

# CORRECTIVE ACTION COMPLETION REPORT





3d Inf Div (Mech)

for the

Corrective Actions at the Old Property Disposal (PDO) Yard Hunter Army Airfield, Georgia

# **Prepared for**



U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-02-D-0004 Delivery Order 0054

May 2008



THIS PAGE INTENTIONALLY LEFT BLANK.

#### **REVISED FINAL**

## CORRECTIVE ACTION COMPLETION REPORT FOR THE CORRECTIVE ACTIONS AT THE OLD PROPERTY DISPOSAL (PDO) YARD HUNTER ARMY AIRFIELD, GEORGIA

REGULATORY AUTHORITY RESOURCE CONSERVATION AND RECOVERY ACT 40 CFR 264, TITLE II, SUBPART C, SECTION 3004 42 USC 6901 ET SEQ.

Prepared for

U. S. Army Corps of Engineers, Savannah District Under Contract Number DACA21-02-D-0004 Delivery Order 0054

Prepared by

Science Applications International Corporation 151 Lafayette Drive Oak Ridge, TN 37830

#### May 2008

The undersigned certifies that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completions of accredited university courses, to enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my precise.

2851 FESSIONA Patricia A. Stoll, P.E. Project Manager SAIC

1

THIS PAGE INTENTIONALLY LEFT BLANK.

# CONTENTS

| ACR | ONY                                                      | MS                                                          | v  |  |  |
|-----|----------------------------------------------------------|-------------------------------------------------------------|----|--|--|
| 1.0 | INTI                                                     | RODUCTION                                                   | 1  |  |  |
| 2.0 | BAS                                                      | ELINE SAMPLING                                              | 2  |  |  |
| 2.0 | 21                                                       | GROUNDWATER SAMPLING FOR TETRACHLOROETHENE                  | 2  |  |  |
|     | 2.1                                                      | GROUNDWATER SAMPI ING FOR BENZENE                           | 2  |  |  |
|     | 2.3                                                      | GROUNDWATER LEVEL MEASUREMENTS                              |    |  |  |
| 3.0 | GEO-CLEANSE <sup>®</sup> TREATMENT FOR TETRACHLOROETHENE |                                                             | 3  |  |  |
|     | 3.1                                                      | CHEMICAL OXIDATION SYSTEM                                   | 3  |  |  |
|     | 3.2                                                      | INITIAL CHEMICAL INJECTION FIELD ACTIVITIES – FEBRUARY AND  |    |  |  |
|     |                                                          | MARCH 2001                                                  | 4  |  |  |
|     |                                                          | 3.2.1 Injection Point Installation                          | 4  |  |  |
|     |                                                          | 3.2.2 Injection Well Groundwater Sampling                   | 4  |  |  |
|     |                                                          | 3.2.3 Initial Chemical Injection                            | 4  |  |  |
|     |                                                          | 3.2.4 Initial 7-Day Post-Injection Monitoring               | 5  |  |  |
|     | 3.3                                                      | SUPPLEMENTAL CHEMICAL INJECTION FIELD ACTIVITIES – MAY AND  | 5  |  |  |
|     |                                                          | 3.3.1 Additional Injection Point Installation               |    |  |  |
|     |                                                          | 3.3.2 Supplemental Chemical Injection                       | 5  |  |  |
|     |                                                          | 3.3.2 Supplemental 7-Day Post-Injection Monitoring          | 6  |  |  |
|     | 3 /                                                      | SIX-MONTH POST-INIECTION MONITORING - SEPTEMBER 2001        | 0  |  |  |
|     | 3.4                                                      | POLISHING STEP CHEMICAL INJECTION FIELD ACTIVITIES DECEMBER | 0  |  |  |
|     | 5.5                                                      | 2001 THROUGH MARCH 2002                                     | 6  |  |  |
|     |                                                          | 3.5.1 Additional Injection Point Installation               | 0  |  |  |
|     |                                                          | 2.5.2 Polishing Step Chemical Injection                     | 0  |  |  |
|     |                                                          | 2.5.2 Polishing Step 7 Day Post Injection Monitoring        | 7  |  |  |
|     | 3.6                                                      | SUMMARY OF CHEMICAL INJECTION RESULTS                       | 7  |  |  |
| 4.0 | MONITORED NATURAL ATTENUATION OF TETRACHLOROFTHENE 8     |                                                             |    |  |  |
|     | 41                                                       | FIRST POST-CORRECTIVE-ACTION TETRACHLOROETHENE SAMPLING     |    |  |  |
|     |                                                          | EVENT – JANUARY 2003                                        |    |  |  |
|     | 4.2                                                      | SECOND POST-CORRECTIVE-ACTION TETRACHLOROETHENE             |    |  |  |
|     |                                                          | SAMPLING EVENT – JUNE 2003                                  | 9  |  |  |
|     | 43                                                       | THIRD POST-CORRECTIVE-ACTION TETRACHLOROETHENE SAMPLING     |    |  |  |
|     |                                                          | EVENT – JANUARY 2004                                        |    |  |  |
|     | 44                                                       | FOURTH POST-CORRECTIVE-ACTION TETRACHLOROETHENE             |    |  |  |
|     |                                                          | SAMPLING EVENT – OCTOBER 2004                               | 9  |  |  |
|     | 4.5                                                      | CONFIRMATION TETRACHLOROETHENE SAMPLING EVENT – aPRIL 2005  | 10 |  |  |
| 5.0 | MONITORED NATURAL ATTENUATION OF BENZENE 1               |                                                             |    |  |  |
|     | 5.1                                                      | FIRST BENZENE SAMPLING EVENT – SEPTEMBER 2001               | 11 |  |  |
|     | 5.2                                                      | SECOND BENZENE SAMPLING EVENT – MARCH 2002                  | 11 |  |  |
|     | 5.3                                                      | THIRD BENZENE SAMPLING EVENT – OCTOBER 2002                 | 12 |  |  |
|     | 5.4                                                      | FOURTH BENZENE SAMPLING EVENT – MARCH/APRIL 2003            | 12 |  |  |
|     | 5.5                                                      | FIFTH BENZENE SAMPLING EVENT – OCTOBER 2003                 | 12 |  |  |

|     | 5.6 SIXTH BENZENE SAMPLING EVENT – MARCH 2004        |    |
|-----|------------------------------------------------------|----|
|     | 5.7 SEVENTH BENZENE SAMPLING EVENT – OCTOBER 2004    |    |
|     | 5.8 CONFIRMATION BENZENE SAMPLING EVENT – APRIL 2005 | 14 |
| 6.0 | ANALYSIS OF TRENDS                                   |    |
|     | 6.1 TETRACHLOROETHENE CONCENTRATIONS IN GROUNDWATER  | 14 |
|     | 6.2 BENZENE CONCENTRATIONS IN GROUNDWATER            | 15 |
| 7.0 | CONCLUSIONS AND RECOMMENDATIONS                      | 15 |
| 8.0 | REFERENCES                                           |    |

# List of Appendices

| APPENDIX I: FIGURES                                                                                                | I-1   |
|--------------------------------------------------------------------------------------------------------------------|-------|
| Figure 1. Site Location Map of the PDO Yard, Hunter Army Airfield                                                  | I-3   |
| Figure 2. Monitoring Well and Injection Well Location Map for the PDO Yard, Hunter Army Airfield                   | I-4   |
| Figure 3. Post-Corrective-Action PCE Groundwater Quality Map (April 2005) at the PDO Yard,<br>Hunter Army Airfield | I-5   |
| Figure 4. Groundwater Potentiometric Surface Map (April 2005) at the PDO Yard, Hunter Army Airfield                | I-6   |
| Figure 5. Benzene Groundwater Quality Map (April 2005) at the PDO Yard, Hunter Army<br>Airfield                    | I-7   |
| Figure 6. Trend of PCE Concentrations at the PDO Yard, Hunter Army Airfield                                        | I-8   |
| Figure 7. Trend of Benzene Concentrations at the PDO Yard, Hunter Army Airfield                                    | I-9   |
| APPENDIX II: TABLES                                                                                                | II-1  |
| Table 1. PCE Plume Sampling – Groundwater Analytical Results                                                       | II-3  |
| Table 2. Benzene Plume Sampling – Groundwater Analytical Results                                                   | II-8  |
| Table 3. Groundwater Elevations                                                                                    | II-11 |
| Table 4. Well Construction Details                                                                                 | II-17 |
| Table 5. Area of Groundwater Plumes Exceeding Remedial Levels                                                      | II-19 |
| APPENDIX III: HISTORICAL GROUNDWATER QUALITY AND POTENTIOMETRIC                                                    |       |
| SURFACE MAPS                                                                                                       | III-1 |
| APPENDIX IV: LABORATORY ANALYTICAL RESULTS                                                                         | IV-1  |

# ACRONYMS

| AMSL   | above mean sea level                       |
|--------|--------------------------------------------|
| AST    | aboveground storage tank                   |
| BGS    | below ground surface                       |
| BTEX   | benzene, toluene, ethylbenzene and xylenes |
| CAP    | Corrective Action Plan                     |
| GCI    | Geo-Cleanse International, Inc.            |
| GA EPD | Georgia Environmental Protection Division  |
| HAAF   | Hunter Army Airfield                       |
| IDW    | investigation-derived waste                |
| JP     | jet propulsion                             |
| MCL    | maximum contaminant level                  |
| MNA    | monitored natural attenuation              |
| PCE    | tetrachloroethene                          |
| PDO    | Old Property Disposal                      |
| RL     | remedial level                             |
| TCE    | trichloroethene                            |
| VOC    | volatile organic compound                  |
|        |                                            |

THIS PAGE INTENTIONALLY LEFT BLANK.

# **1.0 INTRODUCTION**

This document represents the Corrective Action Completion Report for the corrective actions being conducted at the Old Property Disposal (PDO) Yard (HAA-12) at Hunter Army Airfield (HAAF), Georgia. The PDO Yard is located near the northwestern boundary of HAAF and has been used as a storage facility for used oil and off-specification jet propulsion (JP)-4 fuel, for scrap metal storage, and as a temporary (i.e., 90-day) storage facility for hazardous waste. The PDO Yard consists of a fenced parcel containing approximately 0.955 acre (Figure 1). Before 1998, the PDO Yard contained three aboveground storage tanks (ASTs) within a bermed area located in the southeastern corner of the fenced area. The ASTs were two 20,000-gal tanks for storage of used oil and one 18,000-gal tank for storage of off-specification JP-4. These tanks were removed in 1998 and replaced with three new ASTs set in a concrete-lined containment area on the northwestern side of the fenced PDO Yard area.

The Resource Conservation and Recovery Act facility investigation report (Metcalf & Eddy 1999) concluded that shallow groundwater at the PDO Yard was contaminated with benzene and tetrachloroethene (PCE) in two separate areas. Neither benzene nor PCE was detected in any of the deep monitoring wells at the site. Soil, sediment, and surface water were not considered media of concern. Upon evaluation of several remedial technologies, the Corrective Action Plan (CAP) (SAIC 2000) recommended monitored natural attenuation (MNA) for the benzene plume and Geo-Cleanse<sup>®</sup> chemical oxidation treatment for the PCE plume. The Georgia Environmental Protection Division (GA EPD) approved the CAP in correspondence dated July 25, 2000.

As concluded in the First Corrective Action Progress Report (SAIC 2001a), the initial chemical oxidation phase of the corrective action produced positive results by reducing the PCE concentrations in groundwater in the "source area"; however, the PCE concentrations in two downgradient wells located near the edge of the "residual area" continued to exceed the remedial level (RL) of 5  $\mu$ g/L. These two areas are shown in Figure 2. As a result of the First Corrective Action Progress Report, three additional injection wells were installed in the vicinity of MW1-22 and MW27, and a supplemental phase of Geo-Cleanse<sup>®</sup> injection was conducted in the vicinity of these wells in May 2001. The Second Corrective Action Progress Report (SAIC 2001b) concluded that a polishing step was necessary to further treat the PCE plume because the PCE concentrations in three wells continued to exceed the RL of 5  $\mu$ g/L.

The First Corrective Action Progress Report discussed the results of the baseline sampling events for both plumes and described the installation and startup of the Geo-Cleanse<sup>®</sup> chemical oxidation system for the treatment plume. The Second Corrective Action Progress Report discussed the supplemental chemical oxidation treatment activities that took place between March and September 2001 with respect to the PCE plume and the results of the first semiannual sampling event in September 2001 for the MNA of the benzene plume. The Third Corrective Action Progress Report (SAIC 2002) discussed the polishing step for chemical oxidation treatment with respect to the PCE plume and the results of the second semiannual sampling event for the MNA of the benzene plume. The Fourth, Fifth, Sixth, Seventh, and Eighth Corrective Action Progress Reports (SAIC 2003a, SAIC 2003b, SAIC 2004a, SAIC 2004b, SAIC 2005) discussed the semiannual sampling events for the MNA of the benzene plume and the post-corrective-action PCE sampling events. The results of the semiannual sampling for both the PCE plume and benzene plume presented in the Eighth Corrective Action Progress Report indicated that the RL for both constituents had been achieved in October 2004.

As indicated in the CAP, the purpose of the corrective action was to achieve RLs in groundwater at the site. For the PCE plume, the chemical oxidation corrective action would be complete upon attaining a

maximum PCE concentration in each well of 5  $\mu$ g/L. For the benzene plume, the MNA corrective action would be considered complete upon attaining a maximum benzene concentration in each well of 5  $\mu$ g/L. Since the RLs for both the PCE and benzene plumes were achieved in October 2004, the Eighth Corrective Action Progress Report recommended that confirmatory sampling of both plumes be conducted 6 months following the corrective action period.

This report documents the results of the confirmatory post-corrective-action PCE sampling event and the confirmatory sampling event for the MNA of the benzene plume. For convenience, all of the historical information from the corrective action is repeated in this document.

### 2.0 BASELINE SAMPLING

The baseline sampling for the PCE plume was conducted in August 2000, and the baseline sampling for the benzene plume was initially scheduled to be conducted following the treatment of the PCE plume. Following the baseline PCE sampling, however, it was determined that the baseline benzene sampling should be conducted before the PCE treatment in the event that there was any effect on the benzene plume; therefore, the baseline sampling for the benzene plume was conducted in October 2000.

#### 2.1 GROUNDWATER SAMPLING FOR TETRACHLOROETHENE

The seven shallow and three deep wells that monitor the PCE plume were sampled in August 2000 [i.e., baseline sampling event required by Section 5.2.2 of the CAP (SAIC 2000)] to aid in the design of the Geo-Cleanse<sup>®</sup> system and to provide baseline data. PCE was detected in groundwater samples from shallow wells MW02 (9.9  $\mu$ g/L), MW03 (1.9  $\mu$ g/L), MW05 (30.7  $\mu$ g/L), MW1-22 (12.7  $\mu$ g/L), MW1-24 (4  $\mu$ g/L), MW26 (26.9  $\mu$ g/L), and MW27 (28.8  $\mu$ g/L). PCE was not detected in the three deep wells, MW10, MW11, and MW28. Ethylbenzene, toluene, trichloroethene (TCE), and total xylenes were detected during the sampling event, but at concentrations below their respective RLs. The results of the baseline sampling for PCE are presented in Table 1. For reference, the figure for the PCE baseline sampling event is provided in Appendix III.

The area of PCE groundwater contamination in August 2000 covered approximately 19,450 ft<sup>2</sup>. Of the ten wells sampled in August 2000, five shallow wells had concentrations that exceeded the RL of 5  $\mu$ g/L for PCE. The area of highest PCE contamination in groundwater was in the vicinity of wells MW05, MW26, and MW27.

#### 2.2 GROUNDWATER SAMPLING FOR BENZENE

The six shallow wells and one deep well that monitor the benzene plume were sampled in October 2000 [i.e., baseline sampling event required by Section 5.2.1 of the CAP (SAIC 2000)] to determine whether it was necessary to proceed with MNA. Benzene was detected in groundwater samples from shallow wells MW01 ( $4.4 \mu g/L$ ), MW06 ( $46.7 \mu g/L$ ), MW1-23 ( $1.8 \mu g/L$ ), and MW1-25 ( $44.1 \mu g/L$ ). Benzene was not detected in two shallow wells, MW07 and MW08, and one deep well, MW09. Ethylbenzene, toluene, and total xylenes were also detected during the sampling event, but at concentrations below their respective RLs. The results of the baseline sampling for benzene are presented in Table 2. For reference, the figure for the benzene baseline sampling event is provided in Appendix III.

The area of benzene groundwater contamination in October 2000 covered approximately 9,600 ft<sup>2</sup>. Of the seven wells sampled in October 2000, two shallow wells had concentrations that exceeded the RL of 5  $\mu$ g/L for benzene. The area of highest benzene contamination was in the vicinity of wells MW06 and MW1-25.

#### 2.3 GROUNDWATER LEVEL MEASUREMENTS

Groundwater elevations were measured in the monitoring wells on August 26, 2000, to determine the groundwater flow direction. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the August 2000 groundwater potentiometric surface map is provided in Appendix III. In August 2000, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.0165 ft/ft, and the average groundwater elevation was 10.80 ft above mean sea level (AMSL).

# 3.0 GEO-CLEANSE<sup>®</sup> TREATMENT FOR TETRACHLOROETHENE

#### 3.1 CHEMICAL OXIDATION SYSTEM

Chemical oxidation using the patented Geo-Cleanse<sup>®</sup> process was selected in the CAP for remediation of PCE in groundwater because it would effectively achieve the RL in the shortest period of time and with the least uncertainty. The conceptual Geo-Cleanse<sup>®</sup> groundwater treatment system design provided in the CAP was based on initial estimates provided by Geo-Cleanse International, Inc. (GCI). Additional details on the treatment process are discussed in Section 5.2.2 of the CAP (SAIC 2000).

The initial Geo-Cleanse<sup>®</sup> groundwater treatment system design was based on the baseline analytical sampling conducted in August 2000 and was provided by GCI. The contaminated groundwater plume extends over an irregularly shaped area about 200 ft wide and 100 ft long. The depth of the groundwater contamination is limited to predominantly the upper 20 ft of the shallow aquifer zone; no PCE has been detected in any deep wells at the site during any previous sampling event. The Geo-Cleanse<sup>®</sup> system chemically oxidizes the groundwater by injection of Fenton's Reagent (hydrogen peroxide and a ferrous iron catalyst) into the subsurface at two separate injection levels [10 and 20 ft below ground surface (BGS)]. The treatment area is separated into two areas for the injector design and installation. The first area—which surrounds MW26, measures approximately 50 ft (southeast side)  $\times$  70 ft (northeast side)  $\times$  90 ft (northwest side)  $\times$  85 ft (south side), and includes the former rail bed, which is no longer present on-site—is defined as the "source area." The second area-which surrounds MW27, MW28, MW05, and MW10, measures approximately 90 ft (southeast side)  $\times$  70 ft (northeast side)  $\times$  200 ft (northwest side)  $\times$  160 ft (south side), includes the dirt road, and is bound on the northwest by Lamar Canal-is defined as the "residual area." The locations of these areas are shown in Figure 2. Because of the low concentrations and small mass of PCE reported in groundwater at the PDO Yard, the amount of 50% hydrogen peroxide required for groundwater treatment was not stoichiometrically controlled.

The initial design included the installation of 9 shallow and 20 deep injectors for a total of 29 injectors. For the source area treatment, GCI used five shallow injectors and eight deep injectors. For the residual area treatment, GCI used 4 shallow and 12 deep injectors. Shallow and deep injectors were screened from 9.5 to 12 ft and 17.5 to 20 ft BGS, respectively. Injector locations and depths proposed in the Sampling and Analysis Plan were adjusted based upon field conditions observed during injector installation. Three additional deep injectors were installed in May 2001 as part of the supplemental injection activities. Three

more shallow injectors were installed in December 2001 for the final polishing treatment. The locations of the 35 injectors are presented in Figure 2. The boring logs and well construction diagrams were provided in the first three Corrective Action Progress Reports (SAIC 2001a, SAIC 2001b, SAIC 2002).

# **3.2 INITIAL CHEMICAL INJECTION FIELD ACTIVITIES – FEBRUARY AND MARCH 2001**

#### **3.2.1** Injection Point Installation

On February 1 through 3, 2001, 29 injection wells (J1 through J29) were installed in the area of the highest PCE contamination in groundwater, as shown in Figure 2. These points were placed throughout the plume and completed as 1.25-in. carbon steel injection wells with 2.5 ft of 60-mesh stainless steel screen and flush-mount surface completions. Twenty of the injectors were screened from 17.5 to 20 ft BGS, while 9 of the injectors were screened from 9.5 to 12.0 ft BGS. Boring logs and well construction diagrams were provided in the First Corrective Action Progress Report (SAIC 2001a). Well construction details are summarized in Table 4. Header piping from each injection well to the remediation trailer was installed above the ground surface.

#### 3.2.2 Injection Well Groundwater Sampling

During well installation on February 1 through 3, 2001, the 29 injection wells were sampled, and 15 of the samples were selected for laboratory analysis to aid in the final design of the Geo-Cleanse<sup>®</sup> system. GCI used the results of the injection well sampling to help determine how much hydrogen peroxide and catalyst were to be injected into each well. PCE was detected in 14 of 15 samples at concentrations ranging from 0.77J to 15.1  $\mu$ g/L. The concentrations in eight injection wells exceeded the RL of 5  $\mu$ g/L. 2-Butanone, 2-hexanone, 4-methyl-2-pentanone, acetone, chloroform, ethylbenzene, toluene, TCE, and total xylenes were also detected during the sampling event, but at concentrations below their respective maximum contaminant levels (MCLs). The results of the injection well sampling for PCE are presented in Table 1.

#### 3.2.3 Initial Chemical Injection

Field injection operations were conducted from March 8 through March 14, 2001. Approximately 3,125 gal of 50% hydrogen peroxide solution and approximately 7,400 gal of ferrous iron catalyst solution were injected into the 29 injection wells. The hydrogen peroxide and ferrous iron catalyst solutions were injected in accordance with an Underground Injection Well Notification Form for the PDO Yard that was approved by the GA EPD Underground Injection Control Program on March 5, 2001.

During the injection, GCI collected field measurements to ensure that the appropriate subsurface conditions were established for an efficient oxidation using Fenton's Reagent. GCI verified these conditions using groundwater quality measurements. The analysis of each of the monitored parameters [pH, alkalinity, dissolved chloride, dissolved iron, hydrogen peroxide, and volatile organic compounds (VOCs)] is summarized below.

Groundwater pH was monitored to ensure that appropriate pH conditions (pH of less than 6) were established. Throughout the Phase 1 injection, a pH of less than 6 was established and maintained. Alkalinity was monitored throughout the injection because of its effects on Fenton's Reagent treatment. Dissolved bicarbonate is an efficient hydroxyl free radical scavenger. Alkalinity started out at 60 mg/L and, thus, did not present a problem with pH buffering, as evidenced by the ability to maintain an optimal pH for the reaction.

Chloride was produced as an oxidation product of chlorinated hydrocarbons. Dissolved chloride concentrations began at a low range, approximately 10 mg/L, and increased during the injection to approximately 15 to 20 mg/L. The increase in chloride concentration was expected because of the concentrations of PCE present at the site. Dissolved iron is a catalyst for Fenton's Reagent. Iron was found in the groundwater at the site at concentrations of 3 mg/L or greater. Iron concentrations increased during the injection to create an environment in which the hydroxyl free radical could be established and maintained.

Hydrogen peroxide was monitored during the injection to ensure that reagents were distributed throughout the treatment area. A diluted concentration of hydrogen peroxide was found in the wells in the treatment area, indicating that an effective radius of influence had been established.

#### 3.2.4 Initial 7-Day Post-Injection Monitoring

On March 21, 2001, 7 days following the completion of the initial Geo-Cleanse<sup>®</sup> injection activities, the seven shallow and three deep wells that monitor the PCE plume were sampled to evaluate the effectiveness of the Geo-Cleanse<sup>®</sup> treatment. PCE was detected in groundwater samples from shallow wells MW02 (0.56J  $\mu$ g/L), MW05 (3.4  $\mu$ g/L), MW1-22 (10.8  $\mu$ g/L), MW1-24 (1.5  $\mu$ g/L), MW26 (2.3  $\mu$ g/L), and MW27 (11.9  $\mu$ g/L). PCE was not detected in shallow well MW03 or deep wells MW10, MW11, and MW28. Carbon disulfide, ethylbenzene, toluene, and total xylenes were also detected during the sampling event, but at concentrations below their respective MCLs. The results of the 7-day post-injection sampling for PCE are presented in Table 1. For reference, the figure for the PCE 7-day post-injection sampling event is provided in Appendix III.

The area of PCE groundwater contamination exceeding the RL in March 2001 covered approximately 10,750 ft<sup>2</sup>. Of the ten wells sampled in March 2001, two shallow wells had concentrations that exceeded the RL of 5  $\mu$ g/L for PCE. The area of highest PCE contamination in groundwater was in the vicinity of wells MW1-22 and MW27.

# 3.3 SUPPLEMENTAL CHEMICAL INJECTION FIELD ACTIVITIES – MAY AND JUNE 2001

As a result of the recommendations presented in the First Corrective Action Progress Report (SAIC 2001a), three additional injection wells were installed in the vicinity of MW1-22 and MW27, and a supplemental phase of Geo-Cleanse<sup>®</sup> injection was conducted in the vicinity of these wells.

#### **3.3.1** Additional Injection Point Installation

On May 3, 2001, three additional injection wells (J30 through J32) were installed in the vicinity of MW1-22 and MW27, as shown in Figure 2. These points were completed as 1.25-in. carbon steel injection wells with 2.5 ft of 60-mesh stainless steel screen with flush-mount surface completions. These injectors were screened from 18.4 to 20.9 ft BGS. Well construction details are presented in Table 4. Soil samples were collected for investigation-derived waste (IDW) disposal. Header piping from each injection well to the remediation trailer was installed above the ground surface.

#### 3.3.2 Supplemental Chemical Injection

Supplemental chemical injection operations were conducted from May 15 through May 17, 2001. The purpose of the second injection was to target areas that were close to or exceeded the cleanup criteria after the

initial injection. Approximately 3,378 gal (30,402 lb) of 50% hydrogen peroxide solution were injected at 13 locations—J12, J14, J15, J16, J17, J19, J20, J24, J25, J26, J30, J31, and J32. Also, approximately 448 gal (3,808 lb) of ferrous iron catalyst solution were injected into 9 monitoring wells—MW02, MW03, MW05, MW10, MW11, MW1-22, MW26, MW27, and MW28. Injection of catalyst into these wells was performed to enhance treatment in the targeted zones. The hydrogen peroxide and ferrous iron catalyst solutions were injected in accordance with an Underground Injection Well Notification Form for the PDO Yard that was amended to include the additional injectors and was approved by the GA EPD Underground Injection Control Program on May 9, 2001. During the injection operations, field measurements were taken of carbon dioxide levels, oxygen levels, and borehole volatile organic measurements of the off-gas.

#### 3.3.3 Supplemental 7-Day Post-Injection Monitoring

Following the supplemental field injection operations, wells MW1-22 and MW27 were to be re-sampled on May 23, 2001. PCE was detected in well MW27 at a concentration of 14.7  $\mu$ g/L. An obstruction was discovered in well MW1-22 at 10.81 ft below top of casing, and it was impossible to get sampling equipment down the well; therefore, it was not sampled. On June 5, 2001, well MW29 was installed adjacent to MW1-22, and the PCE concentration in well MW29 was 2.4  $\mu$ g/L.

#### 3.4 SIX-MONTH POST-INJECTION MONITORING – SEPTEMBER 2001

On September 6 and 7, 2001, 6 months following the completion of the initial Geo-Cleanse<sup>®</sup> injection activities, the seven shallow and three deep wells that monitor the PCE plume were sampled to evaluate the effectiveness of the Geo-Cleanse<sup>®</sup> treatment. PCE was detected in groundwater samples from shallow wells MW02 ( $3.8 \mu g/L$ ), MW03 ( $1.3 \mu g/L$ ), MW05 ( $8.4 \mu g/L$ ), MW1-22/MW29 ( $4 \mu g/L$ ), MW1-24 ( $2 \mu g/L$ ), MW26 ( $10 \mu g/L$ ), and MW27 ( $15.8 \mu g/L$ ). PCE was not detected in deep wells MW10, MW11, and MW28. No other VOCs were analyzed for during the September 2001 sampling event. The results of the 6-month post-injection sampling for PCE are presented in Table 1. For reference, the figure for the PCE 6-month post-injection sampling event is provided in Appendix III.

The area of PCE groundwater contamination exceeding the RL in September 2001 covered approximately 13,000 ft<sup>2</sup>. Of the ten wells sampled in September 2001, three shallow wells had concentrations that exceeded the RL of 5  $\mu$ g/L for PCE. The area of highest PCE contamination in groundwater was in the vicinity of wells MW05, MW26, and MW27.

#### 3.5 POLISHING STEP CHEMICAL INJECTION FIELD ACTIVITIES – DECEMBER 2001 THROUGH MARCH 2002

As a result of the recommendations presented in the Second Corrective Action Progress Report (SAIC 2001b), three additional injection wells were installed in the vicinity of MW26, and a polishing step for the Geo-Cleanse<sup>®</sup> injection was conducted in the vicinity of these wells.

#### 3.5.1 Additional Injection Point Installation

On December 4, 2001, three additional injection wells (J33 through J35) were installed in the vicinity of MW26, as shown in Figure 2. These points were completed as 1.25-in. carbon steel injection wells with 3.0 ft of 60-mesh stainless steel screen with flush-mount surface completions. These injectors were screened from 10.3 to 13.3 ft BGS. Well construction details are presented in Table 4. Soil samples were collected

for IDW disposal. Header piping from each injection well to the remediation trailer was installed above the ground surface.

#### 3.5.2 Polishing Step Chemical Injection

The polishing step of the chemical injection operations was conducted from February 25 through February 28, 2002. The purpose of the polishing step injection was to target areas that were close to or exceeded the cleanup criteria after the initial injection. Approximately 2,003 gal of 50% hydrogen peroxide solution were injected at 12 locations—J14, J15, J19, J20, J23, J28, J30, J31, J32, J33, J34, and J35. Also, approximately 2,304 gal of ferrous iron catalyst solution were injected into nine injection wells and six monitoring wells—J14, J15, J19, J23, J31, J32, J33, J34, and J35 and MW02, MW03, MW05, MW10, MW26, and MW27. Injection of catalyst into these wells was performed to enhance treatment in the targeted zones. During the injection operations, field measurements were taken of carbon dioxide levels, oxygen levels, and borehole volatile organic measurements of the off-gas.

#### 3.5.3 Polishing Step 7-Day Post-Injection Monitoring

On March 12, 2002, 7 days following the completion of the polishing step Geo-Cleanse<sup>®</sup> injection activities, the seven shallow and three deep wells that monitor the PCE plume were sampled to evaluate the effectiveness of the Geo-Cleanse<sup>®</sup> treatment. PCE was detected in groundwater samples from shallow wells MW02 (1.6  $\mu$ g/L), MW05 (0.74J  $\mu$ g/L), MW1-22/MW29 (1  $\mu$ g/L), MW1-24 (0.72J  $\mu$ g/L), MW26 (6  $\mu$ g/L), and MW27 (8  $\mu$ g/L). PCE was not detected in shallow well MW03 or deep wells MW10, MW11, and MW28. No other VOCs were analyzed for during the March 2002 sampling event. The results of the polishing step 7-day post-injection sampling for PCE are presented in Table 1. For reference, the figure for the PCE polishing step 7-day post-injection sampling event is provided in Appendix III.

The area of PCE groundwater contamination exceeding the RL in March 2002 covered approximately 5,000 ft<sup>2</sup>. Of the ten wells sampled in March 2002, two shallow wells had concentrations of 6 and 8  $\mu$ g/L, respectively, which exceeded the RL of 5  $\mu$ g/L for PCE. The area of highest PCE contamination in groundwater was in the vicinity of wells MW26 and MW27.

#### 3.6 SUMMARY OF CHEMICAL INJECTION RESULTS

The oxidation of PCE using Fenton's Reagent is an exothermic reaction, and as the temperature increases in the groundwater, contamination that is sorbed to soil can be liberated into the groundwater, potentially causing concentrations to increase. After the completion of each of the phases of chemical injection, samples were obtained from the monitoring wells in the treatment area and sent to an off-site laboratory for VOC analysis. Following the initial injection, all the monitoring wells showed an overall decrease in VOC concentrations from their initial concentrations; however, the concentrations in several wells still exceeded the RLs. The sampling results following the supplemental injection and the 6-month post-injection period indicated that the PCE concentrations increased in a few wells. This finding is consistent with the mass destruction of the contaminant. The average pre-injection PCE contaminant concentrations in August 2000 were approximately 10.76  $\mu$ g/L, with a maximum concentration of 30.7  $\mu$ g/L. Following the polishing injection phase in February 2002, average PCE concentrations were reduced to 2.2  $\mu$ g/L, with a maximum concentration of 8  $\mu$ g/L. This finding indicates an overall contaminant reduction of 79.4%.

The goals of the treatment program were to reduce VOC contamination to below 5  $\mu$ g/L to meet GA EPD groundwater standards. Average PCE concentrations were reduced from 10.76 to 2.2  $\mu$ g/L, which is

below the cleanup criterion, although there were two monitoring wells with concentrations above 5  $\mu$ g/L. Overall, through the process monitoring parameters, GCI illustrated that the appropriate conditions for in situ chemical oxidation using Fenton's Reagent were established, and through the VOC analysis it showed that a substantial reduction in PCE concentrations could be accomplished. The process monitoring parameters also indicated that PCE destruction occurred on this site.

The Effectiveness Evaluation Report prepared by GCI was included in the Fourth Corrective Action Progress Report (SAIC 2003a). The chemical oxidation corrective action has produced positive results by reducing the PCE concentrations in groundwater at the site and the area of the PCE plume. Even though the site has been injected with hydrogen peroxide and ferrous iron catalyst on three separate occasions, the PCE concentrations in two wells (i.e., MW26 and MW27) have continued to exceed the RL of 5  $\mu$ g/L by a few micrograms per liter. Because the chemical oxidation has resulted in the destruction of PCE to concentrations slightly above the RL, it was recommended in the Third Corrective Action Progress Report (SAIC 2002) that the plume be monitored semiannually until the PCE concentrations are below the RL.

### 4.0 MONITORED NATURAL ATTENUATION OF TETRACHLOROETHENE

The Third Corrective Action Progress Report (SAIC 2002) recommended that ten wells (MW2, MW03, MW05, MW10, MW11, MW1-24, MW26, MW27, MW28, and MW1-22/MW29) be sampled on a semiannual basis in conjunction with the benzene plume sampling; however, because of limited funding, these wells were not sampled in conjunction with the October 2002 benzene sampling activities.

# 4.1 FIRST POST-CORRECTIVE-ACTION TETRACHLOROETHENE SAMPLING EVENT – JANUARY 2003

In January 2003, the first semiannual sampling event for the MNA of PCE following completion of in situ chemical oxidation was conducted. Seven shallow wells (MW02, MW03, MW05, MW1-24, MW26, MW27, and MW29) and three deep wells (MW10, MW11, and MW28) were sampled for PCE. PCE was detected in groundwater samples from shallow wells MW02 ( $3 \mu g/L$ ), MW05 ( $3.1 \mu g/L$ ), MW26 ( $5.7 \mu g/L$ ), and MW27 ( $5.6 \mu g/L$ ). PCE was not detected in shallow wells MW03, MW1-24, and MW29 or deep wells MW10, MW11, and MW28. The results of the first semiannual sampling event for the MNA of PCE are presented in Table 1. For reference, the figure for the PCE semiannual post-corrective-action sampling event is provided in Appendix III.

The area of PCE groundwater contamination exceeding the RL in January 2003 covered approximately 5,250 ft<sup>2</sup>. Of the ten wells sampled in January 2003, two shallow wells had concentrations that slightly exceeded the RL of 5  $\mu$ g/L for PCE. The area of highest PCE contamination was in the vicinity of wells MW26 and MW27.

In January 2003, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.029 ft/ft, and the average groundwater elevation was 11.02 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the January 2003 groundwater potentiometric surface map is provided in Appendix III.

#### 4.2 SECOND POST-CORRECTIVE-ACTION TETRACHLOROETHENE SAMPLING EVENT – JUNE 2003

On June 22, 2003, the second semiannual sampling event for the MNA of PCE following completion of in situ chemical oxidation was conducted. Seven shallow wells (MW02, MW03, MW05, MW1-24, MW26, MW27, and MW29) and three deep wells (MW10, MW11, and MW28) were sampled for PCE. PCE was detected in groundwater samples from shallow wells MW02 (0.83J  $\mu$ g/L), MW1-24 (0.55J  $\mu$ g/L), MW26 (3.9  $\mu$ g/L), and MW27 (1.8  $\mu$ g/L). PCE was not detected in shallow wells MW03, MW05, and MW29 or deep wells MW10, MW11, and MW28. The results of the second semiannual sampling event for the MNA of PCE are presented in Table 1. For reference, the figure for the PCE semiannual post-corrective-action sampling event is provided in Appendix III.

Of the ten wells sampled in June 2003, none of the shallow or deep wells had concentrations that exceeded the RL of 5  $\mu$ g/L for PCE.

In June 2003, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.022 ft/ft, and the average groundwater elevation was 12.11 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the June 2003 groundwater potentiometric surface map is provided in Appendix III.

#### 4.3 THIRD POST-CORRECTIVE-ACTION TETRACHLOROETHENE SAMPLING EVENT – JANUARY 2004

On January 23 and 24, 2004, the third semiannual sampling event for the MNA of PCE following completion of in situ chemical oxidation was conducted. Seven shallow wells (MW02, MW03, MW05, MW1-24, MW26, MW27, and MW29) and three deep wells (MW10, MW11, and MW28) were sampled for PCE. PCE was detected in groundwater samples from shallow wells MW02 ( $1.7 \mu g/L$ ), MW05 ( $6.1 \mu g/L$ ), MW1-24 ( $0.87J \mu g/L$ ), MW26 ( $4.9 \mu g/L$ ), and MW27 ( $3.1 \mu g/L$ ). PCE was not detected in shallow wells MW03 and MW29 or deep wells MW10, MW11, and MW28. The results of the third semiannual sampling event for the MNA of PCE are presented in Table 1. For reference, the figure for the PCE semiannual post-corrective-action sampling event is provided in Appendix III.

Of the ten wells sampled in January 2004, only shallow well MW05 (6.1  $\mu$ g/L) had a concentration that slightly exceeded the RL of 5  $\mu$ g/L for PCE.

In January 2004, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.018 ft/ft, and the average groundwater elevation was 10.12 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the January 2004 groundwater potentiometric surface map is provided in Appendix III.

#### 4.4 FOURTH POST-CORRECTIVE-ACTION TETRACHLOROETHENE SAMPLING EVENT – OCTOBER 2004

On October 18 and 19, 2004, the fourth semiannual sampling event for the MNA of PCE following completion of in situ chemical oxidation was conducted. Seven shallow wells (MW02, MW03, MW05, MW1-24, MW26, MW27, and MW29) were sampled for PCE. PCE has never been detected in the deep wells and, as recommended in the Seventh Corrective Action Progress Report (SAIC 2004b), the three deep wells (MW10, MW11, and MW28) were not sampled during this monitoring event. PCE was

detected in groundwater samples from shallow wells MW02 (0.65J  $\mu$ g/L), MW26 (0.61J  $\mu$ g/L), and MW27 (2.7  $\mu$ g/L). PCE was not detected in shallow wells MW03, MW05, MW1-24, and MW29. The results of the fourth semiannual sampling event for the MNA of PCE are presented in Table 1. For reference, the figure for the PCE semiannual post-corrective-action sampling event is provided in Appendix III.

Of the seven wells sampled in October 2004, none of the wells had concentrations that exceeded the RL of 5  $\mu$ g/L for PCE.

In October 2004, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.027 ft/ft, and the average groundwater elevation was 11.47 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the October 2004 groundwater potentiometric surface map is provided in Appendix III.

#### 4.5 CONFIRMATION TETRACHLOROETHENE SAMPLING EVENT – APRIL 2005

On April 26 and 27, 2005, the confirmation sampling event for the MNA of PCE following completion of in situ chemical oxidation was conducted. Seven shallow wells (MW02, MW03, MW05, MW1-24, MW26, MW27, and MW29) were sampled for PCE. PCE has never been detected in the deep wells and, as recommended in the Seventh Corrective Action Progress Report (SAIC 2004b), the three deep wells (MW10, MW11, and MW28) were not sampled during this monitoring event. PCE was detected in groundwater samples from shallow wells MW02 (2.5  $\mu$ g/L), MW05 (2.9  $\mu$ g/L), MW1-24 (0.44J  $\mu$ g/L), MW26 (3.3  $\mu$ g/L), and MW27 (2.3  $\mu$ g/L). PCE was not detected in shallow wells MW03 and MW29. The results of the confirmation semiannual sampling event for the MNA of PCE are presented in Table 1 and Figure 3.

Of the seven wells sampled in April 2005, none of the wells had concentrations that exceeded the RL of  $5 \mu g/L$  for PCE.

Groundwater elevations were measured in the monitoring wells on April 26, 2005, to determine the groundwater flow direction. A list of the wells and corresponding water level elevations is presented in Table 3. The potentiometric surface map generated from the water level measurements is presented in Figure 4. In April 2005, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.025 ft/ft, and the average groundwater elevation was 11.58 ft AMSL.

The PCE concentrations have been monitored on a semiannual basis since the completion of the chemical oxidation injections in March 2002. During the semiannual monitoring events since March 2002, the PCE concentrations have remained in the vicinity of the RL (i.e.,  $2 \mu g/L$  above or below) and were below the RL in all wells in October 2004. In accordance with the requirements of the CAP, the Eighth Corrective Action Progress Report (SAIC 2005) recommended that confirmation groundwater sampling be conducted 6 months following the achievement of the RL. As a result, the April 2005 event has confirmed that the PCE concentrations have remained below the RL.

# 5.0 MONITORED NATURAL ATTENUATION OF BENZENE

#### 5.1 FIRST BENZENE SAMPLING EVENT – SEPTEMBER 2001

In September 2001, the first semiannual sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for benzene, toluene, ethylbenzene, and xylenes (BTEX). Benzene was detected in groundwater samples from shallow wells MW01 ( $5.1 \mu g/L$ ), MW06 ( $42 \mu g/L$ ), MW1-23 ( $0.58J \mu g/L$ ), and MW1-25 ( $29.7 \mu g/L$ ). Benzene was not detected in two shallow wells, MW07 and MW08, and one deep well, MW09. Ethylbenzene, toluene, and total xylenes were also detected during the sampling event, but at concentrations below their respective RLs. The results of the first semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the September 2001 benzene groundwater quality map is provided in Appendix III.

The area of benzene groundwater contamination exceeding the RL in September 2001 covered approximately 10,100 ft<sup>2</sup>. Of the seven wells sampled in September 2001, three shallow wells had concentrations that exceeded the RL of 5  $\mu$ g/L for benzene. The area of highest benzene contamination was in the vicinity of wells MW06 and MW1-25.

In September 2001, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.015 ft/ft, and the average groundwater elevation was 10.38 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the September 2001 groundwater potentiometric surface map is provided in Appendix III.

#### 5.2 SECOND BENZENE SAMPLING EVENT – MARCH 2002

In March 2002, the second semiannual sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for BTEX. Benzene was detected in groundwater samples from shallow wells MW01 (12.8  $\mu$ g/L), MW06 (12.5  $\mu$ g/L), MW1-23 (1.53  $\mu$ g/L), and MW1-25 (18.7  $\mu$ g/L). Benzene was not detected in two shallow wells, MW07 and MW08, and one deep well, MW09. Ethylbenzene, toluene, and total xylenes were also detected during the sampling event, but at concentrations below their respective RLs. The results of the second semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the March 2002 benzene groundwater quality map is provided in Appendix III.

The area of benzene groundwater contamination exceeding the RL in March 2002 covered approximately 8,600 ft<sup>2</sup>. Of the seven wells sampled in March 2002, three shallow wells had concentrations that exceeded the RL of 5  $\mu$ g/L for benzene. The area of highest benzene contamination was in the vicinity of wells MW01, MW06, and MW1-25.

In March 2002, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.017 ft/ft, and the average groundwater elevation was 11.04 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the March 2002 groundwater potentiometric surface map is provided in Appendix III.

#### 5.3 THIRD BENZENE SAMPLING EVENT – OCTOBER 2002

In October 2002, the third semiannual sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for BTEX. Benzene was detected in groundwater samples from shallow wells MW06 ( $6.7 \mu g/L$ ), MW1-23 ( $4.3 \mu g/L$ ), and MW1-25 ( $5.1 \mu g/L$ ). Benzene was not detected in three shallow wells, MW01, MW07, and MW08, and one deep well, MW09. Ethylbenzene and total xylenes were also detected during the sampling event, but at concentrations below their respective RLs. The results of the third semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the October 2002 benzene groundwater quality map is provided in Appendix III.

The area of benzene groundwater contamination exceeding the RL in October 2002 covered approximately 975 ft<sup>2</sup>. Of the seven wells sampled in October 2002, two shallow wells had concentrations that slightly exceeded the RL of 5  $\mu$ g/L for benzene. The area of highest benzene contamination was in the vicinity of wells MW06 and MW1-25.

In October 2002, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.029 ft/ft, and the average groundwater elevation was 11.54 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the October 2002 groundwater potentiometric surface map is provided in Appendix III.

#### 5.4 FOURTH BENZENE SAMPLING EVENT – MARCH/APRIL 2003

In March 2003, the fourth semiannual sampling event for the MNA of benzene was conducted; however, there was a delay in the arrival of the samples at the analytical laboratory, and the arrival temperature exceeded 4°C. As a result, the wells were re-sampled on April 22, 2003, and those results are presented in this report. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for BTEX. Benzene was detected in groundwater samples from shallow wells MW06 ( $6.2 \mu g/L$ ), MW1-23 ( $1.4 \mu g/L$ ), and MW1-25 ( $6.1 \mu g/L$ ). Benzene was not detected in three shallow wells, MW01, MW07 and MW08, and one deep well, MW09. Ethylbenzene, toluene, and total xylenes were not detected during the sampling event. The results of the fourth semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the April 2003 benzene groundwater quality map is provided in Appendix III.

The area of benzene groundwater contamination exceeding the RL in April 2003 covered approximately 975 ft<sup>2</sup>. Of the seven wells sampled in April 2003, two shallow wells had concentrations that slightly exceeded the RL of 5  $\mu$ g/L for benzene. The area of highest benzene contamination was in the vicinity of wells MW06 and MW1-25.

In March 2003 the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.031 ft/ft, and the average groundwater elevation was 12.71 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the March 2003 groundwater potentiometric surface map is provided in Appendix III.

#### 5.5 FIFTH BENZENE SAMPLING EVENT – OCTOBER 2003

In October 2003, the fifth semiannual sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled

for BTEX. Benzene was detected in groundwater samples from shallow wells MW01 (1.7  $\mu$ g/L), MW06 (4.6  $\mu$ g/L), MW1-23 (0.59J  $\mu$ g/L), and MW1-25 (7.7  $\mu$ g/L). Benzene was not detected in two shallow wells, MW07 and MW08, and one deep well, MW09. Ethylbenzene and total xylenes were not detected during the sampling event. Toluene was only detected at estimated concentrations below the undiluted reporting limit. The results of the fifth semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the October 2003 benzene groundwater quality map is provided in Appendix III.

The area of benzene groundwater contamination exceeding the RL in October 2003 covered approximately 660 ft<sup>2</sup>. Of the seven wells sampled in October 2003, one shallow well had a concentration that slightly exceeded the RL of 5  $\mu$ g/L for benzene. The area of highest benzene contamination was in the vicinity of wells MW06 and MW1-25.

In October 2003, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.019 ft/ft, and the average groundwater elevation was 10.33 ft AMSL. A list of the wells and corresponding water level evaluations is presented in Table 3. For reference, the October 2003 groundwater potentiometric surface map is provided in Appendix III.

#### 5.6 SIXTH BENZENE SAMPLING EVENT – MARCH 2004

On March 23, 2004, the sixth semiannual sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for BTEX. Benzene was detected in groundwater samples from shallow wells MW01 ( $1.6 \mu g/L$ ), MW06 ( $4.4 \mu g/L$ ), MW1-23 ( $0.96J \mu g/L$ ), and MW1-25 ( $6.1 \mu g/L$ ). Benzene was not detected in two shallow wells, MW07 and MW08, and one deep well, MW09. Toluene was not detected during the sampling event. Ethylbenzene and total xylenes were only detected at estimated concentrations below their undiluted reporting limits. The results of the sixth semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the March 2004 benzene groundwater quality map is provided in Appendix III.

The area of benzene groundwater contamination exceeding the RL in March 2004 covered approximately 660 ft<sup>2</sup>. Of the seven wells sampled in March 2004, one shallow well had a concentration that slightly exceeded the RL of  $5 \mu g/L$  for benzene (MW1-25 at 6.1  $\mu g/L$ ). The area of highest benzene contamination was in the vicinity of wells MW06 and MW1-25.

In March 2004, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.022 ft/ft, and the average groundwater elevation was 10.56 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the March 2004 groundwater potentiometric surface map is provided in Appendix III.

#### 5.7 SEVENTH BENZENE SAMPLING EVENT – OCTOBER 2004

On October 18, 2004, the seventh semiannual sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for BTEX. Benzene was detected in groundwater samples from shallow wells MW06 (1.5  $\mu$ g/L), MW1-23 (1.7  $\mu$ g/L), and MW1-25 (0.73J  $\mu$ g/L). Benzene was not detected in three shallow wells, MW01, MW07 and MW08, and one deep well, MW09. Ethylbenzene and toluene were only detected at low concentrations (i.e., <2  $\mu$ g/L) or at estimated concentrations below their undiluted reporting limits. Total

xylenes were not detected during the sampling event. The results of the sixth semiannual sampling event for benzene are presented in Table 2. For reference, the figure for the October 2004 benzene groundwater quality map is provided in Appendix III.

Of the seven wells sampled in October 2004, none of the wells had concentrations that exceeded the RL of 5  $\mu$ g/L for benzene.

In October 2004, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.027 ft/ft, and the average groundwater elevation was 11.47 ft AMSL. A list of the wells and corresponding water level elevations is presented in Table 3. For reference, the October 2004 groundwater potentiometric surface map is provided in Appendix III.

#### 5.8 CONFIRMATION BENZENE SAMPLING EVENT – APRIL 2005

On April 26 and 27, 2005, the confirmation sampling event for the MNA of benzene was conducted. Six shallow wells (MW01, MW06, MW07, MW08, MW1-23, and MW1-25) and one deep well (MW09) were sampled for BTEX. Benzene was detected in groundwater samples from shallow wells MW01 ( $1.6 \mu g/L$ ), MW06 ( $4.1 \mu g/L$ ), MW1-23 ( $0.67J \mu g/L$ ), and MW1-25 ( $2.7 \mu g/L$ ). Benzene was not detected in two shallow wells, MW07 and MW08, and one deep well, MW09. Ethylbenzene was only detected at estimated concentrations below the undiluted reporting limits. Toluene and total xylenes were not detected during the sampling event. The results of the confirmation sampling event for benzene are presented in Table 2 and Figure 5.

Of the seven wells sampled in April 2005, none of the wells had concentrations that exceeded the RL of  $5 \mu g/L$  for benzene.

Groundwater elevations were measured in the monitoring wells on April 26, 2005, to determine the groundwater flow direction. A list of the wells and corresponding water level elevations is presented in Table 3. The potentiometric surface map generated from the water level measurements is presented in Figure 4. In April 2005, the groundwater flow direction was toward the northwest, the average groundwater gradient was approximately 0.025 ft/ft, and the average groundwater elevation was 11.58 ft AMSL.

The benzene concentrations have been monitored on a semiannual basis since the implementation of MNA in September 2001. The CAP required that the site be monitored for a minimum period of 2 years until the maximum concentration at the site was less that the RL. During the semiannual monitoring events since October 2002, the benzene concentrations have remained in the vicinity of the RL (i.e., 3 µg/L above or below) and were below the RL in all wells in October 2004. In accordance with the requirements of the CAP, the Eighth Corrective Action Progress Report (SAIC 2005) recommended that confirmation groundwater sampling be conducted 6 months following the achievement of the RL. As a result, the April 2005 event has confirmed that the benzene concentrations have remained below the RL.

## 6.0 ANALYSIS OF TRENDS

#### 6.1 TETRACHLOROETHENE CONCENTRATIONS IN GROUNDWATER

As described in the previous progress reports for the PDO Yard, the application of in situ chemical oxidation using Fenton's Reagent resulted in a reduction in PCE concentrations and decreased the area of

the plume. During the baseline sampling in August 2000, the area of the PCE plume was 19,450 ft<sup>2</sup> (Table 5), with a maximum PCE concentration of 30.07  $\mu$ g/L in MW05. Following the polishing step in March 2002, the area of the PCE plume was approximately 5,000 ft<sup>2</sup> (Table 5), with a maximum PCE concentration of 8  $\mu$ g/L in MW27, which represented a 74% reduction in the size of the plume area from the baseline sampling. In addition, a 72 to 100% reduction in the PCE concentrations has been observed in the various wells since the baseline sampling in August 2000. The trend in PCE concentrations associated with the corrective action activities is summarized in Figure 6.

During the semiannual post-corrective-action sampling, the PCE concentrations had continued to decline to the vicinity of the RL of 5  $\mu$ g/L. In June 2003, the maximum PCE concentration was 3.9  $\mu$ g/L in well MW26. During the January 2004 sampling event, PCE concentrations increased, with a maximum concentration of 6.1  $\mu$ g/L in MW05. In October 2004, the maximum PCE concentration was 2.7  $\mu$ g/L in MW27. In April 2005, the maximum PCE concentration was 3.3  $\mu$ g/L in MW27.

#### 6.2 BENZENE CONCENTRATIONS IN GROUNDWATER

During the baseline sampling in October 2000, the area of the benzene plume was 9,600 ft<sup>2</sup> (Table 5), with a maximum benzene concentration of 46.7  $\mu$ g/L in MW06. The benzene concentrations steadily decreased during the semiannual sampling events until October 2002, as shown in Figure 7, with wells MW06 and MW1-25 having the highest benzene concentrations during each sampling event. Since October 2002, the area of the benzene plume exceeding 5  $\mu$ g/L has been fairly steady and in the range of 660 to 975 ft<sup>2</sup>, and the concentrations have been no more that 3  $\mu$ g/L above the RL. In March 2004, the maximum benzene concentration was 6.1  $\mu$ g/L in MW1-25. In October 2004, the maximum benzene concentration was 6.1  $\mu$ g/L in MW1-25. In October 2004, the maximum benzene concentration was 1.7  $\mu$ g/L in well MW1-23, which is located upgradient of the site within the Hazardous Waste Management Area. Within the plume, the maximum concentration was 1.5  $\mu$ g/L in MW06. In April 2005, the maximum benzene concentration was 4.1  $\mu$ g/L in well MW06.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The chemical oxidation corrective action has produced positive results by reducing the PCE concentrations in groundwater at the site and the area of the PCE plume. PCE concentrations decreased to below the RL of 5  $\mu$ g/L during the October 2004 sampling event. Confirmatory sampling conducted in April 2005 indicated that the PCE concentrations remained below the RL. The objective of the corrective action has been met and the completion criteria (PCE concentrations less than 5  $\mu$ g/L) achieved, thus it is recommended that no further action be granted for the PCE plume.

MNA of the benzene plume has been conducted since September 2001. The benzene concentrations decreased to below the RL of 5  $\mu$ g/L during the October 2004 sampling event. Confirmatory sampling conducted in April 2005 indicated that the benzene concentrations remained below the RL. The objective of the corrective action has been met and the completion criteria (benzene concentrations less than 5  $\mu$ g/L) achieved, thus it is recommended that no further action be granted for the benzene plume.

Upon written confirmation from GA EPD concurring with the recommendation of this report to grant no further action for the entire site (i.e., both the PCE and benzene plumes), the groundwater monitoring system will be decommissioned in accordance with the requirements of the CAP. The injection wells and

groundwater monitoring wells will be plugged and abandoned by filling the casings with cement and bentonite grout mixture.

#### **8.0 REFERENCES**

- Metcalf & Eddy, Inc. 1999. Revised Final RCRA Facility Investigation Report, Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, September.
- SAIC (Science Applications International Corporation) 2000. Corrective Action Plan for the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, April.
- SAIC 2001a. First Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, June.
- SAIC 2001b. Second Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, December.
- SAIC 2002. Third Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, August.
- SAIC 2003a. Fourth Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, January.
- SAIC 2003b. Fifth Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, August.
- SAIC 2004a. Sixth Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, January.
- SAIC 2004b. Seventh Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, August.
- SAIC 2005. Eighth Corrective Action Progress Report for the Corrective Actions at the Old Property Disposal (PDO) Yard at Hunter Army Airfield, Georgia, April.

# APPENDIX I FIGURES

THIS PAGE INTENTIONALLY LEFT BLANK.



Figure 1. Site Location Map of the PDO Yard, Hunter Army Airfield



Figure 2. Monitoring Well and Injection Well Location Map for the PDO Yard, Hunter Army Airfield

4



Figure 3. Post-Corrective-Action PCE Groundwater Quality Map (April 2005) at the PDO Yard, Hunter Army Airfield

I-S



Figure 4. Groundwater Potentiometric Surface Map (April 2005) at the PDO Yard, Hunter Army Airfield

I-8



Figure 5. Benzene Groundwater Quality Map (April 2005) at the PDO Yard, Hunter Army Airfield

**I-**7



Figure 6. Trend of PCE Concentrations at the PDO Yard, Hunter Army Airfield



Figure 7. Trend of Benzene Concentrations at the PDO Yard, Hunter Army Airfield

I-9

THIS PAGE INTENTIONALLY LEFT BLANK.

## APPENDIX II TABLES

#### THIS PAGE INTENTIONALLY LEFT BLANK.
|                            |              |                 |        |        |                        | Detecto      | ed Volatil  | e Organic ( | Compound   | s (µg/L)                 |         |                     |            |
|----------------------------|--------------|-----------------|--------|--------|------------------------|--------------|-------------|-------------|------------|--------------------------|---------|---------------------|------------|
| Sample<br>Location         | Sample<br>ID | Date<br>Sampled | PCE    | TCE    | Toluene                | Ethylbenzene | Xylenes     | 2-Butanone  | 2-Hexanone | 4-Methyl-2-<br>pentanone | Acetone | Carbon<br>Disulfide | Chloroform |
|                            |              | •               |        |        | Baseline               | PCE Samp     | ling – Aug  | gust 2000   |            |                          | •       |                     |            |
| MW02                       | AP0212       | 08/28/00        | 9.9 =  | 0.35 J | 0.48 J                 | 0.48 J       | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW03                       | AP0312       | 08/28/00        | 1.9 =  | 1 U    | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW05                       | AP0512       | 08/28/00        | 30.7 = | 0.55 J | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW10                       | AP1012       | 08/28/00        | 1 U    | 1 U    | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW11                       | AP1112       | 08/28/00        | 1 U    | 1 U    | 1 U                    | 0.19 J       | 0.5 J       | 5 U         | 5 U        | 5 U                      | 6.9 U   | 5 U                 | 1 U        |
| MW1-22 <sup><i>a</i></sup> | AP2212       | 08/28/00        | 12.7 = | 0.15 J | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW1-24                     | AP2412       | 08/28/00        | 4 =    | 0.21 J | 1 U                    | 0.17 J       | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW26                       | AP2612       | 08/28/00        | 26.9 = | 0.6 J  | 1 U                    | 0.054 J      | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW27                       | AP2712       | 08/28/00        | 28.8 = | 0.64 J | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW28                       | AP2812       | 08/28/00        | 1 U    | 1 U    | 1 U                    | 0.069 J      | 3 U         | 5 U         | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
|                            |              |                 |        | Geo-Cl | eanse <sup>®</sup> Inj | ection Well  | Installatio | n – Februa  | ry 2001    |                          |         |                     |            |
| AP-J1                      | APJ112       | 02/01/01        | 5.8 =  | 1 U    | 0.45 J                 | 1 U          | 3 U         | 1.8 J       | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| AP-J2                      | APJ212       | 02/02/01        | 12.9 = | 1 U    | 1.9 =                  | 1 U          | 3 U         | 1.8 J       | 0.8 J      | 5 U                      | 2.3 J   | 5 U                 | 1 U        |
| AP-J3                      | APJ312       | 02/02/01        | 11 =   | 0.45 J | 1.2 =                  | 1 U          | 3 U         | 2.2 J       | 1.6 U      | 5 U                      | 2.8 J   | 5 U                 | 1 U        |
| AP-J7                      | APJ712       | 02/02/01        | 0.77 J | 1 U    | 0.26 J                 | 1 U          | 3 U         | 2.7 J       | 1.7 J      | 5 U                      | 4.5 J   | 5 U                 | 1 U        |
| AP-J8                      | APJ812       | 02/02/01        | 1.9 =  | 1 U    | 1 U                    | 1 U          | 3 U         | 2.3 J       | 1 J        | 5 U                      | 2.3 J   | 5 U                 | 1 U        |
| AP-J12                     | APJB12       | 02/01/01        | 11.1 = | 1 U    | 1.3 =                  | 1 U          | 3 U         | 5 U         | 5 U        | 0.7 J                    | 17.7 =  | 5 U                 | 2.5 =      |
| AP-J13                     | APJC12       | 02/01/01        | 1 U    | 1 U    | 1.3 =                  | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 2.3 J   | 5 U                 | 0.27 J     |
| AP-J14                     | APJD12       | 02/02/01        | 1.1 =  | 1 U    | 1.3 =                  | 1 U          | 3 U         | 2.6 J       | 1.2 J      | 5 U                      | 5 =     | 5 U                 | 1 U        |
| AP-J16                     | APJF12       | 02/02/01        | 4.2 =  | 1 U    | 0.83 J                 | 1 U          | 3 U         | 1.9 J       | 5 U        | 5 U                      | 1.7 J   | 5 U                 | 1 U        |
| AP-J17                     | APJG12       | 02/01/01        | 15.1 = | 0.38 J | 0.56 J                 | 1 U          | 3 U         | 5.3 =       | 5 U        | 5 U                      | 8.4 =   | 5 U                 | 1 U        |
| AP-J19                     | APJJ12       | 02/02/01        | 9.1 =  | 1 U    | 1.1 =                  | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 2.1 J   | 5 U                 | 1 U        |
| AP-J20                     | APJK12       | 02/02/01        | 2.7 =  | 1 U    | 0.76 J                 | 1 U          | 3 U         | 1 J         | 5 U        | 5 U                      | 2.2 J   | 5 U                 | 1 U        |
| AP-J24                     | APJR12       | 02/03/01        | 11.2 = | 1 U    | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 13.6 =  | 5 U                 | 1.2 =      |
| AP-J25                     | APJS12       | 02/02/01        | 1.9 =  | 1 U    | 1 U                    | 1 U          | 3 U         | 5 U         | 5 U        | 5 U                      | 1.6 J   | 5 U                 | 1 U        |
| AP-J27                     | APJU12       | 02/02/01        | 9.3 =  | 0.85 J | 0.23 J                 | 0.28 J       | 0.5 J       | 1.3 J       | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| R                          | emedial Le   | vel             | 5      | 5      | 700                    | 1 000        | 10 000      |             |            |                          |         |                     |            |

<sup>a</sup>Well MW1-22 was damaged during chemical injection in May 2001, and MW29 was installed adjacent to MW1-22 in June 2001.

NOTES:

Bold values exceed remedial levels.

Data Qualifiers

PCE Tetrachloroethene. U

TCE

Indicates that the compound was not detected above the reported sample quantitation limit. J

Indicates that the value for the compound was an estimated value.

Trichloroethene.

Indicates that the compound was detected at the concentration reported. =

|                              |              |                 |        | Detected Volatile Organic Compounds (µg/L) |             |                         |                         |            |            |                          |         |                     |            |
|------------------------------|--------------|-----------------|--------|--------------------------------------------|-------------|-------------------------|-------------------------|------------|------------|--------------------------|---------|---------------------|------------|
| Sample<br>Location           | Sample<br>ID | Date<br>Sampled | PCE    | TCE                                        | Toluene     | Ethylbenzene            | Xylenes                 | 2-Butanone | 2-Hexanone | 4-Methyl-2-<br>pentanone | Acetone | Carbon<br>Disulfide | Chloroform |
|                              |              |                 |        | Initial 2                                  | 7-Day Post- | Geo-Cleans              | e <sup>®</sup> Injectio | on – March | a 2001     |                          |         |                     |            |
| MW02                         | AP0222       | 03/21/01        | 0.56 J | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 5 U        | 5 U        | 5 U                      | 48.6 U  | 6.2 =               | 1 U        |
| MW03                         | AP0322       | 03/21/01        | 1 U    | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 7.2 U      | 5 U        | 5 U                      | 67.6 U  | 4.4 J               | 1 U        |
| MW05                         | AP0522       | 03/21/01        | 3.4 =  | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 5 U        | 5 U        | 5 U                      | 51.8 U  | 48.2 =              | 1 U        |
| MW10                         | AP1022       | 03/21/01        | 1 U    | 1 U                                        | 1.2 =       | 0.47 J                  | 3.2 =                   | 5 U        | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW11                         | AP1122       | 03/21/01        | 1 U    | 1 U                                        | 1 U         | 1 U                     | 0.41 J                  | 5 U        | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW1-22 <sup><i>a</i></sup>   | AP2222       | 03/21/01        | 10.8 = | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 5 U        | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
| MW1-24                       | AP2422       | 03/21/01        | 1.5 =  | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 5 U        | 5 U        | 5 U                      | 5 U     | 2 J                 | 1 U        |
| MW26                         | AP2622       | 03/21/01        | 2.3 =  | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 5 U        | 5 U        | 5 U                      | 18.6 U  | 76.7 =              | 1 U        |
| MW27                         | AP2722       | 03/21/01        | 11.9 = | 1 U                                        | 1 U         | 1 U                     | 3 U                     | 5 U        | 5 U        | 5 U                      | 7.4 U   | 5.7 =               | 1 U        |
| MW28                         | AP2722       | 03/21/01        | 1 U    | 1 U                                        | 0.68 J      | 1 U                     | 0.53 J                  | 5 U        | 5 U        | 5 U                      | 5 U     | 5 U                 | 1 U        |
|                              |              | •               | Sı     | upplementa                                 | l 7-Day Po  | st Geo-Clea             | nse <sup>®</sup> Injec  | tion – May | June 2001/ |                          |         |                     |            |
| MW27                         | AP2732       | 05/23/01        | 14.7 = | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW29                         | AP2912       | 06/07/01        | 2.4 =  | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
|                              |              |                 | _      | 6-Mont                                     | th Post-Geo | -Cleanse <sup>®</sup> I | njection –              | September  | 2001       |                          | _       |                     |            |
| MW02                         | AP0242       | 09/06/01        | 3.8 =  | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW03                         | AP0342       | 09/06/01        | 1.3 =  | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW05                         | AP0542       | 09/06/01        | 8.4 =  | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW10                         | AP1042       | 09/06/01        | 1 U    | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW11                         | AP1142       | 09/06/01        | 1 U    | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP2242       | 09/07/01        | 4 =    | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW1-24                       | AP2442       | 09/07/01        | 2 =    | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW26                         | AP2642       | 09/07/01        | 10 =   | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW27                         | AP2742       | 09/06/01        | 15.8 = | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| MW28                         | AP2742       | 09/07/01        | 1 U    | *                                          | *           | *                       | *                       | *          | *          | *                        | *       | *                   | *          |
| Re                           | medial Lev   | el              | 5      | 5                                          | 700         | 1.000                   | 10 000                  |            |            |                          |         |                     |            |

"Well MW1-22 was damaged during chemical injection in May 2001, and MW29 was installed adjacent to MW1-22 in June 2001.

NOTES:

Data Qualifiers

Bold values exceed remedial levels. PCE Tetrachloroethene.

Indicates that the compound was not detected above the reported sample quantitation limit. U

Trichloroethene.

J Indicates that the value for the compound was an estimated value. = Indicates that the compound was detected at the concentration reported.

TCE \* PCE was the only analyte analyzed.

|                              |              |                 |        | Detected Volatile Organic Compounds (µg/L) |              |              |                        |             |                 |             |         |                     |            |
|------------------------------|--------------|-----------------|--------|--------------------------------------------|--------------|--------------|------------------------|-------------|-----------------|-------------|---------|---------------------|------------|
| Sample<br>Location           | Sample<br>ID | Date<br>Sampled | PCE    | TCE                                        | Toluene      | Ethylbenzene | Xylenes                | 2-Butanone  | 2-Hexanone      | 4-Methyl-2- | Acetone | Carbon<br>Disulfide | Chloroform |
|                              |              |                 | 1      | Polishing S                                | tep 7-Day    | Post-Geo-Cl  | eanse <sup>®</sup> Inj | jection – M | arch 2002       |             |         |                     |            |
| MW02                         | AP0252       | 03/12/02        | 1.6 =  | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW03                         | AP0352       | 03/12/02        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW05                         | AP0552       | 03/12/02        | 0.74 J | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW10                         | AP1052       | 03/12/02        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW11                         | AP1152       | 03/12/02        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP2252       | 03/12/02        | 1 =    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW1-24                       | AP2452       | 03/12/02        | 0.72 J | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW26                         | AP2652       | 03/12/02        | 6 =    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW27                         | AP2752       | 03/12/02        | 8 =    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW28                         | AP2852       | 03/12/02        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
|                              |              | •               | -      | First Post                                 | t-Corrective | e-Action San | npling Ev              | ent – Janud | <i>iry 2003</i> |             | •       | •                   |            |
| MW02                         | AP0272       | 01/23/03        | 3 =    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW03                         | AP0372       | 01/23/03        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW05                         | AP0572       | 01/23/03        | 3.1 =  | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW10                         | AP1072       | 01/23/03        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW11                         | AP1172       | 01/23/03        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP2972       | 01/23/03        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW1-24                       | AP2472       | 01/24/03        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW26                         | AP2672       | 01/23/03        | 5.7 =  | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW27                         | AP2772       | 01/23/03        | 5.6 =  | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| MW28                         | AP2872       | 01/23/03        | 1 U    | *                                          | *            | *            | *                      | *           | *               | *           | *       | *                   | *          |
| Re                           | medial Lev   | el              | 5      | 5                                          | 700          | 1,000        | 10,000                 |             |                 |             |         |                     |            |

"Well MW1-22 was damaged during chemical injection in May 2001, and MW29 was installed adjacent to MW1-22 in June 2001.

Data Qualifiers

NOTES:

Bold values exceed remedial levels.

Indicates that the compound was not detected above the reported sample quantitation limit. U

PCE Tetrachloroethene. TCE

Trichloroethene. \* PCE was the only analyte analyzed.

Indicates that the value for the compound was an estimated value. J

Indicates that the compound was detected at the concentration reported. =

|                              |              |                 |        | Detected Volatile Organic Compounds (µg/L) |             |               |            |            |            |                          |         |                     |            |
|------------------------------|--------------|-----------------|--------|--------------------------------------------|-------------|---------------|------------|------------|------------|--------------------------|---------|---------------------|------------|
|                              |              |                 |        |                                            |             | Duuu          |            | e organie  | Compound   | is (μg/L)                |         |                     |            |
| Sample<br>Location           | Sample<br>ID | Date<br>Sampled | PCE    | TCE                                        | Toluene     | Ethylbenzene  | Xylenes    | 2-Butanone | 2-Hexanone | 4-Methyl-2-<br>pentanone | Acetone | Carbon<br>Disulfide | Chloroform |
|                              |              |                 |        | Second F                                   | Post-Correc | tive-Action S | Sampling . | Event – Ju | ne 2003    |                          |         |                     |            |
| MW02                         | AP0292       | 06/22/03        | 0.83 J | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW03                         | AP0392       | 06/22/03        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW05                         | AP0592       | 06/22/03        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW10                         | AP1092       | 06/22/03        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW11                         | AP1192       | 06/22/03        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP2992       | 06/22/03        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW1-24                       | AP2492       | 06/22/03        | 0.55 J | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW26                         | AP2692       | 06/22/03        | 3.9 =  | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW27                         | AP2792       | 06/22/03        | 1.8 =  | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW28                         | AP2892       | 06/22/03        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
|                              |              |                 |        | Third Pos                                  | t-Correctiv | e-Action Sa   | mpling Ev  | ent – Janu | ary 2004   |                          |         |                     |            |
| MW02                         | AP0202       | 01/24/04        | 1.7 =  | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW03                         | AP0302       | 01/24/04        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW05                         | AP0502       | 01/24/04        | 6.1 =  | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW10                         | AP1002       | 01/24/04        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW11                         | AP1102       | 01/24/04        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP2902       | 01/24/04        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW1-24                       | AP2402       | 01/24/04        | 0.87 J | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW26                         | AP2602       | 01/24/04        | 4.9 =  | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW27                         | AP2702       | 01/24/04        | 3.1 =  | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| MW28                         | AP2802       | 01/24/04        | 1 U    | *                                          | *           | *             | *          | *          | *          | *                        | *       | *                   | *          |
| Re                           | medial Lev   | el              | 5      | 5                                          | 700         | 1,000         | 10,000     |            |            |                          |         |                     | _          |

"Well MW1-22 was damaged during chemical injection in May 2001, and MW29 was installed adjacent to MW1-22 in June 2001.

NOTES:

Bold values exceed remedial levels.

PCE Tetrachloroethene.

TCE Trichloroethene.

Indicates that the compound was not detected above the reported sample quantitation limit. U

J

\* PCE was the only analyte analyzed.

Indicates that the value for the compound was an estimated value. Indicates that the compound was detected at the concentration reported.

=

Data Qualifiers

|                              |              |                 |        |           |             | Detect       | ed Volatil | e Organic   | Compound   | ls (µg/L)                |         |                     |            |
|------------------------------|--------------|-----------------|--------|-----------|-------------|--------------|------------|-------------|------------|--------------------------|---------|---------------------|------------|
| Sample<br>Location           | Sample<br>ID | Date<br>Sampled | PCE    | TCE       | Toluene     | Ethylbenzene | Xylenes    | 2-Butanone  | 2-Hexanone | 4-Methyl-2-<br>pentanone | Acetone | Carbon<br>Disulfide | Chloroform |
|                              |              |                 |        | Fourth Po | st-Correcti | ve-Action So | impling E  | vent – Octo | ober 2004  |                          |         |                     |            |
| MW02                         | AP02B2       | 10/18/04        | 0.65 J | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW03                         | AP03B2       | 10/18/04        | 1 U    | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW05                         | AP05B2       | 10/18/04        | 1 U    | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP29B2       | 10/18/04        | 1 U    | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW1-24                       | AP24B2       | 10/18/04        | 1 U    | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW26                         | AP26B2       | 10/19/04        | 0.61 J | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW27                         | AP27B2       | 10/18/04        | 2.7 =  | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
|                              |              |                 |        | Fifth Pa  | ost-Correct | ive-Action S | ampling E  | vent – Apr  | il 2005    |                          |         |                     |            |
| MW02                         | AP02C2       | 04/26/05        | 2.5 =  | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW03                         | AP03C2       | 04/27/05        | 1 U    | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW05                         | AP05C2       | 04/27/05        | 2.9 =  | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW1-22/<br>MW29 <sup>a</sup> | AP29C2       | 04/26/05        | 1 U    | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW1-24                       | AP24C2       | 04/27/05        | 0.44 J | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW26                         | AP26C2       | 04/27/05        | 3.3 =  | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| MW27                         | AP27C2       | 04/27/05        | 2.3 =  | *         | *           | *            | *          | *           | *          | *                        | *       | *                   | *          |
| Re                           | medial Lev   | el              | 5      | 5         | 700         | 1,000        | 10,000     |             |            |                          |         |                     |            |

"Well MW1-22 was damaged during chemical injection in May 2001, and MW29 was installed adjacent to MW1-22 in June 2001.

NOTES:

Data Qualifiers

PCE Tetrachloroethene. TCE Trichloroethene.

U Indicates that the compound was not detected above the reported sample quantitation limit.

\* PCE was the only analyte analyzed.

Indicates that the value for the compound was an estimated value. J =

Indicates that the compound was detected at the concentration reported.

| Sample<br>Location | Sample<br>ID | Date<br>Sampled | Benzene<br>(µg/L) | Toluene<br>(ug/L) | Ethylbenzene<br>(µg/L) | Xylenes<br>(ug/L) |
|--------------------|--------------|-----------------|-------------------|-------------------|------------------------|-------------------|
|                    | Ba           | iseline Benze   | ene Sampling I    | Event – Octob     | er 2000                |                   |
| MW01               | AP0112       | 10/31/00        | 4.4 =             | 1 U               | 1.7 =                  | 2.3 J             |
| MW06               | AP0612       | 10/31/00        | 46.7 =            | 1 U               | 6.6 =                  | 3 U               |
| MW07               | AP0712       | 10/31/00        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW08               | AP0812       | 10/31/00        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW09               | AP0912       | 10/31/00        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW1-23             | AP2312       | 10/31/00        | 1.8 =             | 1 U               | 0.62 J                 | 3 U               |
| MW1-25             | AP2512       | 10/31/00        | 44.1 =            | 0.73 J            | 15.7 =                 | 17.3 =            |
|                    | First Se     | miannual Be     | enzene Samplin    | ng Event – Sep    | otember 2001           |                   |
| MW01               | AP0142       | 09/07/01        | 5.1 =             | 1 U               | 1.8 =                  | 0.95 J            |
| MW06               | AP0642       | 09/07/01        | 42 =              | 0.52 J            | 1.7 =                  | 0.56 J            |
| MW07               | AP0742       | 09/07/01        | 1 U               | 0.81 J            | 0.23 J                 | 0.72 J            |
| MW08               | AP0842       | 09/07/01        | 1 U               | 0.28 J            | 1 U                    | 3 U               |
| MW09               | AP0942       | 09/07/01        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW1-23             | AP2342       | 09/06/01        | 0.58 J            | 0.30 J            | 1 U                    | 3 U               |
| MW1-25             | AP2542       | 09/07/01        | 29.7 =            | 1 U               | 1.1 =                  | 3 U               |
|                    | Second S     | emiannual I     | Benzene Sampl     | ing Event – M     | larch 2002             |                   |
| MW01               | AP0152       | 03/12/02        | 12.8 =            | 0.36 J            | 14.9 =                 | 10.8 =            |
| MW06               | AP0652       | 03/12/02        | 12.5 =            | 1 U               | 0.84 J                 | 3 U               |
| MW07               | AP0752       | 03/12/02        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW08               | AP0852       | 03/12/02        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW09               | AP0952       | 03/12/02        | 1 U               | 1 U               | 1 U                    | 3 U               |
| MW1-23             | AP2352       | 03/12/02        | 1.5 =             | 1 U               | 0.53 J                 | 0.91 J            |
| MW1-25             | AP2552       | 03/12/02        | 18.7 =            | 1 U               | 1 =                    | 3 U               |
| R                  | emedial Lev  | vel             | 5                 | 700               | 1,000                  | 10,000            |

| Table 2. Benzene | e Plume Sampling - | - Groundwater | Analytical Results    |
|------------------|--------------------|---------------|-----------------------|
| Table 2. Denzen  | s i fume Samping   | Groundwater   | 1 Mary fical Itesuits |

Bold values exceed remedial levels.

Data Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

J Indicates that the value for the compound was an estimated value.

= Indicates that the compound was detected at the concentration reported.

| Sample<br>Location | Sample<br>ID | Date<br>Sampled | Benzene<br>(µg/L) | Toluene<br>(µg/L) | Ethylbenzene<br>(µg/L) | Xylenes<br>(µg/L) |
|--------------------|--------------|-----------------|-------------------|-------------------|------------------------|-------------------|
|                    | Third Se     | niannual Be     | enzene Samplin    | ng Event – Oc     | tober 2002             |                   |
| MW01               | AP0162       | 10/18/02        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW06               | AP0662       | 10/18/02        | 6.7 =             | 1 U               | 0.22 J                 | 1 U               |
| MW07               | AP0762       | 10/18/02        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW08               | AP0862       | 10/18/02        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW09               | AP0962       | 10/19/02        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW1-23             | AP2362       | 10/18/02        | 4.3 =             | 1 U               | 1.9 =                  | 0.72 J            |
| MW1-25             | AP2562       | 10/19/02        | 5.1 =             | 1 U               | 1 U                    | 1 U               |
|                    | Fourth Se    | miannual B      | enzene Samplir    | ng Event – Ma     | arch/April 2003        |                   |
| MW01               | AP0172       | 04/22/03        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW06               | AP0672       | 04/22/03        | 6.2 =             | 1 U               | 1 U                    | 1 U               |
| MW07               | AP0772       | 04/22/03        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW08               | AP0872       | 04/22/03        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW09               | AP0972       | 04/22/03        | 1 U               | 1 U               | 1 U                    | 1 U               |
| MW1-23             | AP2372       | 04/22/03        | 1.4 =             | 1 U               | 1 U                    | 1 U               |
| MW1-25             | AP2572       | 04/22/03        | 6.1 =             | 1 U               | 1 U                    | 1 U               |
|                    | Fifth S      | Semiannual I    | Benzene Sampl     | ing Event – O     | ctober 2003            |                   |
| MW01               | AP0192       | 10/13/03        | 1.7 =             | 0.68 J            | 1 U                    | 1 U               |
| MW06               | AP0692       | 10/13/03        | 4.6 =             | 0.52 J            | 1 U                    | 1 U               |
| MW07               | AP0792       | 10/13/03        | 1 U               | 0.63 J            | 1 U                    | 1 U               |
| MW08               | AP0892       | 10/13/03        | 1 U               | 0.78 J            | 1 U                    | 1 U               |
| MW09               | AP0992       | 10/13/03        | 1 U               | 0.55 J            | 1 U                    | 1 U               |
| MW1-23             | AP2392       | 10/14/03        | 0.59 J            | 1 U               | 1 U                    | 1 U               |
| MW1-25             | AP2592       | 10/13/03        | 7.7 =             | 1 U               | 1 U                    | 1 U               |
| R                  | emedial Lev  | /el             | 5                 | 700               | 1,000                  | 10,000            |

| Table 2. Denzene Flume Sampling – Orbundwater Analytical Results (continued) |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

Bold values exceed remedial levels.

Data Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

J Indicates that the value for the compound was an estimated value.

= Indicates that the compound was detected at the concentration reported.

| Sample<br>Location | Sample<br>ID | Date<br>Sampled | Benzene       | Toluene        | Ethylbenzene                          | Xylenes |
|--------------------|--------------|-----------------|---------------|----------------|---------------------------------------|---------|
| Location           | Sixth S      | Semiannual      | Benzene Samp  | ling Event – N | (µ <u>g</u> / <u>L)</u><br>March 2004 | (µg/12) |
| MW01               | AP01A2       | 03/23/04        | 1.6 =         | 1 U            | 1 U                                   | 1 U     |
| MW06               | AP06A2       | 03/23/04        | 4.4 =         | 1 U            | 1 U                                   | 1 U     |
| MW07               | AP07A2       | 03/23/04        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW08               | AP08A2       | 03/23/04        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW09               | AP0AA2       | 03/23/04        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW1-23             | AP23A2       | 03/22/04        | 0.96 J        | 1 U            | 0.74 J                                | 0.33 J  |
| MW1-25             | AP25A2       | 03/23/04        | 6.1 =         | 1 U            | 1 U                                   | 1 U     |
|                    | Seventh      | Semiannual      | Benzene Samp  | oling Event –  | October 2004                          |         |
| MW01               | AP01B2       | 10/18/04        | 1 U           | 0.61 J         | 1 U                                   | 1 U     |
| MW06               | AP06B2       | 10/18/04        | 1.5 =         | 1 U            | 1 U                                   | 1 U     |
| MW07               | AP07B2       | 10/18/04        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW08               | AP08B2       | 10/18/04        | 1 U           | 0.68 J         | 1 U                                   | 1 U     |
| MW09               | AP0AB2       | 10/18/04        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW1-23             | AP23B2       | 10/18/04        | 1.7 =         | 1 U            | 1.7 =                                 | 1 U     |
| MW1-25             | AP25B2       | 10/18/04        | 0.73 J        | 1 U            | 1 U                                   | 1 U     |
|                    | Eighth       | h Semiannua     | l Benzene Sam | pling Event –  | April 2005                            |         |
| MW01               | AP01C2       | 04/26/05        | 1.6 =         | 1 U            | 0.37 J                                | 1 U     |
| MW06               | AP06C2       | 04/27/05        | 4.1 =         | 1 U            | 1 U                                   | 1 U     |
| MW07               | AP07C2       | 04/27/05        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW08               | AP08C2       | 04/27/05        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW09               | AP0AC2       | 04/27/05        | 1 U           | 1 U            | 1 U                                   | 1 U     |
| MW1-23             | AP23C2       | 04/26/05        | 0.67 J        | 1 U            | 0.59 J                                | 1 U     |
| MW1-25             | AP25C2       | 04/27/05        | 2.7 =         | 1 U            | 1 U                                   | 1 U     |
| R                  | emedial Lev  | /el             | 5             | 700            | 1,000                                 | 10,000  |

Bold values exceed remedial levels.

Data Qualifiers

U Indicates that the compound was not detected above the reported sample quantitation limit.

J Indicates that the value for the compound was an estimated value.

= Indicates that the compound was detected at the concentration reported.

#### Table 3. Groundwater Elevations

|             | Date     | Top of Casing<br>Elevation | Depth of<br>Screened Interval | Water Depth | Groundwater<br>Elevation |
|-------------|----------|----------------------------|-------------------------------|-------------|--------------------------|
| Well Number | Measured | (ft AMSL)                  | (ff BGS)                      | (ff BTOC)   | (ft AMSL)                |
| 1           | 00/20/00 | <u>Au</u>                  | gust 2000                     | 0.20        | 11.70                    |
| MW01        | 08/26/00 | 21.08                      | 2.0 - 12.0                    | 9.38        | 11.70                    |
| MW02        | 08/26/00 | 21.28                      | 3.0 - 13.0                    | 10.57       | 10.71                    |
| MW03        | 08/26/00 | 20.7                       | 2.0 - 12.0                    | 9.52        | 11.18                    |
| MW05        | 08/26/00 | 20.63                      | 6.0 - 16.0                    | 10.57       | 10.06                    |
| MW06        | 08/26/00 | 21.68                      | 5.5 - 15.5                    | 12.17       | 9.51                     |
| MW07        | 08/26/00 | 21.68                      | 4.0 - 14.0                    | 12.03       | 9.65                     |
| MW08        | 08/26/00 | 21.77                      | 3.0 - 13.0                    | 10.19       | 11.58                    |
| MW09        | 08/26/00 | 21.44                      | 29.1 - 34.1                   | 10.38       | 11.06                    |
| MW10        | 08/26/00 | 20.82                      | 26.0 - 31.0                   | 9.82        | 11.00                    |
| MW11        | 08/26/00 | 21.25                      | 29.0 - 34.0                   | 10.12       | 11.13                    |
| MW1-20      | 08/26/00 | 22.11                      | a                             | 9.95        | 12.16                    |
| MW1-22      | 08/26/00 | 19.64                      | a                             | 9.46        | 10.18                    |
| MW1-24      | 08/26/00 | 20.06                      | a                             | 8.51        | 11.55                    |
| MW1-25      | 08/26/00 | 21.07                      | а                             | 10.73       | 10.34                    |
| MW26        | 08/26/00 | 21.03                      | 5.0 - 15.0                    | 10.10       | 10.93                    |
| MW27        | 08/26/00 | 20.35                      | 5.0 - 15.0                    | 10.55       | 9.80                     |
| MW28        | 08/26/00 | 20.33                      | 34.6 - 44.6                   | 9.31        | 11.02                    |
|             |          | Sept                       | ember 2001                    |             |                          |
| MW01        | 09/05/01 | 21.08                      | 2.0 - 12.0                    | 9.87        | 11.21                    |
| MW02        | 09/05/01 | 21.28                      | 3.0 - 13.0                    | 11.12       | 10.16                    |
| MW03        | 09/05/01 | 20.7                       | 2.0 - 12.0                    | 10.22       | 10.48                    |
| MW05        | 09/05/01 | 20.63                      | 6.0 - 16.0                    | 11.25       | 9.38                     |
| MW06        | 09/05/01 | 21.68                      | 5.5 - 15.5                    | 12.60       | 9.08                     |
| MW07        | 09/05/01 | 21.68                      | 4.0 - 14.0                    | 12.40       | 9.28                     |
| MW08        | 09/05/01 | 21.77                      | 3.0 - 13.0                    | 10.62       | 11.15                    |
| MW09        | 09/05/01 | 21.44                      | 29.1 - 34.1                   | 10.87       | 10.57                    |
| MW10        | 09/05/01 | 20.82                      | 26.0 - 31.0                   | 10.31       | 10.51                    |
| MW11        | 09/05/01 | 21.25                      | 29.0 - 34.0                   | 10.64       | 10.61                    |
| MW1-20      | 09/05/01 | 22.11                      | а                             | 10.63       | 11.48                    |
| MW1-22      | 09/05/01 | 19.64                      | а                             | damaged     | damaged                  |
| MW1-24      | 09/05/01 | 20.06                      | а                             | 9.13        | 10.93                    |
| MW1-25      | 09/05/01 | 21.07                      | а                             | 11.34       | 9.73                     |
| MW26        | 09/05/01 | 21.03                      | 5.0 - 15.0                    | 10.79       | 10.24                    |
| MW27        | 09/05/01 | 20.35                      | 5.0 - 15.0                    | 11.37       | 8.98                     |
| MW28        | 09/05/01 | 20.33                      | 34.6 - 44.6                   | 9.84        | 10.49                    |
| MW29        | 09/05/01 | 17.38                      | 4.8 - 14.8                    | 8.00        | 9.38                     |

<sup>*a*</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES:

AMSL Above mean sea level.

BGS Below ground surface.

|               | Data      | Top of Casing | Depth of<br>Sereened Interval | Depth of<br>Screened Interval Water Depth |            |
|---------------|-----------|---------------|-------------------------------|-------------------------------------------|------------|
| Well Number   | Measured  | (ft AMSL)     | (ft BGS)                      | (ff BTOC)                                 | (ft AMSL)  |
| vv en rvumber | Wicasureu |               | urch 2002                     | (# 1100)                                  | (It MINDL) |
| MW01          | 03/11/02  | 21.08         | 2.0 - 12.0                    | 9.10                                      | 11.98      |
| MW02          | 03/11/02  | 21.28         | 3.0 - 13.0                    | 10.23                                     | 11.05      |
| MW03          | 03/11/02  | 20.7          | 2.0 - 12.0                    | 9.25                                      | 11.45      |
| MW05          | 03/11/02  | 20.63         | 6.0 - 16.0                    | 10.46                                     | 10.17      |
| MW06          | 03/11/02  | 21.68         | 5.5 - 15.5                    | 11.93                                     | 9.75       |
| MW07          | 03/11/02  | 21.68         | 4.0 - 14.0                    | 11.69                                     | 9.99       |
| MW08          | 03/11/02  | 21.77         | 3.0 - 13.0                    | 9.71                                      | 12.06      |
| MW09          | 03/11/02  | 21.44         | 29.1 - 34.1                   | 10.07                                     | 11.37      |
| MW10          | 03/11/02  | 20.82         | 26.0 - 31.0                   | 9.58                                      | 11.24      |
| MW11          | 03/11/02  | 21.25         | 29.0 - 34.0                   | 9.85                                      | 11.40      |
| MW1-20        | 03/11/02  | 22.11         | а                             | 9.44                                      | 12.67      |
| MW1-22        | 03/11/02  | 19.64         | а                             | damaged                                   | damaged    |
| MW1-24        | 03/11/02  | 20.06         | а                             | 8.25                                      | 11.81      |
| MW1-25        | 03/11/02  | 21.07         | а                             | 10.57                                     | 10.50      |
| MW26          | 03/11/02  | 21.03         | 5.0 - 15.0                    | 9.85                                      | 11.18      |
| MW27          | 03/11/02  | 20.35         | 5.0 - 15.0                    | 10.58                                     | 9.77       |
| MW28          | 03/11/02  | 20.33         | 34.6 - 44.6                   | 9.05                                      | 11.28      |
| MW29          | 03/11/02  | 17.38         | 4.8 - 14.8                    | 7.37                                      | 10.01      |
|               |           | Oct           | tober 2002                    |                                           |            |
| MW01          | 10/18/02  | 21.08         | 2.0 - 12.0                    | 7.97                                      | 13.11      |
| MW02          | 10/18/02  | 21.28         | 3.0 - 13.0                    | 9.70                                      | 11.58      |
| MW03          | 10/18/02  | 20.7          | 2.0 - 12.0                    | 8.43                                      | 12.27      |
| MW05          | 10/18/02  | 20.63         | 6.0 - 16.0                    | 10.36                                     | 10.27      |
| MW06          | 10/18/02  | 21.68         | 5.5 - 15.5                    | 12.10                                     | 9.58       |
| MW07          | 10/18/02  | 21.68         | 4.0 - 14.0                    | 11.42                                     | 10.26      |
| MW08          | 10/18/02  | 21.77         | 3.0 - 13.0                    | 8.54                                      | 13.23      |
| MW09          | 10/18/02  | 21.44         | 29.1-34.1                     | 9.34                                      | 12.10      |
| MW10          | 10/18/02  | 20.82         | 26.0 - 31.0                   | 8.80                                      | 12.02      |
| MW11          | 10/18/02  | 21.25         | 29.0 - 34.0                   | 9.09                                      | 12.16      |
| MW1-20        | 10/18/02  | 22.11         | а                             | 8.97                                      | 13.14      |
| MW1-22        | 10/18/02  | 19.64         | а                             | damaged                                   | damaged    |
| MW1-24        | 10/18/02  | 20.06         | а                             | 7.36                                      | 12.70      |
| MW1-25        | 10/18/02  | 21.07         | а                             | 10.43                                     | 10.64      |
| MW26          | 10/18/02  | 21.03         | 5.0 - 15.0                    | 9.28                                      | 11.75      |
| MW27          | 10/18/02  | 20.35         | 5.0 - 15.0                    | 10.87                                     | 9.48       |
| MW28          | 10/18/02  | 20.33         | 34.6 - 44.6                   | 8.30                                      | 12.03      |
| MW29          | 10/18/02  | 17.38         | 4.8 - 14.8                    | 7.49                                      | 9.89       |

<sup>*a*</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES:

AMSL Above mean sea level.

BGS Below ground surface.

|              | Date     | Top of Casing<br>Elevation | Depth of<br>Screened Interval | Water Depth | Groundwater<br>Elevation |  |  |
|--------------|----------|----------------------------|-------------------------------|-------------|--------------------------|--|--|
| Well Number  | Measured | (ft AMSL)                  | (ft BGS)                      | (ft BTOC)   | (ft AMSL)                |  |  |
| January 2003 |          |                            |                               |             |                          |  |  |
| MW01         | 01/23/03 | 21.08                      | 2.0 - 12.0                    | 9.17        | 11.91                    |  |  |
| MW02         | 01/23/03 | 21.28                      | 3.0 - 13.0                    | 10.6        | 10.68                    |  |  |
| MW03         | 01/23/03 | 20.7                       | 2.0 - 12.0                    | 9.57        | 11.13                    |  |  |
| MW05         | 01/23/03 | 20.63                      | 6.0 - 16.0                    | 10.97       | 9.66                     |  |  |
| MW06         | 01/23/03 | 21.68                      | 5.5 - 15.5                    | 12.59       | 9.09                     |  |  |
| MW07         | 01/23/03 | 21.68                      | 4.0 - 14.0                    | 12.16       | 9.52                     |  |  |
| MW08         | 01/23/03 | 21.77                      | 3.0 - 13.0                    | 9.83        | 11.94                    |  |  |
| MW09         | 01/23/03 | 21.44                      | 29.1 - 34.1                   | 9.79        | 11.65                    |  |  |
| MW10         | 01/23/03 | 20.82                      | 26.0 - 31.0                   | 9.22        | 11.60                    |  |  |
| MW11         | 01/23/03 | 21.25                      | 29.0 - 34.0                   | 9.54        | 11.71                    |  |  |
| MW1-20       | 01/23/03 | 22.11                      | а                             | 9.2         | 12.91                    |  |  |
| MW1-22       | 01/23/03 | 19.64                      | а                             | damaged     | damaged                  |  |  |
| MW1-24       | 01/23/03 | 20.06                      | а                             | 8.38        | 11.68                    |  |  |
| MW1-25       | 01/23/03 | 21.07                      | а                             | 11.02       | 10.05                    |  |  |
| MW26         | 01/23/03 | 21.03                      | 5.0 - 15.0                    | 10.18       | 10.85                    |  |  |
| MW27         | 01/23/03 | 20.35                      | 5.0 - 15.0                    | 11.25       | 9.10                     |  |  |
| MW28         | 01/23/03 | 20.33                      | 34.6 - 44.6                   | 8.79        | 11.54                    |  |  |
| MW29         | 01/23/03 | 17.38                      | 4.8 - 14.8                    | 7.97        | 9.41                     |  |  |
|              |          | M                          | arch 2003                     |             |                          |  |  |
| MW01         | 03/20/03 | 21.08                      | 2.0 - 12.0                    | 6.73        | 14.35                    |  |  |
| MW02         | 03/20/03 | 21.28                      | 3.0 - 13.0                    | 8.78        | 12.50                    |  |  |
| MW03         | 03/20/03 | 20.7                       | 2.0 - 12.0                    | 6.67        | 14.03                    |  |  |
| MW05         | 03/20/03 | 20.63                      | 6.0 - 16.0                    | 9.53        | 11.10                    |  |  |
| MW06         | 03/20/03 | 21.68                      | 5.5 - 15.5                    | 11.42       | 10.26                    |  |  |
| MW07         | 03/20/03 | 21.68                      | 4.0 - 14.0                    | 10.82       | 10.86                    |  |  |
| MW08         | 03/20/03 | 21.77                      | 3.0 - 13.0                    | 7.6         | 14.17                    |  |  |
| MW09         | 03/20/03 | 21.44                      | 29.1 - 34.1                   | 8.79        | 12.65                    |  |  |
| MW10         | 03/20/03 | 20.82                      | 26.0 - 31.0                   | 8.23        | 12.59                    |  |  |
| MW11         | 03/20/03 | 21.25                      | 29.0 - 34.0                   | 8.54        | 12.71                    |  |  |
| MW1-20       | 03/20/03 | 22.11                      | а                             | 7.67        | 14.44                    |  |  |
| MW1-22       | 03/20/03 | 19.64                      | а                             | damaged     | damaged                  |  |  |
| MW1-24       | 03/20/03 | 20.06                      | a                             | 6.27        | 13.79                    |  |  |
| MW1-25       | 03/20/03 | 21.07                      | a                             | 9.68        | 11.39                    |  |  |
| MW26         | 03/20/03 | 21.03                      | 5.0 - 15.0                    | 8.06        | 12.97                    |  |  |
| MW27         | 03/20/03 | 20.35                      | 5.0 - 15.0                    | 9.9         | 10.45                    |  |  |
| MW28         | 03/20/03 | 20.33                      | 34.6 - 44.6                   | 7.75        | 12.58                    |  |  |
| MW29         | 03/20/03 | 17.38                      | 4.8 - 14.8                    | 5.23        | 12.15                    |  |  |

<sup>*a*</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES:

AMSL Above mean sea level.

BGS Below ground surface.

|             |          | Top of Casing | Depth of          |             | Groundwater |
|-------------|----------|---------------|-------------------|-------------|-------------|
|             | Date     | Elevation     | Screened Interval | Water Depth | Elevation   |
| Well Number | Measured | (ft AMSL)     | (ft BGS)          | (ft BTOC)   | (ft AMSL)   |
|             | 1        | Jı            | une 2003          |             | r           |
| MW01        | 06/22/03 | 21.08         | 2.0 - 12.0        | 7.80        | 13.28       |
| MW02        | 06/22/03 | 21.28         | 3.0 - 13.0        | 9.34        | 11.94       |
| MW03        | 06/22/03 | 20.7          | 2.0 - 12.0        | 8.04        | 12.66       |
| MW05        | 06/22/03 | 20.63         | 6.0 - 16.0        | 9.83        | 10.80       |
| MW06        | 06/22/03 | 21.68         | 5.5 - 15.5        | 11.60       | 10.08       |
| MW07        | 06/22/03 | 21.68         | 4.0 - 14.0        | 11.13       | 10.55       |
| MW08        | 06/22/03 | 21.77         | 3.0 - 13.0        | 8.36        | 13.41       |
| MW09        | 06/22/03 | 21.44         | 29.1 - 34.1       | 9.24        | 12.20       |
| MW10        | 06/22/03 | 20.82         | 26.0 - 31.0       | 8.69        | 12.13       |
| MW11        | 06/22/03 | 21.25         | 29.0 - 34.0       | 8.98        | 12.27       |
| MW1-20      | 06/22/03 | 22.11         | а                 | 8.25        | 13.86       |
| MW1-22      | 06/22/03 | 19.64         | а                 | damaged     | damaged     |
| MW1-24      | 06/22/03 | 20.06         | а                 | 6.95        | 13.11       |
| MW1-25      | 06/22/03 | 21.07         | а                 | 10.02       | 11.05       |
| MW26        | 06/22/03 | 21.03         | 5.0 - 15.0        | 8.87        | 12.16       |
| MW27        | 06/22/03 | 20.35         | 5.0 - 15.0        | 9.15        | 11.20       |
| MW28        | 06/22/03 | 20.33         | 34.6 - 44.6       | 8.23        | 12.10       |
| MW29        | 06/22/03 | 17.38         | 4.8 - 14.8        | 6.90        | 10.48       |
|             | •        | Oct           | tober 2003        |             |             |
| MW01        | 10/13/03 | 21.08         | 2.0 - 12.0        | 9.79        | 11.29       |
| MW02        | 10/13/03 | 21.28         | 3.0 - 13.0        | 11.09       | 10.19       |
| MW03        | 10/13/03 | 20.7          | 2.0 - 12.0        | 10.48       | 10.22       |
| MW05        | 10/13/03 | 20.63         | 6.0 - 16.0        | 11.30       | 9.33        |
| MW06        | 10/13/03 | 21.68         | 5.5 - 15.5        | 12.72       | 8.96        |
| MW07        | 10/13/03 | 21.68         | 4.0 - 14.0        | 12.44       | 9.24        |
| MW08        | 10/13/03 | 21.77         | 3.0 - 13.0        | 10.54       | 11.23       |
| MW09        | 10/13/03 | 21.44         | 29.1 - 34.1       | 10.76       | 10.68       |
| MW10        | 10/13/03 | 20.82         | 26.0 - 31.0       | 10.20       | 10.62       |
| MW11        | 10/13/03 | 21.25         | 29.0 - 34.0       | 10.50       | 10.75       |
| MW1-20      | 10/13/03 | 22.11         | а                 | 10.38       | 11.73       |
| MW1-22      | 10/13/03 | 19.64         | а                 | damaged     | damaged     |
| MW1-24      | 10/13/03 | 20.06         | а                 | 9.05        | 11.01       |
| MW1-25      | 10/13/03 | 21.07         | а                 | 11.35       | 9.72        |
| MW26        | 10/13/03 | 21.03         | 5.0 - 15.0        | 10.79       | 10.24       |
| MW27        | 10/13/03 | 20.35         | 5.0 - 15.0        | 11.53       | 8.82        |
| MW28        | 10/13/03 | 20.33         | 34.6 - 44.6       | 9.74        | 10.59       |
| MW29        | 10/13/03 | 17.38         | 4.8 - 14.8        | 8.38        | 9.00        |

<sup>*a*</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES:

AMSL Above mean sea level.

BGS Below ground surface.

|             |          | Top of Casing | Depth of          |             | Groundwater |
|-------------|----------|---------------|-------------------|-------------|-------------|
|             | Date     | Elevation     | Screened Interval | Water Depth | Elevation   |
| Well Number | Measured | (ft AMSL)     | (ft BGS)          | (ft BTOC)   | (ft AMSL)   |
|             |          | Jan           | uary 2004         |             | 1           |
| MW01        | 01/23/04 | 21.08         | 2.0 - 12.0        | 10.22       | 10.86       |
| MW02        | 01/23/04 | 21.28         | 3.0 - 13.0        | 11.39       | 9.89        |
| MW03        | 01/23/04 | 20.7          | 2.0 - 12.0        | 10.55       | 10.15       |
| MW05        | 01/23/04 | 20.63         | 6.0 - 16.0        | 11.56       | 9.07        |
| MW06        | 01/23/04 | 21.68         | 5.5 - 15.5        | 13.08       | 8.60        |
| MW07        | 01/23/04 | 21.68         | 4.0 - 14.0        | 12.84       | 8.84        |
| MW08        | 01/23/04 | 21.77         | 3.0 - 13.0        | 10.96       | 10.81       |
| MW09        | 01/23/04 | 21.44         | 29.1 - 34.1       | 10.76       | 10.68       |
| MW10        | 01/23/04 | 20.82         | 26.0 - 31.0       | 10.22       | 10.60       |
| MW11        | 01/23/04 | 21.25         | 29.0 - 34.0       | 10.52       | 10.73       |
| MW1-20      | 01/23/04 | 22.11         | а                 | 10.58       | 11.53       |
| MW1-22      | 01/23/04 | 19.64         | а                 | damaged     | damaged     |
| MW1-24      | 01/23/04 | 20.06         | а                 | 9.40        | 10.66       |
| MW1-25      | 01/23/04 | 21.07         | а                 | 11.63       | 9.44        |
| MW26        | 01/23/04 | 21.03         | 5.0 - 15.0        | 11.05       | 9.98        |
| MW27        | 01/23/04 | 20.35         | 5.0 - 15.0        | 11.76       | 8.59        |
| MW28        | 01/23/04 | 20.33         | 34.6 - 44.6       | 9.73        | 10.60       |
| MW29        | 01/23/04 | 17.38         | 4.8 - 14.8        | 8.58        | 8.80        |
|             |          | M             | arch 2004         |             |             |
| MW01        | 03/23/04 | 21.08         | 2.0 - 12.0        | 9.56        | 11.52       |
| MW02        | 03/23/04 | 21.28         | 3.0 - 13.0        | 10.92       | 10.36       |
| MW03        | 03/23/04 | 20.7          | 2.0 - 12.0        | 9.97        | 10.73       |
| MW05        | 03/24/04 | 20.63         | 6.0 - 16.0        | 11.21       | 9.42        |
| MW06        | 03/24/04 | 21.68         | 5.5 - 15.5        | 12.85       | 8.83        |
| MW07        | 03/24/04 | 21.68         | 4.0 - 14.0        | 12.52       | 9.16        |
| MW08        | 03/24/04 | 21.77         | 3.0 - 13.0        | 10.24       | 11.53       |
| MW09        | 03/24/04 | 21.44         | 29.1 - 34.1       | 10.4        | 11.04       |
| MW10        | 03/24/04 | 20.82         | 26.0 - 31.0       | 9.84        | 10.98       |
| MW11        | 03/24/04 | 21.25         | 29.0 - 34.0       | 10.15       | 11.1        |
| MW1-20      | 03/24/04 | 22.11         | а                 | 10.41       | 11.7        |
| MW1-22      | 03/23/04 | 19.64         | а                 | damaged     | damaged     |
| MW1-24      | 03/23/04 | 20.06         | a                 | 8.83        | 11.23       |
| MW1-25      | 03/24/04 | 21.07         | а                 | 11.29       | 9.78        |
| MW26        | 03/24/04 | 21.03         | 5.0 - 15.0        | 10.55       | 10.48       |
| MW27        | 03/24/04 | 20.35         | 5.0 - 15.0        | 11.21       | 9.14        |
| MW28        | 03/24/04 | 20.33         | 34.6 - 44.6       | 9.36        | 10.97       |
| MW29        | 03/24/04 | 17.38         | 4.8 - 14.8        | 8.28        | 9.1         |

<sup>*a*</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES:

AMSL Above mean sea level.

BGS Below ground surface.

|             | D (      | Top of Casing | Depth of          |                | Groundwater    |
|-------------|----------|---------------|-------------------|----------------|----------------|
| W. U.N.     | Date     | Elevation     | Screened Interval | Water Depth    | Elevation      |
| well Number | Measured | (IT AMSL)     |                   | (IT BIOC)      | (IT AMSL)      |
| N GIVA 1    | 10/10/04 | Oct           | tober 2004        | 0.00           | 10.00          |
| MW01        | 10/18/04 | 21.08         | 2.0 - 12.0        | 8.09           | 12.99          |
| MW02        | 10/18/04 | 21.28         | 3.0 - 13.0        | 9.74           | 11.54          |
| MW03        | 10/18/04 | 20.7          | 2.0 - 12.0        | 8.34           | 12.36          |
| MW05        | 10/18/04 | 20.63         | 6.0 - 16.0        | 10.33          | 10.30          |
| MW06        | 10/18/04 | 21.68         | 5.5 - 15.5        | 12.08          | 9.60           |
| MW07        | 10/18/04 | 21.68         | 4.0 - 14.0        | 11.48          | 10.20          |
| MW08        | 10/18/04 | 21.77         | 3.0 - 13.0        | 8.68           | 13.09          |
| MW09        | 10/18/04 | 21.44         | 29.1 - 34.1       | 9.52           | 11.92          |
| MW10        | 10/18/04 | 20.82         | 26.0 - 31.0       | 8.97           | 11.85          |
| MW11        | 10/18/04 | 21.25         | 29.0 - 34.0       | 9.26           | 11.99          |
| MW1-20      | 10/18/04 | 22.11         | а                 | 9.33           | 12.78          |
| MW1-22      | 10/18/04 | 19.64         | а                 | damaged        | damaged        |
| MW1-24      | 10/18/04 | 20.06         | а                 | 7.52           | 12.54          |
| MW1-25      | 10/18/04 | 21.07         | а                 | 10.41          | 10.66          |
| MW26        | 10/18/04 | 21.03         | 5.0 - 15.0        | 9.24           | 11.79          |
| MW27        | 10/18/04 | 20.35         | 5.0 - 15.0        | 10.83          | 9.52           |
| MW28        | 10/18/04 | 20.33         | 34.6 - 44.6       | 8.52           | 11.81          |
| MW29        | 10/18/04 | 17.38         | 4.8 - 14.8        | 7.33           | 10.05          |
|             |          | A             | pril 2005         |                |                |
| MW01        | 04/26/05 | 21.08         | 2.0 - 12.0        | 8.68           | 12.40          |
| MW02        | 04/26/05 | 21.28         | 3.0 - 13.0        | 9.95           | 11.33          |
| MW03        | 04/26/05 | 20.7          | 2.0 - 12.0        | 8.81           | 11.89          |
| MW05        | 04/26/05 | 20.63         | 6.0 - 16.0        | 10.33          | 10.30          |
| MW06        | 04/26/05 | 21.68         | 5.5 - 15.5        | 12.06          | 9.62           |
| MW07        | 04/26/05 | 21.68         | 4.0 - 14.0        | 9.29           | 12.39          |
| MW08        | 04/26/05 | 21.77         | 3.0 - 13.0        | not accessible | not accessible |
| MW09        | 04/26/05 | 21.44         | 29.1 - 34.1       | 9.57           | 11.87          |
| MW10        | 04/26/05 | 20.82         | 26.0 - 31.0       | 9.00           | 11.82          |
| MW11        | 04/26/05 | 21.25         | 29.0 - 34.0       | 9.31           | 11.94          |
| MW1-20      | 04/26/05 | 22.11         | а                 | 8.90           | 13.21          |
| MW1-22      | 04/26/05 | 19.64         | а                 | damaged        | damaged        |
| MW1-24      | 04/26/05 | 20.06         | а                 | 7.93           | 12.13          |
| MW1-25      | 04/26/05 | 21.07         | а                 | 10.42          | 10.65          |
| MW26        | 04/26/05 | 21.03         | 5.0 - 15.0        | 9.55           | 11.48          |
| MW27        | 04/26/05 | 20.35         | 5.0 - 15.0        | 10.54          | 9.81           |
| MW28        | 04/26/05 | 20.33         | 34.6 - 44.6       | 8.54           | 11.79          |
| MW29        | 04/26/05 | 17.38         | 4.8 - 14.8        | 7.42           | 9.96           |

<sup>*a*</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES:

AMSL Above mean sea level.

BGS Below ground surface.

| Table 4. | Well | Construction | Details |
|----------|------|--------------|---------|
|----------|------|--------------|---------|

|        |           | Boring   | Screened    |                            | Coordinate | es (NAD 83) | Elevation ( | NAVD 88) |
|--------|-----------|----------|-------------|----------------------------|------------|-------------|-------------|----------|
| Boring | Date      | Depth    | Interval    |                            |            |             | Ground      | Top of   |
| Number | Installed | (ft BGS) | (ft BGS)    | Type of Completion         | Northing   | Easting     | Surface     | Casing   |
|        |           |          | Chem        | ical Oxidation Injection H | Points     |             |             |          |
| J1     | 02/01/01  | 13.5     | 9.6 - 12.1  | 1.25-in. carbon steel      | 974188.3   | 740193.7    | 17.8        | 17.66    |
| J2     | 02/01/01  | 21.0     | 17.8 - 20.3 | 1.25-in. carbon steel      | 974219.2   | 740206.8    | 18.0        | 17.75    |
| J3     | 02/01/01  | 13.0     | 9.6 - 12.1  | 1.25-in. carbon steel      | 974251.4   | 740218.9    | 18.4        | 18.07    |
| J4     | 02/01/01  | 13.2     | 9.6 - 12.5  | 1.25-in. carbon steel      | 974230.2   | 740158.4    | 17.6        | 17.29    |
| J5     | 02/01/01  | 13.0     | 9.4 - 12.3  | 1.25-in. carbon steel      | 974268.2   | 740183.9    | 17.7        | 17.39    |
| J6     | 02/03/01  | 13.0     | 9.6 - 12.5  | 1.25-in. carbon steel      | 974311.9   | 740199.6    | 18.2        | 17.56    |
| J7     | 02/02/01  | 13.0     | 9.4 - 12.3  | 1.25-in. carbon steel      | 974288.0   | 740159.3    | 18.3        | 17.92    |
| J8     | 02/02/01  | 13.0     | 9.4 - 12.3  | 1.25-in. carbon steel      | 974308.8   | 740172.4    | 18.2        | 17.71    |
| J9     | 02/02/01  | 13.0     | 9.5 - 12.4  | 1.25-in. carbon steel      | 974308.4   | 740152.0    | 18.2        | 17.70    |
| J10    | 02/03/01  | 13.0     | 9.5 - 12.4  | 1.25-in. carbon steel      | 974340.9   | 740175.8    | 18.2        | 17.48    |
| J11    | 02/01/01  | 21.0     | 17.8 - 20.3 | 1.25-in. carbon steel      | 974163.9   | 740179.1    | 17.3        | 17.01    |
| J12    | 02/01/01  | 21.0     | 17.6 - 20.1 | 1.25-in. carbon steel      | 974179.9   | 740180.4    | 17.9        | 17.97    |
| J13    | 02/01/01  | 21.2     | 17.5 - 20.0 | 1.25-in. carbon steel      | 974208.2   | 740202.3    | 17.9        | 17.64    |
| J14    | 02/02/01  | 20.9     | 17.6 - 20.1 | 1.25-in. carbon steel      | 974205.4   | 740192.9    | 17.7        | 17.66    |
| J15    | 02/02/01  | 21.1     | 17.1 - 20.1 | 1.25-in. carbon steel      | 974217.5   | 740166.5    | 17.4        | 17.05    |
| J16    | 02/02/01  | 21.0     | 17.5 - 20.0 | 1.25-in. carbon steel      | 974239.5   | 740202.9    | 18.1        | 17.56    |
| J17    | 02/01/01  | 21.0     | 17.6 - 20.5 | 1.25-in. carbon steel      | 974244.7   | 740178.8    | 17.7        | 16.74    |
| J18    | 02/02/01  | 21.0     | 17.5 - 20.4 | 1.25-in. carbon steel      | 974245.9   | 740158.3    | 18.1        | 17.39    |
| J19    | 02/02/01  | 20.8     | 17.7 - 20.2 | 1.25-in. carbon steel      | 974272.3   | 740199.6    | 17.9        | 17.48    |
| J20    | 02/02/01  | 21.0     | 17.7 - 20.2 | 1.25-in. carbon steel      | 974267.4   | 740208.1    | 18.1        | 17.43    |
| J21    | 02/02/01  | 21.0     | 17.7 - 20.2 | 1.25-in. carbon steel      | 974270.3   | 740226.1    | 18.3        | 17.87    |
| J22    | 02/02/01  | 21.0     | 17.4 - 20.3 | 1.25-in. carbon steel      | 974263.4   | 740155.2    | 18.2        | 17.88    |
| J23    | 02/01/01  | 21.0     | 17.4 - 20.3 | 1.25-in. carbon steel      | 974288.5   | 740185.9    | 17.9        | 17.57    |
| J24    | 02/03/01  | 21.0     | 17.7 - 20.6 | 1.25-in. carbon steel      | 974301.2   | 740185.1    | 18.1        | 17.74    |
| J25    | 02/02/01  | 21.0     | 17.4 - 20.3 | 1.25-in. carbon steel      | 974287.3   | 740150.1    | 18.2        | 17.64    |
| J26    | 02/02/01  | 21.0     | 17.4 - 20.3 | 1.25-in. carbon steel      | 974299.0   | 740140.4    | 18.0        | 17.56    |
| J27    | 02/02/01  | 21.3     | 17.8 - 20.7 | 1.25-in. carbon steel      | 974319.4   | 740164.8    | 18.3        | 17.73    |
| J28    | 02/03/01  | 21.3     | 17.8 - 20.7 | 1.25-in. carbon steel      | 974331.5   | 740181.6    | 18.6        | 17.91    |
| J29    | 02/02/01  | 21.0     | 17.4 - 20.3 | 1.25-in. carbon steel      | 974327.8   | 740154.0    | 18.3        | 17.82    |
| J30    | 05/03/01  | 22.0     | 18.4 - 20.9 | 1.25-in. carbon steel      | 974202.4   | 740174.7    | 17.3        | 16.80    |
| J31    | 05/03/01  | 22.0     | 18.4 - 20.9 | 1.25-in. carbon steel      | 974154.9   | 740161.4    | 17.3        | 17.27    |
| J32    | 05/03/01  | 22.0     | 18.4 - 20.9 | 1.25-in. carbon steel      | 974146.9   | 740147.4    | 17.3        | 16.61    |
| J33    | 12/04/01  | 14.5     | 10.3 - 13.3 | 1.25-in. carbon steel      | 974252.8   | 740189.6    | 17.8        | 17.55    |
| J34    | 12/04/01  | 14.5     | 10.3 - 13.3 | 1.25-in. carbon steel      | 974292.1   | 740145.9    | 18.0        | 17.79    |
| J35    | 12/04/01  | 14.5     | 10.3 - 13.3 | 1.25-in. carbon steel      | 974311.2   | 740163.5    | 18.2        | 17.85    |

BGS Below ground surface.

|        |           | Boring   | Screened    |                           | Coordinate   | s (NAD 83) | Elevation ( | NAVD 88) |
|--------|-----------|----------|-------------|---------------------------|--------------|------------|-------------|----------|
| Boring | Date      | Depth    | Interval    |                           |              |            | Ground      | Top of   |
| Number | Installed | (ft BGS) | (ft BGS)    | Type of Completion        | Northing     | Easting    | Surface     | Casing   |
|        |           |          | Monitoring  | Wells (used during correc | tive action) |            |             |          |
| MW01   | 08/26/96  | 13.0     | 2.0 - 12.0  | 2-in. PVC (shallow)       | 974412.4     | 740177.9   | 18.3        | 21.08    |
| MW02   | 08/26/96  | 14.0     | 3.0 - 13.0  | 2-in. PVC (shallow)       | 974323.3     | 740183.9   | 18.4        | 21.28    |
| MW03   | 08/26/96  | 13.0     | 2.0 - 12.0  | 2-in. PVC (shallow)       | 974277.1     | 740136.3   | 18.0        | 20.7     |
| MW05   | 07/21/98  | 16.5     | 6.0 - 16.0  | 2-in. PVC (shallow)       | 974259.8     | 740202.1   | 17.9        | 20.63    |
| MW06   | 07/22/98  | 16.0     | 5.5 - 15.5  | 2-in. PVC (shallow)       | 974337.8     | 740270.3   | 18.8        | 21.68    |
| MW07   | 07/23/98  | 14.5     | 4.0 - 14.0  | 2-in. PVC (shallow)       | 974418.2     | 740280.1   | 18.8        | 21.68    |
| MW08   | 07/28/98  | 14.0     | 3.0 - 13.0  | 2-in. PVC (shallow)       | 974463.3     | 740211.8   | 18.7        | 21.77    |
| MW09   | 07/29/98  | 35.0     | 29.1 - 34.1 | 2-in. PVC (deep)          | 974324.5     | 740263.0   | 18.6        | 21.44    |
| MW10   | 07/22/98  | 32.0     | 26.0 - 31.0 | 2-in. PVC (deep)          | 974291.7     | 740205.4   | 18.0        | 20.82    |
| MW11   | 07/23/98  | 35.0     | 29.0 - 34.0 | 2-in. PVC (deep)          | 974346.1     | 740161.6   | 18.3        | 21.25    |
| MW1-20 | а         | а        | а           | 2-in. PVC                 | 974245.9     | 740061.3   | 18.3        | 22.11    |
| MW1-22 | а         | а        | а           | 2-in. PVC                 | 974141.9     | 740157.7   | 17.3        | 19.64    |
| MW1-24 | а         | а        | а           | 2-in. PVC                 | 974351.5     | 740149.6   | 18.3        | 20.06    |
| MW1-25 | а         | а        | а           | 2-in. PVC                 | 974332.3     | 740257.0   | 18.6        | 21.07    |
| MW26   | 07/19/00  | 15.0     | 5.0 - 15.0  | 2.25-in. carbon steel     | 974297.9     | 740161.0   | 18.3        | 21.03    |
| MW27   | 07/19/00  | 15.0     | 5.0 - 15.0  | 2.25-in. carbon steel     | 974193.9     | 740183.5   | 17.5        | 20.35    |
| MW28   | 07/19/00  | 45.0     | 34.6 - 44.6 | 2.25-in. carbon steel     | 974220.3     | 740196.3   | 17.9        | 20.33    |
| MW29   | 06/05/01  | 16.0     | 4.8 - 14.8  | 2-in. PVC (shallow)       | 974146.4     | 740162.1   | 17.3        | 17.38    |

#### Table 4. Well Construction Details (continued)

<sup>a</sup> Well construction information was not documented in the Resource Conservation and Recovery Act facility investigation report.

NOTES: BGS PVC

BGS Below ground surface.

PVC Polyvinyl chloride.

|                | Area of PCE Plume<br>Exceeding RL of 5 μg/L | Area of Benzene Plume<br>Exceeding RL of 5 μg/L |
|----------------|---------------------------------------------|-------------------------------------------------|
| Time           | (ft <sup>2</sup> )                          | $(ft^2)$                                        |
| May 1999       | 22,500                                      | 21,290                                          |
| August 2000    | 19,450                                      |                                                 |
| October 2000   |                                             | 9,600                                           |
| March 2001     | 10,750                                      |                                                 |
| September 2001 | 13,000                                      | 10,100                                          |
| March 2002     | 5,000                                       | 8,600                                           |
| October 2002   |                                             | 975                                             |
| January 2003   | 5,250                                       |                                                 |
| April 2003     |                                             | 975                                             |
| June 2003      | 0                                           |                                                 |
| October 2003   |                                             | 660                                             |
| January 2004   | 3,800                                       |                                                 |
| March 2004     |                                             | 660                                             |
| October 2004   | 0                                           | 0                                               |
| April 2005     | 0                                           | 0                                               |

#### Table 5. Area of Groundwater Plumes Exceeding Remedial Levels

NOTES:

PCE Tetrachloroethene.

RL Remedial level.

THIS PAGE INTENTIONALLY LEFT BLANK.

## APPENDIX III HISTORICAL GROUNDWATER QUALITY AND POTENTIOMETRIC SURFACE MAPS

### THIS PAGE INTENTIONALLY LEFT BLANK.

# PCE GROUNDWATER QUALITY MAPS

### THIS PAGE INTENTIONALLY LEFT BLANK.

















I-S

## **BENZENE GROUNDWATER QUALITY MAPS**

### THIS PAGE INTENTIONALLY LEFT BLANK.
















**I-**7

# GROUNDWATER POTENTIOMETRIC SURFACE MAPS







III-27

















## APPENDIX IV LABORATORY ANALYTICAL RESULTS

# ANALYTICAL LABORATORY INFORMATION AND DATA VALIDATION CODES

#### STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

| Name of Laboratory:    | General Engineering Laboratories, Inc.                                  |
|------------------------|-------------------------------------------------------------------------|
| Address:               | P.O. Box 30712                                                          |
|                        | 2040 Savage Road                                                        |
|                        | Charleston, SC 29407                                                    |
| Contact:               | Bob Pullano                                                             |
| Telephone Number:      | (843) 556-8171                                                          |
| Fax Number:            | (843) 766-1178                                                          |
| Accrediting Authority: | State of South Carolina                                                 |
| Accreditation Number:  | SC-10120001                                                             |
| Effective Date:        | Extension granted while recertification in process. January 27, 2003    |
| Expiration Date:       | March 26, 2006                                                          |
| Accreditation Scope:   | SDWA, CWA, RCRA, CERCLA                                                 |
| Accrediting Authority: | State of Florida                                                        |
| Accreditation Number:  | E-87156                                                                 |
| Effective Date:        | July 1, 2001 (initial and reaccredited on July 1 each year there after) |
| Expiration Date:       | June 30, 2006                                                           |
| Accreditation Scope:   | SDWA, CWA, RCRA, CERCLA                                                 |

#1

#2

## DATA VALIDATION REASON CODES

#### Organic, Inorganic, and Radiological Analytical Data

| Holdi  | ng Times                                            | Gas Chromatography/Mass Spectroscopy Tuning              |
|--------|-----------------------------------------------------|----------------------------------------------------------|
| A 01   | Extraction holding times were exceeded              | B01 Mass calibration was in error even after applying    |
| A01    | Extraction holding times were exceeded.             | bor Mass canoration was in error, even after apprying    |
| A02    | Extraction notding times were grossily exceeded.    | expanded criteria.                                       |
| A03    | Analysis holding times were exceeded.               | B02 Mass calibration was not performed every 12 nours.   |
| A04    | Analysis holding times were grossly exceeded.       | B03 Mass calibration did not meet ion abundance          |
| A05    | Samples were not preserved properly.                | criteria.                                                |
| A06    | Professional judgment was used to qualify the data. | B04 Professional judgment was used to qualify the data.  |
| Initia | I/Continuing Calibration – Organics                 | Initial/Continuing Calibration – Inorganics              |
| C01    | Initial calibration relative response factor (RRF)  | D01 Initial calibration verification (ICV) or continuing |
|        | was <0.05.                                          | calibration verification (CCV) was not performed         |
| C02    | Initial calibration relative standard deviation     | for every analyte.                                       |
|        | (RSD) was >30%.                                     | D02 ICV recovery was above the upper control limit.      |
| C03    | Initial calibration sequence was not followed as    | D03 ICV recovery was below the lower control limit.      |
|        | required.                                           | D04 CCV recovery was above the upper control limit.      |
| C04    | Continuing calibration RRF was <0.05.               | D05 CCV recovery was below the lower control limit.      |
| C05    | Continuing calibration percent difference (%D)      | D06 Standard curve was not established with the          |
| 005    | was $>25\%$                                         | minimum number of standards                              |
| C06    | Continuing calibration was not performed at the     | D07 Instrument was not calibrated daily or each time the |
| 000    | Continuing canoration was not performed at the      | bo/ instrument was not canorated daily of each time the  |
| 007    | required frequency.                                 | Instrument was set up.                                   |
| C0/    | Resolution criteria were not met.                   | D08 Correlation coefficient was <0.995.                  |
| C08    | Relative percent difference (RPD) criteria were     | D09 Mid-range cyanide standard was not distilled.        |
|        | not met.                                            | D10 Professional judgment was used to qualify the data.  |
| C09    | RSD criteria were not met.                          |                                                          |
| C10    | Retention time of compounds was outside             |                                                          |
|        | windows.                                            |                                                          |
| C11    | Compounds were not adequately resolved.             |                                                          |
| C12    | Breakdown of endrin or                              |                                                          |
|        | dichlorodiphenyltrichloroethane (DDT) was           |                                                          |
|        | >30%.                                               |                                                          |
| C13    | Combined breakdown of endrin/DDT was >30%.          |                                                          |
| C14    | Professional judgment was used to qualify the data. |                                                          |
| Induc  | tively Coupled Plasma and Furnace                   | Blanks                                                   |
|        | Requirements                                        | F01 Sample data were qualified as a result of the method |
| E01    | Interference check sample recovery was outside      | blank                                                    |
| 201    | the control limit                                   | F02 Sample data were qualified as a result of the field  |
| E02    | Duplicate injections were outside the control limit | hlank                                                    |
| E02    | Post-digestion spike recovery was outside the       | F03 Sample data were qualified as a result of the        |
| 105    | control limit.                                      | equipment rinsate.                                       |
| E04    | Method of standard additions (MSA) was required     | F04 Sample data were qualified as a result of the trip   |
| 505    | but not performed.                                  | blank.                                                   |
| E05    | MISA correlation coefficient was <0.995.            | FUS Gross contamination exists.                          |
| E06    | MSA spikes were not at the correct concentration.   | F06 Concentration of the contaminant was detected at a   |
| E07    | Serial dilution criteria were not met.              | level below the contract-required quantitation limit     |
| E08    | Professional judgment was used to qualify the data. | (CRQL).                                                  |
|        |                                                     | F07 Concentration of the contaminant was detected at a   |
|        |                                                     | level less than the action limit, but greater than the   |
|        |                                                     | CRQL.                                                    |
|        |                                                     | F08 Concentration of the contaminant was detected at a   |
|        |                                                     | level that exceeds the action level.                     |
|        |                                                     | F09 No laboratory blanks were analyzed.                  |
|        |                                                     | F10 Blank had a negative value $>2$ times the instrument |
|        |                                                     | detection limit.                                         |
|        |                                                     | F11 Blanks were not analyzed at required frequency.      |
|        |                                                     | F12 Professional judgment was used to qualify the data   |
|        |                                                     | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                  |

## DATA VALIDATION REASON CODES

#### Organic, Inorganic, and Radiological Analytical Data (continued)

| Surro                                                                                                                                                                           | gate/Radiological Chemical Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix Spike/Matrix Spike Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| G01                                                                                                                                                                             | Surrogate/radiological chemical recovery was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H01 Matrix spike (MS)/matrix spike duplicate (MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>)</b> )                                            |  |  |
|                                                                                                                                                                                 | above the upper control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | recovery was above the upper control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |  |
| G02                                                                                                                                                                             | Surrogate/radiological chemical recovery was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H02 MS/MSD recovery was below the lower control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l                                                     |  |  |
|                                                                                                                                                                                 | below the lower control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |  |  |
| G03                                                                                                                                                                             | Surrogate recovery was <10%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H03 MD/MSD recovery was <10%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |  |  |
| G04                                                                                                                                                                             | Surrogate recovery was zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H04 MS/MSD pairs exceed the RPD limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |  |  |
| G05                                                                                                                                                                             | Surrogate/radiological chemical recovery data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H05 No action was taken on MS/MSD limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |  |  |
|                                                                                                                                                                                 | were not present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H06 Professional judgment was used to qualify the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lata                                                  |  |  |
| G06                                                                                                                                                                             | Professional judgment was used to qualify the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H07 Radiological MS/MSD recovery was <20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and.                                                  |  |  |
| 000                                                                                                                                                                             | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H08 Radiological MS/MSD recovery was >160%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |  |  |
| G07                                                                                                                                                                             | Radiological chemical recovery was <20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H09 Radiological MS/MSD samples were not analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | zed                                                   |  |  |
| G07                                                                                                                                                                             | Padiological chemical recovery was >150%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at the required frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lu                                                    |  |  |
| 000                                                                                                                                                                             | Radiological chemical recovery was > 15070.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at the required frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |  |  |
| Matri                                                                                                                                                                           | ix Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Laboratory Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |  |  |
| I01                                                                                                                                                                             | MS recovery was above the upper control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J01 Duplicate RPD/radiological duplicate error ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                     |  |  |
| I02                                                                                                                                                                             | MS recovery was below the lower control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (DER) was outside the control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |  |  |
| I03                                                                                                                                                                             | MS recovery was <30%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J02 Duplicate sample results were >5 times the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| I04                                                                                                                                                                             | No action was taken on MS data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | contract-required detection limit (CRDL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |  |
| 105                                                                                                                                                                             | Professional judgment was used to qualify the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J03 Duplicate sample results were <5 times the CRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DL.                                                   |  |  |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J04 Professional judgment was used to qualify the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lata.                                                 |  |  |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J05 Duplicate was not analyzed at the required freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ency.                                                 |  |  |
| Trefore                                                                                                                                                                         | 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Destinide Cleanur Cheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |  |  |
| Interi                                                                                                                                                                          | Area Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | resticide Cleanup Checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |  |  |
| K01<br>K02                                                                                                                                                                      | Area counts were outside the control limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L01 10% recovery was obtained during either check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                     |  |  |
| K02                                                                                                                                                                             | Extremely low area counts or performance was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L02 Recoveries during either check were $>120\%$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |  |  |
| 1700                                                                                                                                                                            | exhibited by a major drop-off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L03 Gel permeation chromatography cleanup recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eries                                                 |  |  |
| K03                                                                                                                                                                             | IS retention time varied by more than 30 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | were outside the control limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |  |  |
| K04                                                                                                                                                                             | Professional judgment was used to qualify the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L04 Florisil cartridge cleanup recoveries were outsic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le                                                    |  |  |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |  |  |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the control limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |  |  |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the control limits.<br>L05 Professional judgment was used to qualify the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lata.                                                 |  |  |
| Targe                                                                                                                                                                           | et Compound Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the control limits.<br>L05 Professional judgment was used to qualify the d<br>Compound Quantitation and Reported CROLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lata.                                                 |  |  |
| Targe<br>M01                                                                                                                                                                    | et Compound Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the control limits.<br>L05 Professional judgment was used to qualify the d<br>Compound Quantitation and Reported CRQLs<br>N01 Ouantitation limits were affected by large off-sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lata.                                                 |  |  |
| Targe<br>M01<br>M02                                                                                                                                                             | et Compound Identification<br>Incorrect identifications were made.<br>Oualitative criteria were not met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lata.<br>cale                                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03                                                                                                                                               | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lata.<br>cale                                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04                                                                                                                                        | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CROLs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lata.<br>cale<br>ory                                  |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05                                                                                                                                 | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata                          |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06                                                                                                                          | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06                                                                                                                          | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07                                                                                                                   | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional indement was used to qualify the                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07                                                                                                                   | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07<br>M08                                                                                                            | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07<br>M08                                                                                                            | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated binhenyl column checks                                                                                                                                                                                                                                                                                                       | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07<br>M08                                                                                                            | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%                                                                                                                                                                                                                                                                                           | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07<br>M08                                                                                                            | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.                                                                                                                                                                                                                                                                                          | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lata.<br>cale<br>ory<br>lata.                         |  |  |
| <b>Targe</b><br>M01<br>M02<br>M03<br>M04<br>M05<br>M06<br>M07<br>M08                                                                                                            | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.                                                                                                                                                                                                                                                                                          | <ul> <li>the control limits.</li> <li>Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborator exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01                             | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.                                                                                                                                                                                                                                                                                          | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01                             | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.                                                                                                                                                                    | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02               | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not                                                                                                                  | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02               | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.                                                                  | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify                     | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify<br>analytical data. | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> <li>P05 LCS was not analyzed at required frequency.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lata.                                                 |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | t Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was ≥25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify<br>analytical data.  | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> <li>P05 LCS was not analyzed at required frequency.</li> <li>P06 Radiological LCS recovery was &lt;50% for aqueometal statemetal stat</li></ul> | lata.                                                 |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify<br>analytical data. | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> <li>P05 LCS was not analyzed at required frequency.</li> <li>P06 Radiological LCS recovery was &lt;50% for aqueo samples, &lt;40% for solid samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lata.                                                 |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify<br>analytical data. | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> <li>P05 LCS was not analyzed at required frequency.</li> <li>P06 Radiological LCS recovery was &gt;150% for aqueo samples, &lt;40% for solid samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lata.<br>cale<br>ory<br>lata.                         |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | et Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was >25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify<br>analytical data. | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> <li>P05 LCS was not analyzed at required frequency.</li> <li>P06 Radiological LCS recovery was &gt;150% for aqueo samples, &lt;160% for solid samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lata.<br>cale<br>ory<br>lata.<br>ous<br>eous          |  |  |
| Targe           M01           M02           M03           M04           M05           M06           M07           M08           Tenta           O01           O02           O03 | t Compound Identification<br>Incorrect identifications were made.<br>Qualitative criteria were not met.<br>Cross contamination occurred.<br>Confirmatory analysis was not performed.<br>No results were provided.<br>Analysis occurred outside 12-hour gas<br>chromatography/mass spectroscopy window.<br>Professional judgment was used to qualify the<br>data.<br>The %D between the two<br>pesticide/polychlorinated biphenyl column checks<br>was ≥25%.<br>tively Identified Compounds<br>Compound was suspected laboratory contaminant<br>and was not detected in the blank.<br>Tentatively identified compound result was not<br>above 10 times the level found in the blank.<br>Professional judgment was used to qualify<br>analytical data.  | <ul> <li>the control limits.</li> <li>L05 Professional judgment was used to qualify the d</li> <li>Compound Quantitation and Reported CRQLs</li> <li>N01 Quantitation limits were affected by large off-sc peaks.</li> <li>N02 Method detection limits reported by the laborate exceeded corresponding CRQLs.</li> <li>N03 Professional judgment was used to qualify the d</li> <li>Laboratory Control Samples</li> <li>P01 Laboratory control sample (LCS) recovery was above upper control limit.</li> <li>P02 LCS recovery was below lower control limit.</li> <li>P03 LCS recovery was &lt;50%.</li> <li>P04 No action was taken on the LCS data.</li> <li>P05 LCS was not analyzed at required frequency.</li> <li>P06 Radiological LCS recovery was &lt;150% for aquea samples, &lt;160% for solid samples.</li> <li>P07 Radiological LCS recovery was used to qualify the d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lata.<br>cale<br>ory<br>lata.<br>ous<br>eous<br>lata. |  |  |

#### DATA VALIDATION REASON CODES

#### Organic, Inorganic, and Radiological Analytical Data (continued)

| Field | Duplicate                                           | Radi | ological Calibration                                |
|-------|-----------------------------------------------------|------|-----------------------------------------------------|
| Q01   | Field duplicate RPDs were >30% for water and/or     | R01  | Efficiency calibration criteria were not met.       |
|       | >50% for soil.                                      | R02  | Energy calibration criteria were not met.           |
| Q02   | Radiological field DER was outside the control      | R03  | Resolution calibration criteria were not met.       |
|       | limit.                                              | R04  | Background determination criteria were not met.     |
| Q03   | Duplicate sample results were >5 times the CRDL.    | R05  | Quench curve criteria were not met.                 |
| Q04   | Duplicate sample results were <5 times the CRDL.    | R06  | Absorption curve criteria were not met.             |
|       |                                                     | R07  | Plateau curve criteria were not met.                |
|       |                                                     | R08  | Professional judgment was used to qualify the data. |
| Radio | logical Calibration Verification                    |      |                                                     |
| S01   | Efficiency verification criteria were not met.      |      |                                                     |
| S02   | Energy verification criteria were not met.          |      |                                                     |
| S03   | Resolution verification criteria were not met.      |      |                                                     |
| S04   | Background verification criteria were not met.      |      |                                                     |
| S05   | Cross-talk verification criteria were not met.      |      |                                                     |
| S06   | Professional judgment was used to qualify the data. |      |                                                     |
|       |                                                     |      |                                                     |

# FIFTH POST-CORRECTIVE-ACTION PCE PLUME SAMPLING

**APRIL 2005** 

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA SHEET |                 |                 |               |                        | EPA SAMPLE  | NO.                    |
|---------------------------------------------|-----------------|-----------------|---------------|------------------------|-------------|------------------------|
| Lab Na                                      | nme: GEL, LLC.  |                 | Contract: N/A |                        | AP02C2      |                        |
| Lab Co                                      | ode: N/A        | Case No.: N/A   | SAS No.: N/A  | SDG                    | No.: 135526 |                        |
| Matri;                                      | k: (soil/water) | WATER           | Lab S         | ample ID:              | 135526003   | <b>x</b> <sup>-1</sup> |
| Sample                                      | e wt/vol:       | 5.000 (g/ml) ML | Lab F         | ile ID:                | 31511       |                        |
| Level:                                      | (low/med)       | LOW             | Date 1        | Received:              | 04/29/05    |                        |
| % Mois                                      | sture: not dec. |                 | Date 2        | Analyzed:              | 05/06/05    |                        |
| GC Col                                      | umn: DB-624     | ID: 0.25 (mm)   | Dilut         | ion Facto              | r: 1.0      |                        |
| Soil E                                      | Extract Volume: | (uL)            | Soil 2        | Aliquot Vo             | olume:      | (uL)                   |
|                                             | CAS NO.         | COMPOUND        | CONCENTRATIO  | ON UŅITS:<br>/Kg) UG/L | Q           |                        |
|                                             | 127-18-4        | Tetrachloroeth  | ylene         |                        | 2.5         | =                      |

FORM I VOA

OLM03.0

DATA VALIDATION COPY

-

IV-11

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA SHEET |                                                                                                    |                                                                                                                                                                                                                                                                                    |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                             | Contract: N/A                                                                                      | AP02C4                                                                                                                                                                                                                                                                             |  |  |
| ase No.: N/A                                | SAS No.: N/A SDG                                                                                   | No.: 135526                                                                                                                                                                                                                                                                        |  |  |
| WATER                                       | Lab Sample ID:                                                                                     | 135526004                                                                                                                                                                                                                                                                          |  |  |
| 5.000 (g/ml) ML                             | Lab File ID:                                                                                       | 31512                                                                                                                                                                                                                                                                              |  |  |
| LOW                                         | Date Received:                                                                                     | 04/29/05                                                                                                                                                                                                                                                                           |  |  |
|                                             | Date Analyzed:                                                                                     | 05/06/05                                                                                                                                                                                                                                                                           |  |  |
| ID: 0.25 (mm)                               | Dilution Facto                                                                                     | pr: 1.0                                                                                                                                                                                                                                                                            |  |  |
| (uL)                                        | Soil Aliquot V                                                                                     | Olume:(uL)                                                                                                                                                                                                                                                                         |  |  |
|                                             | 1A<br>ORGANICS ANALYSI<br>ase No.: N/A<br>WATER<br>5.000 (g/ml) ML<br>LOW<br>LD: 0.25 (mm)<br>(uL) | 1A<br>ORGANICS ANALYSIS DATA SHEET<br>Contract: N/A<br>ase No.: N/A SAS No.: N/A SDG<br>WATER Lab Sample ID:<br>5.000 (g/ml) ML Lab File ID:<br>5.000 (g/ml) ML Date Received:<br>LOW Date Received:<br>Date Analyzed:<br>Date Analyzed:<br>Dilution Factor<br>(uL) Soil Aliquot V |  |  |

| CAS NO.  | COMPOUND      | CONCENTRATIC<br>(ug/L or ug/ | ON UNITS:<br>/Kg) UG/L - | Q |  |
|----------|---------------|------------------------------|--------------------------|---|--|
| 127-18-4 | Tetrachloroet | hylene                       | 2.3                      | : |  |

FORM I VOA

DATA VALIDATION COPY

IV-12

| VOLATILE (             | EPA SAMPLE NO.  |                  |             |
|------------------------|-----------------|------------------|-------------|
| Lab Name: GEL, LLC.    | c               | Contract: N/A    | AP03C2      |
| Lab Code: N/A Ca       | ase No.: N/A    | SAS No.: N/A SDG | No.: 135526 |
| Matrix: (soil/water) W | WATER           | Lab Sample ID    | 135526006   |
| Sample wt/vol:         | 5.000 (g/ml) ML | Lab File ID:     | 31514       |
| Level: (low/med) I     | LOW             | Date Received    | 04/29/05    |
| % Moisture: not dec    |                 | Date Analyzed:   | 05/06/05    |
| GC Column: DB-624      | ID: 0.25 (mm)   | Dilution Facto   | or: 1.0     |
| Soil Extract Volume:   | (uL)            | Soil Aliquot V   | Volume:(uL) |
|                        |                 |                  |             |

| CAS NO.  | COMPOUND          | CONCENT<br>(ug/L o | RATIO | ON UN<br>(Kg) | NITS:<br>UG/L | Q |   |
|----------|-------------------|--------------------|-------|---------------|---------------|---|---|
| 127-18-4 | -Tetrachloroethyl | ene                |       |               | 1.0           | υ | u |

FORM I VOA

OLM03.0

DATA VALIDATION

IV-13

| 1A<br>VOLATILE ORGANICS ANALYSI | S DATA SHEET                 | • - • |
|---------------------------------|------------------------------|-------|
| Lab Name: GEL, LLC.             | Contract: N/A                |       |
| Lab Code: N/A Case No.: N/A     | SAS No.: N/A SDG No.: 135526 |       |
| Matrix: (soil/water) WATER      | Lab Sample ID: 135526008     |       |
| Sample wt/vol: 5.000 (g/ml) ML  | Lab File ID: 3I516           |       |
| Level: (low/med) LOW            | Date Received: 04/29/05      |       |
| % Moisture: not dec             | Date Analyzed: 05/06/05      |       |
| GC Column: DB-624 ID: 0.25 (mm) | Dilution Factor: 1.0         |       |
| Soil Extract Volume:(uL)        | Soil Aliquot Volume:(uI      | 5)    |
|                                 |                              |       |

| CAS  | NO.   | COMPOUND           | (ug/L | or | ug/Kg) | UG/L | • • | Q |   |
|------|-------|--------------------|-------|----|--------|------|-----|---|---|
| 127- | -18-4 | -Tetrachloroethyle | ene   |    |        |      | 2.9 |   | 1 |



DATA VALIDATION COPY

IV-14

| 1A                              | F                   | PA SAMPLE NO. |
|---------------------------------|---------------------|---------------|
| VOLATILE ORGANICS ANALYS        | IS DATA SHEET       |               |
| Lab Name: GEL, LLC.             | Contract: N/A       | AP24C2        |
| Lab Code: N/A Case No.: N/A     | SAS NO.: N/A SDG NO | .: 135526     |
| Matrix: (soil/water) WATER      | Lab Sample ID: 1    | 35526009      |
| Sample wt/vol: 5.000 (g/ml) ML  | Lab File ID: 3      | 1517          |
| Level: (low/med) LOW            | Date Received: 0    | 4/29/05       |
| % Moisture: not dec             | Date Analyzed: 0    | 5/06/05       |
| GC Column: DB-624 ID: 0.25 (mm) | Dilution Factor:    | 1.0           |
| Soil Extract Volume:(uL)        | Soil Aliquot Vol    | ume:(uL)      |
|                                 |                     |               |
|                                 |                     |               |

| CAS  | AS NO. COMPOUND (ug/L or ug/Kg) UG/L |                |        |      | Q |   |  |
|------|--------------------------------------|----------------|--------|------|---|---|--|
| 127- | -18-4                                | -Tetrachloroet | hylene | 0.44 | J | J |  |

FORM I VOA

DATA VALIDATION COPY

-

| 1A<br>VOLATILE ORGANICS ANALYSIS DATA SHEET |                 |                  | EPA SAMPLE NO. |
|---------------------------------------------|-----------------|------------------|----------------|
| Lab Name: GEL, LLC.                         | c               | Contract: N/A    | AP26C2         |
| Lab Code: N/A Ca                            | ase No.: N/A    | SAS No.: N/A SDG | No.: 135526    |
| Matrix: (soil/water) W                      | WATER           | Lab Sample ID:   | 135526007      |
| Sample wt/vol:                              | 5.000 (g/ml) ML | Lab File ID:     | 31515          |
| Level: (low/med) I                          | LOW             | Date Received:   | 04/29/05       |
| % Moisture: not dec                         |                 | Date Analyzed:   | 05/06/05       |
| GC Column: DB-624                           | ID: 0.25 (mm)   | Dilution Facto   | r: 1.0         |
| Soil Extract Volume:                        | (uL)            | Soil Aliquot V   | olume:(uL)     |

| _ | CAS NO.  | COMPOUND           | CONCENT<br>(ug/L o | RATION U<br>r ug/Kg) | NITS:<br>UG/L |     | Q |   |  |
|---|----------|--------------------|--------------------|----------------------|---------------|-----|---|---|--|
| _ | 127-18-4 | -Tetrachloroethyle | ene                |                      |               | 3.3 |   | = |  |

FORM I VOA

# DATA VALIDATION COPY

-

| VOLATILE             | EPA SAMPLE NO.  |                  |             |
|----------------------|-----------------|------------------|-------------|
| Lab Name: GEL, LLC.  |                 | Contract: N/A    | AP27C2      |
| Lab Code: N/A        | Case No.: N/A   | SAS No.: N/A SDG | No.: 135526 |
| Matrix: (soil/water) | WATER           | Lab Sample ID:   | 135526005   |
| Sample wt/vol:       | 5.000 (g/ml) ML | Lab File ID:     | 31513       |
| Level: (low/med)     | LOW             | Date Received:   | 04/29/05    |
| % Moisture: not dec. |                 | Date Analyzed:   | 05/06/05    |
| GC Column: DB-624    | ID: 0.25 (mm)   | Dilution Facto   | pr: 1.0     |
| Soil Extract Volume: | (uL)            | Soil Aliquot V   | Olume:(uL)  |
|                      |                 |                  |             |

| CAS NO.  | COMPOUND      | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) UG/L Q |     |  |   |
|----------|---------------|------------------------------------------------|-----|--|---|
| 127-18-4 | Tetrachloroet | hylene                                         | 2.3 |  | = |





| VOLATILE             | EPA SAMPLE NO.  |                  |             |
|----------------------|-----------------|------------------|-------------|
| Lab Name: GEL, LLC.  |                 | Contract: N/A    | AP29C2      |
| Lab Code: N/A        | Case No.: N/A   | SAS No.: N/A SDG | No.: 135526 |
| Matrix: (soil/water) | WATER           | Lab Sample ID:   | 135526002   |
| Sample wt/vol:       | 5.000 (g/ml) ML | Lab File ID:     | 31510       |
| Level: (low/med)     | LOW             | Date Received:   | 04/29/05    |
| % Moisture: not dec. |                 | Date Analyzed:   | 05/06/05    |
| GC Column: DB-624    | ID: 0.25 (mm)   | Dilution Facto   | r: 1.0      |
| Soil Extract Volume: | (uL)            | Soil Aliquot V   | olume:(uL)  |

| CAS NO.  | COMPOUND           | CONCENT<br>(ug/L o | RATIC<br>r ug/ | ON UNITS:<br>/Kg) UG/L | -   | Q |   |
|----------|--------------------|--------------------|----------------|------------------------|-----|---|---|
| 127-18-4 | -Tetrachloroethyle | ene                |                |                        | 1.0 | U | U |



DATA VALIDATION COPY

-

•
|     | Science Applications intermedicate<br>151 Lafayette Drive, Oak Ridge,                 | An Employee-O<br>al Corporation<br>, Tennessee | arnel Compa<br>37831 (865 | rry<br>5) 481-4600 |       |        |            | Cŀ       | IAI  | р,<br>мі       | CLC<br>OF | үе<br>cu | ISTO     | <br>יםכ | Y RE  | 9f<br>E <b>co</b> | RD   | 2           |      |               |                                 |                  |               |                           | D.:         | PD0001                | 7 |
|-----|---------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|--------------------|-------|--------|------------|----------|------|----------------|-----------|----------|----------|---------|-------|-------------------|------|-------------|------|---------------|---------------------------------|------------------|---------------|---------------------------|-------------|-----------------------|---|
|     | PROJECT NAME: Hunt<br>D.O.                                                            | er Army #<br>. # 54                            | Airfield                  | LTM                |       |        | 1          | 35       | 5    | 26             | 270       | , ,      | REQL     | JEST    | ED P/ | ARAM              | ETE  | RS          | 13.  | 55            | 52                              | 7/               | 7             | LABORATOR<br>General Engi | Y N/        | AME:<br>ng Laboratory |   |
|     | PROJECT NUMBER: 01 PROJECT MANAGER:                                                   | 1-1055-04-<br>Patty Stol                       | -2945-20                  | 00                 |       |        |            |          |      |                |           |          |          |         |       |                   |      |             |      |               |                                 |                  |               | LABORATOR<br>2040 Savage  | Y AI<br>Roa | DDRESS:               |   |
|     | ample Signature) (Printed Name)                                                       |                                                |                           |                    |       |        |            |          |      |                |           |          |          |         |       |                   |      |             |      |               |                                 | otties/ Vials:   | PHONE NO:     | (843                      | 3) 556-8171 |                       |   |
|     | Sample ID Date Collected Time Collected Matrix                                        |                                                |                           |                    |       | 8      | H          | щ        |      |                |           |          |          |         |       |                   |      |             |      |               | 0. of B                         | OVA<br>SCREENING |               | OBSERVATIONS, CON         | IMENTS,     |                       |   |
| 0   | TH0307                                                                                | 9/20                                           | 105                       | 080                | 0     | water  |            | >        | •    | Â              |           |          | 1.4      |         |       | 20                |      |             |      | $\frac{1}{1}$ |                                 | +                | <u>z</u><br>2 | 014                       | -           | te Black              |   |
| QX  | TB0413                                                                                | 9/20                                           | 105                       | 080                | 0     | water  | x          |          |      | 19<br>20<br>20 |           |          |          |         |       | 1                 |      |             |      |               | 92 - 44<br>193 - 94<br>195 - 94 |                  | 2             |                           |             | Tria Bhal             | F |
| al  | AP2362                                                                                | 4/261                                          | 105                       | 14                 | 00    | Water  | X          |          |      |                |           |          |          |         | 1     |                   |      | 1月1日        | 15/1 |               |                                 |                  | 2             |                           |             |                       |   |
| 03  | AP0762                                                                                | 4/27                                           | 105                       | 134                | S     | water  | X          |          |      |                |           |          | 14       |         |       |                   |      | 5- 代<br>幕 - | 1    |               |                                 |                  | <b>2</b> :    |                           |             |                       |   |
| or  | APO1C2                                                                                | 4/26/                                          | 20                        | 153                | 5     | water  | Х          |          |      | 3.5            |           | N        |          | 4<br>8  | 17 MA | 協                 |      | 1           | *    |               |                                 |                  | 2,            |                           |             |                       |   |
| .00 | AP2962                                                                                | 4/26/                                          | کھ                        | 163                | 0     | water  |            |          |      | X              |           |          |          |         |       | and the second    |      | 「大学         |      |               |                                 | Í                | 2.            |                           |             |                       |   |
| W?  | APORCA                                                                                | 4/261                                          | <i>0</i> 5                | 172                | 0     | water  |            |          |      | X              |           |          |          |         |       |                   |      | A. A.       | 1    |               |                                 | 2                | 2:            |                           |             |                       |   |
| CH. | APO2C4                                                                                | 4/26                                           | 105                       | 172                | 0     | water  |            |          |      | X              |           | 7        |          |         |       | 1                 |      | 34          |      |               | 23                              |                  | 2             |                           |             |                       |   |
| 05  | AP27C2                                                                                | 4/27/                                          | oS                        | 084                | σ     | waar   |            |          |      | Ŷ              |           |          |          |         |       | 6.5               |      |             |      | 2             |                                 | _                | 2             |                           | $\square$   | 1.1                   |   |
| ole | APO3CZ                                                                                | 4/27                                           | 05                        | 09                 | 15    | water  |            |          |      | X              |           | 4        |          |         |       | No.               |      |             | 1 14 |               |                                 |                  | 2             |                           |             |                       |   |
| 0.7 | APabla                                                                                | 41271                                          | 05                        | 099                | Û.    | water  |            | 것것       |      | X              | 1. A.     |          |          |         |       |                   |      |             |      |               | 2                               |                  | 2             |                           |             |                       |   |
| 18  | APOSCA                                                                                | 4/27/                                          | 05                        | 104                | 5     | water  |            | бir<br>i |      | X              |           |          | 15       |         |       |                   |      |             |      |               |                                 |                  | 2             |                           |             |                       |   |
| 05  | AP25C2                                                                                | 4/27/                                          | 05                        | 1200               | 2     | water  | X          |          |      | \$.<br>}       |           | <u> </u> |          |         | 4     |                   |      |             |      |               |                                 |                  | 2             |                           |             |                       |   |
|     | RELINDUISHED BY:                                                                      |                                                | Date                      | /Time              | RECEN | VED BY | <b>D</b> 1 | EX       |      |                | Date      | /Time    | -1       | ΓΟΤΑ    |       | <b>MBER</b>       | OF   | CONT        | AINE | RS:           | ີ                               | 6                |               | Cooler Tempe              | ratur       | re: [ 4°C             |   |
|     | Juno funda                                                                            |                                                | 412                       | 0105               |       |        |            |          |      |                | 417       | -No      | <b>`</b> | Coole   | r ID: | #                 | (1   |             |      |               |                                 |                  |               | FEDEX NUME                | BER:        |                       |   |
|     | COMPANY NAME: () 1900 COMPANY NAME:<br>RECEIVED BY: Date/Time RELINQUISHED BY:        |                                                |                           |                    | E)    | )Ei    | Κ          |          | 191  | $\mathcal{D}$  |           |          |          |         | C     | /                 |      |             |      |               |                                 | 8431             | 21            | 38 1041                   |             |                       |   |
|     |                                                                                       |                                                |                           |                    |       |        |            | "        | Date | /Time          |           | C        | ~ ll     | Ja      | m     | દે                | Dens | dy          |      | ut            |                                 | 865-6            | ১৩7           | -8266 U                   | str         |                       |   |
|     | <u>И.60750</u><br>СОМРАНУ НАМЕ:<br>930                                                |                                                |                           |                    |       |        |            |          |      |                |           |          | qu       | y's     | hà    | s.                | '    |             |      |               |                                 |                  |               |                           |             |                       |   |
|     |                                                                                       |                                                |                           |                    |       |        |            |          |      |                |           |          | 1*       |         | -     | -                 |      |             |      |               |                                 |                  |               | :                         |             |                       |   |
|     | RELINQUISHED BY:     Date/Time     RECEIVED BY:       COMPANY NAME:     COMPANY NAME: |                                                |                           |                    |       |        |            | 1        | Date | Time           | ,         |          |          |         |       |                   |      |             |      |               |                                 |                  |               |                           |             |                       |   |
|     |                                                                                       |                                                |                           |                    |       |        |            |          |      |                |           |          |          |         |       |                   |      |             |      | -             |                                 |                  |               |                           |             |                       |   |

IV-19

<u>`</u>\_`

|   | - | _  | _   |   | _    |               |       |
|---|---|----|-----|---|------|---------------|-------|
|   | - |    |     |   |      |               |       |
|   | - |    |     |   |      |               |       |
| _ |   |    |     |   |      |               |       |
| - |   | 1- | 444 | - | An E | mplayee-Owned | l Con |
|   |   |    |     |   |      |               |       |

Page 2 of 2

CHAIN OF CUSTODY RECORD

## сос NO.: PD00017

|           |    | 151 Lafayette Drive, Oak Ridge        | , Tennessee 37       | 831(865) 481-4600  |          |                    |              | Cl      | HA | IN   | OF (         | CUS                                       | <b>STO</b> | DY R      | ECO     | RD      |       |       |     |     |              | COC NO                          | 100001                                        | ,   |
|-----------|----|---------------------------------------|----------------------|--------------------|----------|--------------------|--------------|---------|----|------|--------------|-------------------------------------------|------------|-----------|---------|---------|-------|-------|-----|-----|--------------|---------------------------------|-----------------------------------------------|-----|
|           |    | PROJECT NAME: Hunt<br>D.O             | ter Army Air<br># 54 | rfield LTM         |          |                    | P            | /3      | 55 | 52   | 6/3          | RI                                        | ÈQUI       | ESTED P   |         | ETERS   |       | 35.   | 52  | 77  | 3            | LABORATORY N<br>General Enginee | IAME:<br>ring Laboratory                      |     |
|           |    | PROJECT NUMBER: 0<br>PROJECT MANAGER: | 1-1055-04-2          | 945-200            |          |                    |              |         |    |      |              |                                           |            |           |         |         |       |       |     |     |              | LABORATORY A<br>2040 Savage Roa | DDRESS:                                       | -   |
|           |    |                                       | -                    |                    |          |                    |              |         |    |      |              |                                           |            |           |         |         |       |       |     |     | /ials:       | Chaneston, SC 2                 | 29417                                         |     |
|           |    | Sampler (Signature)                   |                      | (Printed Nar       | ne)      | Dudy               |              |         |    |      |              |                                           |            |           |         |         |       |       |     |     | Bottles/     | PHONE NO: (84                   | 43) 556-8171                                  |     |
|           |    | Sample ID                             | Date Colle           | cted Time C        | ollected | Matrix             | ĕ            | g       | AH | щ    |              |                                           |            |           |         |         |       |       |     |     | 0.0          | OVA<br>SCREENING                | OBSERVATIONS, COMMENT<br>SPECIAL INSTRUCTIONS | rs. |
|           | 94 | APOALZ                                | 4/27/09              | 5 112              | 5        | Under              | X            | 2       |    | P    | 6            |                                           |            |           | 1       | 107     |       |       |     |     | <u>₹</u>     |                                 |                                               | 1:  |
|           |    | APOGCZ                                | 4/27/0               | 5 129              | 0        | where              | X            |         |    | 36   |              | 2.4                                       |            | 3.5       |         |         |       |       |     |     | 2            |                                 |                                               | -[. |
|           |    | AP2462                                | 4/27/0               | 5 161              | 5        | wat                | f^           |         |    | X    |              | 3                                         |            |           |         |         |       |       |     |     | 2            |                                 |                                               | -1; |
|           | â  | APO8CZ                                | 4/27/0               | 05 (7)             | 50       | water              | X            |         |    |      | 3            |                                           |            |           | 1       | うたい     |       | 1     |     | 12  | 2            |                                 |                                               | ٦.  |
| e e<br>No |    |                                       |                      |                    | /        |                    |              |         | -  | -3 4 | 100          | W                                         |            | 100       |         | ALL ALL |       | G     |     |     |              |                                 |                                               |     |
| N         |    |                                       |                      |                    |          |                    | $\mathbb{D}$ | 1       |    | 1    |              | 1. A. |            |           |         |         |       |       | 4   |     |              |                                 |                                               |     |
| -20       | 2  |                                       |                      |                    |          |                    |              |         |    | 25   | N. S.        |                                           |            |           |         | 大街      |       |       |     |     | $\square$    |                                 |                                               |     |
|           |    |                                       |                      |                    |          | K                  |              |         |    | N    |              |                                           |            | 弊         | <b></b> | S.      |       | 4     |     | _   | $\downarrow$ |                                 |                                               |     |
|           |    |                                       |                      |                    |          |                    | 1            | ÷.      |    |      | $\mathbf{N}$ |                                           | D          | 100       |         |         |       |       | ÷.  | +   | -            |                                 |                                               | _   |
|           |    |                                       |                      |                    |          | 14/                | F            |         |    |      |              |                                           |            |           |         |         | 1     |       |     | +   | +            |                                 |                                               | -   |
|           |    |                                       |                      |                    |          | 1/0                | Ø            | Ž4      | 4  |      |              |                                           |            |           |         |         |       |       | 2   | +   | +            |                                 |                                               |     |
|           |    |                                       |                      |                    |          |                    | _            | 41<br>1 | Ľ  |      |              | K                                         |            |           |         |         |       | 8- C. | 12  | +   | +            |                                 | · · · · · · · · · · · · · · · · · · ·         | _   |
|           |    |                                       |                      |                    | 1        |                    |              |         |    | =    |              |                                           | đ          | 198       | 1.5     | 1       | T     |       |     | a   | +            |                                 |                                               |     |
|           |    | RELINQUISHED BY:                      | 5                    | Date/Time<br>インタック | RECEI    | FEDE               | X            |         |    | 4    | Date/        |                                           |            | DTAL NU   | MBER    | OF CO   | NTAIN | IERS  | :   | 0   | $\downarrow$ | Cooler Temperati                | Ire: 270                                      | _   |
|           |    | COMPANY NAME:                         | $\theta$             | 1900               | COMP     | ANY NAME:<br>FEDEX |              |         |    |      | 190          | D                                         | C          | ooler ID: | #       | (1      | )     |       |     |     |              | 8431 2                          | "<br>138  04                                  |     |
|           |    | RECEIVED BY:<br>M. Gothers            |                      | Date/Time          | RELIN    | QUISHED BY:        |              |         |    |      | Date/        | lime .                                    |            | -         | 3'      | 1 +     | ota   |       | San | yle | v            | Bottles                         |                                               |     |
|           |    | COMPANY NAME:                         | ·                    | 920                | COMP     | ANY NAME:          |              |         |    |      |              |                                           |            |           |         |         |       |       |     |     |              |                                 |                                               |     |
|           |    | RELINQUISHED BY:                      |                      | Date/Time          | RECE     | VED BY:            |              |         |    |      | Date/1       | Time                                      |            |           |         |         |       |       |     |     |              |                                 |                                               |     |
|           |    | COMPANY NAME:                         |                      |                    | COMP     | ANY NAME:          |              | -       |    |      |              |                                           |            |           |         |         |       |       |     |     |              |                                 |                                               |     |
|           |    |                                       |                      |                    |          |                    |              |         |    |      |              |                                           |            |           |         |         |       |       |     |     |              |                                 |                                               |     |

•

## EIGHT SEMIANNUAL BENZENE PLUME SAMPLING

**APRIL 2005** 

## THIS PAGE INTENTIONALLY LEFT BLANK.

|                                 |                         |                  |                | • - • |
|---------------------------------|-------------------------|------------------|----------------|-------|
| VOLATILE                        | 1A<br>CORGANICS ANALYSI | S DATA SHEET     | EPA SAMPLE NO. |       |
| Lab Name: GEL, LLC.             |                         | Contract: N/A    | AP01C2         |       |
| Lab Code: N/A                   | Case No.: N/A           | SAS No.: N/A SDG | No.: 135526-1  |       |
| Matrix: (soil/water)            | WATER                   | Lab Sample ID:   | 135527004      |       |
| Sample wt/vol:                  | 5.000 (g/ml) ML         | Lab File ID:     | 31536          |       |
| Level: (low/med)                | LOW                     | Date Received:   | 04/29/05       |       |
| <pre>% Moisture: not dec.</pre> |                         | Date Analyzed:   | 05/07/05       |       |
| GC Column: DB-624               | ID: 0.25 (mm)           | Dilution Facto   | or: 1.0        |       |
| Soil Extract Volume:            | (uL)                    | Soil Aliquot V   | olume:(u       | L)    |
|                                 |                         |                  |                |       |



DATA VALIDATION COPY

FORM I VOA

OLM03.0

| VOLATILE              | 1A<br>ORGANICS ANALYSI | S DATA SHEET     | EPA SAMPLE NO. |
|-----------------------|------------------------|------------------|----------------|
| Lab Name: GEL, LLC.   |                        | Contract: N/A    | AP06C2         |
| Lab Code: N/A         | Case No.: N/A          | SAS No.: N/A SDG | No.: 135526-1  |
| Matrix: (soil/water)  | WATER                  | Lab Sample ID:   | 135527007      |
| Sample wt/vol:        | 5.000 (g/ml) ML        | Lab File ID:     | 31539          |
| Level: (low/med)      | LOW                    | Date Received:   | 04/29/05       |
| * Moisture: not dec.  |                        | Date Analyzed:   | 05/07/05       |
| GC Column: DB-624     | ID: 0.25 (mm)          | Dilution Facto   | r: 1.0         |
| Soil Extract Volume:_ | (uL)                   | Soil Aliquot V   | olume:(uL)     |

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

| 71-43-2Benzene<br>108-88-3Toluene<br>100-41-4Ethylbenzene<br>1330-20-7Xylenes (total) | 4.1<br>1.0<br>1.0 | บ<br>บ<br>บ | = 4 |
|---------------------------------------------------------------------------------------|-------------------|-------------|-----|
|---------------------------------------------------------------------------------------|-------------------|-------------|-----|

DATA VALIDATION COPY

-

FORM I VOA

OLM03.0

| VOLATILE             | 1A<br>ORGANICS ANALYSI | S DATA SHEET     | EPA SAMPLE NO. |
|----------------------|------------------------|------------------|----------------|
| Lab Name: GEL, LLC.  |                        | Contract: N/A    | AP07C2         |
| Lab Code: N/A        | Case No.: N/A          | SAS No.: N/A SDG | No.: 135526-1  |
| Matrix: (soil/water) | WATER                  | Lab Sample ID:   | 135527003      |
| Sample wt/vol:       | 5.000 (g/ml) ML        | Lab File ID:     | 31535          |
| Level: (low/med)     | LOW                    | Date Received:   | 04/29/05       |
| % Moisture: not dec. |                        | Date Analyzed:   | 05/07/05       |
| GC Column: DB-624    | ID: 0.25 (mm)          | Dilution Facto   | pr: 1.0        |
| Soil Extract Volume: | (uL)                   | Soil Aliquot V   | 'olume:(uL)    |

 

 CAS NO.
 COMPOUND
 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L
 Q

 71-43-2-----Benzene\_\_\_\_\_\_\_
 1.0 U
 U

 108-88-3-----Toluene\_\_\_\_\_\_\_
 1.0 U
 U

 100-41-4-----Ethylbenzene\_\_\_\_\_\_\_
 1.0 U
 U

 1330-20-7-----Xylenes (total)\_\_\_\_\_\_\_\_
 1.0 U
 U

FORM I VOA

OLM03.0



| VOLATILE                        | 1A<br>ORGANICS ANALYSI | S DATA SHEET     | EPA SAMPLE NO. |
|---------------------------------|------------------------|------------------|----------------|
| Lab Name: GEL, LLC.             |                        | Contract: N/A    | AP08C2         |
| Lab Code: N/A                   | Case No.: N/A          | SAS No.: N/A SDG | No.: 135526-1  |
| Matrix: (soil/water)            | WATER                  | Lab Sample ID:   | 135527008      |
| Sample wt/vol:                  | 5.000 (g/ml) ML        | Lab File ID:     | 31540          |
| Level: (low/med)                | LOW                    | Date Received:   | 04/29/05       |
| <pre>% Moisture: not dec.</pre> |                        | Date Analyzed:   | 05/07/05       |
| GC Column: DB-624               | ID: 0.25 (mm)          | Dilution Facto   | r: 1.0         |
| Soil Extract Volume:_           | (uL)                   | Soil Aliquot V   | olume:(uL)     |

| CAS NO.                                      | COMPOUND                                             | CONCENTRATIC<br>(ug/L or ug/ | ON UNITS:<br>/Kg) UG/L   | Q                |   |
|----------------------------------------------|------------------------------------------------------|------------------------------|--------------------------|------------------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene_<br>Xylenes (tota | 1)                           | 1.0<br>1.0<br>1.0<br>1.0 | U<br>U<br>U<br>U | u |

FORM I VOA

DATA VALIDATION COPY

| VOLATILE             | 1A<br>ORGANICS ANALYSI | IS DATA SHEET    | EPA SAMPLE NO. |
|----------------------|------------------------|------------------|----------------|
| Lab Name: GEL, LLC.  |                        | Contract: N/A    | AP23C2         |
| Lab Code: N/A        | Case No.: N/A          | SAS No.: N/A SDG | No.: 135526-1  |
| Matrix: (soil/water) | WATER                  | Lab Sample ID:   | 135527002      |
| Sample wt/vol:       | 5.000 (g/ml) ML        | Lab File ID:     | 31534          |
| Level: (low/med)     | LOW                    | Date Received:   | 04/29/05       |
| % Moisture: not dec. |                        | Date Analyzed:   | 05/07/05       |
| GC Column: DB-624    | ID: 0.25 (mm)          | Dilution Facto   | r: 1.0         |
| Soil Extract Volume: | (uL)                   | Soil Aliquot V   | olume:(uL)     |

FORM I VOA

OLM03.0

DATA VALIDATION COPY

| VOLATTLE              | 1A<br>ORGANICS ANALYSI | S DATA SHEET     | EPA SAMPLE NO. |
|-----------------------|------------------------|------------------|----------------|
| Lab Name: GEL, LLC.   | CROMPLES MUDIC         | Contract: N/A    | AP25C2         |
| Lab Code: N/A         | Case No.: N/A          | SAS No.: N/A SDG | No.: 135526-1  |
| Matrix: (soil/water)  | WATER                  | Lab Sample ID:   | 135527005      |
| Sample wt/vol:        | 5.000 (g/ml) ML        | Lab File ID:     | 31537          |
| Level: (low/med)      | LOW                    | Date Received:   | 04/29/05       |
| % Moisture: not dec.  |                        | Date Analyzed:   | 05/07/05       |
| GC Column: DB-624     | ID: 0.25 (mm)          | Dilution Facto   | or: 1.0        |
| Soil Extract Volume:_ | (uL)                   | Soil Aliquot V   | 'olume:(uL)    |

| CAS NO.                                      | COMPOUND                                             | CONCENTRATION<br>(ug/L or ug/Kg | UNITS:<br>) UG/L         | Q           |  |
|----------------------------------------------|------------------------------------------------------|---------------------------------|--------------------------|-------------|--|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene_<br>Xylenes (tota | .1)                             | 2.7<br>1.0<br>1.0<br>1.0 | 0<br>0<br>0 |  |



OLM03.0

DATA VALIDATION COPY

| 1A<br>VOLATILE ORGANICS ANALYS  | EPA SAMPLE NO.                 |    |
|---------------------------------|--------------------------------|----|
| Lab Name: GEL, LLC.             | Contract: N/A                  |    |
| Lab Code: N/A Case No.: N/A     | SAS No.: N/A SDG No.: 135526-1 |    |
| Matrix: (soil/water) WATER      | Lab Sample ID: 135527006       |    |
| Sample wt/vol: 5.000 (g/ml) ML  | Lab File ID: 31538             |    |
| Level: (low/med) LOW            | Date Received: 04/29/05        |    |
| % Moisture: not dec             | Date Analyzed: 05/07/05        |    |
| GC Column: DB-624 ID: 0.25 (mm) | Dilution Factor: 1.0           |    |
| Soil Extract Volume:(uL)        | Soil Aliquot Volume:(uI        | 7) |

| CAS NO.                                      | COMPOUND                                                   | CONCENTRATIO | ON UNITS:<br>/Kg) UG/L | Q |  |
|----------------------------------------------|------------------------------------------------------------|--------------|------------------------|---|--|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | -Benzene<br>-Toluene<br>-Ethylbenzene<br>-Xylenes (total)_ |              |                        |   |  |

FORM I VOA

OLM03.0



|    | SAIL.                                               | An Employes-Own<br>al Corporation | ed Company     |             | 4<br>       |     |     | Ŧ   | ٥<br>د | rg     | e       |     | [        | 0f   |                                          | 2          |                         |             |    |        |                                  | PN                  | 71000          |          |
|----|-----------------------------------------------------|-----------------------------------|----------------|-------------|-------------|-----|-----|-----|--------|--------|---------|-----|----------|------|------------------------------------------|------------|-------------------------|-------------|----|--------|----------------------------------|---------------------|----------------|----------|
|    | 151 Lafayette Drive, Oak Ridge,                     | , Tennessee 37                    | 7831(865) 481- | 1600        |             |     | CH  | IAI | NC     | OF C   | US      | IOT | DYR      | ECC  | DRI                                      | )          |                         |             |    |        | 000 110.                         | 10                  |                |          |
|    | PROJECT NAME: Hunter Army Airfield LTM<br>D.O. # 54 |                                   |                |             |             |     | 35  | 5   | 26     | 20     | RE      |     | STED     | PARA | METE                                     | RS         | 35                      | 52          | 27 | 2      | LABORATORY<br>General Engine     | NAME:<br>ering Labo | oratory        |          |
|    | PROJECT NUMBER: 01-1055-04-2945-200                 |                                   |                |             |             |     |     |     |        |        |         |     |          |      |                                          |            |                         |             |    |        | LABORATORY                       | ADDRES              | S:             | $\neg$   |
|    | PROJECT MANAGER: Patty Stoll                        |                                   |                |             |             |     |     |     |        |        |         |     |          |      |                                          |            |                         |             |    | /ials: | 2040 Savage Ro<br>Charleston, SC | oad<br>29417        |                |          |
|    | Sampler (Signature)                                 |                                   | (Printed       | Name)       |             | 1   |     |     |        |        |         |     |          |      |                                          |            |                         | -           |    | se     | PHONE NO: (8                     | 43) 556-8           | 171            | _        |
|    | / and                                               |                                   | Jame:          | s Durd      | 9           |     |     |     |        |        |         |     |          |      |                                          |            |                         |             |    | Bott   |                                  |                     |                |          |
|    | Sample ID                                           | Date Colle                        | cted Tim       | e Collected | Matrix      | JEX | ğ   | AH  | ы      |        |         |     |          |      |                                          |            |                         |             |    | 0.0    | OVA<br>SCREENING                 | OBSERV              | ATIONS, COMMEN | TS,<br>S |
|    | TH0307                                              | 9/261                             | 050            | 800         | webs        |     |     |     | x      |        |         |     |          | 2    |                                          | 1111       |                         |             |    | 2      | n/4                              | tro                 | Black          | $\neg$   |
| X  | TB0413                                              | 6126                              | 0< 0           | NO NO       | water       | X   |     |     |        |        |         |     |          |      |                                          |            |                         | 3           | 2  | 12     |                                  | Tr                  | Bhat           |          |
| 1  | AP2362                                              | 4/26/0                            | 5              | 1400        | water       | X   |     |     |        |        |         |     | 1        |      |                                          | 1.2.5      | 19月1日<br>19月1日<br>1月11日 |             |    | 2      |                                  |                     |                |          |
| z  | APOTCZ                                              | 4/27/                             | a5 [.          | 345         | water       | X   |     |     |        |        |         |     | L.A.     |      | S                                        | 5-12<br>17 | 1                       |             |    | 2:     |                                  |                     |                |          |
| R  | APO162                                              | 4/26/0                            | 5 19           | 535         | water       | X   | -   |     | 15     | 1      |         |     | 1.4      |      | 4                                        |            |                         | est.<br>Fil |    | 2.     |                                  |                     |                |          |
| ø  | AP2962                                              | 41266                             | 5 10           | 30          | mader       |     |     |     | X      |        | i.<br>T |     |          |      | 1.2<br>T                                 | 19CH       |                         |             | 2  | 2.     |                                  |                     |                |          |
| 3  | APORCA                                              | 4/26/0                            | 5 1            | 70          | water       |     |     |     | X      |        |         |     | 1. C. C. |      |                                          | 1. H.      | 11                      |             | 1  | 2      |                                  |                     |                |          |
| Į. | APO2C4                                              | 4/26/                             | 05 1           | 720         | water       |     |     |     | X      | 1      |         |     | 17.1     | 1.1  | 1. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A | 5          | 1                       | 2           | 4  | 2      |                                  |                     |                |          |
| 5  | AP27C2                                              | 4/27/0                            | s o            | 840         | waar        |     |     |     | Â      |        |         |     |          |      |                                          |            |                         | 9           | 2  | 2:     |                                  |                     |                |          |
| k  | APO3C2                                              | 4/27/                             | 05 0           | 115         | water       |     |     | 100 | X      | 1.2    | ý<br>C  |     |          |      |                                          |            |                         |             |    | 2      |                                  |                     |                |          |
| 3  | APabca                                              | 412710                            | 5 0            | 950         | water       |     |     |     | X      | Â.     |         |     | 100      |      |                                          |            |                         | 2           |    | 2      |                                  |                     |                |          |
| 8  | APOSCA                                              | 4/27/0                            | 05 1           | 045         | water       |     | 1   |     | X      |        |         |     |          | \$1  |                                          | 新          |                         |             |    | 2      |                                  |                     |                |          |
| 5  | AP25C2                                              | 4/27/0                            | 5 12           | 600         | water       | X   |     |     |        |        | 2       |     |          |      | ę.                                       |            |                         |             |    | 2      |                                  |                     | 1              |          |
|    | RELINDUISHED BY: Date/Time RECEIVED BY:             |                                   |                |             |             | .D1 | EX  |     |        | ate/Ti | ime     | то  | TAL N    | UMBE | ROF                                      | CONT       | FAINER                  | S:          | K  | )      | Cooler Tempera                   | ture: Z             | 4°C            | _        |
|    | fins finder 4/20/05                                 |                                   |                |             |             | -   |     |     |        | 11-10  | 103     | Co  | oler ID  | #    | F                                        | 1          |                         |             |    |        | FEDEX NUMBE                      | R:                  | 1 // 1         |          |
|    | COMPANY NAME: () 1900 COMPANY NAME                  |                                   |                |             | ANY NAME:   | ÊÌ  | )Ei | ×   | (      | 190    | )       |     |          |      | <u> </u>                                 | C          |                         |             |    |        | 8431 2138 1041                   |                     | 1041           |          |
|    | RECEIVED BY: Date/Time RELINQUISHED                 |                                   |                |             | QUISHED BY: |     |     |     |        | ate/Ti | me      |     | cnll     | J    | m                                        | 18         | Dend                    | 7           | ú  | ł      | 862-60                           | 51-61               | -66 Wd         | 2        |
|    | 160There 4/24/05                                    |                                   |                |             |             |     |     |     |        |        |         |     |          | 9    | vé                                       | stin       | 5.                      |             |    |        |                                  |                     |                |          |
|    | COMPANY NAME: COMPANY NAME:                         |                                   |                |             |             |     |     |     |        |        |         |     |          | '    |                                          |            |                         |             |    |        |                                  |                     |                |          |
|    | RELINQUISHED BY:                                    |                                   | Date/Tim       | e RECEI     | VED BY:     |     |     |     | D      | ate/Ti | me      |     |          |      |                                          |            |                         |             |    |        |                                  |                     |                |          |
|    | COMPANY NAME:                                       |                                   |                | COMP        | ANY NAME:   |     |     |     |        |        |         |     |          |      |                                          |            |                         |             |    |        |                                  |                     |                |          |

| 15       | 51 Lafayette Drive, Oak Ridge,                                   | Tennessee 3       | 7831(865)                | 481-4600      |              |                         |               | Cl        | HA | IN  | OF         | CL    | JST           | OD     | YR           | ECO  | DRI                                   | D   |     |              |                  |            |            |                                                     |                                  | IΨ               | ~0           | /             |
|----------|------------------------------------------------------------------|-------------------|--------------------------|---------------|--------------|-------------------------|---------------|-----------|----|-----|------------|-------|---------------|--------|--------------|------|---------------------------------------|-----|-----|--------------|------------------|------------|------------|-----------------------------------------------------|----------------------------------|------------------|--------------|---------------|
| P        | ROJECT NAME: Hunte<br>D.O.                                       | er Army A<br># 54 | irfield L                | тм            |              |                         | Ľ             | <u>'3</u> | 55 | 52  | 6/         | 8     | REQ           | UES    | TEDP         |      | MET                                   | ERS | 1.  | 35           | 55               | 27         | 7 <i>7</i> | -                                                   | LABORATORY N<br>General Engineer | IAME:<br>ing Lab | oratory      |               |
| P        | PROJECT NUMBER: 01-1055-04-2945-200 PROJECT MANAGER: Patty Stoll |                   |                          |               |              |                         |               |           |    |     |            |       |               |        |              |      |                                       |     |     |              |                  | Male:      | 1013.      | LABORATORY A<br>2040 Savage Roa<br>Charleston, SC 2 | DDRES<br>ad<br>9417              | S:               |              |               |
| Si       | Sampler (Signature) (Printed Name)                               |                   |                          |               |              | 1-1                     | 1             |           |    |     |            |       |               |        |              |      |                                       |     |     |              |                  |            | V and Ha   |                                                     | PHONE NO: (84                    | 3) 556-          | 3171         |               |
| Þ        | Sample ID                                                        | Date Colle        |                          | Time Co       | llected      | Matrix                  | IEX I         | ğ         | AH | CE  |            |       |               |        |              |      |                                       |     |     |              |                  |            |            |                                                     | OVA<br>SCREENING                 | OBSER            | ATIONS, COMM | MENTS,<br>ONS |
| 17       | APOALZ                                                           | 4/27/0            | S                        | [12!          | õ            | Water                   | X             |           |    | P.  |            |       | · 5           |        | 14           | No.  |                                       |     |     |              | 1                |            | 2          |                                                     |                                  |                  |              |               |
| A        | P0662                                                            | 4/27/             | •5                       | 125           | 0            | water                   | Х             | i.        |    | 9/1 |            | 3     | 20<br>12      |        | 1.00         | 1.44 |                                       |     |     | A            | ŝ                |            | 2          | -                                                   |                                  |                  |              |               |
| Δ        | Pauca                                                            | 4/27/0            | 05                       | 1615          |              | water                   |               |           |    | X   |            |       |               | 9<br>2 |              |      | に収取                                   |     |     |              | 10.00            |            | 2          | -                                                   |                                  |                  |              |               |
| Ł        | 420804                                                           | 4/27/             | 05                       | (75           | 0            | water                   | X             |           |    |     |            |       |               |        | 繱            | 14   |                                       |     |     |              |                  |            | 2          | -                                                   |                                  |                  |              |               |
| Þ        |                                                                  |                   |                          |               |              |                         |               |           |    | 14  |            |       | 4             | ž.     | 10.5         |      |                                       |     |     |              | 14               |            | _          | $\downarrow$                                        |                                  |                  |              |               |
| L        |                                                                  | <hr/>             |                          | -             |              |                         | $\mathcal{P}$ |           |    | 43  |            |       |               |        | 32           |      | ÷                                     |     |     | 1997<br>1994 |                  |            | _          | +                                                   |                                  |                  |              |               |
| L        |                                                                  |                   | $\rightarrow \downarrow$ | +             |              |                         |               |           |    |     |            |       |               |        |              |      | · · · · · · · · · · · · · · · · · · · |     |     | 2. S.        | 14-25 Mar        | 112<br>112 |            | +                                                   |                                  |                  |              |               |
| $\vdash$ |                                                                  |                   |                          |               | $\checkmark$ | $\overline{\mathbf{O}}$ | $\vdash$      |           | -  |     | R          |       | $ \downarrow$ |        | 操            | 影    |                                       |     |     | 2            | - 2              |            | +          | +                                                   |                                  |                  |              |               |
| ┝        |                                                                  |                   |                          | $\rightarrow$ |              | 710                     | F             | E         | -  | 1   | $\square$  |       | -             |        |              |      |                                       |     | _   |              | 2<br>2<br>2<br>2 |            | +          | +                                                   |                                  |                  |              |               |
| ┝        |                                                                  |                   |                          | $\in$         |              | 1/2                     | 2             | 7         |    |     | V          |       | *             | Ł      |              | 10   |                                       |     |     |              | 1.5              |            | +          | $^{+}$                                              |                                  |                  |              |               |
| ┝        |                                                                  |                   |                          |               |              |                         | 2             | f         | 5  |     |            |       | >             | Z      |              |      |                                       |     |     | 4            |                  | 1          | +          | $\dagger$                                           |                                  |                  |              |               |
|          |                                                                  |                   |                          |               |              |                         |               |           |    | 1   |            |       | ÷             |        |              | 1    | 1                                     |     |     |              |                  |            | +          | T                                                   |                                  |                  |              |               |
| R        | RELINQUISHED BY:                                                 | /                 | Date/                    | Ţime          | RECEN        | VED BY:                 | ·             | L         |    | Ť   | Date       | e/Tim | е             | TOT    | AL NU        | MBE  | ROF                                   | CON | ITA | NER          | S:               |            | 8          | $\overline{+}$                                      | Cooler Temperatu                 | ire: [           | -40          |               |
| L        | Gar Jun                                                          | $\Delta$          | 4/28                     | 105           |              | FEDE                    | <u>K</u>      |           |    | 4   | 4/28/05 00 |       |               |        | Cooler ID: 4 |      |                                       |     |     |              |                  |            |            | FEDEX NUMBER:                                       |                                  |                  |              |               |
| c        | COMPANY NAME:                                                    |                   | 19                       | Ó             | COMP         | EDEX                    |               | -         |    |     | 91         | DD    |               |        |              | 1    | #(                                    | 1   |     |              |                  |            |            |                                                     | 84312                            | 138              | 1041         |               |
| R        | RECEIVED BY:                                                     |                   | Date/                    | Time          | RELING       | QUISHED BY:             |               |           |    |     | Date       | e/Tim | e             |        |              | 2    | 34                                    | Ŧ   | ołz | rl           | S                | am         | ple        | /                                                   | Bottles                          |                  |              |               |
| c        | COMPANY NAME:                                                    |                   | 9.3                      | 05            | COMP         | ANY NAME:               | - ,           |           |    |     |            |       |               |        |              |      |                                       |     |     |              |                  |            |            |                                                     |                                  |                  | :            |               |
| R        | RELINQUISHED BY:                                                 |                   | Date/                    | Time          | RECEN        | VED BY:                 |               |           |    |     | Date       | e/Tim | e             |        |              |      |                                       |     |     |              |                  |            |            |                                                     |                                  |                  |              |               |

ג ג.

## THIS PAGE INTENTIONALLY LEFT BLANK.