page 1 of 8

13

3

Location D	XX-03	XX-03	XX-03	XX-04	XX-04	XX-04	XX-04	XX-04	XX-04	VV 04	VV 04	VV 04	VV OF	VY OF		XX OF					
	XX0362	XX0372	XX0382	XX0412	XX0422	XX0432	XX0442	XX0452	XX0462	XX-04 XX0472	XX-04 XX0482	XX-04 XX0492	XX-05								
Sample ID		9/26/1999											XX0512	XX0522	XX0532	XX0542	XX0552	XX0562	XX0572	XX0582	XX0592
Sample Date			9/26/1999	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000	2/20/2000
Sample Depth (ft bgs) Chemical Name	36 - 40	41 - 45	46 - 50	3.5 - 7	8.5 - 12	13.5 - 17	18.5 - 22	23.5 - 27	28.5 - 32	33.5 - 37	38.5 - 42	43.5 - 47	6.5 - 10	11.5 - 15	16.5 - 20	21.5 - 25	26.5 - 30	31.5 - 35	36.5 - 40	43.0 - 45	46.5 - 50
	<2U	< 2 U	< 2 U	<10	<1U	<1U	<10	<1U	<1U	1	<1U	e 4 11						4.11	4411		
1,1,1-Trichloroethane	<2U <2U	<2U <2U	<2U <2U		<1U <1U	<10 <1U	<10 <10	<10		<10	<1U <1U	<10	<10	<10	<10	<1U	<10	<1U	<10	<1U	<10
1,1,2,2-Tetrachloroethane	<20 <2U			<10	• •	• =		• =	<10	<10		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,1,2-Trichloroethane	— -	<2U	<2U	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,1-Dichloroethane	< 2 U	<2U	<2U	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1U	<10	<10
1,1-Dichloroethene	3.5 J	<2U	< 2 U	<10	<1U	<1U	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1,2-Dichloroethane	<2U	<2U	<u> <2U</u>	<1U	<1U	<1U	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<1U	<10
1,2-Dichloroethene	88.8 D	2	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U
1,2-Dichloropropane	< 2 U	< 2 U	< 2 U	<10	<10	<10	<10	<1U	<10	<1U	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
cis-1,3-Dichloropropene	< 2 U	< 2 U	<2U	<1U	<10	<10	<10	<10	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	<10	<1U	<1U	<10
trans-1,3-Dichloropropene	< 2 U	< 2 U	< 2 U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<10	<1U	<1U	<10
2-Butanone	< 5 U	< 5 U	< 5 UR	< 5 U	<5U	< 5 U	< 5 U	<5U	<5U	< 5 U	<5U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U
2-Hexanone	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U	<5U	<5U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 ป	< 5 U	<5U	< 5 U	< 5 U	<5U
4-Methyl-2-pentanone	< 5 U	< 5 Ú	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U	<5U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U
Acetone	5 JBU	5 JBU	< 5 UR	5.1 BU	6.9 BU	5.7 BU	3.6 J	3.2 J	4.4 J	2.8 J	4.2 J	2.9 J	5.6 J	5 J	4.3 J	3 J	5.2 J	3.9 J	5.3 J	4.3 J	3.9 J
Benzene	0.79 J	0.74 J	< 2 U	1.7	5.3	<1U	<10	<1U	<1U	0.2 J	0.38 J	0.16 J	<1U	<10	<10	<10	<10	<1U	0.62 J	1.3	0.57 J
Bromodichloromethane	< 5 U	<5ປ	< 5 U	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<10	<10	<1U	<10	<10	<1U	<10	<10
Bromoform	< 2 U	< 2 U	< 2 U	<u><1U</u>	<1U	<1U	< <u>1</u> U	<1U	<1U	<1U	<u> <1U</u>	<10	<10	<10	<1U	<1U	<10	<10	<1U	<1U	<1U
Bromomethane	< 2 U	< 2 U	< 2 U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1ປ	<10	<10	<1U	<10
Carbon disulfide	< 5 UJ	< 5 U	1.1 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5ປ	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U
Carbon tetrachloride	<2U	<2U	<2U	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<1∪	<1U	<1U	<1U	<10	<10	<1U	<10	<1U
Chlorobenzene	< 2 U	< 2 U	< 2 U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<10	<10	<10	<10	<1U	<1U	<10
Chloroethane	<20	< 2 U	< 2 U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<10	<1U						
Chloroform	<20	<2U	<2⊍	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	< 1 U	<1U	<10
Chloromethane	< 2 U	< 2 U	< 2 U	<10	<1U	<1Ų	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<10
Dibromochloromethane	< 2 U	<2U	< 2 U	< 1 U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10
Ethylbenzene	< 2 U	< 2 U	< 2 U	0.18 J	8.7	0.086 J	0.063 J	0.065 J	0.11 J	0.064 J	0.06 J	0.062 J	0.056 J	0.078 J	0.074 J	0.061 J	0.075 J	0.071 J	0.064 J	0.06 J	0.061 J
Methylene chloride	<2U	<2U	2 JBU	<5U	5 JBU	< 5 U	1.1 J	1.1 J	1.3 J	< 5 U	2 J	1.9 J	1.4 J	2.2 J	2.4 J	1.4 J	1.8 J	1.7 J	1.6 J	1.6 J	<5U
Styrene	< 2 U	<2U	<2U	<1U	<10	<10	<1U	<1U	<1U	<1U	0.22 J	0.2 J	0.16 J	0.22 J	0.26 J	0.22 J	0.17 J	0.18 J	0.18 J	0.15 J	0.13 J
Tetrachloroethene	< 2 U	<2U	<2U	<1U	<10	4.1	7.9	<1U	<1U	<1U	<1U	<1U	<1U	<10	0.88 J	<1U	<1U	<1U	<10	<1U	<10
Toluene	<2U	<2U	< 2 U	0.51 J	2.2	0.6 J	0.37 J	0.35 J	0.63 J	0.42 J	0.28 J	0.27 J	0.34 J	0.43 J	0.4 J	0.28 J	0.41 J	0.29 J	0.39 J	0.35 J	0.35 J
Trichloroethene	997 D	22.4	4.7	<1U	<1U	0.25 J	0.24 J	<1U	<1U	<1Ų	<1U	<1Ų	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10
Vinyl chloride	< 2 U	< 2 U	< 2 U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<10
Xylenes (total)	< 6 U	< 6 U	0.6 J	< 3 U	23.6	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U	<3U	< 3 U	< 3 U	< 3 U	< 3 U	<3U	<3U	<3U	< 3 U	< 3 U	< 3 U

Notes:

Bolded concentrations indicate detections J = estimated result

D = result is from a sample dilution

U = result is non-detect IS = insufficient sample

Page 2 of 8

Location ID	XX-06	XX-06	XX-06	XX-06	XX-06	XX-06	XX-06	XX-06	XX-06	XX-07	XX-07	XX-07	XX-07	XX-07	XX-07	XX-07	XX-07	XX-07	XX-08	XX-08	XX-08
Sample ID	XX0612	XX0622	XX0632	XX0642	XX0652	XX0662	XX0672	XX0682	XX0692	XX0712	XX0722	XX0732	XX0742	XX0752	XX0762	XX0772	XX0782	XX0792	XX0812	XX0822	XX0832
Sample Date	2/19/2000	2/19/2000	2/19/2000		2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/19/2000	2/18/2000	2/18/2000	
Sample Depth (ft bgs)	5.5 - 9	10.5 - 14	15.5 - 19	20.5 - 24	25.5 - 29	30.5 - 34	35.5 - 39	40.5 - 44	45.5 - 49	4.8 - 8	9.5 - 13	14.5 - 18	19.5 - 23	24.5 - 28	29.5 - 33	34.5 - 38	39.5 - 43	44.5 - 48	8 - 11.5	13 - 16.5	18 - 21.5
Chemical Name	0.0 0	10.0 11	10.0 10	20.0 24	20.0 20	00.0 - 04	00.0 - 00	40.0 - 44	10.0 - 10	4.0-0	0.0 10	14.0 - 10	13.0 - 20	24.0 - 20	20.0-00	04.0 00	00.0 - 40		0.11.0	10 - 10.0	10-21.0
1.1.1-Trichloroethane	<10	<1U	<1U	<1U	<10	<10	<10	<10	<1U	<1U	<1U	<10	<10	<10	<10	<1U	<1U	<10	<1U	<10	<10
1,1,2,2-Tetrachloroethane	<1U	<1U	<1U	<10	<10	<10	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<1U	<10	<1U	<10	<10
1,1,2-Trichloroethane	<1U	<1U	<1U	<10	<1U	<10	<1U	<10	<1U	<10	<10	<1U	<10	<1U	<10	<10	<10	<10	<10	<10	<1U
1,1-Dichloroethane	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U
1,1-Dichloroethene	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1ປ	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<10	<1U	<1U	<1U
1,2-Dichloroethane	< 1 U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	<10	<1U	<1U	<1U
1,2-Dichloroethene	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U
1,2-Dichloropropane	<1U	<10	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	<10
cis-1,3-Dichloropropene	<1U	<1U	<1U	<10	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<10	<1U	<1U	<10
trans-1,3-Dichloropropene	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1ປ	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U
2-Butanone	< 5 U	< 5 U	< 5 Ü	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U
2-Hexanone	<u><</u> 5U	<5U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
4-Methyl-2-pentanone	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5ປ	< 5 U	<5U	< 5 U	<5U	< 5 U	< 5 U	< 5 U
Acetone	< 5 U	<5U	1.1 J	1.7 J	< 5 UJ	1.9 J	< 5 U	1.8 J	< 5 U	0.62 J	< 5 U	1.6 J	0.32 J	< 5 UJ	0.94 J	< 5 UJ	0.51 J	< 5 U	< 5 Ü	<5U	< 5 U
Benzene	<10	<1U	<1U	<10	<10	<1U	<10	<10	<1U	<10	<1U	<1U	<10	<1U	<10	<10	<10	<1U	<10	<10	<1U
Bromodichloromethane	<10	<10	<10	<10	<1U	<1U	<10	<10	<1U	<1U	<1U	<10	<10	<1U	<10	<10	<1U	<u> <1U</u>	<1U	<10	<u><1U</u>
Bromoform	<10	<10	<10	<10	<10	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	<10	<10	<10	<1U	<1U	<10
Bromomethane	<1U	<1U	<10	<1U	<1U	<10	<10	<10	<10	<10	<10	<1U	<10	<10	<1U	<10	<1U	<10	<1U	<1U	<1U
Carbon disulfide	< 5 UJ	< 5 UJ	< 5 Ü	< 5 U	< 5 U	< 5 UJ	< 5 UJ	< 5 UJ	< 5 UJ	< 5 U	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U J	< 5 U	<5U	< 5 U
Carbon tetrachloride	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<u> <1U</u>	<10	<10	<1U	<1U	<10
Chlorobenzene	<1U	<1U	<10	<10	<1U	<10	<10	<10	<1U	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<1U	<10
Chloroethane	<1U	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10
Chloroform	<10	<1U	<10	<10	<1U	<1U	<10	<1U	<10	<10	<10	<10	<10	<10	<1U	<10	<10	<1U	<1U	<1U	<10
Chloromethane	<1U	<10	<10	<1U	<10	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Dibromochloromethane Ethylbenzene	<1U <1U	<1U <1U	<10	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U
Methylene chloride	1J	1.5 J	<u><1U</u> 5 JBU	< 1 U 5 JBU	<10 <50	1.3 J	<10 1.6 J	<10 1.7 J	1.2 J	< 10 5 JBU	<10 <5U	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	1.7 J	5 JBU	<10 5 JBU	5 JBU
Styrene	1J <1U	1.5J <1U	5 JBU < 1 U	5 JBU < 1 U	<50 <1U	1.3 J <1 U	1.6 J <1 U	<1U	<u> 1.2 J</u> <1 U	<u> </u>	<50 <1U	<1U	<u> </u>	<u> </u>	<u>5 JBU</u> <1 U	5 JBU < 1 U	<u> </u>	1.7J <1U	JBU 1 JBU	JBU 1 JBU	1 JBU
Tetrachloroethene	<1U <1U	<1U <1U	<1U <1U	<10	<1U <1U	<1U <1U	<10	<1U <1U	<10	<10	<10	<1U <1U	<10	<10	<10	<10	<10	<1U	<1U	: JBU : <1U	<1U
Toluene	<10	<1U	0.76 J	0.33 J	0.29 J	0.3 J	<1U	0.3 J	.35 J	<10	<10	0.28 J	<10	0.38 J	0.55 J	0.43 J	0.53 J	<1U	1 JU	<1U	1 JU
Trichloroethene	<1U	<1U	<1U	<1U	<1U	<10.30	<1U	<1U	<1U	<10 <1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U
Vinvl chloride	<1U	<1U	<10	<10	<1U	<10	<10	<10	<10	<10 <1U	<10	<10	<10 <1U	<10	<10	<10	<10	<10	<1U	<1U	<10 <1U
Xylenes (total)	<10 <3U	<30	<30	< 3 U	<30	<30	<10 <3U	<30	<30	<30	<30	<30	<10 <3U	<30	<30	<10	< 3 U	<10 <3U	< 3 U	<10 <3U	<10 <3U
Mienes (lotal)	NU	100	<u>~30</u>	-20	-20	30	-20	- 50	100	10	- 50	1 30	1 20	1 20	1 20	1 20	1 50		10	<u> </u>	N 30

Notes:

Bolded concentrations indicate detections

J = estimated result

D = result is from a sample dilution

U = result is non-detect IS = insufficient sample

Page 3 of 8

Sample DD XX0842 XX0822 XX0822 XX0822 XX0822 XX0822 XX0922 XX09	XX-10 XX-10 XX1042 XX1052 /18/2000 2/18/2000 21.5 - 25 26.5 - 30
Sample Date 2/18/2000	/18/2000 2/18/2000
Sample Depth (ft bgs) 23 - 26.5 28 - 31.5 33 - 36.5 38 - 41.5 43 - 46.5 48 - 51.5 4.5 - 18 19.5 - 23 24.5 - 28 29.5 - 33 34.5 - 38 39.5 - 43.0 44.5 - 48 6.5 - 10 11.5 - 15 0 - 0 10.5 - 20 2 Chemical Name <1U	
Chemical Name <	21.0-20 20.0-30
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<10 <10
1,1,2-Trichloroethane <1U <1	<10 <10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<10 <10
1.2-Dichloroethane < 10	<1U <1U
1,2-Dichloroethene < 2U	<1U <1U
1,2-Dichloropropane < 1U	<10 <10
cis-1,3-Dichloropropene < 1U	<2U <2U
trans-1,3-Dichloropropene < 1U	<1U <1U
2-Butanone < 5U	<1U <1U
2-Hexanone < 5U	<10 <10
4-Methyl-2-pentanone < 5U	<5U <5U
Acetone 5 JBU 5 JU 5 JU 1S 5 JU < 5 UJ	<5U <5U
Benzene <1U	<5U <5U
Bromodichloromethane <1U	5 JBU 5 JBU
Bromoform <1U	<1U <1U
	<1U <1U
Bromomethane <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<1U <1U
	<u><1U</u> <1U
	<5U <5U
	<10 <10
	<10 <10
	<10 <10
	<1U <1U <1U <1U
	<10 <10 <10 <10
	<10 <10
	5 JBU 5 JBU
	1 JBU 1 JBU
	<10 <10
	1 JU 1 JU
	<10 <10
Vinyl chloride <1U	<10 <10
Xylenes (total) < 3U	<3U <3U

Notes:

Bolded concentrations indicate detections J = estimated result

.

D = result is from a sample dilution U = result is non-detect IS = insufficient sample

Page 4 of 8

Γ.

L agetion (D)			VV 40	XX 40	VV 44	VV 44	VV 44	VV 44	VV 44	VV 44	XX 44	VV dd	V/V 44	VV 40	XX 40	207.40	XX 40		VV 40	20/ 40	
Location ID	XX-10 XX1062	XX-10 XX1072	XX-10 XX1082	XX-10 XX1092	XX-11 XX1112	XX-11 XX1122	XX-11	XX-11 XX1142	XX-11 XX1152	XX-11	XX-11 XX1172	XX-11	XX-11	XX-12	XX-12	XX-12	XX-12	XX-12	XX-12	XX-12	XX-12
Sample ID Sample Date	2/18/2000	2/18/2000	2/18/2000	2/18/2000		2/16/2000	XX1132 2/16/2000	2/16/2000	2/16/2000	XX1162 2/16/2000		XX1182	XX1192	XX1212	XX1222	XX1232	XX1242	XX1252	XX1262	XX1272	XX1282
Sample Depth (ft bgs)		36.5 - 40	41.5 - 45	46.5 - 50	2/16/2000	11 - 14.5	2/10/2000	21 - 24.5	26 - 29.5		2/16/2000 36 - 39.5	2/16/2000	2/16/2000 46 - 49.5	2/17/2000 6.5 - 10	11.5 - 15	2/17/2000	2/17/2000	2/17/2000	2/17/2000	2/17/2000 36.5 - 40	
Chemical Name	31.3-33	30.5 - 40	41.3 - 43	40.5 - 50	0-7	11 - 14.0	10-19.0	21-24.0	20-29.5	31-34.3	30-39.0	41-44.0	40 - 49.0	0.5 - 10	11.9 - 19	16.5 - 20	21.5 - 25	20.5 - 30	31.0-30	30.3 - 40	41.5 - 45
1.1.1-Trichloroethane	<1U	<1UJ	<1UJ	<10	<10	<1U	<1U	<10	<1U	<1U	IS	<10	<10	<1U	<1U	<1U	<1U	 <1U	<10	<1U	<1U
1.1.2.2-Tetrachloroethane	<1U	<103	<105 <105	<10	<10	<10	<10	<10	<10	<10	IS	<10	<10	<1U	<1U	<10	<10	<10	<10	<1.U	<10
1,1,2-Trichloroethane	<10	<105 <105	<105 <105	<10	<10	<10	<10	<10 <1U	<10	<10	IS	<10	<10	<10 <1U	<10	<1U	<10	<10	<10	<10 <10	<10
1.1-Dichloroethane	<10	<1UJ	<103 <103	<1U	<10	<10	<10	<10	<10	<10	IS IS	<10	<10	<1U	<10 <1U	<10	<10	<10	<10	<10	<10
1.1-Dichloroethene	<10	<100	<100 <100	<10	<10	<10	0.34 J	<10	<10	<1U	IS	<10 <1U	<10	<1U	<10	0.18 J	<10	<10	<10	<10	<10
1.2-Dichloroethane	<10	<1UJ	<100	<10	<10	<10	<1U	<10	<10	<10	IS	<10	<10	<10	<10	<1U	<10	<10	<1U	<10	<10
1.2-Dichloroethene	<2U	<2UJ	2.1 J	2.7	< 2 U	0.45 J	1.9 J	0.36 J	<20	<20	IS	<20	<20	<20	<20	3.8	21.8	8.6	<20	< 2 U	<20
1,2-Dichloropropane	<10	<1UJ	<1UJ	<1U	<10	<1U	<10	<1U	<10	<10	IS	<1U	<10	<1U	<10	<1U	<10	<1U	<10	<1U	<10
cis-1.3-Dichloropropene	<10	<1UJ	<1UJ	<10	<10	<10	<10	<10	<10	<10	IS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
trans-1.3-Dichloropropene	<10	<1UJ	<1UJ	<10	<1U	<10	<1U	<10	<1U	<10	IS	<10	<1U ··	<10	<10	<1U	<10	<1U	<1U	<10	<10
2-Butanone	5 JU	< 5 U J	< 5 UJ	< 5 U	6.7	< 5 U	< 5 U	< 5 U	< 5 U	< 5 ป	IS	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U
2-Hexanone	< 5 U	< 5 U J	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	IS	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	<5U
4-Methyl-2-pentanone	< 5 U	< 5 UJ	< 5 UJ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	IS	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<50	<5U	< 5 U	<5U
Acetone	5 JBU	< 5 U J	5 JBU	< 5 U	<5U	12.6	<5U	< 5 U	< 5 U	< 5 U	IS	< 5 U	< 5 U	4.3 J	6.4 J	1.4 J	1.2 J	<50	< 5 U	< 5 U	< 5 U
Benzene	0.19 J	0.85 J	15.8 J	17.6	<1U	<10	<1U	<1U	<1U	<10	IS	0.19 J	1	<1U	<1U	<1U	<10	 <1U	<1U	<1U	<1U
Bromodichloromethane	<1U	< 1 UJ	< 1 UJ	<1U	<1U	<1U	<1U	<1U	<1U	<1U	IS	<1U	<1U	<10	<1U	<1U	<10	<10	<1U	<1U	<1U
Bromoform	<10	< 1 UJ	< 1 UJ	<1U	<1U	<1U	<1U	<1U	<1U	<1U	IS	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	<1U	<1U
Bromomethane	<1U	<1UJ	< 1 UJ	<1U	<1U	<1U	<1U	<1U	<10	<10	IS	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U
Carbon disulfide	< 5 U	< 5 UJ	< 5 UJ	<5U	< 5 U	<5U	1.2 J	<5U	<5ປ	<5U	IS	1.7 J	<5U	<5U	< 5 U	<5U	< 5 U	< 5 U	<5U	< 5 U	< 5 U
Carbon tetrachloride	<10	<1UJ	<1UJ	<1U	<1U	<1U	<1U	<1U	<1U	<1U	IS	<1U	<1U	<1U	<10	<1U	<10	<10	<10	<1U	<1U
Chlorobenzene	<1U	< 1 UJ	< 1 UJ	<1U	<1U	<10	<1U	<1U	<1U	<1U	IS	<1U	<1U	<10	<1U	<10	<10	<10	<1U	<1U	< 1 U
Chloroethane	<1U	<1UJ	< 1 UJ	<1U	<1U	<10	<1U	<10	<1U	<10	IS	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10
Chloroform	<1U	< 1 UJ	< 1 UJ	<10	<10	<1U	<1U	<1U	<1U	<10	IS _	<1U	<1U	<1Ų	<1U	<u> <1U</u>	<u><1U</u>	<10	<1U	<1U	<10
Chloromethane	<1U	<1UJ	<1UJ	<10	<10	<10	<1U	<1U	<1U	<1U	IS	<1U	<10	<1U	<10	<10	<10	<10	<1U	<1U	<u> <1U</u>
Dibromochloromethane	<1U	<1UJ	<1UJ	<1U	<10	<1U	<1U	<1U	<1U	<1U	IS	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<1U	<10
Ethylbenzene	0.093 J	<1UJ	<1UJ	<1U	<1U	<10	<u><1U</u>	<10	<10	<10	<u> S</u>	<10	<1U	<10	0.16 J	<10	<10	<u> <10</u>	<10	<1U	<10
Methylene chloride	5 JBU	5 JBU	5 JBU	5 JBU	IS	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU						
Styrene	1 JBU	1 JBU	1 JBU	1 JBU	<10	<10	<1U	<10	<10	<10	IS	<10	<10	<10	<10	<10	<1U	<10	<10	<10	<10
Tetrachloroethene	<10	<1UJ	<1UJ	<1U	<10	<10	<10	<1U	<10	<10	IS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Toluene	1 JU	1 JU	1 JU	1 JU	<1U	<10	<1U	<10	<10	<10	IS	<1U	<1U	<10	0.32 J	<10	<10	<10	<10	<10	<10
Trichloroethene	<10	< 1 UJ	0.3 J	0.28 J	<10	30.4	134 D	27.4	<10	0.85 J	IS	1.7	<1U	<10	<10	220 D	537 D	86	<10	<10	<10
Vinyl chloride	<10	<1UJ	<1UJ	<10	<10	<10	<10	<10	<10	<10	IS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Xylenes (total)	0.29 J	.29 J	0.29 J	0.36 J	<3U	<3U	<3U	<3U	<30	<3U	IS	<3U	<3U	3 JU	3 JU	< 3 U	<30	<30	< 3 U	<3U	<3U

Notes:

Bolded concentrations indicate detections

J = estimated result

D = result is from a sample dilution

U = result is non-detect

IS = insufficient sample

Page 5 of 8

Location ID	XX-12	XX-13	XX-13	XX-13	XX-13	XX-13	XX-13	XX-13	XX-13	XX-13	XX-14	XX-14	XX-14	XX-14	XX-14	XX-14	XX-14	XX-14	XX-14	XX-15	XX-15
Sample ID	XX1292	XX1312	XX1322	XX1332	XX1342	XX1352	XX1362	XX1372	XX1382	XX1392	XX1412	XX1422	XX1432	XX1442	XX1452	XX1462	XX1472	XX1482	XX1492	XX1512	XX1522
Sample Date		2/16/2000		2/16/2000	2/16/2000		2/16/2000		2/16/2000	and the second se		2/17/2000	2/17/2000	2/17/2000		2/17/2000	2/17/2000	2/17/2000		2/17/2000	
Sample Depth (ft bgs)	46.5 - 50	'4 - 5	6.5 - 10	11.5 - 15	16.5 - 20	21.5 - 25	26.5 - 30	31.5 - 35	36.5 - 40	41.5 - 45	4 - 7.5	9 - 12.5	14 - 17.5	19 - 22.5		29 - 32.5	34 - 37.5	39 - 42.5		6.5 - 10	11.5 - 15
Chemical Name																					
1,1,1-Trichloroethane	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	< 50 U	< 50 U	<1U	<1U	IS	<1U	<10
1,1,2,2-Tetrachloroethane	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	< 50 U	< 50 U	<1U	<10	15	<1U	<10
1,1,2-Trichloroethane	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	0.24 J	< 50 U	< 50 U	<10	<10	IS	<1U	<1U
1,1-Dichloroethane	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	< 50 U	< 50 U	<1U	< 1U	IS	<1U	<10						
1,1-Dichloroethene	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	1.4	4	< 50 U	< 50 U	<1U	<10	IS	<1U	<1U
1,2-Dichloroethane	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<u> <1U</u>	<1U	<10	<1U	<1U	<1U	< 50 U	< 50 U	<10	<10	IS	<1U	<10
1,2-Dichloroethene	< 2 U	< 2 U	<2U	<2U	< 2 U	2.4	2.1	<2U	< 2 U	<2U	<2Ų	4.9	50.6	23.8	22.1 J	25.3 J	11.8	<2U	IS	7.8	7.6
1,2-Dichloropropane	<10	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<10	<10	<1U	<10	<10	< 50 U	< 50 U	<1U	<10	IS	<10	<10
cis-1,3-Dichloropropene	<10	<10	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	< 50 U	< 50 U	<10	<1U	IS	<10	<1U
trans-1,3-Dichloropropene	<10	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	< 50 U	< 50 U	<1U	<10	IS	<1U	<1U
2-Butanone	< 5 U	8.9	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 ປີ	< 250 U	< 250 U	< 5 U	<50	IS	< 5 U	<5U
2-Hexanone	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	<5U	< 5 U	< 5 U	< 250 U	< 250 U	< 5 U	< 5 U	IS	< 5 U	< 5 U
4-Methyl-2-pentanone	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 250 U	< 250 U	< 5 U	< 5 U	IS	< 5 U	<5U
Acetone	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	9.4 J	<5U	< 5 UJ	< 5 UJ	2.3 J	< 5 UJ	< 250 UJ	< 250 UJ	4.1 J	< 5 UJ	IS	0.8 J	< 5 U
Benzene	<10	<10	<1U	<1U	<10	<1U	<10	<1U	<10	<10	<10	<1U	<10	0.5 J	< 50 U	< 50 U	0.82 J	<10	IS	<10	<1U
Bromodichloromethane	<1U	<10	<10	<1U	<10	<10	<1U	<10	<10	<1U	<1U	<10	<10	<10	< 50 U	< 50 U	<10	<10	IS	<10	<1U
Bromoform	<10	<10	<10	<1U	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	< 50 U	< 50 U	<10	<10	IS	<1U	<1U
Bromomethane	<10	<1U	<10	<10	<1U	<10	<10	<10	<10	<1U	<10	<10	<10	<10	< 50 U	< 50 U	<10	<10	IS	<1U	<10
Carbon disulfide	<5U <1U	<5U <1U	<5U <1U	0.98 J	< 5 U	<5U	1.4 J < 1 U	<5U <1U	<5U <1U	<5U	<5U <1U	<50	< 5 U	<5U <1U	< 250 UJ	< 250 UJ	< 5 UJ	< 5 UJ	IS	< 5 U	<50
Carbon tetrachloride	<10	<1U <1U	<10	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<10 <1U	<1U <1U	<1U <1U	<10 <10	<1U <1U	<1U <1U		< 50 U	< 50 U	<10	<10	IS	<1U	<10
Chlorobenzene Chloroethane	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10 <1U	<10	<10 <1U	<1U <1U	< 50 U < 50 U	< 50 U < 50 U	<1U <1U	<1U <1U	IS IS	<1U <1U	<1U <1U
Chloroform	<10	<10	<1U	<1U	<1U	<1U	<10	<10	<10	<1U <1U	<1U	<10	<10	<10	< 50 U	< 50 U	<10	<1U <1U	IS	<10	<1U
Chloromethane	<10	<10	<10	<10	<10	<1U	<10	<1U	<10	<1U <1U	<10	<10	<10	<10	< 50 UJ	< 50 UJ	<1UJ	<1UJ	IS	<10	<1U
Dibromochloromethane	<10	<10	<10	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10	< 50 U	< 50 U	<100 <1U	<10	IS	<10	<1U
Ethylbenzene	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	0.17 J	<10	<10	<10	<10	0.18 J	< 50 U	< 50 U	<10	<10	IS	<10	<1U
Methylene chloride	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	250 JBU	250 JBU	5 JBU	5 JBU	IS	5 JBU	5 JBU						
Styrene	<10	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	<1U	0.18 J	<10	4.9 J	< 50 U	1 JU	1 JU	IS	<10	<1U
Tetrachloroethene	<10	<10	<1U	<10	<1U	<1U	<1U	<10	<10	<1U	<10	0.71 J	7.5	32.5	< 50 U	< 50 U	<10	<10	IS	1.6	1.4
Toluene	<1U	0.75 J	<10	<1U	<1U	<10	<1U	<10	<1U	<1U	<10	<1U	<10	.35 J	< 50 U	< 50 U	0.42 J	<10	IS	<1U	<10
Trichloroethene	<1U	<1U	0.2 J	<1U	0.4 J	39.7	71	<1U	<1U	<1U	<1U	183 D	1040 DJ	3600 D	3700	2830	8.3	.6 J	IS	157 D	83
Vinyl chloride	<1U	<1U	<10	<1U	<1U	<1U	<10	2.1	< 50 U	< 50 U	<10	<1U	IS	2.4	3						
Xylenes (total)	< 3 U	3 JBU	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U	3 JU	< 3 U	<3U	< 3 U	< 3 U	< 3 U	< 150 U	< 150 U	< 3 U	< 3 U	IS	< 3 U	< 3 U

Notes:

Bolded concentrations indicate detections J = estimated result

D = result is from a sample dilution

U = result is non-detect IS = insufficient sample

Page 6 of 8

Location ID	XX-15	XX-15	XX-15	XX-15	XX-15	XX-15	XX-15	XX-16	XX-16	XX-16	XX-17	XX-17	XX-18	XX-18	XX-18	XX-19	XX-19	XX-19	XX-20	XX-20	XX-20
Sample ID	XX1532	XX1542	XX1552	XX1562	XX1572	XX1582	XX1592	XX1612	XX1622	XX1632	XX1712	XX1722	XX1812	XX1822	XX1832	XX1912	XX1922			XX-20 XX2022	XX2032
	2/17/2000	2/17/2000	2/17/2000	2/17/2000		2/17/2000	2/17/2000	11/8/2001	11/8/2001	11/8/2001	11/8/2001	11/9/2001	11/9/2001	11/9/2001	11/9/2001	11/8/2001	11/8/2001	XX1932 11/8/2001	XX2012		11/9/2001
Sample Depth (ft bgs)	16.5 - 20	21.5 - 25	26.5 - 30	31.5 - 35	36.5 - 40	41.5 - 45	46.5 - 50	21 - 23	37 - 39	44 - 46	34 - 36	44 - 46	23 - 25	35 - 37	43 - 45	25 - 27	33 - 35	41 - 43	11/9/2001 33 - 35	11/9/2001 39 - 40.5	41 - 43
Chemical Name	10.0 20	21.3-25	20.0 - 30	31.0-00	30.3 - 40	41.3-43	40.0 - 00	21-23	37 - 33	44 - 40		44 - 40	20-20	33-31	43-43	23-21	33-33	41-43	33-30	39-40.0	41-43
1.1.1-Trichloroethane	<1U	<1U	<10	<1U	<1U	<10	IS	· <1U	<1U	<1U	0.62 J	<1U	<10	<10	<10	<10	<10	<10	< 5 U	<1U	<5∪
1,1,2,2-Tetrachloroethane	<10	<10	<10	<10	<10	<10	IS	<10	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<5U	<10	<5U
1.1.2-Trichloroethane	<10	<10	<10	<10	<10	<10	IS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<5U	<10	<50
1.1-Dichloroethane	<10	<10	<1U	<1U	<10	<10	IS	<1U	<1U	<10	<10	<10	<10	<10	<10	0.36 J	<10	<10	<5U	<10	<5U
1.1-Dichloroethene	<1U	<1U	<1U	6,1	<1U	<1U	IS	<10	<10	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<10	<5U	1	<5U
1.2-Dichloroethane	<1U	<1U	<1U	<10	<1U	<1U	IS	<10	<1U	<1U	<10	<1U	<10	<10	<10	<1U	<10	<10	<5U	<10	<5U
1,2-Dichloroethene	9.7	9	<2Ų	501 D	63.9	7.2	IS	< 2 U	<2U	<2U	< 2 U	0.45 J	100	37.7	<2U	23.1	2.3	<20	16.8	29.8	50
1,2-Dichloropropane	<1U	<1U	<1U	<10	<1U	<1U	IS	<10	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	< 5 U	<1U	<5U
cis-1,3-Dichloropropene	<1U	<1U	<1U	<1U	<1U	<1U	IS	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	< 5 U	<1U	<5U
trans-1,3-Dichloropropene	<1U	<1U	<1U	<1U	<1U	· <1U	IS	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 5 U	<1U	<5U
2-Butanone	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	IS	< 5 U	< 5 U	< 5 U	7.7 U	5 JU	5 JU	5 JU	< 5 U	5 JU	< 5 U	< 5 U	< 25 U	< 5 U	< 25 U
2-Hexanone	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	IS	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 25 U	<5U	< 25 U
4-Methyl-2-pentanone	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	IS	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 25 U	<5U	< 25 U
Acetone	1.5 J	< 5 U	< 5 U	< 5 U	1.8 J	< 5 U	IS	5.5 U	5 U	5.3 U	53.1 U	13.5 BU	12 U	20 U	5.6 U	11.4 BU	6.5 U	9.2 BU	26.1 BU	6.4 U	32.6 BU
Benzene	<1U	<1U	<1U	0.66 J	0.4 J	<1U	IS	<1U	<1U	<1U	<1Ų	<1U	0.56 J	< 1 U	<1U	0.58 J	<10	<10	< 5 U	0.55 J	1.9 J
Bromodichloromethane	<1U	<1U	<1U	<1U	< 1 U	< 1 U	IS	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	< 5 U	<1U	<5U
Bromoform	<10	<1U	<1U	<1U	<1U	<1U	IS	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 5 U	<1U	< 5 U
Bromomethane	<1U	<1U	<1U	<1U	<1U	<1U	IS	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	< 5 U	<1U	< 5 U
Carbon disulfide	< 5 U	< 5 U	<5U	< 5 U	<5U	<5U	IS	< 5 U	<5U	<5U	<5U	<5U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 25 U	<5U	< 25 U
Carbon tetrachloride	<1U	<1U	<1U	<1U	<1U	<10	IS	<10	<10	<1U	<10	<1U	<1U	<1U	<10	<1U	<10	<1U	< 5 U	<1U	< 5 U
Chlorobenzene	<1U	<1U	<1U	<1ປ	<1U	<10	IS	<1U	<10	<10	<1U	<1U	<1U	< 1 U	<10	<1U	<10	<10	< 5 U	<1U	< 5 U
Chloroethane	<1U ⁻	<1U	<10	.<1U	<1Ų	<1U	IS	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	< 5 U	<1U	< 5 U
Chloroform	<1U	<1U	<1U	<1U	<1U	<1U	IS	<1U	<10	<10	<10	<1U	<1U	<10	<10	<1U	<10	<1U	< 5 U	<1U	<5U
Chloromethane	<10	<10	<10	<1U	<1U	<10	IS	<1U	<10	<10	<10	<1U	<10	<10	<10	<1U	<1U	<1U	< 5 U	<1U	<5U
Dibromochloromethane	<10	<1U	<1U	<10	<10	<1U	IS	<1U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 5 U	<10	< 5 U
Ethylbenzene	<1U	<1U	<1U	<1U	<10	<10	IS	<1U	<1U	<10	<10	.74 J	<10	<10	<10	0.28 J	0.22 J	<10	< 5 U	<1U	<5U
Methylene chloride	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	5 JBU	IS	5 JBU	5 JBU	5 JBU	5 JBU	<5U	5 JBU	5 JBU	5 JBU	< 5 U	5 JBU	< 5 U	< 25 U	5 JBU	< 25 U
Styrene	<10	<10	<10	<10	0.21 J	<10	IS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 5 U	<1U	<5U
Tetrachloroethene	1.8	2.1	<10	<10	<10	<10	IS	<1U	<10	<10	<10	<u><10</u>	<10	<10	<10	<10	<10	<10	< 5 U	0.27 J	< 5 U
Toluene	<10	<10	<10	<10	0.34 J	<10	IS	<10	<10	<10	1 JU	1 JU	1 JU	1.2 U	<10	1.4 U	1.2 U	1 JU	< 5 U	1 JU	5 JU
Trichloroethene	118 D	198 D	<1U	406 D	1	<10	IS	<10	<10	<10	<10	3.4	5.1	<10	<10	0.48 J	4.6	<10	457	818 D	476 D
Vinyl chloride	3.4	<10	<10	<10	<10	<10	IS IS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	< 5 U	<10	< 5 U
Xylenes (total)	<3U	< 3 U	<3U	<3U	< 3 U	<3U	IS	< 3 U	< 3 U	< 3 U	<3U	< 3 U	<30	< 3 U	< 3 U	1.2 J	0.54 J	<3U	< 15 U	<3U	< 15 U

Notes:

Bolded concentrations indicate detections

J = estimated result

D = result is from a sample dilution

U = result is non-detect

IS = insufficient sample

Page 7 of 8

Location ID	XX-21	XX-21	XX-21	XX-22	XX-22	XX-22	XX-23	XX-23	XX-23	XX-24	XX-24	XX-24	XX-25	XX-25	XX-25	XX-26	XX-26	XX-26
Sample ID	XX2112	XX2122	XX2132	XX2212	XX2222	XX2232	XX2312	XX2322	XX2332	XX2412	XX2422	XX2432	XX2512	XX2522	XX2532	XX2612	XX2622	XX2632
Sample Date	11/8/2001	11/8/2001	11/8/2001	11/8/2001	11/8/2001	11/8/2001	11/10/2001	11/10/2001	11/10/2001	11/8/2001	11/8/2001	11/8/2001	11/10/2001	11/10/2001	11/10/2001	12/16/2001	12/16/2001	12/16/2001
Sample Depth (ft bgs)	31 - 33	41 - 43	45 - 47	26.5 - 28.5	29.5 - 31.5	34 - 36	27 - 29	37 - 39	45 - 47	29 - 31	39 - 41	44 - 46	29 - 31	35 - 37	43 - 45	29.9 - 34.8	37.4 - 42.3	23.7 - 28.7
Chemical Name	0.00				20.0 01.0		27 20	01 00	-10 -17 -	20 01	00 11		20 01	00-07	40 - 40	20.0 - 04.0	01.4 - 42.0	20.1 - 20.1
1.1.1-Trichloroethane	<1U	<1U	< 10 U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<10	<1.0	<10	<10	<1U
1,1,2,2-Tetrachloroethane	<1U	<10	< 10 U	<1U	<1U	<1U	<10	<10	<10	<10	<10	<1U	<1U	<10	<10	<10	<10	<10
1,1,2-Trichloroethane	<1U	<10	< 10 U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<10	<10	<1U	<10	<10	<10
1,1-Dichloroethane	<1Ų	<1U	< 10 U	<1U	<1U	0.25 J	<1U	<1U	<10	<1U	<10	<1U	<10	<10	<1U	<10	<1U	<10
1,1-Dichloroethene	<1U	<1U	< 10 U	3.4	<1U	2.4	<10	<10	<1U	<1U	<10	<1U	0.66 J	0.73 J	<1U	<1U	<1U	<10
1,2-Dichloroethane	<1U	<1U	< 10 U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10
1,2-Dichloroethene	2.2	< 2 U	636	148	15.8	85.7	0.78 J	2.6	< 2 U	< 2 U	<2U	<2U	61.4	68.4	< 2 U	1.8 J	2.3	1.6 J
1,2-Dichloropropane	<10	<1U	< 10 U	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10
cis-1,3-Dichloropropene	<10	<1U	< 10 U	<1U	< 1 U	<1U	<10	<10	<10	<1U	< 1 U	<1U	<1U	<10	<1U	<10	<10	<10
trans-1,3-Dichloropropene	<10	<1U	< 10 U	<1U	<1U	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U
2-Butanone	5 JU	< 5 U	< 50 U	< 5 U	11.6	< 5 U	2 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5ປ	< 5 U	<5U	< 5 U
2-Hexanone	< 5 U	< 5 U	< 50 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U
4-Methyl-2-pentanone	< 5 U	<5U	< 50 U	< 5 U	< 5 U	< 5 U	< 5 U	1.6 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	<5⊍	< 5 U	<5U	< 5 U
Acetone	10.7 BU	5.8 U	< 50 U	5 JU	54.8	4 J	8.2	13.6	17.1	4.1 J	4.1 J	3.9 J	4.4 J	3.6 J	2.3 J	102 B	26.2 BU	< 5 U
Benzene	0.39 J	<10	< 10 U	<1U	0.65 J	<10	<10	0.3 J	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U
Bromodichloromethane	<10	<1U	< 10 U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<10	<10	<1U	<10	<1U	<1U
Bromoform	<1U	<10	< 10 U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U
Bromomethane	<10	<1U	< 10 U	<1U	<10	<1U	<1U	<10	<10	<10	<10	<1U	<10	<u> <1U</u>	<1U	<1U	<10	<10
Carbon disulfide	<5U	< 5 U	< 50 U	< 5 U	< 5 U	<5ປ	< 5 U	< 5 U	< 5 U	<5U	< 5 U	<5U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Carbon tetrachloride	<1U	<1U	< 10 U	<1U	<1U	<1U	<10	<1U	<10	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<1U
Chlorobenzene	<10	<10	< 10 U	<1U	<10	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<10	<1U	<10	<10	<1U
Chloroethane	<10	<u><1U</u>	< 10 U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<10	<1U
Chloroform	<10	<1U	< 10 U	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<1U	<10	<10	<1U	<1U	<1U	<1U
Chloromethane	<10	<10	< 10 U	<1U	<1U	<10	<1U	<1U	<10	0.61 J	<10	<10	<10	0.44 J	<10	<10	<10	<1U
Dibromochloromethane	<10	<1U	< 10 U	<1U	<10	<1U	<10	<1U	<1U	<10	<10	<1U	<1U	<1U	<10	<10	<10	<1U
Ethylbenzene	0.61 J	0.41 J	< 10 U	<10	<1U	<10	<1U	<10	<10	<1U	<10	<1U	<10	<1U	<10	<10	<10	<1U
Methylene chloride	< 5 U	5 JBU	50 JBU	5 JBU	< 5 U	< 5 U	< 5 U	5 JBU	< 5 U	5 JBU	< 5 U	<5U	< 5 U	<5U	5 JBU	< 5 U	< 5 U	< 5 U
Styrene	<10	<1U	< 10 U	<10	<10	<10	<10	<10	<10	<10	<10	<1U	<10	<10	<1U	<10	<10	<10
Tetrachloroethene	2.3	<10	< 10 U	<10	<10	<1U	<10	<10	<10	<10	<10	<1U	<10	<10	<1U	0.55 J	<10	<10
Toluene	1.6 U	2.1	10 JU	1 JU	1.5	<10	0.18 J	<10	<10	<1U	<10	<10	<10	<10	<10	<10	<10	<10
Trichloroethene	1.3	<10	122	1040 D	26.7	511 D	0.68 J	<1U	<10	<10	<10	<10	272 D	91.8 D	<10	9.5	17.8	10.3
Vinyl chloride	<10	<10	< 10 U	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Xylenes (total)	1.8 J	2.1 J	< 30 U	< 3 U	< 3 U	<3U	<3U	< 3 U	<3U	<3U	< 3 U	<3U	< 3 U	<3U	< 3 U	< 3 U	< 3 U	< 3 U

Notes:

.

Bolded concentrations indicate detections

J = estimated result

D = result is from a sample dilution

U = result is non-detect IS = insufficient sample

Page 8 of 8

										ear	annan, Ge	90. g.c.									
Location ID		MVP-1	MVP-2	MVP-3	MVP-3	MVP-3	MVP-3														
Sample ID		MVP-1-10	MVP-1-15	MVP-1-20	MVP-1-25	MVP-1-30	MVP-1-35	MVP-1-40	MVP-1-45	MVP-2-10	MVP-2-15	MVP-2-20	MVP-2-25	MVP-2-30	MVP-2-35	MVP-2-40	MVP-2-45	MVP-3-10	MVP-3-15	MVP-3-20	MVP-3-25
Sample Date		12/6/2002	12/6/2002	12/6/2002	12/6/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002
Sample Depth (ft bgs)	Units	10	15	20	25	30	35	40	45	10	15	20	25	30	35	40	45	10	15	20	25
Chemical Name	1																				
1,1,1,2-Tetrachloroethane	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	< 2 U
1,1,1-Trichloroethane	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
1,1,2,2-Tetrachloroethane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	<2U
1,1,2-Trichloroethane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	<2U
1,1-Dichloroethane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
1,1-Dichloroethene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
1,1-Dichloropropene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<21/	<2U	< 2 U	<2U
1,2,3-Trichlorobenzene	µg/Ł	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	< 2 U
1,2,3-Trichloropropane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
1,2,4-Trichlorobenzene	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
1,2,4-Trimethylbenzene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2-Dibromoethane	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U
1,2-Dichlorobenzene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 Ų	< 2 U
1,2-Dichloroethane	µg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
1,2-Dichloropropane	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	< 2 U
1,3,5-Trimethylbenzene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U
1,3-Dichlorobenzene	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	< 2 U
1,3-Dichloropropane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
1,4-Dichlorobenzene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U
2,2-Dichloropropane	µg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	<20	<20	< 2 U	< 2 U
2-Butanone	µg/L	< 20 U	<2U	< 10 U	<2Ų	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
2-Chlorotoluene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	<2U
2-Hexanone	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<20	<20	< 2 U	<2U
4-Chlorotoluene	µq/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<2U	< 2 U	<2U	< 2 U
4-Methyl-2-pentanone	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<2U	<20	< 2 U	< 2 U
Acetone	ug/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 Ū	<2U	<2U	< 10 U	< 10 U	< 2 U	<20	< 2 U	< 2 U
Benzene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<20	<2U	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U
Bromobenzene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
Bromochloromethane	µq/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	< 2 U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
Bromodichloromethane	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	<2U	< 2 U
Bromoform	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	<2U	<2U	< 2 U
Bromomethane	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	< 2 U
Carbon disulfide	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2Ų	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	. <2U
Carbon tetrachloride	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	< 2 U
CFC-11	µg/L	NA	NA	NA	NA	< 10 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	< 2 U
CFC-12	μg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<2.0	<2U	<2U	<2U
Chlorobenzene	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U
Chloroethane	µg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 Ŭ	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	<2U
Chloroform	μg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U
Chloromethane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	<2U
cis-1,2-Dichloroethene	µg/L	< 20 U	<2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	<2U	42.8	49.1
cis-1,3-Dichloropropene	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
Dibromochloromethane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<2U	<2U	<2U	<2U
Dibromomethane	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
Ethylbenzene	µg/L	< 20 U	< 2 U	< 10 U	0.96 J	< 10 U	1.41 J	< 10 U	< 10 U	<2U	<2U	< 10 U	< 2 U	<2U	< 2 U	< 10 U	< 10 U	< 2 U	<20	<2U	<2U
Hexachlorobutadiene	ug/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<20	< 10 U	<20	<20	<2U	< 10 U	< 10 U	< 2 U	< 2 U	<2U	<20
Isopropylbenzene	µg/L	< 20 U	<2U	< 10 U	<20	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<20	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<20	<20	<20	<2U
m,p-Xylene	μg/L	< 20 U	< 2 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<20	< 10 U	<20	<2U	<2U	< 10 U	< 10 U	<20	< 2 U	< 2 U	<2.U
	1		- •															<u> </u>		~~	

Notes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

NA = not analyzed

Location ID		MVP-1	MVP-2	MVP-3	MVP-3	MVP-3	MVP-3														
Sample ID	1	MVP-1-10	MVP-1-15	MVP-1-20	MVP-1-25	MVP-1-30	MVP-1-35	MVP-1-40	MVP-1-45	MVP-2-10	MVP-2-15	MVP-2-20	MVP-2-25	MVP-2-30	MVP-2-35	MVP-2-40	MVP-2-45	MVP-3-10	MVP-3-15	MVP-3-20	MVP-3-25
Sample Date		12/6/2002	12/6/2002	12/6/2002	12/6/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/7/2002	12/8/2002	12/8/2002		12/8/2002
Sample Depth (ft bgs)	Units	10	15	20	25	30	35	40	45	10	15	20	25	30	35	40	45	10	15	20	25
Chemical Name																					
Methylene chloride	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
Naphthalene	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	< 2 U
n-Butylbenzene	μg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 Ü	<2U	< 10 U	< 2 U	<2U	< 2 U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
n-Propylbenzene	μg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<2U	<2U	<2ປ	<2U
o-Xylene	µg/L	< 20 U	< 2 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	<2U	<2U	< 2 U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 Ü
p-Isopropyltoluene	μg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	<20	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
sec-Butylbenzene	μg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	<20	<2U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U
Styrene	μg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	<2U	< 2 U
tert-Butyl methyl ether	μg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	<2U	< 2 U
tert-Butylbenzene	µg/L	< 20 U	< 2 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U
Tetrachloroethene	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U
Toluene	μg/L	< 20 Ü	< 2 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 10 U	< 2 U	<2U	< 2 U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	< 2 U
trans-1,2-Dichloroethene	μg/L	< 20 U	< 2 U -	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U
trans-1,3-Dichloropropene	µg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U
Trichloroethene	µg/L	< 20 U	<2U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 2 U	33.3	36
Vinyl acetate	µg/L	NA	NA	NA	NA	< 20 U	< 20 U	< 20 U	< 20 U	<4U	<4U	< 20 U	<4U	< 4 U	<4U	< 20 U	< 20 U	<4U	< 4 U	< 4 U	< 4 U
Vinyl chloride	µg/L	< 20 U	<2U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 10 U	<2U	<20	< 2 U	< 10 U	< 10 U	<2U	< 2 U	0.75 J	< 2 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect NA = not analyzed

			·																	
Location ID	MVP-3	MVP-3	MVP-3	MVP-3	MVP-4	MVP-5	MVP-5	MVP-5	MVP-5	MVP-5	MVP-5	MVP-5	MVP-5							
Sample ID			MVP-3-40		MVP-4-10	MVP-4-15	MVP-4-20	MVP-4-25	MVP-4-30	MVP-4-35	MVP-4-40	MVP-4-45	MVP-5-10	MVP-5-15	MVP-5-20	MVP-5-25	MVP-5-30	MVP-5-35	MVP-5-40	MVP-5-45
Sample Date	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002
Sample Depth (ft bgs)	30	35	40	45	10	15	20	25	30	35	40	45	10	15	20	25	30	35	40	45
Chemical Name							-													
1,1,1,2-Tetrachloroethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2 ປ	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 Ü	< 2 U	< 2 U	<2U	< 10 U
1,1,1-Trichloroethane	<2U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 10 U
1,1,2,2-Tetrachloroethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 10 U
1,1,2-Trichloroethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 Ū	< 2 U	< 2 U	< 2 U	< 10 U
1,1-Dichloroethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 10 U
1,1-Dichloroethene	< 2 U	2.22	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U	< 10 U
1,1-Dichloropropene	< 2 U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 10 U
1,2,3-Trichlorobenzene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 10 U
1,2,3-Trichloropropane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 U	<2U	<2U	<2U	< 10 U
1,2,4-Trichlorobenzene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
1,2,4-Trimethylbenzene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 10 U
1,2-Dibromoethane	< 2 Ų	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 U	<2U	<2U	< 2 U	< 10 U
1,2-Dichlorobenzene	< 2 U	< 2 U	< 10 U	<2U	<2U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 10 U
1,2-Dichloroethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 10 U
1,2-Dichloropropane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 10 U
1,3,5-Trimethylbenzene	< 2 U	16.1	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	<2U	<2U	< 10 U
1,3-Dichlorobenzene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<2U	<2U	<2U	<2U	< 10 U
1,3-Dichloropropane	<2U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	<2U	< 10 U
1,4-Dichlorobenzene	< 2 U	< 2 U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 10 U
2,2-Dichloropropane	< 2 U	<2U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 10 U
2-Butanone	< 2 U	<2U	< 10 U	<2U	< 2 U	<20	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
2-Chlorotoluene	< 2 U	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 10 U
2-Hexanone	< 2 U	< 2 U	< 10 U	<2U	<2U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	<20	< 10 U
4-Chlorotoluene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 10 U
4-Methyl-2-pentanone	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 10 U
Acetone	< 2 U	< 2 U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
Benzene	< 2 U	1.16 J	< 10 U	<2U	<2U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<20	<20	<2U	< 2 U	< 10 U
Bromobenzene	<2U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<2U	<2U	<2U	< 2 U	< 10 U
Bromochloromethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2Ų	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 10 U
Bromodichloromethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<20	<2U	<20	< 2 U	< 10 U
Bromoform	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<20	<2U	< 2 U	< 2 U	< 10 U
Bromomethane	< 2 U	< 2 U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<20	< 2 U	<20	<20	< 10 U
Carbon disulfide	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<20	<20	< 2 U	< 2 U	< 10 U
Carbon tetrachloride	<2U	<20	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<20	<2U	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
CFC-11	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<20	<20	<20	<20	< 2 U	< 10 U
CFC-12	< 2 U	< 2 U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<20	<2U	<2U	<20	< 2 U	< 2 U	< 10 U
Chlorobenzene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	<2U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<20	<20	<20	<2U	<2U	<20	<20	< 10 U
Chloroethane	< 2 U	< 2 U	< 10 U	<2U	<20	<2U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<20	<2U	<20	<20	<20	< 10 U
Chloroform	< 2 U	< 2 U	< 10 U	<2U	<20	<2U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<20	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
Chloromethane	<2U	< 2 U	< 10 U	<2U	< 2 U	<20	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<20	<2U	<2U	<2U	< 2 U	< 10 U
cis-1,2-Dichloroethene	578	969	114	12	0.7 J	1.52 J	2.98 J	1.05 J	6.95	< 10 U	< 10 U	< 10 U	<2U	<20	<2U	<2U	< 2 U	<20	<2U	16.6
cis-1,3-Dichloropropene	<20	< 2 U	< 10 U	<2U	< 2 U	<20	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<20	<20	<20	<20	<20	< 10 U
Dibromochloromethane	< 2 U	<20	< 10 U	<2U	<2U	<20	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<20	<20	<2U	<20	<2U	<20	< 10 U
Dibromomethane	<20	<20	< 10 U	<2U	<2U	< 2 U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<2U	<2U	<20	<20	<20	<20	<20	< 10 U
Ethylbenzene	0.77 J	1.31 J	< 10 U	<2U	<2U	<20	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<20	<2U	<2U	<2U	<2U	<2U	<20	< 10 U
Hexachlorobutadiene	<2U	< 2 U	< 10 U	<2U	<20	<2U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<20	<2U	<20	<20	<20	<20	<20	< 10 U
Isopropylbenzene	2.06	2.3	< 10 U	<20	<2U	<20	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	<2U	<20	< 10 U
m,p-Xylene	<2U	<2U	< 10 U	<2U	<2U	<2U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<20	<2U	<2U	<2U	< 10 U
	120	-20	100	-20	-20	-20		- 10 0	120		100		1 20	120	-20	~20	~ <u>4</u> U	~20	~ Z U	~ 10 0

Notes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

NA = not analyzed

j																				
Location ID	MVP-3	MVP-3	MVP-3	MVP-3	MVP-4	MVP-5														
Sample ID	MVP-3-30	MVP-3-35	MVP-3-40	MVP-3-45	MVP-4-10	MVP-4-15	MVP-4-20	MVP-4-25	MVP-4-30	MVP-4-35	MVP-4-40	MVP-4-45	MVP-5-10	MVP-5-15	MVP-5-20	MVP-5-25	MVP-5-30	MVP-5-35	MVP-5-40	MVP-5-45
Sample Date	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002	12/8/2002
Sample Depth (ft bgs)	30	35	40	45	10	15	20	25	30	35	40	45	10	15	20	25	30	35	40	45
Chemical Name																				1
Methylene chloride	<20	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	<2U	<2U	< 10 U
Naphthalene	< 2 U	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U	< 2 U	<2U	<2U	< 10 U
n-Butylbenzene	<20	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	<2U	< 2 U	< 2 U	< 10 U
n-Propylbenzene	2.18	2.45	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 2 U	<2U	<2U	< 2 U	<2U	< 10 U
o-Xylene	< 2 U	< 2 U	< 10 U	<2U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<2U	<2U	<2U	<2U	< 10 U
p-Isopropyltoluene	<2U	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<20	< 10 U	< 10 U	< 10 U	<2U	<2U	<20	<2U	< 2 U	< 2 U	<2U	< 10 U
sec-Butylbenzene	1.08 J	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 10 U
Styrene	< 2 U	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U	<2U	<2U	<2U	< 10 U
tert-Butyl methyl ether	< 2 U	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	< 10 U
tert-Butylbenzene	0.68 J	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<2U	<2U	< 2 U	< 2 U	< 10 U
Tetrachloroethene	< 2 U	< 2 U	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 10 U
Toluene	0.6 J	0.69 J	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	<2U	< 2 U	<2U	< 2 U	<2U	<2U	< 10 U
trans-1,2-Dichloroethene	< 2 U	4.39	< 10 U	< 2 U	< 2 U	< 2 U	< 10 U	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	<2U	<2U	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
trans-1,3-Dichloropropene	< 2 U	< 2 U	< 10 U	< 2 U	<2U	<2U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	<2U	<2U	< 2 U	<2U	< 2 U	< 10 U
Trichloroethene	201	453	108	7.85	< 2 U	< 2 U	< 10 U	< 10 U	<2U	< 10 U	< 10 U	< 10 U	<2U	< 2 U	< 2 U	<2U	<2U	<2U	<2U	6.83 J
Vinyl acetate	< 4 U	< 4 U	< 20 U	< 4 U	<4 Ų	< 4 U	< 20 U	< 20 U	<4U	< 20 U	< 20 U	< 20 U	<4U	<4U	< 4 U	<4U	<4U	< 4 U	< 4 U	< 10 U
Vinyl chloride	3.23	7.73	< 10 U	< 2 U	< 2 U	<2U	< 10 U	< 10 ป	< 2 U	< 10 U	< 10 U	< 10 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 10 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect NA = not analyzed

VP-2-30 7/11/2003 30 MCA-VP-2 <2U <2U <2U <2U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 4 U</pre> < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U 2 ∪ ∧ ∧ < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U ∧ × 2 ∪ < 2 U < 2 U < 2 (MCA-VP-2 VP-2-25 7/11/2003 25 <2U <2U <4U <4U <2U <2U <2U < 2 U < 2 U <20 <20 <20 MCA-VP-1 MCA-VP-1 MCA-VP-2 MCA-VP-2 VP-1-40 VP-1-45 VP-2-15 VP-2-20 9/3/2003 9/3/2003 7/11/2003 7/11/2003 40 45 15 20 <2U <2U <2U <2U <20 <20 <20 <20 <20 <20</pre> <2U <2U <2U <2U <20 <20 <20 <20 < 2 U < 2 U <20 <20 <20 <20 <20 <20 <20</pre> <2U <2U 2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
2 U U
< < 2 U U
< 3 U
< 4 U
< 4 U
< 4 U
< 4 U
< 5 U
< 5 U
< 4 U
< 5 U
< 4 U
< 5 <2U <2U <4U <4U <20 <20 <20 <20 <2U <2U <2U <2U <2U <2U <2U < 2 U
 < 2 U
 < 2 U
 < 2 U
 < 2 U MCA-VP-1 VP-1-35 9/4/2003 35 <2U <2U <2U < 2 U <2U <4U <4U <2U <2U <2U <2U < 2 U < 2 U < 2 U <2U <2U <2U <2U <2U <2U <2U <2U <2U <2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre><pre < 2 U < 2 U < 2 U MCA-VP-1 VP-1-30 9/3/2003 30 < 2 U</pre> < 2 U</pre>< 2 U</pre>< 4 U</pre> <2U <2U <2U <2U <2U < 2 U MCA-VP-1 MCA-VP-1 h VP-1-25 9/3/2003 9/3/2003 25 25 25 2 U U
2 U U
2 U U
2 U U
2 U U
4 2 U
4 2 U
4 2 U
4 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
5 2 U
< <2U <2U <2U <2U <2U <2U <2U <20 <20 <20 <20 <20 </ < 2 U < 2 U < 4 U < 4 U <2U <2U <2U <2U < 2 U < 2 U <20</pre><20</pre><20</pre><20</pre><20</pre><20</pre></pr <20 <20 <20 <20 <20 <20</pre> < 4 U < 2 U</pre> < 2 U MCA-VP-1 9/3/2003 15 VP-1-15 <2U <2U <2U <2U < 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre></ < 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre> < 2 U < 2 U < 2 U < 2 U < 2 U <2U <2U <2U < 2 U U </pre> < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 4 U A 4 U < 2 U < 2 U < 2 U < 2 U < 2 U 1/67 1/67 µg/L µg/L hg/L ug/L hg/L µg/L µg/L 1/67 1/67 Units на/Г на/Г -T/Brt µg/Г Sample ID Sample Date Sample Depth (ft bgs) t Location ID ,2,4-Trimethylbenzene ,2-Dibromo-3-chloropropane ,2-Dibromoethane 1,1,2-Tetrachloroethane 1,1,1-Titchloroethane 1,2,2-Tetrachloroethane 1,2,2-Titchloroethane 2,4-Trichlorobenzene .2-Dichloropropane .3.5-Trimethylbenzene 2,3-Trichlorobenzene Bromochloromethane Bromodichloromethane enzene, 1-methylethyl 4-Methyl-2-pentanone ,2-Dichlorobenzene **3-Dichlorobenzene** 1,4-Dichlorobenzene 2,2-Dichloropropane , 1-Dichloroethane f-Dichloropropene .3-Dichloropropane Carbon tetrachloride 2-Dichloroethane **nemical Name** Bromomethane Carbon disulfide Chlorotoluene 4-Chlorotoluene omobenzene Hexanone 2-Butanone Acrylonitrile omoform Benzene Acetone Acrolein CFC-1

Notes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect IS = insufficient sample

Location ID		MCA-VP-1	MCA-VP-2	MCA-VP-2	MCA-VP-2	MCA-VP-2						
Sample ID		VP-1-15	VP-1-20	VP-1-25	VP-1-30	VP-1-35	VP-1-40	VP-1-45	VP-2-15	VP-2-20	VP-2-25	VP-2-30
Sample Date		9/3/2003	9/3/2003	9/3/2003	9/3/2003	9/4/2003	9/4/2003	9/3/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003
Sample Depth (ft bgs)	Units	15	20	25	30	35	40	45	15	20	25	30
Chemical Name												
CFC-12	hg/L	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
Chlorobenzene	µg/L	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	<2U	<2U
Chloroethane	1/6rl	< 2 U	< 2 U	< 2 U	<2U .	<20	< 2 U	<20	<2U	< 2 U	< 2 U	< 2 U
Chloroform	ng/L	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	<20	< 2 U
Chloromethane	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U
cis-1,2-Dichloroethene	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	<2U	<2U	< 2 U	< 2 U
cis-1,3-Dichloropropene	_1/61_	<2 U	< 2 U	< 2 U	< 2 Ú	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Dibromochloromethane	hg/L	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
Dibromomethane	hg/L	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
Diisopropyl ether	µg/L	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U
Ethylbenzene	µg/L	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U
Hexachlorobutadiene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	<2U .	< 2 U
lodomethane	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	<2U	<2U	< 2 U	<2U	<2U
m.p-Xylene	hg/L	< 2 U	<2U	< 2 U	< 2 U	<2U	<2U	<pre></pre>	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
Naphthalene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 Ú
n-Butylbenzene	hg/L	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
n-Propylbenzene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
o-Xytene	hg/L	< 2 U	<20	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
p-lsopropyltoluene	hg/L	< 2 U	<2U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
sec-Butylbenzene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Styrene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
tert-Buty! methyl ether	µg/L	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
tert-Butylbenzene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Tetrachloroethene	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Toluene	µg/L	< 2 U	0.22 J	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
trans-1,2-Dichloroethene	hg/L	< 2 U	< 2 U	< 2 Ū	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
trans-1,3-Dichloropropene	µg/L	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<pre>< 2 U</pre>	< 2 U	< 2 U	< 2 U	< 2 U
Trichtoroethene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U
Vinyl acetate	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Vinyl chłoride	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U

Notes; Bolded concentrations indicate detections J = estimated result U = result is non-detect IS = insufficient sample

			MCA-VP-Z					MCA-VP-3			
Sample ID	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	0/3/2003
Sample Denth (ft hos)	35	40	45	15	20	25	30	35	40	45	15
Chemical Name	3	2	2	2	2	-2	2	8	2	2	2
,1,1,2-Tetrachloroethane	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
,1,1-Trichloroethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
.1.2.2-Tetrachloroethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U
,1,2-Trichloroethane	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U		< 2 U	< 2 U
,1-Dichloroethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U
1,1-Dichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U		< 2 U	< 2 U
,1-Dichloropropene	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U
,2,3-Trichlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2,4-Trichlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
,2,4-Trimethylbenzene	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
.2-Dibromo-3-chloropropane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
,2-Dibromoethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	<20	< 2 U	< 2 U
,2-Dichlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<20	< 2 U	< 2 U
,2-Dichloroethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
.2-Dichloropropane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	nz>	<2U	<2U	< 2 U	< 2 U
1,3,5-Trimethylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<pre>< 2 U</pre>	< 2 U	< 2 U
,3-Dichlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U ·	< 2 U	< 2 U	< 2 U	< 2 U
,3-Dichloropropane	< 2 U	< 2 U	< 2 U	< 2 U	<pre>< 2 U</pre>	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U
,4-Dichlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 Ü
2-Dichloropropane	< 2 U	< 2 U	< 2 Ü	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
2-Butanone	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
2-Chiorotoluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2.U	< 2 U	< 2 U	<20	< 2 U
2-Hexanone	< 2 U	< 2 U	< 2 U ·	2	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
4-Chlorotoluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
4-Methyl-2-pentanone	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Acetone	< 2 U	< 2 U	< 2 Ú	< 2 U	< 2 U	< 2 Ū	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Acrolein	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	<4U	< 4 U	<40	< 4 U
Acrylonitrile	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U	< 4 U
Benzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Benzene, 1-methylethyl	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Bromobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U
Bromochloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U
Bromodichloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Bromoform	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Bromomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Carbon disulfide	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U
Carbon tetrachloride	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U

Notes; Bolded concentrations indicate detections J = estimated result U = result is non-detect IS = insufficient sample

Location ID	MCA-VP-2	MCA-VP-2	MCA-VP-2	MCA-VP-3	MCA-VP-4						
Sample ID	VP-2-35	VP-2-40	VP-2-45	VP-3-15	VP-3-20	VP-3-25	VP-3-30	VP-3-35	VP-3-40	VP-3-45	VP-4-15
Sample Date	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	7/11/2003	9/3/2003
Sample Depth (ft bgs)	35	40	45	15	20	25	30	35	40.	45	15
Chemical Name											
CFC-12	<2U	<2U	<2U ≤	<20	<20	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U
Chlorobenzene	<2U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U
Chloroethane	< 2 U	<2U	< 2 U	<20	<2U	<2U	< 2 U	< 2 U	< 2 U	<20	< 2 U
Chloroform	<2U	<2U	· <2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Chloromethane	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U
cis-1,2-Dichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
cis-1,3-Dichloropropene	< 2 U	. <2U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Dibromochloromethane	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Dibromomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Diisopropyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Ethylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Hexachlorobutadiene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
lodomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
m.p-Xylene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Naphthalene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
n-Butylbenzene	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U
n-Propylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
o-Xylene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
p-isopropyltoluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
sec-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Styrene	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
tert-Butyl methyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
tert-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Tetrachloroethene	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Toluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2.0	< 2 Ŭ	< 2 U	< 2 U
trans-1,2-Dichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
trans-1,3-Dichloropropene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Trichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Vinyl acetate	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Vinyl chloride	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect IS = insufficient sample

Sample Depth (t bgs) 20 25 Chemical Name \$25 33/2003 33/2003 35/2003 Sample Depth (t bgs) 20 25 20 25 Themical Name \$20 \$20 \$20 \$20 1,1,1-Trichbroethane \$20 \$20 \$20 \$20 1,1,1-Trichbroethane \$20 \$20 \$20 \$20 1,1,1-Trichbroethane \$20 \$20 \$20 \$20 1,1,2-Trichbroethane \$20 \$20 \$20 \$20 1,1,1-Dichbroethane \$20 \$20 \$20 \$20 1,1,1-Dichbroethane \$20 \$20 \$20 \$20 1,2,3-Trichbroethane \$20 \$20 \$20 \$20 1,2,4-Trimethylbenzene \$20 \$20 \$20 \$20 1,2,4-Trimethylbenzene \$20 \$20 \$20 \$20 1,2,2-Dichoropenzene \$20 \$20 \$20 \$20 1,2,2-Dichoropenzene \$20 \$20 \$20		933/2003 35 35 35 35 35 35 35 35 35 35 35 35 35	9(4/2003 40 40 40 40 40 42 0 40 40 40 40 40 40 40 40 40 40 40 40 4	9/3/2003	6/27/2003	6/27/2003 20	6/27/2003 25	6/27/2003	6/27/2003
off (ft bgs) 20 ane < 2 U	╏┨┨┨┨┨┇╹╹╹╹	33 20 20 20 20 20 20 20 20 20 20 20 20 20	A A A 22 U U A A A A A A A A A A A A A A	45	15	20	25	ć	
alle alle			200 200 200 200 200 200 200 200 200 200					ĝ	35
ane 20 ane 20 ane 200 200 200 </td <td></td> <td><pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></td> <td></td> <td></td> <td></td> <td>_</td> <td>1</td> <td></td> <td></td>		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>				_	1		
atile and a second		220 220 220 220 220 220 220 220 220 220	 <20 <20 <20 <20 <20 <20 <20 <20 	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
alle 20 220 230 220 230 230 230 230 230 230 230 230 230 230 230 230 230 240 240 250 240 250 240 250 240 250 240 250 240		×20 ×20 ×20 ×20 ×20 ×20 ×20 ×20 ×20 ×20	<pre>< 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
• • • • • • • • • • • • • • •		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><20 <20 <20 <20 <20</pre>		<2U	< 2 U	< 2 U	S	< 2 U
************************************		 <20 <20	< 2U < 2U < 2U < 2U	< 2 U	< 2 U	< 2 U	< 2 U	ร	< 2 U
6 <20		<pre><20 <20 <20 <20 <20 <20</pre>	<2U <2U <2U	<2U	< 2 U	< 2 U	< 2 U	IS	< 2 U
0 0		× 2 U × 2 U	< 2 U < 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
0 0		<pre>< 2 U</pre>	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
0 <		< 2 U < 2 U < 7 II		< 2 U	<2U	< 2 U	< 2 U	ខ	< 2 U
image: state	vv	< 2 U < 7 II	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<u>ನ</u>	< 2 U
iropane <20	< >	< 2 11	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2			< 2 U	< 2 Ū	< 2 U	< 2 U	< 2 U	SI	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2	v	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	ខ	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2	~	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U
© 0 0 0 0 0 0 0 0 0 0 0 0 0	U < <2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	ര	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2	U <2U	<2U	<2U	<2U	< 2 U	<20	<20	ខ	< 2 U
20 20 20 20 20 20 20 20 20 20	×	< 2 U	< 2 U -	< 2 U	< 2 U	<2U	< 2 U	S	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2	~	< 2 U	< 2 U	<20	< 2 U	<2U	<20	S	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	×	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U <2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
20000000000000000000000000000000000000		< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 Ŭ
20000000000000000000000000000000000000	v	< 2 U	< 2 U	<2U	< 2 U	< 2 U	<2U	ខ	< 2 U
<pre><20 <20 <20 <20</pre>	۷ 	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U
<pre></pre>	v 	<2U	<2U	<2U	< 2 U	<2U	<2U	<u>ຮ</u>	< 2 U
<pre><40 <20 <20</pre>	× -	<4U	<4U	< 4 U	< 4 U	< 4 U	< 4 U	ខ	<4U
<20	v 	< 4 U	< 4 U	< 4 U	< 4 U	<4U	< 4 U	S	< 4 U
< 20	v	< 2 U	<2U	<2U	< 2 U	< 2 U	<2U	ত	<2U
	V	<2U	< 2 U	<2 U	<2U	<2U	<2U	<u>ເ</u>	<2U
	v	< 2 U	<2U	<2U	< 2 U	<2U	<2U	ខ	< 2 U
< 2 U	v	<2U	< 2 U	<2U	<2U	< 2 U	<2U	S	< 2 U
Bromodichloromethane < 2 U < 2 U	v	< 2 U	< 2 U	< 2 U	< 2 U	< 2.0	< 2 U	S	< 2 U
	v	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	SI	< 2 U
< 2 U	Y	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	2	ខ	< 2 U
	J <2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	ន	< 2 U
tetrachloride < 2 U	v		<2U		<2U	< 2 U	< 2 U	Ω	< 2 U
-	v	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	ល	< 2 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect iS = insufficient sample

Page 5 of 10

Location ID	MCA-VP-4	MCA-VP-4	MCA-VP-4	MCA-VP-4	MCA-VP-4	MCA-VP-4	MCA-VP-5	MCA-VP-5	MCA-VP-5	MCA-VP-5	MCA-VP-5
Sample ID	VP-4-20	VP-4-25	VP-4-30	VP-4-35	VP-4-40	VP-4-45	VP-5-15	VP-5-20	VP-5-25	VP-5-30	VP-5-35
Sample Date	9/3/2003	9/3/2003	9/3/2003	9/3/2003	9/4/2003	9/3/2003	6/27/2003	6/27/2003	6/27/2003	6/27/2003	6/27/2003
Sample Depth (ft bgs)	20	25	30	35	40	45	15	20	25	30	35
Chemical Name											
CFC-12	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
Chlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	SI	< 2 U
Chloroethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
Chloroform	< 2 U	0.46 J	< 2 U	< 2 U	< 2 U	< 2 U	N2>	< 2 U	< 2 U	SI	<2U
Chloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
cis-1,2-Dichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
cis-1,3-Dichloropropene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
Dibromochloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 Ü	< 2 U	< 2 U	< 2 U	SI	< 2 U
Dibromomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	∩z>	< 2 U	< 2 U	SI	< 2 U
Dilsopropyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
Ethylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
Hexachlorobutadiene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
lodomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
m,p-Xylene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U
Methylene chloride	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
Naphthalene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
n-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 Ú	< 2 U	< 2 U	IS	< 2 U
n-Propylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
o-Xylene	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
p-lsopropyltoluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
sec-Butylbenzene	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
Styrene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
tert-Butyl methyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
tert-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
Tetrachloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	IS	< 2 Ŭ
Toluene	< 2 U	< 2 U	0.29 J	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	IS .	< 2 U
trans-1,2-Dichloroethene	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
trans-1,3-Dichloropropene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	IS	< 2 U
Trichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	SI	< 2 U
Vinyl acetate	< 2 U	< 2 U	< 2 U	<2U	<2U	<2U	< 2 U	< 2 U	< 2 U	SI	< 2 U
Vinyl chloride	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	S	< 2 U

Notes: Boided concentrations indicate detections J = estimated result U = result is non-detect IS = insufficient sample

Page 6 of 10

Summary of Groundwater Analyses - 2003 Vertical Profile Samples Hunter Army Airfield - Savannah, Georgia HAA-15 (MCA Barracks Site) Table 1c

VP-7-20 9/5/2003 20 MCA-VP-< 2 U < 2 U < 2 U < 2 U
 < 4 U
 < 4 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 ∪ < 2 ∪ < 2 U < 2 U < 2 U < 2 L 9/5/2003 15 MCA-VP-7 VP-7-15 <20 <20 <20 <20 <2U <2U <2U < 2 U < 2 U < 2 U < 4 U < 4 U</pre> <20</pre><20</pre><20</pre><20</pre><20</pre><20</pre><pre <2U <2U <2U < 2 U < 2 U < 2 U MCA-VP-6 9/4/2003 45 VP-6-45 <2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre>< 4 U</pre>< 4 U</pre> MCA-VP-6 9/4/2003 40 VP-6-40 <2U < 2U < 2U < 2U < 2U < 4U < 4U</pre> <2U <2U <2U < 2 U
 < 2 U
 < 2 U
 < 2 U
 < 2 U MCA-VP-6 VP-6-35 9/4/2003 35 < 2 U < 2 U < 2 U < 2 U < 2 U < 4 U</pre> < 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre></ <2U <2U <2U < 2 U < 2 U MCA-VP-6 9/4/2003 30 VP-6-30 < 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre> < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 4 U</p> <2∪ < 2 U < 2 U <2∪ < 2 ∪ 4 MCA-VP-6 VP-6-25 9/4/2003 25 <2U <2U <2U <2U <2U <2U <2U <2U <2U < 2 U < 2 U < 4 U < 4 U <2U <2U <2U MCA-VP-6 9/4/2003 20 VP-6-20 < 4 U < 4 U <2U <2U <2U <2U < 2 U
 < 2 U
 < 2 U
 < 2 U MCA-VP-6 VP-6-15 9/4/2003 6/27/2003 45 MCA-VP-5 VP-5-45 < 2 U
 < 2 U
 < 2 U
 < 2 U 20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
< <2U <2U <2U <2U <2U <2U <2U < 2 U < 2 U < 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre> <2U <2U < 2 U < 4 U < 4 U</pre> < 2 U < 2 U MCA-VP-5 VP-5-40 6/27/2003 40 <20 <20 <20 <20 <20</pre> < 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre>< 2 U</pre></ < 4 U</pre> <2U <2U <2U <2U Sample Date Sample Depth (ft bgs) Location ID Sample ID 2-Dibromo-3-chloropropane 2-Dibromoethane 1,1,2-Tetrachloroethane 1,1-Trichloroethane 2.2-Tetrachloroethane 2.4-Trimethvlbenzene 2,3-Trichlorobenzene 2,4-Trichlorobenzene 2-Dichloropropane 3,5-Trimethylbenzene Benzene, 1-methylethyl Bromochloromethane Bromodichloromethane -Methyl-2-pentanone 2-Trichloroethane I-Dichloropropene 2-Dichlorobenzene **3-Dichlorobenzene** 4-Dichlorobenzene 2-Dichloropropane 3-Dichloropropane Carbon tetrachloride 1-Dichloroethane 2-Dichloroethane 1-Dichloroethene 2-Hexanone 1-Chlorotoluene emical Name Chlorotoluene Carbon disulfide Bromobenzene Bromomethane Butanone Acrylonitrile Bromoform **Benzene** crolein Acetone CFC-1

Votes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect IS = insufficient sample

Location ID	MCA-VP-5	MCA-VP-5	MCA-VP-6	MCA-VP-7	MCA-VP-7						
Sample ID	VP-5-40	VP-5-45	VP-6-15	VP-6-20	VP-6-25	VP-6-30	VP-6-35	VP-6-40	VP-6-45	VP-7-15	VP-7-20
Sample Date	6/27/2003	6/27/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/5/2003	9/5/2003
Sample Depth (ft bgs)	40	45	15	20	25	30	35	40	45	15	20
Chemical Name											
CFC-12	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Chlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Chloroethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Chloroform	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Chloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
cis-1,2-Dichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	0.23 J
cis-1,3-Dichloropropene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Dibromochloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Dibromomethane	U 2 > .	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U ⁻
Dilsopropyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Ethylbenzene	<:2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 Ú
Hexachlorobutadiene	0Z >	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
lodomethane	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
m.p-Xylene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	< 2 U	< 2 U	< 2 U	<2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Naphthalene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
n-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
n-Propylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
o-Xylene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
p-isopropyltoluene	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
sec-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U
Styrene	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U
tert-Butyl methyl ether	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
tert-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 Ŭ	< 2 U
Tetrachioroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	<2U	<2U	< 2 U
Toluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
trans-1,2-Dichloroethene	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U
trans-1,3-Dichloropropene	<2∪	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Trichloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	0.42 J	1 47 J
Vinyl acetate	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Vinyl chloride	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect IS = insufficient sample

Page 8 of 10

Location ID	MCA-VP-7	MCA-VP-7	MCA-VP-7	MCA-VP-7	MCA-VP-7	MCA-VP-8	MCA-VP-8	MCA-VP-8	MCA-VP-8	MCA-VP-8	MCA-VP-8
Sample ID	VP-7-25	VP-7-30	VP-7-35	VP-7-40	VP-7-45	VP-8-15	VP-8-20	VP-8-25	VP-8-30	VP-8-35	VP-8-40
Sample Date	9/5/2003	9/5/2003	9/5/2003	9/5/2003	9/5/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003
Sample Depth (ft bgs)	25	90 80	35	40	45	15	20	25	30	35	40
Chemical Name											
1,1,1,2-Tetrachloroethane	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	2
1,1,1-Trichloroethane	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,1,2,2-Tetrachloroethane	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,1,2-Trichloroethane	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,1-Dichloroethane	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 2 U
1,1-Dichloroethene	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,1-Dichloropropene	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2,3-Trichlorobenzene	< 2 U	<2U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2,4-Trichlorobenzene	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U
1,2,4-Trimethylbenzene	< 2 U	<2U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2-Dibromo-3-chloropropane	< 2 U	<2U	< 2 U	< 2 U	<20	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U
1,2-Dibromoethane	< 2 U	<2U	< 2 U	<20	<2U <	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2-Dichlorobenzene	< 2 U	<2U	< 2 U ·	< 2·U	<2U <	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2-Dichloroethane	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,2-Dichloropropane	< 2 U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U
1,3,5-Trimetinylbenzene	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1,3-Dichlorobenzene	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
1.3-Dichloropropane	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U ·	< 2 U	< 2 U	< 2 U
1,4-Dichlorobenzene	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
2,2-Dichloropropane	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
2-Butanone	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
2-Chlorotoluene	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
2-Hexanone	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
4-Chlorotoluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
4-Methyl-2-pentanone	< 2 U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U
Acetone	< 2 U	<2U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U
Acrolein	< 4 U	<4U	< 4 U	< 4 U	< 4 U	< 4 U	<4U	< 4 U	< 4 U	4	< 4 U
Acrylonitrile	< 4 U	<4U	< 4 U	< 4 U	< 4 U	< 4 U	<4U	<4U	< 4 U	< 4 U	< 4 U
Benzene	< 2 U	<2U	< 2 U	<20	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U
Benzene, 1-methylethyl	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	· <2U	< 2 U	< 2 U
Bromobenzene	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	<2U
Bromochloromethane	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Bromodichloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Bromoform	< 2 U .	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U		<2U	< 2 U
Bromomethane	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Carbon disulfide	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Carbon tetrachloride	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U		<2U	
CFC-11	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect iS = insufficient sample

Sample ID VP-7-36 VP-7-30 VP-7-36 VP-7-36 VP-7-36 VP-7-36 VP-7-36 VP-7-36 VP-8-30 45 45 45 45 46 30 94/2003 9	Location ID	MCA-VP-7	MCA-VP-7	MCA-VP-7	MCA-VP-7	MCA-VP-7	MCA-VP-8	MCA-VP-8	MCA-VP-8	MCA-VP-8	MCA-VP-8	MCA-VP-8
Sample Detrie 96/2003	Sample ID		VP-7-30	VP-7-35	VP-7-40	VP-7-45	VP-8-15	VP-8-20	VP-8-25	VP-8-30	VP-8-35	VP-8-40
	Sample Date		9/5/2003	9/5/2003	9/5/2003	9/5/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003	9/4/2003
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample Depth (ft bgs)	25	30	35	40	45	15	20	25	30	35	40
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Chemical Name											
< 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 <	CFC-12	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chlorobenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chloroethane	< 2 U	< 2 Ú	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Chloroform	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
ene 0.51.1 8.11 < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U < 2 U <	Chloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
S2U <2U <2U <td>cis-1.2-Dichloroethene</td> <td>0.51 J</td> <td>8.11</td> <td>< 2 U</td> <td>< 2 U</td> <td>< 2 U</td> <td>< 2 U</td> <td>0.34 J</td> <td>< 2 U</td> <td>1.8 J</td> <td>< 2 U</td> <td>< 2 U</td>	cis-1.2-Dichloroethene	0.51 J	8.11	< 2 U	< 2 U	< 2 U	< 2 U	0.34 J	< 2 U	1.8 J	< 2 U	< 2 U
Athere $< 2U$	cis-1, 3-Dichloropropene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 Ú	< 2 U	< 2 U	< 2 Ū
< 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20	Dibromochloromethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dibromomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
< 2U $< 2U$	Diisopropyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
ne <2U	Ethylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hexachlorobutadiene	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
< 2 U $< 2 U$ <	lodomethane	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
• ≈ 2U <	m,p-Xylene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Methylene chloride	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Naphthalene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-Propylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
< 2U $< 2U$	o-Xyiene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
<2U	p-isopropyltoluene	< 2 U	< 2 U	< 2 U	< 2 Ú	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
< 2U $< 2U$	sec-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
hylether $< 2U$ < 2	Styrene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
cene < 2U < 2U <th< td=""><td>tert-Butyl methyl ether</td><td>< 2 U</td><td>< 2 U</td></th<>	tert-Butyl methyl ether	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
hene <2U	tert-Butylbenzene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
<2U <2U <td>Tetrachloroethene</td> <td>< 2 U</td> <td><2U</td> <td>< 2 U</td>	Tetrachloroethene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Iloroethene <2U <33 Independence <2U	Toluene	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	0.39 J	< 2 U	< 2 U	< 2 U
Incopropene <2U <33 <2U	trans-1,2-Dichloroethene	< 2 U	0.44 J	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
ne 9.55 46.2 J < 2 U < 2 U < 2 U 1.79 J 1.17 J 4.33 < <2 U	trans-1,3-Dichloropropene	<2U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
<2U	Trichloroethene	9.55	46.2 J	< 2 U	< 2 U	< 2 U	< 2 U	1.79 J	1.17 J	4.33	< 2 U	< 2 U
<2U <	Vinyl acetate	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
	Vinyl chloride	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect IS = insufficient sample

Location ID		MCA-GW001	MCA-GW001	GW001 DUP	MCA-GW001	MCA-GW002	GW002 DUP	MCA-GW002	MCA-GW002	MCA-GW003	MCA-GW003	MCA-GW004	MCA-GW004	MCA-GW004	MCA-GW005	MCA-GW005
Sample ID		MCA-GW001-	MCA-GW001-	GWDUP105-	MCA-GW001-	MCA-GW002-	GWDUP106-	MCA-GW002-	MCA-GW002-	MCA-GW003-	MCA-GW003-	MCA-GW004-	MCA-GW004-	MCA-GW004-	MCA-GW005-	MCA-GW005-
Sample ID		15-1005	30-1005	1005	45-1005	15-1005	1005	30-1005	45-1005	15-1005	30-1005	16-1005	30-1005	42-1005	8-1005	30-1005
Sample Date		Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05
Sample Depth (ft bgs)	Units	15	30	30	45	15	15	30	45	15	30	16	30	42	8	30
Chemical Name											· · · ·					
1,1,1,2-Tetrachloroethane	µg/L	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10
1,1-Dichloroethene	μg/L	<1U	<1U	<1U	<10	1.6	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U
1,2,3-Trichlorobenzene	μg/L	<1U	<u> <1U</u>	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	< 1 U	<1U
1,2-Dibromo-3-chloropropane	µg/L	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10
2-Butanone (MEK)	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Acetone	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 UJ	7.1 J	6 J				
	μg/L	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U
Carbon disulfide	µg/L	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	4.6 J	< 5 U
Dichlorodifluoromethane	µg/L	<10	<1U	<10	<10	<1U	<1U	<10	<10	< 1 UJ	< 1 UJ	<1UJ	< 1 UJ	< 1 UJ	< 1 UJ	< 1 UJ
Chlorobenzene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U						
Chloroform	µg/L	<10	<1U	< 1 U	<10	<1U	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U
cis-1,2-Dichloroethene	µg/L	<10	6	8.5	<1U	25	< <u>1</u> U	<1U								
cis-1,3-Dichloropropene	µg/L	<1U	<1U	<1U	<10	<10	<1U	<10	<10	<1U	<1U	<1U	<10	<10	<1U	<10
Ethylbenzene	µg/L	<10	<1U	<10	<10	<10	<10	<1U	<10	<1U	<10	<1U	< 1 U	<10	<1U	< 1 U
m,p-Xylene	µg/L	<20	<20	< 2 U	< 2 U	2	< 2 U	2.5	1.2 J	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U
Methylene chloride	µg/L	<10	<1U	< 1 U	<10	<10	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	< 1 ⁻ U
n-Propylbenzene	µg/L	<1U	<u><1U</u>	<1U	<1U	<1U	<u> <1U</u>	<1U								
	µg/L	<10	<1U	<1U	<10	<10	<10	0.87 J	<1U	<1U	< 1 U	<1U	<1U	<1U	<1U	<10
Tetrachloroethene	µg/L	<1U	<1U	<10	<10	7.6	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10
Toluene	µg/L	<1U	<u> </u>	<1U	<10	4.4	<10	5.6	1.9	<10	<1U	<1U	<1U	<1U	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	0.91 J	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10
trans-1,3-Dichloropropene	µg/L	<1U	<10	<10	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	<1U	<1U
Trichloroethene	µg/L	2.7	14	19	<10	370	<10	1.7	<1U	<10	<1U	<1U	<1U	<1U	< 1 U	<1U

Notes:

Bolded concentrations indicate detections J = estimated result U = result is non-detect

Page 1 of 12

Location ID		MCA-GW001	GW005 DUP	MCA-GW006	MCA-GW006	MCA-GW006	MCA-GW007	MCA-GW007	MCA-GW007	MCA-GW008	MCA-GW008	MCA-GW008	MCA-GW009	MCA-GW009	GW009 DUP	MCA-GW009
Comple ID		MCA-GW001-	GWDUP01-	MCA-GW006-	MCA-GW006-	MCA-GW006-	MCA-GW007-	MCA-GW007-	MCA-GW007-	MCA-GW008-	MCA-GW008-	MCA-GW008-	MCA-GW009-	MCA-GW009-	GWDUP102-	MCA-GW009-
Sample ID		15-1005	1005	15-1005	30-1005	45-1005	15-1005	30-1005	39-1005	16-1005	30-1005	45-1005	15-1005	30-1005	1005	45-1005
Sample Date		Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05
Sample Depth (ft bgs)	Units	15	30	15	30	45	15	30	39	16	30	45	15	30	30	45
Chemical Name																
1,1,1,2-Tetrachloroethane	µg/L	<10	<1U	< 1 U	<10	<1U	< 2 U	<10	<1U	<1U						
1,1-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 2 U	1.4	1.3	<1U
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	< 2 U	<1U	<1U	<10
1,2-Dibromo-3-chloropropane	µg/L	<1U	<1U	<1U	<1U	< 1 U	<1U	<1U	<1U	<1U	<1U	<1U	< 2 U	<1U	<1U	<1U
2-Butanone (MEK)	µg/L	<5U	<5ป	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 10 U	< 5 U	< 5 U	< 5 U
Acetone	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	12	< 5 U	< 5 U	< 5 U	< 10 U	< 5 U	< 5 U	< 5 U
Benzene	µg/L	<1U	<10	<1U	< 2 U	<1U	<1U	<1U								
	µg/L	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	1 J	< 5 U	< 5 U	< 5 U	< 10 U	< 5 U	< 5 U	< 5 U
Dichlorodifluoromethane	µg/L	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 1 U	< 2 U	<10	<1U	< 1 U
Chlorobenzene	µg/L	<1U	< 1 U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<20	<10	<1U	< 1 U
Chloroform	µg/L	<1ป	<1U	<1U	<1U	<1U	<1U	<10	<1U	2.8	<1U	<1U	5.5	<10	<1U	< 1 U
cis-1,2-Dichloroethene	µg/L	<1ປ	<1U	1.6	23	<1U	<1U	<1U	<1U	<10	<1U	<1U	74	110	130	13
cis-1,3-Dichloropropene	µg/L	<1U	<1U	< 1 U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	< 2 U	<1U	< 1 U	< 1 U
Ethylbenzene	µg/L	<1U	<1U	<1U	1.2	<1U	<1U	<10	<1U	<1U	<1U	<1U	< 2 U	<10	<1U	< 1 U
m,p-Xylene	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<40	< 2 U	< 2 U	< 2 U
Methylene chloride	μg/L	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<2U	<10	<1U	<1U
n-Propylbenzene	µg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<2U	<1U	<1U	< 1 U
o-Xylene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	< 2 U	<1U	<1U	< 1 U
	μg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<10	<10	< 2 U	5.8	5.1	<1U
Toluene	μg/L	<1U	< 1 U ⁻	<1U	<10	<10	<1U	< 1 U	< 1 U	<1U	<1U	<10	< 2 U	<1U	<10	<1U
	µg/L	<1U	<1U	<10	<1U	<10	<1U	< 1 U	<1U	<1U	< 1 U	< 1 U	5.7	75	3.9	<1U
trans-1,3-Dichloropropene	µg/L	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	< 2 U	<1U	<1U	<1U
Trichloroethene	µg/L	2.7	<1U	6.1	8.4	<1U	<1U	3.3	1	< 1 U	<10	<1U	950	490	610	13

Notes: Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

Page 2 of 12

Location ID		MCA-GW001	MCA-GW010	MCA-GW011	MCA-GW011	MCA-GW011	MCA-GW013	MCA-GW013	MCA-GW013	MCA-GW014	CA-GW014 DI	MCA-GW015	MCA-GW015	GW015 DUP	MCA-GW015	MCA-GW016
Sampia ID		MCA-GW001-	MCA-GW010-	MCA-GW011-	MCA-GW011-	MCA-GW011-	MCA-GW013-	MCA-GW013-	MCA-GW013-	MCA-GW014-	GWDUP106-	MCA-GW015-	MCA-GW015-	GWDUP103-	MCA-GW015-	MCA-GW016-
Sample ID		15-1005	13-1005	16-1005	30-1005	45-1005	16-1005	30-1005	45-1005	45-1005	1005	16-1005	30-1005	1005	37-1005	16-1005
Sample Date	•	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05
Sample Depth (ft bgs)	Units	15	13	16	30	45	16	30	45	45	45	16	30	30	37	16
Chemical Name																
1,1,1,2-Tetrachloroethane	µg/L	<10	<10	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<10
1,1-Dichloroethene	µg/L	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U
1,2,3-Trichlorobenzene	µg/L	<1U	<10	<1U	<10	<10	<1U	<1U	<1U	<1U						
1,2-Dibromo-3-chloropropane	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	. <1U	<1U
2-Butanone (MEK)	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	10	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 ป
Acetone	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	7.6	8.5	17	<50
Benzene	µg/L	<10	<1U	<10	<1U	<10	<1U	<10	<10	<10	<1U	<10	<1U	<10	<1U	<10
Carbon disulfide	µg/L	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Dichlorodifluoromethane	µg/L	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<10	<1U	<10	<1U	<10	<1U	<1U
Chlorobenzene	µg/L	<1U	<1U	<10	<1U	<1U	<10	<10	<1U	<10	<1U	<10	<10	<10	<10	<10
Chloroform	µg/L	<1U	0.96 J	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	<1U	<1U
cis-1,2-Dichloroethene	μg/L	<1U	61	<1U	1.1	<1U	<1U	<1U	<1U	<1U	<1U	<1U	1.2	1.3	34	<1U
cis-1,3-Dichloropropene	μg/L	<1U	< 1 U	<1U	<10	<1U	<1U	<1U	<1U							
Ethylbenzene	μg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U
m,p-Xylene	μg/L	< 2 U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<20	1.1 J	<20	<20
Methylene chloride	µg/L	<1U ⁻	<1U	<1U	<10	<1U	<1U	<10	<1U	3.2	<1U	<10	<1U	<10	<1U	<1U
n-Propylbenzene	µg/L	<1U	<1U	1.1	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<10	< 1 U
o-Xylene	μg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<10
Tetrachloroethene	µg/L	<1U	<1U	1.4	<1U	<10	<1U	<10	<1U	<1U	<1U	<10	<10	<10	<1U	<10
Toluene	μg/L	<1U	<10	<1U	<10	1.5	<10	<10	<1U	<1U	<1U	<10	<10	<10	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U
trans-1,3-Dichloropropene	µg/L	<1U .	<1U	<10	<1U	<1U	<10	<1U								
Trichloroethene	µg/L	2.7	290	<10	1.4	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	0.84 J	< 1 U

Notes:

Bolded concentrations indicate detections J = estimated result

U = result is non-detect

Page 3 of 12

Location ID		MCA-GW001	MCA-GW016	MCA-GW016	MCA-GW017	MCA-GW018	MCA-GW019	MCA-GW019	MCA-GW019	MCA-GW020	MCA-GW020	MCA-GW020	MCA-GW021	MCA-GW021	MCA-GW021	MCA-GW022
Sample ID		MCA-GW001-	MCA-GW016-	MCA-GW016-	MCA-GW017-	MCA-GW018-	MCA-GW019-	MCA-GW019-	MCA-GW019-	MCA-GW020-	MCA-GW020-	MCA-GW020-	MCA-GW021-	MCA-GW021-	MCA-GW021-	MCA-GW022-
Sample ID		15-1005	30-1005	39-1005	16-1005	16-1005	12-1005	30-1005	45-1005	15-1005	30-1005	45-1005	12-1005	30-1005	45-1005	55-1005
Sample Date		Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05
Sample Depth (ft bgs)	Units	15	30	39	16	16	12	30	45	15	30	45	12	30	45	55
Chemical Name				i												
1,1,1,2-Tetrachloroethane	µg/L	<1U	<10	<1U	<10	<1U	<10	<1U	<10							
1,1-Dichloroethene	µg/L	<10	<10	<1U	<1U	<1U	<1U	< 1 U	<1U	<10	<1U	<10	<1U	<1U	<1U	<10
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U	<10	<1U	< 1 U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U
1,2-Dibromo-3-chloropropane	µg/L	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	< 1 U	<1U	<1U
2-Butanone (MEK)	µg/L	< 5 U	<5U	5.2	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	7.7
Acetone	µg/L	< 5 U	5.6	46	< 5 U	5.7	19	< 5 U	< 5 U	6.4	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	54
Benzene	µg/L	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<10	<1U	1.8
Carbon disulfide	µg/L	< 5 U	< 5 U	< 5 U	1.4 J	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	1.3 J
Dichlorodifluoromethane	μg/L	<1U	<1U	<10	<1U	<10	< 1 U	<1U								
Chlorobenzene	µg/L	<1U	<10	<1U	<1U	<1U	<10	<1U	<10	<10	<10	<10	<1U	<1U	<1U	<1U
Chloroform	µg/L	<1U	<1U	<10	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1Ų	<1U	<1U	<10
cis-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	15	< 1 U	<1U	3.2	9.8	<1U	<1U	<1U	11
cis-1,3-Dichloropropene	µg/L	<1U	<10	<1U	<1U	<1U	<1Ų	<1U	<10	<1U	<1U	<10	<1U	<10	<1U	<10
Ethylbenzene	µg/L	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U						
m,p-Xylene	µg/L	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<20	< 2 Ų	<2U
Methylene chloride	µg/L	<10	<10	<10	<10	<1U	<1U	<1U	<1U	<1ປ	<1U	<1U	<1U	<10	<1U	<1U
n-Propylbenzene	µg/L	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<10	<1U	<1U
o-Xylene	µg/L	<u> </u>	<u><1U</u>	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U
Tetrachloroethene	_μg/L	<u><1U</u>	<10	<10	<10	<10	<10	<1U	<10	<1U	<10	<10	< 1.U	<10	< 1 U	<10
Toluene	µg/L	<10	<1U	<10	<10	<1U	<1U	<1U	<10	2.9	<1U	<1U	<10	<10	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<1U	<1U	< <u>1</u> .U	<10	<1U	<10	<1U	<1U	<10	<10	1.1	<1U	<1U	<1U	<1U
trans-1,3-Dichloropropene	µg/L	<1U	<10	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<10	<1U	<1U
Trichloroethene	µg/L	2.7	<1U	<1U	<10	<1U	<1U	11	<10	<1U	12	9.1	<1U	1.2	<1U	26

Notes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

Page 4 of 12

Location ID		MCA-GW001	MCA-GW023	MCA-GW023	MCA-GW023	GW023 DUP	MCA-GW025	MCA-GW025	MCA-GW025	MCA-GW026	MCA-GW027	MCA-GW027	MCA-GW027	MCA-GW028	MCA-GW031	MCA-GW031
Commite ID		MCA-GW001-	MCA-GW023-	MCA-GW023-	MCA-GW023-	GWDUP104-	MCA-GW025-	MCA-GW025-	MCA-GW025-	MCA-GW026-	MCA-GW027-	MCA-GW027-	MCA-GW027-	MCA-GW028-	MCA-GW031-	MCA-GW031-
Sample ID		15-1005	16-1005	30-1005	45-1005	1005	16-1005	30-1005	45-1005	16-1005	16-1005	30-1005	45-1005	16-1005	15-1005	30-1005
Sample Date		Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05
Sample Depth (ft bgs)	Units	15	16	30	45	45	16	30	45	16	16	30	45	16	15	30
Chemical Name														1		
1,1,1,2-Tetrachloroethane	μg/L	<10	<1U	<1U	<10	<1U	<10	<10	<1U	<10	< 10 U	<10	< 2 U	<10	<1U	<1U
1,1-Dichloroethene	µg/L	<10	<1U	<1U	<1U	<1U	<10	0.80 J	<1U	<10	< 10 U	<1U	< 2 U	<10	<1U	<1U
	μg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 10 U	<1U	< 2 U	<10	<1U	<10
	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 10 U	<1U	< 2 U	<1U	<1U	<10
2-Butanone (MEK)	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5ป	< 5 U	< 5 U	< 5 U	< 5 U	< 10 U	< 5 U	< 5 U	< 5 U
	µg/L	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	<5U	<5U	8.7	18	4.4 J	< 5 UJ	13 J
	µg/L	<1U	<u><1U</u>	<1U	<10	<10	<1U	<1U	<1U	<1U	< 10 U	<1U	< 2 U	<10	<1U	<1U
Carbon disulfide	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	<5U	< 5 U	< 5 U	< 10 U	<5U	<5U	< 5 U
	µg/L	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<10	< 10 U	<10	<2U	<10	< 1 UJ	< 1 UJ
Chlorobenzene	µg/L	<10	<1U	<1U	<1U	<10	<10	<10	<1U	<10	< 10 U	<1U	< 2 U	<10	<1U	<10
Chloroform	µg/L	<10	<1U	<10	<10	<10	<10	<1U	<1U	<10	< 10 U	<1U	<2U	<10	<1U	<10
	µg/L	<1U	< 1 U [*]	2.2	1.3	0.90 J	<1U	140	<1U	<1U	29	1.6	1.6 J	<10	0.88 J	1.2
	µg/L	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	< 10 U	<1U	<2U	<10	<10	<1U
	µg/L	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	<1U	46	3.8	14	<10	<1U	<1U
m,p-Xylene	µg/L	< 2 U	< 2 U	< 2 U	<2U	<20	<20	< 2 U	<20	< 2 U	420	34	120	<20	<2U	<20
Methylene chloride	µg/L	<1U	<10	<1U	<1U	<10	2.8	2.7	3.1	<10	< 10 U	2.9	6.4	<10	<1U	<1U
n-Propylbenzene	µg/L	<10	<10	<1U	<1U	<1U	<1U	<10	<10	<10	90	22	51	<10	<1U	<1U
o-Xylene	µg/Ł	<10	<10	<10	<1U	<10	<10	<1U	<10	<1U	< 10 U	1	1.8 J	<u> <1U</u>	<1U	<1U
Tetrachloroethene	µg/L	<1U	<u><</u> 1U	<10	< 1 U	<10	<10	< 1 U	<10	<1U	< 10 U	<10	< 2 U	<1U	<1U	<1U
Toluene	µg/L	<1U	<10	<10	<1U	<10	<10	<10	<10	<10	< 10 U	<10	< 2 U	<10	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	<10	<10	1.7	<10	<10	< 10 U	<1U	< 2 U	<10	<1U	<1U
trans-1,3-Dichloropropene	μg/L	<1U	<1U	<10	<10	<10	<10	< 1 U	<10	< 1 U	< 10 U	<10	<2U	<10	<1U	<1U
Trichloroethene	µg/L	2.7	1.3	10	2.3	2	3.3	76	<10	<1U	< 10 U	<10	< 2 U	<1U	6.8	3

Notes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

Page 5 of 12

Location ID		MCA-GW001	MCA-GW031	MCA-GW032	MCA-GW032	MCA-GW032	MCA-GW033	MCA-GW033	MCA-GW033	MCA-GW034	MCA-GW034	MCA-GW034	MCA-GW035	MCA-GW035	MCA-GW035	MCA-GW036
Sample ID		MCA-GW001-	MCA-GW031-	MCA-GW032-	MCA-GW032-	MCA-GW032-	MCA-GW033-	MCA-GW033-	MCA-GW033-	MCA-GW034-	MCA-GW034-	MCA-GW034-	MCA-GW035-	MCA-GW035-	MCA-GW035-	MCA-GW036-
Sample ID		15-1005	45-1005	15-1005	30-1005	45-1005	15-1105	26-1105	45-1105	15-1105	27-1105	45-1105	15-1105	30-1105	45-1105	15-1105
Sample Date		Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05
Sample Depth (ft bgs)	Units	15	45	15	30	45	15	26	45	15	27	45	15	30	45	15
Chemical Name																
1,1,1,2-Tetrachloroethane	µg/L	<1U	<10	<10		<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	< 1 U
1,1-Dichloroethene	μg/L	<1U	<1U	<10		<1U	<10	<1U	<1U	<10	<1U	<10	<1U	<10	<1U	<1U
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U		<10	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U
1,2-Dibromo-3-chloropropane	µg/L	<10	<10	<1U	-	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U
2-Butanone (MEK)	µg/L	< 5 U	< 5 U	< 5 U		< 5 U	< 5 じ	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	18
Acetone	µg/L	< 5 U	< 5 U	< 5 ປ		< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	7.7	< 5 U	< 5 U	< 5 U	< 5 U	5.5
Benzene	µg/L	<1U	<1U	<10		<10	<10	<10	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U
Carbon disulfide	µg/L	< 5 U	<5U	< 5 U		< 5 U	3.6 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	8.5
Dichlorodifluoromethane	µg/L	<1U	<10	<u><1U</u>		<1U	<10	<10	<10	< 1 <u>.</u> U	<1U	<1U	<1U	<1U	<1U	<1U
Chlorobenzene	µg/L	<1U	<10	<10		<1U	<10	<10	<10	<10	<10	<10	<1U	<10	<10	<1U
Chloroform	µg/L	<1U	<10	<10		<1U	<10	<u><1U</u>	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U
cis-1,2-Dichloroethene	µg/L	<1U	<1U	<10	4.1	1.3	1 J	11	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U
cis-1,3-Dichloropropene	µg/L	<1U	<10	<1U		<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U
Ethylbenzene	µg/L	<1U	<10	<1U		<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	< 1 U	< 1 U
m,p-Xylene	µg/L	< 2 U	<20	< 2 U		< 2 U	< 2 U	<2U	<2U	<20	< 2 U	< 2 U	<2U	<20	< 2 U	< 2 U
Methylene chloride	µg/L :	<1U	<10	<1U		<1U	<10	<10	4.8	<1U	<1U	<10	<1U	<1U	<10	<1U
n-Propylbenzene	µg/L	<1U	<10	<1U		<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U
o-Xylene	µg/L	<1U	<1U	<10		<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U
Tetrachloroethene	µg/L	<1U	<1U	<1U	2.5	<1U	<1U	2.8	<1U	<1U	<1U	<1U	< 1 U	<10	<1U	<1U
Toluene	µg/L	<10	<10	<10		<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<10	<1U	<1U		<1U	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U
trans-1,3-Dichloropropene	µg/L	<1U	<1U	<1U		<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U
Trichloroethene	µg/L	2.7	<10	<1U	35	2.6	7.0	170	3.7	0.95 J	<1U	<10	1.1	<10	< 1 U	<1U

Notes:

Bolded concentrations indicate detections J = estimated result

U = result is non-detect

Page 6 of 12

Location ID		MCA-GW001	MCA-GW036	GW036 DUP	MCA-GW036	MCA-GW037	MCA-GW037	MCA-GW037	MCA-GW038	MCA-GW038	MCA-GW038	MCA-GW039	MCA-GW039	MCA-GW039	GW039 DUP	MCA-GW040
Compte ID		MCA-GW001-	MCA-GW036-	GWDUP107-	MCA-GW036-	MCA-GW037-	MCA-GW037-	MCA-GW037-	MCA-GW038-	MCA-GW038-	MCA-GW038-	MCA-GW039-	MCA-GW039-	MCA-GW039-	GWDUP108-	MCA-GW040-
Sample ID		15-1005	30-1105	1105	45-1105	15-1105	30-1105	37-1105	16-1105	30-1105	45-1105	15-1105	30-1105	38-1105	1105	15-1105
Sample Date		Oct-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05
Sample Depth (ft bgs)	Units	15	30	30	45	15	30	37	16	30	45	15	30	38	38	15
Chemical Name																
1,1,1,2-Tetrachloroethane	µg/L	<1U	<1U	<1U	<1U	<10	<10	<10	<1U	<10	<10	<1U	<1U	<10	<1U	<10
1,1-Dichloroethene	µg/L	<1U	<1U	< 1 U	<1U	<10	<1U	<10	<1U	<10						
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U
1,2-Dibromo-3-chloropropane	µg/L	<1U	<10	<1U	<1U	<10	<1U	<10	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U
2-Butanone (MEK)	µg/L	< 5 U	< 5 U	< 5 U	27	<5U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Acetone	µg/L	< 5 U	< 5 U	< 5 U	15	<5U	< 5 U	< 5 U	13	< 5 U	9.5	< 5 U	< 5 U	13	12	< 5 U
Benzene	µg/L	<1U	<1U	<1U	<10	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U
Carbon disulfide	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	1.2 J	< 5 U	< 5 U
Dichlorodifluoromethane	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<10	<1U	<1U	<1U	<10	1.4
Chlorobenzene	µg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<10	<10	<10	<10	<1U	<10	<10
Chloroform	µg/L	<1U	<1U ·	< 1 U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10
cis-1,2-Dichloroethene	.µg/L	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	11
cis-1,3-Dichloropropene	µg/L	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<1ປ	<1U	<1U	< 1 U	< 1 U	<10
Ethylbenzene	µg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U						
m,p-Xylene	µg/L	<2U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	<20	< 2 U	1.6 J
Methylene chloride	µg/L	<1U	<u><10</u>	<1U	<1U	<10	<1U	<1U	<1U	<1U						
n-Propylbenzene	µg/L	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U
o-Xylene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	< 1 U	<1U	<1U	<1U	<1U
Tetrachloroethene	µg/L	<u><1U</u>	<1U	<1U	<10	<10	< 1 U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	1
Toluene	µg/L	<u><1U</u>	<10	<1U	<10	<10	<10	<1U	<10	<1U	<1U	<10	<1U	<10	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<10	<u><1U</u>	<1U	<1U	<1U	<1U·	<1U	<1U	<1U	<1U	<1U	<u><1U</u>	<1U	<1U	<1U
trans-1,3-Dichloropropene	µg/L	<10	<1U	<1U	<10	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	¹ <1U
Trichloroethene	µg/L	2.7	<1U	<1U	<10	<1U	<10	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	110

Notes:

Bolded concentrations indicate detections J = estimated result

U = result is non-detect

Page 7 of 12

Location ID		MCA-GW001	MCA-GW040	MCA-GW040	MCA-GW041	GW041 DUP	MCA-GW041	MCA-GW041	MCA-GW042	MCA-GW042B	MCA-GW0428	GW042B DUP	MCA-GW042E	MCA-GW043	MCA-GW043	MCA-GW043
01-10		MCA-GW001-	MCA-GW040-	MCA-GW040-	MCA-GW041-	GWDUP109-	MCA-GW041-	i	MCA-GW042-	GW042B-	GW042B-	GWDUP102-	GW042B-	MCA-GW043-	MCA-GW043-	MCA-GW043-
Sample ID		15-1005	30-1105	45-1105	15-1105	1105	30-1105	45-1105	62-1105	15-0206	28-0206	0206	45-0206	15-0206	30-0206	45-0206
Sample Date		Oct-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Nov-05	Feb-06						
Sample Depth (ft bgs)	Units	15	30	45	15	15	30	45	62	15	28	28	45	15	30	45
Chemical Name																
1,1,1,2-Tetrachloroethane	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	< 1 U	<1U	<1U	1	<1U
1,1-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<10	<1U	<10
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U
1,2-Dibromo-3-chloropropane	µg/L	<10	<u><1U</u>	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<10	<10	<10
2-Butanone (MEK)	µg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<50	< 5 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Acetone	µg/L	<50	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	30	< 25 U						
Benzene	µg/L	<10	<1U	1	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1ປ	<10	<10
Carbon disulfide	μg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<50	< 5 U	<1U	<10	<1U	<1U	<10	<1U	<1U
Dichlorodifluoromethane	μg/L	<10	<1U	<10	<1U	<10	<10	<10	<1U	11	1	1	1	1	<1U	1
Chlorobenzene	µg/L	<10	<1U	<10	<10	<1U	<1U	<10	<1U.	<10	<10	<10	<1U	<1ປ	<10	<10
Chloroform	μg/L	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<10	<10	<10	<1U	<10	<10	<1U
cis-1,2-Dichloroethene	μg/L	<1U	1.8	7.5	<1U	<1U	<1U	<1U	3.9	2.6	<1U	<10	<1U	< 1 U	<1U	<1U
cis-1,3-Dichloropropene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1U	<10	<10	<1U
Ethylbenzene	μg/L	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U
m,p-Xylene	µg/L	< 2 U	<2U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	<2U
Methylene chloride	µg/L	<1U	<10	<1U	4.7	<10	4.1	4.2	<1U	< 5 U	< 5 U	<5U	< 5 U	< 5 U	< 5 U	< 5 U
n-Propylbenzene	µg/L	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U
o-Xylene	µg/L	<1U	<1U	< <u>1U</u>	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1ປ	< 1 U
Tetrachloroethene	µg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	< 1 U	<10	<1U	< 1 U	<1U	<1U
Toluene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	<10	<1U	<1U	<1U
trans-1,2-Dichloroethene	µg/L	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U
trans-1,3-Dichloropropene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10	<1Ų	< 1 U	<1U	<1U
Trichloroethene	µg/L	2.7	2.7	26	<1U	<1U	< 1 U	<1U	6.7	13	<10	<1U	< 1 U	< 1 U	< 1 U	<1U

Notes:

Bolded concentrations indicate detections J = estimated result

U = result is non-detect

Page 8 of 12

Location ID		MCA-GW001	MCA-GW045	MCA-GW045	MCA-GW045	CA-GW046 DL	MCA-GW046	MCA-GW046	MCA-GW046	MCA-GW047	MCA-GW047	MCA-GW047	MCA-GW048	MCA-GW048	MCA-GW048	MCA-GW051
Sample ID		MCA-GW001-	MCA-GW045-	MCA-GW045-	MCA-GW045-	GWDUP103-	MCA-GW046-	MCA-GW046-	MCA-GW046-	MCA-GW047-	MCA-GW047-	MCA-GW047-	MCA-GW048-	MCA-GW048-	MCA-GW048-	MCA-GW051-
Sample ID		15-1005	15-0206	30-0206	45-0206	0206	15-0206	30-0206	45-0206	15-0206	30-0206	40-0206	15-0206	28-0206	45-0206	15-0206
Sample Date		Oct-05	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06
Sample Depth (ft bgs)	Units	15	15	30	45	15	15	30	45	15	30	40	15	28	45	15
Chemical Name			· ·													
1,1,1,2-Tetrachloroethane	µg/L	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	< 5 U	< 5 U	<1U	1	<1U	<10
1,1-Dichloroethene	µg/L	<10	<10	<10	<1U	<1U	<1U	<1U	<1U	<1U	< 5 U	< 5 U	<1U	<1U	<1U	<10
1,2,3-Trichlorobenzene	µg/L	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	< 5 U	< 5 U	<1U	<1U	<1U	<1U
1,2-Dibromo-3-chloropropane	µg/L	<1U	<10	<1U	<1U	<10	<1U	<10	<10	<1U	< 5 U	< 5 U	<1U	<10	< 1 U	<10
2-Butanone (MEK)	µg/L	< 5 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 50 U	< 50 U	< 10 U	< 10 U	15	< 10 U
Acetone	µg/L	< 5 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 130 U	96 J	< 25 U	< 25 U	110	< 25 U
Benzene	µg/L	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	< 5 U	< 5 U	<1U	<1U	<1U	<10
Carbon disulfide	μg/L	< 5 U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	< 5 U	< 5 U	<1U	<1U	<1U	1
Dichlorodifluoromethane	µg/L	<1U	1	1	1	1	1	1	1	<1U	< 5 U	< 5 U	1	<1U	1	<1U
Chlorobenzene	µg/L	<1U	<10	<1U	<10	<10	<1U	<10	<1U	<10	< 5 U	< 5 U	<1U	<10	<1U	<10
Chloroform	µg/L	<1U	<1U	<1U	<1U	<10	<10	<10	<1U	<10	< 5 U	< 5 U	<1U	<1U	<1U	<10
cis-1,2-Dichloroethene	µg/L	<1U	17	<1U	< 1 U	<1U	< 1 U	<1U	<1U	2.1	< 5 U	< 5 U	<1U	<1U	11	<10
cis-1,3-Dichloropropene	µg/L	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 5 U	< 5 U	<1U	<1Ŭ	<1U	1
Ethylbenzene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 5 U	< 5 U	<1U	<1U	<1U	<1U
m,p-Xylene	µg/L	<2U	< 2 U	<2U	<2U	< 2 U	< 2 U	< 2 U	<2U	<2U	< 10 U	< 10 U	< 2 U	< 2 U	< 2 U	<2U
Methylene chloride	µg/L	<1U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	<5U	< 5 U	< 25 U	< 25 U	< 5 U	< 5 U	< 5 U	< 5 U
n-Propylbenzene	µg/L	<1U	< 1 <u>.</u> U	<1U	<10	<u><</u> 1U	<1U	<10	<1U	<1U	<5U	< 5 U	<1U	<1U	<1U	<1U
o-Xylene	µg/Ľ	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	< 5 U	< 5 U	<1U	<1U	<1U	<1U
Tetrachloroethene	µg/L	<1U	<1U	<1U	<1U	< 1 U	<10	<10	<10	1.1	< 5 U	< 5 U	<10	<1U	<1U	<1U
Toluene	µg/L	<10	<1U	<1U	<1U	<1U	<1U	<10	<10	<10	< 5 U	< 5 U	<1U	<1U	<10	<1U
trans-1,2-Dichloroethene	µg/L	<1U	0.88 J	<1U	<10	<1U	<1U	<10	<10	<10	< 5 U	< 5 U	<1U	<1U	<1U	<1U
trans-1,3-Dichloropropene	µg/Ł	<10	<1U	<1U	<1U	<1U	<10	<10	<10	<10	< 5 U	< 5 U	<1U	<1U	<1U	1
Trichloroethene	µg/L	2.7	2.5	<1U	< 1 U	< 1 U	<10	<10	<1U	1	59	< 5 U	<1U	<1U	<1U	<1U

Notes: Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

Page 9 of 12

Location ID		MCA-GW001	MCA-GW051	MCA-GW051	MCA-GW052	MCA-GW052	MCA-GW052	CA-GW052 DI	MCA-GW054	MCA-GW061	MCA-GW061	MCA-GW061	MCA-GW062	MCA-GW062	MCA-GW062	MCA-GW064
Sample ID		MCA-GW001-	MCA-GW051-	MCA-GW051-	MCA-GW052-	MCA-GW052-	MCA-GW052-	GWDUP104-	MCA-GW054-	MCA-GW061-	MCA-GW061-	MCA-GW061-	MCA-GW062-	MCA-GW062-	MCA-GW062-	MCA-GW064-
Sample ID		15-1005	30-0206	45-0206	15-0206	30-0206	45-0206	0206	78-0206	15-0206	26-0206	45-0206	15-0206	30-0206	45-0206	15-0206
Sample Date		Oct-05	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06
Sample Depth (ft bgs)	Units	15	30	45	15	30	45	45	78	15	26	45	15	30	45	15
Chemical Name							-			1						
1,1,1,2-Tetrachloroethane	µg/L	<1U	<1U	<1U	1	1	<1U	1	<1U	1	1	1	1	1	1	1
1,1-Dichloroethene	µg/L	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U	<1U ·	<1U	<1U	<1U	<10	<1U						
1,2-Dibromo-3-chloropropane	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10
2-Butanone (MEK)	µg/L	< 5 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	11	6.4 J	< 10 U	< 10 U	< 10 U	< 10 U
Acetone	µg/L	< 5 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	44	25	< 25 U	< 25 U	< 25 U	< 25 U
Benzene	µg/L	<1U	<u><1U</u>	<1U	<1U	<10	< 1 U	<1U	<1U	<1U	0.57 J	<10	<1U	<1U	<1U	< 1 U
Carbon disulfide	µg/L	< 5 U	1	~ 1	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	0.92 J
Dichlorodifluoromethane	µg/L	<1U	<1U	<1U	<10	<10	<10	<1U	1	1	1	1	1	1	1	<10
Chlorobenzene	µg/L	<1U	<1U	<1U	<10	< 1 U	<1U	<10	<1U	<1U	<1U	<1U	<10	<1U	<1U	< 1 U
Chloroform	µg/L	<1U	<u> <1U</u>	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10
cis-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	4.9	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U
cis-1,3-Dichloropropene	µg/L	< 1 U	1	1	<1U	<1U	<1U	<1U	1	<1U	<1U	<10	<10	<1U	< 1 U	<10
Ethylbenzene	µg/L	<1U	<10	<1U	<1U	<1U	<1U	< 1 U	<1U	< 1 U	<1U	<1U	<1U	<1U	< 1 U	<1U
m,p-Xylene	µg/L	< 2 Ų	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	µg/L	<1U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	0.44 J	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
n-Propylbenzene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	< 1 U	< 1 U
o-Xylene	µg/L	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 1 U	<1U
Tetrachloroethene	µg/L	<1U	<1U	<1U	1	<1U	<10	<1U	<1U	1.8	<1U	<1U	<1U	<10	<1U	<1U
Toluene	μg/L	. <1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U
trans-1,2-Dichloroethene	μg/L	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U
trans-1,3-Dichloropropene	μg/L	<1U	1	11	< 1 U	<1U	<10	<1U	1	<1U	<1U	<1U	<1U	<1U	<1U	<10
Trichloroethene	μg/L	2.7	<10	<1U	59	<1U	<1U	<1U	<1U	4.6	<1U	<10	<1U	<1U	2.3	<1U

Notes:

Bolded concentrations indicate detections J = estimated result U = result is non-detect

Page 10 of 12

Location ID		MCA-GW001	MCA-GW064	MCA-GW064	MCA-GW067	MCA-GW067	MCA-GW067	MCA-GW068	MCA-GW068	MCA-GW068	MCA-GW070	GW070 DUP	MCA-GW070	MCA-GW070	MCA-GW074	GW074 DUP
Comple ID		MCA-GW001-	MCA-GW064-	MCA-GW064-	MCA-GW067-	MCA-GW067-	MCA-GW067-	MCA-GW068-	MCA-GW068-	MCA-GW068-	MCA-GW070-	GWDUP01-	MCA-GW070-	MCA-GW070-	MCA-GW074-	GWDUP106-
Sample ID		15-1005	30-0206	45-0206	15-0206	30-0206	41-0206	15-0206	30-0206	45-0206	15-0306	0306	30-0306	45-0306	15-0306	0306
Sample Date		Oct-05	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06
Sample Depth (ft bgs)	Units	15	30	45	15	30	41	15	30	45	15	30	30	45	15	15
Chemical Name																
1,1,1,2-Tetrachloroethane	µg/L	<1U	1	<10	< 1 U	<1U	<1U	1	1	1	<1U	<1U	<1U	<10	<1U	<10
1,1-Dichloroethene	µg/L	<1U	<1U	<1ប	<10	<10	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<10	<10
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	< 1 U	<1U	< 1 U
1,2-Dibromo-3-chloropropane	µg/L	<1U	< 1 U	<1U	<10	<1U	<1U	<10	<1U	< 1 U	<1U	<1U	<1U	<10	<10	< 1 U
2-Butanone (MEK)	µg/L	< 5 U	< 10 U	< 10 U	< 10 U	4.1 J	11	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Acetone	µg/L	< 5 U	< 25 U	< 25 U	< 25 U	18 J	13 J	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U
Benzene	µg/L	<1U	1.4	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<10	<10	<10
Carbon disulfide	µg/L	< 5 U	1.1	1	<10	<1U	<1U	<1U	<1U	<1U	1	1	1	1	1	1
Dichlorodifluoromethane	_µg/L	<1U	< 1 ⁻ U	<10	1	1	1	<10	<1U	<1U	1	1	1	1	1	1
Chlorobenzene	µg/L	<1U	0.55 J	<10	<10	<1U	<1U	<1U	<10	<1U	< 1 U	<1U	< 1 U	<10	<1U	<10
Chloroform	µg/L	<1U	<1U	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	< 1 U	<1U	<1U	<10	<10
cis-1,2-Dichloroethene	µg/L	<1ປ	74	0.72 J	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<1U
cis-1,3-Dichloropropene	µg/L	<1U	<1U	1	<10	<1U	<1U	<1ປ	<1U	<1U	1	1	1	1	1	1
Ethylbenzene	µg/L	<10	1.1	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<10
m,p-Xylene	µg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	µg/L	<1U	< 5 U	< 5 U	< 5 U	<5U	<5じ	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
n-Propylbenzene	µg/L	<1U	0.69 J	<1U	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<10	<1U	<1U
o-Xylene	μg/L	<10	<1U	<10	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<10
Tetrachloroethene	µg/L	<1U	<1U	<10	<1U	<1U	< 1 U [*]	<10	<1U	<1U	<1U	<1U	<1U	<1U	<1U	<10
Toluene	µg/L	<1U	<1U	<1U	<1U	<1ປ	<10	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<10
trans-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	<1U	<1U	<10	<10	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U
trans-1,3-Dichloropropene	µg/L	<10	<10	1	<1U	<1U	<1U	<1U	<1U	<1U ⁻	1	1	1	1	1	1
Trichloroethene	µg/L	2.7	5.9	<1U	<1U	<10	<1U	<1U	< 1 U	<1U	<1U	<1U	<10	<10	<10	<1U

Notes: Bolded concentrations indicate detections

J = estimated result

U = result is non-detect

Page 11 of 12

Location ID		MCA-GW001	MCA-GW074	MCA-GW074	MCA-GW076	MCA-GW076	MCA-GW076	MCA-GW077	MCA-GW077	MCA-GW077	MCA-GW078	MCA-GW078	MCA-GW078
Sample ID		MCA-GW001-	MCA-GW074-	MCA-GW074-	MCA-GW076-	MCA-GW076-	MCA-GW076	MCA-GW077	MCA-GW077	MCA-GW077	MCA-GW078	MCA-GW078	MCA-GW078-
Sample ID		15-1005	30-0306	45-0306	15-0306	30-0306	-45-0306	-15-0306	-30-0306	-45-0306	-15-0306	-30-0306	45-0306
Sample Date		Oct-05	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06
Sample Depth (ft bgs)	Units	15	30	45	15	30	45	15	30	45	15	30	45
Chemical Name													
1,1,1,2-Tetrachloroethane	µg/L	<10	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U	<1U	<10	<1U
1,1-Dichloroethene	µg/L	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<10	<1U	<1U	<10
1,2,3-Trichlorobenzene	µg/L	<1U	<1U	<1U	<10	<1U	<10	<1U	<1U	<1U	<10	<1U	<10
1,2-Dibromo-3-chloropropane	µg/L	<10	<1U	<1U	<1U	<1U	<10	<10	<1U	<10	< 1 U	<10	<1U
2-Butanone (MEK)	µg/L	< 5 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 ປ	< 10 U
Acetone	µg/L	< 5 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U
Benzene	µg/L	<1U	<1U	<1U	<1U	34	0.7 J	<1U	<1U	<10	<1U	<10	<1U
Carbon disulfide	µg/L	< 5 U	1	1	1	1	1	1	1	1	1	1	1
Dichlorodifluoromethane	µg/L	<1U	1	1	<1U	<1U	<10	<1U	<10	<10	1	1	1
Chlorobenzene	µg/L	<1U	<10	<1U	<10	<10	<10	<10	<10	<10	< 1 U	<1U	<1U
Chloroform	µg/L	<1U	<1U	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U
cis-1,2-Dichloroethene	μg/L	<1U	<1U	<1U	< 1 [.] U	<10	<1U	<1U	<10	<1U	< 1 U	<1U	<1U
cis-1,3-Dichloropropene	µg/L	<1U	1	1	1	1	1	1	1	1	1	1	1
Ethylbenzene	μg/L	<1U	<1U	<10	<1U	21	<10	<1U	<1ປ	<10	<1U	<1U	<1U
m,p-Xylene	μg/L	< 2 U	< 2 U	< 2 U	< 2 U	2.9	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	μg/L	<1U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
n-Propylbenzene	μg/L	<1Ų	<10	<1U	<1Ų	<1U	<1U	<10	<1U	<1U	<1U	<1U	<1U
o-Xylene	μg/L	<1U	<10	<10	<1U	15	<1U	<1U	<10	<1U	<1U	<1U	<1U
Tetrachloroethene	µg/L	<1U	<10	<1U	<10	<10	< 1 U	<1U	<10	< 1 U	<1U	<1U	<1U
Toluene	µg/L	<10	<1U	<1U	<10	2.5	<1U						
trans-1,2-Dichloroethene	µg/L	<1U	<1U	<1U	<10	<1U	<1U	<10	<1U	<1U	<1U	<10	<1U
trans-1,3-Dichloropropene	µg/L	<1U	1	1	1	1	1	1	1	1	1	1	1
Trichloroethene	µg/L	2.7	<10	<1U	<1U	<1U	<1U	<1U	< 1 U	<1U	<1U	<1U	<10

Notes:

Bolded concentrations indicate detections J = estimated result

U = result is non-detect

Page 12 of 12

Well ID		HGL-1B	HGL-1C	HGL-2B	HGL-2C	HGL-3B	HGL-3C	HGL-4B	HGL-4C	HGL-5B
Sample ID		MCA-GWHGL-	MCA-GWHGL- MCA-GWHGL-	Ř	MCA-GWHGL-	MCA-GWHGL- MCA-GWHGL-		<u>۲</u> -	Ň	MO
		Ì	1C-0306	2B-0306	2C-0306	3B-0306	3C-0306	4B-0306	4C-0306	5B-0306
Sample Date	Units	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06
Chemical Name										
1,1-Dichloroethene	hg/L	<10	<1U	<1U	< 1 U	< 1 UJ	<10	<10	<10	<1U
Acetone	J/Br/	< 5 U	< 5 U	< 5 U	< 5 U	< 5 UJ	< 5 U	< 5 U	< 5 U	3.5 J
Benzene	hg/L	<10	<10	<10	f 16.0	<1 UJ	14	<1U	<10	<10
Carbon disulfide	hg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 2 UJ	<5U	<5U	< 5 U	< 5 UJ
cis-1,2-Dichloroethene	hg/L	<10 -	<10	<1U	<1U	rn 1 >	<1U	<1U	<10	<1U
cis-1,3-Dichloropropene	µg/L	< 1 U	<1U	<1U	<1U	<1 UJ	<1U	<10	<10	<10
Ethylbenzene	µg/L	<10	<10	<1U	<1U	rn 1 >	10	<10	<10	<10
m,p-Xylene	hg/L	< 2 U	< 2 U	< 2 U	< 2 U	< 2 UJ	5.1	< 2 U	< 2 U	< 2 U
Methylene chloride	l µg/L	<10	<10	<1U	<pre>10</pre>	rn 1 >	<10	<10	< 1 U	< 1 U
o-Xylene	hg/L	<10	<10	<1U	<10	rn 1 >	7.6	<1U	<10	<1U
Tetrachloroethene	hg/L	<10	<10	<1U	<1U	<1 UJ	<1U	<1U	<10	<1U
Toluene	hg/L	< 1 U	<10	<1U	n1>	rn 1 >	1.6	<10	<10	<10
trans-1,2-Dichloroethene	hg/L	<10	<10	<10	1 N I >	rn 1 >	<1U	<10	<10	<1U
trans-1,3-Dichloropropene	hg/L	<10	<10	<10	<1 U	rn 1 >	<10	<10	<10	<10
Trichloroethene	hg/L	<10	<10	<10	<1U	rn i >	<10	<10	<10	<10
Vinyl Chloride	ng/L	<10	<10	<10	<1U	rn i >	< 1 U	<1U	<10	<1U

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect

Page 1 of 4

Well ID		HGL-5C	89-79H	HGL-6B (DUP)	HGL-6C	HGL-7B	HGL-7C	HGL-8B	HGL-8B (DUP)	HGL-8C
Sample ID		MCA-GWHGL-	NCA-	GWDUP203-	MCA-GWHGL-	Ř	N N	ž	СW	MCA- GWHGL
			96-0300	0300	00-0300	/ 15-0300	/0-0300	86-0300	0300	80-0300
Sample Date	Units	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06
Chemical Name										
1,1-Dichloroethene	hg/L	<pre><10</pre>	01×	<1U	< 10 U	1.3	93	<10	<10	<1U
Acetone	hg/L	< 5 UJ	< 2 U	< 5 U	< 50 U	< 5 UJ	< 250 UJ	< 5 U	< 5 U	< 5 U
Benzene	hg/L	<10	n1>	n1>	< 10 U	<1U	<5U	<10	<10	<10
Carbon disulfide	hg/L	< 5 UJ	< 5 U	< 5 U	< 50 U	< 5 UJ	< 250 UJ	< 5 U	< 5 U	< 5 U
cis-1,2-Dichloroethene	hg/L	<10	12	12	460	19	3500	<10	<1U	<10
cis-1, 3-Dichloropropene	hg/L	<10	<10	n 1 >	< 10 U	<1U	< 50 U	<10	<10	<10
Ethylbenzene	hg/L	< 1 U	<10	<10	< 10 U	<10	< 50 U	<10	<10	<10
n,p-Xylene	hg/L	< 2 U	< 2 U	< 2 U	< 20 U	< 2 U	< 100 U	< 2 U	< 2 U	< 2 U
Viethylene chloride	hg/L	<10	<1U	<10	< 10 U	<1U	< 50 U	<10	<10	< 1 U
o-Xylene	hg/L	<1U	<10	<10	< 10 U	<1U	< 50 U	<10	< 1 U	< 1 U
Tetrachloroethene	hg/L	<1U	<10	<1U	< 10 U	<1U	< 50 U	<10	<10	< 1 U
Toluene	hg/L	<1U	<10	<1U	< 10 U	<1U	< 50 U	<10	< 1 U	<10
rans-1,2-Dichloroethene	hg/L	<1U	<10	<1U	< 10 U	<10	29 J	<10	<10	<10
rans-1,3-Dichloropropene	µg/L	<10	<10	<1U	< 10 U	<10	< 50 U	<10	< 1 U	< 1 U
Trichloroethene	hg/L	<10	39	39	3800	190	16000	1.9	2	< 1 U
Vinvl Chloride	na/L	<10	< 1 U	<10	< 10 U	<10	< 50 U	< 1 U	< 1 U	< 1 U

Notes: Bolded concentrations indicate detections J ≂ estimated result U = result is non-detect

Page 2 of 4

Sample ID mple Date									
ample Date	MCA-GWHGL- 98-0306	MCA-GWHGL- MCA-GWHGL- MCA-GWHGL- 9P-0306 9C-0306 10P-0306	MCA-GWHGL-	GWDUP201-	MCA-GWHGL-	MCA-GWHGL- MCA-GWHGL- MCA- GWHGL 10C-0306 11C-0306 11C-0306	MCA- GWHGL- 11C-D306	MCA-GWXX- 15-0306	MCA-GWXX-
	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06
, i-Dichloroethene µg/L	<10	<10	<1U	<10	< 1 U	.∧ 1U	× 1 U	<1U	<10
Acetone µg/L	< 2 U	< 5 U	< 5 U	<5U	< 5 U	< 5 UJ	< 5 UJ	< 5 U	< 5 U
Benzene ug/L	<1U	<10	< 1 U	<10	< 1 U	<1U	< 1 U	<1U	<10
Carbon disulfide	1.1 J	< 5 U	< 5 U	<5U	< 5 U	< 5 UJ	< 5 UJ	< 5 U	< 5 U
cis-1,2-Dichloroethene µg/L	n1>	1.2	<1U	<1U	<10	<10	< 1 U	<1U	<1U
cis-1,3-Dichloropropene µg/L	< 1 U	<1U	<10	<10	<1U	<1U	< 1 U	<1U	<1U
Ethylbenzene µg/L	112	<10	<10	<pre>< 10</pre>	< 1 U	<1U	<10	<1U	<1U
m,p-Xylene µg/L	< 2 U	<2U	< 2 U	<2U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methylene chloride	<1U	<10	<1U	<10	<10	<10	<10	<10	<1U
o-Xylene µg/L	< 1 U	<10	<10	<10	< 1 U	<1U	<10	<10	<1U
Tetrachloroethene	<10	<1U	<10	<10	<1U	<1U	<10	<10	<1U
Toluene Loluce	<10	<10	<10	<1U	<1U	<10	<1U	<1U	<1U
trans-1,2-Dichloroethene µg/L	<10	<1U	<10	<10	<10	<1U	<10	<10	<1U
trans-1,3-Dichloropropene µg/L	< 1 U	<10	<10	<1U	<10	<1U	< 1 U	<10	<1U
richloroethene µg/L	<10	1.7	<10	<10	<10	<10	<1U	< 1 U	0.93 J
Vinyi Chloride	< 1 U	<1U	<10	<10	<10	<10	<10	<10	<10

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect

Page 3 of 4

Mell ID	0	81-XX	XX-19	XX-21	XX-22	XX-24	XX-25
Cample ID		-XXW9-ADM	MCA-GWXX-	MCA-GWXX-	MCA-GWXX-	MCA-GWXX-	MCA-GWXX-
		18-0306	19-0306	21-0306	22-0306	24-0306	25-0306
Sample Date	e Units	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06	Mar-06
Chemical Name					-		
1, 1-Dichloroethene	hg/L	<10	<10	7.3	<10	<10	<10
Acetone	hg/L	< 5 U	< 5 U	< 5 U	< 5 U	< 2.8 UJ	< 5 U
Benzene	hg/L	01>	01>	1.1	<10	<10	<1U
Carbon disulfide	hg/L	< 2 U	< 2 U	< 5 U	< 5 U	<5U	< 5 U
cis-1,2-Dichloroethene	нg/L	98	n L >	1000	37	<10	01>
cis-1,3-Dichloropropene	hg/L	<10	<10	<1U	<10	<10	<1U
Ethylbenzene	hg/L	<10	<10	<1U	<10	< 10.	01>
n,p-Xylene	hg/L	< 2 U	< 2 U	<2U	< 2 U	< 2 U	< 2 U
Viethylene chloride	hg/L	< 1 U	< 1 U	110	<10	<1U	<10
o-Xylene	hg/L	< 1 U	<1U	<u>0</u> 1>	<1U	<1U	<10
Tetrachloroethene	hg/L	< 1 U	<1U	<1U	<10	<10	<1U
Toluene	hg/L	<10	n1>	0 L >	<10	<10	<1U
rans-1,2-Dichloroethene	hg/L	< 1 U	n1>	7.8	1.6	<10	<10
rans-1,3-Dichloropropene	hg/L	< 1 U	n1>	n 1 >	<10	<1U	<10
Frichloroethene	hg/L	<10	<1U	240	160	<1U	<1U
Vinvl Chloride	na/L	<10	<1U	2.1	6.9	< 1 U	<10

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect

Page 4 of 4

Soil Analytical Summary - 2005 and 2006 HAA-15 (MCA Barracks Site) Hunter Army Airfield - Savannah, Georgia Table 2

Nombio Sounds Sounds<	Ň	Sample ID	SO001-2-4	S0002-0-2	SO003-6-7	SO004-2-4	SO005-6-7	SODUP102	SODUP102 SO006-0.5-1.5	SODUP104	SO007-2-4	SO008-3-4	SO009-7-8	SO010-7-8
Sample basis Oct-05 O	, Loi	cation ID	SO001	SO002	SO003	SO004	SO005	SO005	SO006	SO006	SO007	SO008	SO009	SO010
Sample Depth (htbs) 2-4 0-2 6-7 2-4 0-5-15 0-5-15 2-4 3-4 Remembersing Units Comp61 Com661 Com6661 Com661 Com661	Sam	ple Date	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05	Oct-05
I Mame Units Instant	Sample Depti	h (ft bgs)	2 - 4	0-2	6-7	2-4	6-7	6 - 7	0.5 - 1.5	0.5 - 1.5	2 - 4	3-4	7 - 8	7 - 8
Althouselthane mp/leg < 0.0055/U	Chemical Name	Units												
Image: Index number mg/kg < 0.0051 U	VOCs													
Incorportane mg/s c.00051 v c.00055 v c.00055 v c.00054 v v.00055 v v.v.v.v.v.v.v.v.v.v.v.v.v.v	1,1,2-Trichloroethane	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 UJ	0.013 J	< 0.0056 U	< 0.0034 U	< 0.0047 U	< 0.0055 U	< 0.0053 U	< 0.005 U
Increment mayles consolt consolt <thconsolt< th=""> <t< th=""><th>1,2-Dichloroethane</th><th>mg/kg</th><th>< 0.0051 U</th><th>< 0.0055 U</th><th>< 0.0059 U</th><th>< 0.0048 U</th><th>< 0.0057 U</th><th>0.0058 J</th><th>< 0.0056 U</th><th>< 0.0034 U</th><th>< 0.0047 U</th><th>< 0.0055 U</th><th>< 0.0053 U</th><th>< 0.005 U</th></t<></thconsolt<>	1,2-Dichloroethane	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 U	0.0058 J	< 0.0056 U	< 0.0034 U	< 0.0047 U	< 0.0055 U	< 0.0053 U	< 0.005 U
	1,2-Dichloropropane	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 UJ	0.047 J	< 0.0056 U	< 0.0034 U	< 0.0047 U		< 0.0053 U	< 0.005 U
Instruction mg/rg c.0.0051U c.0.0051U c.0.0051U c.0.0054U c.0.0055U c.0.0055U <thc>c.0.0055U <thc>c.0.0055U <t< th=""><th>Acetone</th><th>mg/kg</th><th>< 0.017 U</th><th>< 0.0055 U</th><th>< 0.0059 U</th><th>< 0.0048 U</th><th>< 0.0057 U</th><th>< 0.0061 U</th><th>0.0059 J</th><th>< 0.0034 UJ</th><th>< 0.0047 U</th><th>0.035</th><th>0.011</th><th>< 0.005 U</th></t<></thc></thc>	Acetone	mg/kg	< 0.017 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 U	< 0.0061 U	0.0059 J	< 0.0034 UJ	< 0.0047 U	0.035	0.011	< 0.005 U
mg/rg c.00051U c.00051U <thcdott< th=""> <thc> c.00051U <thc< th=""><th>Isopropylbenzene</th><th>mg/kg</th><th>< 0.0051 U</th><th>< 0.0055 U</th><th>< 0.0059 U</th><th>< 0.0048 U</th><th>< 0.0057 U</th><th>< 0.0061 U</th><th>< 0.0056 U</th><th>< 0.0034 U</th><th>< 0.0047 U</th><th></th><th>< 0.0053 U</th><th>< 0.005 U</th></thc<></thc></thcdott<>	Isopropylbenzene	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 U	< 0.0061 U	< 0.0056 U	< 0.0034 U	< 0.0047 U		< 0.0053 U	< 0.005 U
mg/kg $< 0.0011U$ $< 0.011U$ $< 0.011U$ $< 0.0011U$ $< 0.0011U$ $< 0.0011U$ $< 0.0011U$ $< 0.0011U$ $< 0.0001U$ <th<< th=""><th>Ethylbenzene</th><th>mg/kg</th><th>< 0.0051 U</th><th>< 0.0055 U</th><th>< 0.0059 U</th><th>< 0.0048 U</th><th>< 0.0057 U</th><th>< 0.0061 U</th><th>< 0.0056 U</th><th>< 0.0034 U</th><th>< 0.0047 U</th><th>_</th><th>< 0.0053 U</th><th>< 0.005 U</th></th<<>	Ethylbenzene	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 U	< 0.0061 U	< 0.0056 U	< 0.0034 U	< 0.0047 U	_	< 0.0053 U	< 0.005 U
mgkg c00051U c00055U c00055U c00055U c00055U c00055U c00057U c00057U <thc0077u< th=""> <thc0077u< th=""> <thc0077u< th=""><th>m,p-Xylene</th><th>mg/kg</th><th>< 0.01 U</th><th></th><th>< 0.012 U</th><th></th><th>< 0.011 U</th><th>< 0.012 U</th><th>< 0.011 U</th><th>< 0.0068 U</th><th>< 0.0094 U</th><th>< 0.011 U</th><th>< 0.011 U</th><th>< 0.01 U</th></thc0077u<></thc0077u<></thc0077u<>	m,p-Xylene	mg/kg	< 0.01 U		< 0.012 U		< 0.011 U	< 0.012 U	< 0.011 U	< 0.0068 U	< 0.0094 U	< 0.011 U	< 0.011 U	< 0.01 U
	o-Xylene	mg/kg	< 0.0051 U		< 0.0059 U		< 0.0057 U	< 0.0061 U	< 0.0056 U	< 0.0034 U	< 0.0047 U		< 0.0053 U	< 0.005 U
ethene mg/kg < 0.0051 U	Toluene	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U		< 0.0057 U	< 0.0061 U	< 0.0056 UJ	0.0035 J	< 0.0047 U		< 0.0053 U	< 0.005 U
this make mak make make <th< th=""><th>Trichloroethene</th><th>mg/kg</th><th>< 0.0051 U</th><th>< 0.0055 U</th><th>< 0.0059 U</th><th>< 0.0048 U</th><th>< 0.0057 U</th><th>< 0.0061 U</th><th>0.031 J</th><th>< 0.0034 UJ</th><th>< 0.0047 U</th><th></th><th>< 0.0053 U</th><th>< 0.005 U</th></th<>	Trichloroethene	mg/kg	< 0.0051 U	< 0.0055 U	< 0.0059 U	< 0.0048 U	< 0.0057 U	< 0.0061 U	0.031 J	< 0.0034 UJ	< 0.0047 U		< 0.0053 U	< 0.005 U
thylene mg/kg	svocs													
ene mg/kg \ldots <	Acenaphthylene	mg/kg		-					3	1	;	1	1	I
arthracene mg/g <t< th=""><th>Anthracene</th><th>mg/kg</th><th>1</th><th>**</th><th></th><th>-</th><th>1</th><th></th><th>:</th><th>-</th><th>:</th><th></th><th>1</th><th>1</th></t<>	Anthracene	mg/kg	1	**		-	1		:	-	:		1	1
Diprene mg/kg $=$	Benz(a)anthracene	mg/kg			-		-	+	1	1	-	1		1
	Benzo(a)pyrene	mg/kg		-	1	1	+	ł	ł	1		1	-	1
initi)pervletione moj/kg <	Benzo(b)fluoranthene	mg/kg	ł	. 1	1	1	1	1	1	•	-	1	1	I
Offluctanthene mg/kg	Benzo(ghi)perylene	mg/kg	-		-		-	-	-		·	1	1	1
wylnexcylphthalatemg/g<	Benzo(k)fluoranthene	mg/kg	1	۱	I	1	ł	1	ł	ł	ł	ł	l	1
ie mg/kg </th <th>Bis(2-ethylhexyl)phthalate</th> <th>mg/kg</th> <th>-</th> <th></th> <th>1</th> <th></th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>;</th> <th>1</th>	Bis(2-ethylhexyl)phthalate	mg/kg	-		1		1	1	1	1	1	1	;	1
a,h)anthracenemg/kg	Chrysene	mg/kg	ł		ł	-	ł	ł	ŀ	I	1	1	1	I
thene mg/kg 1 <	Dibenz(a,h)anthracene	mg/kg	1	1	-	1	1	1	1	1	:	1	1	1
12.3-cd)pyrene mg/kg	Fluoranthene	mg/kg	ł	1	ł	1	I	ł	1	1	1	J	1	1
lene mg/kg	Indeno(1,2,3-cd)pyrene	mg/kg	ł	1	1	1	1	ł	:	1	:	1	1	1
threnemg/kgmg/kg<1U<1U<0.85 U $0.45 J$ <0.83 U<0.84 U $0.45 J$ 1.21.2mg/kg 9.2 3.3 8.5 9.7 2.6 3.4 11 1.2 1.2mmg/kg<0.2 U<0.71 U<0.71 U<0.77 U<0.71 U 2.6 3.4 11 2.2 mmg/kg<0.2 U<0.71 U<0.71 U<0.77 U<0.71 U $2.02 U$ $2.02 U$ 2.2 3.3 3.6 1.3 1.3 4 2.2 3.4 mg/kg<1.9 2.3 3.2 4.8 2.9 1.6 1.5 3.2 $ 3.4$ $ 3.4$ mg/kg<0.24 J $0.025 J$ <0.035 U<0.034 U<0.034 U<0.023 J $ -$	Naphthalene	mg/kg	I	ŀ	1	1	;	1	ł	I	1	ł	1	}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Phenanthrene	mg/kg	ł	1	1	1	ł	ł	1	1	1	1	;	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Metals													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Arsenic	mg/kg	<10	<10	< 0.85 U	0.45 J	< 0.83 U	< 0.84 U	0.45 J	-	1.2	< 0.98 U	1	1
itim mg/kg < 0.2 U	Barium	mg/kg	9.2	3.3	8.5	9.7	2.6	3.4	11	-	12	11	l	1
nium mg/kg 1.9 2.2 3.3 3.6 1.3 1.3 4 3.4 3.4 1 3.4 1 mg/kg 2.3 3.2 4.8 2.9 1.6 1.5 3.2 3.3 3.3 1.3 mg/kg 2.3 3.2 2.9 2.0 2.035 U c.034 U c.034 U c.033 1 2.035 U c.035 U mg/kg <1 U c.1 0 13 1 c.042 0.055 U c.050 1 c.041 0 c.051 0 2.0 2.01 1 mg/kg <0.51 U c.1 0 13 1 c.042 0 c.050 1 c.051 0 c.041 0 c.051 0 2.0 2.51 U c.051	Cadmium	mg/kg	< 0.2 U	< 0.21 U	< 0.17 U	< 0.2 U	< 0.17 U	< 0.17 U	< 0.2 U	1	< 0.2 U	< 0.2 U	1	1
mg/kg 2.3 3.2 4.8 2.9 1.6 1.5 3.2 - 3.3 3.3 iny mg/kg 0.025.J 0.035.U < 0.034.U < 0.034.U < 0.023.J - < 0.035.U < 0.035.U < 0.034.U < 0.023.J - < 0.035.U < 0.035.U < 0.034.U < 0.023.J - < 0.035.U < 0.035.U < 0.034.U < 0.023.J - < 0.035.U < 0.034.U < 0.023.J - < 0.035.U < < < 0.035.U < < < 0.035.U < < < 0.035.U < < < 0.035.U < < 0.035.U < < 0.034.U < < 0.023.J - < < 0.035.U < < 0.035.U < < < 0.035.U < < 0.035.U < < 0.034.U < < 0.51.U < < 0.51.U < < 0.51.U	Chromium	mg/kg	1.9	2.2	3.3	3.6	1.3	13	4	•	3.4	3.8	1	1
ry mg/kg 0.024.J 0.025.J < 0.035.U < 0.034.U < 0.034.U < 0.034.U < 0.023.J < 0.035.U um mg/kg <1U <1U < 0.85.U < 0.99.U < 0.83.U < 0.84.U < 1U < 0.035.U mg/kg < 0.51.U 0.13.J < 0.42.U < 0.51.U < 0.41.U < 0.42.U < 0.51.U < 0.51.U < 0.51.U	Lead	mg/kg	2.3	3.2	4.8	2.9	1.6	1.5	3.2	-	3.3	19	1	1
ummg/kg <1U <1U <0.85U <0.99U <0.83U <0.84U <1U <1U mg/kg <0.51U 0.13J <0.42U <0.5U <0.41U <0.42U <0.51U <20.51U	Mercury	mg/kg	0.024 J	0.025 J	< 0.035 U	< 0.034 U	< 0.034 U	< 0.034 U	0.023 J	-	< 0.035 U	0.027 J		1
mg/kg < 0.51 U 0.13.J <0.42 U <0.5U <0.41 U <0.42 U <0.51 U <0.51 U	Selenium	mg/kg	< 1 U	<10	< 0.85 U	< 0.99 U	< 0.83 U	< 0.84 U	<1U	1	<1U	< 0.98 U		1
	Silver	mg/kg	< 0.51 U	0.13 J	< 0.42 U	< 0.5 U	< 0.41 U	< 0.42 U	< 0.51 U	1	< 0.51 U	< 0,49 U	-	-

Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect -- = not analyzed

Soil Analytical Summary - 2005 and 2006 Hunter Army Airfield - Savannah, Georgia HAA-15 (MCA Barracks Site) Table 2

SO016C2-6-SO016C Apr-06 < 0.4 U < 0.57 U < 0.4 U 0.09 J 0.1 J 0.1 J 0.086 J 0.097 J < 0.4 U 0.11 J < 0.4 U 0.16 J 0.085 J < 0.4 U</pre> 8.2 J 0.051 J < 2.8 UJ 0.095 J < 1.1 U 6 - 7 33 1.5 I ł ł ł ł 8.7 1 I I t S0016C-6-7 < 0.036 U 0.055 0.069 0.069 0.06 0.045 < 0.036 U SO016C Feb-06 < 0.036 U < 0.036 U < 0.18 U ⊃ 0.017 J < 0.53 U 0.055 0.63 J 1.1 U 6 - 7 0.05 **12** < 0.21 ł ł ł ł ł 4.3 ł ł e, SO016A2-6-7 SODUP103 SO016B-6-7 < 0.038 U < 0.038 U < 0.038 U < 0.038 U
 < 0.038 U
 < 0.038 U < 0.038 U < 0.038 U
< 0.038 U
< 0.038 U < 0.038 U < 0.038 U SO016B Feb-06 < 0.038 U < 0.19 U < 0.51 U 6-7 6.3 4.9 0.035 J v v 2.5 34 < 0.2 l I ł L I ł ł I ł ł ł SO016A2 Apr-06 **40 J** < 0.55 U < 0.4 U < 0.4 U
 < 0.4 U
 < 0.4 U
 < 0.4 U < 0.4 U
 < 0.4 U
 < 0.4 U
 < 0.4 U < 0.4 U < 0.4 U < 0.4 U < 0.4 U 2.7 470 J 0.054 J < 2.7 UJ < 0.4 U < 0.4 U < 1.1 U < 0.4 U 6 - 7 I ł I 7 ۱ 1 ł ł SO016A2 Apr-06 <<u>0.41 U</u> < 0.41 U .061 J < 0.41 U **18 J** < 0.57 U 8 J 0.067 J < 0.41 U < 0.41 U < 0.41 U < 0.41 U < 2.9 UJ 6 - 7 0.86 J 2.9 < 1.1 ł ł ł 1 ł ł ł ł S0016A-6-7 SO016A Feb-06 1 J 20 0.085 J 0.11 J 6 - 7 0.27 0.27 1.4 1.4 0.93 0.93 3.3 28 0.028 J < 0.87 0.25 v 1 U < 0.17 0.8 ł 1 ł ł ł I ł ł ł 1.2 0.3 I. SO016-6-7 < 0.07 U 0.59 < 0.07 U < 0.36 U < 0.87 U SO016 Oct-05 < 0.87 U < 0.07 U 0.051 J 3.3 0.013 J 0.11 J 6 - 7 0.14 0.14 **0.51** < 0.07 0.18 0.57 3.6 0.5 0.5 Ť I I ł 1 I ł I ł ÷. < 0.0054 U
< 0.0054 U
< 0.0054 U < 0.0054 U < 0.0054 U < 0.0054 U < 0.0054 U Sample ID| S0011-7-8| S0012-4-6| S0013-4-6| S0014-4-6| S0015-7-8| < 0.0054 U < 0.0054 U < 0.011 U SO015 Oct-05 7-8 ł ł ł ł ł I ł ł L L 1 ł ł 1 ł ł ł < 0.047 U < 0.024 U < 0.047 U < 0.19 U < 0.024 U SO014 Oct-05 4-6 0.75 -8 0.18 < 0.047 ł ł ł ł ł I ł ; 1 ł ÷ T. ł ł ł. ł ł < 0.0046 U < 0.0046 U < 0.0046 U mg/kg | < 0.0061 U | < 0.0049 U | < 0.0046 U < 0.0046 U < 0.0046 U < 0.0046 U < 0.0092 U < 0.0046 U SO013 Oct-05 4-6 < 0.0046 ŧ ł ł I I ł ł 1 ł l ł ł ł 1 ł ł L ł 1 < 0.0049 U
 < 0.0038 U
 < 0.0049 U
 < 0.0049 U < 0.0061 U < 0.0049 U < 0.0049 U SO012 Oct-05 < 0.0049 4-6 ł ł ł ł ł 1 ſ 1 ł ł L 1 < 0.0061 U mg/kg < 0.0061 U < 0.012 U Oct-05 < 0.0061 S0011 7-8 ł ł ł ł ł 1 ł : ł 1 ł ł ł mg/kg Sample Date mg/kg mg/kg mg/kg mg/kg mg/kg | mg/kg mg/kg Location ID Sample Depth (ft bgs) mg/kg Units Bis(2-ethylhexyl)phthalate ndeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 1.2-Trichloroethane 2-Dichloropropane 3enzo(ghi)perylene enz(a)anthracene 2-Dichloroethane sopropylbenzene Ethylbenzene nemical Name cenaphthylene Senzo(a)pyrene ichloroethene Phenanthrene Fluoranthene Naphthalene uthracene n.p-Xylene Chromium Chrysene Cadmium Selenium Xylene cetone oluene Viercury Metals Arsenic Barlum svocs s 0 0 Silver ead

Notes:

Bolded concentrations indicate detections

J = estimated result

U = result is non-detect - = not analyzed

Soil Analytical Summary - 2005 and 2006 HAA-15 (MCA Barracks Site) Hunter Army Airfield - Savannah, Georgia Table 2

Sa	mple ID	Sample ID SO016D-6-7	SO0017-5-7	SO017A-5-7	SODUP102-5-7	SO017B-5-7	S0017C-5-7	S0017D-5-7	SO018-0-2	SODUP103	SO018A-0-2	SO018A2-0-2
Loc	-ocation ID	SO016D	SO0017	SO017A	SO017A	SO017B	SO017C	SO017D	SO018	SO018	SO018A	SO018A
Sam	Sample Date	Feb-06	Oct-05	Feb-06	Feb-06	Feb-06	Feb-06	Feb-06	Oct-05	Feb-06	Feb-06	Apr-06
Sample Depth (ft bgs)	(ft bgs)	6-7	2-2	2-2	5 - 7	5-7	5 - 7	5-7	0-2	0-2	0 - 1	0-2
Chemical Name	Units											
VOCs												
1,1,2-Trichloroethane	mg/kg	1	1	!		**	-	1	< 0.0056 U	1	-	1
1,2-Dichloroethane	mg/kg	+	1			-	-	-	< 0.0056 U	-	1	1
1,2-Dichloropropane	mg/kg	ł	I	1	1	;		1	< 0.0056 U	I	1	.]
Acetone	mg/kg	1	1	-	-	I	1	1	0.027	ł	;	;
Isopropylbenzene	mg/kg	ł	•	;	ł	;	1		< 0.0056 U	1	:	1
Ethylbenzene	mg/kg		1	ł	-	-	-	-	< 0.0056 U	ł		1
m,p-Xylene	mg/kg	-	1	ł	E	1	-	ł	< 0.011 U	1	:	1
o-Xylene	mg/kg		1	 -		1	-	1	< 0.0056 U	1		-
Toluene	mg/kg	ł	1	-	-			-	< 0.0056 U	1		l
Trichloroethene	mg/kg		1	ł	-	-	-	-	< 0.0056 U	-	-	1
SVOCs												
Acenaphthylene	mg/kg	0.079	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.066 J	0.014 J	< 0.4 U	< 0.39 U
Anthracene	mg/kg	0.096	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.071 J	0.035 J	< 0.4 U	< 0.39 U
Benz(a)anthracene	mg/kg	0.49	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.41 J	0.12	< 0.4 U	< 0.39 U
Benzo(a)pyrene	mg/kg	0.51	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.41 J	0.13	0.083 J	< 0.39 U
Benzo(b)fluoranthene	mg/kg	0.76	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.7 J	0.24	0.15 J	< 0.39 U
Benzo(ghi)perylene	mg/kg	0.33	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.24 J	0.089	0.15 J	< 0.39 U
Benzo(k)fluoranthene	t mg/kg	0.29	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.32 J	0.097	< 0.4 U	< 0.39 U
Bis(2-ethylhexyl)phthalate	mg/kg	< 0.18 U	< 0.2 U	< 0.21 U	< 0.2 U	< 0.21 U	< 0.21 U	< 0.2 U	< 0.19 U	0.19 J	< 2 U	0.045 J
Chrysene	mg/kg	0.43	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.5 J	0.18	0.083 J	< 0.39 U
Dibenz(a,h)anthracene	mg/kg	0.13	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.092 J	0.028 J	< 0,4 U	< 0.39 U
Fluoranthene	mg/kg	0.49	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.78 J	0.3	0.097 J	< 0.39 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.29	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.24 J	0.081	0.1 J	< 0.39 U
Naphthalene	mg/kg	< 0.036 U	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	< 0.038 U	< 0.045 U	0.091 J	< 0.39 U
Phenanthrene	mg/kg	0.095	< 0.04 U	< 0.041 U	< 0.04 U	< 0.041 U	< 0.041 U	< 0.04 U	0.1	0.12	0.12 J	< 0.39 U
Metals												
Arsenic	mg/kg	1.1	1.1	0.49 J	< 1.1 U	0.51 J	0.54 J	0.83 J	2.7 J	1.5	2.2	< 1.1 U
Barium	mg/kg	16	97	35 J	18	48	120	63	32 J	29	38	14
Cadmium	mg/kg	0.25	0.19 J	< 0.24 U	< 0.23 U	< 0.25 U	< 0.22 U	< 0.22 U	0.3	0.31	0.19 J	< 0.56 U
Chromium	mg/kg	6.4	4.1	2.3	1.8	3.4	3	3.8	5.1	4.6	4.8	2.5
Lead	mg/kg	23	6.8	5.9	4.2	6.1	7,4	6.5	200	150	120	48 J
Mercury	mg/kg	0.044	0.026 J	0.036 J	0.02 J	0.04 J	0.061	0.041	0.7 J	1.4	0.89	0.029 J
Selenium	mg/kg	< 1 U	0.83 J	< 1.2 U	< 1.1 U	< 1.2 U	< 1.1 U	< 1.1 U	< 1.1 U	< 1.3 U	< 1.1 U	< 2.8 UJ
Silver	mg/kg	< 0.5 U	0.2.J	<pre>- < 0.6 U</pre>	< 0.57 U	< 0.62 U	< 0.55 U	< 0.56 U	< 0.54 U	<pre>< 0.67 U</pre>	0.14.J	<110

Notes: Bolded concentrations indicate detections J ≓ estimated result U = result is non-detect -- = not analyzed

Table 2 Soil Analytical Summary - 2005 and 2006 HAA-15 (MCA Barracks Site) Hunter Army Airfield - Savannah, Georgia

Location ID SC Sample Date F Sample Date F Sample Date F Sample Date F Sample Date Mgs) Iloroethane mg/kg ropropane mg/kg ropropane mg/kg rop/kg mg/kg e mg/kg mg/kg mg/kg enacte mg/kg mg/kg mg/kg e mg/kg other mg/kg other mg/kg other mg/kg e mg/kg other mg/kg	8B SC018E2 2 Apr-06 2 0-2 0-2 	S0018C	SO018C Feb-06 0 - 2 0 - 2	SO018C2 Apr-06 0 - 2	SO018D Feb-06 0 - 2
Sample Date Depth (ft bgs) Units mg/kg		Feb-06	Feb-06 0-2 1-1	Apr-06 0 - 2	Feb-06 0 - 2
Depth (ft bgs) Units mg/kg			0-2	0-2	0-2
Units mg/kg					
mg/kg				11	
mg/kg			· · · · · · · · · · · · · · · · · · ·	ł	
mg/kg				ł	1
mg/kg					1
mg/kg				1	1
mg/kg				ł	
mg/kg		3 3 8 8 1	1 1 1 1	1	. 1
mg/kg		3 8 8 1		1	
mg/kg		3 8 1	: :	1	1
mg/kg		8 1		1	:
mg/kg				1	1
mg/kg			r	1	. 1
mg/kg					
mg/kg		< 0.036 U	< 0.037 U	< 0,44 U	< 0.039 U
mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	< 0.039 U
mg/kg mg/kg mg/kg mg/kg e mg/kg mg/kg e mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	8 < 0.39 U	< 0.036 U	< 0.037 U	< 0.44 U	0.011 J
mg/kg mg/kg mg/kg e mg/kg e mg/kg e mg/kg e mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	0.0093 J
mg/kg ilate mg/kg e mg/kg e mg/kg e mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	0.022 J
mg/kg e mg/kg e mg/kg e mg/kg e mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	0.019 J
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	< 0.039 U
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.18 U	< 0.19 U	< 0.44 U	< 0.2 U
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	0.013 J
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	_	< 0.036 U	< 0.037 U	< 0.44 U	< 0.039 U
cd)pyrene mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	0.011 J
mg/kg mg/kg mg/kg mg/kg		< 0.036 U	< 0.037 U	< 0.44 U	0.012 J
mg/kg mg/kg mg/kg	5 J < 0.39 U	< 0.036 U	< 0.037 U	< 0.44 U	0.0099 J
mg/kg mg/kg	9 < 0.39 U	< 0.036 U	< 0.037 U	< 0.44 U	0.023 J
mg/kg mg/kg					
mg/kg m	1.5	0.6 J	0.68 J	7	1.6
mg/kg		9.2	10	57	38
	J < 0.52 U	0.21	0.066 J	< 0.62 U	0.23
Critomium mg/kg 4.9	3.5	2.5	2.6	2	2.2
Lead mg/kg 220	9.8.1	9.8	8.5	5300 J	56
Mercury mg/kg 0.18	8 0.025 J	0.046	0.066	0.084 J	0.35
ium mg/kg	v 	<1U	< 1.1 U	< 3.1 UJ	< 1.2 U
Silver mg/kg 0.29 J	J <1U	< 0.51 U	< 0.53 U	< 1.2 U	< 0.58 U

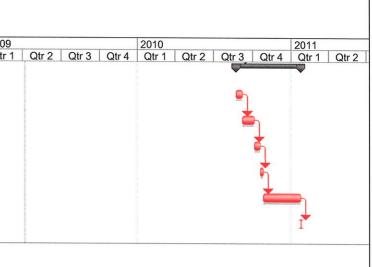
Notes: Bolded concentrations indicate detections J = estimated result U = result is non-detect -- = not analyzed

.

Table 3 Groundwater Elevations At Well Pairs HAA-15 (MCA Barracks Site) Hunter Army Airfield - Savannah, Georgia

March 2006 Water Level ter Elevation (ft AMSL)	17.28	11.58	9.86	10.23	11.53	11.37	15.92	15.89	26.43	26.38	28.01	26.60	25.79	22.05	22.02	15.99	27.34	27.04	19.43	19.43	28.22	28.18
Depth to Water (ft BTOC)	4.22	9.9	2.85	2.52	2.48	2.56	5.58	5.58	2.26	2.33	7.73	8.95	7.85	11.59	3.89	9.94	6.63	6.85	3.96	3.96	8.15	8.21
Date of Water Level Measurement	3/11/06	3/11/06	3/11/06	3/12/06	3/16/06	3/16/06	3/17/06	3/17/06	3/14/06	3/14/06	3/17/06	3/17/06	3/15/06	3/15/06	3/16/06	3/16/06	3/13/06	3/13/06	3/12/06	3/17/08	3/14/06	3/14/06
Top of Casing Elevation (ft AMSL)	21.50	21.48	12.71	12.75	14.01	13.93	21.50	21.47	28.69	28.71	35.74	35.55	33.64	33.64	25.91	25.93	33.97	33.89	23.39	23.39	36.37	36.39
Screened Interval (ft bgs)	15-25	30-40	15-25	34-44	15-25	30-40	15-25	30-40	14-24	29-39	15-25	30-40	15-25	34-44	13.5-23.5	34-44	14-24	29-39	15-25	30-40	15-25	30-40
Total Well Depth (ft bgs)	25	40	25	44	25	40	25	40	24	39	25	40	25	44	23.5	44	24	39	25	40	25	40
Well	HGL-1B	HGL-1C	HGL-2B	HGL-2C	HGL-3B	HGL-3C	HGL-4B	HGL-4C	HGL-5B	HGL-5C	HGL-6B	HGL-6C	HGL-7B	HGL-7C	HGL-8B	HGL-8C	HGL-9B	HGL-9C	HGL-10B	HGL-10C	HGL-11B	HGL-11C

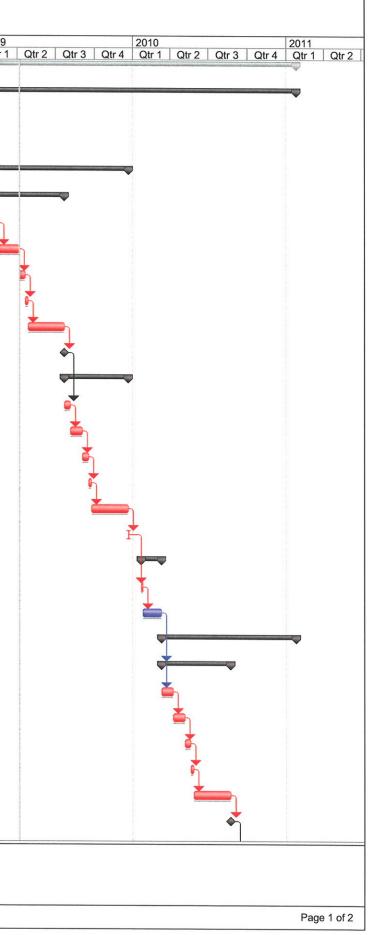
Notes:


ft bgs - feet below ground surface ft AMSL - feet above mean sea level ft BTOC - feet below top of casing Page 1 of 1

				able 4: Project nter Army Airf				
ID	WBS	Task Name	Duration	Start	Finish	Predecessors	2008	2009
30	1.5.2	HAA 15 CSR Rev 1	105 days	Tue 8/24/10	Mon 1/24/11	29	Qtr 1 Qtr 2 Qtr 3 Qtr 4	4 Qtr 1
31	1.5.2.1	Prepare RTCs and HAA 15 CSR Rev 1	10 days	Tue 8/24/10	Tue 9/7/10			
32	1.5.2.2	Army Review of RTCs and CSR Rev 1	20 days	Wed 9/8/10	Tue 10/5/10	31		
33	1.5.2.3	ARCADIS Revisions	10 days	Wed 10/6/10	Tue 10/19/10	32	2	
34	1.5.2.4	Army Submittal of RTCs and CSR Rev 1	5 days	Wed 10/20/10	Tue 10/26/10	33		
35	1.5.2.5	GAEPD Review of CSR Rev 1	60 days	Wed 10/27/10	Mon 1/24/11	34	-	
36	1.5.3	Regulatory Approval HAA 15 CSR Rev 1	1 day	Tue 1/25/11	Tue 1/25/11	35		

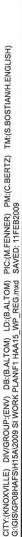
Task Duration

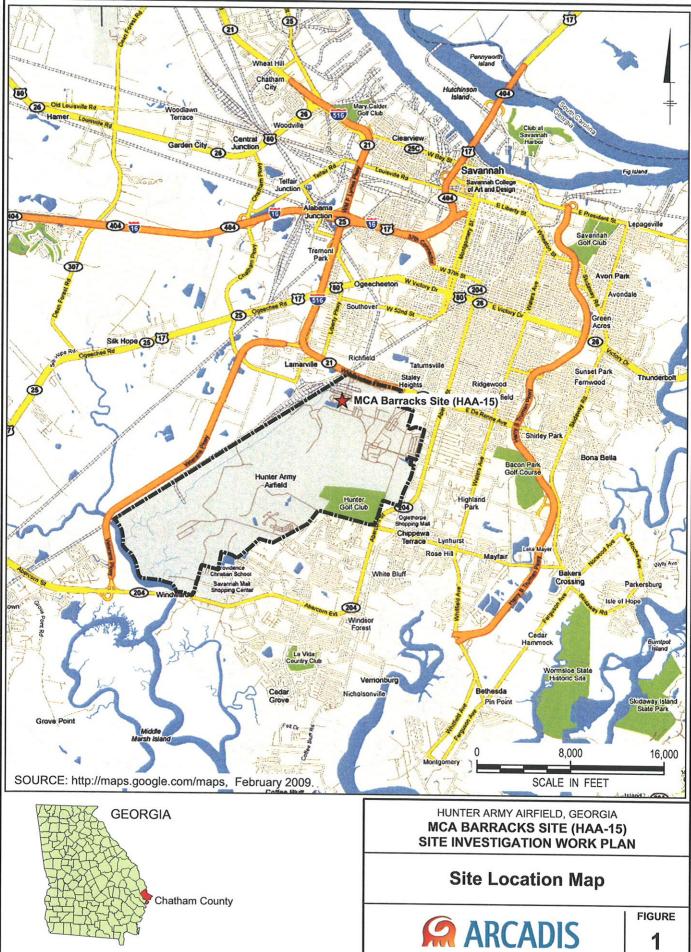
Summary



-

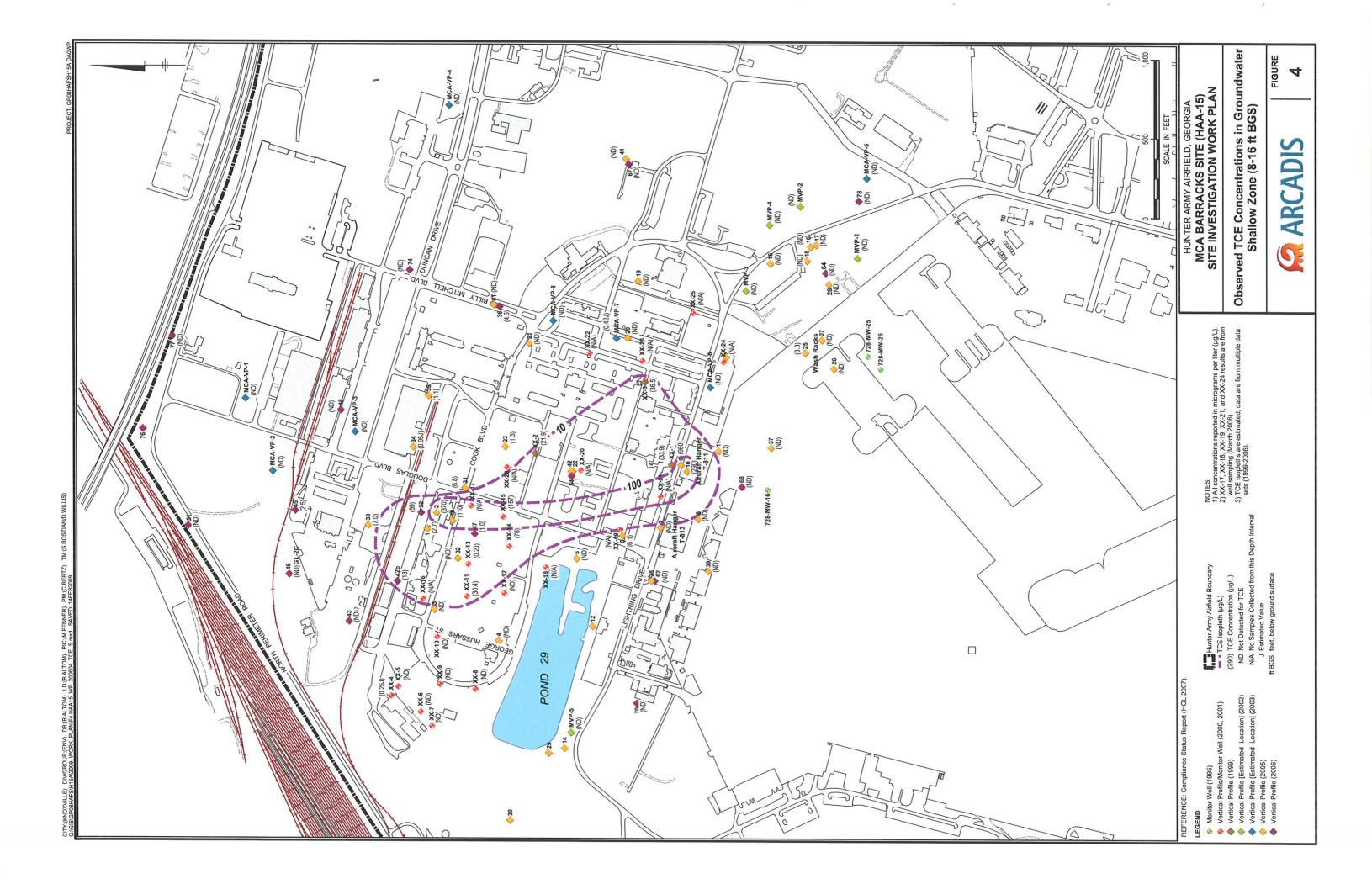
Page 2 of 2

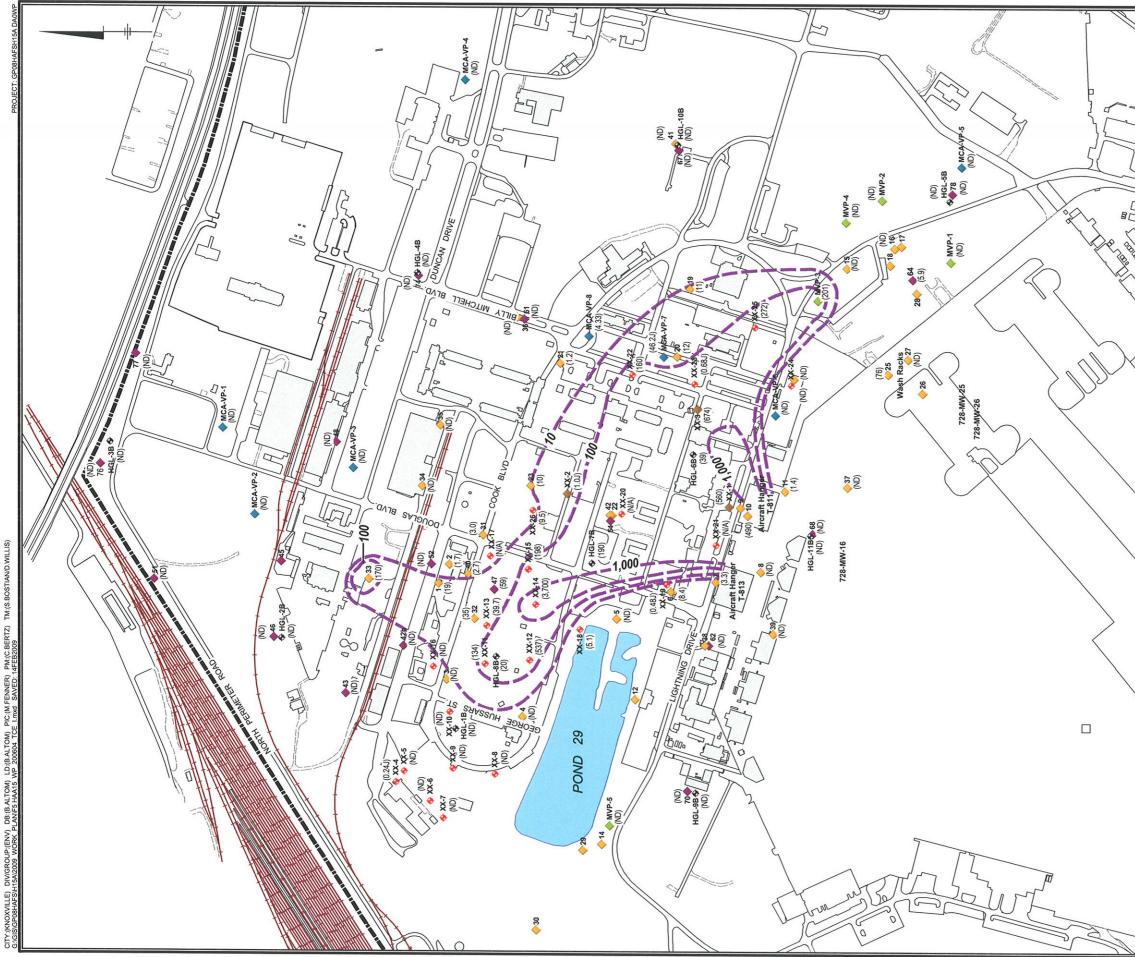

0	WBS 1	ask Name	Duration	Start	Finish	Predecessors
	0 F	t Stewart / HAAF Schedule - Proposed	569 days	Mon 10/27/08	Tue 1/25/11	
	1	HAA 15: MCA BARRACKS	569 days	Mon 10/27/08	Tue 1/25/11	
	1.1	Evaluate Data	30 days	Mon 10/27/08	Tue 12/9/08	
	1.2	Update Conceptual Site Model	20 days	Wed 12/10/08	Thu 1/8/09	
	1.3	HAA 15 CSR Work Plan	243 days	Fri 1/9/09	Tue 12/22/09	
	1.3.1	HAA 15 CSR Work Plan Rev 0	137 days	Fri 1/9/09	Wed 7/22/09	
	1.3.1.1	Prepare Draft HAA 15 CSR Work Plan	27 days	Fri 1/9/09	Mon 2/16/09	
	1.3.1.2	Army Review of Draft	35 days	Tue 2/17/09	Mon 4/6/09	
	1.3.1.3	ARCADIS Revisions	10 days	Tue 4/7/09	Mon 4/20/09	
	1.3.1.4	Army Submittal of Final CSR Work Plan Rev 0	5 days	Tue 4/21/09	Mon 4/27/09	
0	1.3.1.5	GAEPD Review of CSR Work Plan Rev 0	60 days	Tue 4/28/09	Wed 7/22/09	
1	1.3.1.6	GAEPD comments on CSR Work Plan Rev 0	0 days	Wed 7/22/09	Wed 7/22/09	1
2	1.3.2	HAA 15 CSR Work Plan Rev 1	105 days	Thu 7/23/09	Mon 12/21/09	
3	1.3.2.1	Prepare RTCs and HAA 15 CSR Work Plan Rev 1	10 days	Thu 7/23/09	Wed 8/5/09	1
	1.3.2.2	Army Review of RTCs and CSR Work Plan Rev 1	20 days	Thu 8/6/09	Wed 9/2/09	1
	1.3.2.3	ARCADIS Revisions	10 days	Thu 9/3/09	Thu 9/17/09	1
	1.3.2.4	Army Submittal of RTCs and CSR Work Plan Rev 1	5 days	Fri 9/18/09	Thu 9/24/09	1
	1.3.2.5	GAEPD Review of CSR Work Plan Rev 1	60 days	Fri 9/25/09	Mon 12/21/09	1
	1.3.3	Regulatory Approval HAA 15 CSR Work Plan Rev 1	1 day	Tue 12/22/09	Tue 12/22/09	1
	1.4	HAA 15 Field Investigation	35 days	Fri 1/22/10	Thu 3/11/10	
	1.4.1	Field Investigation Mobilization	2 days	Fri 1/22/10	Mon 1/25/10	18FS+30 eday
	1.4.2	Field investigation Completion	45 edays	Mon 1/25/10	Thu 3/11/10	2
2	1.5	HAA 15 CSR	221 days	Fri 3/12/10	Tue 1/25/11	
3	1.5.1	HAA 15 CSR Rev 0	115 days	Fri 3/12/10	Mon 8/23/10	2
F	1.5.1.1	Prepare Draft HAA 15 CSR	20 days	Fri 3/12/10	Thu 4/8/10	2
5	1.5.1.2	Army Review of Draft CSR	20 days	Fri 4/9/10	Thu 5/6/10	2
5	1.5.1.3	ARCADIS Revisions	10 days	Fri 5/7/10	Thu 5/20/10	2
-	1.5.1.4	Army Submittal of Final CSR Rev 0	5 days	Fri 5/21/10	Thu 5/27/10	2
8	1.5.1.5	GAEPD Review of CSR Rev 0	60 days	Fri 5/28/10	Mon 8/23/10	2
	1.5.1.6	GAEPD comments on CSR Rev 0	0 days	Mon 8/23/10	Mon 8/23/10	2

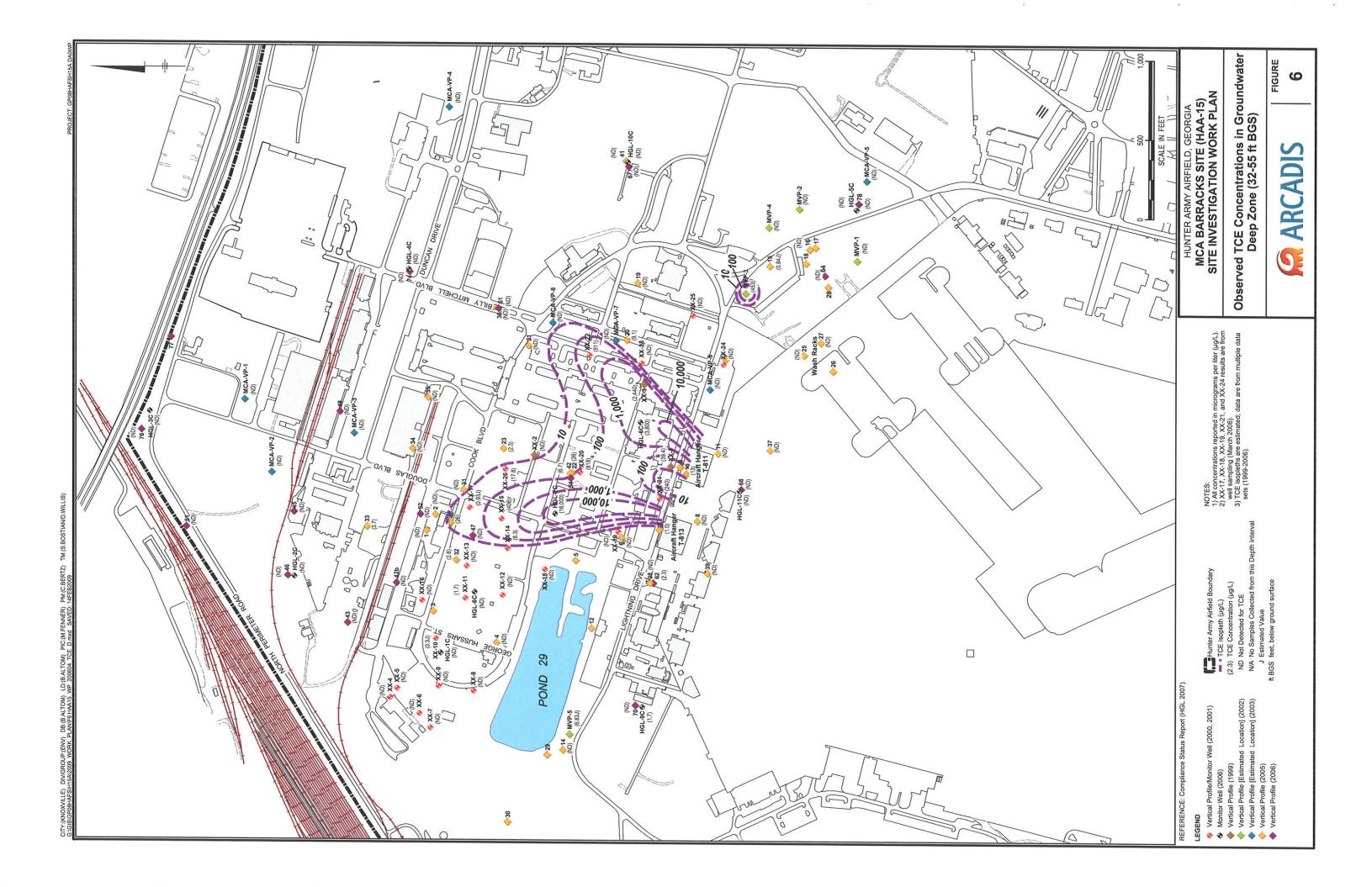

Date: Mon 4/6/09

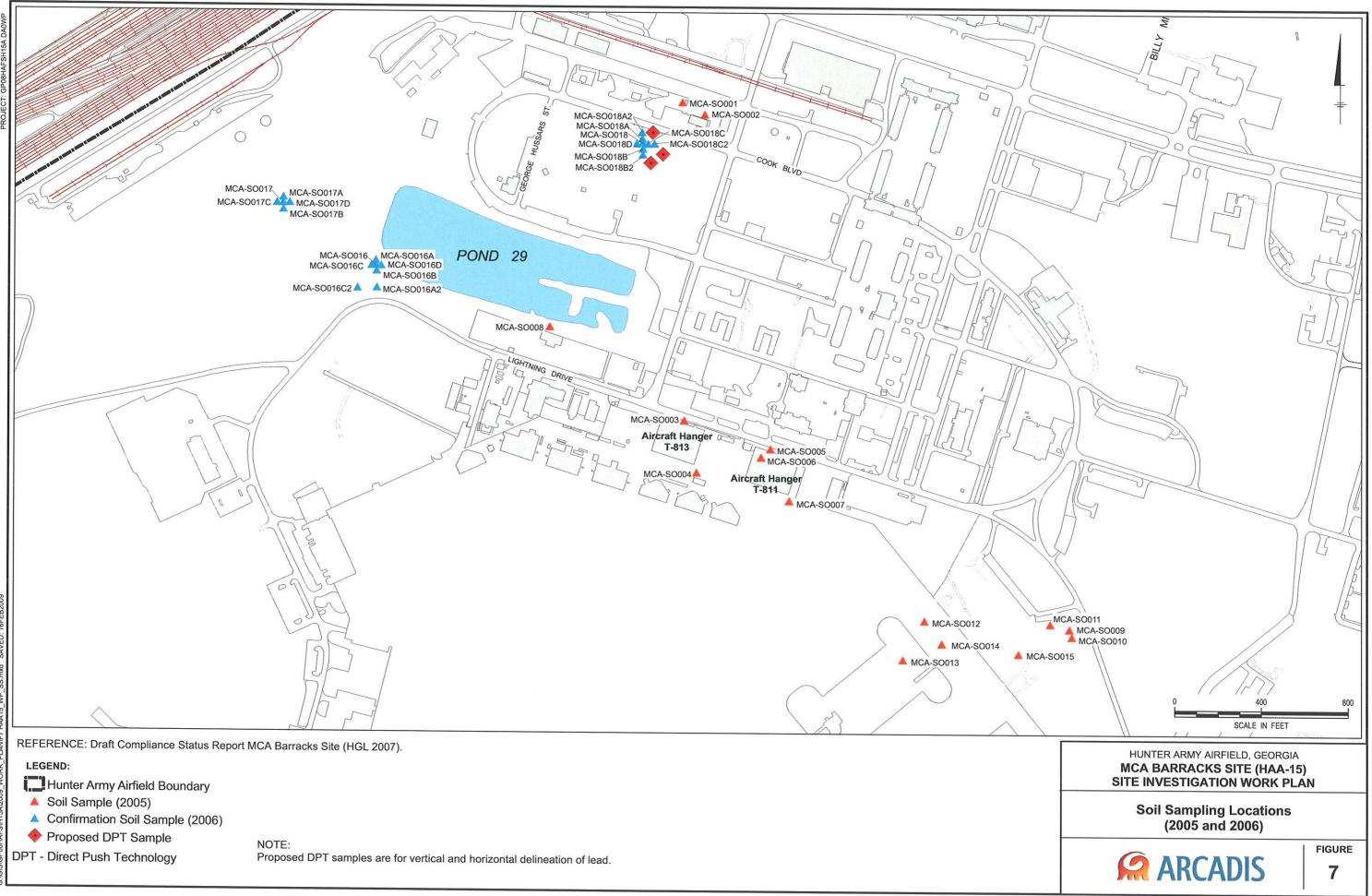


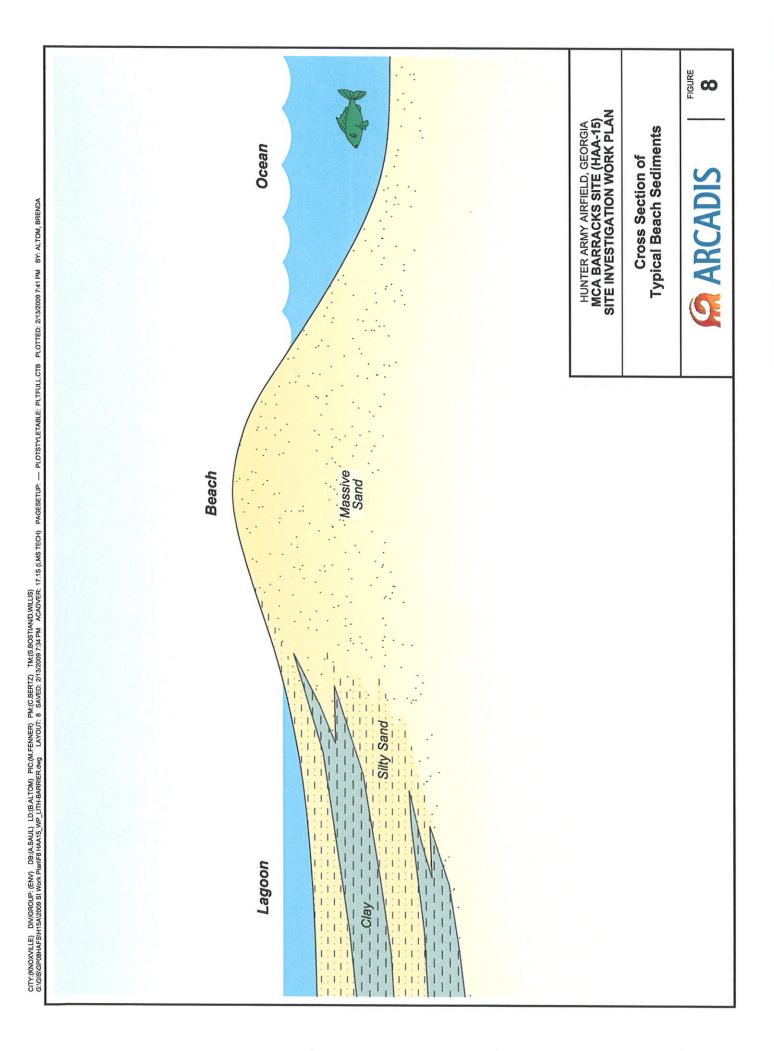
Figures





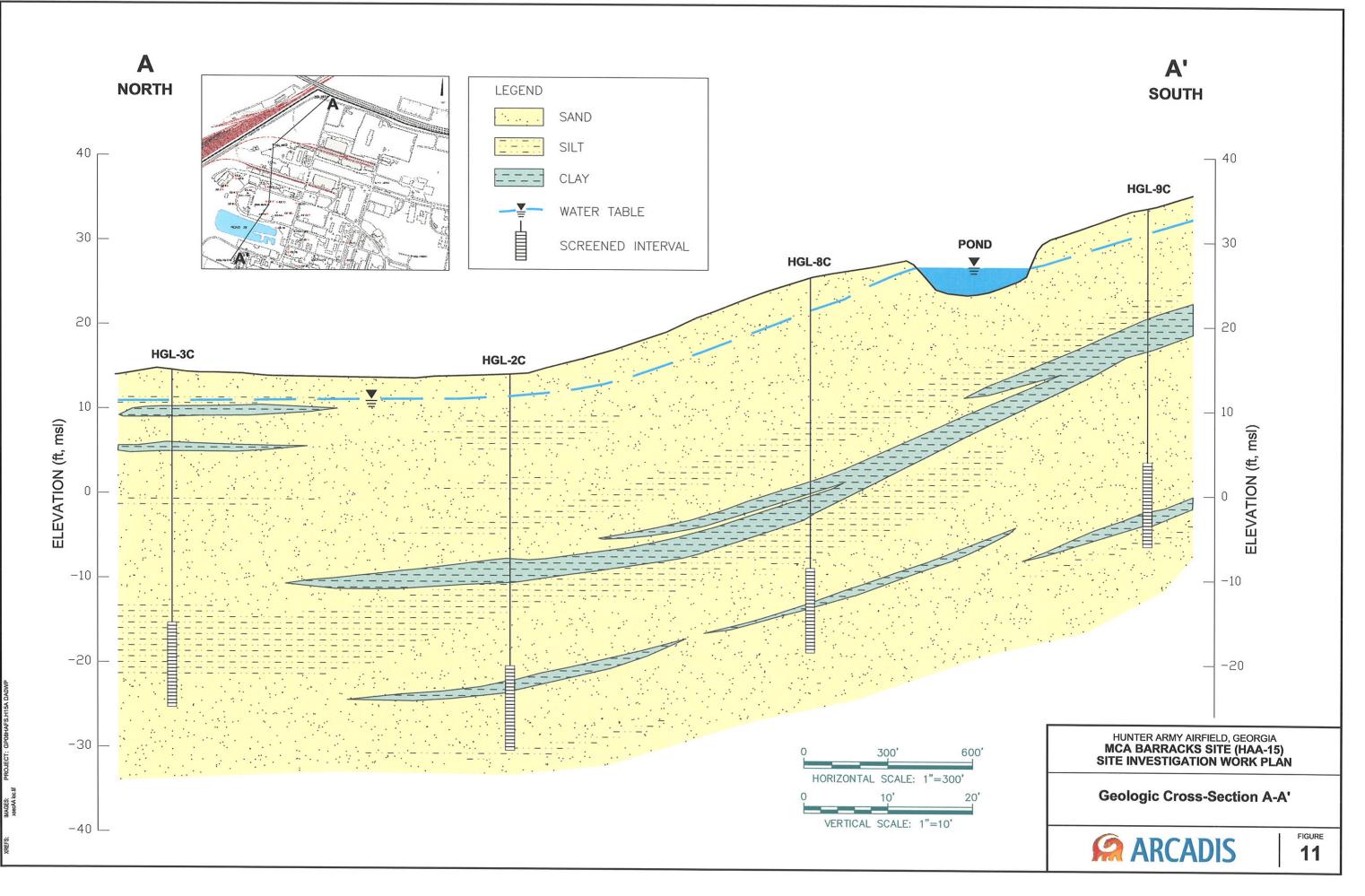




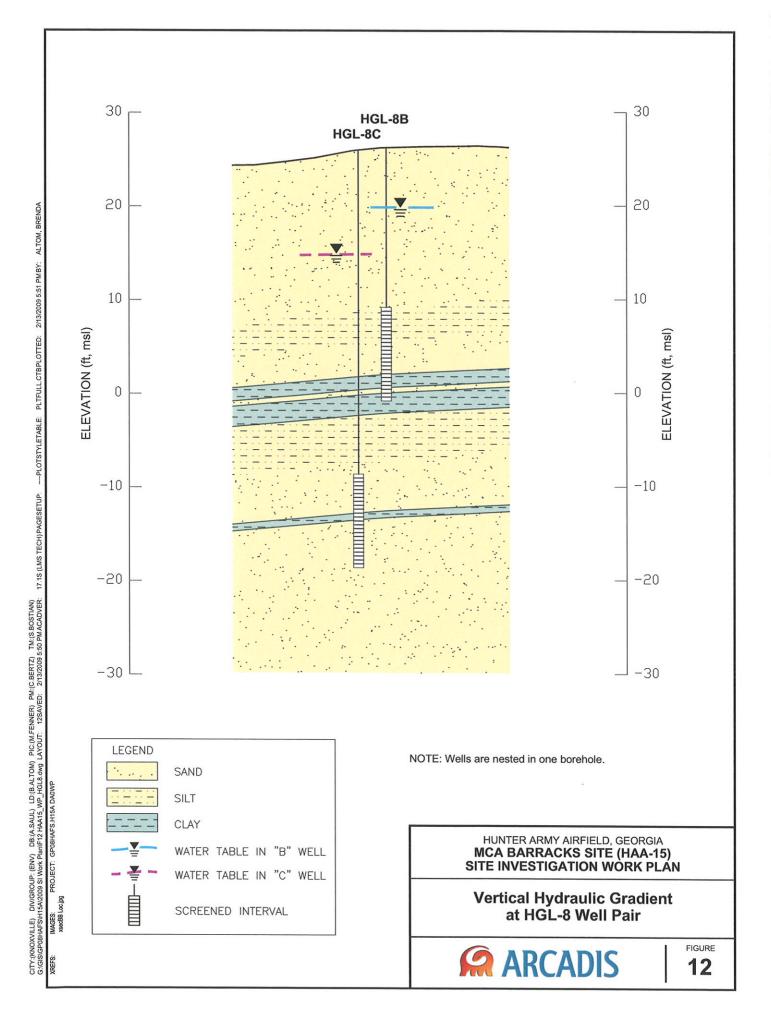


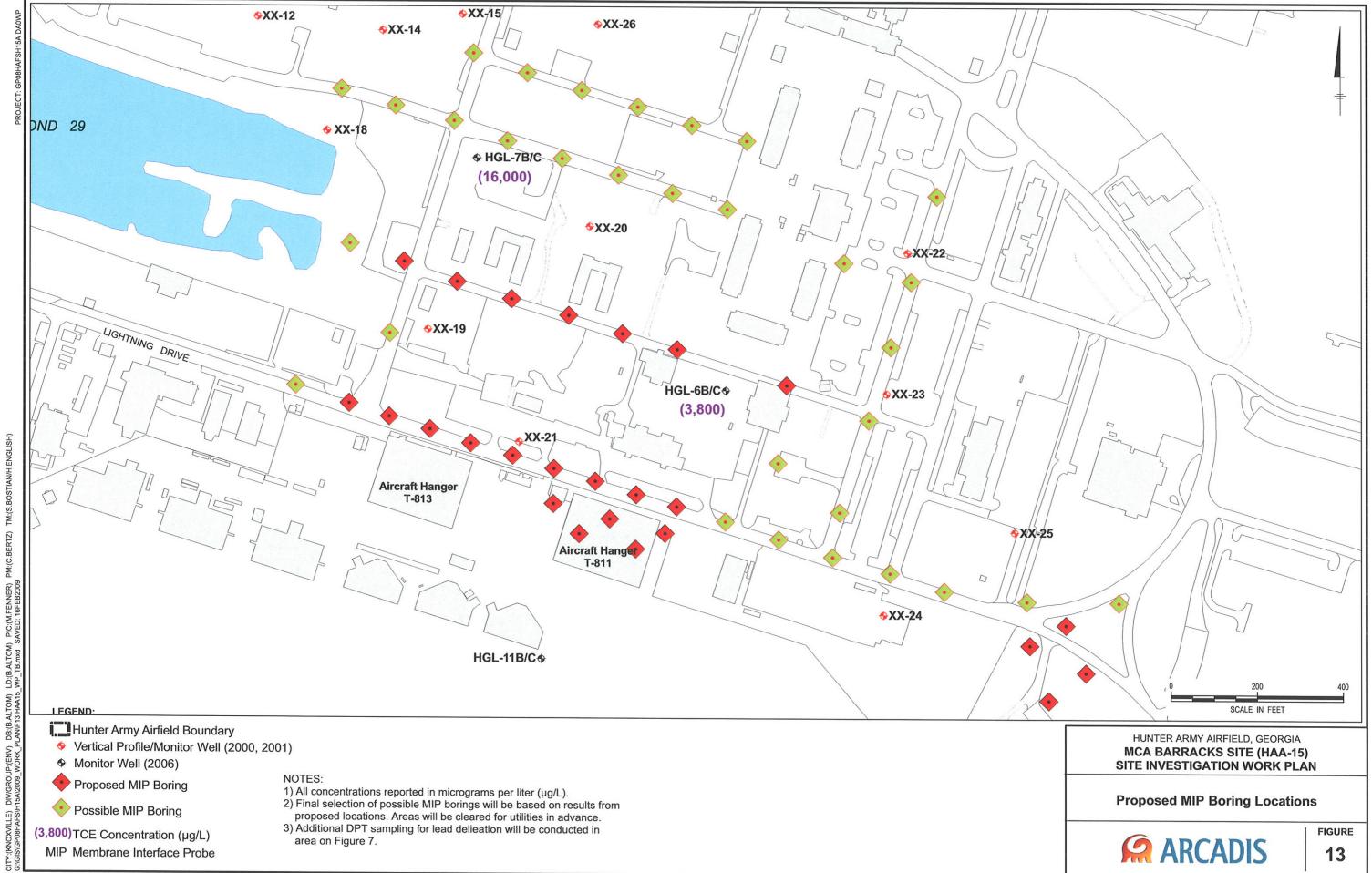
HUNTER ARMY AIRFIELD, GEORGIA MCA BARRACKS SITE (HAA-15) SITE INVESTIGATION WORK PLAN	Observed TCE Concentrations in Groundwater Intermediate Zone (19-30 ft BGS)	ARCADIS FIGURE 5
NOTES: 1) All construtions reported in micrograms per liter (µg/L), 2) XX-17, XX-18, XX-19, XX-21, and XX-24 results are from well sampling (March 2006). 3) TCE isoptens are estimated; data are from multiple data sets (1999-2006).		
 Aunter Army Airfield Boundary TCE Isopleth (ug/L) (76) TCE Concentration (ug/L) ND Not Detected for TCE NA No Samples Collected from this Depth Interval J Estimated Value tt BGS feet, below ground surface 		
REFERENCE: Compliance Status Report (HGL 2007) LEGEND ♦ Vertical Profile/Monitor Well (2000, 2001) ♦ Vertical Profile (1999) ♦ Vertical Profile (1999) ♦ Vertical Profile (Estimated Location) (2002) ♦ Vertical Profile (Estimated Location) (2003) ♦ Vertical Profile (2005) ♦ Vertical Profile (2006)		





9!





(ZZ) TOM)

