FINAL

.

FIRST ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANKS 2 & 3 FACILITY ID #9-089065 BUILDING 1840 FORT STEWART, GEORGIA

Prepared for:

*

U.S. Army Corps of Engineers–Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0061

Prepared by:

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

November 2000

TABLE OF CONTENTS

	Page
LIS	T OF ABBREVIATIONS AND ACRONYMS iii
I.	REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION
II.	PROJECT SUMMARY
Ш.	ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS
IV.	SITE RANKING
V.	CONCLUSIONS/RECOMMENDATIONS
VI.	REIMBURSEMENT
List	of Appendices
Fign Fign Fign Fign Fign Fign API Tab Tab	PENDIX I: REPORT FIGURES I-1 ire 1. Location Map of USTs 2 & 3 at Fort Stewart, Liberty County, Georgia I-2 ire 2a. Potentiometric Surface Map of the USTs 2 & 3 Site (February 2000) I-3 ire 2b. Potentiometric Surface Map of the USTs 2 & 3 Site (July 2000) I-4 ire 3a. Groundwater Quality Map for the USTs 2 & 3 Site (January 2000) I-5 ire 3b. Groundwater Quality Map for the USTs 2 & 3 Site (June 2000) I-6 ire 4. Trend of Contaminant Concentrations for the USTs 2 & 3 Site. I-7 PENDIX II: REPORT TABLES II-1 le 1. Groundwater Elevations II-2 le 2. Groundwater Analytical Results II-3 le 3. Soil Analytical Results II-4 le 4. Well Construction Details II-4
API	ENDIX III: LABORATORY ANALYTICAL RESULTS
API	PENDIX IV: SITE RANKING FORMS
API	PENDIX V: REIMBURSEMENT APPLICATION
<u>Atta</u>	chments
A	SUMMARY OF FATE AND TRANSPORT MODELING RESULTS
В	REFERENCESB-1
С	BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

List of Abbreviations and Acronyms

1

ACLalternate concentration limitAMSLabove mean sea levelBGSbelow ground surfaceBTEXbenzene, toluene, ethylbenzene, and xylenesBTOCbelow top of casingCAPCorrective Action PlanDAFdilution attenuation factorGA EPDGeorgia Environmental Protection DivisionIWQSIn-Stream Water Quality StandardNDnot detectedNFARNo Further Action RequiredNRCno regulatory criteriaPAHpolynuclear aromatic hydrocarbonSAICScience Applications International CorporatiUSACEU.S. Army Corps of EngineersUSTunderground storage tork	
composition and function	
UST underground storage tank	
USTMP Underground Storage Tank Management Pro	ogram

MONITORING ONLY REPORT

Submittal D	Date: November 2000 Mo	nitoring Report N	lumber: 1st Annual
For Period (Covering: January 2000 to	November 2000	
Facility Nar	ne: USTs 2 & 3, Building 1840	_ Street Address	McFarland Avenue and : West 18 th Street
Facility ID:	9-089065 City: Fort Stewart	_ County: _Li	berty Zip Code: 31314
Latitude:	<u>32° 15′ 83″</u> Longitude: <u>82° 04′ 4</u>	3″	
Submitted b	y UST Owner/Operator:	Prepared by	Consultant/Contractor:
Name:	Thomas C. Fry/ Environmental Branch	Name:	Patricia A. Stoll
Company:	U.S. Army/HQ 3d, Inf. Div. (Mech)	Company:	SAIC
Address:	Directorate of Public Works, Bldg. 113	7 Address:	P.O. Box 2502
	1550 Frank Cochran Drive		
City:	Fort Stewart State: GA	City:	Oak Ridge State: TN
Zip Code:	31314-4927	Zip Code:	37831
Telephone:	(912) 767-2010	Telephone:	(865) 481-8792

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patricia A, Stoll
Signature:
Date: 11/8/00

22851 Geð

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Former underground storage tanks (USTs) 2 & 3, Facility ID #9-089065, were located near Building 1840 at Fort Stewart, Georgia. The tanks and piping were excavated and removed on August 13, 1996. Science Applications International Corporation (SAIC) performed a Corrective Action Plan (CAP)-Part A investigation in 1998 to determine the extent of petroleum contamination at the site. One vertical profile boring and seven temporary piezometers were installed during the investigation. The CAP-Part A Report (SAIC 1999) recommending monitoring only at the site was submitted in August 1999 and approved by Georgia Environmental Protection Division (GA EPD) Underground Storage Tank Management Program (USTMP) in correspondence dated January 25, 2000 (Logan 2000). As recommended in the Monitoring Only Plan, six shallow monitoring wells (77-09 through 77-14) were installed as part of the first semiannual sampling event and sampled for benzene, toluene, ethylbenzene, and xylenes (BTEX). In addition, two soil samples were collected from 77-09, located between the former tank pits and the dispenser island. The analytical results from the soil samples will supercede the previous soil analytical data in the site ranking form. Boring logs and well construction diagrams are located in Attachment C.

The fate and transport modeling performed as part of the CAP-Part A Report (SAIC 1999) reflected a continuous source of contamination. The results are summarized in Attachment A of this document. As a result of the semiannual monitoring events in January 2000 and July 2000, it was not necessary to revise the fate and transport model.

The purpose of the semiannual monitoring, summarized in this report, is to confirm the results of the fate and transport modeling and that natural attenuation is taking place at the site. The measured benzene concentrations have been below the In-Stream Water Quality Standard (IWQS) 71.28 and the alternate concentration limit (ACL) of 71.28 μ g/L for the last two semiannual sampling events (i.e., since January 2000 when the monitoring only started). Therefore, no-further-action-required status is being recommended for the site.

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

A. <u>Potentiometric Data</u>:

(Appendix I, Figures 2a and 2b: Potentiometric Surface Map) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

During the first semiannual sampling event in January/February 2000, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In February 2000, the groundwater flow direction was toward the west and the groundwater gradient was approximately 0.0059 ft/ft.

During the second semiannual sampling event in June/July 2000, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In July 2000, the groundwater flow direction was toward the east and the groundwater gradient was approximately 0.0025 ft/ft.

B. <u>Analytical Data</u>:

(Appendix I, Figures 3a and 3b: Groundwater Quality Map) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix II, Table 2, Groundwater Analytical Results) (Appendix III, Laboratory Analytical Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

During the first semiannual sampling event in January 2000, monitoring wells 77-09, 77-10, 77-11, 77-12, 77-13, and 77-14 were sampled for BTEX. Analytical results from the first sampling event showed estimated concentrations below the analytical reporting limits or no detectable BTEX concentrations in wells 77-09, 77-10, 77-12, 77-13, and 77-14. BTEX compounds were present in well 77-11. However, none of the constituents exceeded its IWQS. Benzene was detected at 0.28J μ g/L in well 77-09, 0.55J μ g/L in well 77-10, and 13.7 μ g/L in well 77-11. The benzene concentrations in wells 77-09, 77-09, 77-10, 77-11 are below the IWQS of 71.28 μ g/L. Figure 4 shows the variation in benzene concentrations in groundwater for all the wells.

Two soil samples were collected from well 77-09 in January 2000. The soil samples were collected at the interval with the highest headspace readings and the interval at the soil/water interface, and analyzed for BTEX and polynuclear aromatic hydrocarbons (PAHs). The analytical results are presented in Table 3. These analytical results will supercede the previous soil data utilized in the site ranking form.

During the second semiannual sampling event in June 2000, monitoring wells 77-09, 77-10, 77-11, 77-12, 77-13, and 77-14 were sampled for BTEX. Analytical results from the second sampling event showed estimated concentrations below the analytical reporting limits or no detectable BTEX concentrations in the six wells sampled (i.e., 77-09, 77-10, 77-11, 77-12, 77-13, and 77-14). Benzene was estimated at 0.92J μ g/L in well 77-13. Benzene was not present in wells 77-09, 77-10, 77-11, 77-12, and 77-14. Figure 4 shows the variation in benzene concentrations in groundwater for all the wells.

As recommended in the CAP-Part A Report (SAIC 1999), PAH analysis was not performed as part of the Monitoring Only Plan for the site.

IV. SITE RANKING (Note: re-rank site after each monitoring event) (Appendix IV: Site Ranking Form)

Environmental Site Sensitivity Score:
(April 1999 version of the Site Ranking
Form was used for January 2000 score)2750 (CAP-Part A Report)250 (Jan. 2000 – First Semiannual Monitoring Event)
0 (June 2000 – Second Semiannual Monitoring Event)

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

Fort Stewart respectfully requests that GA EPD, USTMP assign Facility ID #9-089065 a "No Further Action Required" (NFAR) status for the following reasons:

- The Monitoring Only Plan was conducted in accordance with Section III of the CAP-Part A Report (SAIC 1999) and as approved by the GA EPD USTMP in correspondence January 25, 2000 (Logan 2000).
- The site scores for the last two rounds of semiannual groundwater sampling were 250 and 0, which GA EPD USTMP representatives have indicated are acceptable scores for requesting an NFAR status (i.e., January 27, 1999 meeting between GA EPD, Fort Stewart, U. S. Army Corps of Engineers, and SAIC representatives).
- The fate and transport model conducted during the CAP-Part A Report (SAIC 1999), which uses a continuous source of contamination and is summarized in Attachment A, indicates that benzene will never reach the nearest potential preferential pathway (i.e., a storm drain) at a concentration above the IWQS of 71.28 µg/L.
- The benzene concentrations in all wells were below the IWQS of 71.28 μ g/L during the two semiannual monitoring events from January 2000 to June 2000.
- The closest surface water bodies are a drainage ditch and Mill Creek located at 650 feet and 1,200 feet, respectively, northwest of the site.
- Natural attenuation has continued to take place at the site as indicated by the decreasing benzene concentrations, which are less than $1 \mu g/L$.

The monitoring only program at this site will be discontinued.

VI. REIMBURSEMENT

Attached N/A X

(Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the USTs 2 & 3 site, Building 1840, Facility ID #9-089065, using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

4

79

APPENDIX I

REPORT FIGURES

Figure 1. Location Map of USTs 2 & 3 at Fort Stewart, Liberty County, Georgia

First Annual Monitoring Only Report USTs 2 & 3, Building 1840, Facility ID #9-089065

Figure 2a. Potentiometric Surface Map of the USTs 2 & 3 Site (February 2000)

Figure 2b. Potentiometric Surface Map of the USTs 2 & 3 Site (July 2000)

Figure 3a. Groundwater Quality Map for the USTs 2 & 3 Site (January 2000)

Figure 3b. Groundwater Quality Map for the USTs 2 & 3 Site (June 2000)

Figure 4. Trend of Contaminant Concentrations for the USTs 2 & 3 Site

I-7

First Annual Monitoring Only Report USTs 2 & 3, Building 1840, Facility ID #9-089065

٠

APPENDIX II

REPORT TABLES

-		Top of Casing	Screened	Water	Groundwater
Well	Date of	Elevation	Interval	Depth	Elevation
Number	Measurement	(feet AMSL)	(feet BGS)	(feet BTOC)	(feet AMSL)
	First Semia	nnual Monitoring 1	Event – January	v/February 200	0
77-09	02/21/00	67.52	2.9 - 12.9	4.97	62.55
77-10	02/21/00	67.45	4.7 – 14.7	5.01	62.44
77-11	02/21/00	67.53	2.7 - 12.7	5.16	62.37
77-12	02/21/00	67.54	2.6 - 12.6	5.23	62.31
77-13	02/21/00	67.40	2.7 – 12.7	4.65	62.75
77-14	02/21/00	67.62	4.8 - 14.8	4.22	63.40
	Second S	emiannual Monitor	ring Event – Ju	ne/July 2000	
77-09	07/25/00	67.52	2.9 - 12.9	4.65	62.87
77-10	07/25/00	67.45	4.7 – 14.7	4.48	62.97
77-11	07/25/00	67.53	2.7 – 12.7	4.52	63.01
77-12	07/25/00	67.54	2.6 - 12.6	4.61	62.93
77-13	07/25/00	67.40	2.7 - 12.7	4.60	62.80
77-14	07/25/00	67.62	4.8 – 14.8	4.95	62.67

Table 1. Groundwater Elevations

AMSL Above mean sea level

BGS Below ground surface

BTOC Below top of casing

Sample Location	Sample ID	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	Total BTEX (µg/L)	Total PAH (µg/L)
		L	innual Monite	oring Event –	January/Feb	ruary 2000		
77-09	770912	1/13/00	0.28 J	1 U	0.19 J	0.60 J	1.07	NA
77-10	771012	1/13/00	0.55 J	1 U	1 U	3 U	0.55	NA
77-11	771112	1/13/00	13.7 =	0.61 J	2.9 =	14.7 =	31.91	NA
77-12	771212	1/13/00	1 U	1 U	1 U	3 U	ND	NA
77-13	771312	1/13/00	1 U	1 U	1 U	3 U	ND	NA
77-14	771412	1/13/00	1 U	1 .U	1 U	3 U	ND	NA
		Second S	Semiannual N	Ionitoring Ev	ent – June/Ju	ly 2000		
77-09	770922	6/21/00	1.0 U	1.0 U	1.0 U	3.0 U	ND	NA
77-10	771022	6/21/00	1.0 U	1.0 U	1.0 U	2.5 J	2.5	NA
77-11	771122	6/21/00	1.0 U	1.0 U	1.0 U	3.0 U	ND	NA
77-12	771222	6/21/00	1.0 U	1.0 U	1.0 U	3.0 U	ND	NA
77-13	771322	6/21/00	0.92 J	1.0 U	1.0 U	3.0 U	0.92	NÁ
77-14	771422	6/21/00	1.0 U	1.0 U	1.0 Ú	3.0 U	ND	NA
	In-Stream Water Quality Standard (GA EPD Chapter 391-3-6)			200,000 m	28,718	NRC	NRC	NRC
Alternat	e Concentrat	ion Limit	72.18			_	_	

Table 2. Groundwater Analytical Results

NOTE:

71.28 gm

Bold values exceed IWQS

Italic values exceed ACLs

BTEX Benzene, toluene, ethylbenzene, and xylenes

NA Not analyzed, PAH compounds were not required as part of the monitoring only plan.

ND Not detected

NRC No regulatory criteria

PAH Polynuclear aromatic hydrocarbon

Laboratory Qualifiers

U Indicates the compound was not detected at the concentration reported.

UJ Indicates that the compound was not detected above an approximated sample quantitation limit.

J Indicates the value for the compound is an estimated value.

= Indicates the compound was detected at the concentration reported.

Table 3. Soil Analytical Results

Sample Location	Sample ID	Sample Depth (ft BGS)	Date Sampled	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	Total PAH (mg/kg)
		First Se	miannual N	Aonitoring E	lvent – Janua	ury/February	y 2000		
77-09	770911	4.0 - 6.0	1/13/00	0.0010 U	0.0010 U	0.0023 =	0.0089 =	0.0112	0.0218
77-09	770921	0.0 - 2.0	1/13/00	0.0013 =	0.00097 =	0.0434 =	0.0319 =	0.0776	ND
GUST Soil Threshold Levels (Table A, Column 2)			0.008	6.0	10.0	700.0	NRC	NRC	

NOTE:

BTEX Benzene, toluene, ethylbenzene, and xylene

BGS Below ground surface

ND Not detected, the detection limit for PAH compounds was 0.035 mg/kg

NRC No regulatory criteria

PAH Polynuclear aromatic hydrocarbon

Laboratory Qualifiers

U Indicates the compound was not detected at the concentration reported.

UJ Indicates that the compound was not detected above an approximated sample quantitation limit.

J Indicates the value for the compound is an estimated value.

= Indicates the compound was detected at the concentration reported.

Table 4. Well Construction Details

		Boring	Screened		Coordinates (NAD83)		Elevation (NAVD88)	
Boring/Well Number	Date Installed	Depth (ft BGS)	Interval (ft BGS)	Type of Completion	Northing	Easting	Ground Surface	Top of Casing
	First Semiannual Monitoring Event – January/February 2000							
77-09	1/13/00	13.2	2.9 - 12.9	⅔" PVC	683398.5	821731.1	67.79	67.52
77-10	1/13/00	15.0	4.7 – 14.7	¾" PVC	683399.8	821704.6	67.71	67.45
77-11	1/13/00	13.0	2.7 - 12.7	¾" PVC	683426.3	821641.4	67.69	67.53
77-12	1/13/00	12.9	2.6 - 12.6	¾" PVC	683477.7	821684.7	67.81	67.54
77-13	1/13/00	13.0	2.7 - 12.7	¾" PVC	683488.3	821747.4	67.60	67.40
77-14	1/13/00	15.9	4.8 - 14.8	¾" PVC	683396.5	821813.7	67.89	67.62

BGS Below ground surface

PVC polyvinyl chloride

APPENDIX III

LABORATORY ANALYTICAL RESULTS

•

FIRST SEMIANNUAL MONITORING EVENT

JANUARY/FEBURARY 2000

1A VOLATILE ORGANICS ANALYSIS DATA SH	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	N/A SDG No.: FSAB0035
Matrix: (soil/water) SOIL	Lab Sample ID: 20657001
Sample wt/vol: $5.6 (g/\pi L) G$	Lab File ID: 2S507
Level: (low/med) LOW	Date Received: 01/14/00
% Moisture: not dec. 12	Date Analyzed: 01/21/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
	NTRATION UNITS: or ug/Kg) UG/KG Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 107-02-8Xylenes (total)	$ \begin{array}{c} 1.0 \\ 0 \\ 1.0 \\ 0 \\ 2.3 \\ 8.9 \\ \end{array} $

(·

C

ï,

COPY

FORM I VOA

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

GPC Cleanup: (Y/N) N pH: 7.0

CAS NO. COMPOUND

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR Cont:	ract: N/A
Lab Code: N/A Case No.: N/A SAS	
Matrix: (soil/water) SOIL	Lab Sample ID: 20657001
Sample wt/vol: 30.0 (g/mL) G	Lab File ID: 7C220
Level: (low/med) LOW	Date Received: 01/14/00
% Moisture: 12 decanted: (Y/N) N	Date Extracted:01/18/00
Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 01/19/00
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Q

91-20-3Naphthalene 91-58-72-Chloronaphthalene	37.7		
208-96-8Acenaphthylene	37.7		4
83-32-9Acenaphthene	21.8	-	3
86-73-7Fluorene	37.7	-	
85-01-8Phenanthrene 120-12-7Anthracene	37.7	-	11
206-44-0Fluoranthene	37.7	. —	11
129-00-0Pyrene			
56-55-3Benzo (a) anthracene	37.7	υ	11
218-01-9Chrysene	37.7	-	
205-99-2Benzo(b)fluoranthene	37.7		11
207-08-9Benzo(k) fluoranthene	37.7	- 4	Π
50-32-8Benzo (a) pyrene 193-39-5Indeno (1,2,3-cd) pyrene	37.7	-	
53-70-3Dibenz (a, h) anthracene	37.7	-	
191-24-2Benzo(g,h,i)perylene	37.7		$ \downarrow$
	1		1

and a start of the second s Second s Second second

FORM I SV-1

OLM03.0

ſ	COC NO.: DD550/	LABORATORY NAME:	General Engineering Letioratory	LABORATORY ADDRESS; 2040 Savage Raod Charleston, SC 29417		OVA CONSERVATIONS, COMMANTS, SCREENING S44 FIAL INSTRUMENTS,			2010STODI	200									Cooler Temperature:	FEDEX NUMBER.		-				,
	•				IV (MARTO	a ho .ol		2	NI	4		-	-					A				, 1 .				
							280	1	20		13			7		1. 	7		Ŧ							
										SE				्र्	3	15	/-	and a	VINERS:							•
	ā	ERS					ж.			<u>بة</u>			1	극글		7		¥.	TOTAL NUMBER OF CONTAINERS:	4						
	COR	RAMÊT			<u> </u>		-							1	3	/ ⁄ ⁄ ⁄ ⁄	志記		BER OF	44				,	1. ¹⁰	
N	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS			······································					9			ند				2		IN UM	ä∦ ≣		۰ ۰				
X	sroc	EQUES										溪			<u>X</u>				TOTA	Cooler ID:				· 3		
(3	F CU:					TCLP I		<u></u>	1	<u> </u>			У	N.	マ 夏				Date/Time	B H H	Time		lime	,	· ·	
	io N	L	. <u></u>		noni be	Hitt Decor	177				1	13		A					Date		Data/Timo		Date/Time		•	
	CHA				pea	PAH. I		-	- -	-			\sum	5) 				,		P	
						XJTE	Z	N ·					Ű	7	====	-	ā.	1	<						•	
						Mainte	under				1		Ň	/					10	Х Чщі,	RELINQUISHED BY:	COMPANY NAME:	D BY:	COMPANY NAME:		
								Υ Λ	4			/				-				13D	ELINQU	OMPAN	RECEIVED BY:	OMPAN		
	009+-10+/EZ+	10			(Printed Name)	Time Collacted	320	0745		2										1			_		• • •	-
od Company	1 (423)	0,0	352-20			j				}		$\left \right $		+	+		_	-		002/	Date/Time	1-14-00	Date/Time	65%	بي بري ر	
la Englu: rice Doned Company Corporation	TA' I'A	int USTs	4-04-2	Stall		Date College	13/00	00/2/											- >			<u></u>		4		
Mater Mater	al Ridge.	. Stewa	01-162	: Patty			-1-	\$2					_		_				Ċ			P I	4		· · · · · · · ·	
	umplie, O	.ME: Ft	MBER	NAGER	39		N		-															ų. Lietas	ی بی ت بر مع	
	100 Oak Ridge Turnpite, Oak Ruge, IN 37831	PROJECT NAME: Ft; Stewart USTs D.O. #55	3R0JECT NUMBER: 01-1624-04-2352-200	ROJECT MANAGER: Patty Stall	Cinque (Signature)	Sample ID	2013	1 P0 4 4	200F							-				OMPANY NAME:	ECEPTED BY	OMPANY NAME	ELUNGUIGHE D'BY	UMPANY RAME		
	108 0	LOR	LON.	NO.	$ \mathcal{D} $]	อโย		η π	/	ļ							ON A		OMP	ECE S	Y divio	ELW BU	V MPA	اری مرتبع کار مرتبع میں مرتبع میں	•

9

EFA SAMPLE NO. 1A VOLATILE ORGANICS ANALYSIS DATA SHEET 770912 Lab Name: GENERAL ENGINEERING LABOR Contract: N/A Lab Code: N/A SAS No.: N/A SDG No.: FSAB331W Case No.: N/A Matrix: (soil/water) WATER Lab Sample ID: 20655004 Sample wt/vol: 5.000 (g/ml) ML Lab File ID: 55419 Level: (low/med) LOW Date Received: 01/14/00 % Moisture: not dec. Date Analyzed: 01/20/00-GC Column: DB-624 ID: 0.25 (mm)Dilution Factor: 1.3 Soil Extract Volume: Soil Aliquet Volume: _____ (uL (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 71-43-2----Benzene 3.23 J 108-88-3----Toluene 1.0 0 100-41-4----Ethylbenzene 0.19 J 1330-20-7-----Xylenes (total) 0.60 J DATA V. C 01042310 FORM I VOA

IA VOLATILE ORGANICS ANALYS	IS DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR	Contract: N/A
Lab Code: N/A Case No.: N/A	SAS NO.: N/A SDG NO.: FSAB003S
Matrix: (soil/water) SOIL	Lab Sample ID: 20657002
Sample wt/vol: 6.1 (g/mL) G	Lab File ID: 28508
Level: (low/med) LOW	Date Received: 01/14/00
% Moisture: not dec. 16	Date Analyzed: 01/21/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 107-02-8Xylenes (tota	$ \begin{array}{c} 1.3 \\ 0.97 \\ 43.4 \\ 31.9 \\ \end{array} $

(*

÷

OLM03.0

VALIDATION COPY

and grants of

Υ.

	18		1.1	
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

EPA SAMPLE NO.

Lab Nam	e: GENERAL E	NGINEERING LABOR	Contract: N/	'A	770921
Lab Cod	e: N/A	Case No.: N/A	SAS No.: N/	'A SDG	No.: FSAB003S
Matrix:	(soil/water	SOIL	Lab	Sample ID	20657002
Sample (wt/vol:	30.0 (g/mL) G	Lab	File ID:	70221
Level:	(low/med)	LOW	Dat	e Received:	01/14/00

% Moisture: 16 decanted: (Y/N) N Concentrated Extract Volume: 1.00 (mL) Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: 7.0

Date Extracted:01/18/00

Date Analyzed: 01/19/00

Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

1-20-3Naphthalene	39.4 U
1-58-72-Chloronaphthalene	39.4 U
08-96-8Acenaphthylene	39.4 U
3-32-9Acenaphthene	39.4 U
6-73-7Fluorene	39.4 U
5-01-8Phenanthrene	39.4 U
20-12-7Anthracene	39.4 0
06-44-0Fluoranthene	39.4 0
29-00-0Pyrene	
6-55-3Benzo (a) anthracene	39.4 U
18-01-9Chrysene	39.4 U
05-99-2Benzo (b) fluoranthene	39.4 U
07-08-9Benzo(k) fluoranthene	39.4 U
0-32-8Benzo (a) pyrene	39.4 U
92-29-5	39.4 U
93-39-5Indeno (1, 2, 3-cd) pyrene	39.4 U
3-70-3Dibenz(a,h)anthracene	39.4 0
91-24-2Benzo(g,h,i)perylene	39.4 U

FORM I SV-1

OLM03.0

TOTAL METALS - 1 -INORGANIC ANALYSIS DATA PACKAGE

	D: 206570					· · · · · · · · · · · · · · · · · · ·	ID: 7709	21		
Contract	: SAIC002	.00	Lab C	ode:	GEL	Ca	15e N 0.;	S	AS No.:	
Matrix:	SOIL	Date Re	eceived:	1/14/00		Level:	LOW	% Solid	s: 84.50]
AS No.	Analyte	Concentration	Units	С	Qual	M	DL	Instrument ID	Analytical Run	
7439-92-1 L	ead	0.40	mg/kg			P	0.13	TJA61 Trace ICP2	12300 CL	FoliFor
Color Befo	rei	*	Clarit	y Befor	e:			Texture:		
Color Afte	r:		Clarit	y After	:			Artifacts:		
Comments:		 - - -	• 	· .						
·· · · ·		· • • • •	·		۰. م			* 		·
· · ·	,				•					
	· · ·				•			 		
		· · · ·			43	₹. 		÷.,		
·			•						· · · .	
							₩15 741 € (• • • • • • • • • • • • • • • • • • •	1 	

10;

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: N/A	771012
Lab Code: N/A Case No.: N/A SAS No.: N/A	SDG: No.: FSAB001W
Matrix: (soil/water) WATER Lab Sa	mple ID: 20655005
Sample wt/vol: 5.000 (g/ml) ML Lab Fi	le ID: 55420
Level: (low/med) LOW (()) Low Low	eceived: 01/14/00
% Moisture: not dec Date A	nalyzed: 01/20/00
GC Column: DB-624 ID: 0.25 (mm) Diluti	on Factor: 1.0
Soil Extract Volume:(uL) Soil A	liquot Volume:(uI
CONCENTRATIO CAS NO. COMPOUND (ug/L or ug/	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	C.55 J 1.0 U 1.0 U 3.0 U

(

NOILLY AND DATA I

•

17 1012403.00

FORM I VOA

IA VOLATILE ORGANICS ANALYSIS DATA	SHEET
Lab Name: GENERAL ENGINEERING LABOR Contra	CC: N/A 771014
Lab Code: N/A Case No.: N/A SAS No	o.: N/A SDG No.: FSAB001W
Matrix: (soil/water) WATER	Lab Sample ID: 20655006
Sample wt/vol: 5.000 (g/ml) ML	🖌 Lab File ID: 55421
Level: (low/med) LOW	/ Date Received: 01/14/00
* Moisture: not dec.	Date Analyzed: 01/20/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume: (uL
CON	CENTRATION UNITS: /L or ug/Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	0.54 J 2.0 U 1.0 U 3.0 U

DATA VALIDATION COPY

FORM I VOA

DATAN î

тим з т

f

VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract	771112
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG NOL: FSABOCIW
Matrix: (soil/water) WATER	Lab Sample ID: 20655014
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 55510
Level: (lcw/med) LOW	Date Received: 01/14/00
% Moisture: not dec.	Date Analyzed: 01/21/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
	ENTRATION UNITS: or ug/Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	<u> </u>

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: N/A	771212
Lab Code: N/A Case No.: N/A SAS No.: N/A SDG	NO.: ESABCO1W
Matrix: (soil/water) WATER Lab Sample ID	20655015
Sample wt/vol: 5.000 (g/ml) ML Lab File ID:	55511
Level: (low/med) LOW SALE Received	: 01/1 / /00
* Moisture: not dec Date Analyzed	01/21/00
GC Column: DB-624 ID: 0.25 (mm) Dilution Facto	pr: 1.0
Soil Extract Volume:(uL) Soil Aliquot N	Jolume:(uI
CONCENTRATION UNITS CAS NO. COMPOUND (ug/L or ug/Kg) UG/I	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.0 U U DADS 1.6 U 1.6 U 1.6 U 3.0 U

(

(

DATA VALIDATION

FJEM C VOA

31333.3

 $\epsilon_{\rm e} \in$

1A VOLATILE ORGANICS ANALYSIS DATA SHE	EPA SAMPLE NC.
Lab Name: GENERAL ENGINEERING LABOR Contract:	N/A 771312
Lab Code: N/A Case No.: N/A SAS No.:	N/A SDG No.: FSAB001W
Matrix: (soil/water) WATER	ab Sample ID: 20655007
Sample wt/vol: 5.000 (g/ml) ML 7 7	ab File ID: 55506
Level: (low/med) LOW	ate Received: 01/14/00
* Moisture: not dec.	ate Analyzed: 01/21/00
GC Column: DB-624 ID: 0.25 (mm) D	ilution Factor: 1.0
Soil Extract Volume:(uL) S	cil Aliquot Volume:(uL
	RATION UNITS: r ug/Kg) UG/L C
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.0 U U U 455 1.0 U U 1.0 U 1
	12/15/00

DATA VALIE COM

DATA

CEMODIO

4

FORM I VOA

(

.

LA VOLATILE ORGANICS ANALYS	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR	Contract: N/A
Lab Code: N/A Case No.: N/A	SAS No.: N/A SEG No.: FSAB001W
Matrix: (soil/water) WATER	Lab Sample ID: 20655012
Sample wt/vol: 5.000 (g/ml).MI	Lab File ID: 55508
Level: (low/med) LOW	Date Received: 01/1#/00
<pre>% Moisture: not dec.</pre>	Date Analyzed: 01/21/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NG. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (tota	1.0 U U 5405 1.0 U 1.0 U 1.0 U 3.0 U

(

(

C C

4.

OEMC3 0

FORM I VOA

(COC NO. DOS	LABORATORY NAME.	General Engineering Leboratory	LABORATORY ADDRESS: 2040 Savege Raod Charleston, SC 29417		OVA OBSERVATIONS, COMMENTS, SCREENUND	No. 1- 102	100 george has and	$\left[\right]$		T		700	222			2022	00t	WUS MAG	Cooler Temperature: 29					 - - - - -	· · · · ·	
1062	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS		: 51	per-	(c. of 8														TOTAL NUMBER OF CONTAINERS:	Cooler ID:	+ 9++			· · · · · · · · · · · · · · · · · · ·	· · · · ·	
	CHAIN OF CU				and iron X3TEX		woder 2 Z	12 Z	A XZ			2				æ					COMPANY NAME:	(5th1450	RELINQUISHED BY: Date/Time	COMPANY NAME:	RECEIVED BY: Date/Time	COMPANY NAME:	
Serve Application (annum Laponsing	800 Dak Ridge Turnpika, Ozd Ridge, IN 37831 (423) 481-4600	PEIUJECT NAME: FL. Stewart USTs D.O. #55	PROJECT NUMBER: 01-1624-04-2352-200	PROJECT MANAGER: Patty Stok	Sampler (Signature) (Printed Name)	10 Date College	00/21/1 - 21	100/12	13/3/00	<u>ca/2// 71</u>	317 1/1/2/00		21 <u>5 1/13/00</u>	1012 1/2/00	100/2/1	(0); (1)		00/21/17	N-		NAME: / 7 8 9	AJCH 1000	ALL Date/Tine	- <u>(</u>	Date/Time		

C.	COC NO.: TY SEA 3		General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417	PHONE NO: (803) 556-8171	DVA OBSERVATIONS, COMMENTS.		0/0<201	01/2 DI2	D/3	044	0/5	0/6	OIT OIT			Coolar Temperature.	FEDEX NUMBER:				· · ·			
<u> </u>	CHAIN OF CUSTODY RECORD	REQUESTED PARAMETERS				9, 01 B											TOTAL NUMBER OF CONTAINERS: 77	Cooler 10: #) -				· · ·			
(AIN OF				iicuj per	Dissol						-	2×	隆 [13]			Date		<u>8</u>	Date/Time			Date/Time		
	4600	PHOJECT NAME: Ft. Slawart USTs D.O. #55				Time Collected Mania B H	DEDO Water ZA	525 2	155 2			7	N	通して		N		COMPANY AND	0EL /15/00	RELINQUISHED BY:	1/16 / COMPANY NAME:		Date/Time RECEIVED BY:	COMPANY NAME:	

8

SECOND SEMIANNUAL MONITORING EVENT

JUNE/JULY 2000
1A VOLATILE ORGANICS ANALYSIS I	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR CON	1tract: N/A 770922
Lab Code: N/A Case No.: N/A SA	AS NO.: N/A SDG NO.: FSBLTM10W
Matrix: (soil/water) WATER	Lab Sample ID: 27385015
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8P318
Level: (low/med) LCW	Date Received: 06/22/00
% Moisture: not dec.	Date Analyzed: 06/28/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q	
 71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene		1.0 U 1.0 U 1.0 U 3.0 U	V

v

FORM I VOA

COPY TO CA OLM03.0

57

VOLATILE	1A ORGANICS ANALYSIS DATA S	HEET	EPA SAMPLE NO.
Lab Name: GENERAL EN	GINEERING LABOR Contract	: N/A	771022
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG	No.: FSBLIMIOW
Matrix: (soil/water)	WATER	Lab Sample ID:	27385016
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8P319
Level: (low/med)	LOW	Date Received:	06/22/00
% Moisture: not dec.		Date Analyzed:	06/28/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	/olume:(u)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q	
71-43-2 108-88-3 100-41-4 1330-20-7		.1)	1.0 U 1.0 U 1.0 U 2.5 J	1 V J J

1A VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract	: N/A 771122
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG NO.: FSBLIMIOW
Matrix: (soil/water) WATER	Lab Sample ID: 27385017
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8P306
Level: (low/med) LOW	Date Received: 06/22/00
<pre>% Moisture: not dec.</pre>	Date Analyzed: 06/28/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluéne		1.0 U 1.0 U 1.0 U 3.0 U	U U U

C

ĺ

FORM I VOA

DETA VALLEARDS.O COPY

.

IA VOLATILE ORGANICS ANALYSIS DATA	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contrac	771222
Lab Code: N/A Case No.: N/A SAS No	D.: N/A SDG No.: FSELTM10W
Matrix: (soil/water) WATER	Lab Sample ID: 27385018
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8P307
Level: (low/med) LOW	Date Received: 06/22/00
% Moisture: not dec.	Date Analyzed: 06/28/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

71-43-2Benzene 108-88-3Toluene	1.0	U	K
100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.0 3.0	-	V

COMPOUND

CAS NO.

Q

1A VOLATILE ORGANICS ANALYSIS	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR C	ontract: N/A 771322
Lab Code: N/A Case No.: N/A	SAS NO.: N/A SDG NO.: FSBLTM10W
Matrix: (soil/water) WATER	Lab Sample ID: 27385019
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8P308
Level: (low/med) LOW	Date Received: 06/22/00
% Moisture: not dec.	Date Analyzed: 06/28/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L		Q	
71-43-2 108-88-3 100-41-4 1330-20-7	-Toluene		0.92 1.0 1.0 3.0	บ บ	1-24

(

.(

FORM I VOA

OLM03.0

UNIA VALIDATION COPY 65

VOLATILI	1A . E ORGANICS ANALYS	IS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL EL	GINEERING LABOR	Contract: N/A	771324
Lab Code: N/A	Case No.: N/A	SAS No.: N/A	SDG No.: FSBLTM11W
Matrix: (soil/water)	WATER	Lab Sa	mple ID: 27387001
Sample wt/vol:	5.000 (g/ml) ML	Lab Fi	le ID: 5P109

Date Received: 06/22/00

Date Analyzed: 06/26/00

Soil Aliquot Volume: _____(uL

Dilution Factor: 1.0

8/1/00

Level: (low/med)

GC Column: DB-624

% Moisture: not dec.

Soil Extract Volume: ____ (uL)

LOW

ID: 0.25 (mm)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q. . 1.0 0.26 71-43-2----Benzene u Fol, Fol JB-108-88-3----Toluene 1.0 U 100-41-4----Ethylbenzene 1.0 0 1330-20-7-----Xylenes (total) 3.0 U MMP

DATA VALIDATION СОру

56

III-24

1A VOLATILE ORGANICS ANALYSIS DATA SHEET		EPA SAMPLE NO.	
Lab Name: GENERAL EN	GINEERING LABOR Contract	: N/A	771422
Lab Ccce: N/A	Case No.: N/A SAS No.	: N/A SDG	No.: FSBLTM10W
Matrix: (soil/water)	WATER	Lab Sample ID	: 27385020
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8P309
Level: (low/med)	LOW	Date Received	: 06/22/00
% Moisture: not dec.		Date Analyzed	: 06/28/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(úL

CONCEN	ITR	ATION	UÌ	NITS:
(ug/L	oŕ	ug/Kg	T	UG/L

Q

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.0 1.0 1.0 3.0	บั บั	K I I

CAS NO. COMPOUND

£

FORM I VOA

OLM03.0

COPY

					Qp 20	91.							<u>~</u>	۱2	रहेंग												
(COC NO .: G LTN 15	IAME:	ring Laboratory	(DDRESS: Iod 29417	3) 556-8171	OBSERVATIONS, COMMENTS,		1000			1_010/	1/ 0/9	020	100785FG	V 002					ure: 4.2							
	COC NO.:	LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raud Charleston, SC 29417	PHONE NO: (843) 556-8171	DVA														Cooler Temperature:	FEDEX NUMBER:						
				tale	IV \ashr	of Bo	ר אי	3 2	4	2	2	7	2	N	2		<u> </u>			6							
																			1	7	1	\sim					
						<u>_</u>														VINERS		t 803					
	_	RS													***			d		CONT	1	1					
	CORD	AMETE																		BER OF							
N	CUSTODY RECORD	REQUESTED PARAMETERS															\mathbf{x}	N V		TOTAL NUMBER OF CONTAINERS:	ä				٠		
(1)	TOD	QUEST																201		тота	Cooler ID:						
10				·····								222				4		A		Date/Time	100	0	Date/Time		Date/Time		
	CHAIN OF					אי סאפ	- -					(10)) T		3		Date	6/22/08	1430	Date		Date		
	HAI					IEX, GF	8								2,22,00 	260) 7060		<u> </u>		8	3					1	1
	0					TEX HA	1.352	N	2	N	2	N	2	Ν	N					7	end						
						3	. "rohor								_}	,				, X			RELINQUISHED BY:	VAME:	تز	4AME:	
						5														RECEIVED BY:	Levelin &	で	NaUISH	COMPANY NAME:	RECEIVED BY:	COMPANY NAME:	
	8				(eu	<u> </u>	20.24	1450	1525	1540	510	1600	0EH1	11000	04800								RELI	CON	ORECI	NO CO V	
Ę	99-189 (S	200		(Printed Name)	01110	4		/-	Ū.	<u>v</u>	2			ð					Date/Time	22.2	03	Date/Time	300	Date/Time	1420	
ward Longe	ECP) (EE	AP B LI	-2725-		-d .	- 11	DO DO	00	00	100	00	20	00	100	00	ļ				Dat	5	.//		212	Dat	₹.	
e As Employee Ouned Company	Serporulon . T.V. 371	ewart C	624-04	tty Stofl			121	12/9	12/9	12/17	1219	1217	12 7	12/21	129		ĺ			2	T,	7 4	X		M	X	
UÚ	arnaional C Oak Ridg	Fort Sti	1-10 :F	ER: Pa			+	\vdash							न	1				- د	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	B	her	I.	200	\sum	
	sove Applications International Corporation 1 Adys Turnpaka, Oak Ridge, TH 31831 (423) 481-4600	CT NAME: Fort Stewart CAP B LTM	CT NUMBER: 01-1624-04-2725-200	CT MANAGER: Patty Stall	r (Signatura)	Sunda D	220	26	20	22	222	222	2 H	324	220					OUISHEDGY	ANY NAME	A	No and a start	ANY NAME:	Nen Kr	ANY MAME	
	Ridge	:CT /	ict p	CT	r (Sig	North Stands	101022	260LE	22011L	771122	7112	771257	221174	17FT	7 B5					SIND			Ø,	ANY	SUN R	ANY	{
							~	• • • •	4.°-	۱.	-		•	-													•

8

APPENDIX IV

SITE RANKING FORMS

FIRST SEMIANNUAL MONITORING EVENT

JANUARY/FEBRUARY 2000

.

.

SITE RANKING FORM

Facili	Facility Name: USTs 2 & 3, Building 1840					Rani	(ed by:	S. Stoller	. Stoller		
Coun	ty: <u>Lit</u>	perty Facility	ID #: <u>9</u>	-089065		Date	Ranked:	5/9/2000			
SOIL	CONTA	MINATION									
A. ,	Maxin (Assu	PAHs – num Concentration me <0.660 mg/kg if tored on site)			В.		Benzene - mum Concent	tration found	on the site		
		· · · · · · · · · · · · · · · · · · ·			*	\boxtimes	<u><</u> 0.005 mg/	kg =	: 0		
	* 🛛	<u>≤</u> 0.660 mg/kg	=	0			>0.00505	öʻmg/kg =	- 1		
		>0.66 - 1 mg/kg	=	10			>0.05 - 1 m	g/kg =	• 10		
		>1 - 10 mg/kg	=	25			>1 - 10 mg/	kg =	25		
		>10 mg/kg LTM sample 770911	=	50			>10 - 50 mg	g/kg =	40		
							>50 mg/kg LTM sample 77	= 0921	50		
C.		to Groundwater below land surface))								
		>50' bls =	1								
		>25' - 50' bls =	2								
		>10' - 25' bis =	5								
	\boxtimes	<u><</u> 10' bls =	10								
Fill in	the blar	nks: (A. <u>0</u>)·	+ (B. <u>0</u>	_) = () >	« (C	<u>10</u>)	= (D. <u>0</u>))			
CROU											
E.	Free F liquid I For de	rer CONTAMINAT Product (Nonaqueou hydrocarbons; See finition of "sheen").	ıs-phase Guidelin		F.	Maxir (One	lved Benzene num Concent well must be release.)	ration at the			
	\boxtimes	No free product =	0				<u><</u> 5 µg/L		= 0		
			250		*	\boxtimes	>5 - 100 µg/	″L	= 5		
			500				>100 - 1,000) μg/L	= 50		
		·	1,000				>1,000 - 10,	000 µg/L	= 500		
		For every addition 100 points = <u>1,000</u>		add another —		□.	>10,000 µg/ LTM sample 771		= 1500 L (Jan 2000)		
Fill in	the blan	ıks: (E. <u>0</u>)	+ (F. <u>5</u>	_) = (G. <u>5</u>	_)						

C

County: Liberty Facility ID #: 9-089065

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public Water Supply	I.	Non-Public Water Supply
	$ \begin{array}{ c c c c c c c } & Impacted & = 2000 \\ \leq 500' & = 500 \\ >500' - 1/4 & mi & = 25 \\ \hline 1/4 & mi - 1 & mi & = 10 \\ >1 & mi - 2 & mi & = 2 \end{array} $		$ \begin{array}{ c c c c c c c c } Impacted & = & 1000 \\ \leq 100' & = & 500 \\ \hline & >100' - 500' & = & 25 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = & 5 \\ \hline & >\frac{1}{4} - \frac{1}{2} \text{ mi} & = & 2 \\ \end{array} $
*		do not	\bigcirc >1/2 mi = 0 For lower susceptibility areas only: \bigcirc >1/4 mi = 0 use the shaded areas.
	* For justification that withdrawal point is not	hydraul	ically connected, see attached text.
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its inver elevation is more than 5 feet above the water	t	Distance from any Free Product to basements and crawl spaces
	$ \begin{array}{ c c c c c c } & Impacted & = 500 \\ \hline & \leq 500' & = 50 \\ \hline & >500' - 1,000' & = 5 \\ \hline & >1,000' & = 2 \end{array} $		Impacted = 500 <500'
Fill in	the blanks: (H0_) + (I0_) + (J50))	+ (K. <u>0</u>) = L. <u>50</u>
	(G	<u>5</u>) :	x (L. <u>50</u>) = M. <u>250</u>
	(M. <u>2</u>	<u>50</u>) ·	+ (D0) = N <u>250</u>
Ρ.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Wat	er Pollu	tion Susceptibility Area = 0.5
	All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possibl subsurface structure (e.g., utility trenches, bas	ly origin sements	ating from this release, been detected in any s, vaults, crawl spaces, etc.)?
	☐ Yes = 200,000		
	🛛 No = 0		
Fill in	the blanks: (N) x (P) = (<u>250</u>) +	(Q. <u>0</u>)
	= <u>250 (January 2000 - Firs</u> ENVIRONMENTAL SENSITI	<u>t Semia</u> VITY S	annual Monitoring Event) CORE

SECOND SEMIANNUAL MONITORING EVENT

JUNE/JULY 2000

-0

4/99

e.

SITE	RA	NKING	FORM
------	----	-------	------

Facility Name	e: USTs 2 & 3, Building 1840		Rank	ed by:	S. Stoller		
County: Lil	berty Facility ID #: 9-089065		Date	Ranked:	10/4/2000		
SOIL CONTA	MINATION						
Maxir (Assu	PAHs – num Concentration found on the site ime <0.660 mg/kg if only gasoline itored on site)	В.		Benzene - num Conce	ntration found	lon	the site
was s	iored on site)	*	\boxtimes	<u>≤</u> 0.005 mg	g/kg	=	0
* 🛛	<u><</u> 0.660 mg/kg = 0			>0.005()5 mg/kg	=	1
	>0.66 - 1 mg/kg = 10			>0:05 - 1 i	ng/kg	=	10
	>1 - 10 mg/kg = 25			>1 - 10 mg	g/kg	=	25
	>10 mg/kg = 50 LTM sample 770911			>10 - 50 n	ng/kg	=	40
				>50 mg/kg LTM sample 7		= .	50
	n to Groundwater below land surface)						
	>50' bls = 1						
	>25' - 50' bls = 2						
	>10' - 25' bls = 5						
\boxtimes	$\leq 10'$ bis = 10						
Fill in the bla	nks: (A. <u>0</u>) + (B. <u>0</u>) = (<u>0</u>) x	(C	<u>10)</u> :	= (D. <u>0</u>	_)		
GROUNDWA	TER CONTAMINATION						
E. Free I liquid For de	Product (Nonaqueous-phase hydrocarbons; See Guidelines efinition of "sheen").	F.	Maxin (One		ne - ntration at the e located at th		
	No free product = 0	*	\boxtimes	<u>≤</u> 5 µg/L		;	= 0
	Sheen - 1/8" = 250			>5 - 100 µ	g/L	:	= 5
	>1/8" - 6" = 500			>100 - 1,0	00 µg/L	:	= 50
	>6" - 1ft = 1,000			>1,000 - 1	0,000 µg/L	:	= 500
	For every additional inch, add another 100 points = <u>1,000 +</u>		•	>10,000 µ LTM sample 7	g/L. 7132 @ 0.92J με		= 1500 June 2000)
Fill in the bla	nks: (E. <u>0</u>) + (F. <u>0</u>) = (G. <u>0</u>)					
.00-310(doc)/11070	0 Page	l of 2					

IV-6 \mathbf{x}

.....

Facility Name: USTs 2 & 3, Building 1840

County: Liberty Facility ID #: 9-089065

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public V	Vater Supply			I.	Non-P	ublic Water	Supply	
		Impacted ≤500' >500' - ¼ mi ¼ mi - 1 mi >1 mi - 2 mi	= 2000 = 500 = 25 = 10 = 2				Impacted ≤100' >100' - 50 >500' - ¼ >¼ - ½ m	= 00' = mi =	
*	For lowe	> 2 mi er susceptibility >1 mi f site is in low e ustification that	= 0 er susceptibil			use the		= reas.	0
J.	boundar OR UTII trench n	e from nearest ry to downgradi LITY TRENCH nay be omitted n is more than	ent Surface W ES & VAULTS from ranking it	/aters 6 (a utility f its invert			ce from any ements and	l crawl sp	aces
		Impacted ≤500' >500' - 1,000' >1,000'	= 500 = 50 = 5 = 2				Impacted <500' >500' - 1, >1,000' of no free pr	= 000' = r =	500 50 5 0
Fill in t	the blank	(s: (H. <u>0</u>) -	+ (I. <u>0</u>) +	(J. <u>50</u>	_) ·	+ (K) =	L5	0
				(G. <u>0</u>) :	x (L	<u> 50 </u>) =	М	<u>0</u>
				(M. <u>0</u>) ·	+ (D) =	N	<u>0</u>
Ρ.	SUSCE	PTIBILITY ARE	EA MULTIPLI	ER					
		If site is located	d in a Low Gro	und-Wate	er Pollu	tion Sus	ceptibility A	rea = 0.5	
	\boxtimes	All other sites =	= 1						
Q.	EXPLOS	SION HAZARD	1						
		ny explosive per ace structure (e							detected in any
		Yes = 200,	000						
	\boxtimes	No = 0							
Fill in t	the blank	s: (N. <u>0</u>	_) x (P. <u>1</u>)	= ()	+ (Q	0_)			
		= <u>0 (</u> ENVIR	June 2000 - S ONMENTAL S	Second Se SENSITIV	emianr /ITY SC	<u>nual Mor</u> CORE	nitoring Ev	vent)	

OTHER GEOLOGIC AND HYDROLOGIC DATA

The following information is presented to provide supplemental information to Item H of the Site Ranking Form and provides detailed information relating to the geologic and hydrogeologic conditions at Fort Stewart to support determinations of groundwater flow pathway(s) or direction(s) and contaminant transport.

1.0 REGIONAL AND LOCAL GEOLOGY

Fort Stewart is located within the coastal plain physiographic province. This province is typified by nine southeastward dipping strata that increase in thickness from 0 feet at the fall line located approximately 150 miles inland from the Atlantic coast, to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 feet below ground surface (BGS). This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 feet thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 feet thick and dominated by limestone with a 175-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations (Herrick and Vochis 1963).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at Wright Army Airfield within the Fort Stewart Military Reservation. The log for this well describes a 410-foot section, the lowermost 110 feet of which consisted predominantly of limestone sediments, above which 245 feet of dark green phosphatic clay typical of the Hawthorn Group was encountered. The uppermost portion of the section was found to be Quaternary-age interbedded sands and clays. The top 15 feet of these sediments were described as sandy clay (Herrick and Vochis 1963).

The surface soil located throughout the Fort Stewart garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 inches in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 inches. The subsoil is dominantly sandy clay loam and extends to a depth of 72 inches or more (Herrick and Vochis 1963).

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Fort Stewart is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. These formations are approximately 800 feet thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 to 150 feet in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 to 10 feet BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 to 50 feet BGS; thus, the effective aquifer thickness would be approximately 35 to 45 feet. Soil surveys for Liberty and Long Counties describe the occurrence of a perched water table within the Stilson loamy sands present within Fort Stewart (Looper 1980).

The confining layer for the Principal Artesian aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 to 90 feet. The vertical hydraulic conductivity of this confining unit is on the order of 10⁻⁸ cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie Formation, Markshead Formation, and the Parachula Formation, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 feet thick in the Savannah, Georgia, Area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 feet thick in the Savannah, Georgia, Area and consists of light-colored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite, and is approximately 10 feet thick in the Savannah, Georgia, Area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the underground storage tank investigation sites is part of the Surficial Aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal (Floridan) Aquifer, and that the Hawthorn confining unit separates the Principal Aquifer from the Surficial Aquifer, it is concluded that there is no hydraulic interconnection between the Surficial Aquifer (and associated groundwater plumes, if applicable) located beneath former underground storage tank sites and identified water supply withdrawal points at Fort Stewart.

.

APPENDIX V

REIMBURSEMENT APPLICATION

٠

Fort Stewart is a federally owned facility and has funded the investigation for the USTs 2 & 3 site, Building 1840, Facility ID #9-089065, using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

.

ATTACHMENT A

SUMMARY OF FATE AND TRANSPORT MODELING RESULTS

.

A.1. FATE AND TRANSPORT MODELING

The fate and transport modeling that was performed as part of the Corrective Action Plan (CAP)-Part A Report (SAIC 1999) is based on the assumption of a continuous source of contamination of infinite duration at the site based on the maximum predicted benzene concentration in groundwater (i.e., $44.4 \mu g/L$ at well 77-01 in May 1998). The maximum concentration of benzene in soil at the site occurrs at or below the water table; thus, equilibrium contaminant partitioning between sorbed and aqueous phases (i.e. 0.0172 mg/kg in soil corresponds to $44.4 \mu g/L$ in groundwater) were utilized to determine the maximum concentration of soil contaminants predicted to be in the groundwater at the source. In summary, the Analytical Transient 1-, 2-, 3-Dimensional Model was used to model contaminant migration to three potential downgradient receptors: an underground storm drain located approximately 15 feet northwest of the former dispenser island, a drainage ditch located approximately 650 feet northwest of the site, and Mill Creek located approximately 1,200 feet northwest of the site. The modeling results indicated that, due to dilution attenuation, benzene would not reach the drainage ditch at concentrations above the In-Stream Water Quality Standard (IWQS) or Mill Creek at detectable concentrations.

Based on modeling results, the estimated dilution attenuation factor (DAF) for benzene was 1.0 at the storm drain; 96,500 at the drainage ditch; and infinity at Mill Creek. Simulations of a 2-year period were not performed to predict the maximum concentrations of benzene in the downgradient wells that will be used for long-term monitoring because permanent wells did not exist at the site. As a result of the semiannual monitoring events in January 2000 and June 2000, it was not necessary to revise the fate and transport modeling. Benzene was not detected above the analytical reporting limit in June 2000, thus simulations over a 2-year period were not necessary.

The alternate concentration limits (ACLs) for the site were developed for each chemical of potential concern listed in the CAP-Part A Report (SAIC 1999). The ACLs are determined based on the regulatory level for each compound and the fate and transport modeling DAF. The ACLs are presented in Table A-1.

Table A-1. ACLS 10	i the Ondergie	und Storage Tanks	
	IWQS	DAF ¹	ACL ²
Contaminant	(µg/L)	(storm drain)	(µg/L)
Benzene	71.28	1	71.28

Table A-1.	ACLs for the	Underground	Storage	Tanks 2 & 3 Site	;
------------	--------------	-------------	---------	------------------	---

¹ DAF = Maximum observed concentration \div predicted concentration at the receptor = 44.4 \div 44.4 = 1 at the storm drain

1.1 FATE AND TRANSPORT MODELING CONCLUSIONS

The conclusions below are based on a fate and transport model that assumes a continuous source of contamination of infinite duration at the site based on the maximum predicted benzene concentration (i.e. $44.4 \mu g/L$) in groundwater at the source during the CAP-Part A investigations.

- Benzene concentrations in groundwater do not exceed the IWQS and ACL of 71.28 μg/L in any of the wells at the site, indicating that the benzene concentrations at the site are not high enough to reach the storm drain or drainage ditch above IWQS.
- Observed concentrations of benzene in groundwater indicate that the storm drain is not acting as a preferential pathway.

² ACL = IWQS \times DAF

ATTACHMENT B

REFERENCES

ø

REFERENCES

Arora, Ram 1984. Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.

Geraghty and Miller 1993. RCRA Facility Investigation Work Plan, Fort Stewart, Georgia.

- Herrick, S.M. and Vochis, R.C. 1963. Subsurface Geology of the Georgia Coastal Plain, Georgia Geologic Survey Information Circular 25.
- Logan, William E. 2000. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Brance), January 25.
- Looper, Edward E. 1980. Soil Survey of Liberty and Long Counties, Georgia, U.S. Department of Agriculture, Soil Conservation Service.
- Miller, James A. 1990. Groundwater Atlas of the United States, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.
- SAIC (Science Applications International Corporation) 1999. CAP-Part A Report for USTs 2 & 3, Facility ID #9-089065, Building 1840, Fort Stewart, Georgia, August.

SAIC 2000. First Semiannual Monitoring Only Report for USTs 2 & 3, Facility ID #9-089065, Building 1840, Fort Stewart, Georgia, May.

.

ATTACHMENT C

BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

		HTRW DRILL				HOLE NUMBER 77-69
PROJEC	T		ISPECTOR Pa	ul Lucot	T	SHEET 1 OF 1
ELEV (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLENO. (F)	REMARKS (G)
1		CONCRETE				
	2	Clayey SAND(SC), medium to coarse grained, medium Shiff, nonplastic, moist, Subrounded, red(10 R46)	14.7 ppm		Soll Sample 77Ø9a1	
	, 	Silty SAND (SM) fine to metuin	(e.9ppm		NA	
	• -	Silty SAND (SM), fine to medium Grained, some clay, moist, dense, black (10 YR-71)				l E
		SAND (Sw), medium to Coarse grained, some silt, moist to wet, loose, gray (10 YR 6/1)	3.4ppm		Soil Sample 77 Øgll	√ wet below 7 5.5 FT BGS
	* * * * * * * * * * * * * * * * * * *	÷				PUSHED TO 13.2 PT BGS
	, , , , , , , , , , , , , , , , , , ,					TO SET 34" MONITORING TO SET 34" MONITORING POINT SCREENED FROM 2.9 TO 12.9 FT BGS COLLECTED GROUNDWATER SAMPLE 770912 FROM MONITORING POINT

		HTRW DRILL				HOLE NUMBER 77-10
PROJEC	· · · · · · · · · · · · · · · · · · ·		NSPECTOR Pa	<u>1 lucot</u>		SHEET 1 OF 2
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
		CONCRETE				······································
		Sitty SAND (Sm) fine to medium grained, some clay, moist, dense, black (10 YR 2/1)				
		Moist dense, black (10 yr 2/1)	5A.6ppm			
	2	SILT (ML), some sand, very fine grained, Medium dense non-plassic, moist, light Drownish gray(10 4R 6/2)				
		Drownish gray (10 YR 6/2) Sandy ORGANIC SILT (OL/OH), fine to medium animed mist				
		Sandy ORGANIC SILT (OL/OH), fineto medium grained, moist Very dense, Very dark brown (10 YR 7/2)	9.8ppm			
						~
	, <u>1</u> 111					4.
		SAND(SM), Some silt, fine Mained, moist, loose, Yellowish Isrown(10/11 54)	2.3ррт			
ſ						
			10			
	, 1		1.9 ppm			
			7.10 ppm			
	,					
		LAY (CH), Some Sand, fine				
		UAY (CH), Some Sand, fine rained, moist, moderately lashic, Shiff, very dark gray (10 yR 3/1)				

PROJEC	T: Fort Stew	HOLE NUMBER 77 - 4				
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING	GEOTECH SAMPLE	ANALYTICAL SAMPLE NO	SHEET 2 OF 2 REMARKS
		AND(sm), Some Silt, wet, XSE, Pale brown (10 YRbg)	RESULTS	OR CORE BOX	(F)	^(g) <u>▼</u> wet below ¹ 10.9 FT 13GS
	**					PUSHED TO 15 @ FT BGS TOSET 34"MONITORING POINT SCREENED FROM
	а 1111 1111 1111					4.7 TO 14.7 FT BGS COLLECTED GROUNDWATE SAMPLE 771012 PROM MONITORING POINT
	17					
1						
1	, , , , , , , , , , , , , , , , , , , ,					
2					4	

PROJEC	Τ • Ε-→ 7	HTRW DRILL		1 1		HOLE NUMBER 77-11
	r		NSPECTOR Pa	<u>u ucot</u>	1	SHEET 1 OF 1
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
		(ANNOTE-				
i		CONCRETE				
		Grained medium dense mist.				
	· · ·	SILT (ML), some sand, fine Grained, mediumdense moist, non-plastic, pak brown (10 vR 13) SMND(SM), some silt, medium Grained, moist, loose, very pale brown (10 VR7/3)	nom			
		DITND(SM), Some SIIT, Medium	Nopen			
	ПÌ	Pale brown (10 VR7/3)				
.	2					
	-		,			
1	Ξ					
	Ξ		M1			
	' –]		(0.7 ppm	1		
	=					
		fine to medium grained sand.				
		Sandy ORGANIC SILT (OLIOH), fine to medium grained sand, devise, moist to wet, very dark brown (10 yr 2/2)				
		aut k brown (10 yr 42)	-			
	Ξ		Ø.4ppm			
	5					
		х.	<i>b</i>			
						V wet below 5.7 FTBGS
	· =		····			
			2.7 ppm			
	7		1			
	=C	24 y (CH), Some Sand, Stiff, noderately plastic, very danc Iray (10 y R3/1)				
		Tav (10 v R31)				
	,]'					
		-				COLLECTED GROUNDWATER
						SAMPLE 771112 FROM EMONITORING POINT
					Í	
	•					E E
	T					E
	П				-	PUSHED TO 13. 0 FT BGS =
					Ī	AT TO 12.7 PT BGS

DROTEO		HTRW DRILI				HOLE NUMBER 77-12
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	NSPECTOR Pa		A. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	SHEET 1 OF 1
(A)	(B)	(C)	SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO (F)	
		CONCRETE		х		
	-	SILT (ML), some very fine Grained Sand, medium dense, nonplastic, moist, pale brown CIØYR 43)	Ø4 ppm			
1	2	SAND(SM) Some Silt, medium				
		SAND(SM) Some sill, medium grained, moist, dense, dank gray (10 yR 4/1)				
	Indu		1.øppm			
		Sandy ORGANIC SILT (a.1017), fine to medium grained, moist, lense, verydark brown (10 yr 7/2)				
		SAND(SM), Some Silt, fine Tained, loose, wet, yelowish Drown (10 YR 5/4)	2.3ppm			
	•					
			NIA			v wet below F
	, 1111					= 6.7 PT BGS
	nulun		*			PUSHED TO 12.9 FT BGS TO SET 3/4" MONITORING POINT SCREENED FROM 2.6 TO 12.6 FT BGS
	, , , , , , , , , , , , , , , , , , , ,					COLLECTED GROUNDWATER SAMPLE 771212 PROM MONITORING POINT
	10					

		HOLE NUMBER 77-13				
PROJEC		ewart USTs	SHEET 1 OF 1			
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
		CANADETT				
		CONCRETE				• • •
		SAND(SP), medium to				
		Coarse grained, traces of Silt, maist, loose, brown (104RSY3)				
		UØYR93)				4
	-					2 1974) - Ca
	² –					ини И. М.
	E					-
		SILT (ML), some very fine	1			Contractor American State Contractor and American State Contractor American State Contractor and American State Contractor
	, É	SILT (ML), some very fine Trained Sand, dense, honplashic, moist, light reliowish browncie yr 6/4)				
	- 	PEIDWISH BROWNCID JR 9/4)				
		Sandy ORGANIC SILT (OLI OH) fine to medium grained very dense, moist, very dark				
	Ę	tense, moist, very dark " Prown (10 YR 2/2)				
	•	rown cip tk ra)				
	E			· ·		
-					- 	
	5	n an an Arrange An Arrange An Arrange				
	·	SAND (SM) some silt, fine			N. 9	
	;	SAND(SM), some silt, fine Jained, loose, moist, yellowish Drovon (10 YK 5/4)			l.	
		10001 (10 1K 74)				
	•					
		с. 14			а. Ал	
				• *	•	
	, ⊒r	UAY(CH), some Sand, Moist, Noderately postic, Very Lark gray (UBYR3/1)		·	.	
	上	lark gray (UBYR311)				
					· .	
	. =				I	
						PUSHEDTO B.BAT BES
			¥			TO SET 3/4"MONITORING POINT SCREENED PROM
						3.7 TO 12.7 FT BGS
	, _		* 1			COLLECTED GROUNDWATER
ĺ					·	MONITORING POINT
	10					

C-7

		HOLE NUMBER 77 - 14				
PROJEC ELEV. (A)	T: Fort S DEPTH (B)	DESCRIPTION OF MATERIALS	SPECTOR PAL	GEOTECH	ANALYTICAL	SHEET 1 OF 1 REMARKS
(A)	(B)	(C)	SCREENING RESULTS	SAMPLE OR CORE BOX	SAMPLE NO. (F)	(G)
		CONCRETE				ана стана стана Стана стана стан
			-			-
	1	SILT(ML), some sand, fine Grained, medium dense, Nonplastic, moist, pale brown (104R/3)				
		nonplastic, moist, pale	5.7 ppm			
		100011(101K73)				
	2 -	SAND(SP), medium to coarse				
		Grained, very loose, moist, subrainded, very pale brown (18 YR 7/2)				
		brown (18 YR 7/2)	51000			
	"	Sandy ORGANIC SILT (01/0H), fine to medium grained, Very dense, nonplastic, Moist, black (5 y 2.5/1)	5.1 ppm	х.		
		very dense, non plastic,				
		morst, black (SY2.5/1)				
			-			,
			5.4 ppm			
	5					
				•		
		`				
	• _					
					1	
			3.8ppm			
		·				
						y wet below → 7.4 ft BGS
	-	CUAY (CH), some fine gained				7.4 (1) 005
	• –	CUAY(CH), some fine gained Sand, stiff, very plastic, Wet, brown (10° VR 413)				COLLECTED GROUNDWATER
ļ	=	WEI, MOWNER YK 13)	• •			5HMPLE 771412 FROM
						MONITORING POINT
	, –					
						PUSHED TO 15.1 FT BGS
						TO SET 34 "MONITORING POINT SCREENED FROM
						4.8 TO 14.8 FT B65
			ł			L

C-10

