CORRECTIVE ACTION PLAN - PART A REPORT FOR UNDERGROUND STORAGE TANK 71A FACILITY ID #9-089023 BUILDING 1260 FORT STEWART, GEORGIA

Prepared for:

U.S. Army Corps of Engineers - Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0024

Prepared by:

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37831

December 1998

))

TABLE OF CONTENTS

<u>Page</u>

LI	ST OF ABBREVIATIONS AND ACRONYMS
I.	
1.	PLAN CERTIFICATION
	A. UST Owner/Operator Certification
	B. Registered Professional Engineer or Professional Geologist Certification
II.	INITIAL RESPONSE REPORT
	A. Initial Abatement
	B. Free Product Removal
	C. Tank History
	D. Initial Site Characterization
	1. Regulated Substance Released
	2. Source(s) of Contamination
	3. Local Water Resources
	a. Groundwater Pollution Susceptibility Area
	b. Public and Non-Public Water Supplies
	c. Surface Water Supplies and Servers
	 c. Surface Water Supplies and Sewers
	a. Soil Impacted
	b. Groundwater Impacted
	c. Surface Water Impacted
	5. Other Geologic/Hydrogeologic Data
	a. Depth to Groundwater
	b. Groundwater Flow Direction
	c. Hydraulic Gradient
	d. Geophysical Province
	e. Unique Geologic/Hydrogeological Conditions
	 6. Corrective Action Completed or In-Progress
	a. Underground Storage Tank System Closure
	b. Excavation and Treatment/Disposal of Backfill Materials and Native Soils
	7. Site Ranking
	8. Conclusions and Recommendations
	a. No Further Action Required
	b Monitoring Only
	b. Monitoring Only
	γ of r D
İΠ.	MONITORING ONLY PLAN
	A. Monitoring Points
	B. Period/Frequency of Monitoring and Reporting
	C. Monitoring Parameters
	D. Milestone Schedule
	E. Scenarios for Site Closure or CAP-Part B
	8

)

)

IV.	SI	ΓE Π	NVESTIGATION PLAN	8
			posed Investigation of Horizontal and Vertical Extent of Contamination	
		1.	Soil	8
		2.	Groundwater	9
			a. Free Product	9
			b. Dissolved Phase	
		3.	Surface Water	
	В.	Pro	posed Investigation of Vadose Zone and Aquifer Characteristics	9
V.	PU	BLI	C NOTICE	10
VI.	CĹ	AIM	1 FOR REIMBURSEMENT	

List of Appendices

APPENDE	X I. REPORT FIGURES	I-1
Figure 1.	Location Map of UST 71A, Fort Stewart, Liberty County, Georgia	I-3
Figure 2.	Site Plan for the UST 71A, Building 1260 Site Investigation	
Figure 3.	Map Showing Public and Private Drinking Water Sources and Surface Water	
,	Bodies at Fort Stewart, Liberty County, Georgia	I-5
Figure 4.	Soil Quality Map of the UST 71A, Building 1260 Site	
Figure 5.	Groundwater Quality Map of the UST 71A, Building 1260 Site	
Figure 6.	Potentiometric Surface Map of the UST 71A, Building 1260 Site	İ-11
Figure 7.	UST System Closure Sampling Locations at UST 71A, Building 1260 Site	I-12
Figure 8.	Proposed Additional Boring/Monitoring Well Locations	I-13
Figure 9.	Тах Мар	I-14
APPENDIX	X II: REPORT TABLES	II-1
Table 1.	Free Product Removal	
Table 2a.	Soil Analytical Results (Volatile Organic Compounds)	II-4
Table 2b.	Soil Analytical Results (Polynuclear Aromatic Hydrocarbons)	II-5
Table 3a.	Groundwater Analytical Results (Volatile Organic Compounds)	II-6
Table 3b.	Groundwater Analytical Results (Polynuclear Aromatic Hydrocarbons)	II-6
Table 4.	Groundwater Elevations	II-7
Table 5a.	UST System Closure - Soil Analytical Results (Volatile Organic Compounds)	II-8
Table 5b.	UST System Closure - Soil Analytical Results (Polynuclear Aromatic	
	Hydrocarbons)	1I-8
Table 6a.	UST System Closure - Groundwater Analytical Results (Volatile Organic	
	Compounds)	II-9
Table 6b.	UST System Closure - Groundwater Analytical Results (Polynuclear	
	Aromatic Hydrocarbons)	II-9

OCUMENTATION III-1	APPENDIX III:
	APPENDIX IV:
	APPENDIX V:
L (ATL) CALCULATIONSVI-1	APPENDIX VI:
	APPENDIX VII:
RESULTS VIII-1	APPENDIX VIII:
L MANIFESTS IX-1	APPENDIX IX:
	APPENDIX X:
ON LETTERS AND CERTIFIED RECEIPTS	

Attachments

Α	TECHNICAL APPROACH	A-1
в	REFERENCES	.B-1

List of Abbreviations and Acronyms

ACE	Anderson Columbia Environmental, Inc.
ACL	alternate concentration limit
AMSL	above mean sea level
ASTM	American Society for Testing and Materials
ATL	alternate threshold level
BGS	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylene
BTOC	below top of casing
CAP	Corrective Action Plan
DPW	Directorate of Public Works
DRO	diesel-range organics
EPA	U.S. Environmental Protection Agency
GA EPD	Georgia Environmental Protection Division
GRO	gasoline-range organics
ID	inside diameter
IDW	investigation-derived waste
MCLs	maximum contaminant levels
MSL	mean sea level
ND	not detected
NRC	no regulatory criteria

-

OVA	organic vapor analyzer
OVM	organic vapor meter
РАН	polynuclear aromatic hydrocarbon
PVC	polyvinyl chloride
SAIC	Science Applications International Corporation
TPH	total petroleum hydrocarbon
ÚSGS	U.S. Geological Survey
UST	underground storage tank

USTMP Underground Storage Tank Management Program

CORRECTIVE ACTION PLAN PART A

Facility Name: UST 71A, Building	1260 Street Address: McFarland Avenue north of W. 6th Street
Facility ID: 9-089023 City	Fort Stewart County: Liberty Zip Code: 31314
Latitude: 31°52'05" Lo	ongitude: 81°37′13″
Submitted by LIGT O	,

Submitted by UST Owner/Operator:	Prepared by Consultant/Contractor:		
Name: Thomas C. Fry/ Environmental Branch	Name: Patricia A. Stoll		
Company: U.S. Army/HQ 3d, Inf. Div (Mech)	Company: SAIC		
Address: DPW ENRD ENV. Br. (Fry)	Address: P.O. Box 2502		
1557 Frank Cochran Drive			
City: Fort Stewart State: GA	City: Oak Ridge State: TN		
Zip Code: 31314-4928	Zip Code: 37831		
Telephone: (912) 767-1078	Telephone: (423) 481-8791		

I. PLAN CERTIFICATION:

ŧČ.

A. UST Owner/Operator Certification

I hereby certify that the information contained in this plan and in all the attachments is true, accurate, and the plan satisfies all criteria and requirements of rule 391-3-15-09 of the Georgia Rules for Underground Storage Tank Management.

Name:					
Signature: Ihomas	С.	Fry	Date:	azliq 199	_

B. Registered Professional Engineer or Professional Geologist Certification

I hereby certify that I have directed and supervised the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patricia A. Stoll Signature: Date: 12/7/9.8

CAPA.FORM 98-160PS(doc-71A-4si) 111098

YES

General: READ THE GUIDANCE DOCUMENT FOR CAP PART-A BEFORE COMPLETING THIS FORM. FAILURE TO READ THE GUIDANCE DOCUMENT WILL MOST LIKELY RESULT IN PREPARATION OF AN UNACCEPTABLE REPORT. All text, figures, and tables requested in their respective sections should be prepared strictly in accordance with the Georgia EPD CAP-A guidance document. Please fill out this form as provided. Do not change the size of the fields or alter the placement of each section on each page.

(Appendix I: All Report Figures) (Appendix II: All Report Tables)

II. INITIAL RESPONSE REPORT

A. Initial Abatement

Were initial abatement actions initiated? If Yes, please summarize. If No, please explain why not.

Actions were not required to abate imminent hazards and/or emergency conditions at the UST 71A site. Therefore, contaminant migration and release prevention, fire and vapor migration, or emergency free product removal was not performed prior to, or during, the removal of UST 71A.

B. Free Product Removal

(Table 1: Summary of Free Product Removal – must include Free Product thickness in each well in which it was detected, and volume of product removed)

Free Product Detected? If Yes, please summarize free product recovery efforts.

YES	NO	Х

NO

Х

Continuing free product recovery proposed? If yes, please indicate the method and frequency of removal.

2

YES NO X

C. Tank History

List current and former UST's operated at site based on owner/operator knowledge consistent with EPA 7530-1 Form). Systems must be illustrated on Figure 2 (Site Plan), as described in section D below.

CURRENT UST SYSTEMS (if applicable)

<u>Tank ID Number</u> N/A	<u>Capacity (gal)</u> N/A	<u>Substance</u> Stored N/A	<u>Age (yrs)</u> N/A	<u>Meets 1998 Upgrade</u> <u>Standards (Yes/No)</u> N/A
	FORMER US	<u>T SYSTEMS (if a</u>	pplicable)	
<u>Tank ID Number</u> 71A	<u>Capacity (gal)</u> 1000	<u>Substance St</u> waste oi		<u>ate Removed</u> 7/16/96

D. Initial Site Characterization (Figure 1: Vicinity/Location Map)

(Figure 2: Site Plan)

1. Regulated Substance Released (gasoline, diesel, used oil, etc.): waste oil Discuss how this determination was made and circumstances of discovery.

Characterization of petroleum-related contamination at the site was initiated during UST system closure activities on July 16, 1996, by Anderson Columbia Environmental, Inc (ACE). After removal of the tank, one groundwater sample was collected from the tank pit (Figure 7). Groundwater sample TK71A-GW contained 116 μ g/L of benzene, 1070 μ g/L of xylenes, and 2140 μ g/L of polynuclear aromatic hydrocarbons (PAHs). The detection limit for toluene and ethylbenzene was 110 μ g/L. No soil samples were collected during closure activities.

2. Source(s) of Contamination: <u>Unknown; piping leakage or tank overflow suspected</u> Discuss how this determination was made.

A detailed schematic diagram illustrating the former UST 71A and ancillary piping as configured during operation is not available. However, during removal activities by ACE, no holes in the tank were reported. Therefore, the source of contamination is believed to have been piping leakage and/or tank overflow.

3. Local Water Resources

(Figure 3: Quadrangle Map – Public and Private drinking water and surface water) (Appendix III: Water resources survey documentation, including, but not limited to: USGS database search, interview forms, and documentation of field survey)

	Site located in high/average X OR low ground susceptibility area?	water pollution
b.	Water Supplies within applicable radii? YES	X NO
	If yes,	
	i. Nearest public water supply located within:	2650 feet
	ii. Nearest down-gradient public water supply located within:	3950 feet
	iii. Nearest non-public water supply located within:	
		>2,640 feet
	iv. Nearest down-gradient non-public water supply located within:	>5,280 feet
	Surface Water Bodies and sewers:	
	i. Nearest surface water located within	2500 feet
	ii. Nearest down-gradient surface water located within	7250 feet
	iii. Nearest storm or sanitary sewer located within:	30 feet
	iv. Depth to bottom of sewer at a point nearest the plume	est. 4-6 feet

4. <u>Impacted Environmental Media</u>

a. Soil Impacted

(Table 2: Soil Analysis Results) (Figure 4: Soil Quality Map) (Appendix IV: Soil Boring Logs) (Appendix V: Soil Laboratory Reports) (Appendix VI: ATL Calculations, if applicable)

Provide a brief discussion of soil sampling.

Continuous soil cores were collected at 2.0-foot intervals during the installation of four boreholes. Field headspace gas analyses were performed on each sample to determine the organic vapor concentration. Two soil samples were selected from each borehole for laboratory chemical analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX); total petroleum hydrocarbons (TPH); and PAH. In boreholes where organic vapors were detected, one sample was collected from the 2.0-foot interval where the highest vapor concentration was recorded, and the other from the deepest 2.0-foot interval with the lowest concentration. If organic vapors were not detected, one sample was collected from the 2.0-foot interval nearest the midpoint of the boring, and the other from the 2.0-foot interval located immediately above the water table. Refer to Attachment A for complete documentation of the technical approach implemented during this investigation. i. Soil contamination above applicable threshold levels?

YES NO X

If yes, indicate highest concentrations in soil along with locations and depths detected.

- ii. ATLs calculated? YES NO X If yes, present ATLs.
- iii. If ATL's calculated, is soil contamination above ATL's?

YES NO N/A X

b. Groundwater Impacted (Table 3: Groundwater Analysis Results) (Figure 5: Groundwater Quality Map) (Appendix VII: Monitoring Well Details) (Appendix VIII: Groundwater Laboratory Results)

Provide a brief discussion of groundwater sampling.

At each borehole location, except the vertical profile boring, one groundwater sample was collected from the water table to approximately 5.0 feet below the water table using a direct-push sampling device. At the vertical profile location (81-05), groundwater samples were collected every 5 feet below the water table until several groundwater sample intervals indicated a headspace gas measurement of zero. Chemical parameters for groundwater samples submitted for laboratory analysis included BTEX and PAH. Refer to Attachment A for complete documentation of the technical approach used to collect groundwater samples.

i. Groundwater contamination above MCLs? YES NO X ii. Groundwater contamination above In-Stream Water Quality Standards? YES NO X

If yes, indicate highest concentrations in groundwater along with the locations.

- c. Surface Water Impacted? YES NO X If Yes, indicate concentration(s) of surface water sample(s) taken from the surface water body/bodies impacted.
- d. Point of Withdrawal Impacted? YES NO N/A X If Yes, indicate concentration(s) of water sample(s) taken from withdrawal point(s).

5. Other Geologic/Hydrogeologic Data

а.	Depth to Groundwater		
	(ft BTOC):	5.51 - 6.51	(Table 4: Groundwater Elevations)
b.	Groundwater Flow Direction:		(Figure 6: Potentiometric Surface Map)
C.	Hydraulic Gradient	0.0080 ft/ft	

d. Geophysical Province: coastal plain

e. Unique geologic/hydrological conditions: The Hawthorn Formation acts as a confining unit between the surficial and Floridan aquifers

6. <u>Corrective Action Completed or In-Progress</u> (if applicable) (Table 5: UST System Closure Sampling) (Figure 7: UST System Closure Sampling) (Appendix IX: Contaminated Soil Disposal Manifests)

> a. Underground Storage Tank (UST) System Closure: N/A If applicable, summarize UST system closure activities conducted.

ACE removed UST 71A on July 16, 1996. The UST piping was drained into the tank, and all waste oil was subsequently removed using a vacuum truck and/or compressor-driven barrel vacuum device. A backhoe was used to excavate down to the tank top. All lines were capped except the fill and vent. After the tank atmosphere was tested with a combustible gas indicator, all accessible tank openings were capped and the tanks was lifted from the excavation pit. The ancillary piping was closed in-place due to the fact that it was covered with 12 inches of high strength concrete. In-place closure consisted of purging the line and grouting the end at the tank. b. Excavation and Treatment/Disposal of Backfill Materials and Native Soils Check one: No UST removal performed Returned to UST excavation Excavated soils treated or disposal off site X If soils were excavated, summarize excavation and treatment/disposal activities:

It should be noted that all contaminated soil removed during the entire project (i.e., all USTs removed under contract with ACE, to include clean and nonclean closures) was tested in accordance with the disposal facility requirements and transported to Kedesh, Inc., Highway 84, Ludowici, GA, 31316. The Installation has records of all manifests and weight tickets for this project and provided copies to GA EPD in September 1998. Approximately 42.66 tons of contaminated soil were excavated from the site.

7. <u>Site Ranking</u>: *Environmental Site Sensitivity Score*: 0 (Appendix X: Site Ranking Form)

8.<u>Conclusions and Recommendations</u> Complete applicable section below, one section only

- a. No Further Action Required (if applicable) N/A (provide justification) Concentrations of contaminants in soil and groundwater do not exceed respective soil threshold levels (Table A, Column 2) and/or maximum contaminant levels (MCLs).
- b. Monitoring Only (if applicable) (provide justification)

N/A X

c. CAP-B (if applicable) N/A X (provide justification)

III. MONITORING ONLY PLAN (if applicable):

N/A <u>X</u>

- A. Monitoring points
- B. Period/Frequency of monitoring and reporting
- C. Monitoring Parameters
- D. Milestone Schedule
- E. Scenarios for site closure or CAP-Part B

IV. SITE INVESTIGATION PLAN (if applicable): N/A X (Figure 8: Proposed additional boring/monitoring well location) N/A X

- A. Proposed Investigation of Horizontal and Vertical Extent of Contamination In:
 - 1. Soil

N/A X

5/98

2.	Gro	Groundwater							
	a.	Free Product	N/A	<u> </u>					
	b.	Dissolved phase	NA	<u>X</u>					
<u>3.</u>		Surface Water	N/A	<u> </u>					

B. Proposed Investigation of Vadose Zone And Aquifer Characteristics:

Additional vadose zone and aquifer characterization is not required.

ĺ

V. PUBLIC NOTICE

(Figure 9. Tax Map) (Appendix XI: Copies of public notification letters & certified return receipts or newspaper notice if approved)

UST 71A, Building 1260 is located within the confines of Fort Stewart Military Reservation, a federal facility. The U.S. Government owns all of the property contiguous to the site. The Fort Stewart Directorate of Public Works (DPW) has complied with the public notice requirements defined by Georgia Environmental Protection Division (GA EPD) guidance by publishing an announcement in the *Savannah Morning News* on October 18 and 25, 1998.

VI. CLAIM FOR REIMBURSEMENT (for GUST Trust Fund sites only): N/A X (Appendix XII: GUST Trust Fund Reimbursement Application and Claim for reimbursement)

Fort Stewart is a federally owned facility and has funded the investigation for the UST 71A site, Building 1260, Facility ID #9-089023, using Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

APPENDIX I

REPORT FIGURES

THIS PAGE INTENTIONALLY LEFT BLANK

Fort Stewart UST CAP-A Report UST 71A, Building 1260, Facility ID #9-089023

Figure 1. Location Map of Fort Stewart, Liberty County, Georgia

Figure 2. Site Plan for the UST 71A, Building 1260 Site Investigation

THIS PAGE INTENTIONALLY LEFT BLANK

.

×.

. .

)

THIS PAGE INTENTIONALLY LEFT BLANK

٠

THIS PAGE INTENTIONALLY LEFT BLANK

٠

Figure 6. Potentiometric Surface Map of the UST 71A, Building 1260 Site

.

No additional borings or monitoring well locations are proposed for this site

Figure 8. Proposed Additional Boring/Monitoring Well Locations

×

No tax map is available for Fort Stewart Military Reservation, which is a government owned facility

Figure 9. Tax Map

.

APPENDIX II

REPORT TABLES

(

Fort Stewart UST CAP-A Report UST 71A, Building 1260, Facility ID #9-089023

-

THIS PAGE INTENTIONALLY LEFT BLANK

		Monitoring Well Nur	nber: N/A		
Date of Measurement	Groundwater Elev. (ft AMSL)	Product Thickness (ft)	Corrected Water Elev. (ft AMSL)	Product Removed (gal)	
]	No Free Product	Detected		
			TOTAL	NONE	

TABLE 1: FREE PRODUCT REMOVAL

		Monitoring Well Nu	mber: N/A	······································					
Date of Measurement	Groundwater Elev. (ft AMSL)	Product Thickness	Corrected Water Elev.	Product Removed					
weasurement		(ft)	(ft AMSL)	(gal)					
	l	No Free Product	Detected						
			TOTAL	NONE					

NOTE:

AMSL Above mean sea level.

						Ethyl-		Total			
Sample	Sample	Depth	Date	Benzene	Toluene	benzene	Xylenes	BTEX	TPH		
Location	ID	(ft BGS)	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
81-01	810111	0.0 - 2.0	6/25/98	0.0022 U	0.0516 =	0.0022 U	0.0065 U	0.0516	13.3 =		
81-01	810121	2.0 - 4.0	6/25/98	0.0022 U	0.06 =	0.0022 U	0.0065 U	0.06	60.3 =		
81-02	810211	2.0 - 4.0	6/25/98	0.0023 U	0.0255 =	0.0023 U	0.0069 U	0.0025	19.6 =		
81-02	810221	4.0 - 6.0	6/25/98	0.0022 U	0.0289 =	0.0022 U	0.0064 U	0.0289	53 =		
81-03	810321	0.0 - 2.0	6/26/98	0.0022 U	0.0437 =	0.0022 UJ	0.0065 UJ	0.0437	176 =		
81-04	810411	0.0 - 2.0	6/27/98	0.0021 U	0.0118 =	0.0021 U	0.0064 U	0.0118	8.31 J		
81-04	810421	4.0 - 6.0	6/27/98	0.0022 U	0.0098 J	0.0022 U	0.0064 U	0.0098	6.31 =		
A	pplicable	Standards ¹		0.008	6.0	10	700	NRC	NRC		

TABLE 2a: SOIL ANALYTICAL RESULTS (VOLATILE ORGANIC COMPOUNDS)

NOTES:

Contract for field work was issued prior to the new CAP-A guidance published in May 1998, thus the new analytical methods were not used. 1

Georgia Department of Natural Resources Applicable Soil Threshold Levels (Table A, Column 2)

BGS Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylene

DRO **Diesel Range Organics**

GRO Gasoline Range Organics NRC

No regulatory criteria

TPH Total petroleum hydrocarbon

Laboratory Qualifiers

Indicates that the compound was not detected above the reported sample quantitation limit U

UJ Indicates that the compound was not detected above an approximated sample quantitation limit

Ĵ Indicates that the value for the compound was an estimated value.

Indicates that the compound was detected at the concentration reported. -

Fort Stewart UST CAP-A Report UST 71A, Building 1260, Facility ID #9-089023

TABLE 2b: SOIL ANALYTICAL RESULTS(POLYNUCLEAR AROMATIC HYDROCARBONS)

						PAH Com	pounds (mg	/		
Sample Location	Sample ID	Depth (ft BGS)	Date Sampled	Benzo(a)anthracene	Benzo(a) pyrene	Benzo(b)fluoranthene	Chrysene	Fluroanthene	Pyrene	Total PAHs (mg/kg)
81-01	810111	0.0 - 2.0	6/25/98			<u></u>				ND
81-01	810121	2.0 - 4.0	6/25/98				·····			ND
81-02	810211	2.0 - 4.0	6/25/98							ND
81-02	810221	4.0 - 6.0	6/25/98							ND
81-03	810321	0.0 - 2.0	6/26/98							ND
81-04	810411	0.0 - 2.0	6/27/98							ND
81-04	810421	4.0 - 6.0	6/27/98	0.0551 J	0.0463 J	0.0827 J	0.0519 J	0.0397 J	0.058 J	0.3337
	Applicable	Standards ¹		NRC	NRC	NRC	NRC	NRC	NRC	NRC

NOTES:

Contract for field work was issued prior to the new CAP-A guidance published in May 1998, thus the new analytical methods were not used.

Georgia Department of Natural Resources Applicable Soil Threshold Levels (Table A, Column 2)

ND Not detected; refer to Appendix V, Table V-A, for complete list of PAH results

BGS Below ground surface

N/A Not applicable

PAH Polynuclear aromatic hydrocarbon

Laboratory Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit

- UJ Indicates that the compound was not detected above an approximated sample quantitation limit
- J Indicates that the value for the compound was an estimated value

Indicates that the compound was detected at the concentration reported

(VOLATILE ORGANIC COMPOUNDS)											
						Ethyl -		Total			
Sample	Sample	Depth	Date	Benzene	Toluene	benzene	Xylenes	BTEX			
Location	ID	(ft BGS)	Sampled	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)			
81-01	810112	0 - 10	6/25/98	4.9 J	2 U	2 U	6 U	ND			
81-02	810212	0-10	6/25/98	2 U	2 U	2 U	6 U	ND			
81-03	810312	0 - 10	6/26/98	2 UJ	2. UJ	2 UJ	6 UJ	ND			
81-04	810412	0 – 10	6/27/98	2 UJ	2 UJ	2 UJ	6 UJ	ND			
81-05	810512	8 – 10	6/25/98	2 U	2 U	2 U	6 U	ND			
81-05	810522	13 – 15	6/25/98	2 U	2 Ü	2 U	6 U	ND			
	Applicab	le Standards ¹		-5	700	1000	10000	NRC			

TABLE 3a: GROUNDWATER ANALYTICAL RESULTS

WOLATH E ORGANIC COMPOUNDS

TABLE 3b: GROUNDWATER ANALYTICAL RESULTS (POLYNUCLEAR AROMATIC HYDROCARBONS)

				De	tected PAH C	ompounds (u	g/l)	Total
Sample	Sample	Depth	Date	····				PAH
Location	ID	(ft BGS)	Sampled					(mg/l)
81-01	810112	4.3	6/25/98					ND
81-02	810212	5,1	6/25/98					ND
81-03	810312	4.3	6/26/98					ND
81-04	810412	5.1	6/27/98					ND
81-05	810512	10.0	6/25/98					ND
81-05	810522	15.0	6/25/98					ND
	Applicable	e Standards	3	NRC	NRC	NRC	NRC	NRC

NOTE:

Contract for field work was issued prior to the new CAP-A guidance published in May 1998, thus the new analytical methods were not used. 1

- U.S. Environmental Protection Agency maximum contaminant level
- ND Not detected; refer to Appendix VIII, Table VIII-A, for complete list of PAH results
- BTEX Benzene, toluene, ethylbenzene, and xylene
- Below ground surface BGS
- Not applicable N/A
- NRC No regulatory criteria
- Polynuclear aromatic hydrocarbon PAH

Laboratory Qualifiers

- Ŭ Indicates the compound was not detected at the concentration reported
- UJ Indicates that the compound was not detected above an approximated sample quantitation limit
- J Indicates the value for the compound is an estimated value
- Indicates the compound was detected at the concentration reported =
| | | | IADLE | 5 4. OIX | JUNDWA | LEN ELE | VAIO | GF. | |
|----------------|------------------|--|---------------------------------------|------------|---------------------------------------|-----------------------------|------------------------------|-----------------------------------|--|
| Well
Number | Date
Measured | Ground
Surface
Elev.
(ft MSL) | Top of
Casing
Elev.
(ft MSL) | Interval | Depth of Free
Product (ft
BTOC) | Water
Depth
(ft BTOC) | Product
Thickness
(ft) | Specific
Gravity
Adjustment | Corrected
Groundwater
Elev. (ft MSL) |
| 81-01 | 6/28/98 | 79,49 | 80.37 | 0.0 - 10.0 | N/A | 6.51 | N/A | N/A | 73.86 |
| 81-02 | 6/28/98 | 79.55 | 79.53 | 0.0 - 10.0 | N/A | 5.51 | N/A | N/A | 74.02 |
| 81-03 | 6/28/98 | 79.78 | 80.28 | 0.0 - 10.0 | N/A | 6.17 | N/A | N/A | 74.11 |
| 81-04 | 6/28/98 | 79.55 | 79.87 | 0.0 - 10.0 | N/A | 5.92 | N/A | N/A | 73.95 |

TABLE 4: GROUNDWATER ELEVATIONS

NOTE:

MSL Mean sea level

BGS Below ground surface

BTOC Below top of casing

N/A Not applicable

			() OLIVITE		COMPOUNDS	<u>, , , , , , , , , , , , , , , , , , , </u>		
Sample Location	Depth (ft BGS)	Date Sampled	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH (mg/kg)
			NO SC	DIL WAS CO	DLLECTED			
Applic	able Stand	lards ²	0.008	6	10	700	NRC	NRC

TABLE 5a: UST SYSTEM CLOSURE - SOIL ANALYTICAL RESULTS (VOLATILE ORGANIC COMPOUNDS)

TABLE 5b: UST SYSTEM CLOSURE¹ - SOIL ANALYTICAL RESULTS (POLYNUCLEAR AROMATIC HYDROCARBONS)

			D	etected PAH	Compounds (1	mg/kg)	Total
Sample	Depth	Date					PAHs
Location	(ft BGS)	Sampled					(mg/kg)
·	U	N	O SOIL W	AS COLLE	CTED		
Applicable S	Standards ²		NRC	NRC	NRC	NRC	NRC

NOTE:

ž

Underground storage tank system closure performed by Anderson Columbia Environmental, Inc. (1996)

Georgia Department of Natural Resources Applicable Soil Threshold Levels (Table A, Column 2)

BDL Below detection limit

BGS Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylene

NRC No regulatory criteria.

PAH Polynuclear aromatic hydrocarbon.

Laboratory Qualifiers

U Indicates the compound was not detected at the concentration reported

UJ Indicates that the compound was not detected above an approximated sample quantitation limit

J Indicates the value for the compound is an estimated value

= Indicates the compound was detected at the concentration reported

TABLE 6a: UST SYSTEM CLOSURE1 - GROUNDWATER ANALYTICAL RESULTS (VOLATILE ORGANIC COMPOUNDS)

Sample Location	Depth (ft BGS)	Date Sampled	Benzene (ug/L)	Toluene (ug/L)	Ethyl - benzene (ug/L)	Xylenes (ug/L)	Total BTEX (ug/L)
TK71A-GW	N/A	7/16/96	116 =	100 U	100 U	1070 =	1186
Applic	able Standar	ds²	5	700	1,000	10,000	NRC

TABLE 6b: UST SYSTEM CLOSURE¹ - GROUNDWATER ANALYTICAL RESULTS (POLYNUCLEAR ANALYTICAL RESULTS)

			D	etected PAH C	Compounds (ug	/L)	
Sample Location	Depth (ft BGS)	Date Sampled	2-Methyl- naphthalene				Total PAHs
TK71A-GW	N/A	7/16/96	2140 =				(μg/L) 2140
							-
· · · · · · · · · · · · · · · · · · ·			·				-
Applic	able Standar	ds²	NRC	NRC	NRC	NRC	NRC

NOTE:

- ¹ Underground storage tank system closure performed by Anderson Columbia Environmental, Inc. (1996)
- 2 U.S. Environmental Protection Agency maximum contaminant levels
- BGS Below ground surface
- BTEX Benzene, toluene, ethylbenzene, and xylene
- N/A Not applicable
- ND Not detected
- NR Not required; PAH analysis was not requested for these samples
- NRC No regulatory criteria.

Laboratory Qualifiers

- U Indicates the compound was not detected at the concentration reported
- UJ Indicates that the compound was not detected above an approximated sample quantitation limit
- J Indicates the value for the compound is an estimated value
- = Indicates the compound was detected at the concentration reported

)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX III

WATER RESOURCES SURVEY DOCUMENTATION

THIS PAGE INTENTIONALLY LEFT BLANK

ε

WATER RESOURCES SURVEY DOCUMENTATION

1.0 LOCAL WATER RESOURCES

As required by the GA EPD UST CAP-Part A guidance, a water resource survey documenting information for public and non-public water supply wells, surface water bodies, underground utilities, and potential receptors was conducted for the Fort Stewart UST investigation sites. The information presented in this appendix provides the supporting documentation for Section II.D.3 of the CAP-Part A Form.

1.1 WATER SUPPLY WELL SURVEY

The water supply well survey was conducted using the following GA EPD guidelines/requirements:

- Fort Stewart is located in an area of average or higher groundwater pollution susceptibility.
- Locate all public supply wells as defined by GA EPD that exist within 2 miles of the investigation sites.
- Locate all non-public supply wells that exist within 0.5 miles of the investigation sites.
- Locate all supply wells nearest the investigation sites.
- Locate all wells downgradient of the investigation sites.

A total of seven groundwater supply wells are located within a 2-mile radius of the Fort Stewart garrison area. Six of these wells are located within the confines of the garrison area. The other well is located at Wright Army Airfield, approximately 1.2 miles northeast of the garrison area. All of the groundwater supply wells are classified as public wells that supply water to Fort Stewart for drinking and nondrinking purposes. These wells are approximately 450 feet deep and draw groundwater from the Principal Artesian (also known as the Floridan) aquifer. Chlorine and fluoride are added into the groundwater at the well heads prior to being pumped into storage tanks and/or water towers, according to Fort Stewart DPW personnel. The location of these wells, along with a 500-foot radius drawn around each well, is shown in Figure 3.

1.2 SURFACE WATER BODIES

Surface water(s) in the State of Georgia, as defined by Rules and Regulations for Water Quality Control, Chapter 391-3-6, shall mean any and all rivers, streams, creeks, branches, lakes, reservoirs, ponds, drainage systems, springs producing 100,000 gallons per day, and all other bodies of surface water, natural or artificial, lying within or forming part of the boundaries of the state, which are not entirely confined and retained completely upon the property of a single individual, partnership, or corporation. The surface water body survey was conducted using the following GA EPD guidelines/requirements:

- surface water bodies that exist within 1 mile of the investigation sites,
- all surface water bodies nearest the investigation sites if these bodies lie outside the 1-mile radius of concern,

- all surface water bodies downgradient of the investigation sites, and
- the storm and sanitary sewers adjacent to the investigation sites.

Several surface water bodies are located within a 1-mile radius of the Fort Stewart garrison area. These are shown in Figure 3 and include Mill Creek, Taylors Creek, Peacock Creek, Childpen's Pond, and two unnamed ponds. Mill Creek extends along the western side of the garrison area and flows into Taylors Creek located approximately 0.75 miles northwest of the garrison area, Taylors Creek then flows northward approximately 3.5 miles to its confluence with Canoochee Creek. Peacock Creek originates near the east corner of the garrison area and flows southward from the garrison. Mill Creek, Taylors Creek, and Peacock Creek all have natural streambeds and exhibit perennial flow.

Childpen's Pond is located at the northwest end of the garrison area. The two unnamed ponds are located at the northwest end of the facility golf course in the vicinity of Childpen's Pond. All of the ponds are isolated water bodies that are relatively small in size, measuring less than 500 feet in diameter.

Typically, surface water run-off from the UST site moves over the existing concrete and asphalt cover to the Fort Stewart storm water drainage system. Since petroleum contamination at the sites primarily impacts surficial groundwater, the surface water run-off pathway is not a viable contaminant transport mechanism because of the concrete acting as a barrier and the location of the nearest surface water body.

2.0 POTENTIAL RECEPTOR SURVEY SUMMARY OF THE UST 71A SITE

A field potential receptor survey was conducted for the UST 71A site in June 1998. The site and adjacent areas were surveyed for locations of surface water bodies, utility lines, and basements. Basements do not exist in the buildings adjacent to the site. Additional information, provided by DPW, was used to determine the location of the nearest public and non-public water supply wells and downgradient surface water bodies not located during the field survey.

2.1 Water Supply Wells Near the UST 71A

The UST 71A site is located approximately 2650 feet northwest (upgradient) of Well #1. Therefore, the UST 71A site is classified as being located greater than 500 feet to a withdrawal point. The nearest downgradient water supply well is Well #3. This well is located 3950 feet northwest of the UST 71A site.

2.2 Surface Water Bodies Near the UST 71A Site

At the closest point, Mill Creek is located approximately 2500 feet southwest of the UST 71A site. In the direction of groundwater flow, Childpen's Pond is located approximately 7250 feet northwest of the UST 71A site. Based on the distances between the UST and the nearest surface water body, the site is classified as being located greater than 500 feet to a downgradient surface water body.

2.3 Underground Utilities Near the UST 71A Site

Water and sanitary sewer lines are located approximately 30 feet southwest (side gradient) of the site and run parallel to McFarland Avenue. The depth of these lines is estimated to be approximately 4 to 6 feet BGS.

APPENDIX IV

SOIL BORING LOGS

-

THIS PAGE INTENTIONALLY LEFT BLANK

			HTRW DRILL	ING LOG			HOLE NUMBER 81-01
	PROJEC	· · ·		SPECTOR 5	K. Ledbe		SHEET 1 OF
	ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
yere e		1	Concrete Sandy SILT, 15% fine to medium grained sand, subrounded, soft, dry, (104R3/3)	6.5ppm		Soil Sample &12111	Ran 4.0, Rec.
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dark brown color grading to (104R5/6) yellowish brown No Recovery	5,5 _{ppm}		Soil Sample BIOIZI	
		5 111 6 7 8 8					V Wet below 4.3FT BGS Ran H.O Rec. H.D
		, , , , , , , , , , , , , , , , , , ,					Drilled to 10.0FT Bos. Set piezometer

ĺ

		HTRW DRILL	ING LOG			HOLE NUMBER & 1.02
ROJEC	T: Fort St	lewart USTs IN	SPECTOR 5	K. Ledk	setter	SHEET 1 OF 1
elev. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
		Concrete Sandy SILT, 15% medium grained Sand, subrounded, Soft, dry, (104R3/3) dark brown, mothled with (104R6/3)	Оррт			Ran 4.0 Rec 4.0
		dark brown, mottled with (10486/3) pale brown	Оррт		Soil Sample 810211	
	5 1 1 1 1 1 1 1 1 1		Oppm		Soil Sample &10221	Ran4.0 Rec. 4.0 Wet below 5.1 FT BGS
	8 8		N/A			
	, , , , , , , , , , , , , , , , , , ,					Drilled to 10.0FT BGS. Set piezometer

PROFEC	T: Fort S	HTRW DRILL		J.K. Ledk	better	HOLE NUMBER 81.0
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	SHEET 1 OF \ REMARKS (G)
		(oncrete Sandy SILT, 5% fine grained, subrounded, Sand, Soft, dry, (104R4/3) brown			Soil Sample 810321	
		Shelby Tube	N/A	Soil Sample 210331		
	2 · · · · · · · · · · · · · · · · · · ·	Same as above, wet				Vet below 4.3FT B65
	8 8 8 11111111 8					Drilled to 10.0 FT BGS. Set piezometer

		HTRW DRILL	ING LOG		<u> </u>	HOLE NUMBER 81-04	
PROJECT	C: Fort St			K. Ledb	better	SHEET 1 OF \	
ELEV. (Å)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)	
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Concrete Silty SAND, 30% Silt, fine to medium grained, subrounded sand, soft to firm, dry. (104R4/3) brown			Soil Sample BIO411		
	************		34ppm				
	•	Mo Recovery same as above					
	• • • • • • • • • • • • • • • • • • • •	0.8FT TO 3.0FT BGS	45ppm		Soil Sample BIDHZI	Wet below 5.1 FT BGS	
	•	No Recovery			N A		
		•					
	* * 11111111						
	10					Drilled to 10.0FT BGS. Set piezometer	

APPENDIX V

SOIL LABORATORY REPORTS

(

THIS PAGE INTENTIONALLY LEFT BLANK

	TABL	TABLE V-A. SUMMARY OF SOIL ANALYTICAL RESULTS	IMARY OF	SOIL ANA	NEXTICAL	RESULTS		
Station:	Georgia UST	81-01	81-01	81-02	81-02	81-03	81-04	81-04
Sample ID:	Corrective	810111	810121	810211	810221	810321	810411	810421
Sample Interval:	Action	0.0' - 2.0'	2.0' - 4.0'	2.0' - 4.0'	4.0' - 6.0'	0.0' - 2.0'	0.0' - 2.0'	4.0'-6.0'
Collection Date:	Levels for Soil ¹	25-Jun-98	25-Jun-98	25-Jun-98	25-Jun-98	26-Jun-98	27-Jun-98	27-Jun-98
Units:	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(me/kg)	(mø/kø)
VOLATILE ORGANIC COMPOUNDS	L.)	ð	6	à	0		(q., q)
Benzene	0.008	0.0022 U	0.0022 U	0.0023 U	0.0022 U	0.0022 U	0.0021 U	0.0022 11
Toluene	6	0.0516 =	0.06 =	0.0255 =	0.0289 =	0.0437 =		
Ethylbenzene	10	0.0022 U	0.0022 U	0.0023 U	0.0022 U	0.0022 UJ	0.0021 U	0.0022 11
Xylenes, Total	700	0.0065 U	0.0065 U	0.0069 U	0.0064 U		0.0064 11	0.0064 11
POLYNUCLEAR AROMATIC HYDRO	DROCARBONS							
2-Chloronaphthalene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Acenaphthene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Acenaphthylene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Anthracene	NRC	0.362 U	0.362 U	1.53 U	I.43 U	1.45 U	3.55 U	0.358 U
Benzo(a)anthracene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.0551 J
Benzo(a)pyrene	NRC	0.362 U	0.362 U	1,53 U	1.43 U	1.45 U	3.55 U	0.0463 J
Benzo(b)fluoranthene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.0827 J
Benzo(g,h,i)perylene	NRC	0.362 U	0.362 U	1.53 U	1.43. U	1.45 U	3.55 U	0.358 U
Benzo(k)fluoranthene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Chrysene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.0519 J
Dibenzo(a,h)anthracene	NRC		0.362 U	1.53. U	1.43 U	1.45 U	3.55 U	0.358 U
F luoranthene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.0397 J
r luorene	NRC	0.362 U	0.362 U	1.53° U	1.43 U	1.45 U	3.55 U	0.358 U
Indeno(1,2,3-cd)pyrene	NRC		0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Naphthalene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Phenanthrene	NRC		0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.358 U
Pyrene	NRC	0.362 U	0.362 U	1.53 U	1.43 U	1.45 U	3.55 U	0.058 J
OTHER ANALYTES						1) 	
Lead	NRC		7.4 =		2.4 =	= 11		= 9'S
Total Organic Carbon	NRC					6520 =		5
Total Petroleum Hydrocarbons	NRC	13.3 ==	60.3 =	19.6 =	53 =	176 =	8.31 J	6.31 =
NOLE: Contract for field work was issued prior to the new CAP-A guidance published in May 1998, thus the new analytical methods were not used.	ior to the new CAP-A g	uidance publishe	d in May 1998,	thus the new an	alytical methods	s were not used.		

Georgia Department of Natural Resources Applicable Soil Threshold Levels (Table A, Column 2) <u>...</u>

Bold values exceed soil threshold levels

No regulatory criteria NRC

QA/QC samples were collected. The laboratory data sheets have been included in this appendix, but the results are not summarized.

Laboratory Qualifiers U Indicates that the compound was not detected above the reported sample quantitation limit UI Indicates that the compound was not detected above an approximated sample quantitation limit

Indicates that the value for the compound was an estimated value. Indicates that the compound was detected at the concentration reported. 55**.** "

98-160PS(doc-71A-4si) 111098

Fort Stewart UST CAP A Report UST 71A, Building 1260, Facility ID #9-089023

THIS PAGE INTENTIONALLY LEFT BLANK

25

LW -8-05-78

FORM I SV-1

OLM03.0

Project D	Contact:	P.O. Box 2502 800 Oak Ridge T Oak Ridge, Tenn Ms. Lorene Rolli CAP-Part A for L	essee 37831							
∝: SAIC00598		Re	port Date: July 09, 19	998					E	age 1 of 1
	Sample Lab ID Lab ID Matrix Date Co Date Rec Priority Collector	liected selved	: 810111 : 9806805-14 : Soil : 06/25/98 : 06/26/98 : Routine : Client		DAT			LID/)PY	AT I	ON
Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
General Chemistry Total Rec. Petro, H		13.3	2.16	10.0	mg/kg	1.0	ЛР	06/30/98	1600	125127 1
M = Method			Method-Description	on -			<u> </u>			····
indicates presence indicates that the s	e analyte was not of analyte at a con malyte was not de	detected at a conc accentration less th tected at a concer	EPA 418.1 Modif entration greater than 1 an the reporting limit (intration greater than the	he detection RL) and gre	ater than the c	ietectia	n limit	(DL).		8
his data report has l accordance with C andard operating pa	eneral Engineerin occdures, Please	reviswed 1g Laboratories direct	(803) 769-7391.	lance criteri	8.				•	-

Reviewed By

(

-, *

9806805-14

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	810113
Lab Code: NA Case No.: NA SAS No.: NA	SDG No.: FS4A03S
Matrix: (soil/water) SOIL Lab	Sample ID: 9806805-10
Sample wt/vol: 10.0 (g/mL) G Lab	File ID: 2P2032
Level: (low/med) LOW DATA VALIDATIONS * Moisture: not dec. 10 COPY Date	
* Moisture: not dec. 10 Date	Analyzed: 07/01/98
GC Column: J&W DB-624 (PID) ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(ml) Soil	Aliquot Volume:(uL)
CAS NO. COMPOUND CONCENTRAT	ION UNITS: g/Kg) UG/KG Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

~

••

.

)

FORM I VOA

,

26

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. 810113 Lab Name: GENERAL ENGINEERING LABOR Contract: NA Lab Code: NA Case No.: NA SAS No : NA SDG No.: FS4A03S Matrix: (soil/water) SOIL Lab Sample ID: 9806805-10 Sample wt/vol: 30.0 (g/mL) G Lab File ID: 7B317 Level: (low/med) LOW Date Received: 06/26/98 % Moisture: 10 decanted: (Y/N) DIATAVDate Extracted:06/29/98 Concentrated Extract Volume: 1.00(mL)COEPAnalyzed: 07/09/98 Injection Volume: 1.0(uL) Dilution Factor: 4.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 91-20-3----naphthalene U 1480 U 91-58-7-----2-chloronaphthalene 1480 U 208-96-8----acenaphthylene 1480 U 83-32-9----acenaphthene 1480 U 86-73-7----fluorene 1480 U 85-01-8-----phenanthrene 1480 U 120-12-7----anthracene 1480 U 206-44-0----fluoranthene 1480 U 1480 U 129-00-0-----pyrene 56-55-3-----benzo (a) anthracene 1480 U 218-01-9----chrysene 1480 Ŭ 205-99-2----benzo (b) fluoranthene 1480 U 207-08-9-----benzo(k)fluoranthene 1480 U 50-32-8-----benzo (a) pyrene 193-39-5-----indeno (1, 2, 3-cd) pyrene 53-70-3-----dibenz (a, h) anthracene 1480 U 1480 U 1480 U 191-24-2-----benzo(g,h,i)perylene_ 1480 U

> LW 8-05-98

133

FORM I SV-1

	Client	Science Applie	ations International Corp.										
		P.O. Box 2502		•									
		800 Oak Ridge											
		Oak Ridge, Ter											
	Contact:	Ms. Lorene Ro											
Project D	escription:	CAP-Part A for	UST Sites (Task Order I	No. 8)									
cc: SAIC00598		1	Report Date: July 09, 19	98					ŝ	Page 1 c	of 1		
	Sample	D	: 810113										
Lab ID Matrix Date Collected Date Received			: 9806805-10	D A - A									
			: Soil		DAIA	VALIDATION				N	1		
			: 06/25/98						ايے لا ہ	a 31			
			: 06/26/98			Ć	O	Þγ					
	Priority		: Routine				- •	•					
	Collecto	or	: Client										
Parameter	Qualifier	Result	DL	RL	Units	DF	Апа	lyst Date	Time	Batch	м	-	
Seneral Chemistry				·····	<u> </u>							-	
Total Rec. Petro. H	lydrocarbons	83.2	2.20	1 <u>0</u> .0	mg/kg	1.0	JLP	06/30/98	1600	125122	/ 1	= 1	-0
M = Method	······································	<u></u>	Method-Descriptio				••••	·····				-	
M 1			EPA 418.1 Modifi		<u></u>					<u> </u>		-	
			** C-+10-1 MOOILI	CQ							-	.ω	
r .											ଟ-	18-96	}
Notes:													
he qualifiers in this	report are define	ed as follows:											
indiantes mar me	analyte was not	t detected at a co	ncentration greater than th	be detection	u limit.					7			
indicates presence (or analyte at a co	incentration less	than the reporting limit (I	₹L) ∎id g	rester than the de	toctio	o limi	t (DL).					
manual effet effet e	muthic was the o	ciccied at a conc	chiration greater than the	detection	limit			• -	•		_		
mercenes mar a dina	uny control mary	yte recovery is or	utside of specified accept	ance crite;	na.								
his data report has l	been prepared an	d reviewed											
accordance with G	eneral Engineeri	ng Laboratories											

standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (803) 769-7391.

_

-

Reviewed By

264

LA VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.						
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	810121						
Lab Code: NA Case No.: NA SAS No.: NA SDG No	D.: FS4A03S						
Matrix: (soil/water) SOIL Lab Sample ID: 9	9806805-17						
Sample wt/vol: 10.0 (g/mL) G Lab File ID: 2	2P2026						
Level: (low/med) LOW DATA VALIDA PROPRECEIVED: 0	6/26/98						
* Moisture: not dec. 8 COPY Date Analyzed: 07/01/98							
GC Column: J&W DB-624 (PID) ID: 0.53 (mm) Dilution F	actor: 1.0						
Soil Extract Volume:(ml) Soil Aliquot Vol	.ume:(uL)						
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q						
108-88-3Toluene 6 100-41-4Ethylbenzene 6	2.2 U U 0.0						
	دن 8-05-98						

FORM I VOA

(

LW &-05-98

OLM03.0

Project De	Contact;	P.O. Box 2502 800 Oak Ridge T Oak Ridge, Tenn Ms. Lorene Rolli	cssee 37831								
cc: SAIC00598	C00598 Report Date: July 09, 1998								1	Page 1 of 1	
•	Sample I Lab ID Matrix Date Coll Date Rec Priority Collector	ected zived	: 810121 : 9806805-17 : Soil : 06/25/98 : 06/26/98 : Routine : Client		DAT			LID	ATI	ON	_
Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch M	
General Chemistry Total Rec. Petro. Hydrocarbons 60.3		60,3	2.16	10.0	mg/kg	1.0	JLP	06/30/9	8 1600	125127 1	-
M = Method		<u> </u>	Method-Description	n	<u> </u>	,	<u> </u>	····- <u>-</u> ·			—
M1			EPA 418.1 Modifi	cd						دس <u>8-18-</u> 98	
Notes: The qualifiers in this : ND indicates that the J indicates presence o U indicates that the an * indicates that a qual This data report has b in accordance with G standard operating pro-	analyte was not d f analyte at a con- nalyte was not der lity control analytic cen prepared and eneral Engineerin	etected at a conc centration less th ected at a concer a recovery is out reviewed g Laboratories	an the reporting limit (uration greater than the	RL) and gre detection]	ester than the d limit.	etectio	n limi	t (DL).			

Reviewed By

*

ĺ

÷.*

_

Form I:	Inorganic Analyses Data Sheet	
---------	-------------------------------	--

SDG No.: FS4A03S

Method Type: Total Metals

Sample ID: 9806805-17					Cli	Client ID: 810121						
Contract: SAICO	0598 Lab C	Lab Code: GEL				Case No.: SAS No.:						
Matrix: SOIL	Date F	Date Received: 6/26/98					Level: LOW					
% Solids: 92.00			<u> </u>									
AS No. Analy	e Concentration	Units	Ç	Qual	м	DL	Instrument ID	Analytical Run				
7439-92-1 Lead	7.4	mg/kg			P	0.16	TJA61 Trace ICPAES	980701-3				
Color Before:		Clarity Before:					Texture:					
Color After: Clarity After:		er:	Artifacts:									
Comments:						<u> </u>						
					<u></u>		<u></u>					
						D	ATA VALIE	ATION				
							COPY					
						•						

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	810211
Lab Code: NA Case No.: NA SAS No.: NA SDG	No.: FS4A03S
Matrix: (soil/water) SOIL Lab Sample ID	: 9806805-11
Sample wt/vol: 10.0 (g/mL) G Lab File ID:	2P2018
Level: (low/med) LOW DATA VALIDATION Received	: 06/26/98
* Moisture: not dec. 13 COPY Date Analyzed:	: 06/30/98
GC Column: J&W DB-624 (PID) ID: 0.53 (mm) Dilution	Factor: 1.0
Soil Extract Volume:(ml) Soil Aliquot V	/olume:(uL)
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/H	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	2.3 U U 25.5 = 2.3 U U 6.9 U U

دس 8-05-98

FORM I VOA

٠

LW 8-15-98

OLM03.0

FORM I SV-1

Project De	I 8 (Contact: }	P.O. Box 2502 800 Oak Ridge T Oak Ridge, Tenns Ms. Lorene Rollin	assec 37831								
cc: SAIC00598		Re					Page 1 of 1				
	Sample II Lab ID Matrix Date Coll Date Reco Priority Collector	ected tived	: 810211 : 9806805-11 : Soil : 06/25/98 : 06/26/98 : Routine : Client		DAT	-		LIDA PY	\TI(DN	
Parameter	Qualifier	Result	DL	RL.	Units	DF	Anal	st Date	Time	Batch M	
General Chemistry Total Rec. Petro, Hy	/diocarbons	19.6	2.28	10.0	mg/kg	1.0	ЛЪ	06/30/9	8 1600	125127 1 =	F
M = Method	··· <u>··· ········</u> ··· <u>···</u>		Method-Description	оп _~				<u> </u>			
M1			EPA 418.1 Modif	īed						د بن 8-18-9	8
Notes: The qualifiers in this :										U 10 I	-
indicates presence o J indicates that the ar	f analyte at a conv alyte was not det	centration less the	entration greater than it an the reporting limit (uration greater than the side of specified accep	RL) and gre e detection 1	ater than the o imit.	detection	a limit	(DL).		- .	
his data report has b accordance with Ge andard operating pro ty questions to your	neral Engineering cedures. Please d	g Laboratories irect	(803) 769-7391.						٠	-	

Reviewed By

<u>_</u>___

_

-

9806805-11

.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	810221
Lab Code: NA Case No.: NA SAS No.: NA SDG	No.: FS4A03S
Matrix: (soil/water) SOIL Lab Sample ID	: 9806805-15
Sample wt/vol: 10.0 (g) mIn G Lab File ID:	2P2022
Matrix: (soil/water) SOIL Lab Sample ID Sample wt/vol: 10.0 (g/mL) G Lab File ID: Level: (low/med) LOW COPY Date Applymed	: 06/26/98
* Moisture: not dec. 7 GOPY Date Analyzed	: 06/30/98
GC Column: J&W DB-624 (PID) ID: 0.53 (mm) Dilution	n Factor: 1.0
Soil Extract Volume:(ml) Soil Aliquot V	Volume:(uL)
CONCENTRATION UNITS CAS NO. COMPOUND (ug/L or ug/Kg) UG/I	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

.

دن <u>ر</u> 8-20-98

FORM I VOA

.

18 EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET 810221 Lab Name: GENERAL ENGINEERING LABOR Contract: NA Lab Code: NA Case No.: NA SAS No.: NA SDG No.: FS4A03S Matrix: (soil/water) SOIL Lab Sample ID: 9806805-15 Sample wt/vol: 30.0 (g/mL) G Lab File ID: 7B322 DATA VALIDATEOReceived: 06/26/98 Level: (low/med)LOW decanted: (Y/N) \$COPY Date Extracted:06/29/98 % Moisture: 7 Concentrated Extract Volume: 1.00 (mL) Date Analyzed: 07/09/98 Injection Volume: 1.0(uL)Dilution Factor: 4.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 91-20-3----naphthalene 1430 U U 91-58-7-----2-chloronaphthalene 1430 U 208-96-8----acenaphthylene 1430 U 83-32-9-----acenaphthene_ 1430 U 86-73-7-----fluorene 1430 U 85-01-8-----phenanthrene 1430 U 120-12-7----anthracene 1430 U 1430 U 1430 U 206-44-0----fluoranthene 129-00-0-----pyrene 56-55-3-----benzo(a) anthracene___ 1430 U 218-01-9-----chrysene 205-99-2-----benzo (b) fluoranthene 207-08-9-----benzo (k) fluoranthene 1430 U 1430 U 1430 U 50-32-8----benzo (a) pyrene 1430 U 193-39-5-----indeno (1,2,3-cd) pyrene 53-70-3----dibenz (a, h) anthracene 1430 U 1430 U 191-24-2-----benzo(g,h,i)perylene 1430 U

> ີ ໄພີ _ 8-05-98

> > OLM03.0

FORM I SV-1

139

	Client:	Science Applica	tions International Corp								
		P.O. Box 2502	_								
		800 Oak Ridge]									
		Oak Ridge, Tenr									
Project Des		Ms. Lorene Roll									
	wither and	CAF-PRILA IOF	UST Sites (Task Order]	No. 8)							
cc: \$AIC00598		Report Date: July 09, 1998									
	Sample I	D	: 810221				·				
Lab I Marri Date (Date 1			: 9806805-15		DATA	110: 10					
		_	: Soil : 06/25/98 : 06/26/98			VILL	ALIDATION				
						VALIDATION COPY		11			
		reived									
	Priority		: Routine								
	Collector		: Client								
Parameter	Qualifier	Result	DL	RL	Units	DF Anal	yst Date 7	Cime	Batch M		
eneral Chemistry					······································				DACCI M		
Total Rec. Petro. Hyo	drocarbons	53.0	2.14	10.0	mg/kg	1.0 JLP	06/30/98 1	.600	125127 1		
M = Method			Method-Description				·				
M 1	<u> </u>		EPA 418.1 Modifie	_							
									LW		
									8-18-98		
otes:											
he qualifiers in this re	TOIT are defined	as follower									
he qualifiers in this re D indicates that the g	nalyte was not d	letected at a como	entration operation of of	T	. .						
he qualifiers in this re D indicates that the a indicates presence of	nalyte was not d analyte at a conc	etected at a cone	couration greater than th	- b							
he qualifiers in this re D indicates that the a indicates presence of indicates that the ana	nalyte was not d analyte at a conc alyte was not deu	centration less the	an the reporting limit (R	L) and g	reater than the	detection limit	(DL).		-		
he qualifiers in this re D indicates that the a indicates presence of indicates that the ana	nalyte was not d analyte at a conc alyte was not deu	centration less the	entration greater than th an the reporting limit (R uration greater than the tide of specified accepts	L) and g	reater than the	detection limit	(DL).	ů	-		
he qualifiers in this re D indicates that the a indicates presence of indicates that the ana indicates that a qualir	nalyte was not d analyte at a conc alyte was not deu y control analyte	letected at a conce centration less the acted at a concent a recovery is outs	an the reporting limit (R	L) and g	reater than the	detection limit	(DL).	ů	-		
he qualifiers in this re D indicates that the an indicates presence of indicates that the ana indicates that a qualir this data report has been	malyte was not d analyte at a conc alyte was not deu y control analyte m prepared and s	letected at a concentration less the contration less the acted at a concentration of a recovery is outs reviewed	an the reporting limit (R	L) and g	reater than the	detection l imit	(DL).	٠	-		
indicates that the ma	malyte was not d analyte at a conc alyte was not det y control analyte m prepared and t teral Engineering	letected at a conce contration less the acted at a concent a recovery is outs reviewed a Laborancies	an the reporting limit (R	L) and g	reater than the	detection l imit	(DL).	÷	-		

Reviewed By

- *

-

-

13

Form 1: Inorganic Analyses Data Sneet

•

Method Type: Total Metals

Sampl	e ID: 9806805-	15				C	ient ID: 81	0221	
Contract: SAIC00598 Lab Code:		ode:	GEL		C	use No.:	SAS No.:		
Matri	:: SOIL	Date R	cceived:	6/2.6/5	8	Le	vel: LOW		
% Sol	ds: 93.00								
AS No.	Analyte	Concentration	Units	C	Qual	м	DL	Instrument ID	Analytical Run
439-92-1	Lead	2.4	mg/kg			P	0.16	TJA61 Trace ICPAES	980701-3
Color B	efore:		Clarit	ty Bef	ore:			Texture:	······································
Color A	fter:		Clari	y Aft	er:			Artifacts:	
Comment	5:								

DATA VALIDATION COPY

1Å VOLATILE ORGANICS ANALYSIS	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR Co	ontract: NA
Lab Code: NA Case No.: NA	SAS No.: NA SDG No.: FS4A11S
Matrix: (soil/water) SOIL	Lab Sample ID: 9806844-17
Sample wt/vol: 10.0 (g/mL) G	Lab File ID: 2P3037
Level: (low/med) LOW	Date Received: 06/29/98
% Moisture: not dec. 8	Date Analyzed: 07/02/98
GC Column: J&W DB-624 (PID) ID: 0.53 (n	m) Dilution Factor: 1.0
Soil Extract Volume:(ml)	Soil Aliquot Volume: (uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	2.2 U 43.7 = 0.5 U U U U U U U U U U U U U U
	دىر

•

4-06-9B

FORM I VOA
SEMIVOLATI	1B LE ORGANICS ANALYSIS DATA	ASHEET	EPA SAMPLE NO.
Lab Name: GENERAL EN	GINEERING LABOR Contract	: NA	810321
Lab Code: NA	Case No.: NA SAS No.	: NA SDG	No.: FS4A11S
Matrix: (soil/water)	SOIL	Lab Sample ID:	9806844-17
Sample wt/vol:	30.0 (g/mL) G	Lab File ID:	4B512
Level: (low/med)	TOM	Date Received:	06/29/98
% Moisture: 8	decanted: (Y/N) N	Date Extracted	:07/06/98
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	07/10/98
Injection Volume:	1.0(uL)	Dilution Facto	r: 4.0
GPC Cleanup: (Y/N)	N pH: 7.0		

COMPOUND

CAS NO.

1

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

91-20-3	$\begin{array}{cccc} 1450 & U \\ 1$	
---------	---	--

دي 8-10-98

FORM I SV-1

OLM03.0

Project De	P 8 C Contact: M	.O. Box 2502 00 Oak Ridg 0ak Ridge, Te 1s. Lorene Re	e Tumpike ennessee 37831	-										
cc: SAIC00598			Report Date:	йцу 14, 1 <u>9</u>	998					P	age 1 of	fi		
	Sample II Lab ID Matrix Date Colle Date Rece Priority Collector	ected	: 8103 : 9806 : Soil : 06/2 : 06/2 : Rout : Clier	5844-17 6/98 9/98 tine										
Parameter	Qualifier	Result		DL	RL	Units	DF	Ána	lyst Date	Time	Batch	М		
General Chemistry Total Rec. Petro. H TOTAL ORGANI		176) 6520		2.16 24.1	10.9 100	mg/kg mg/kg	1.0 1.0	Л.Р L.S	07/09/98 07/09/98		125709 125629		ţ) T	F,
M = Method			Method-	-Descripti										
M 1 M 2	<u></u>			18.1 Modii 9060 moo								24 2-2	ں ۱-۹۱	B.

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

This data report has been prepared and reviewed

in accordance with General Engineering Laboratories

standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (803) 769-7391.

Reviewed By

,

D * *** A	しまかし 目的に いたていた
	Terms 1. In angamia Analyzar Data Sheet
	VALCAT Form 1: Inorganic Analyses Data Sheet

Sample ID: 9806844-17	<u> </u>				CI	ient ID: 81	10321		
Contract: SAIC00598	Lab Co	ode:	GEL		Case No.:		SAS No.:		
Matrix: SOIL	Date Re	ceived:	6/2,9/9	8	Le	vel: LOW	1		
% Solids: 92.00									
AS No. Analyte	Concentration	Units	С	Qual	M	DL	Instrument ID	Analytical Run	
439-92-1 Lead	17.0	mg/kg			P	0.16	TJA61 Trace ICPAES	980630-1	
Color Before:	····	Clari	ty Bef	ore:			Texture:	<u> </u>	
00101 20101 01									

•

DATA VALIDATION COPY	IS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR		810411
Lab Code: NA Case No.: NA	SAS No.: NA SDG	No.: FS4A10S
Matrix: (soil/water) SOIL	Lab Sample ID	
Sample wt/vol: 10.0 (g/mL) G	Lab File ID:	2P3025
Level: (low/med) LOW	Date Received	: 06/29/98
<pre>% Moisture: not dec. 6</pre>	Date Analyzed	: 07/02/98
GC Column: J&W DB-624 (PID) ID: 0.53	<i>,</i> ,	1 Factor: 1.0
Soil Extract Volume:(ml)		Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/H	G Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ιω 8-14-98

...

~`

FORM I VOA

DATA VSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Lab Name: GENERAL ENGINEERING LABOR Contract: NA EPA SAMPLE NO. Lab Code: NA 810411 Case No.: NA SAS No.: NA Matrix: (soil/water) SOIL SDG No .: FS4A10S Sample wt/vol: Lab Sample ID: 9806843-13 30.0 (g/mL) G Lab File ID: Level: (low/med) 7B422 LOW % Moisture: 6 Date Received: 06/29/98 decanted: (Y/N) N Date Extracted:07/01/98 Concentrated Extract Volume: 1.00(mL) Injection Volume: 1.0(uL) Date Analyzed: 07/10/98 Dilution Factor: 10.0 GPC Cleanup: (Y/N) N PH: 7.0

~~ ~ ~

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	
208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8 193-39-5	naphthalene 2-chloronaphtha acenaphthylene fluorene fluorene fluoranthrene 	lene 3 3 3 <t< td=""><td>Q 550 U 550 U</td></t<>	Q 550 U 550 U

LW 8-14-98

FORM I SV-1

	Client:	Sairman An-									
		P.O. Box 250	lications International Con	 .							
		800 Oak Rid									
		Oak Ridge 7	Comessee 37831								
	Contact:	Ms. Lorene F	Colline								
Project Des	cription:		for UST Sites (Task Order	No 91							
cc: SAIC00598											
			Report Date: July 14, 1	1998						Page 1 of 1	
	Sample		: 810411								
	Lab ID		: 9806843-13								
	Matrix		: Soil								
	Date Co		: 06/27/98								
	Date Re		: 06/29/98								
	Priority		: Routine								
····	Collecto	u.	: Client								
Parameter	Qualifier	Result	DL	RL	Units						
General Chemistry							Anal	yst Date	Time	Batch M	
Total Rec. Petro, Hyd	rocarbons J	8.31	ZJ 2.10	10.6	mg/kg	1.0	ĴГР	06/30/98	1600	125127 1-	- ·
M = Method			MAR 0/17	100							
			Method-Descriptio								
M 1			EPA 418.1 Modifi	od				<u> </u>			-
0165											
he qualifiers in this rep D indicates they do	port are defined	l as follows:									
	HIVE was not a	J	ncentration greater than th								
indicates presence of a	nalyte at a con	centration less	that the reporting limit of		limit.						
unicates that the anal	yte was not det	iected at a conc	ncentration greater than the than the reporting limit (R cutration greater than the		ater than the de	tection	limit (DL).		-	
unicates that a quality	control analyti	a recovery is or	entration greater than the utside of specified accepta	merechini li	1011						
			tha		Le					-	
-	TITER AND A	reviewed									
is data report has been	- brefraten IMI										
is data report has been accordance with Gene	TAT Fride and	Tates							-		
is data report has been accordance with Gene ndard operating process / questions to your Pro-	tal Engineering	g Laboratories									

Reviewed By

...

LA VOLATILE ORGANICS ANALYS	SIS DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR	Contract: NA
Lab Code: NA Case No.: NA	SAS No.: NA SDG No.: FS4A11S
Matrix: (soil/water) SOIL	Lab Sample ID: 9806844-01
Sample wt/vol: 10.0 (g/mL) G	Lab File ID: 2P3027
Level: (low/med) LOW	Date Received: 06/29/98
* Moisture: not dec. 7	Date Analyzed: 07/02/98
GC Column: J&W DB-624(PID) ID: 0.53	(mm) Dilution Factor: 1.0
Soil Extract Volume:(ml)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (tota	2.2 U U 9.8 J Hol, Hol 1) 6.4 U U

LW 8-06-98

-

FORM I VOA

ĺ

ſ

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

- i

1-

Lab Name: GENERAL ENGINEE	RING LABOR Contract	: NA	810421	. 29
Lab Code: NA Case	No.: NA SAS No.	: NA SDG	No.: FS4A11S	
Matrix: (soil/water) SOIL		Lab Sample ID:	9806844-01	
Sample wt/vol: 30.	0 (g/mL) G	Lab File ID:	4B414	
Level: (low/med) LOW		Date Received:	06/29/98	
% Moisture: 7 deca	nted: (Y/N) N	Date Extracted	:07/06/98	
Concentrated Extract Volum	ne: 1.00 <u>(</u> mL)	Date Analyzed:	07/09/98	
Injection Volume: 1.0	(uL)	Dilution Facto	-	
GPC Cleanup: (Y/N) N	pH: 7.0			

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

1-20-3naphthalene	358	TT	0
1-58-72-chloronaphthalene	358		1 ī
Vy-yb-8acenaphthylene	358		
	358		RUID
5-01-8phenanthrene	358		10
20-12-7anthracene	358		
06-44-0fluoranthene	358		V
29-00-0pyrene	39.7	J	J
6-55-2	58.0	J	J 103
6-55-3benzo (a) anthracene	55.1	J	5
18-01-9chrysene	51.9		1
05-99-2benzo (b) fluoranthene	82.7	.т	
	358		N.
	46.3		12
$3^{2-3}^{2-3}^{2-5$			J
$\sqrt{\sqrt{2}}$	358		17
91-24-2benzo(g,h,i)perylene	358		· ·
wenzo (g, II, I) perylene	358	υ	

LW 8-10-98

-

OLM03.0

FORM I SV-1

DATA VALIDATION CUPY

Project De	Client: Contact: scription:	P.O. Box 2502 800 Oak Ridge Tu Oak Ridge, Tenne Ms. Lorene Rollin	zsee 37831								
cc: SAIC00598		Re	port Date: July 14, 19	98					F	age 1 of 1	
		ollected eceived	: 810421 : 9806844-01 : Soil : 06/27/98 : 06/29/98 : Routine : Client	,							
Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch M	
General Chemistry Total Rec. Petro. Hy	vdrocærbons	63.1	2.14	10.8	mg/kg	1.0	ЛР	07/09/98	1100	125709 1 =	Fog
M = Method			Method-Descriptio	ЭД			••••			<u></u>	
M 1			EPA 418.1 Modif	ieđ				<u> </u>		2W 8-2(-98	
Notes:											
The qualifiers in this ND indicates that the			entration greater than t	the detection	n limit.						
J indicates presence o U indicates that the at	of analyte at a c nalyte was not o	oncentration less th detected at a concer	an the reporting limit (utration greater than the	RL) and gra e detection	eater than the limit.	detectio	n limi	t <u>(</u> DL).			

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

This data report has been prepared and reviewed

in accordance with General Engineering Laboratories

standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (803) 769-7391.

Reviewed By

^{*9806844-01*}

Sample ID: 9806844-01				C	lient ID: 8	810421	
Contract: SAIC00598	Lab C	ode:	GEL	С	ase No.:	SAS	No.:
Matrix: SOIL % Solids: 93.00	Date R	eceived:	6/29/98	L	evel: LO	W	
AS No. Analyte C	oncentration	Units	C Qu	al M	. DL	Instrument ID	Analytical Run
439-92-1 Lead	5.6	mg/kg	- <u>-</u>	P	0.16	TJA61 Trace ICPAES	980630-1
Color Before:		Clari	ty Before:			Texture:	
Color After:		Clari	ty After:			Artifacts:	

(COC NO .: GA DOY	LABORATORY NAME.	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod 5 Charleston SC 20417	PHONE NO: (803) 556-8171	20 OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS 4 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	2 9906, 201 - 01 324171	<u>a</u> -02	10-	7		Cooler Temperature: 200	FEDEX NUMBER:				
(²⁰¹¹	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS				ная ——— ная ная ная ная ная ная	-6 -6				6/26/05/	Date/Time	16078 Cooler ID: # 631	Date/Time		Date/Time	
After a standard Correction Control Region of Co	800 Ook Ridge Tumpike. Onk Ridge, TN 37831 (423) 481-4600 PHD BECT NAMMER.	Part A UST Investigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stoll	"	Sample ID Date Collected Time Collected Matrix SLOD435 6/25/98 920 water	(25/98 1	830533 6/22/98 1755 810512 12/25/98 1215	0/25			REANOUISHED OY: Date/Time RECEIVED BY: NO	The company of	REGENER BY REAL DATENTING RELINDUGHED BY:	Ľ, /	Xurnul Alever Date/Time RECEIVED BY:	COMPANY NAME: O-LL, 16.11-0 COMPANY NAME:

V-33

Product Number of Data (Lorenzy) Inclustrate I	COC NO.: GADDE
В. 01-331.04-906-210 В. 01-331.04-906-210 Солона солона	LABORATORY NAME:
Iff. Farry Stoll Iff. Farry Stoll Therathran Therat	General Engineering Laboratory
Threatment Threatment Implement Implement Implement	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417
Biologicality Low Contract Low Contract Kit F K F K F K F K F K F K K <t< td=""><td>PHONE NO: (803) 556-8171</td></t<>	PHONE NO: (803) 556-8171
6/25/9% 15/10 water 1 1 1 1 2 0 10/25/9% 15/55 3 1 1 2 0 10/25/9% 15/55 3 1 1 2 0 10/25/9% 15/55 3 1 1 2 0 10/25/9% 13/55 3 1 1 1 2 0 10/25/9% 15/55 3 1 1 1 2 0 11/5 1 2 1 1 1 2 0 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 1 1 1 11/5 1 1 1 1 <t< td=""><td>OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS</td></t<>	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
10/25/94/1555 15/94/1555 1 1 1 1 2 -0 10/25/94/155 1 1 1 1 1 1 1 1 10/25/94/155 1 1 1 1 1 1 1 1 1 10/25/94/155 1 1 1 1 1 1 1 1 1 10/25/94/155 1 1 1 1 1 1 1 1 1 10/25/94/155 1 1 1 1 1 1 1 1 1 10/25 1 1 1 1 1 1 1 1 1 10/25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 05 - 05
6(25)74% 1635 7 7 7 2 0 6(25)74% 18,45 7 7 7 2 0 6(25)74% 18,45 7 7 7 2 0 6(25)74% 175 7 7 7 2 0 6(25)74% 175 7 7 7 2 0 6(25)74% 175 7 7 7 2 0 6(25)74% 175 7 7 7 2 0 10 17 7 7 17 17 10 11 12 10 10 10 10 10 10 11 12 12 10 10 10 10 10 12 12 12 10 10 10 10 10 12 12 12 12 10 10 10 10 12 12 12 10 10 10 10 10 12 12 12 10 10 10 10 10 12 12 12 12 10 10 10 10	IV.
012593 1355 2 2 -08 012593 1355 2 2 0 012593 1355 2 2 0 012593 1355 2 1 2 012593 1355 2 1 2 012593 1000 2 1 2 012593 1000 1 1 2 1012 1 1 1 2 1012 1 1 1 1 1013 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1 1 1014 1 1 1	ΓÇ
Bel25 193 1900 1355 2 0 Bel25 193 1900 2 2 10 Bel25 193 1000 2 2 10 Bel25 193 10 2 2 10 Bel25 193 10 10 10 10 Bel25 10 12 5 5 5 Read 12 5 5 5 Detertime RECEVED BY: Detertime 16 10 Read 12 5 5 5 Detertime RECEVED BY: Detertime 16 Detertime RECEVED BY: Detertime 16 Detertime RECEVED BY: Detertime 16	-08
Relative received by the second secon	-04
Real of the first	
Red Date/Time RECEIVED BY: Date/Time RECEIVED BY: Control Control Control Control Control Control Control Control Control Control Red Control Control Control Contro Red Control <t< td=""><td></td></t<>	
Red Clark Company Name: 2555 FEDEX NUMBER: 1 2555 FEDEX NUMBER: 1 2555 FEDEX NUMBER: 1 2006 Temperature: 4 2006 Temperature: 4 2006 Temperature: 4 2006 Temperature: 4 2555 FEDEX NUMBER: 4 2006 Temperature: 4 2555 FEDEX NUMBER: 4 2006 Temperature: 4 2006 Temperature: 4 2006 Temperature: 4 2555 FEDEX NUMBER: 4 2006 Temperature: 4	
Red Date/Time REGEVED BY: Date/Time REGEVED BY: Date/Time REGEVED BY: Date/Time Cooler Temperature: Pate/Time REGEVED BY: Date/Time Cooler Temperature: Pate/Time RELINCU/SHED BY: Date/Time Cooler Temperature: Red C/2.6/7.5 COMPANY NAME: I/6/7.0 SSS FEDEX NUMBER: Red C/2.6/7.5 COMPANY NAME: Date/Time Bate/Time Red C/2.6/7.5 COMPANY NAME: Date/Time Red C/2.4/7.5 COMPANY NAME: Date/Time Red C/2.4/7.5 COMPANY NAME: Date/Time Red C/2.4/7.5 COMPANY NAME: Date/Time	
Image: Comparison of the second by the se	
Containe RECEIVED BY: Date/Time RECEIVED BY: Date/Time COLU C/2.6/PCS COMPCANLE Date/Time TOTAL NUMBER OF CONTAINERS: 1 Color 12.555 COMPANY Date/Time FEDEX NUMBER: 1 Real Date/Time RELINCUSHED BY: Date/Time 5555 FEDEX NUMBER: Real Date/Time RELINCUSHED BY: Date/Time 5555 FEDEX NUMBER: Real Date/Time RELINCUSHED BY: Date/Time 5555 FEDEX NUMBER:	
Moute Contentine Indication Total Number Total Number Total Number Red Clark Company Inter 1640 Cooler ID: H 555 FEDEX NUMBER: Red Clark Date/Time RELINQUSHED BY: Date/Time Date/Time FEDEX NUMBER: Red Clark Company NAME: Ibdd Cooler ID: H 555 FEDEX NUMBER: Red Clark Date/Time RELINQUSHED BY: Date/Time Date/Time FEDEX NUMBER: Red Clark Company NAME: Date/Time Date/Time FEDEX NUMBER:	
Red bate/Time RELINQUISHED BY: 1640 Cooler ID: 4555 22/26/6 COMPANY NAME: 1640 BY: Date/Time RELINQUISHED BY: Date/Time RELINQUISHED BY: Date/Time COMPANY NAME: Date/Time RECEIVED BY: Date/Time COMPANY NAME: Date/Time COMPANY NAME: Date/Time COMPANY NAME: Date/Time RECEIVED BY: DATe/RECEIVED BY: DA	\mathcal{A}
Red Date/Time RELINCU/SHED BY: C/26/5 COMPANY NAME: 2.255 COMPANY NAME: 2.255 Date/Time RECEIVED BY: 2.257 Date/Time RECEIVED BY: 7.6.140 COMPANY NAME:	FEDEX NUMBER:
2 2:55 COMPANY NAME: Date/Time RECEIVED BY: Dec 6/2495 COMPANY NAME:	
Lev Date/Time RECEIVED BY: COMPANY NAME: / 6.140 COMPANY NAME:	
1/ 6:10	

	COC NO .: GA & ()	LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS; 2040 Savage Raod		PHONE NO: (803) 556-8171	C COMMENTS, SPECIAL INSTITUCTIONS,	Garls)	-18		1980, -01 33619		6			90	1 +0- 1	Cooler Temperature: 40C	FEDEX NUMBER.					
5000	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS		202	r, besd Lead, F, besd,	нат трн, , сво ово, ово, ово, , ово,	НАЧ НАЧ НАЧ КЭТ8 КЭТ8 КЭТ8 КЭТ8 КЭТ8 КЭТ8 КЭТ8												PAGTINE TOTAL NUMBER OF CONTAINERS:	1640 Cooler 1D: # 1027	Date/Time		Date/Time		
Active Applications Learning Conversion	000 0et Ridge Turphe. Ost Ridge, TN 37031 (423) 491-4600	PRUJEUT NAME:Fort Stewart CAP Part A UST Investigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stoll	Sempler (Signature) (Printed Name)	auco-Lumley	a ID Date Cellacted Time Collect	6/22/98	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	<u>et (e/25/76 935 - 11)</u>	V 12/78 1540 V	10 6/25/94	17 6125/94	250) 26/27	6/25/48 /5/0	30522 1175/02/13 1840	(CCL) (7/C2)01 07201	<u>1997 977 5101 - 1997 1997 1997 1997 1997 1997 1997 1</u>	Dun 6	AME: 7 12,55 COMPANY	Payment Red 6/21/53 RELINDUISHED BY:	L. 12.5	APALINOUISHED BY: DaJe/Time RECEIVED BY:	COMPANY NAME: 1 / 6 40 COMPANY NAME:	

V-35

Fort Stewart CAP Par Fort Stewart CAP Par ER: 01-0331-04-980 GER: Patty Stoll							CUC NO . ON MAN
PROJECT MAME:Fort Stewart CAP Part A UST Investigat PROJECT NUMBER: 01-0331-04-9805-210 PROJECT MANAGER: Patty Stell		CHAIN	CHAIN UF CUSTODY	I UDY RECORD	DRD		
086	ions (Options)		RE	REQUESTED PARAMETERS	AETERS		LABORATORY NAME:
							veneral crigineering Laboratory
			100	201	····.	eja:	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417
Sampler (Signature) (Printed Name)		bse.	,bae.			ין ∧וי יו∧ /s	
Come Chine Chine Calleren	10	HqT	ORD			Bottle	PHONE NO: (803) 556-8171
ID Date Collected Time (НАЧ ,НАЧ	. ,НАЧ ,ХЭТ8 1 ,НАЧ) ,НА9 ,НА9		10. of	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
542 6/24/98	water 2						gar,
522 10 124/94	5					5	
12 H PIZNK	2					ц Ц	
77						4	.
840412 6/24194 1435	4					ਿ ਨ	
10112 10/251	<u>n</u>					<u>رر</u>	Unoresetter
1 2 1/2/2/2 /	~					6	UNDO CS
9/52/9 6	n 					6	
419 10/22	3					6	U HDreser
36 HZ 19 HIOT	re T					പ	1
24012 10/22/	<u>u</u>					<u>ה</u>	
70516 6/24							N 21-
1101 36/52/9 CECOSS			٦ ر			ದ 	-13 22
Part INOUISHER BY: Date/Time Accel	ECEIVED BY		Date/Time	TOTAL NUMBE	TOTAL NUMBER OF CONTAINERS:	601	Cooler Temperature: 40C
VAME:			· ·	Cooler ID: #	400		FEDEX NUMBER:
			10th		- 58	1	
Kayn Keel 6/26/53	MELINUYISHED BY:		Date/Time				
	COMPANY NAME:						
12	RECEIVED BY:		Date/Time				
COMPANY NAME: COMPANY NAME: DECIMANY	COMPANY NAME:						

COC NO GA MOT		General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417	PHONE NO: (803) 556-8171	DESERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS	- 4966834-01 33639		-03	-04	-0S	-C/P 12				Cooler Temperature: 4/0 C	FEDEX NUMBER:				
CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS		100	PH, Lead, PH, Lead, PH, Lead,	Р. А. А. Т. Н. А. А. К. Т. Н. А. В. Т. Е. Х. В. Т. Б. К. В. Б. К. В. В. Т. Б. К. В. Б. К. Б. К. В. Б. К. Б. К. Б. К. Б. Б. К. Б. К. Б. Б. К. Б. Б. Б. К. Б.						3				CONTAINERS: 13	1645 Cooler 10:24 NSC	Date/Time		Date/Time	
200 Oak Ridge Fumpite, Out Ridge, TN 37831 (423) 481-4600	PROJECT NAME:Fort Stewart CAP Part A UST Investigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stoll	(Printed Name)	Date Collighted Time Collected Matrix	10/200 198	210198	126145	8/10/01	201.2	1 1000 8LIBIA COOL 10		2		Date/Time RECEIVED BY:	ME: 7215 COMPANYA	RECEIVED BY: Date/Time RELINQUISHED BY:	COMPANY NAME: COMPANY NAME:	RELUNDURSHED BY: Date/Time RECEIVED BY:	COMPANY NAME:

Kine And	Store Apilesian Internional Company Store Apilesian Internional Corportion 800 Osh Ridge Tumphe, Dat Ridge, TN 37831 (423) 431-4600	CHAIN OF CUSTODY RECORD	ODY RECORD	сос NO.: СД ЙО9
PROJECT NA	PROJECT NAME:Fort Stewart CAP Part A UST Investigations (Options)	REOL	REOLIFSTED PARAMETERS	
PROJECT NU	PROJECT NUMBER: 01-0331-04-9805-210			General Engineering Laboratory
				LABORATORY ADDRESS:
PROJECT M	PROJECT MANAGER: Patty Stoll	. TOC	1, 106	2040 Savage Raod Charleston, SC 29417
gempler (Signature	(Printed Name)	PH, Lead PH, Lead GRO	70, Lead	PHONE NO: (803) 556-8171
Sample 10 Sample 10	Data Collected Time Collected Matrix	т ,ная ,хэтв о ,ная	а ,н х я	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
2021	2 6/26/98 1920 water			9206839 -13 526341
81041		6		
63031	20/94	<u></u>		IS_
43011	120 95	<i>a</i>		-16)-
13055	_	- - -		L1-
6803	13 10/27/98 355	त		1 21-
4305	53 10/27/96 1140 L	a		A 61-
/				
		1 / / / / / /		
LELINGUISHED BY	Ch. Date/Time Rederv	Date/Ting	TOTAL NUMBER OF CONTAINERS: 13	Cooler Temperature: $\mathcal{H}^{\mathcal{U}}\mathcal{C}$
COMPANY NAME:	2/2/ COMPANYIN		cooler 10: 4 UZO	FEDEX NUMBER:
RECENTED BY	Les all of 25/5% RELINDUISHED BY:	Date/Time		
COMPANY NAME				
RELINGUISHED BY:	Mat	Date/Time		
COMPANY NAME:	AME C / C GOMPANY NAME:			

V-38

		General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417	Etea / 24		100140	1000041		-19 10			- 15	1		í d		10	FEDEX NUMBER:				
CHAIN OF CLIETON	REQUESTED PARAMETERS		201	H, Lesd, H, Lesd, RO O, Lesd O, Lesd, O, Lesd,	6 ТЕХ, 6 80, НА9 90, НА9 90, НА9 90, НА9												Defertine TOTAL NUMBER OF CONTAINERS: 130	645 Cooler ID: # 570	Date/Time		Date/Time	
doo Oaf Ridge Turmpile, Oat Ridge, TW 37831 (433) 44600	estigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stoll	(Printed Name)		2 lepatra 1300 water 2	237 0126/96 1215	2012 1312 1312 1312 1312 1312 1312 1312	0/1/2/20/20/20/20/20/20/20/20/20/20/20/20/2	0 10 210	745 24219 H	0156 10/24/74/ 200	112 10/26/12/20 J. J. J. J. J. J. J. J. J. J. J. J. J.	0201 86/az/a - C	12/12/19/2	551182/2/11	Determinent of the back of the pective BY:	ME: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RECEIVED DY: DAJETTING RELINQUISHED BY:	50 / L/	RELINGUISHED BY: DataTime RECEIVED BY:	COMPANYNAME. COMPANY NAME:

PERMEABILITY TEST ANALYSIS (ASTM D5084)

Project : Fort Stewart

Location of Project : CAP Part A

Description of Soil : Dark Brown Silty Sand

Sample Type (Undisturbed or Remolded) Standard Proctor:

Maximim Dry Density:	pcf
Optimum Moisture Content:	*

Sample Permeation:

Job # : 98066 Date of Testing: 7/29-31/98 Tested by: BV-CA Boring # : Sample # : 810331 Sample Depth : 2-4 ft.

 % Sample Compaction:
 %

 Sample Dry Density:
 pcf

 Sample Moisture Content:
 %

 Sample Wet Density:
 pcf

Sample	Dimensions	······································
	Before	After
Length (cm)	4.90	5.70
Diameter (cm)	4.70	4.70
Water Content (%)	7,3	22.1
Weight (g)	158.9	190.2

Constant Head Calculation:

$K = [V(t_1, t_2) LR_T]/[P_BAt] (cm/sec)$

V(t1,t2) = Volume of flow fr	om t ₁ to	t_2 (cm ²)		
L = Length of Sample		4.90 cm		
A = Area of Sample t = t ₂ - t ₁ (sec)	2	<u>17.35</u> cm ²		
Ps = Bias Pressure =	1	_psi x 70.37 cm/psi (cm - H2O)	70.37	cm
R _T = Temperature correction	>n =	0.931		

t ₂ (sec)	t ₁ (sec)	(t ₂ - t ₁) (sec)	V (cm ²)	[LR _T]/[P _B A] (cm ⁻)	K (cm/sec)
8	5	3	3.0	3.74E-03	3.74E-03
11	8	3	2.5	3.74E-03	3.11E-03
14	11	3	2.9	3.74E-03	3.61E-03
17	14	3	2.3	3.74E-03	2.86E-03

Kavg = 3.33E-03 cm/sec

PROJECT: Fort Stewart
LOCATION OF PROJECT: CAP Part A
DESCRIPTION OF SOIL: Dark Brown Silty Sand
TESTED BY: B.J. Vance

JOB NO.: <u>98066</u> SAMPLE NO: <u>810331</u> DEPTH OF SAMPLE: <u>2-4 ft.</u> DATE OF TESTING: <u>7/29/98</u>

W =-	0.58223		
₩ <mark>w</mark> =	W - W _S ≠	0.03698	
W ₈ =	Y _d ⁴V =	0.5453	
	0.00576		

 $V_W = W_W/Y_W = 0.0006$ $V_S = W_S/G_S^*Y_W = 0.0033$ $V_G = V - (V_S + V_W) = 0.00185$ $V_V = V_G + V_W = 0.0024$

g

g g

İb

MEASUREMENTS OF TUBE/CAN		
HEIGHT= 9.4 cm DIAMETER= 4.7 cm	WT. OF TUBE/CAN + WET SOIL= WEIGHT OF TUBE/CAN=	175.2
CALCULATED VOLUME OF TUBE/CAN	WEIGHT OF WET SOIL=	264.10 0.58223
V= 163.08 cm ³ 0.00576 ft ³	MOISTURE CONTENT	

			TONE OUNTENT		
M _{CWS} =	20.23	g	M _c =	10.94	ġ
$M_{CDS} =$	19.64	g	Ms =	8.70	g
M _W =	0.59	g		6.8	•

GRAIN SIZE ANALYSIS-SIEVE (ASTM D422)

Project Fort Stewart	Job No 98040
Location of Project Pro Pont A	Sample No. # 810 331
Description of Soil DK Brown Silty Sand	Depth of Sample Z-4 Boring No
Tested ByCA	Date of Testing 7/22/98

Sample preparation procedures outlined in ASTM D421 and D2217.

Nominal diameter of largest particle No. 10 sieve No. 4 sieve 3/4 in.

Approximate minimum Wt. of sample, g 200 500 1500

Weight of sample used, M_w= ______g

M	M _{ode}	M. XIB	M _w	М,	w %	M _{ere}	M,
		(15,17					81.58

6

Sieve analysis and grain shape

Sieve no.	Diam. (mm)	Wt. retained	% retained	Σ % retained	% passing
3"					
2"		· · · · · · · · · · · · · · · · · · ·			
1 1/2 "					
3/4*					
3/8"				*	
#4		2.05	a.51	2.51	97.49
#10		0 93	1.14	3.65	96.35
#20		7.43	9 35	13.0	87.0
#40		11.43	14.01	27.01	72.99
#60		10.63	13.03	40.04	59.94
W140	_	39.84	48.84	88.88	11.12
#200		2.68	3.29	92.17	7.83
pan		0.11	0.13	92.3	—
		•			

% retained = (Wt. retained/W.) - 100

% passing = $100 - \Sigma$ % retained.

CATLIN	Engineers	and Scientists
G	eolechnica	I Laboratories
	1994 A. 1	

APPENDIX VI

ALTERNATE THRESHOLD LEVEL (ATL) CALCULATIONS

Fort Stewart UST CAP A Report UST 71A, Building 1260, Facility ID #9-089023

THIS PAGE INTENTIONALLY LEFT BLANK

Calculations of alternate threshold levels are not required at this time for the UST 71A site. However, the geotechnical data collected during the CAP-Part A investigation are presented in Table VI-A.

	81-03
Sample ID	810331
Depth Interval (ft BGS)	2.0 - 4.0
Grain size analysis - % Fines	8
Grain size analysis - % Sand	89
Grain size analysis - % Gravel	3
Liquid Limit	NP
Plastic Limit	NP
Plasticity Index	NP
Natural Moisture Content (%)	6.8
Permeability (cm/sec)	3.3×10^{-3}
Porosity	0.42
Specific Gravity	2.63

VI-A. Geotechnical Results for Soil Samples Collected at the UST 71A Site

NP = Nonplastic.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX VII

MONITORING WELL DETAILS

THIS PAGE INTENTIONALLY LEFT BLANK

Monitoring wells were not installed as part of the CAP-Part A investigation. Temporary piezometers were installed at the UST 71A site. Refer to Figures 4 and 5 (Appendix I) for locations.

Fort Stewart UST CAP A Report UST 71A, Building 1260, Facility ID #9-089023

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX VIII

GROUNDWATER LABORATORY RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

	TABLE VIII-A	TABLE VIII-A. SUMMARY OF GROUNDWATER ANALYTYCAL RESULTS	OF GROUND	WATER AN	ALVTICAT	PESHLTS		
Station: Comp. ID.			81-01	81-02	81-03	81-04	81-05	81-05
		In Stream	810112	810212	810312	810412	810512	810522
Sample Interval:	Federal	Water Quality	0.0 - 10.0	0.0 - 10.0	0.0 - 10.0	0.0 - 10.0	8.0 - 10.0	13.0 - 15.0
Collection Date:	SDWA MCLs ¹	Standards ²	25-Jun-98	25-Jun-98	26-Jun-98	27-Jun-98	25. Jun-98	25-Tun-08
Units:	(ug/L)	(ng/L)	(u2/L)	(ug/L)	(110/L)	(IIa/I.)	(Ino/L)	07-11n C-C-7
VOLATILE ORGANIC COMPOUNDS	OMPOUNDS					(~·9-)	(19) (m)	(ug/u)
Benzene	5	71.28	4.9 J	2 U	2 11]	111 C	μ 11 c	, r
Toluene	1000	200,000	2 U	2 U				2 L 4 C
Ethylbenzene	700	28,718	2 U	2 11	20 - 21	n 111 c	2 F	2 E 4 C
Xylenes, Total	10000	. 1	11 9	11 9				
POLYNUCLEAR AROMATIC HYDROC	ATIC HYDROCARB	SNO)	2		n o		0
2-Chloronaphthalene		1	13.2 U	43.5 U	10 11	1001	11 7 11	11 1 11
Acenaphthene			13.2 U	43.5 U		1001	11 9 11	
Acenaphthylene		1	13.2 U	43.5 U	10 U	100 U	11.6 U	11.4 11
Anthracene		110,000	13.2 U	43.5 U	10 U	100 U	11.6 U	11.4 11
Benzo(a)anthracene		0.0311	13.2 U	43.5 U		100 U	11.6 U	11.4 11
Benzo(a)pyrene	0.2	0.0311	13.2 U	43,5 U	10 U	100 U	11.6 U	11.4 U
Benzo(b)fluoranthene		I	13.2 Ù	43.5 U		100 U	-	11.4 U
Benzo(g,n,1)perylene		1	13.2 U	43.5 U		100 U		11.4 U
Benzo(K)riuoranthene		0.0311		43.5 U		100 U	11.6 U	11.4 U
Curysene.		0.0311		43.5 U	10 N	100 U		11.4 U
Ulbenzo(a,n)anthracene		0.0311	13.2 U	43.5 U		100 U		11.4 U
r luorantnene		370	13.2 U	43.5 U		100 U		11.4 U
		14,000		43.5 U	10 <u>U</u>	100 U		11.4 U
Indeno(1,2,3-cd)pyrene		0.0311	13.2 U	43.5 U		100 U		11.4 U
Naphthalene		I	13.2 U	43.5 U	10 U	100 U		11.4 U
Fuenanurene Derena		1	13.2 U	43.5 U	10 U	100 U		11.4 U
ryrene		11,000	13.2 U	43.5 U	10 U	100 U		11.4 U

NOTES:

Contract for field work was issued prior to the new CAP-A guidance published in May 1998, thus the new analytical methods were not used. U.S. Environmental Protection Agency maximum contaminant level ² GA EPD water quality standards (Chapter 391-3-6.03) Bold values exceed MCLs

QA/QC samples were collected. The laboratory data sheets have been included in this appendix, but the results are not summarized. Laborationy Qualifiers U Indicates the compound was not detected at the concentration reported UI Indicates that the compound was not detected above an approximated sample quantitation limit J Indicates the value for the compound is an estimated value = Indicates the compound was detected at the concentration reported

98-160PS(doc-71A-4si) 111098

(

THIS PAGE INTENTIONALLY LEFT BLANK

VOLATILE ORGANICS ANALYS	IS DATA SHEET	A SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR		810112
Lab Code: NA Case No.: NA	SAS No.: NA SDG No.	: FS4A05W
Matrix: (soil/water) GROUNDH20	Lab Sample ID: 98	06807-06
Sample wt/vol: 10.00 (g/ml) ML	Lab File ID: 20	5012
Level: (low/med) LOW	Date Received: 06,	•
% Moisture: not dec.	Date Analyzed: 06,	27/98
GC Column: J&W DB-624(PID) ID: 0.53	(mm) Dilution Fac	
Soil Extract Volume:(uL)	Soil Aliquot Volum	ne:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total	2.	9 P J M08

-

211 1-23-98

-

DATA VALINITA CCPY

C

LW -8-19-98

OLM03.0

FORM I SV-1

VOLATILE ORGANICS ANALYSIS	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR C	Contract: NA 810212
Lab Code: NA Case No.: NA	SAS No.: NA SDG No.: FS4A05W
Matrix: (soil/water) GROUNDH20	Lab Sample ID: 9806807-08
Sample wt/vol: 10.00 (g/ml) ML	Lab File ID: 206015
Level: (low/med) LOW	Date Received: 06/26/98
% Moisture: not dec.	Date Analyzed: 06/27/98
GC Column: J&W DB-624(PID) ID: 0.53 (1	nm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	2.0 U 2.0 U 2.0 U 2.0 U 6.0 U

-

Lω 7-22-98

Ξ

Con COPY - 1

(

- LW 8-19-98

OLMO3.0

FORM I SV-1
VOLATILI	la E ORGANICS ANALYSI	IS DATA SHEET		EPA	SAMPLE	E NO	•
Lab Name: GENERAL EN	GINEERING LABOR	Contract: NA		8	10312		
Lab Code: NA	Case No.: NA	SAS No.: NA	SDG 1	No.:	FS4A14	W	
Matrix: (soil/water)	WATER	Lab Sam	ple ID:	9806	349-16		
Sample wt/vol: Level: (low/med)	10.00 (g/ml) MT.	Lab Fil	e ID:	2010	37		
Level: (low/med)	LOW UA1	A VALIDATIC	deived:	06/29	9/98		
% Moisture: not dec.		$COP_{Date An}^{\vee}$	alyzed:	07/07	7/98		
GC Column: J&W DB-62	4(PID) ID: 0.53		ilution			0	
Soil Extract Volume:	(uL)	Soil Al.	iquot Vo	lume:			(uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/Kg			Q		-
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylenes (total)			2.0 2.0 2.0 6.0	ប ប	102	A03

-

E,

5

٤. -

> . ۳

دى 8-18-98

FORM I VOA

•

DATA VALIDATION COSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET 18 EPA SAMPLE NO. Lab Name: GENERAL ENGINEERING LABOR Contract: NA 810312 Lab Code: NA Case No.: NA SAS No.: NA SDG No.: FS4A06W Matrix: (soil/water) GROUNDH20 Lab Sample ID: 9806839-01 Sample wt/vol: 500.0 (g/mL) ML Lab File ID: Level: 1B507 (low/med) LOW Date Received: 06/29/98 * Moisture: decanted: (Y/N)____ Date Extracted:06/30/98 Concentrated Extract Volume: 0.50 (mĽ) Date Analyzed: 07/10/98 Injection Volume: 1.0(uL)Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 CAS NO. CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/L Q 91-20-3----naphthalene 91-58-7-----2-chloronaphthalene_ 209-96-8-----acenaphthylene_ 10.0|U 83-32-9----acenaphthene 10.00 10.0 0 86-73-7----fluorene 85-01-8-----phenanthrene 120-12-7----anthracene 10.00 10.00 206-44-0----fluoranthene 10.0 0 129-00-0-----pyrene 56-55-3-----benzo (a) anthracene 10.0 U 10.0 U 218-01-9----chrysene 10.0 0 205-99-2----benzo(b) fluoranthene 10.0 0 207-08-9-----benzo(k)fluoranthene 10.0 U 50-32-8-----benzo(a)pyrene 10.0 U 193-39-5-----indeno (1,2,3-cd) pyrene_ 10.0 U

LW 8-19-98

10.0 0

10.0 0 10.0 0 10.0 0

FORM I SV-1

53-70-3-----dibenz (a, h) anthracene_

191-24-2----benzo(g,h,i)perylene_

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	810412
Lab Code: NA Case No.: NA SAS No.: NA	SDG No.: FS4A14W
Matrix: (soil/water) WATER Lab Sa	ample ID: 9806849-17
sample wt/vol: 10.00 fg/mth/MLIDATION	ile ID: 201038
	Received: 06/29/98
	nalyzed: 07/07/98
GC Column: J&W DB-624 (PID) ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL) Soil A	Aliquot Volume:(uL)
CAS NO. COMPOUND CONCENTRATIC (ug/L or ug/	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	يس 8-18-98

FORM I VOA

(

۶,

÷.

2....

5 -

31

DATA VALIJATIUN

Lab Code: NA

Level:

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. Lab Name: GENERAL ENGINEERING LABOR Contract: NA 810412 Case No.: NA SAS No.: NA SDG No.: FS4A06W Matrix: (soil/water) GROUNDH20 Lab Sample ID: 9806839-14 Sample wt/vol: 500.0 (g/mL) ML Lab File ID: 1B520

Date Received: 06/29/98

Date Extracted:06/30/98

Date Analyzed: 07/11/98

Dilution Factor: 10.0

GPC Cleanup: (Y/N) N pH: 7.0

COMPOUND

% Moisture: _____ decanted: (Y/N)____

Concentrated Extract Volume: 0.50(mL)

(low/med) LOW

Injection Volume: 1.0(uL)

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

	100	ΰ
[100	υ
[100 100 100	U
	1001	ŤΤ

91-20-3naphthalene 91-58-72-chloronaphthalene 209-96-8acenaphthylene 83-32-9acenaphthene 86-73-7fluorene 85-01-8phenanthrene 120-12-7	100 U 100 U	UJ POZ

LW 8-19-98

Q

OLM03.0

39

DATA VALIDATILA ORGANICS ANALY	SIS DATA SHEET EPA SAMPLE NO.
Lab Name: (GENERAL ENGINEERING LABOR Lab Code: NA Case No.: NA Matrix: (soil/water) GROUNDH20 Sample wt/vol: 10.00 (g/ml) ML	Contract: NA 810512 SAS No.: NA SDG No.: FS4A04W Lab Sample ID: 9806806-02
Level: (low/med) LOW	Lab File ID: 20608
<pre>% Moisture: not dec. GC Column: J&W DB-624(PID) ID: 0.53</pre>	Date Received: 06/26/98 Date Analyzed: 06/27/98
Soil Extract Volume:(ml)	(mm) Dilution Factor: 1.0 Soil Aliquot Volume: (uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	2.0 11

_

دى 7-22-98

FORM I VOA

.

-

LW 8-19-98

FORM I SV-1

OLM03.0

DATA VALIDATION			,.			······································
COPY Lab Name: GENERAL ENGIN	VEERING LABOR	Contract: NA		8	10514	
Lab Code: NA Cas	se No.: NA	SAS No.: NA	SDG 1	No.:	FS4A04	W
Matrix: (soil/water) GR	ROUNDH20	Lab Sa	mple ID:	9806	806-04	
Sample wt/vol: 10).00 (g/ml) ML	Lab Fil	le ID:	2060	10	
Level: (low/med) LO	W	Date Re	eceived:	06/2	6/98	
<pre>% Moisture: not dec</pre>		Date Ar	nalyzed:	06/2	7/98	
GC Column: J&W DB-624(P	ID) ID: 0.53 ((mm) I	Dilution	Facto	or: 1.0	D
Soil Extract Volume:	(ml)	Soil Al	liquot Vo	lume	:	(uL)
CAS NO.	COMPOUND	CONCENTRATION {ug/L or ug/K	NUNITS: (g) UG/L		Q	
71-43-2	Toluene Ethylbenzene			2.0 2.0 2.0 6.0	ע	

2 WS 7.22.98

FORM I VOA

2W 8-19-98

FORM I SV-1

OLM03.0

VOLATILI	E ORGANICS ANALYS			- - -	
DATA VALIDATION		DATA SHEET		EPA SAMPLE	NO.
Matrix: (soil/water) Sample wt/vol: Level: (low/med) % Moisture: not dec. GC Column: J&W DB-624	Case No.: NA GROUNDH2O 10.00 (g/ml) ML LOW	SAS NO.: NA Lab Lab Lab Date	SDG Sample ID: File ID: Received: Analyzed:	06/26/98 06/27/98	
Soil Extract Volume:	(ml)	Soil	DITUTION	Factor: 1.0	
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/	Aliquot Vo ON UNITS:	lume:	_(uL)
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene			Q 2.0 U 2.0 U 2.0 U 6.0 U	

FORM I VOA

دن 8-19-98

FORM I SV-1

OLM03.0

Ċ	COC NO. CADD	LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod # Charleston, SC 29417	haiV ten	B PHONE NO: (803) 556-8171	OBSERVATIONS. COMMENTS, SFECIAL INSTRUCTIONS	087.0	20-	- 03	2 -04 V	2 -05 20-							21- 40							
1761	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS			((080. 080	.НАЧ ВТЕХ НАЧ,													Utate/Time TOTAL NUMBER OF CONTAINERS:	<u> </u>	+ com - co	Date/Time		Date/Time	
Actors Aprilation International Company Ketter Aprilation International Company		PHOJECT NAME:Fort Stewart CAP Part A UST Investigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stofl	Seepler (Signature) [Printed Name]	нат	D Date Collected Time Collected Matrix D RH	10/2+1 6<	125/94	(2) (2) (1)	1 2 1 2 1 2	1201201	2/9/0/22/9/	11 6/25/94	411 6/25/98	0113 6/25/94	311 6/25/9×1	78	10/25/281	D.BY: Date/Time RACELVED BY:	LECTRON W/ 60/ 75 J JONNU-77 KANCUD COMPANY NAME:	IC 1255	August Date/Time RELINGUISHED BY:	ME:	AREYNOUISHED BX: Dale/Time RECEIVED BY:	COMPANY NAME: COMPANY NAME:

сос NO.: CA ØQ (D	LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod <u>2</u> Charleston, SC 29417		of OBSERVATIONS. COMMENTS.	SPECIAL INSTRUCTIONS	2400005-14 3203		T		100	2,9806-01 33619	20-22	20-	70- 2	5	-06		Cooler Temperature: 4/2C	FEDEX NUMBER:		 			
CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS			bsel beel C	ин, трн, ин, трн, н, ово, н, ово, н, ово, н, ово,	74 74 74 74 74 74													A A PARTIME TOTAL NUMBER OF CONTAINERS	1640 Cooler 10: 4 1027	Date/Time	Date/Time			
Ar Erden Contest Congression Science Applicational Composition 600 Oak Ridge Tumpite, Dat Ridge, TN 37831 (423) 481-4600 Mana Landar	PHUJECI NAME:Fort Stewart CAP Part A UST Investigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stoll	Remples (Sigmature) (Printed Name)	Course Univer Laura Lumer	LISE 192 1435 CIT		L / 16/25/95	421 1.1200	CF1 91 (2) 9 19	× 075/07/21	1 10/25/946 435 Linker	0.01 at 8125175	210 6125/98 1655	10.21 10/22/98 15/0	× 10/25/	152/0	C X 2227 845219 88 cols	Carline Received BY:	NAME: COMPANINAME	Raymy Red 6/21/93	внере вус	Leed 6/26/93	COMPANY NAME:) COMPANY NAME:	

COC NO. 624 M 17		LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417		E FHUNE NO: (803) 556-8171	2 OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS 2 STALAU	980681	- (-)- (21- 12	2- K	į	- 40	2 -16	2 -12				Cooler Temperature: 4 vC	FEDEX NUMBER.				
CHAIN OF CLISTODY BECORD		REQUESTED PARAMETERS			, Lead , Lead , Lead		149 149 149 149 149 149 149													672 8/58	1645 Cooler 10: 4 WY 3	Date/Time		Date/Time	
Science Applications Description Comparison Science Applications Demonstrant B00 Oak Ridge Turmpiles, Dak Ridge, TN 37831 (423) 481-4600	PROJECT NAME:Fort Stewart CAP Part A UST Investignations (0-st		PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stoll	Sempler (Signature) (Printed Name)	aura hum eu	Vate Collected Time Collected	1/20/01/0/ 10	311 10/24/02/	411 10/21/02/	0111 10 10000	1 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	A Y	211 10/0/0/01	1 10/64 11 11	31) In/20 94	11 10/20 95	26/20/21	Ē	June Bur	WE:	RECEIVED BY DATE/TIME RELINDUISHED BY:	COMPANY NAME:	RELUGUISHED BY: DaperTime RECEIVED BY:	COMPANY NAME.

	COC NO.: CA&/ナ	LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod <u>2</u> Charleston, SC 29417		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9806	2-9806.84U - 01 356U4-1	¢		2		-67	4	∧ 30-	-10 iz			(<u> </u>	4
2012	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS			f, Lead 1, Lead, 30 0 2 0 5 6 8 4	ная ная ран, трі ран, трі ран, трі ран, ряс ран, ряс ная ран, ряс												/ Defecting 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	Date/Time		Date/Time	
Science Applications Linguistics	800 Ost Räge Tumpke, Ost Röge, IN 37831 (423) 4600	PHOJECT NAME:Fort Stewart CAP Part A UST Investigations (Options)	PROJECT NUMBER: 01-0331-04-9805-210	PROJECT MANAGER: Patty Stolf	Sampler (Signature) (Printed Name)	Sample ID Date Collected Time Collected Matrix	20/92	3/11EC101 10CU	1 10/2101	20 02	0123 10/201996	0421 10/210/94	27148		11 10 210 (0X	2321 10/21/20	PPrcla 1650	EB BY:	ME: ME:	RECEIVED BY: Date/Time RELINGUISHED BY:	COMPANY NAME:	RELINDUISHED BY: Date/Time RECEIVED BY:	COMPANY NAME: UN COMPANY NAME:

)

PARK TPH, Lead, TOC Date/Time Date/Time Date/Time	200 04 Ridor Tumpie. 04 Encloyer Owned Company Secret Applications Lamational Corporation 800 04 Ridor Tumpia. 04 Ridor. TN 37831 (423) 481-4600 PROJECT NAME-First Statusers CAD Barrier 1000	CHAIN OF CUSTODY RECORD	COC NO .: GA0/8
Br. Party Stol Constant Try Level Constant Try Level Constant Try Level Constant Try Level Clipped Cl		REQUESTED PARAMETERS	LABORATORY NAME:
GER: Faity Stall Monta from Monta from Monta from Monta from 	JJECT NUMBER: 01-0331-04-9805-210		General Engineering Laboratory
Point Nema Point N	DJECT MANAGER: Patty Stoll		
Monoconstructure Mark Francis Francis Monoconstructure		,bse.	I
Due obserte True Contente Antic E<	Junden Laura Lumley	тен, ц , сяо , сяо , ояо	
0.073733 7345 5-3.1 1 <td>Sample ID Date Conected Time Collected Matrix</td> <td>, ная , ная , ная , ная , ная , ная</td> <td></td>	Sample ID Date Conected Time Collected Matrix	, ная , ная , ная , ная , ная , ная	
В 77103 ГСО П	2010 1921 0210 1920 00		9001-8111-12
III III III III III III III III III III III III III III III III III IIII IIII IIII IIII IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120120101 1C10		+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120102/01 2000		f
$ \begin{bmatrix} 1273 95 \\ 123 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 95 \\ 120 92 \\ 111 \\ 112 \\ 120 92 \\ 111 \\ 112 \\ 120 92 \\ 111 \\ 112 \\ 120 \\ 111 \\ 112 \\$	1 10 710 9C		-16
$ \begin{bmatrix} e 1 2 3 7 R3 \\ e 1 2 6 R3 \\ 1 2 6 7 5 \\ 1 2 6 7 8 \\ 1 2 7 8 \\ 1 2 6 7 \\ 1 2 6 7 \\ 1 2 6 7 \\ 1 2 6 7 \\ 1 2 6 7 \\ 1 2 6 7 \\$	24/22/01		
ID 20 G2	2421 6127 92 1435		-18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	011 6 10/20 951 1935 water		2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22 10/210 1202 1202 1202		There are an 3
BOIZLO CCX IQ2 D D DOIZLO CCX IU22 D D D DOIZLO CCX IU22 D D D DOIZLO CCX IU22 D D D DOIL D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D <td>212 6 26 24 1410</td> <td></td> <td></td>	212 6 26 24 1410		
Ic/23/PK IL/30 D D D D N: Date/Time RELEIVLD BY: D D D N: D Contraction D D D N: D D D D D N: <td>13 612694 1925</td> <td></td> <td></td>	13 612694 1925		
NIC127 PS(1115) NIC1210 Date/Time RE/EW/D-BY: Date/Time Date/Time RE/EW/D-BY: Cooler Tempor Note: Note: Note: Note: Note: Note: Note: Cooler Tempor Note: Note: Note: Note: Note: Note: Note: Cooler Tempor Note: Note: Note: Note: Note: Note: Cooler ID: Cooler Tempor Note: Note: Note: Note: Note: Note: Cooler ID: Cooler Tempor Note: Note: Note: Note: Note: Note: Note: Cooler Tempor Note: Note: Note: Note: Note: Note: Cooler ID: FEDEX NUMBE Note: Note: Note: Date/Time Note: Date/Time FEDEX NUMBE Note: Note: Note: Date/Time Note: Date/Time Note: Note: Note: Note: Date/Time Note: Note: Note: Note: Note: Note: Date/Time Note: Note: Note: Note: Note: Note: Date/Time Note: Note: Note: </td <td>12 12 12 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30</td> <td></td> <td></td>	12 12 12 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30		
Match Market Date/Time Refervice FEDEX NUMBER Cooler Tempor 1 1 1 Cooler Enviro 1 1 Combany Date/Time ReLINDUR 1 1 Combany Date/Time ReLINDUR 1 1 Combany Date/Time ReLINDUR 1 0 1 Combany Date/Time 1 0 1 Company Date/Time 1 0 1 Date/Time ReLINQUISHED BY: 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 <	16/27/24 1115 1/V		
12CAPEN IN ILLIC CONTAINERS: 12C COMPANY NAME: Cooler ID: Cooler ID: 12C Cooler ID: Cooler ID: 12C COMPANY NAME: Date/Time ACCIVED BY: Date/Time 12C COMPANY NAME: Date/Time 12C COMPANY NAME: Date/Time	Date/Time RECEIVED-BY:		
1215 COMPANY NAME: Cooler ID: Defertinge RELINQUIGHED BY: Date/Time TCOOLER ID: 2015 COMPANY NAME: Date/Time Date/Time 2015 COMPANY NAME: Date/Time	inden 10/20/05/ 17/1	No.	Cooler Temperature: 4^{o}
Charly Dreeflinge RELINQUIGHED BY: 2000 COMPANY NAME: 2000 COMPANY NAME: 2000 COMPANY NAME: 2000 COMPANY NAME: 2000 COMPANY NAME: 2000 COMPANY NAME:	AME: V/2 COMPANY	145 Cooler D:	FEDEX NUMBER:
1 COMPANY NAME: 2 COMPANY NAME: 2 COMPANY NAME: 2 COMPANY NAME: 2 COMPANY NAME:	Change 6/26/98	Date/Time	
ALL COALTINGE RECEIVED BY:	1/215		
10/10 m	in the Contestine	Date/Time	
	10 Kg		

VIII-23

APPENDIX IX

EXCAVATION OF CONTAMINATED SOIL AND SUPPORTING MANIFESTS

All contaminated soil removed during the entire project (i.e., all USTs removed under contract with ACE, to include clean and non-clean closures) was tested and transported to Kedesh, Inc., Highway 84, Ludowici, GA, 31316. The Installation has records of all manifests and weight tickets for this project and provided copies to GA EPD USTMP in September 1988. However, site/UST-specific information is not available.

I certify that the above information is true and accurate.

Name:	<u>Thomas</u> C. Fry
	11011100 0.11

Title: Chief, Environmental Branch

Signature: <u>Ihomas C. Fry</u> Date: <u>03/19/99</u>

APPENDIX X

SITE RANKING FORM

Fort Stewart UST CAP A Report UST 71A, Building 1260, Facility ID #9-089023

SITE RANKING FORM	SITE	IKING FO	RM
-------------------	------	-----------------	----

SITE RANKING FORM									
Facil	Facility Name: USTs 71A					Ran	ked by: L. Lumi	ey	
Cour	County: Liberty Facility ID #: 9-089023				Date Ranked:9/11/98				
SOIL	CONTA								
A. Total PAHs – Maximum Concentration found on the site (Assume <0.660 mg/kg if only gasoline was stored on site)			В.	Total Benzene - Maximum Concentration found on the s					
		<u>0.000</u>					<u><</u> 0.005 mg/kg	=	0
		<u><</u> 0.660 mg/kg	Ξ	0			>0.00505 mg/kg	=	1
		>0.66 - 1 mg/kg	=	10			>0.05 - 1 mg/kg	=	10
		>1 - 10 mg/kg	=	25			>1 - 10 mg/kg	=	25
		>10 mg/kg	=	50			>10 - 50 mg/kg	=	40
							>50 mg/kg	=	50
C.	C. Depth to Groundwater (bls = below land surface)								
		>50' bls =	1						
		>25' - 50' bls =	2,						
		>10' - 25' bls =	5						
		d Ol bla	10						
	\boxtimes	<u>≺</u> 10' bls =							
	the bla	_		_) = ()	x (C. <u>1</u>	<u>0</u>) =	(D. <u>0)</u>		
	the bla <u>JNDWA</u> Free F liquid	_ nks: (A. <u>0</u>)+	<u>ON</u> s-phase		x (C. <u>1</u> F.	Disso Maxir (One	lved Benzene - num Concentration at th well must be located at		
<u>GROI</u>	the bla <u>JNDWA</u> Free F liquid	nks: (A. <u>0</u>)+ <u>TER CONTAMINATI</u> Product (Nonaqueous hydrocarbons; See G	<u>ON</u> s-phase suidelin			Disso Maxir (One of the	lved Benzene - num Concentration at th well must be located at release.)		ourc
<u>GROI</u>	the bla JNDWA Free F liquid For de	nks: (A. <u>0</u>) + <u>TER CONTAMINATI</u> Product (Nonaqueous hydrocarbons; See G efinition of "sheen"). No free product =	<u>ON</u> s-phase suidelin			Disso Maxir (One	lved Benzene - num Concentration at th well must be located at release.) ≤5 µg/L		sourc = 0
<u>GROI</u>	the bla JNDWA Free F liquid For de	nks: (A0_) + <u>TER CONTAMINATI</u> Product (Nonaqueous hydrocarbons; See G efinition of "sheen"). No free product = Sheen - 1/8" =	<u>ON</u> -phase Suidelin 0			Disso Maxir (One of the	lved Benzene - num Concentration at th well must be located at release.) ≤5 µg/L >5 - 100 µg/L		= 0 = 5
<u>GROI</u>	the bla JNDWA Free F liquid For de	nks: (A0_) + <u>TER CONTAMINATI</u> Product (Nonaqueous hydrocarbons; See G efinition of "sheen"). No free product = Sheen - 1/8" = >1/8" - 6" =	<u>ON</u> -phase auidelin 0 250			Disso Maxir (One of the	lved Benzene - num Concentration at th well must be located at release.) ≤5 µg/L		sourc = 0

)

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public Water	rSupply	١.	Non-Public Water Supply		
*		$D' - \frac{1}{4} mi = 25$ i - 1 mi = 10 ni - 2 mi = 2 mi = 0 sceptibility areas only:	, do not hydrauli	$ \begin{array}{ c c c c c c c } & Impacted & = & 1000 \\ \hline & \leq 100' & = & 500 \\ \hline & > 100' - 500' & = & 25 \\ \hline & > 500' - 14 \text{ mi} & = & 5 \\ \hline & > 14 - 1/2 \text{ mi} & = & 2 \\ \hline & > 1/2 \text{ mi} & = & 0 \\ \hline & For lower susceptibility areas only: \\ \hline & > 1/4 \text{ mi} & = & 0 \\ \hline & t use the shaded areas. \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $		
J.	boundary to OR UTILITY trench may b	m nearest Contaminant Plume downgradient Surface Waters TRENCHES & VAULTS (a utility of omitted from ranking if its inve more than 5 feet above the water	ert	Distance from any Free Product to basements and crawl spaces		
	⊠ ≤500	0' - 1,000' = 5		$ \begin{array}{ c c c c c } & Impacted & = & 500 \\ \hline & <500' & = & 50 \\ \hline & >500' - 1,000' & = & 5 \\ \hline & >1,000' \text{ or } & = & 0 \\ \hline & no free product. \end{array} $		
Fill in	the blanks: (I	H. <u>0</u>) + (I. <u>0</u>) + (J. <u>5(</u>	0_) + ((K. <u>0</u>) = L. <u>50</u>		
		(G. <u>0</u>) x ((L.50) = M.0		
		(M. <u>0</u>))+($(D._0) = N._0$		
P.	SUSCEPTIE	BILITY AREA MULTIPLIER				
	☐ If sit	te is located in a Low Ground-Wa	ater Pollu	ution Susceptibility Area = 0.5		
	All o	other sites = 1				
Q.	EXPLOSIO	N HAZARD				
	Have any explosive petroleum vapors, possibly originating from this release, been detected in any subsurface structure (e.g., utility trenches, basements, vaults, crawl spaces, etc.)?					
	☐ Yes	= 200,000				
	No No	= 0				
Fill in	the blanks:	(N. <u>0</u>) x (P. <u>1</u>) = (<u>0</u>)	+ (Q. <u>0</u>	0_)		
		= 0				

ENVIRONMENTAL SENSITIVITY SCORE

OTHER GEOLOGIC AND HYDROLOGIC DATA

The following information is presented to provide supplemental information to Section II.D.5 of the CAP-Part A form and provides detailed information relating to the geologic and hydrogeologic conditions at Fort Stewart to support determinations of groundwater flow pathway(s) or direction(s) and contaminant transport.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward dipping strata that increase in thickness from 0 feet at the fall line located approximately 350 miles inland from the Atlantic coast, to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4254 feet BGS. This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 feet thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 feet thick and dominated by limestone with a 175-foot thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Metcalf & Eddy 1996).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-foot section, the lowermost 110 feet of which consisted predominantly of limestone sediments, above which 245 feet of dark green phosphatic clay typical of the Hawthorn Group was encountered. The uppermost portion of the section was found to be Quaternary age interbedded sands and clays. The top 15 feet of these sediments were described as sandy clay (Metcalf & Eddy 1996).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish brown loamy sand measuring approximately 6 inches in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 inches. The subsoil is dominantly sandy clay loam and extends to a depth of 72 inches or more (Metcalf & Eddy 1996).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. These formations are approximately 800 feet thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 to 150 feet in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 to 10 feet BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site, but is believed to be located at 40 to 50 feet BGS, thus the effective aquifer thickness would be approximately 35 to 45 feet. Soil surveys for Liberty and Long Counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 to 90 feet. The vertical hydraulic conductivity of this confining unit is on the order of 10⁻⁸ cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Cooswhatchie Formation, Markshead Formation, and the Parachula Formation, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay, but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 feet thick in the Savannah Georgia area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Marshead Formation is approximately 70 feet thick in the Savannah Georgia area and consists of light colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone, limestone, and siliceous, and dolomitic and less calcareous.

The Parachula Formation consists of sand, clay, limestone, and dolomite, and is approximately 10 feet thick in the Savannah Georgia area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

APPENDIX XI

PUBLIC NOTIFICATION

i.

Affidavit of Publication Savannah Morning News Savannah Evening Press

STATE OF GEORGIA CHATHAM COUNTY

Joan T. Jenkins, to me known, who being sworn, deposes and says:

That he is the <u>Classified Adv Supv</u> of Southeastern Newspapers Corporation, a Georgia corporation, doing business in Chatham County, Georgia, under the trade name of Savannah Morning News/Savannah Evening Press, a daily newspaper published in said county;

That he is authorized to make affidavits of publication on behalf of said published corporation;

That said newspaper is of general circulation in said county and in the area adjacent thereto;

That he has reviewed the regular editions of the Savannah Morning News/Savannah Evening Press, published on 10-18, 1998, 10-25, 1998, 19,

appeared in each of said editions.

Sworn to and subscribed before me this 26 day of 0 cd, 1998.

XI-3

(Deponent

Otary Public, Chatham County, Borgia

LILLIE D. LANG Notary Public, Chatham County, Ga. My Commission Expires Apr. 8, 2001

ATTACHMENT A

TECHNICAL APPROACH

TECHNICAL APPROACH

1.0 INTRODUCTION

The overall objective of this project is to provide the engineering services required to produce Corrective Action Plans (CAPs) for the subject UST sites. These reports will conform to the site closure requirements of a CAP-Part A for sites in Georgia. The field investigations necessary to support the report preparation included the installation of temporary piezometers, soil borings, and associated sampling of soil and groundwater. Upon completion of the field investigations, a CAP-Part A will be prepared to meet GA EPD, Fort Stewart, and the USACE-Savannah requirements.

2.0 FIELD ACTIVITIES

The following sections detail the methodologies used for geoprobe drilling, sampling, and piezometer installation. A geologist from SAIC was on site at all times during operations. No drilling activities were undertaken until all utility clearances and permits had been obtained from Fort Stewart's utility personnel.

2.1 Subsurface Soil Sampling

2.1.1 Geoprobe Drilling

The geoprobe method was used during the project for collecting soil samples. During all geoprobe drilling, soil samples were collected continuously on 4.0-foot centers from the ground surface to the bottom of the borehole. The total depth of each borehole was dictated by the depth where the water table was encountered.

2.1.2 Sample Collection

Soil samples for chemical analyses were collected from boreholes using 4.0-foot macro-core samplers. Upon retrieval of the sampling device, the soil core was split into two 2.0-foot sections using a stainless steel knife. A portion of each 2.0-foot section was collected for possible laboratory analysis. The remaining portion of each 2.0-foot section was used for field measurements.

Samples designated for possible laboratory analysis were collected from the section using a stainless steel spoon. The spoon was run lengthwise down the core to collect a sample representative of the entire core section. The portion of the sample designated for volatile organic analyses was placed into laboratory sample containers first, followed by placement of the remaining portion of the sample into the containers designated for other types of analyses. Sample containers designated for volatile organic analyses were filled so that minimal headspace was present in the containers. Headspace gas concentration measurements were made using a field organic vapor meter (OVM). Initially, soil from each 2.0-foot interval was placed into a glass jar, leaving some air space, and covered with aluminum foil to create an air-tight seal. The sample was allowed to volatilize for a minimum of 15 minutes. The sealed jar was punctured with the OVM probe and headspace gas drawn until the meter reading was stable. The concentration of the headspace gas was recorded to the nearest 0.1 part per million.

Immediately after collection of each sample and completion of bottle label information, each potential analytical sample container was placed into an ice-filled cooler to ensure preservation. A clean split-barrel sampling device was used to collect soil core from each interval of the project boreholes. Information regarding the criteria for selection of soil samples for off-site shipment to a laboratory for chemical analysis

is presented in Section 3.1.3 of the project Work Plan. Soil samples, which were not selected for laboratory analysis, were disposed of as investigation-derived waste (IDW).

2.2 Groundwater Sampling

2.2.1 Groundwater Collection

Groundwater samples from geoprobe boreholes installed during Preliminary Groundwater and CAP-Part A investigations were collected using a geoprobe sampler or from temporary piezometers. The geoprobe sampler is a probe that allows the collection of a groundwater sample from a discrete undisturbed depth interval in a soil boring. Temporary piezometers were constructed of 1.0-inch inside diameter (ID) polyvinyl chloride (PVC) casing with a 5-foot or 10-foot screened interval. These piezometers were installed in the open borehole following completion of all drilling activities.

Each soil borehole was advanced to the top of the water table using direct push methods. For each borehole, the geoprobe sampler was lowered to the bottom of the borehole and driven through the undisturbed soil to a depth of approximately 3.0 feet below the water table. The outer casing of the geoprobe sampler was retracted to expose the screen and allow groundwater to enter the chamber. In cases where the geoprobe sampler could not be driven or where groundwater recovery through the geoprobe sampler was poor, the groundwater sample was collected through the temporary piezometer.

Groundwater samples were collected using a peristaltic pump or a 0.75-inch diameter stainless steel bailer. The portion of the sample designated for volatile organic analysis was poured into laboratory sample containers first, followed by pouring of the remaining sample portion into containers designated for other types of chemical analyses. Sample containers designated for volatile organic analysis were filled so that no headspace was present in the containers.

2.2.2 Field Measurements

Groundwater field measurements performed during the project included measurement of static groundwater level, pH, specific conductance, and temperature. Measurement of groundwater levels in soil boreholes was accomplished through the installation of temporary PVC piezometers. A summary of the procedures and criteria to be used for groundwater sample field measurements is presented in the following sections.

Static Groundwater Level

Static groundwater level measurements were made using an electronic water level indicator. Initially, the indicator probe was lowered into each temporary piezometer casing until the alarm sounded and/or the indicator light illuminated. The probe was withdrawn several feet and slowly lowered again until the groundwater surface was contacted as noted by the alarm and/or indicator light. Water level measurements were estimated to the nearest 0.01 foot based on the difference between the nearest probe cord mark to the top of the piezometer casing.

The distance between the top of casing and the surrounding ground surface was taken into account in measuring the water level to within 0.01 foot. The static water level measurement procedure was repeated two or three times to ensure that the water level measurements were consistent (plus or minus 0.01 foot). If this was the case, then the first measured level was recorded as the depth to groundwater. If this was not the case, the procedure was repeated until consistent readings were obtained from three consecutive measurements.

pH, Specific Conductance, and Temperature

The pH, specific conductance, and temperature measurements were recorded for groundwater during groundwater sampling. The pH, temperature, and conductivity measurements were made using a combination meter designed to measure these parameters. A portion of each groundwater sample was retrieved from the PowerPunch sampler and poured into the collection cup. With the combination meter set in the pH mode, the meter electrode was swirled at a slow constant rate within the sample until the meter reading reached equilibrium. The sample pH was recorded to the nearest 0.1 pH unit. The pH measurement procedure was repeated, using a new sample each time, until the pH measurements were consistent (less than 0.2 pH units variation).

Upon completion of the pH measurement, conductivity and temperature measurements were made on a groundwater sample collected in the same manner as described above. With the combination meter set in the conductivity mode, the meter electrode was swirled at a slow constant rate within the sample until the meter reading reached equilibrium. Concurrently, a temperature probe was placed into the sample and allowed to reach equilibrium. The sample conductivity was recorded to the nearest 10 mmhos/cm and the temperature to the nearest 0.1° C. All recorded conductivity values were converted to conductance at 25° C. The conductivity and temperature measurement procedure was repeated a minimum of three times using a new sample each time, until the measurements are consistent (less than 10 percent variation for conductance and less than 0.5° C variation for temperatures).

2.3 Temporary Piezometer Installation

Following the collection of the groundwater sample, a 1.0-inch PVC piezometer, with a 5-foot or 10-foot screened section, was installed in the borehole to prevent the borehole from collapsing. These piezometers remained in the boreholes approximately 24 hours, after which time the static water level was measured.

2.4 Borehole Abandonment

Once the static water level was measured, the temporary piezometers were removed and the boreholes were abandoned. Abandonment was conducted in a manner precluding any current or subsequent fluid media from entering or migrating within the subsurface environment along the axis or from the endpoint of the borehole. Abandonment was accomplished by filling the entire volume of the borehole with grout.

2.5 Surveying

A topographic survey of the horizontal and vertical locations of all soil boreholes was conducted after completion of all field activities. The topographic survey was conducted by a surveyor registered in the state of Georgia.

The horizontal coordinates for each soil borehole were surveyed to the closest 1.0 foot and referenced to the State Plane Coordinate System. Ground elevations were surveyed to the closest 0.1 foot. Elevations were referenced to the National Geodetic Vertical Datum of 1983.

2.6 Decontamination Procedures

2.6.1 Geoprobe Equipment

Decontamination of equipment used for the drilling of boreholes was conducted within the temporary decontamination pad constructed at the central staging area. The decontamination pad was constructed so that all decontamination liquids were contained from the surrounding environment and were recovered for disposal as IDW. The entire geoprobe vehicle and equipment was decontaminated once it arrived on site and the geoprobe sampling equipment was decontaminated after completion of each soil borehole. The equipment was decontaminated by removing the caked soil material from the exterior of equipment using a rod and/or brush, steam cleaning the interior and exterior of equipment, allowing the equipment to air dry as long as possible, and wrapping or covering the equipment in plastic.

2.6.2 Sampling Equipment

Decontamination of equipment used for soil sampling and collection of groundwater samples was conducted at the temporary decontamination area. Nondedicated equipment was decontaminated after each use. The sampling equipment was washed with potable water and phosphate-free detergent using various types of brushes required to remove particulate matter and surface films, followed by a potable water rinse, American Society of Testing and Materials (ASTM) Type I or equivalent water rinse, isopropyl alcohol rinse, ASTM Type I or equivalent water rinse, allowed to air dry, and wrapped in plastic or aluminum foil.

In addition to the sampling equipment, field measurement instruments were also decontaminated between uses. Only those portions of each instrument that come into contact with potentially contaminated environmental media were decontaminated. Because of the delicate nature of these instruments, the decontamination procedure only involved initial rinsing of the instrument probes with ASTM Type I or equivalent water.

2.7 Documentation of field activities

All information pertinent to sampling activities, including instrument calibration data, was recorded in field logbooks. The logbooks were bound and the pages consecutively numbered. Entries in the logbooks were made in black permanent ink and included, at a minimum, a description of all activities, individuals involved in drilling and sampling activities, date and time of drilling and sampling, weather conditions, any problems encountered, and all field measurements. Sufficient information was recorded in the logbooks to permit reconstruction of all sampling activities

3.0 SAMPLE HANDLING AND ANALYSIS

3.1 Analytical Program

Soil samples were screened for the presence of volatile vapors using a organic vapor analyzer (OVA). The OVA was calibrated daily using 100 parts per million (ppm) isobutylene. The headspace of each sample was measured approximately 15 minutes after collection.

For sites where the UST had contained waste oil, soil samples were analyzed for BTEX by method SW846-8020, PAH by method SW846-8270, and TPH by method SW846-9073. Groundwater samples were analyzed for BTEX by method SW 846-8240 and PAH by method SW 846-8270. All samples were sent to General Engineering Laboratories, Charleston, South Carolina.

For sites where the UST had contained gasoline or diesel, soil samples were analyzed for BTEX by method SW 846-8020, PAH by method SW 846-8270, and TPH by method SW 846-8015 (modified). Groundwater samples were analyzed for BTEX by method SW 846-8240 and PAH by method SW 846-8270. TPH analysis included both gasoline range organics (GRO) and diesel range organics (DRO). All samples were sent to General Engineering Laboratories, Charleston, South Carolina.

Duplicate samples of soil and groundwater were collected throughout the project and represented approximately 10 percent of the total sample population. Rinsate blanks were collected to determine whether the sampling equipment was causing cross-contamination of the samples and represented approximately 5 percent of the total sample population. Duplicates and rinsates were submitted to General Engineering Laboratories, Charleston, South Carolina.

3.2 Sample Containers, Preservation, and Holding Times

The soil sample containers, preservatives, and holding times are summarized in Table A-1. The groundwater sample containers, preservatives, and holding times are summarized in Table A-2.

3.3 Sampling Packaging and Shipment

Each sample container was labeled, taped shut with electrical tape (except those containing samples designated for volatile organic analysis), and an initialed/dated custody seal was placed over the lid. Each sample bottle was placed into a separate plastic bag and sealed. The samples were placed upright in thermally insulated rigid-body coolers and surrounded by vermiculite to prevent breakage during shipment. In addition, samples were cooled to approximately 4° C with wet ice. These measures were taken to slow the decomposition and volatilization of contaminants during shipping and handling. The sample coolers were shipped to the analytical laboratory via courier service provided by the laboratory.

Analyte Group	Container	Minimum Sample Size	Preservative	Holding Time
BTEX	1-4 oz jar with Teflon [®] -lined cap (no headspace)	20 g	Cool, 4°C	14 d
TPH-GRO	use same container as BTEX	20 g	Cool, 4°C	14 d
PAHs	1 – 8 oz jar with Teflon [®] -lined cap	90 g	Cool, 4°C	14 d (extraction) 40 d (analysis)
TPH-DRO	use same container as PAHs	90 g	Cool, 4°C	14 d (extraction) 40 d (analysis)
ТРН	use same container as PAHs	90 g	Cool, 4°C	14 d (extraction) 40 d (analysis)
Metals (lead)	use same container as PAHs	20 g	Cool, 4°C	180 d

Table A-1. Summary of Sample Containers, Preservation Techniques, and Holding Times for Soil Samples Collected During the Site Investigation

Table A-2. Summary of Sample Containers, Preservation Techniques, and Holding Times for Groundwater Samples Collected During the Site Investigation

Analyte Group	Container	Minimum Sample Size	Preservative	Holding Time
BTEX	2 – 40 mL glass vials with Teflon [®] -lined septum (no headspace)	40 mL	Cool, 4°C HCl to pH < 2	14 d
PAHs	2 – 1L amber glass bottle with Teflon [®] -lined lid	1000 mL	Cool, 4°C	7 d (extraction) 40 d (analysis)

ATTACHMENT B

REFERENCES

ĺ

ş

÷,

THIS PAGE INTENTIONALLY LEFT BLANK

, с

- Anderson Columbia Environmental Inc., 1996. Closure Report, Waste Oil Tank, Building P430, Tank 261, Facility ID: 9-089118, Fort Stewart, Georgia, October.
- Arora, Ram, 1984. Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.
- ASTM, 1995, Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, ASTM E 1739-95, approved September 10, 1995.
- EPA (U.S. Environmental Protection Agency), 1989, "Environmental Protection Agency National Primary Drinking Water Regulations," <u>40 CAR 141</u>, as amended by 54FR27526,27562, June 29, 1989 and 54FR30001, July 17, 1989, The Bureau of National Affairs, Inc., Washington, DC.

Geraghty and Miller, 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Looper, Edward E., 1980. Soil Survey of Liberty and Long Counties, Georgia, U.S. Department of Agriculture, Soil Conservation Service.
- Metcalf and Eddy, 1996. Final Work Plan for RCRA Facility Investigation at Bulk Fuel Storage System, Wright Army Airfield, Fort Stewart, Georgia.
- Miller, James A., 1990. Groundwater Atlas of the United States, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.

Ì

11