FINAL

FIRST ANNUAL MONITORING ONLY REPORT for FORMER UNDERGROUND STORAGE TANKS #1-#16 FACILITY ID NUMBER 9025035 and 9025049 FORMER BUILDING 728 HUNTER ARMY AIRFIELD, GEORGIA

Prepared for:

U.S. Army Corps of Engineers-Savannah District And Fort Stewart Directorate of Public Works Under Contract Number DACA01-96-D-0020 Delivery Order CV03

Prepared by:

Metcalf & Eddy, Inc. Two Sun Court Suite 200 Norcross, Georgia 30092

t.

DOCUMENT 7

November 1999

FIRST ANNUAL MONITORING ONLY REPORT FOR FORMER BUILDING 728 FACILITY IDENTIFICATION NUMBER 9025035 and 9025049 HUNTER ARMY AIRFIELD, GEORGIA

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY...... 1

EXHIBITS

A FIRST QUARTERLY MONITORING ONLY REPORT

B SECOND QUARTERLY MONITORING ONLY REPORT

C THIRD QUARTERLY MONITORING ONLY REPORT

D FOURTH QUARTERLY MONITORING ONLY REPORT

REFERENCES

Metcalf & Eddy, Inc., <u>Final Corrective Action Plan-Part A</u>, <u>Phase I Site Investigation</u> of the Airport Hydrant System (Building 728), Facility ID: 9025035 and 9025049, August 1996.

Metcalf & Eddy, Inc., Final Corrective Action Plan-Part B, Former Building 728, EPD Facility No. 9025035 and 9025049, December 1997.

i

1.0 EXECUTIVE SUMMARY

The former Building 728 site consisted of twelve USTs and eight oil/ water separators associated with the former Northern Fuel Battery and four USTs located south of the fuel battery. The former Building 728 site is located on the northwestern portion of Hunter Army Airfield (HAAF). During the 1940s, the tanks held aviation fuel that was pumped via pipelines to fueling pits on the runway. Around 1957, the entire system was converted to store an alcohol/water mixture used as an aircraft de-icer. Later, some of the tanks near former Building 728 were used to store waste oil. The four USTs located directly adjacent to former Building 728 had a capacity of 12,000 gallons. These tanks held aviation fuel and appear to have been part of the fuel hydrant system.

Anderson Columbia Environmental, Inc. (ACE) completed UST removal activities in the former Building 728 area in June 1994. A total of 25 tanks (12 JP-4/aviation gas USTs, 4 aviation gas USTs, 8 oil/water separators, 1 water control pit) were removed. Soil and groundwater samples were collected below the tank excavations in accordance with Georgia EPD UST closure requirements. Contamination in soil and groundwater has been confirmed by the sampling and no free product was encountered during the removal activities.

Metcalf & Eddy completed an initial investigation of the former Building 728 area in September 1995. The findings of the subsurface investigation were summarized in the Final CAP-Part A submitted to the Georgia EPD in August 1996. A summary of the UST closure activities was also presented in the CAP-Part A. A CAP-Part B was prepared after a follow up investigation of the former Building 728 site. The CAP-Part B was submitted to the EPD in December 1997. Free product was detected in monitoring wells MW08, MW59, and MW62. Free product recovery was performed utilizing a belt skimmer at well MW08 and absorbent socks (changed monthly) at wells MW59 and MW62. The belt skimmer and absorbent socks were discontinued in May 1999. An active remediation pilot study conduced by Science Applications International Company (SAIC) began in May 1999 and is ongoing.

Groundwater table elevations were measured in twenty monitoring wells during each sampling event in order to determine the direction of groundwater flow. Groundwater levels fluctuated less than 1 foot in elevation over the annual monitoring period. The potentiometric surface indicates groundwater flow is generally to the northwest with a gradient of approximately 0.006 ft/ft. No significant changes were observed in the potentiometric surface, flow direction, or gradient during the past year of monitoring.

Eight monitoring wells (MW01, MW06, MW11, MW60, MW61, MW63, MW64, and MW65) were purged and sampled during each sampling event. Surface water and sediment samples were also collected during each sampling event. A sample from the adjacent potable well (Hunter 1) was also collected during the monitoring period under a separate contract. All samples (including the potable well samples) were analyzed for

1

benzene, toluene, ethylbenzene, xylenes (BTEX - Method 8021) and polynuclear aromatic hydrocarbons (PAHs - Method 8310). Additionally, sediment samples were also analyzed for total petroleum hydrocarbons-diesel range organics (DRO) and gasoline range organics (GRO) (both Method 8015M).

Analytical results confirm wells MW06, MW11, MW60, MW61, MW63, and MW64 remain impacted by petroleum hydrocarbons. Benzene and PAHs have been detected above Georgia EPD in-stream water quality standards (IWQS) in these wells with the exception of MW06.

Surface water results indicate several PAH compounds exceeded the IWQS and all BTEX compounds were below IWQS. Sediment was not present at the SWE01 location and was therefore collected only from SWE03. Sediment sample analytical results indicate soil threshold level (STL) exceedences for PAHs have occurred but BTEX compounds were within STL criteria.

This Annual Monitoring Only Report incorporates the First through Fourth Quarterly Monitoring Only Reports in Exhibits A through D, respectively. The quarterly reports document the activities and findings for the past year of monitoring (May 1998 through May 1999) at former Building 728. Fort Stewart recommends implementation of a pilot study and monthly BTEX monitoring through April 2000. The BTEX monitoring activities will allow for evaluation of remedial effectiveness. An evaluation report will be submitted to summarize the pilot study data. More aggressive free product recovery measures may be undertaken based on the effectiveness of the SAIC pilot remediation system.

p:\wp\021974\728-asr1.doc

EXHIBIT A

FIRST QUARTERLY MONITORING ONLY REPORT

U.S. Army Corps of Engineers

FINAL FIRST QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 and 9025049

at

HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

under

Contract No. DACA01-96-D-0020 Delivery Order No. CV03

October 1998

Submitted to:

U.S. ARMY CORPS OF ENGINEERS SAVANNAH, GEORGIA

Prepared by:

METCALF & EDDY, INC. ATLANTA, GEORGIA

FINAL FIRST QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 AND 9025049 HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

TABLE OF CONTENTS

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGI CERTIFICATION	ST 1
II. PROJECT SUMMARY	2
III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS	
A. Potentiometric Data:	
B. Analytical Data:	
IV. SITE RANKING	5
V. CONCLUSIONS/RECOMMENDATIONS	5
VI. REIMBURSEMENT	5

APPENDICES

I	Figures
II	Tables
III	Laboratory Analytical Results
IV	Site Ranking Results

MONITORING ONLY REPORT

Submittal Date:October 7, 1998Monitoring Report Number:01For Period Covering:May 1998toJuly, 1998

Submitted by UST Owner/Operator:	Prepared by Consultant/Contractor:
Name: Mr. Tom Fry	Name: David Wilderman
Company: HQs, 3d ID (Mech) & Fort Stewart	Company: Metcalf & Eddy, Inc.
Address: 1557 Frank Cochran Drive	Address: 1201 Peachtree St. N.E.
· · · · · · · · · · · · · · · · · · ·	400 Colony Square, Suite 1101
City: Fort Stewart State: GA	City: <u>Atlanta</u> State: <u>GA</u>
Zip Code: 31314-4928	Zip Code: 30361
Telephone: 912-767-1078	Telephone: 404-881-8010

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologist. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: DAVID WILDERMAN
Signature: Stud
Date: 10.6.98

II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

The former Building 728 site consisted of twelve USTs and eight oil/ water separators associated with the former Northern Fuel Battery and four USTs located near the rail spur; south of the fuel battery. The former Building 728 site is located on the northwestern portion of Hunter Army Airfield (HAAF) as illustrated in Appendix I, Figure 1. A plan view of the former Northern Fuel Battery area is provided on Figure 2a in Appendix I. During the 1940s, the tanks held aviation fuel which was pumped via pipelines to fueling pits on the runway. Around 1957, the entire system was converted to store an alcohol/water mixture used as an aircraft de-icer. Later, some of the tanks near former Building 728 were used to store waste oil. The four USTs located directly adjacent to former Building 728 had a capacity of 12,000 gallons. These tanks held aviation fuel and appear to have been part of the fuel hydrant system.

UST removal activities in the former Building 728 area were completed by Anderson Columbia Environmental, Inc. (ACE) in June 1994. A total of 43,140 gallons of hazardous and non-hazardous waste water was disposed of by Industrial Water Services, Inc. A total of 25 tanks (12 JP-4/aviation gas USTs, 4 aviation gas USTs, 8 oil/water separators, 1 water control pit) were removed. During tank removal activities, 2623.91 tons of soil was removed and transported to Laidlaw Environmental Services for incineration. Soil and groundwater samples were collected below the tank excavations in accordance with Georgia EPD UST closure requirements. Contamination in soil and groundwater has been confirmed by the sampling and no free product was encountered during the removal activities.

Metcalf & Eddy completed an initial investigation of the former Building 728 area in September 1995. The findings of the subsurface investigation were summarized in the Final CAP-Part A submitted to the Georgia EPD UST Program in August 1996. A summary of the UST closure activities was also presented in the CAP-Part A. A follow up investigation of the former Building 728 site culminated in the submittal of a CAP-Part B which was submitted to the EPD in December 1997. Free product was detected in monitoring wells MW08, MW59, and MW62. Free product recovery is ongoing utilizing a skimmer at well MW08 and absorbent socks (changed monthly) at wells MW59 and MW62. Pending funding for a remediation system recommended in the CAP-Part B, the USACE elected to perform quarterly monitoring which may aid in the design of the remediation system. This report documents the first quarterly sampling and analytical results.

5/98

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

Groundwater table elevations were measured in twenty monitoring wells on July 29, 1998 in order to determine the direction of groundwater flow. Eight monitoring wells (MW01, MW06, MW11, MW60, MW61, MW63, MW64, and MW65) were selected for sampling by the USACE. These monitoring wells were purged and sampled on July 29, 1998. All samples were analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX - Method 8021) and polynuclear aromatic hydrocarbons (PAHs - Method 8310). Purge water was containerized in drums and stored at the PDO Yard until proper disposal is arranged. Surface water samples were collected from SWE-01 (upgradient) and SWE-03 (downgradient) with a sediment sample collected from SWE-03 since no sediment was observed at SWE-01. The surface water and sediment samples were collected on July 30, 1998. Surface water and sediment were analyzed for BTEX and PAHs as above with the additional sediment analyses of total petroleum hydrocarbons-diesel range organics (DRO) and gasoline range organics (GRO) (both Method 8015M)

A. <u>Potentiometric Data</u>:

Tabulate all data and illustrate <u>last 2</u> monitoring events findings in Figures 2a and 2b. (Appendix I, Figure 2a and 2b: Potentiometric Surface Maps) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Water levels were measured in twenty monitoring wells (the two deep wells were not measured) on July 29, 1998. Table 1 in Appendix II lists the wells and water level elevations. Compared to the CAP-Part B measurements taken on March 31, 1997, water levels are an average of 0.21 feet higher. Figures 2a and 2b shows the potentiometric surface map generated from the water levels from the CAP-Part B and first quarter sampling, respectively. Groundwater flow is generally to the northwest with a gradient of approximately 0.006 ft/ft. No significant changes were observed in the potentiometric surface, flow direction, or gradient compared to the information presented in the CAP-Part B report.

B. <u>Analytical Data</u>:

Tabulate all data for monitoring events findings in **Table 2**, illustrate last two events findings in **Figures 3a and 3b**, and graph the trend of contaminant concentration in **Figure 4**.

(Appendix I, Figure 3a and 3b: Groundwater Quality Maps) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix I I, Table 2: Groundwater Analysis Results) (Appendix III, Laboratory Analysis Results)

5/98

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

Well sampling began with the well located in the area suspected of least contamination. Protective gloves were worn during sampling and changed between samples. The sampling procedures used were identical to those used in previous sampling episodes (CAP-Part A and B). Samples were shipped via Federal Express overnight to Analytical Services, Inc. (ASI) located in Norcross, Georgia for BTEX and PAH analyses. Analytical results are summarized in Table 2.

The eight monitoring wells and the potable well (Hunter 1) were sampled on July 29, 1998 for BTEX (Method 8020) and PAHs (Method 8310). Analytical results confirm wells MW06, MW11, MW60, MW63, and MW64 remain impacted by petroleum hydrocarbons as identified in the previous sampling episodes. Concentrations of benzene and total BTEX decreased significantly in MW11 and MW63 and increased significantly in MW60 and MW64. Benzene decreased in MW11 from 1700 to 95 μ g/L and BTEX decreased from 4980 to 238 µg/L. MW63 exhibited a benzene decrease from 2400 to 930 µg/L and BTEX decreased from 5160 to 1601 μ g/L. Benzene and BTEX increased in MW60 from 1400 to 3000 µg/L and 3570 to 6960 µg/L, respectively. MW64 also exhibited benzene and BTEX increases of 81 to 450 μ g/L and 487 to 2850 μ g/L respectively. No significant changes were observed at MW01, MW06, MW61, and MW65. The benzene concentrations at MW11, MW60, MW61, MW63, and MW64 exceed the Georgia EPD In-Stream Water Quality Standard (IWQS) of 71.28 µg/L (Table 2). Figure 4 lists the benzene concentrations for each quarter plus a graph of the benzene values over time. Figures 3a and 3b show the concentrations of hydrocarbons in groundwater from the CAP-Part B and first quarterly monitoring period, respectively.

PAHs were detected in every well sampled. The IWQS (0.0311 μ g/L for individual compounds) was exceeded at MW01, MW06, MW60, MW63, and MW64 but not at MW11, MW61, and MW64. The regulated PAHs that were exceeded are benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoroethene, and chrysene. No apparent distribution pattern is observed. The PAHs identified are indicative of a diesel source rather than gasoline.

The potable water supply well was also sampled for BTEX and PAHs. Only fluorene was detected at 0.095 μ g/L. Last quarter, only acenaphthene was detected so no clear pattern is emerging. No maximum contaminant level (MCL) is listed for fluorene.

Surface water results indicate no IWQS exceedences of BTEX or PAH compounds (Table 3). Benzene was detected at 2.9 μ g/L at SWE01 (upgradient) but was not detected at SWE03 (downgradient). Figures 3a and 3b show the two surface water sampling locations and results.

Sediment was not observed at SWE01 and was therefore collected only from SWE03. The analytical results (Table 4) indicate no impact from BTEX, PAHs or GRO compounds. DRO was detected at 23 mg/kg. All analytical data is presented in **Appendix III**.

IV. SITE RANKING (NOTE: RE-RANK SITE AFTER EACH MONITORING EVENT)

(Appendix IV: Site ranking results)

Environmental Site Sensitive Score: 175,600 The Site Ranking Form is presented in Appendix IV.

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

This completes the first quarter of monitoring at this site. No significant changes in the groundwater flow direction or gradient were observed. Soluble petroleum hydrocarbon constituents continue to impact six monitoring wells and PAHs impact five wells. Free product recovery will continue in monitoring well MW08 via the belt skimmer and in wells MW59 and MW62 via absorbent socks. Continued monitoring will determine whether or not the plume is migrating downgradient.

VI. REIMBURSEMENT

ATTACHED <u>N/A</u>

(Appendix V: Reimbursement Application)

Fort Stewart is a federal installation and is not eligible for funding through the GUST Trust Fund.

021974\728-1qmr.doc

5/98

FIGURE 4

ANNUAL MONITORING SPREADSHEET (BENZENE) - FIRST QUARTER FORMER BUILDING 728 HUNTER ARMY AIRFIELD

				BENZENE RI	SULTS (ug/L)				
WELL #	CAP-B	1'st QTR	2'nd QTR	3'rd OTR	4'th QTR	5'th QTR	6'th QTR	7'th QTR	8'th QTR
MW01	0	0	· ·····		*			· · · · ·	
MW02	0	NS							
MW03	4.2	NS							
MW05	0	NS							
MW06	24	0							
MW09	0	NS				· · · ·			
MW10	0	NS							
MW11	1700	95							
MW12	56	NS							
MW13	1.4	NS							
MW14	0	NS							
MW55	0	NS							
MW56	17	NS							
MW57	24	NS							
MW58	41	NS							
MW60	1400	3000							
MW61	910	850							
MW63	2400	930							
MW64	81	450							
MW65	0	0							
SMW01	0	0							

	Chatha	Fc Ha	ormer Building unter Army Air		25049	· · · · · · · · · · · · · · · · · · ·
	Screen	Water	тос	Water Level	Surface	Free Prod.
Location	Interval	Depth,	Elevation,	Elevation,	Elevation,	Thickness
САР-А	ft, bgs	TOC	ft, msl	ft, msl	ft, msl	ft.
MW01	3.2-13.2	3.20	19.20	16.00	19.5	
MW02	3.8-13.8	5.15	20.51	15.36	20.8	
MW02 MW03	2.6-12.6	5.79	20.80	15.01	20.8	
MW03	3.4-13.4	Destroyed	3/97	15.01	21.1	
MW05	3.3-13.3	5.43	20.37	14.94	20.7	
MW06	2.9-12.9	5.39	20.02	14.63	20.4	
MW08	3.5-13.5	Product	Recovery		19.6	1.3 (2/96)
MW09	3.1-13.1	6.50	20.27	13.77	20.5	
MW10	2.9-12.9	6.06	19.11	13.05	19.4	
MW11	2.3-12.3	6.12	18.89	12.77	19.3	
MW12	2.9-12.9	3.92	18.51	14.59	18.8	
MW13	4.0-14.0	5.81	18.39	12.58	18.7	-
MW14	4.0-14.0	6.28	18.76	12.48	19.0	
CAP-B						
MW55	2.0-12.0	2.80	18.32	15.52	18.5	
MW56	1.4-11.4	4.43	19.69	15.26	19.8	
MW57	2.0-12.0	5.00	20.10	15.10	20.3	
MW58	2.0-12.0	4.58	19.21	14.63	19.4	
MW59	2.0-12.0	Product	Recovery	NA	19.4	0.15 (3/97)
MW60	3.0-13.0	6.70	20.30	13.60	20.4	
MW61	3.0-13.0	6.61	20.34	13.73	20.5	
MW62	3.0-13.0	Product	Recovery	NA	19.9	0.81 (3/97)
MW63	4.0-14.0	6.79	20.15	13.36	20.3	
MW64	3.0-13.0	5.39	18.98	13.59	19.1	
MW65	3.0-13.0	6.73	18.41	11.68	18.6	
MW66	35.6-40.6	NA	18.60	NA	18.8	
MW67	33.0-38.0	NA	18.82	NA	19.0	

bgs-below ground surface

TOC-top of casing

msl-mcan sea level

Measurements on 7/29/98

NA- not measured

(p:\hazwaste\hunt_ltm\wellsum.xls)

TABLE 2 : GROUNDWATER ANALYTICAL RESULTS

ĺ

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xvlenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	ТҮРЕ	(I/6n)	(l/ɓn)	(l/ɓn)	(l/gn)	(I/gn)	(I/gn)
MW01	7/29/98	Primary	D	n I	n	م ا		0.4
MW06	7/29/98	Primary	D	ო	21	5	24	7.6
MW11	7/29/98	Primary	95	C	23	120	238	1.3
MW11	7/29/98	Duplicate 1	59	D	14	75	148	2.5
MW60	7/29/98	Primary	3000	560	700	2700	6960	46.9
MW61	7/29/98	Primary	850	220	120	600	1790	34.8
MW63	7/29/98	Primary	930	74	92	510	1606	34.6
MW64	7/29/98	Primary	450	680	220	1500	2850	1 4
MW65	7/29/98	Primary	Э	⊃ 	Ð	D	D	0.6
ARARS		IWQS	71.28	200,000	28,718	•		

U = Not Detected.

(-) = No IWQS listed.

728100T2.XLS

TABLE 3 : SURFACE WATER ANALYTICAL RESULTS

í.

Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049 Former Building 728

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	TYPE	(I/6n)	(I/gu)	(I/gn)	(I/gn)	(I/6n)	(I/6n)
SW0102	7/30/98	Primary	2.9	n	n I		2.9	0.2
SW1002	7/30/98	Duplicate	м ,	2	D	D	5.0	0.9
SW0302	7/30/98	Primary	D	D	C	5	S	0.5
ARARS			71.28	200,000	28,718	1		

U = Not Detected. (-) = No IWQS listed.

728SWQT2.XLS

TABLE 4 : SEDIMENT ANALYTICAL RESULTS

Ć

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	ТҮРЕ	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SE1002	7/30/98	Duplicate	D	n	n	n	Ο	n
SE0302	7/30/98	Primary	D	c	D	כ	D	D
ARARS		STL	0.017	115	18	700		

U = Not Detected. (-) = No STL listed.

728SEQT2.XLS

Page: 1A of 1B

Ć

7

HUNTER ARMY AIRFIELD LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS GROUNDWATER & SURFACE WATER

	SITE	7280001	7280006	728MW71	1728ABANT1	728MMR0	728MW61
CONSTITUENT (Units in ug/L) S	SAMPLE ID	728-MW0102	728-MW0602	728-MW1102	728-MW8002	728-MW6002	728.MW6102
-	DATE	07/29/98	07/29/98	07/29/98	07/29/98	07/29/98	07/29/98
	RESULT TYPE	Primary	Primary	Primary	Duplicate 1	Primary	Primary
Benzene		<2	<2	95	59	3000	850
Toluene		<2	3.0	\$ \$	<2	560	220
Ethylbenzene		<2	21	23	14	700	120
Xylene (total)		цо V	С И	120	75	2700	600
Chlorobenzene		<10	<10	<10	<10	<100	<10
1,2-Dichlorobenzene		<10	<10 <	<10	<10	<100	<10
1,3-Dichlorobenzene		< 10	<10	<10	<10	< 100	<10
1,4-Dichlorobenzene		<10 <	<10	<10	<10	<100	<10
			-	-]	ŀ
Acenaphthene		<0.302.J	<0.302.J	<0.302	<0.302	1.6	2.9
Acenaphthylene		<0.164 J	<0.164	1.3	2.0	40	30
Anthracene		<0.097	0.38 J	<0.097	<0.097	0.10	0.12
Benzo(a)anthracene		< 0.0311	0.39 J	< 0.0311	< 0.0311	<0.0311	< 0.0311
Benzo(a)pyrene		<0.0311	0.11 J	<0.0311	<0.0311	<0.0311	<0.0311
Benzo(b)fluoranthene		0.18 J	< 0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311
Benzo(ghi)perylene		<0.157	<0.157	<0.157	<0.157	<0.157	<0.157
Benzo(k)fluoranthene		0.13 J	< 0.0311	< 0.0311	< 0.0311	< 0.0311	<0.0311
Chrysene		0.080.J	0.34 J	<0.0311	0.18	0.20	<0.0311
Dibenz(a,h)anthracene		<0.031	<0.031 J	< 0.031	< 0.031	< 0.031	< 0.031
Fluoranthene		<0.123	1.2	<0.123	0.36	<0.123	<0.123
Fluorene		< 0.092	1.8 J	< 0.092	< 0.092	1.9	0.88
Indeno(1,2,3-c,d)pyrene		<0.0311	<0.0311	<0.0311	<0.0311	<0.0311	<0.0311
Naphthalene		< 0.214 J	<0.214 J	<0.214	< 0.214	1.7	< 0.214
Phenanthrene		<0.103	23J	<0.103	0.13	0.86	06.0
Pyrene		<0.107	1.1 J	<0.107	<0.107	0.69	<0.107
Values represent total concentrations unless noted		< = Not detected at indicated reporting limit	I	= Not analyzed			
EPA METHODS:8020,8310. For RCL 8000ABAS	ABASI		J = RESULT I	= RESULT IS ESTIMATED.	R = RESULT IS REJECTED	ECTED.	

of 1B Page: 1B

HUNTER ARMY AIRFIELD LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS GROUNDWATER & SURFACE WATER

0	SITE	728MW63	728MW64	728MW65	728SWE01	728SWE01	728SWE03
CONSTITUENT (Units in ug/L) S	SAMPLE ID	728-MW6302	728-MW6402	728-MW6502	728-SW0102	728-SW1002	728-SW0302
	DATE	86/62/20	86/62/20	07/29/98	07/30/98	07/30/98	07/30/98
UL.	RESULT TYPE	Primary	Primary	Primary	Primary	Duplicate 1	Primary
Benzene		930	450	<2	2.9	3.0	<2
Toluene		74	680	<2	2 2	2.0	<2
Ethylbenzene		92	220	<2	<2	<2	<2
Xylene (total)		510	1500	<55	<5	<5	Z5
Chlorobenzene		<10	< 10	<10	<10	<10	<10
1,2-Dichlorobenzene		<10	<10 <	<10	<10	<10	<10
1,3-Dichlorobenzene		<10	< 10	<10	<10	<10	<10
1.4-Dichlorobenzene		<10	<10 <	<10	<10	<10	A10
		ł					[
Acenapitthene		<0.302	<0.302	<0.302	<0.302	<0.302	<0.302
Acenaphthylene		30	<0.164	<0.164	<0.164	<0.164	<0.164
Anthracene		<0.097	<0.097	<0.097	<0.097	<0.097	0.13
Benzo(a)anthracene		0.22	< 0.0311	< 0.0311	< 0.0311	<0.0311	< 0.0311
Benzo(a)pyrene		<0.0311	<0.0311	< 0.0311	<0.0311	<0.0311	<0.0311
Benzo(b)fluoranthene		< 0.0311	< 0.0311	0.092	0.15	0.15	0.086
Benzo(ghi)peryiene		<0.157	<0.157	<0.157	<0.157	<0.157	<0.157
Benzo(k)fluoranthene		< 0.0311	< 0.0311	0.14	<0.0311	<0.0311	<0.0311
Chrysene		0.17	<0.0311	<0.0311	<0.0311	0.12	<0.0311
Dibenz(a,h)anthracene		<0.031	< 0.031	< 0.031	< 0.031	<0.031	<0.031
Fluoranthene		<0.123	<0.123	<0.123	<0.123	<0.123	<0.123
Fluorene		1.2	1.1	0.11	< 0.092	<0.092	<0.092
Indeno(1,2,3-c,d)pyrene		<0.0311	<0:0311	<0.0311	<0.0311	<0.0311	<0.0311
Naphthalene		2.9	<0.214	0.28	<0.214	0.63	0.26
Phenanthrene		0.27	0,26	<0.103	< 0.103	<0.103	<0.103
Pyrene		<0.107	<0.107	<0.107	<0.107	<0.107	<0.107
Values represent total concentrations unless noted		<=Not detected at indicated reporting limit	1	=Not analyzed			
EPA METHO 220,8310. For RCL 8000ABASI	ABASI		RESULT	RESULT IS ESTIMATED.	r = result is rejected	IECTED.	() ()

	HU LONG TERN	HUNTER ARMY AIRFIELD G TERM MONITORING - BUILDING 728 PRIMARY RESULTS SEDIMENT SAMPLES	Page: 1A of 1A
SITE SAMPLE ID SAMPLE ID DATE DEPTH (f) RESULT TYPE	7285WE03 728-SE0302 07/30/98 0.00 Primary	7285WED3 728-SE1002 07/30/98 0.00 Duplicate 1	
Benzene <0.0063	<0.0063 <0.0063 <0.0063 <0.0063	 <0.0064 <0.0064 <0.0064 <0.0064 <0.0064 	
Acenaphthene Acenaphthylene Anthracene	- ~ ~ ~ ~ 1.3 *1.3 *1.3	1 2 2 3 2 3 3 3 3 4 2	
	<1.3 <1.3 <1.3	<1.3 <1.3 <1.3 <1.3	
benzo(g)tiperylene Benzo(k) fluoranthene Chrysene Dibenzo(a. h) anthracene	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<13 <1.3 <1.3 1.3 1.3	
Fluoranthene Fluorene Indeno 1, 2, 3 c, d)pyrene Nuo-kitkolooo		512 515 515 515 515 515 515 515 515 515	
	 4.5 4.3 23 563 	∧ ≺13 864 864	
s represent total concentrations unless noted METHODS:8020,8310,DRO,GRO. For RCL 80	dicat	= Not analyzed ESULT IS ESTIMATED	= result is rejected

(

Ĺ

FIELD		RES		SAMPLE	SAMPLE SAMPLE DATE LAB	DATE LAB	ANALYSES	and the second se			COMMENTS QAOC
SAMPLEID	SITEID	CODE	CODE MATRIX	DATE	TIME	RECEIVED	VOC/8020 PAH/8310		GRO/8015M	DRO/8100M	SAMPI F TVPFS
GROUNDWATER											
728-EB01	728MW01	BR11	WATER	7/29/98	1410	7/30/98	×	×	-		EQUIPMENT BI ANK
728-MW0102	728MW01	PP01	WATER	7/29/98	1415	7/30/98	×	×			
728-MW0602	728MW06	PP04	WATER	7/29/98	1455	7/30/98	×	×			
728-MW0602MS/	728MW06	SL11	WATER	7/29/98	1455	7/30/98	(×	(×			Mc
MSD	728MW06	DL11	WATER	7/29/98	1455	7/30/98	: ×	(×			
728-MW1102	728MW11	PP01	WATER	7129/98	1635	7/30/98	< ×	< ×			
728-MW8002	728MW11	PD11	WATER	7/29/98	1635	7/30/98	× ×	(×			
728-MW6002	728MW60	PP01	WATER	7/29/98	1600	7/30/98	×	(×			
728-MW6102	728MW61	PP01	WATER	7/29/98	1600	7/30/98	×	×			
728-MW6302	728MW63	PP01	WATER	7/29/98	1630	7/30/98	×	×			
728-MW6302	728MW63	PS11	WATER	7/29/98	1630	7/30/98	×	×			SPLIT
728-MW6402	728MW64	PP04	WATER	7/29/98	1530	7/30/98	×	×			
728-MW6502	728MW65	PP01	WATER	7/29/98	1725	7/30/98	×	×			
SURFACEWATER											
SEDIMENT											
/28-SW0102	/ZBSWE01		WATER	7/30/98	0810	7/30/98	×	×			
728-SW1002	728SWE01		WATER	7/30/98	0810	7/30/98	×	×			DUPLICATE
728-SE0102	728SWE01		SEDIMENT	7/30/98	0810	7/30/98	×	×	×	×	
728-SW0302	728SWE03		WATER	7/30/98	0060	7/30/98	×	×	_		
728-SW0302	728SWE03		WATER	·	0060	7/31/98	×	×			SPLIT
728-SE0302	728SWE03	PP01	SEDIMENT	7/30/98	0920	7/30/98	×	×	×	×	
728-SE0302MS/	728SWE03	3 SL11	SEDIMENT	7/30/98	0920	7/30/98	×	×	×	×	MS
MSD	728SWE03		SEDIMENT	7/30/98	0920	7/30/98	×	×	×	×	MSD
728-SE1002	728SWE03	8 PD11	SEDIMENT	· .	0920	7/30/98	×	×	×	×	DUPLICATE
728-SE0302	728SWE03	3 PS11	SEDIMENT	7/30/98	0320	7/31/98	×	×	×	×	SPLIT
											

p:VhazwasteVhunter1Vhquart9.wk1

ĺ

SP 9 STORED/SHIPPED IN ICE N/N STANDARD PRESERVATION (Y): LERS/METHODS 0 **~ 0** ž Cooler Temperature: $\triangleleft \exists \ \bigtriangledown \Box \varpropto O$ HCI/VOC, HNO₃/METALS 1 A. U Ø (7 ≁ σ PARAMET V Z o u s ī Ω F 1 H_SQ/ OTHER. S ANAI YTICAI CVAA CVAA GFAA ÐZ90 물 <u>8</u> 5000 NZ CH 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 NOL 0208 >000 2 oN borteM Christine Hettinger c/o METCALF & EDDY, INC. 2# Æ FILTERED (L) LAB (F)FIELD Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161 Date/Time: Я 20/00 STANPDARD I PRESERV (Y/N)* 2825まつ R 5.5 Lakor, ŕ NO. OF CONTS - CUSTODY - RECORD ŧ VOD 1 3 ഹ \mathcal{O} σ 3 3 \mathcal{O} \mathcal{C} m 3 3 3 Send Results to: R 13518 CV 03 DEPTH (FT) 9+618 A 813 0 Qtr. ı() SAMPLER(S) SIGNATURE: BR 11 PD01 PP01 ľ PPOI 10dd P6) RES PPOI PP01 PP01 PPOL 1961 37 days. leceived by: town TASK ORDER NO. SAMPLE EVENT: PROGRAM TYPE: 00 mm 4 FOUN. 017 728-MW64 710-5MWD 710-MW03 710-14002 728. MW06 710-54401 10mm - 82+ 718-mw 0] 710.10004 710-10101 SITE ID 2 Ю 728. Ò where we are t LTW 7.30-99 CHAIN Date/Time: 7200 MM - 824 2010mm.825 7/0-144031/ 7040W. 824 D.W. 1122 mm , 01± 728- MW0102 710~ MW0111 710- MW - 015 710-WW 0211 7110-504000111 TRACKING NO: 778-MW AIRBILL CO. 0 710-7802 FIELD SAMPLE ID PROJECT NAME: Hunter AAF 3 e12-249120 asm, hour , AJA MATRIX (SM) 3 3 3 3 3 3 3 3 3 3 3 3 VUSI 2980 0810 SAMPLER(S) NAME: TIME MILITARY のかたい 1600 60Z1 5141 1225 1410 1530 1215 212 1455 Metcalf & Edd LABORATORY ID: Relinquished by: PROJECT NO: (Signature) 4-29-91 Remarks: DATE $\overset{}{}$

ĺ

Metcalf	8 Eddu

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY.

C Halfman	FAX # (404) 872-3161
METCALF & EDDY Representative	11 to set to
SUBCONTRACTOR ASI	
SAMPLE CUSTODIAN () alughle there	TODAY'S DATE
DATE/TIME SAMPLES RECEIVED _73098 16.15	
	NO. OF COOLERS
COOLER OPENED: DATE TIME	<u></u>
CHAIN OF CUSTODY SEAL INTACT? YES NO	
SAMPLE LABELS PRESENT? YES NO	
BOTTLE LABELS CORRESPOND W/COC? YES NO	- · · · · ·
TYPE OF COLLANT USED	
COOLANT CONDITION: MELTED PARTIA	ALLY MELTED/FROZEN
FROZEN	N
COOLER NUMBER $\# - 1459$ TEMP I	
#	·
#	
#	
#	
RECORD TEMPERATURE BLANK (1) (2) (2)	(3)
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING (INTACT	
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES A	AFFECTED
LIST SAMPLE ID'S IN EACH SHIPMENT: 710 - TBO 2	TIO-SMWOILI - MWO
	WOIII - MWOCIL
130-749728-EB01 - MWD0102,-M	MUGOZ - MW GOUL THE
728-MW2002 - MW20302, -MW21	
728-5W1002 - 5WUUE - 5W	

ANALYTICAL PARAME JANALYTICAL PA	01 E&	L2- /-	-3-6		27	23			Cooler Temperature:	te 1101 STANDARD PRESERVATION (Y): (H) HCI/VOC, (N) HNOs/METALS (S) H ₂ SQ,/ (O) 0THER STORED/SHIPPED IN ICE
CHAIN - OF - CUSTODY - RECORD Metadiacidy PROJECT NAME: MALE PROJECT NAME: MALE TWO PROSEND: MALE TWO PROSEND: MALE TWO MALENCINA CHAIN Description MALE TANDIE MALENCINA	DATE TIME MATRIX RELD SITE RES DEPTH NO OF STANDARD FILTERED NO OF PRESERV (1)1AB (1)1	N 2 1060 W 210-511 X 710-5110 PPOI W 2012 1 200 V 2 10 1200 V 2 1000 V 2	w 710. MW0311 710-WW03 PP01	1225 W 710-MW2211 710-MW03 PDO1 7 1/	710~WW0211	V 1310 W 728-6801 728-1100/ DN 2 N	\mathcal{H}		Relinquished by: Relinquished by: (Signature) D. Rougel 27-30-98/16/5 Deterved by: Date/Time: Date	AIRBILL CO. AIRBILL CO. AIRBILL CO. THAT AIRBILL CO. TRACKING NO: (404) 881-80

(

{

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY. OPON COMPLETION, FAX TO THE DESIGNATED MAE REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT.

METCALF & EDDY Representative	FAX # (404) 872-3161
SUBCONTRACTOR ASI	PROJECT # <u>Hunter LTM</u>
SAMPLE CUSTODIAN (m) an falle de han	TODAY'S DATE
DATE/TIME SAMPLES RECEIVED _730/98 16115_	
AIRBILL NUMBERA	NO. OF CCOLERS
COOLER OPENED: DATE TIME TIME	
CHAIN OF CUSTODY SEAL INTACT? YES NO	
CHAIN OF CUSTODY PROVIDED? YES NO	
SAMPLE LABELS PRESENT? YES NO	
BOTTLE LABELS CORRESPOND W/COC? YES NO	• • • • • • •
TYPE OF COLLANT USED	·
COOLANT CONDITION: MELTED PARTIAL	Y MELTED/FROZEN
FROZEN	
LUS CONTEMP INS	
COOLER NUMBER # TY 3 COOLER NUMBER	
#	
#	
#	
#	(3)
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, (INTACT?)	
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFT	ECTED
LIST SAMPLE ID'S IN EACH SHIPMENT: TIO - SMWOIL	1 - MWOHIL - MWO3U
TIO-MWZZH, - MWOIII, - MU	$\Delta U \subset U $

·	& Eddy
	Metcalf

12310#0M CHAIN - OF - CUSTODY - RECORD LT W PROJECT NAME: HALF

METHODS

ANALYTICAL PARAMET

(

(

თ ლ O

m Þ. C

⊢

۰

т

ΣWF

v > o u

>00%

•

A X \ D X O

Δ шv

ß S

ŝ

₽¥

GFAA

5 6103 Q+ 1. TASK ORDER NO. SAMPLE EVENT:

1

Olar SIGNATURE: μi

LABORATORY ID: 4) + SAMPLER(S) NAME: 2. Rewell D. W. Heyman SAMPLER(S) SI
--

.....

021974-4103

PROJECT NO:

	1	-1351-36MJ-3	-38-	- 30	Ont /								Cooler Temperature:	N	STANDARD PRESERVATION (Y):
B310. B310	>	>	>	7)									N91	1mm
FLTERED (L) LAB (F)FIELD													ine:	AL A	23 6
STANHDAHD Phesenv. (Y/N)*	N	X	N	N	N								Date/Time:	N A	
NO. OF CONTS	8	9	2	Z	2	_								1021	ורידתא
DEPTH (FT)	\sum					$\left \right\rangle$	\sum	$\left \right\rangle$	\sum	\square	\sum	\square	10	A A	5
RES CODE	1301	PPo 1	1099	Pop/	PP01								Racelved by:	Jan	teref
STE ID	728-mwo1	728 - mwole	728 mw64	728-100000	728-10061									7-30-98/1615	WI TO NUTI
RIELD SAMPLEID	728-100002	72000mm -82E	728- MW6402	728-MW6002	728-1446102								JU JU		
RATRIX (SW)	З	З	З	S	M								F	B. Konly	sm/s
IINE	5/11	1455	1530	/600	1600								à	J	Remarks: X WS/WSD
DATE	5141 88-82-E	F 7-29-89 1455	0251 8-52-t		1	5							Relinquished by:	'a marifico'	Remarks:

STORED/SHIPPED IN ICON

HCI/VOC, HNO3/METALS H_SQ4/ OTHER

EZOO

Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101

Cooles #4

Send Results to:

Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161

TRACKING NO:

AIRBILL CO.

SIND

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY. UPON COMPLETION, FAX TO THE DESIGNATED MAE REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT

METCALF & EDDY Representative <u>C. Hettinger</u>	FAX # (404) 872-3161
SUBCONTRACTOR ASI	PROJECT # _ Honter LTM
SAMPLE CUSTODIAN Namable Shohoen	TODAY'S DATE
DATE/TIME SAMPLES RECEIVED 73098 16115	
AIRBILL NUMBER	NO. OF COOLERS
COOLER OPENED: DATE _130/98 TIME _16:15	
CHAIN OF CUSTODY SEAL INTACT? YES NO	
SAMPLE LABELS PRESENT? YES NO	
BOTTLE LABELS CORRESPOND W/COC7 YES NO	•••** ••••
TYPE OF COLLANT USED	<u></u>
COOLANT CONDITION: MELTED PARTIALL	Y MELTED/FROZEN
FROZEN	
COOLER NUMBER # 1458 TEMP INSI	DE COOLER _5
#	
#	
#	
#	
	(3)
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING (INTACT?))
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFF	
<u>A}∂</u>	
LIST SAMPLE ID'S IN EACH SHIPMENT: 728 - MWOIDZ	= MUDDDZ, (
-728 - MW16402 - MW16002	

ANALYTICAL PARAMET	<pre>K H P C C C C C C C C C C C C C C C C C C</pre>	. I \ O «	<u> </u>	шv	CVAA GFAA	0158			V + 3	h+					Cooler Temperature:	STANDARD PRESERVATION (Y):	33£		
		Metcali & Eddy PROJECT NAME: Hunter LTUL TASK ORDER NO. CV03	021924 - 4103	ID: ASI	E: 6. Rowald D. W. Her now	DATE TIME WATHIX FIELD SITE RES DEPTH NO. OF STANDARD FILTERED NILITARY (SW) SAMPLEID ID CODE (FT.) CONTS (VIN) ¹ (FFIELD Met	N 2 1020 200 1050 200 225 2069 mm - 825 (m 069/ 8652-5	1635 W 728-MW102	1635 W 728-MW 8002 728-MW 11 PD11 2 N	W 728- MW6502 728- V					Received by: Date/Time:	Remarks: up up hod funds = 5° pH = 1/2 123 ceut	B	:	

ALYTICAL PARAMETERS/METHO		ر ت م 2 – ۵	> 0	ш v	CVAA GFAA		01-	+20	- 21	+22	-23	h2+	Q2-	-26			Cooler Temperature:	Z	(H) HCI/VOC, (N) HNO,/METALS (S) H ₂ SQ/ (O) OTHER	2
	000					07.06	2	7	7	7	2	7	7	7			CON	5	uite 110	
- OF - CUSTODY - RECORD		TASK ORDER NO. $ \int VO \Im $	1	PROGRAM TYPE:	der wan sampler(s) signature: D. Rowll	STE RES DEPTH NO. OF STANDARD FLITERED NO. DEPTH NO. OF PRESERV. (1) 1AB (1) 1	728-1410/6/00 PPO1 3 V	728- MW63 PPO1 3 Y	728-MW1 PP01 3 Y	728. mull PD11 3 Y	728-MW65 PPOI 3 Y	728 Swo1 PD11 3 4	7285woi 8801 3 4	728-5w03 PP01 3 Y			1615 Received by: Date Time:	PH - 1/2 - 12	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101	1
CHAIN -	Metcalf & Eddy	PROJECT NAME: HAFF UT UN	PROJECT NO: 021974-4103	LABORATORY ID: AST	11: 3. Rowel D. W.1	DATE TIME MATRIX FIELD MILITARY (SW) SAMPLE D	7-29-58 1600 W 728-WW6102	1630 W 728-MW6302	W 728-MW81102	-		۱ ۱		V 0900 W 728-540302			Relinquished by: (Signature) J. P. M. M. 7-30-98	Remarks: UP Mon Down A March	AIRBILL CO.	TRACKING NO:

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY. UPON COMPLETION, FAX TO THE DESIGNATED MAE REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT

	(1-1) 972-3161
METCALF & EDDY Representative	FAX # (404) 872-3161
SUBCONTRACTOR AST	PROJECT #
SAMPLE CUSTODIAN_Nouleally Augula	TODAY'S DATE
DATE/TIME SAMPLES RECEIVED _713098 6115	
AIRBILL NUMBER	IN SHIPMENT
COOLER OPENED: DATE _730 98 TIME 16:15	
CHAIN OF CUSTODY SEAL INTACT? YES NO	
SAMPLE LABELS PRESENT? YES NO	
BOTTLE LABELS CORRESPOND W/COC? YES NO] - · · · · · · · ·
TYPE OF COLLANT USED	
COOLANT CONDITION: MELTED PAR	TIALLY MELTED/FROZEN
FRO	ZEN
COOLER NUMBER #THEY	
#	
#	· · · · · · · · · · · · · · · · · · ·
#	
#	
RECORD TEMPERATURE BLANK (1)(2)	(3)
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTA	ACT?))
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPE	SAFFECTED
	222 41.2 1102
LIST SAMPLE ID'S IN EACH SHIPMENT: 728 - MWG	SO(mw)W(
-728-MW 8002, -MW 26507	

Шŝ	

		CHAIN	V - OF - CUSTODY	- YOO	RECORD	Ð		- H		P P			
call & Eddy	-				#97	128L6#90	, T	000	×⊢∢ > 0 ∪	ш к ю 	U m	2 O 2	
PROJECT NAME:	HUNTER ARM	4 ANRFI	APMY AIRFIELD LTH TASK ORDER NO.		C \ 03	-		(.				0 4	
ECT NO: 0.21	PROJECT NO: 021974 4103		SAMPLE EVENT:		QUARTERUY		SAMPLING	2/2/2	2 2				
LABORATORY ID:			PROGRAM TYPE:	(PE:			•	80		ш N N N			
SAMPLER(S) NAME: U	D. HOWANNO / CI.	Li. Peweru		SIGNATURÉ	\sim	Annall	\$ here	908	CVAA GFAA		₹	6 - C- OF	
DATE MILITARY	MATRIX ISM) SAMPLE ID		STE D	RES CODE	DEPTH NC (FT.) CC	NO OF STANEDARD CONTS PRESERV (Y/N)	ARD FILTERED RY (L) LAB (F) FIELD	.oN bodjeM	0128			2012 m 2018	
1.30.38 0810	w 7285w1002		125351-01	1102	·	7 2		•	7	14-			
130.780510	1285 WOLD		1285mo.	reo 1		2			<u>.</u>	2h-			
0200		Ľ.	Fows 827	7701		2			$\langle \langle \rangle$	-47 21-			
0260			728 Side3	7701		5		7		Hh-		7	
0260	S 728-SE1002		728-5603	7D/1		2		7	7	27 7		2	
0200	S 728-560302		728 - 5603	N175	AB Gas	5 1	/	7	Z	-M-	J Z I)	
		,,,							\sum	Fut	MSH	at the	4
	•								RIG 1	B		The second secon	<u>B</u>
										6/8/2			
					$\overline{\ }$								
Relinquished by: (Signature)	Revell	Date/Time: 7-30-2	-28 / 6 Received by:	by:	A	a voran	Date/Time:	101	0	Cooler	Cooler Terrperature:	:eun;	
Remarks: X M5	ms/msD (~	oder	'≠S ` ia	2072	Scer Te	it i	PIJENA	222	LT STA	STANDARD PRESERVATION (Y):	RESERVAT	(Y) NOL	
~				Send	Send Results to:				E		ر ح		
(AIRBILL CO.		Q	Christ 1201	tine Hetting Peachtree ta, Georgia	Christine Hettinger c/o METCALF & ED 1201 Peachtree St., N.E., 400 Colony S Atlanta, Georgia 30361	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 ∆stanta, Georgia 30361	VC. , Suite 11(200 5		S A (
	TRACKING NO:	NO:	-) 881-8010	, FAX (404) (372-3161			STORED/SI		N MADINI C	z

×

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY. UPON COMPLETION, FAX TO THE DESIGNATED M&E REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT

	4 2022 2444
METCALF & EDDY Representative	FAX # (404) 872-3161
SUBCONTRACTOR ASI	PROJECT #
SAMPLE CUSTODIAN Name Shakoer	TODAY'S DATE
DATE/TIME SAMPLES RECEIVED _730 98 16:15	
AIRBILL NUMBER	NO. OF COOLERS
COOLER OPENED: DATETBO F18_ TIME	
CHAIN OF CUSTODY SEAL INTACT? YES NO	· · · · ·
CHAIN OF CUSTODY PROVIDED? YES NO	
SAMPLE LABELS PRESENT? YES NO	
BOTTLE LABELS CORRESPOND W/COC? YES NO	 Although the second seco
TYPE OF COLLANT USED	
	Y MELTED/FROZEN
COOLER NUMBER # TEMP INSI # # RECORD TEMPERATURE BLANK (1) (2) CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING (INTACT?) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFF	DE COOLER
LIST SAMPLE ID'S IN EACH SHIPMENT: <u>728 - 50002</u> 728 - 500302, 728 - 5030 728 - 520302	728-50002, 2,728-521002,

DATA QUALITY SUMMARY REPORT

Hunter Army Airfield - Long Term Monitoring Former Building 728 September 29, 1998

1.0 INTRODUCTION

Metcalf & Eddy, Inc. was contracted by the United States Army Corps of Engineers, Savannah District, to perform quarterly groundwater monitoring at building 728 at the former Hunter Army Airfield. This event represents the long term monitoring analytical data for July 1998.

Metcalf & Eddy, Inc. contracted with Savannah Laboratories to perform the required analyses of groundwater and sediment samples. The analytical data received was validated according to USEPA National Functional Guidelines for Organics Data Review and Inorganics Analysis. This guidance follows the Quality Assurance (QA)/Quality Control (QC) requirements outlined in the USEPA's Test Methods for Evaluating Solid Waste (EPA SW-846). Overall these guidelines mimic the most current editions of the EPA's Functional Guidelines for Reviewing Organic and Inorganic Analyses conducted outside the EPA's Contract Laboratory Program (CLP).

The following sections of this Data Quality Summary Report discuss the laboratory reporting, data validation, problems encountered and corrective actions as applied to the samples and data collected during this determination.

1.1 Field Samples and Analysis

The following report summarizes the validation findings of the samples included in the Sample Data Groups listed below.

				Field	Trip	Equipment	
<u>SDG</u>	<u>Date</u>	<u>Matrix</u>	<u>Samples</u>	<u>Duplicates</u>	<u>Blanks</u>	<u>Blanks</u>	
97829	07/29/98	WATER	10	2	1	1	
97829	07/29/98	SEDIMENT	2	1	0	0	

Eight groundwater samples, two surface water samples, two sediment samples, three field duplicates one equipment blank and one trip blank were analyzed. Water samples were analyzed by EPA 8020 and EPA 8310. Sediment samples were analyzed by EPA 8020, EPA 8100, DRO and GRO. Samples were analyzed by Analytical Services Inc.(ASI), Norcross, Georgia using the following USEPA SW-846 Methods:

8020	Volatile Aromatics
8310	Polynuclear Aromatic Hydrocarbons
8015M	Gasoline Range Organics (GRO)
8100M	Diesel Range Organics (DRO)

2.0 LABORATORY REPORTING

2.1 Laboratory Blanks

Laboratory blanks or method blanks are artificial samples prepared from the same matrix type as the samples to be analyzed. These blanks are taken through sample preparation and analyzed before the field samples to determine if the glassware, sample preparation or laboratory environment has contaminated the field samples.

Laboratory blanks for all methods of analysis of groundwater, surface water and sediments were analyzed at the required frequency and were free of contaminants.

2.2 Laboratory Control Samples (% Recovery)

Laboratory control samples are artificial samples prepared from the same matrix type as the samples to be analyzed. These samples are processed through sample preparation and analyzed to assess the performance of each analytical system that the laboratory used to analyze the field samples.

Laboratory control samples for all methods of analysis of groundwater, surface water and sediments were analyzed at the required frequency and were within the required control limits.

2.3 Precision (% RPD)

Laboratory precision is evaluated by calculating the relative percent difference (RPD) between the values reported for a matrix spiked (MS) sample and its duplicate, the matrix spiked duplicate (MSD), or any other set of duplicate parameters. The following equation is utilized for this calculation:

$$RPD = \frac{|Vs - Vd|}{|Vs + Vd| / 2} X 100$$

Where V_s is the value reported for the matrix spiked (MS) sample and Vd is the value reported for it's duplicate (MSD). Sample RPDs are compared to the analyzing laboratory's precision control limits which are primarily derived from their in-house quality control data.

RPDs for all methods of analysis of spiked samples were within required control limits with the exception of one matrix spiked groundwater sample 728MW06; which exhibited slightly high RPDs for all PAH compounds. No qualifiers were required.

RPDs of field duplicates for all methods of analysis of groundwater and surface water were within established control limits with the exception one sample for PAH compounds. RPDs of field duplicates for all methods of analysis of sediments were within established control limits with the exception of one sample for DRO analysis. No qualifiers were required.

2.4 Surrogate Recovery

Surrogates are compounds similar to analytes of interest but are not normally found in environmental samples. Prior to sample preparation and analysis, surrogates are spiked into laboratory control samples, calibration and check standards, matrix spiked samples and field samples. Accuracy is measured by calculating percent recoveries for each surrogate as follows:

%R = Concentration of spike found Concentration of spike added

Surrogate recoveries for groundwater, surface water and sediments were within the required control limits.

2.5 Holding Time

Holding time is the storage time allowed between sample collection and sample analysis when the designated preservation and storage techniques are employed.

All groundwater surface water and sediment samples were analyzed within required holding times for all methods of analysis.

2.6 Temperature

Chain of custody forms and cooler receipts document that the laboratory received all samples at temperatures ranging from 3 $^{\circ}$ C to 7 $^{\circ}$ C. These temperatures are within the acceptable limits of the required preservation requirement of 4 $^{\circ}$ C plus or minus 2 $^{\circ}$ C.

2.7 Completeness

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of > 99% completeness.

3.0 DATA VALIDATION

The objective when evaluating the quality of chemical data is to determine its usability. The evaluation is based upon the interpretation of the laboratory QC data, the field QC data, and the project Data Quality Objectives (DQOs). The evaluation process is often termed "data validation".

3.1 Laboratory Data Validation

Laboratory data were evaluated to assess, holding times, laboratory blanks, laboratory control samples, surrogate recoveries, and matrix spike/matrix spike duplicate (MS/MSD) relative percent differences (RPDs). These criteria were used to evaluate the bias and precision of the data generated by the laboratory. The bias of the laboratory data was assessed through consideration of the following:

- Adherence to the prescribed method
- Recovery of MS/MSD from field samples
- Method blank contamination
- Adherence to sample preparation and holding times
- Recovery of surrogate spikes
- Field duplicate precision

3.2 Definition of Data Qualifiers

During the data validation process, all laboratory data had to be evaluated and assigned a data qualifier, as applicable. These qualifiers are defined in the February 1994 EPA document titled, "National Functional Guidelines for Organic Data Review." The guidance also describes procedures to be followed when qualifying data. The data qualifiers are defined as follows:

U = the compound was analyzed for, but was not detected above the level of the associated value

J = the associated value is an estimated quantity. The reported result is qualitatively accurate but quantitatively imprecise.

UJ = the compound was analyzed for, but was not detected, and the associated value is an estimated value due to a variance from quality control limits.

R = the reported result or quantitation limit is rejected and unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte can not be verified

Data qualifier flags were not assigned to data that were totally in compliance with Quality Control requirements.

For organic data, specifically VOCs, the positive and undetected (U) results were qualified as estimated (J/UJ) if one surrogate compound was detected outside acceptable recovery limits and/or the recovery was greater than 10 percent. If the recoveries of one surrogate compound were less than 10 percent, then the positive results were qualified as estimated (J) and the undetected results were rejected (R). Results of PAH compounds are validated in the same manner as VOC, the qualifiers are applied to results with one or more surrogate compounds detected outside the acceptable recovery limits.

3.3 Qualified Results

Groundwater and Surface water:

Volatile Aromatics - No qualifiers were required. Polynuclear Aromatic Hydrocarbons - No qualifiers were required.

Sediments:

Volatile Aromatics - No qualifiers were required. Polynuclear Aromatic Hydrocarbons - No qualifiers were required. Total Petroleum Hydrocarbons; DRO and GRO - No qualifiers were required.

4.0 PROBLEMS ENCOUNTERED

Any problems encountered during sample analysis for this investigation are described in detail below. Analytical data that did not meet the QC requirements were qualified as stated in Section 3.3.

4.1 Holding Times

No problems were present regarding hold times.

4.2 Surrogate Recovery

No problems were encountered.

4.3 Precision (% RPD)

All PAH compounds for the spiked groundwater sample 728MW06 were outside the established RPDs for the duplicate groundwater sample. DRO analysis for the sediment sample 728SWE03 were outside the established RPDs for field duplicates. No qualifiers were required.

4.4 Field Duplicates

In addition to the matrix spike sample, field duplicates were collected to assess sampling precision. Two duplicate samples were collected which represents a frequency of approximately 10%, one for every ten field samples (rounded up), per matrix, per site, per sampling event. Field duplicates were within quality control RPD limits for 95% of the parameters analyzed. Sample duplicate precision is indicative that these data are comparable and representative of field conditions.

4.5 Equipment Rinsates

One equipment rinsate was sampled during this investigation and was free of contamination.

4.6 Laboratory Blanks

Laboratory blanks for all methods of analysis of groundwater, surface water and sediment were analyzed at the required frequency and were free of contaminants.

4.7 Laboratory Control Standards

Laboratory control standards were within the specified method criteria and the sample results required no qualifications.

5.0 SUMMARY OF DATA QUALITY

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness. The results of the data validation indicate the quality of the data is within QC limits and is acceptable to verify or deny any contamination present in the groundwater, surface water or sediments at this site.

Reviewed by: Date:

hunter1\chem\reports\728-98.ltm

FIELD LOG GROUNDWATE				HEET	Metcall & Eddy
SAMPLED BY:	5. Rowell D	. Wilderm	en	WELL ID:	728-MW01
PROJECT NAME:_	HAAF 13T	atr	Sampling	LOCATION:	B.728
Date sampled: 7			· · · · · · · · · · · · · · · · · · ·		upon arrival? (Y) N
1. Casing Diameter (d) inche	s + 12 = <u>(</u>	0.1 <u>7</u> ft	1. Standing water (ga	11.) = <u>1.7</u>
2. Depth of water fro	om T.O.C	5.2.	ft	2. X <u>3</u>	well volumes
3. Depth of well from	T.O.C	3.20	ft	3. =5. /	gallons to purge
4. Feet of standing w	vater (h)	0.00	ft	4. Purging Method _	Waterra Pump
CALCULATION: Standing water volum)		
	= 3.14	[(<u>0.17</u>	_ft.) ² + 4] (_ <i>10.0</i>	// ⁰⁰ _ft.) x 7.48 gal / ft. ³ =	<u>1.7</u> gal
			pН	Conductivity	Temperature, (F)
1.Well volume =	. /		4.5	207	27.7
2.Well volume =	3.4	gal	4.5	205	
3.Well volume =	5.1	_gal	4.4	205	25.4
4.Well volume =		_gal		· · · · · · · · · · · · · · · · · · · ·	
5.Well volume =		_gal		· · · · · · · · · · · · · · · · · · ·	
Ground water sampl	e				
Sampling method -	D:sposable	Teflon	Bailer	Field preservation	
Sample Description	i				
Odor:					
Color:					
Appearance	•				
Weather Conditions					
Air Monitoring Equi	pment used: <u>0</u>	VA		····	
Reading:	Breathing zon	e: _Ø <i>рр</i>	n		······
	In Well:	<u>2 ррп</u>	n	••••••••••••••••••••••••••••••••••••••	
COMMENTS:					1
	····				
					:

FIELD LOG GROUNDWATE	BOOK SA			HEET	Molcali & Eddy
SAMPLED BY:	6. Lowell	D. Vilde	a prom	WELL ID:	728- MW04
PROJECT NAME: HAAF 1st atr Sampling			LOCATION:	B.728	
Date sampled: 7			,		pon amival? 🔿 N
1. Casing Diameter (d) inc	hes + 12 = _	0.17 ft	1. Standing water (gal	.) = <u>1,3</u>
2. Depth of water fro	om T.O.C	5.29	ft	2. X <u> </u>	well volumes
3. Depth of well from	T.O.C.	12.90	ft	3. = <u>3. 9</u>	gallons to purge
4. Feet of standing w	vater (h)	7.51	ft	4. Purging Method <u>U</u>	Vaterra Pump
CALCULATION: Standing water volum	ne = π [(d) ² +4](h)		·
	= 3.	14[(_0.17	_ft.) ² + 4] (<u>7</u> ,5	5 (_ft.) x 7.48 gal / ft.3 = _1	<u>.</u>] gal
			pН	Conductivity	Temperature, (F)
1.Well volume =	1.3	gal.	4.5	741	28.1
2.Well volume =	2.6	gal.	4.6	840	25.8
3.Well volume =	3.9	gal.	4.7	855	25.2
4.Well volume =		gal			
5.Well volume =		gal.			
Ground water samp	ie				
Sampling method -	_D:sposable	e Teflon	Bailer	_ Field preservation	,,
Sample Description	I			·	
Odor:					
Color:					
Appearance	:				
Weather Conditions	:				
Reading:	Breathing z	one:	Om		
COMMENTS:					
<u> </u>			· · · · · · · · · · · · · · · · · · ·		

 $(\cap$

i. N

GROUNDWATER MONITORING WELL WORK SH	EET
SAMPLED BY: 6. have D. Wilderman	WELL ID: 728 - mw1
PROJECT NAME: HAAF 1st atr Sampling	LOCATION: B.728
Date sampled: 7-29-98 Time start End	Well secured upon arrival? (Y) N
1. Casing Diameter (d) inches + 12 =ft	1. Standing water (gal.) = <u>l · /</u>
2. Depth of water from T.O.C. 6. 12 ft	2. X <u> </u>
3. Depth of well from T.O.C. 12.30 ft	3. = 3.3 gallons to purge
4. Feet of standing water (h) 6.18 ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
$= 3.14 \left[\left(\underline{0.17}_{\text{ft.}} \right)^2 \div 4 \right] \left(\underline{\ell}_{e.18} \right)^2$	3ft.) x 7.48 gal / ft. ³ = gal
pH	Conductivity Temperature, (F)
1.Well volume = <u>1.1</u> gal. <u>3.6</u>	
2.Well volume = 2.2 gal. $\frac{1}{2}$ gal. $\frac{1}{2}$	74 26.3
3.Well volume = <u>3.3</u> gal. <u>5.1</u>	67 25.1
4.Well volume = gal.	· · · · · · · · · · · · · · · · · · ·
5.Well volume = gal	
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	·
Odor:	
Color:	
Appearance:	
Weather Conditions:	
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <u>Ppm</u>	<u></u>
In Well: ppm	
COMMENTS: * 2 pt. recalibration	
1	· · · · · · · · · · · · · · · · · · ·

FIELD LOG BOOK SAMPLING DATA:

)

)

SAMPLED BY: 6- Powell D Wildonman	WELL ID:	728-mw60
PROJECT NAME: HAAF 1st atr Sampling	LOCATION:	B.728
Date sampled: 7/20/98 Time startEnd	_ Well secured up	on arrival? 🕜 N
1. Casing Diameter (d)	1. Standing water (gal.)	=/
2. Depth of water from T.O.C. 6.70 ft	2. X <u> </u>	well volumes
3. Depth of well from T.O.C. 13.00 ft	3. =	gallons to purge
4. Feet of standing water (h) 6.30 ft	4. Purging Method <u>U</u>	laterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$		
$= 3.14 [(0.17 \text{ ft.})^2 + 4] (6.30$	_ft.) x 7.48 gal / ft.3 = _ / .	_/ gal
рН	Conductivity	Temperature, (F)
1.Well volume = (.) gal3.7	357	
2.Well volume = gal	364	24.9
3.Well volume = <u>3.3</u> gal. <u>4.0</u>	382	24.0
4.Well volume = gal.		
5.Well volume = gal.		
Ground water sample		· · · · · · · · · · · · · · · · · · ·
Sampling method - D: sposable Teflon Bailer	Field preservation	
Sample Description		
Odor:		
Color:		
Appearance:		
Weather Conditions:		
Air Monitoring Equipment used: <u>OVA</u>		
Reading: Breathing zone: <u><i>Ppm</i></u>	<u></u>	
In Well: <u>>1000 ppm</u>	·····	
COMMENTS:		. · ·
	·	·

	BOOK SAMPL	ING DATA: WELL WORK S	HEET	Metcall & Eddy
	c a	Vildeman		728 - mw 61
PROJECT NAME:_	HAAF 1st C	tr Sampling	_ LOCATION:	B.728
		startEnd		upon arrival? 🚫 N
1. Casing Diameter (d) inches + 1	2= <u>0./7</u> ft	1. Standing water (ga	al.) =1, /
2. Depth of water fro	om T.O.C. 6.6	<u>, /</u> ft	2. X <u> </u>	well volumes
3. Depth of well from	1 T.O.C13.0	c ft	3. = <u>うう</u>	_ gallons to purge
4. Feet of standing w	vater (h) 6.39	ft	4. Purging Method _	Waterra Pump
CALCULATION: Standing water volum	ne = $\pi[(d)^2$	+4](h)		·
	= 3.14 [(<u>0.17</u> ft.) ² + 4] (<u>6</u> .	<u> </u>	gal
		pH	Conductivity	Temperature, (F)
1.Well volume =	<u> </u>	2.7	81	25.4
2.Well volume =	2.2 gal		119	25.0
3.Well volume =	<u> </u>	. 3.6	125	24.6
4.Well volume =			<u></u>	
5.Well volume =	gai	·		<u> </u>
Ground water sample	le			
Sampling method -	D:sposable Te	flom Bailer	_ Field preservation	
Sample Description				
Odor:				<u></u>
Color:				<u> </u>
Appearance	•			-
Weather Conditions	::			
Air Monitoring Equip	prment used: OVA			
Reading:	Breathing zone: _	Ø ppm		
COMMENTS:		· · ·		
				(
			·	

SAMPLED BY: <u>6. Rowell D Wildeman</u>	WELL ID: 728 - mw 63
PROJECT NAME: HAAF 1st atr Sampling	LOCATION: B.728
Date sampled: 7/29/98 Time start End	Well secured upon arrival? (Y) N
1. Casing Diameter (d)	1. Standing water (gal.) = 1.2
2. Depth of water from T.O.C. 6.79 ft	2. X <u>3</u> well volumes
3. Depth of well from T.O.C. 14.00 ft	3. = <u>3. 4</u> gallons to purge
4. Feet of standing water (h) 7.21 ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	•
$= 3.14 \left[\left(\underline{0.17} \text{ ft.} \right)^2 + 4 \right] \left(\underline{7.11} \right)^2$	_ft.) x 7.48 gal / ft. ³ = <u>1.</u> gal
нq	Conductivity Temperature, (F)
1.Well volume = $\frac{1.2}{2}$ gal. 3.5	152 25.1
2.Well volume = $2.9'$ gal. $\neq 5.9'$	187 24.5
3.Well volume = $\frac{9.4}{5.5}$ gal. 5.5	194 24.3
4.Well volume = gal	
5.Well volume = gal.	<u> </u>
Ground water sample	·
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor:	· · ·
Color:	
Appearance:	
Weather Conditions:	
Air Monitoring Equipment used: <u>OVA</u>	·
Reading: Breathing zone: <u><i>Ppm</i></u>	
In Well: <u>ppm</u> COMMENTS: <u>2 pt. recal: bration</u>	·····
COMMENTS: _2 pt. recal: bration	

SAMPLED BY: 6. Rowell D Wildowam	WELL ID: 728 - MW64
PROJECT NAME: HAAF 1st atr Sampling	LOCATION: B.728
Date sampled: 7-29-98 Time start End	Well secured upon arrival? (Y) N
1. Casing Diameter (d) 2 inches + 12 = 0.17 ft	1. Standing water (gal.) = <u> </u>
2. Depth of water from T.O.C. <u>5.39</u> ft	2. X well volumes
3. Depth of well from T.O.C. 13.00 ft	3. = $3 \cdot 5$ gallons to purge
4. Feet of standing water (h)ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	· · · · · · · · · · · · · · · · · · ·
$= 3.14 \left[\left(\underline{-0.17}_{\text{ft.}}\right)^2 + 4 \right] \left(\underline{-7.67}_{\text{ft.}}\right)^2$	_ft.) x 7.48 gal / ft.3 = <u>1-3</u> gal
pH .	Conductivity Temperature, (F)
1.Well volume = <u>1.3</u> gal. <u>3.4</u>	62 26
2.Well volume = 2.6 gal. 3.4	<u> </u>
3.Well volume = 3.9 gal. 3.5	60.3 24.7
4.Well volume = gal.	
5.Well volume = gal	· ·
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor:	
Color:	
Appearance:	
Weather Conditions:	
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <u><i>Kppm</i></u>	
In Well: <u>2. ppm</u>	
COMMENTS:	

SAMPLED BY: 6-Rowell P. Wildermon	WELL ID: 728 - MW 45
PROJECT NAME: HAAF 1st atr Sampling	LOCATION: B.728
Date sampled: 7/20/98 Time start End	_ Well secured upon arrival? (Y) N
1. Casing Diameter (d) inches + 12 =0.17_tt	1. Standing water (gal.) =) , /
2. Depth of water from T.O.C. 6.73 ft	2. X <u> </u>
3. Depth of well from T.O.C. 13.00 ft	3. = 3.3 gallons to purge
4. Feet of standing water (h) 6.27 ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
$= 3.14 [(0.17 \text{ tt.})^2 + 4] (6.27$	_ft.) x 7.48 gal / ft. ³ = <u> </u>
pH	Conductivity Temperature, (F)
1.Well volume = gal	187 25.1
2.Well volume = 2.7 gal. <u>5.9</u>	
3.Well volume = <u>3.3</u> gal. <u>5.8</u>	188 24.8
4.Well volume = gal	· · · · · · · · · · · · · · · · · · ·
5.Well volume = gal.	
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor:	
Color:	
Appearance:	······································
Weather Conditions:	
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <u><i>Ppm</i></u>	· · · · · · · · · · · · · · · · · · ·
In Well:	
COMMENTS:	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	·

SITE RANKING FORM

Facility Name: Former Building 728	Ranked by: D. Humphris			
County: <u>Chatham</u> Facility ID#: <u>9025035 ar</u>	nd 9025049 Date Ranked: 9/30/98			
CONTAMINATION				
SOIL CONTAMINATION				
A. Total PAHs - B. Maximum Concentration found on the site (Assume <0.660 mg/kg if only	Total Benzene - Maximum Concentration found on the site			
gasoline was stored on site)	□ ≤ 0.005 mg/kg = 0			
□ ≤ 0.660 mg/kg = 0	□ > 0.00505 mg/kg = 1			
$\Box > 0.66 - 1 \text{ mg/kg} = 10$	■ >.05- 1 mg/kg* = 10			
□ > 1 - 10 mg/kg = 25	□ > 1-10 mg/kg = 25			
■ > 10 mg/kg = 50	□ > 10 - 50 mg/kg = 40			
· ·	□ > 50 mg/kg = 50			
C. Depth to Groundwater (bls = below land surface)				
□ > 50' bls = 1				
\Box > 25'-50' bis = 2				
□ > 10'-25' bis = 5				
■ ≤10 bis = 10				
Fill in the blanks: (A. <u>50</u>) + (B. <u>10</u>) = (<u>60</u>) x (C. <u>10</u>) = (D. <u>600</u>)				
GROUNDWATER CONTAMINATION	· · · · · · · · · · · · · · · · · · ·			
E. Free Product (Nonaqueous-phase liquid F. hydrocarbons; See guidelines for definition of "sheen").	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release)			
$\square \text{ No free product } = 0$	1 < 5 uo/L = 0			
■ Sheen - 1/8"** = 250				
$\Box > 1/8" - 6" = 500$	$\Box > 5 - 100 \text{ ug/L} = 5$			
□ > 6" - 1 ft = 1,000	$\square > 100-1,000 \text{ ug/L} = 50$			
For every additional inch, add another	■ > 1,000-10,000 ug/L = 100 □ > 10,000 ug/L = 250			
100 points = <u>1,000 +</u>	□ > 10,000 ug/L = 250			
Fill in the blanks: (E. 250) + (F. 100) = (G. <u>350</u>)			
The second a determine in the contraction in the	tions			

*Two samples had detection levels <60 mg/kg due to dilutions. **Free product recovery reduces product thickness to less than 1/8 inch.

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public Water Supply		Ι.	Nor	n-Public Water Supp	bly
	 Impacted ≤ 500' > 500' - 1/4 mi > 1/4 mi - 1 mi > 1/4 mi - 2 mi > 2 mi lower susceptibility area > 1 mi 	 = 2000 = 500 = 25 = 10 = 2 = 0 s only: = 0 ptibility area, do not use to the second secon		■. Iowe	> 500' mi - 1/4 mi > 1/4 mi - 1/2 mi > 1/2 mi er susceptibility area > 1/4	= 2 = 0
J.	Distance from nearest (boundary to downgradie UTILITY TRENCHES 8 may be omitted from ra elevation is more than $\frac{1}{2}$ table. Impacted $\leq 500'$ > 500' - 1,000' > 1,000'	ent Surface Waters OR • VAULTS (a utility trench nking if its invert	К.	and	tance from any Free I crawl spaces Impacted ≤ 500' > 500' - 1,000' > 1,000' or no free product	 Product to basements = 500 = 50 = 5 = 0
Fill in t	•	H. <u>0)</u> + (I. <u>0</u>) + (J. <u>50</u> (G. <u>350</u>) x (L.	5(_) = L. <u>500</u> 00_) = M. <u>175,00</u> 00_) = N. <u>175,60</u>	
	SUSCEPTIBILITY ARE If site is located in a All other sites = 1					

Q. EXPLOSION HAZARD

Have any explosion vapors, possibly originating from this release, been detected in any subsurface structure (e.g., utility trenches, basements, vaults, crawl spaces, etc.)?

- □ Yes = 200,000
- No = 0

(N.<u>175,600</u>) x (P.<u>1</u>) = (L.<u>175,600</u> Fill in the blanks:) + (Q<u>.</u>0)

175,600 **ENVIRONMENTAL SENSITIVITY SCORE**

EXHIBIT B

SECOND QUARTERLY MONITORING ONLY REPORT

U.S. Army Corps of Engineers

FINAL SECOND QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 and 9025049

at

HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

under

Contract No. DACA01-96-D-0020 Delivery Order No. CV03

January 1999

Submitted to:

U.S. ARMY CORPS OF ENGINEERS SAVANNAH, GEORGIA

Prepared by:

METCALF & EDDY, INC. ATLANTA, GEORGIA

FINAL SECOND QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 AND 9025049 HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

TABLE OF CONTENTS

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL G CERTIFICATION	1
II. PROJECT SUMMARY	 2
III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONSA. Potentiometric Data:B. Analytical Data:	 3 3 3
IV. SITE RANKING	 5
V. CONCLUSIONS/RECOMMENDATIONS	
VI. REIMBURSEMENT	 5
APPENDICES	

1	Figures

- 2 Tables
- 3 Laboratory Analytical Results
- 4 Site Ranking Results

II. PROJECT SUMMARY

(Appendix 1, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

The former Building 728 site consisted of twelve USTs and eight oil/ water separators associated with the former Northern Fuel Battery and four USTs located near the rail spur; south of the fuel battery. The former Building 728 site is located on the northwestern portion of Hunter Army Airfield (HAAF) as illustrated in **Appendix 1**, **Figure 1**. A plan view of the former Northern Fuel Battery area is provided on **Figure 2a** in **Appendix 1**. During the 1940s, the tanks held aviation fuel which was pumped via pipelines to fueling pits on the runway. Around 1957, the entire system was converted to store an alcohol/water mixture used as an aircraft de-icer. Later, some of the tanks near former Building 728 were used to store waste oil. The four USTs located directly adjacent to former Building 728 had a capacity of 12,000 gallons. These tanks held aviation fuel and appear to have been part of the fuel hydrant system.

UST removal activities in the former Building 728 area were completed by Anderson Columbia Environmental, Inc. (ACE) in June 1994. A total of 43,140 gallons of hazardous and non-hazardous waste water was disposed of by Industrial Water Services, Inc. A total of 25 tanks (12 JP-4/aviation gas USTs, 4 aviation gas USTs, 8 oil/water separators, 1 water control pit) were removed. During tank removal activities, 2623.91 tons of soil was removed and transported to Laidlaw Environmental Services for incineration. Soil and groundwater samples were collected below the tank excavations in accordance with Georgia EPD UST closure requirements. Contamination in soil and groundwater has been confirmed by the sampling and no free product was encountered during the removal activities.

Metcalf & Eddy completed an initial investigation of the former Building 728 area in September 1995. The findings of the subsurface investigation were summarized in the Final CAP-Part A submitted to the Georgia EPD UST Program in August 1996. A summary of the UST closure activities was also presented in the CAP-Part A. A follow up investigation of the former Building 728 site culminated in the submittal of a CAP-Part B which was submitted to the EPD in December 1997. Free product was detected in monitoring wells MW08, MW59, and MW62. Free product recovery is ongoing utilizing a skimmer at well MW08 and absorbent socks (changed monthly) at wells MW59 and MW62. Pending funding for a remediation system recommended in the CAP-Part B, the USACE elected to perform quarterly monitoring which may aid in the design of the remediation system. This report documents the second quarterly sampling and analytical results.

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

Groundwater table elevations were measured in twenty monitoring wells on November 2, 1998 in order to determine the direction of groundwater flow. Eight monitoring wells (MW01, MW06, MW11, MW60, MW61, MW63, MW64, and MW65) were selected for sampling by the USACE. These monitoring wells were purged and sampled on November 2, 1998. All samples were analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX - Method 8021) and polynuclear aromatic hydrocarbons (PAHs - Method 8310). Purge water was containerized in drums and stored at the PDO Yard until proper disposal is arranged. Surface water samples were collected from SWE-01 (upgradient) and SWE-03 (downgradient) with a sediment sample collected from SWE-03 since no sediment was observed at SWE-01. The surface water and sediment samples were collected on November 5, 1998. Surface water and sediment were analyzed for BTEX and PAHs as above with the additional sediment analyses of total petroleum hydrocarbons-diesel range organics (DRO) and gasoline range organics (GRO) (both Method 8015M)

A. <u>Potentiometric Data</u>:

Tabulate all data and illustrate <u>last 2</u> monitoring events findings in Figures 2a and 2b. (Appendix 1, Figure 2a and 2b: Potentiometric Surface Maps) (Appendix 2, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Water levels were measured in twenty monitoring wells (the two deep wells were not measured) on November 2, 1998. Table 1 in Appendix 2 lists the wells and water level elevations. Compared to the first quarterly sampling measurements taken on July 29, 1998, water levels are an average of 0.44 feet lower. Figures 2a and 2b show the potentiometric surface map generated from the water levels from the first and second quarter sampling, respectively. Groundwater flow is generally to the northwest with a gradient of approximately 0.006 ft/ft. No significant changes were observed in the potentiometric surface, flow direction, or gradient compared to the information presented in the first quarterly monitoring report.

B. <u>Analytical Data</u>:

Tabulate all data for monitoring events findings in **Table 2**, illustrate last two events findings in **Figures 3a and 3b**, and graph the trend of contaminant concentration in **Figure 4**.

(Appendix 1, Figure 3a and 3b: Groundwater Quality Maps) (Appendix 1, Figure 4: Trend of Contaminant Concentrations) (Appendix 2, Table 2: Groundwater Analysis Results) (Appendix 3, Laboratory Analysis Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

Well sampling began with the well located in the area suspected of least contamination. Protective gloves were worn during sampling and changed between samples. The sampling procedures used were identical to those used in previous sampling episodes (CAP-Part A and B). Samples were shipped via Federal Express overnight to Analytical Services, Inc. (ASI) located in Norcross, Georgia for BTEX and PAH analyses. Analytical results are summarized in Table 2.

The eight monitoring wells and the potable well (Hunter 1) were sampled on November 3, 1998 for BTEX (Method 8020) and PAHs (Method 8310). Analytical results confirm wells MW06, MW11, MW60, MW61, MW63, and MW64 remain impacted by petroleum hydrocarbons as identified in the previous sampling episodes. Minor decreases in benzene and total BTEX were observed in MW11 and MW64. Benzene also decreased in MW63 but total BTEX increased. Minor increases in benzene and total BTEX were observed in MW06, MW60, and MW61. No major changes in benzene or total BTEX concentrations were observed. No changes were observed at MW01 and MW65 where benzene and total BTEX are below detection limits. The benzene concentrations at MW60, MW61, MW63, and MW64 exceed the Georgia EPD In-Stream Water Quality Standard (IWQS) of 71.28 $\mu g/L$ (**Table 2**). Figure 4 lists the benzene concentrations for each quarter plus a graph of the benzene values over time. Figures 3a and 3b show the concentrations of hydrocarbons in groundwater from the first and second quarterly monitoring periods, respectively.

PAHs were detected in every well sampled. The IWQS $(0.0311 \ \mu g/L$ for individual compounds) was exceeded at MW01, MW06, MW60, and MW61 but not at MW11, MW63, MW64, MW65. The regulated PAHs that were exceeded are benzo(a)-anthracene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, and chrysene. No apparent distribution pattern is observed. The PAHs identified are indicative of a diesel source rather than gasoline.

The potable water supply well was also sampled for BTEX and PAHs. Benzo(b)-fluoranthene was detected at 0.041 μ g/L; below the EPA Region 3 tap water standard of 0.092 μ g/L. Last quarter, only fluorene was detected so no clear pattern is emerging.

Surface water results indicate no IWQS exceedences of BTEX or PAH compounds (Table 3). Benzene was detected at $3.1 \mu g/L$ at SWE01 (upgradient) and at 0.68 $\mu g/L$ at SWE03 (downgradient). Figures 3a and 3b show the two surface water sampling locations and results.

Sediment was not observed at SWE01 and was therefore collected only from SWE03. The analytical results (**Table 4**) indicate no impact from BTEX compounds. Of the regulated PAHs detected, only benzo(b)fluoranthene exceeded its soil threshold level

(STL) of 0.660 mg/kg. The STLs are listed in Georgia Rule Chapter 391-3-15.09, Table B, less than 500 feet to surface water. DRO and GRO were detected at 0.017 and 0.0028 mg/kg, respectively (neither are regulated). All analytical data is presented in Appendix 3.

IV. SITE RANKING (NOTE: RE-RANK SITE AFTER EACH MONITORING EVENT)

(Appendix 4: Site ranking results)

Environmental Site Sensitive Score: 55,600 The Site Ranking Form is presented in Appendix 4.

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

This completes the second quarter of monitoring at this site. No significant changes in the groundwater flow direction or gradient were observed. Soluble petroleum hydrocarbon constituents continue to impact six monitoring wells and PAHs impact eight wells. Free product recovery will continue in monitoring well MW08 via the belt skimmer and in wells MW59 and MW62 via absorbent socks. Continued monitoring will determine whether or not the plume is migrating downgradient.

VI. REIMBURSEMENT

ATTACHED <u>N/A</u>

(Appendix 5: Reimbursement Application)

Fort Stewart is a federal installation and is not eligible for funding through the GUST Trust Fund.

021974\728-2qmr.doc

	NAT
01 UAL LOCATION "SOUTHEAST (UPGRADIEN SYMBOL IN DROP INLET	 POWER POLE MH - MANHOLE DI - DROP INLET NA - NOT MEASURED 15.5 POTENTIOMETRIC CONTOUR MEASUREMENTS TAKEN 7/29/98 30 0 60 120FT SCALE: 1"= 60'
FIGURE 2a	U.S. ARMY ENGINEER DISTRICT, SAVANNAH CORPS OF ENGINEERS SAVANNAH, GEORGIA
POTE	MER BUILDING 728 AREA NTIOMETRIC SURFACE MAP T QUARTERLY SAMPLING AIRFIELD SAVANNAH, GEORGIA
METCALF & ED	DY

~ . . .

FIGURE 4

ANNUAL MONITORING SPREADSHEET (BENZENE) - SECOND QUARTER FORMER BUILDING 728 HUNTER ARMY AIRFIELD

				BENZENE RE	ESULTS (ug/L)				
WELL #	CAP-B	1'st QTR	2'nd QTR	3'rd QTR	4'th QTR	5'th QTR	6'th QTR	7'th QTR	8'th QTR
MW01	0	0	0						
MW02	0	NS	NS						
MW03	4.2	NS	NS						
MW05	0	NS	NS						
MW06	24	0	7.5						
MW09	0	NS	NS						
MW10	0	NS	NS						
MW11	1700	95	62						
MW12	56	NS	NS						
MW13	1.4	NS	NS						
MW14	0	NS	NS						
MW55	0	NS	NS						
MW56	17	NS	NS						
MW57	24	NS	NS						
MW58	41	NS	NS						
MW60	1400	3000	3500						
MW61	910	850	930						
MW63	2400	930	910						
MW64	81	450	270						
MW65	0	0	0						
SMW01	0	0	0						

NS - Not Sampled

p:\hazwaste\hunt_ltm\728-qtr2.xls

	Chatha	F H	ROUNDWATEF ormer Building unter Army Air Icility ID Nos. 9	728	25049	
Location	Screen Interval ft, bgs	Water Depth, TOC	TOC Elevation, ft, msl	Water Level Elevation, ft, msl	Surface Elevation, ft, msl	Free Prod. Thickness ft.
CAP-A						
MW01	3.2-13.2	3.60	19.20	15.60	19.5	
MW02	3.8-13.8	5.43	20.51	15.08	20.8	
MW03	2.6-12.6	6.15	20.80	14.65	21.1	
MW04	3.4-13.4	Destroyed	3/97			
MW05	3.3-13.3	6.18	20.37	14.19	20.7	
MW06	2.9-12.9	5.41	20.02	14.61	20.4	
MW08	3.5-13.5	Product	Recovery		19.6	0.85 (11/98)
MW09	3.1-13.1	7.00	20.27	13.27	20.5	
MW10	2.9-12.9	6.60	19.11	12.51	19.4	
MW11	2.3-12.3	6.55	18.89	12.34	19.3	
MW12	2.9-12.9	4.48	18.51	14.03	18.8	
MW13	4.0-14.0	6.20	18.39	12.19	18.7	
MW14	4.0-14.0	7.26	18.76	11.50	19.0	
САР-В						
MW55	2.0-12.0	3.25	18.32	15.07	18.5	
MW56	1.4-11.4	4.75	19.69	14.94	19.8	
MW57	2.0-12.0	5.41	20.10	14.69	20.3	
MW58	2.0-12.0	4.69	19.21	14.52	19.4	. · · ·
MW59	2.0-12.0	Product	Recovery	NA	19.4	0.15 (3/97)
MW60	3.0-13.0	7.16	20.30	13.14	20.4	
MW61	3.0-13.0	7.05	20.34	13.29	20.5	
MW62	3.0-13.0	Product	Recovery	NA	19.9	0.81 (3/97)
MW63	4.0-14.0	7.25	20.15	12.90	20.3	
MW64	3.0-13.0	5.87	18.98	13.11	19.1	
MW65	3.0-13.0	7.20	18.41	11.21	18.6	
MW66	35.6-40.6	NA	18.60	NA	18.8	
MW67	33.0-38.0	NA	18.82	NA	19.0	

bgs-below ground surface

TOC-top of casing

msl-mean sea level

Measurements on 11/02/98 except MW08 on 11/8/98

NA- not measured

(p:\hazwaste\hunt_lim\wellsum.xls)

TABLE 2 : GROUNDWATER ANALYTICAL RESULTS

Ę

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	TYPE	(l/gn)	(I/gn)	(l/gn)	(l/gn)	(I/gn)	(l/ɓn)
MW01	11/2/98	Primary		n	n	n	Ω	0.27
MW06	11/2/98	Primary	7.5	4.0	29	6.8	47	21.85
MW11	11/2/98	Primary	62	2.1	15	85	164	0.83
MW60	11/2/98	Primary	3500	270	710	2900	7380	1.70
MW60	11/2/98	Duplicate 1	3600	280	720	3000	7600	3.46
MW61	11/2/98	Primary	930	67	290	1100	2387	19.40
MW63	11/2/98	Primary	910	100	120	570	1700	9.89
MW64	11/2/98	Primary	270	510	170	1500	2450	4.80
MW65	11/2/98	Primary	þ	∍	D	⊃	С	0.21
SMW01(B710)	11/2/98	Primary	n	ŋ	n	n	U	0.041
ARARS		SDWI	71.28	200,000	28,718	B	L	u.

U = Not Detected.

(-) = No IWQS listed.

(c:\-usace\hunter1\chem\reports\728q2t2.xis)

TABLE 3 : SURFACE WATER ANALYTICAL RESULTS

ſ

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	TYPE	(I/6n)	(I/gn)	(l/gu)	(I/6n)	(I/ɓn)	(l/gn)
SW01	11/5/98	Primary	3.1	1.5	1.4	3.0	9.0	0.097
SW1002	11/5/98	Duplicate	2.9	1.3	1.2	2.7	8.1	0
SW03	11/5/98	Primary	0.68	5	C	C	0.68	5
ARARS		IWQS	71.28	200,000	28,718	,		B

U = Not Detected. (-) = No IWOS listed.

•

(c:\-usace\hunter1\chem\reports\728q2t3.xls)

TABLE 4 : SEDIMENT ANALYTICAL RESULTS

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

(mg/kg) (mg/kg) (mg/kg) (mg/kg) U U U U 1 15 18 700			RESULT	Benzene	Toluene	l Ethylhenzene	Xvlanec	TOTAL RTEX	TOTAL PAH
11/5/98 Primary U <	SITE	DATE	TYPE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
11/5/98 Duplicate U U U U S 11/5/98 Duplicate U 115 U 18	SE03	11/5/98	Primary	D	_	_	n	n	4.930
115 1 18	SE10	11/5/98	Duplicate	D	D	D	D	D	8.260
	ARARS		STL STL	0.017	115	18	700	6	

U = Not Detected.

(-) = No STL listed (Table B, <500 ft to surface water).</p>

(c:\-usace\hunter1\chem\reports\728q2t4.xls)

DATA QUALITY SUMMARY REPORT

Hunter Army Airfield - Long Term Monitoring Former Buildings 133, 710, 728, 1310 & Fire Fighter Training Area December 22, 1998

1.0 INTRODUCTION

Metcalf & Eddy, Inc. was contracted by the United States Army Corps of Engineers, Savannah District, to perform quarterly groundwater monitoring at various locations at the former Hunter Army Airfield. This event represents the long term monitoring analytical data for November 1998.

Metcalf & Eddy, Inc. contracted with Analytical Services Inc. (ASI) Laboratories to perform the required analyses of groundwater, surface water and sediment samples. The analytical data was validated using the guidance found in USEPA National Functional Guidelines for Organics Data Review and Inorganics Analysis. This guidance follows the Quality Assurance (QA)/Quality Control (QC) requirements outlined in the USEPA's Test Methods for Evaluating Solid Waste (EPA SW-846). Overall these guidelines mimic the most current editions of the EPA's Functional Guidelines for Reviewing Organic and Inorganic Analyses conducted outside the EPA's Contract Laboratory Program (CLP).

The following sections of this Data Quality Summary Report discuss the laboratory reporting, data validation, problems encountered and corrective actions as applied to the samples and data collected during this determination.

1.1 Field Samples and Analysis

The following report summarizes the validation findings of the samples included in the Sample Data Groups listed below.

				Field	Trip	Equipment
<u>SDG</u>	<u>Date</u>	<u>Matrix</u>	<u>Samples</u>	<u>Duplicates</u>	<u>Blanks</u>	<u>Blanks</u>
101129	11/03/98	WATER	10	1	1	0
101200	11/04/98	WATER	14	2	1	1
101245	11/05/98	WATER	10	2	1	1
		SEDIMENT	Γ 2	1	1	0

Thirty groundwater samples, three surface water samples, two sediment samples, six field duplicates four trip blanks and two equipment rinsates were analyzed. All samples were analyzed for PAH's by EPA method 8310. Groundwater, surface water and sediment from buildings 133, 710, 728,1310 and the fire training area were analyzed for volatile aromatics by EPA method 8021. Sediment from building 728 was also analyzed for GRO and DRO by EPA methods 8015M and 8100M. All samples were analyzed by ASI Laboratories, Norcross, Georgia using the above listed USEPA SW-846 Methods:

2.0 LABORATORY REPORTING

2.1 Laboratory Blanks

Laboratory blanks or method blanks are artificial samples prepared from the same matrix type as the samples to be analyzed. These blanks are taken through sample preparation and analyzed before the field samples to determine if the glassware, sample preparation or laboratory environment has contaminated the field samples.

Laboratory blanks for all methods of analysis of groundwater, surface water and sediments were analyzed at the required frequency and were free of contaminants with the exception of dibenzo(a,h)anthracene, which was detected in the blank sample associated with the following groundwater field samples; 710MW02, 710MW04, 710SMW01 and 728MW65. See section 3.3 for qualified results.

2.2 Laboratory Control Samples (% Recovery)

Laboratory control samples are artificial samples prepared from the same matrix type as the samples to be analyzed. These samples are processed through sample preparation and analyzed to assess the performance of each analytical system that the laboratory uses to analyze the field samples.

All laboratory control samples for all methods of analysis of groundwater, surface water and sediments were analyzed at the required frequency. Recoveries for acenaphthene, dibenzo(a,h)anthracene and fluoranthene were slightly below the required control limit. See section 3.3 for qualified results.

2.3 Precision (% RPD)

Laboratory precision is evaluated by calculating the relative percent difference (RPD) between the values reported for a matrix spiked (MS) sample and its duplicate, the matrix spiked duplicate (MSD), or any other set of duplicate parameters. The following equation is utilized for this calculation:

 $RPD = \frac{|Vs - Vd|}{|Vs + Vd| / 2} X 100$

Where V_s is the value reported for the matrix spiked (MS) sample and Vd is the value reported for it's duplicate (MSD). Sample RPDs are compared to the analyzing laboratory's precision control limits which are primarily derived from their in-house quality control data.

RPDs for all methods of analysis of groundwater and surface water spiked samples were within required control limits with the exception of three matrix spikes which exhibited slightly high RPDs for PAH's and one matrix spike for volatile organics. RPDs for all methods of analysis of sediment samples were within required control limits with the exception of one matrix spike which exhibited slightly high RPDs for PAH's and two matrix spikes for volatile organics. No qualifiers were required.
RPDs of field duplicates for all methods of analysis of groundwater, surface water and sediment were within the established control limits with the exception of six PAH and four volatile organics samples. No qualifiers were required.

2.4 Surrogate Recovery

Surrogates are compounds similar to analytes of interest but are not normally found in environmental samples. Prior to sample preparation and analysis, surrogates are spiked into laboratory control samples, calibration and check standards, matrix spiked samples and field samples. Accuracy is measured by calculating percent recoveries for each surrogate as follows:

> %R = Concentration of spike found Concentration of spike added

Surrogate recoveries for groundwater, surface water and sediment were all within the required control limits.

2.5 Holding Time

Holding time is the storage time allowed between sample collection and sample analysis when the designated preservation and storage techniques are employed.

All groundwater, surface water and sediment samples were analyzed within required holding times for all methods of analysis with the exception of groundwater sample 1310MW04 analyzed for PAH's and was extracted two days out of hold time.

2.6 Temperature

Chain of custody forms and cooler receipts document that the laboratory received all samples at temperatures ranging from 3 $^{\circ}$ C to 7 $^{\circ}$ C. These temperatures are within the acceptable limits of the required preservation requirement of 4 $^{\circ}$ C plus or minus 2 $^{\circ}$ C.

2.7 Completeness

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness.

3.0 DATA VALIDATION

The objective when evaluating the quality of chemical data is to determine its usability. The evaluation is based upon the interpretation of the laboratory QC data, the field QC data, and the project Data Quality Objectives (DQOs). The evaluation process is often termed "data validation".

3.1 Laboratory Data Validation

Laboratory data were evaluated to assess, holding times, laboratory blanks, laboratory control samples, surrogate recoveries, and matrix spike/matrix spike duplicate (MS/MSD) relative percent differences (RPDs). These criteria were used to evaluate the bias and precision of the data generated by the laboratory. The bias of the laboratory data was assessed through consideration of the following:

- Adherence to the prescribed method
- Recovery of MS/MSD from field samples
- Method blank contamination
- Adherence to sample preparation and holding times
- Recovery of surrogate spikes
- Field duplicate precision

3.2 Definition of Data Qualifiers

During the data validation process, all laboratory data had to be evaluated and assigned a data qualifier, as applicable. These qualifiers are defined in the February 1994 EPA documents titled, "National Functional Guidelines for Organic and Inorganic Data Review." The guidance also describes procedures to be followed when qualifying data. The data qualifiers are defined as follows:

U = the compound was analyzed for, but was not detected above the level of the associated value

J = the associated value is an estimated quantity. The reported result is qualitatively accurate but quantitatively imprecise.

UJ = the compound was analyzed for, but was not detected, and the associated value is an estimated value due to a variance from quality control limits.

R = the reported result or quantitation limit is rejected and unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte can not be verified

Data qualifier flags were not assigned to data that were totally in compliance with Quality Control requirements.

For organic data, specifically VOCs, the positive and undetected (U) results were qualified as estimated (J/UJ) if one surrogate compound was detected outside acceptable recovery limits and/or the recovery was greater than 10 percent. If the recoveries of one surrogate compound were less than 10 percent, then the positive results were qualified as estimated (J) and the undetected results were rejected (R). Results of PAH compounds are validated in the same manner as VOC, the qualifiers are applied to results with one or more surrogate compounds detected outside the acceptable recovery limits.

3.3 Qualified Results

<u>Polynuclear Aromatic Hydrocarbons</u> - One blank for method EPA8310 contained dibenzo(a,h)anthracene at 0.22 ug/l. Applying the 5X rule, the associated samples 710MW02, 710MW04, 710MWS01 and 728MW65 were qualified as required.

The groundwater matrix spike recoveries and the laboratory control standards recoveries of acenaphthene dibenzo(a,h)anthracene and fluoranthene were slightly lower than the required control limit. All of the associated samples; 133MW01, 133MW02, 133MW04, 133MW05, 133MW06, 133MW07, 133PX15, 1310MW05 and 1310MW06 were qualified as estimated, (J) for these analytes. The sediment matrix spike recovery of pyrene was higher than the required control limit. The detects of associated sample 728SWE03 was qualified as estimated, (J) for pyrene.

<u>Gasoline Range Organics</u> - The sediment matrix spike recovery for GRO was slightly lower than the required control limit. Sample 728SWE03 was qualified as estimated, (J) for GRO.

4.0 PROBLEMS ENCOUNTERED

Any problems encountered during sample analysis for this investigation are described in detail below. Analytical data that did not meet the QC requirements were qualified as stated in Section 3.3.

4.1 Holding Times

No problems were present regarding hold times with the exception of one sampled analyzed for EPA method 8310 that was extracted two days out of hold time.

4.2 Surrogate Recovery

No problems were encountered.

4.3 Precision (% RPD)

No problems were encountered outside of a few field duplicate outliers. No qualifiers were applied.

4.4 Field Duplicates

In addition to the matrix spike sample, field duplicates were collected to assess sampling precision. Duplicate samples were collected at a frequency of one per site, per matrix, per sampling event. Field duplicate RPDs were within the quality control limits for 95% of the parameters analyzed. Sample duplicate precision is indicative that these data are comparable and representative of field conditions.

4.5 Equipment Rinsates

Two equipment rinsates were analyzed in with this set of groundwater and surface water samples. These rinsate blanks were found to be free of contamination.

4.6 Laboratory Blanks

Laboratory blanks were within the specified method criteria and the sample results required no qualifications with the exception of the samples mentioned under Section 3.3.

4.7 Laboratory Control Standards

Laboratory control standards were within the specified method criteria and the sample results required no qualifications with the exception of the samples mentioned under Section 3.3.

5.0 SUMMARY OF DATA QUALITY

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness. The results of the data validation indicate the quality of the data is within QC limits and is acceptable to verify or deny any contamination present in the groundwater at this site.

12/22/98 Reviewed by: Date:

hunter1\chem\reports\2ndqtr.ltm

Page: 1A of 1B

HUNTER ARMY AIRFIELD LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS FOR GROUNDWATER

728-MW6103 728MW61 < 0.0311 < 0.0311 < 0.097 < 0.0311 < 0.0311 <0.157 < 0.0311 11/03/98 < 0.123 < 0.031 0.24 < 0.214 Primary 0.12 < 0.107 <5.0 <5.0 1100 <5.0 < 5.0 0.33 0.71 67 290 930 <u>0</u> 728-MW8003 Duplicate 1 728MW60 < 0.0311 < 0.157 < 0.0311 < 0.0311 < 0.097 < 0.0311 < 0.0311 11/03/98 < 0.123 1.5 0.055 < 0.214 0.9 < 0.164 < 0.031 < 0.107 <25 3000 3600 < 25 ₹25 < 25 280 720 0.1 728-MW6003 728MW60 < 0.0311 < 0.302 <0.097 < 0.0311 < 0.0311 < 0.0311 <0.0311 11/03/98 < 0.157 0.05 < 0.164 < 0.031 < 0.123 < 0.214 0.79 < 0.107 Primary <13 < 270 2900 3500 ₩ V v 13 3 0.86 v 13 710 728-MW1103 728MW11 < 0,0311 < 0.0311 < 0.0311 <0.157 < 0.0311 < 0.0311 < 0.0311 < 0.123 < 0.103 11/03/98 < 0.097 < 0.031 < 0.302 <0.50 < 0.092 < 0.214 < 0.107 85 --- = Not analyzed < 0.50 Primary < 0.50 < 0.50 0.83 2 <u>о</u> 62 728-MW0603 < = Not detected at indicated reporting limit 728MW06 < 0.0311 < 0.0311 11/03/98 < 0.157 <0.302 0.26 < 0.031 < 0.214 0.13 Primary 0.34 6.3 0.72 с 5 6.8 \$0.5 <0.5 < 0.5 <0.5 **4**.0 0. 4 7.5 7.5 2.5 2 4. 23 I 728-MW0103 728MW01 11/03/98 <0.097 < 0.103 < 0.0311 < 0.0311 < 0.0311 < 0.302 < 0.157 < 0.031 < 0.123 < 0.092 < 0.164 < 0.214 < 0.107 0.13 0.05 Primary <0.5 0.5 0.1 V 9.0× < 0.5 <0.5 < 0.5 < 0.5 <0.5 ×0.5 0.09 RESULT TYPE SAMPLE ID Values represent total concentrations unless noted DATE SITE (Units in ug/L) ndeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene 1,2-Dichlorobenzene Benzo(b)fluoranthene Benzo(k)fluoranthene 1, 3-Dichlorobenzene 1,4-Dichlorobenzene Benzo(ghi)perylene Benzo(a)anthracene Anthracene Benzo(a)pyrene Acenaphthene Acenaphthylene CONSTITUENT Fluoranthene Chlorobenzene Xylene (total) Phenanthrene Ethylbenzene Naphthalene Chrysene Toluene Fluorene Benzene Pyrene

EPA METHODS:8021B, 8310.

J = RESULT IS ESTIMATED. R = RESULT IS REJECTED.

728-WW6503 <0.123 728MW65 <0.157 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 <0.103 11/03/98 < 0.302 < 0.097 < 0.164 < 0.092 < 0.214 <=Not detected at indicated reporting limit ----=Not analyzed</p> <0.5 < 0.107 Primary < 0.21 o V ₹0.5 ₹0.5 <0.5 <0.5 < <0.5 < < 0.5 728-MW6403 728MW64 <0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.123 11/03/98 < 0.0311 < 0.103 < 0.097 <0.157 < 0.302 < 0.092 < 0.031 < 0.214 < 0.107 <2.5 Primary А2.5 Д 1500 510 < 2.5 < 2.5 270 170 4.8 728-MW6303 728MW63 < 0.0311 <0.123 < 0.0311 < 0.0311 < 0.0311 11/03/98 < 0.0311 < 0.157 < 0.0311 < 0.103 < 0.097 < 0.031 < 0.214 < 0.107 Primary <2.5 0.69 570 <2.5 < 2.5 <2.5 100 0.23 910 120 6.9 I RESULT TYPE SAMPLE ID DATE Values represent total concentrations unless noted SITE (Units in ug/L) ndeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzo(a)anthracene Benzo(ghi)perylene Benzo(a)pyrene CONSTITUENT Acenaphthylene Acenaphthene Chlorobenzene Xylene (total) Phenanthrene Anthracene Ethylbenzene Ioluene Chrysene Fluoranthene Naphthalene Fluorene Benzene Pyrene

ĺ

R = RESULT IS REJECTED.

RESULT IS ESTIMATED.

021B, 8310.

EPA METHO

Page: 1B of 1B

LONG TERM MONITORING - FORMER BUILDING 728 PRIMARY RESULTS FOR GROUNDWATER

(

R = RESULT IS REJECTED. J = RESULT IS ESTIMATED. Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed A0.5 <0.097 710-SMW0112 710SWW01 < 0.0311 < 0, 123 < 0.0311 < 0.0311 11/03/98 < 0.302 < 0.0311 < 0.0311 <0.103 < 0.157 < 0.092 < 0.214 Primary < 0.164 < 0.107 <0.5 < 0.27 ₹0.5 0.041 < 0.5 < 0.5 < 0.5 < 0.5 I RESULT TYPE SAMPLE ID DATE SITE (Units in ug/L) Indeno(1,2,3-c,d)pyrene Dibenz(a,h)anthracene 1,2-Dichlorobenzene Benzo(b)fluoranthene 1,4-Dichlorobenzene Benzo(k)fluoranthene 1,3-Dichlorobenzene Benzo(ghi)perylene Fluoranthene Benzo(a)anthracene Benzo(a)pyrene Acenaphthene Acenaphthylene CONSTITUENT Xylene (total) Chlorobenzene Anthracene Phenanthrene Ethylbenzene Naphthalene Chrysene Toluene Fluorene Benzene Pyrene

Page: 1A of 1A

ĺ

HUNTER ARMY AIRFIELD LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS FOR SURFACE WATER

	SITE	728SWE01	728SWE01	728SWE03
CONSTITUENT (Units in ug/L)	SAMPLE ID	728-SW0103	728-SW1003	728-SW0303
	DATE	11/05/98	11/05/98	11/05/98
	RESULT TYPE	Primary	Duplicate 1	Primary
Benzene		3.1	2.9	0.68
Toluene		1.5	1.3	<05 <05
Ethylbenzene		1.4	1.2	<0.5
Xylene (total)		3.0	2.7	<10
Chlorobenzene		<0.5	< 0.5	<0.5
1,2-Dichlorobenzene		<0.5	<0.5	<05
1,3-Dichlorobenzene		<0.5	<0.5	<0.5
1,4-Dichlorobenzene		<0.5	<0.5	<05
		L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.L.		
Acenaphthene		<0.302	<0.302	<0.302
Acenaphthylene		<0.164	<0.164	<0.164
Anthracene		<0.097	<0.097	<0.097
Benzo(a)anthracene		0.097	< 0.0311	<0.0311
Benzolalpyrene		<0.0311	<0.0311	<0.0311
Benzo(b)fluoranthene		< 0.0311	< 0.0311	<0.0311
Benzo(ghi)peryiene		<0.157	<0157	≪0.157
Benzo(k)fiuoranthene		< 0.0311	< 0.0311	<0.0311
Chrysene		<0.0311	<0.0311	<0.0311
Dibenz(a,h)anthracene		< 0.031	< 0.031	<0.031
Fluoranthene		<0.123	<0.123	≪0.123
Fluorene		< 0.092	< 0.092	<0.092
hdeno[1,2,3-c,d]pyrene		<0.0311	< 0.0311	<0.0311
Naphthalene		<0.214	<0.214	<0.214
Phenanthrene		<0.103	<0.103	<0.103
Pyrene		< 0.107	<0.107	<0.107
Values represent total concentrations unless noted		< = Not detected at indicated reporting limit		= Not analyzed
(٩	

Page: 1A of 1A

EPA METHC 021B, 8310.

R = RESULT IS REJECTED.

RESULT IS ESTIMATED.

LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS FOR SEDIMENT HUNTER ARMY AIRFIELD

R = RESULT IS REJECTED J = RESULT IS ESTIMATED Values represent total concentrations unless noted <= Not detected at indicated reporting limit --- = Not analyzed 728-SE1003 728SWE03 Duplicate 1 < 0.0040 < 0.0040 < 0.0040 < 0.0040 <0.23 86/30/11 < 0.23 0.40 < 0.23 < 0.23 1.6 < 0.23 < 0.23 < 0.23 0.88 0.41 0.64 0.60 1.5 J 0.00 0.73 1.5 17 ł ł ł 728-SE0303 728SWE03 < 0.0040 < 0.0040 < 0.0040 < 0.0040 <0.23 11/05/98 Primary < 0.23 <0.23 < 0.23 < 0.23 < 0.23 0.83 0.39 < 0.23 0.74 J 0.28 0.36 0.28 J 0.51 0.00 0.42 0.40 ł 1.0 17 For RCL 8000AJASI RESULT TYPE SAMPLE ID DEPTH (ft) DATE SITE EPA METHODS:8020,8310,DR0,GR0. (Units in mg/kg) Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)anthracene Benzo(a)pyrene Acenaphthylene Acenaphthene Fluoranthene CONSTITUENT Xylene (total) Phenanthrene Anthracene Ethyl benzene Naphthalene Toluene Chrysene Fluorene Benzene Pyrene GRO DRO

of 1A Page: 1A

ł

Ę

FIELD LOG BOOK SAMPLING DA		HEET	Melcali & Eddy
SAMPLED BY: Humphins / Howard			728-MW/
PROJECT NAME: HAAF 2 atr 50			B.728
Date sampled: 11/3/48 Time start 09	ŧ.		oon arrival? 🕅 N
1. Casing Diameter (d) 2 inches + 12 = 0.1	<u>7_</u> ft	1. Standing water (gal.) = 1.7
2. Depth of water from T.O.C. 3.60	ft	2. X 3	well volumes
3. Depth of well from T.O.C. /3.2	ft	3. =	
4. Feet of standing water (h)		4. Purging Method _L	Vaterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$. ,
= 3.14 [(<u>0.17</u> ft.)	2 + 4] (ft.) x 7.48 gal / ft.3 =	gal
	pН		Temperature, (F)
	5.50		
2.Well volume = 3 . 4 gal	5.75	179	24.0
3.Well volume =5.0 gal	5.86	179	24.1
4.Well volume = gal			· (
5.Well volume = gal			
Ground water sample			
Sampling method - D: sposable Teflon J	Bailer	_ Field preservation	[.]
Sample Description			
Odor:None			·
Color: <u>L+-Br</u>		· · · · ·	
Appearance: <u>furbid</u>			·
Weather Conditions:PC., brceze, war			
Air Monitoring Equipment used: <u>OVA</u>			
Reading: Breathing zone: <u>Ppm</u>			
In Well: <u>3 ppm</u>			
COMMENTS:			
			(
		· · · ·	

FIELD LOG BOOK SAMPLING DATA: GROUNDWATER MONITORING WELL WORK S	
SAMPLED BY: Humphiss / Howand	WELL ID: 728 - MW6
PROJECT NAME: HAAF 2 Qtv Sampling	LOCATION: B.728
Date sampled: 11/3/98 Time start 0910 End 0	Well secured upon arrival? (Y) N
1. Casing Diameter (d) 2 inches + 12 = 0.17 ft	1. Standing water (gal.) = /, 2
2. Depth of water from T.O.C. 5.41 ft	2. X <u> </u>
3. Depth of well from T.O.C. <u>12.9</u> ft	3. = <u>3, 7</u> gallons to purge
4. Feet of standing water (h)ft	4. Purging Method Waterra Pum
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
= 3.14 [(<u>0.17</u> tt.) ² + 4] (ft.) x 7.48 gal / ft. ³ = gal
pН	Conductivity Temperature, (
1.Well volume = /, 2 gal 6, 2.3	679 29.2
2.Well volume = <u>2.4</u> gal. <u>6.2</u>	-
3.Well volume = <u>3, 7</u> gal. <u>6, 20</u>	698 23.9
4.Well volume = gal.	
5.Well volume = gal.	
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor: <u>Sulphur</u> , petroleum Color: <u>H</u> Br.	· · · · · · · · · · · · · · · · · · ·
Color: 4 Br.	
Appearance:tur bid	
Weather Conditions: PC, sl. brceze, Warm	
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <i>ppm</i>	· · · · · · · · · · · · · · · · · · ·
In Well:	
COMMENTS:	

FIELD LOG BOOK SAMPLING GROUNDWATER MONITORING WEI	DATA: LL WORK SH	EET	Molcall & Eddy
SAMPLED BY: Humphris / Howard	2	WELL ID:	728-MW11
PROJECT NAME: <u>HAAF 2 atr</u>	Sampling		B.728
Date sampled: 11/3/18 Time start	6810 End 682	⊘ Well secured L	ipon arrival? 🕅 N
1. Casing Diameter (d) 2 inches + 12 =	<u>0.17</u> tt	1. Standing water (ga	l.) =
2. Depth of water from T.O.C. 6.55	ft	2. X <u> </u>	well volumes
3. Depth of well from T.O.C. 12.3	ft	3.= 3.0	gallons to purge
4. Feet of standing water (h)	ft	4. Purging Method	Waterra Pump
CALCULATION: Standing water volume = $\pi[(d)^2 + 4](h)$	1)		· •
= 3.14 [(_0.17	_ft.) ² + 4] (ft.) x 7.48 gal / ft. ³ =	gal
	pН	Conductivity	Temperature, (F)
1.Well volume = / gal	5.5	79,4	23,3 C
2.Well volume = 2.0° gal.	5,39	59.6	23.3
3.Well volume =3 , 0gal	5,25	57.9	23.7
4.Well volume = gal		<u> </u>	. <u></u>
5.Well volume = gal			
Ground water sample			
Sampling method - D: sposable Teflon	Bailer	Field preservation	
Sample Description			
Odor: <u>Sulphur/potroleum</u>	· . · · · ·		
Color: 4/dK Br		· · · · · · · · · · · · · · · · · · ·	
Appearance: <u>furbid</u>			
Appearance: <u>furbid</u> Weather Conditions: <u>PC</u> , warm, sl. 1	breeze		
Air Monitoring Equipment used: <u>OVA</u>			
Reading: Breathing zone:			
in Well: <u>Dppr</u>			
COMMENTS:			

FIELD LOG E	BOOK SAMPL		SHEET	Melcail & Eddy
SAMPLED BY:	Humphris	s / Howard	WELL ID:	728-MW60
PROJECT NAME:	HAAF 20	2tr Sampling		B.728
	1 1	e start 0851 End 0		upon arrival? 🕅 N
1. Casing Diameter (d) <u></u> inches +	12 = <u>0./7</u> tt	1. Standing water (ga	ll.) =
2. Depth of water from	m T.O.C	7.16 ft	2. X <u>3</u>	well volumes
3. Depth of well from	т.о.с	<u>/3.0</u> ft	3. = <u> </u>	_ gallons to purge
4. Feet of standing wa	ater (h)	ft	4. Purging Method _	Waterra Pun
CALCULATION: Standing water volume	e = π[(d) ²	²+4](h)		
	= 3.14 [(<u>_0.17_</u> ft.) ² + 4] (ft.) x 7.48 gai / ft. ³ =	gal
	~	pН	Conductivity	Temperature, (
1.Well volume =		al. <u>5.85</u>	236	Z3.7 C
2.Well volume =	g	al. <u>5.89</u>	244	Z 3.8
3.Well volume =	<u>3,9</u>	al. <u>5.87</u>	245	23.8
4.Well volume =		al		
5.Well volume =	ga	al		<u> </u>
Ground water sample	9	· · ·	<u> </u>	
Sampling method	Disposable T	Eflon Bailer	Field preservation -	
Sample Description Odor:	Sulphur / per	troleum	•	· · · ·
Color:	furbid			
Appearance:	P(
Reading:				
COMMENTS:		NUppm		,
-				
			, 	

FIELD	LOG BO	OOK SAMPI	ING D	ATA:	
GROUNI	OWATER	MONITORING	G WELL	WORK	SHEET
		, ,	1.1 1		

SAMPLED BY: Humphins / Howard	WELL ID: 728-MW61
PROJECT NAME: HAAF 2 atr Sampling	
Date sampled: $1/3/48$ Time start 0905 End 09	Well secured upon arrival? (Y) N
1. Casing Diameter (d) 2 inches + 12 = <u>0.17</u> ft	1. Standing water (gal.) = <u>/. 3</u>
2. Depth of water from T.O.C. 7.05 tt	2. X <u>3</u> well volumes
3. Depth of well from T.O.C. <u>13.D</u> ft	3. = 4.0 gallons to purge
4. Feet of standing water (h)ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
= 3.14 [(0.17 tt.)2 + 4](ft.) x 7.48 gal / ft. ³ = gal
рH	Conductivity Temperature, (F)
1.Well volume = 1.3 gal. 4.83	
2.Well volume =, $b_{gal.} = 5.45$	118.3 23.9
3.Well volume = $4,0$ gal. $5,54$	105.9 24.2
4.Well volume = gal.	(
5.Well volume = gal.	
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor: <u>Sulphur / petroleum</u>	
Color:	
Appearance:	· · · · · · · · · · · · · · · · · · ·
Weather Conditions: PC, Sl. breeze, Warm	· · · · · · · · · · · · · · · · · · ·
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <u>Øppm</u>	
In Well: <u>5.0 ppm</u>	
COMMENTS:	· · · · · · · · · · · · · · · · · · ·

FIELD LOG GROUNDWATE	BOOK SAMPLING	DATA:	НЕЕТ	Motcall & Eddy
-	Humphris / Howard			728-MW63
	HAAF 2 Qtr		LOCATION:	B.728
	1/3/98 Time start	• /		pon amival? 🔿 N
1. Casing Diameter	(d) inches + 12 =	<u>0.17_ft</u>	1. Standing water (gal	.) =/ , 3
2. Depth of water from	om T.O.C7-23	<u>5 </u>	2. X <u> </u>	well volumes
3. Depth of well from	n T.O.C	<u> </u>	3. = 3. 9	gallons to purge
4. Feet of standing v	water (h)	ft	4. Purging Method _{	Naterra Pury
CALCULATION: Standing water volur	ne = $\pi[(d)^2 + 4]($	h)		
	= 3.14 [(<u>0.17</u>	ft.) ² + 4] (ft.) x 7.48 gal / ft. ³ =	gai
1 Woll volume -	/. 5gal.	рн 5-47	•	Temperature, (F
		5.55		••
3.Well volume =		5.64		23.6
	gal.			
-	gal.		· · · · · · · · · · · · · · · · · · ·	
Ground water samp	le		· · · · · · · · · · · · · · · · · · ·	
Sampling method -	Disposable Teflon	. Bailer	_ Field preservation	
Sample Description	n			
Odor:	sulphur / petrolec dkbr/gn	im		
Color:	dk br/gn			· · · · · · · · · · · · · · · · · · ·
Appearance	:turbid			
	s: <u>PC</u> , sl. breeze,			
	pment used: <u>OVA</u>			
	Breathing zone:			
COMMENTS:				
·	·····			
τια του του πολλαγικό το του του του του του του του του του				· · ·

MXE
Melcall & Eddy
-

)

GROUNDWATE	R MONITO		L WORK S	HEET		Metcall & Eddy
SAMPLED BY:	Humphois	Howard		•	WELL ID:	728-MW64 (
PROJECT NAME:				_		B.728
Date sampled:					Well secured	upon arrival? 🚫 N
1. Casing Diameter ((d) in	ches + 12 =	<u>17_</u> ft	1. Star	iding water (g	al.) =/. Z
2. Depth of water from	om T.O.C	5.87	ft	2. X _	3	well volumes
3. Depth of well from	n T.O.C.	13.0	ft	3. =	3.6	gallons to purge
4. Feet of standing w	water (h)		ft	4. Purç	ging Method	Waterra Pump
CALCULATION: Standing water volum	ne = π	[(d) ² +4](h)				· · · · ·
	= 3	.14 [(<u>0.17</u> f	t.) ² + 4] (ft.) x 7.4	8 gal / ft. ³ = _	gal
1.Well volume =			pH	Cor	aductivity	Temperature, (F)
2.Well volume =	,	-				
3.Well volume =	3.6	gal				
4.Well volume =		gal			<u></u>	(
5.Well volume =		gal				<u></u>
Ground water samp				·		· · · · · · · · · · · · · · · · · · ·
Sampling method -	D:sposabl	le lefton	Bailer	_ Field p	reservation -	
Color:	1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Weather Conditions			ar m			
Air Monitoring Equi						
COMMENTS:						
						(
						,(

FIELD LOG E			i DATA: Ell work shi	EET	Metcali & Eddy
SAMPLED BY:	Hump	hvis / He	oward	WELL ID:	728-MW65
PROJECT NAME:	HAAF	2 atr	Sampling	LOCATION:_	B.728
Date sampled:			q	Well secured u	pon arrival? (Y) N
1. Casing Diameter (d) inch	es + 12 = _	<u>0.17</u> tt	1. Standing water (gal	.) =/, 3
2. Depth of water from	n T.O.C	7,2	2ft	2. X <u> </u>	well volumes
3. Depth of well from	T.O.C	/3,(<u> </u>	3. = 4.0	gallons to purge
4. Feet of standing wa	ater (h)		ft	4. Purging Method _L	Vaterra Pum
CALCULATION: Standing water volume	θ = π[(d) ² +4]	(h)		
	= 3.1	4[(<u>0.17</u>	ft.) ² + 4] (ft.) x 7.48 gal / ft.3 =	gal
1.Well volume =	1.5	a al	pH NA Spilled	Conductivity	Temperature, (F) $\mathcal{N}A$
2.Well volume =	3,0	gal.	5,90	161.4	
			5,90	152.1	23.2
3.Well volume =					
4.Well volume = 5.Well volume =				· · · ·	
Ground water sample Sampling method			Bailer	Field preservation	
Sample Description					
Odor:	None				· · · · · · · · · · · · · · · · · · ·
Color:	Lt.Br.				
Appearance:	furbid				· · · · · · · · · · · · · · · · · · ·
Weather Conditions:	PC/ove	reast, u	jarm		
Air Monitoring Equip	ment used:	OVA			
COMMENTS:					
<u> </u>					·
=		· · · ·			

FIELD LOGBOOK SOIL/SEDIMENT SAMPLING DATA

Date $1/5/98$ Location <u>B.728</u> SWE01	·····
Samplers Used $\leq s = b_0 \omega l$	
Drawing of sampling location (including location description as well as the pressure of debris surface she debris surface sheens, recent excavations, vegetation, etc.)	
PC, mild, sl. breeze	
	080
Time of sample collection 1400	
OVA Readings NA	
Depth of water (for sediment sampling) 4^{\prime} , ± 10 g pm	
Decontamination (page number references) <u>Work Plan p A 10-2</u> Spoons or spatulas Trowel Hand corer Hand auger Bowls Split spoons	· · · · · · · · · · · · · · · · · · ·
Photograph frame numbers NA	
Signature of field team personnel making data entry) D. Humphois	

FIELD LOGBOOK SOIL/SEDIMENT SAMPLING DATA

Date $11/5/98$ Location $B.728$ SWE03	
Samplers Used 55 bowl 55 Spoon, encore	
Drawing of sampling location (including location description as well as the pressure of debris debris surface sheens, recent excavations, vegetation, etc.) 5we03 1 1 1 1 1 1 1 1	SURFACE WATER SAMPLE Collected also. 99 µmbos/cm 19.1 °C 6.39 pH
PC, mild-warm	
Soil/sediment sampling parameters: 8240 8010 8020 8100 8270 GRO DRO Description of sample $\frac{dk/bf}{B_{L}}$ fire samel, organics Time of sample collection $\frac{1}{4.55}$ OVA Readings $\frac{NA}{Depth}$ of water (for sediment sampling) $\frac{5''}{dep}$	
Decontamination (page number references) Uorkplan p.A. 10-2	
Spoons or spatulas	<u> </u>
Trowel	· · · · · · · · · · · · · · · · · · ·
Hand corer	
Hand auger	
Bowls	
Split spoons	
Photograph frame numbers	
Signature of field team personnel making data entry) D. Humphis	

SITE RANKING FORM

	ity Name: <u>Former Building 728</u> ity: <u>Chatham</u> Facility ID#: <u>9025035 a</u>	Ranked by: <u>D. Humphris</u> nd 9025049 Date Ranked: <u>12/4/98</u>
OIL	CONTAMINATION	
A.	Total PAHs - B. Maximum Concentration found on the site (Assume <0.660 mg/kg if only gasoline was stored on site) $\Box \leq 0.660 \text{ mg/kg} = 0$	Total Benzene - Maximum Concentration found on the site $\Box \leq 0.005 \text{ mg/kg} = 0$ $\Box > 0.00505 \text{ mg/kg} = 1$
	□ > 0.66 - 1 mg/kg ≈ 10	■ >.05- 1 mg/kg* = 10
	□ > 1 - 10 mg/kg = 25	□ > 1-10 mg/kg = 25
	□ > 1 - 10 mg/kg = 25 ■ > 10 mg/kg = 50	□ > 10 - 50 mg/kg = 40
		□ > 50 mg/kg = 50
	Depth to Groundwater (bls = below land surface)	
	□ > 50' bis = 1	
	□ > 25'-50' bls = 2	
	□ > 10'-25' bls = 5	
	■ ≤10 bls = 10	
ill i	n the blanks: (A. <u>50</u>) + (B. <u>10</u>) = (<u>60</u>) x (C. <u>10</u>) = (D. <u>_600</u>)
JKU	UNDWATER CONTAMINATION Free Product (Nonaqueous-phase liquid F.	Dissolved Benzene -
	hydrocarbons; See guidelines for definition of "sheen").	Maximum Concentration at the site
E	hydrocarbons; See guidelines for definition of "sheen"). No free product = 0	Maximum Concentration at the site (One well must be located at the source of the release)
E	hydrocarbons; See guidelines for definition of "sheen"). No free product = 0 Sheen - 1/8" = 250	Maximum Concentration at the site (One well must be located at the source of the release) □ ≤ 5 ug/L = 0
E	hydrocarbons; See guidelines for definition of "sheen"). No free product = 0 Sheen - $1/8^{"}$ = 250 > $1/8^{"}$ - $6^{"}$ = 500	Maximum Concentration at the site (One well must be located at the source of the release) $\Box \leq 5 \text{ ug/L} = 0$ $\Box \geq 5 - 100 \text{ ug/L} = 5$
[hydrocarbons; See guidelines for definition of "sheen").No free product=0Sheen - $1/8$ "=250> $1/8$ " - 6">=500>>6" - 1 ft=1,000	Maximum Concentration at the site (One well must be located at the source of the release) $\Box \leq 5 \text{ ug/L}$ = 0 $\Box > 5 - 100 \text{ ug/L}$ = 5 $\Box > 100 - 1,000 \text{ ug/L}$ = 50
5	hydrocarbons; See guidelines for definition of "sheen").No free product= 0Sheen - $1/8^{"}$ = 250> $1/8^{"}$ - $6^{"}$ = 500> 6" - 1 ft= 1,000	Maximum Concentration at the site (One well must be located at the source of the release) $\Box \leq 5 \text{ ug/L} = 0$ $\Box > 5 - 100 \text{ ug/L} = 5$

*Two samples had detection levels <60 mg/kg due to dilutions.

Ç

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public Water Supply	I.	Non-Public Water Supply
	Impacted = 2000 □ ≤ 500' = 500 □ > 500' - 1/4 mi = 25 □ > 1/4 mi - 1 mi = 10 □ > 1 mi - 2 mi = 2 ■ > 2 mi = 0 r lower susceptibility areas only = 0 If site is in lower susceptibility area, do not use		$ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water table. $\square \text{ Impacted} = 500$ $\blacksquare \le 500' = 50$ $\square > 500' - 1,000' = 5$ $\square > 1,000' = 1$	К.	Distance from any Free Product to basements and crawl spaces $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fill in 1	the blanks: =(H. <u>0</u>) + (I. <u>0</u>) + (J. <u>5(</u>		
	·		<u> 500)</u> = M. <u> 55,000</u>
-	(M. <u>55,000</u>) + (D	. <u> 600)</u> = N. <u> 55,600</u>
<u>P.</u>	SUSCEPTIBILITY AREA MULTIPLIER	_	•
	 If site is located in a low Groundwater Pollution 	Suscept	ibility Area - 0.5
Q.	 All other sites = 1 EXPLOSION HAZARD 		
	Have any explosion vapors, possibly originating fro structure (e.g., utility trenches, basements, vaults,		
	□ Yes = 200,000		
	■ No ≈ 0		
Fill in t	he blanks: (N. <u>55,600</u>) x (P. <u>1</u> = <u>55,600</u> ENVIRONMENTAL SENSI	<u></u>	

EXHIBIT C

THIRD QUARTERLY MONITORING ONLY REPORT

U.S. Army Corps of Engineers

FINAL THIRD QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 and 9025049

at

HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

under

Contract No. DACA01-96-D-0020 Delivery Order No. CV03

APRIL 1999

Submitted to:

U.S. ARMY CORPS OF ENGINEERS SAVANNAH, GEORGIA

Prepared by:

METCALF & EDDY, INC. ATLANTA, GEORGIA

FINAL THIRD QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 AND 9025049 HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

TABLE OF CONTENTS

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II. PROJECT SUMMARY	2
III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONSA. Potentiometric Data:B. Analytical Data:	
IV. SITE RANKING	5
V. CONCLUSIONS/RECOMMENDATIONS	5
VI. REIMBURSEMENT	5

APPENDICES

1	Figures

2	Tables
---	--------

- 3 Laboratory Analytical Results
- 4 Site Ranking Results

MONITORING ONLY REPORT

Submittal Date:April 1999Monitoring Report Number: 3rd Quarterly SamplingFor Period Covering:December 1998toFebruary 1999

 Facility Name:
 Former Building 728
 Street Address:
 Hunter Army Airfield

 Facility ID: 9025035 and 9025049
 City: Savannah County:
 Chatham Zip Code 31409

 Latitude:
 32° 01' 48"
 Longitude:
 81° 08' 03"

Submitted by UST Owner/Operator:	Prepared by Consultant/Contractor:
Name: Mr. Tom Fry	Name: David Wilderman
Company:HQs, 3d ID (Mech) & Fort Stewart	Company: Metcalf & Eddy, Inc.
Address: 1557 Frank Cochran Drive	Address: 1201 Peachtree St. N.E.
·	400 Colony Square, Suite 1101
City: Fort Stewart State: GA	City: <u>Atlanta</u> State: <u>GA</u>
Zip Code: 31314-4928	Zip Code: 30361
Telephone: 912-767-1078	Telephone: 404-881-8010

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologist. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: DAVIT WILD FRMAN
Signature: Jult
Date: 3.30.99

II. PROJECT SUMMARY

(Appendix 1, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

The former Building 728 site consisted of twelve USTs and eight oil/ water separators associated with the former Northern Fuel Battery and four USTs located near the rail spur; south of the fuel battery. The former Building 728 site is located on the northwestern portion of Hunter Army Airfield (HAAF) as illustrated in Appendix 1, Figure 1. A plan view of the former Northern Fuel Battery area is provided on Figure 2a in Appendix 1. During the 1940s, the tanks held aviation fuel which was pumped via pipelines to fueling pits on the runway. Around 1957, the entire system was converted to store an alcohol/water mixture used as an aircraft de-icer. Later, some of the tanks near former Building 728 were used to store waste oil. The four USTs located directly adjacent to former Building 728 had a capacity of 12,000 gallons. These tanks held aviation fuel and appear to have been part of the fuel hydrant system.

UST removal activities in the former Building 728 area were completed by Anderson Columbia Environmental, Inc. (ACE) in June 1994. A total of 43,140 gallons of hazardous and non-hazardous waste water was disposed of by Industrial Water Services, Inc. A total of 25 tanks (12 JP-4/aviation gas USTs, 4 aviation gas USTs, 8 oil/water separators, 1 water control pit) were removed. During tank removal activities, 2623.91 tons of soil was removed and transported to Laidlaw Environmental Services for incineration. Soil and groundwater samples were collected below the tank excavations in accordance with Georgia EPD UST closure requirements. Contamination in soil and groundwater has been confirmed by the sampling and no free product was encountered during the removal activities.

Metcalf & Eddy completed an initial investigation of the former Building 728 area in September 1995. The findings of the subsurface investigation were summarized in the Final CAP-Part A submitted to the Georgia EPD UST Program in August 1996. A summary of the UST closure activities was also presented in the CAP-Part A. A follow up investigation of the former Building 728 site culminated in the submittal of a CAP-Part B which was submitted to the EPD in December 1997. Free product was detected in monitoring wells MW08, MW59, and MW62. Free product recovery is ongoing utilizing a skimmer at well MW08 and absorbent socks (changed monthly) at wells MW59 and MW62. Pending funding for a remediation system recommended in the CAP-Part B, the USACE elected to perform quarterly monitoring which may aid in the design of the remediation system. This report documents the third quarterly sampling and analytical results.

5/98

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

Groundwater table elevations were measured in nineteen of twenty monitoring wells on February 16, 1999 (MW55 was unable to be located and was not gauged) in order to determine the direction of groundwater flow. Eight monitoring wells (MW01, MW06, MW11, MW60, MW61, MW63, MW64, and MW65) were selected for sampling by the USACE. These monitoring wells were purged and sampled on February 17, 1999. All samples were analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX - Method 8021) and polynuclear aromatic hydrocarbons (PAHs - Method 8310). Purge water was containerized in drums and stored at the PDO Yard until proper disposal is arranged. Surface water samples were collected from upgradient (SWE-01) and downgradient (SWE-03) of former Building 728. A sediment sample was also collected from the SWE-03 location. No sediment sample could be collected at the upgradient SWE-01 location because sediment was not present in the drainage culvert. The surface water and sediment samples were collected on February 17, 1999. Surface water and sediment were analyzed for BTEX and PAHs as above with the additional sediment analyses of total petroleum hydrocarbons-diesel range organics (DRO) and gasoline range organics (GRO) (both Method 8015M)

A. <u>Potentiometric Data</u>:

Tabulate all data and illustrate <u>last 2</u> monitoring events findings in Figures 2a and 2b. (Appendix 1, Figure 2a and 2b: Potentiometric Surface Maps) (Appendix 2, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Water levels were measured in nineteen monitoring wells (the two deep wells were not measured) on February 16, 1999. **Table 1** in **Appendix 2** lists the wells and water level elevations. Compared to the second quarterly sampling measurements taken on November 2, 1998, water levels are an average of 0.41 feet higher. **Figures 2a** and **2b** show the potentiometric surface map generated from the water levels from the second and third quarter sampling, respectively. Groundwater flow is generally to the northwest with a gradient of approximately 0.009 ft/ft. No significant changes were observed in the potentiometric surface, flow direction, or gradient compared to the information presented in the second quarterly monitoring report although recent excavation near MW02 may have caused an anomalous water level.

B. <u>Analytical Data</u>:

Tabulate all data for monitoring events findings in **Table 2**, illustrate last two events findings in **Figures 3a and 3b**, and graph the trend of contaminant concentration in **Figure 4**. (Appendix 1, Figure 3a and 3b: Groundwater Quality Maps)

MONITOR TEM

5/98

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

Well sampling began with the well located in the area suspected of least contamination. Protective gloves were worn during sampling and changed between samples. The sampling procedures used were identical to those used in previous sampling episodes (CAP-Part A and B). Samples were shipped via Federal Express overnight to Analytical Services, Inc. (ASI) located in Norcross, Georgia for BTEX and PAH analyses. Analytical results are summarized in Table 2.

The eight monitoring wells and the potable well (Hunter 1) were sampled on February 17, 1999 for BTEX (Method 8021) and PAHs (Method 8310). Analytical results confirm wells MW06, MW11, MW60, MW61, MW63, and MW64 remain impacted by petroleum hydrocarbons as identified in the previous sampling episodes. Analytical results indicate decreases in benzene concentrations in monitoring wells MW11, MW60, and MW61. Total BTEX concentrations also decreased in all impacted wells. No changes were observed at MW01 and MW65 where benzene and total BTEX are below detection limits. The benzene concentrations at MW60, MW61, MW63, and MW64 exceed the Georgia EPD In-Stream Water Quality Standard (IWQS) of 71.28 μ g/L (**Table 2**). **Figure 4** lists the benzene concentrations for each quarter plus a graph of the benzene values over time. **Figures 3a** and **3b** show the concentrations of hydrocarbons in groundwater from the second and third quarterly monitoring periods, respectively.

PAHs were detected in monitoring wells MW06, MW11, MW60, MW61, MW63, and MW64. No PAH constituent detected exceeded the IWQS ($0.0311 \mu g/L$ for individual compounds) at any well location. The PAHs identified are indicative of a diesel source rather than gasoline.

The potable water supply well was also sampled for BTEX and PAHs. No petroleum hydrocarbon compounds were detected.

Surface water results indicate no IWQS exceedences of BTEX or PAH compounds (**Table 3**). Benzene was detected at 2.5 μ g/L at SWE01 (upgradient) and at 2.1 μ g/L at SWE03 (downgradient). **Figures 3a** and **3b** show the two surface water sampling locations and results. The IWQS of 0.0311 μ g/L was exceeded in the duplicate sample collected at SWE03 for chrysene. The chrysene concentration in the duplicate sample was 0.07 μ g/L.

Sediment was not observed at SWE01 and was therefore collected only from SWE03. The analytical results (**Table 4**) indicate only toluene was detected at 0.004J (J=estimated) mg/kg. Of the regulated PAHs detected, only benzo(a)anthracene exceeded its soil threshold level (STL) of 0.660 mg/kg. The STLs are listed in Georgia Rule Chapter 391-3-15.09, Table B, less than 500 feet to surface water. DRO and GRO were detected at

5/98

threshold level (STL) of 0.660 mg/kg. The STLs are listed in Georgia Rule Chapter 391-3-15.09, Table B, less than 500 feet to surface water. DRO and GRO were detected at 72J and 0.34 mg/kg, respectively (neither are regulated). All analytical data is presented in **Appendix 3**.

IV. SITE RANKING (NOTE: RE-RANK SITE AFTER EACH MONITORING EVENT)

(Appendix 4: Site ranking results)

Environmental Site Sensitive Score: 55,600 The Site Ranking Form is presented in **Appendix 4**. The Environmental Site Sensitive Score has not changed from the Second Quarterly Sampling

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

This completes the third quarter of monitoring at this site. No significant changes in the groundwater flow direction or gradient were observed. Soluble petroleum hydrocarbon constituents continue to impact six monitoring wells. Free product recovery will continue in monitoring well MW08 via the belt skimmer and in wells MW59 and MW62 via absorbent socks. Continued monitoring will determine whether or not the plume is migrating downgradient.

VI. REIMBURSEMENT

ATTACHED <u>N/A</u>

(Appendix 5: Reimbursement Application)

Hunter Army Airfield is a federally owned facility and has funded the "Monitoring Only" activities for UST# 1-16, former Building 728, Facility I.D.# 9025035 and 9025049, using Environmental Restoration Account funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

021974\728-3qmr.doc

FIGURE 4

ANNUAL MONITORING SPREADSHEET (BENZENE) - THIRD QUARTER FORMER BUILDING 728 HUNTER ARMY AIRFIELD

			BENZENE RESUL	.TS (ug/L)	
WELL #	CAP-B	1'st QTR	2'nd QTR	3'rd QTR	4'th QTR
MW01	0	0	0	0	
MW02	0	NS	NS	NS	
MW03	4.2	NS	NS	NS	
MW05	0	NS	NS	NS	
MW06	24	0	7.5	9.3	
MW09	0	NS	NS	NS	
MW10	0	NS	NS	NS	
MW11	1700	95	62	56	
MW12	56	NS	NS	NS	
MW13	1.4	NS	NS	NS	
MW14	0	NS	NS	NS	*
MW55	0	NS	NS	NS	
MW56	17	NS	NS	NS	
MW57	24	NS	NS	NS	-
MW58	41	NS	NS	NS	
MW60	1400	3000	3500	3300	
MW61	910	850	930	280	
MW63	2400	930	910	990	
MW64	81	450	270	290	
MW65	0	0	0	0	
SMW01	0	0	0	0	

NS - Not Sampled

p:\hazwaste\hunt_ltm\728-qtr3.xls

		ormer Buildin H	lunter Army Air	uarterly Sampling		
	Screen	Water	TOC	Water Level	Surface	Free Prod.
Location	Interval ft, bgs	Depth, TOC	Elevation, ft, msl	Elevation, ft, msl	Elevation, ft, msl	Thickness ft.
CAP-A	11, 093				10,110	10
MW01	3.2-13.2	3.28	19,20	15.92	19.5	
MW02	3.8-13.8	3.23	20.51	17.28	20.8	
MW03	2.6-12.6	5.67	20.80	15.13	21.1	
MW04	3.4-13.4	Destroyed	3/97			
MW05	3.3-13.3	5.71	20.37	14.66	20.7	
MW06	2.9-12.9	4.83	20.02	15.19	20.4	
MW08	3.5-13.5	Product	Recovery		19.6	0.85 (11/98)
MW09	3.1-13.1	6.62	20.27	13.65	20.5	
MW10	2.9-12.9	6.17	19.11	12.94	19.4	
MW11	2.3-12.3	6.22	18.89	12.67	19.3	
MW12	2.9-12.9	4.97	18.51	13.54	18.8	
MW13	4.0-14.0	5.92	18.39	12.47	18.7	
MW14	4.0-14.0	6.67	18.76	12.09	19.0	
САР-В						
MW55	2.0-12.0	NA	18,32	NA	18.5	
MW56	1.4-11.4	4.22	19.69	15.47	19.8	
MW57	2.0-12.0	4.94	20.10	15.16	20.3	
MW58	2.0-12.0	4.12	19.21	15.09	19.4	
MW59	2.0-12.0	Product	Recovery	NA NA	19.4	0.15 (3/97)
MW60	3.0-13.0	6.61	20.30	13.69	20.4	
MW61	3.0-13.0	6.67	20.34	13.67	20.5	
MW62	3.0-13.0	Product	Recovery	NA	19.9	0.81 (3/97)
MW63	4.0-14.0	6.87	20.15	13.28	20.3	
' MW64	3.0-13.0	5.44	18.98	13.54	19.1	·
MW65	3.0-13.0	6.90	18.41	11.51	18.6	
MW66	35.6-40.6	NA	18.60	NA	18.8	
MW67	33.0-38.0	NA	18.82	NA	19.0	

bgs-below ground surface

TOC-top of casing

msl-mean sea level

Measurements on 2/16/99

NA- not measured

(p:\hazwaste\hunt_lim\wellsum.xls)

TABLE 2 : GROUNDWATER ANALYTICAL RESULTS

(

Ę

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	TYPE	(I/6n)	(l/ɓn)	(l/6n)	(l/6n)	(l/6n)	(l/bn)
TOWM	2/17/99	Primary	n	n l	n	n	n	η
MW06	2/17/99	Primary	9.3	3.9	14	∍	27.2	11.5
MW11	2/17/99	Primary	56	5	9.8	62	129.8	1.10
MW60	2/17/99	Primary	3300	230	630	2700	6860	1.60
MW61	2/17/99	Primary	280	Þ	130	540	950	1.04
MW63	2/17/99	Primary	066	120	130	40	1280	7.30
MW64	2/17/99	Primary	290	560	190	1400	2440	15.0
MW64	2/17/99	Duplicate 1	310	590	210	1500	2610	16.0
MW65	2/17/99	Primary	D	D	⊃ 	D	Π	0
SMW01 (B710)	2/17/99	Primary	n	D	D	D	5	Ĵ
ARARS			71.28	200,000	28,718			•

U = Not Detected. (-) = No IWOS listed.

(p:\hazwaste\hunt_[tm\reports\728q3t2.xls)
TABLE 3 : SURFACE WATER ANALYTICAL RESULTS

(

í

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	TYPE	(I/ɓn)	(I/Bn)	(I/Bn)	(I/gn)	(l/6n)	(l/bn)
SW01	2/17/99	Primary	2.5	1.4	<u> </u>	4.7	8.6	L 67.0
SW03	2/17/99	Primary	2.1	0.59	D	6.4	7.59	0.40
SW1004	2/17/99	Duplicate	1.9	D)		1.9	0.15
ARARS		SOWI	71.28	200,000	28,718	,		

U = Not Detected.

(-) = No IWOS listed.

J = Estimated

(p:\hazwaste\hunt_ltm\reports\728q3t3.xls)

TABLE 4 : SEDIMENT ANALYTICAL RESULTS

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	TYPE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SE03	2/17/99	Primary	D	0.004 J	n	n	0.004 J	5.94 J
SE1004 2	2/17/99	Duplicate	n	0.007 J	D	5	0.007 J	L 07.7
ARARS		STL	0.017	115	18	700	· · ·	

U = Not Detected.

J = Estimated

(-) = No STL listed (Table B, <500 ft to surface water).

(p:\hazwaste\hunt_ltm\reports\728q3t4.xls)

DATA QUALITY SUMMARY REPORT

Hunter Army Airfield - Long Term Monitoring Former Buildings 133, 710 & 728 March 24, 1999

1.0 INTRODUCTION

Metcalf & Eddy, Inc. was contracted by the United States Army Corps of Engineers, Savannah District, to perform quarterly groundwater monitoring at various locations at the former Hunter Army Airfield. This event represents the long term monitoring analytical data for November 1998.

Metcalf & Eddy, Inc. contracted with Analytical Services Inc. (ASI) Laboratories to perform the required analyses of groundwater, surface water and sediment samples. The analytical data was validated using the guidance found in USEPA National Functional Guidelines for Organics Data Review and Inorganics Analysis. This guidance follows the Quality Assurance (QA)/Quality Control (QC) requirements outlined in the USEPA's Test Methods for Evaluating Solid Waste (EPA SW-846). Overall these guidelines mimic the most current editions of the EPA's Functional Guidelines for Reviewing Organic and Inorganic Analyses conducted outside the EPA's Contract Laboratory Program (CLP).

The following sections of this Data Quality Summary Report discuss the laboratory reporting, data validation, problems encountered and corrective actions as applied to the samples and data collected during this determination.

1.1 Field Samples and Analysis

The following report summarizes the validation findings of the samples included in the Sample Data Groups listed below.

				Field	Trip	Equipment	
<u>SDG</u>	Date	<u>Matrix</u>	<u>Samples</u>	Duplicates	<u>Blanks</u>	<u>Blanks</u>	
104778	02/17/99	WATER	13	2	1	1	
		SEDIMENT	C 1	1	0	0	
104849	02/18/99	WATER	11	2	1	0	

Twenty-five groundwater samples, two surface water samples, one sediment samples, five field duplicates two trip blanks and one equipment rinsate were analyzed. All water samples were analyzed for PAH's by EPA method 8310. All sediment samples were analyzed for PAH's by EPA method 8100. Groundwater, surface water from buildings 133, and 710 were analyzed for volatile aromatics by EPA method 8021. Sediment from building 728 was analyzed for volatile aromatics by EPA method 8260 and for GRO/DRO by EPA methods 8015M and 8100M. All samples were analyzed by ASI Laboratories, Norcross, Georgia using the above listed USEPA SW-846 Methods:

2.0 LABORATORY REPORTING

2.1 Laboratory Blanks

Laboratory blanks or method blanks are artificial samples prepared from the same matrix type as the samples to be analyzed. These blanks are taken through sample preparation and analyzed before the field samples to determine if the glassware, sample preparation or laboratory environment has contaminated the field samples.

Laboratory blanks for all methods of analysis of groundwater, surface water and sediments were analyzed at the required frequency and were free of contaminants.

2.2 Laboratory Control Samples (% Recovery)

Laboratory control samples are artificial samples prepared from the same matrix type as the samples to be analyzed. These samples are processed through sample preparation and analyzed to assess the performance of each analytical system that the laboratory uses to analyze the field samples.

All laboratory control samples for all methods of analysis of groundwater, surface water and sediments were analyzed at the required frequency.

2.3 Precision (% RPD)

Laboratory precision is evaluated by calculating the relative percent difference (RPD) between the values reported for a matrix spiked (MS) sample and its duplicate, the matrix spiked duplicate (MSD), or any other set of duplicate parameters. The following equation is utilized for this calculation:

$$RPD = \frac{|Vs - Vd|}{|Vs + Vd| / 2} X 100$$

Where Vs is the value reported for the matrix spiked (MS) sample and Vd is the value reported for it's duplicate (MSD). Sample RPDs are compared to the analyzing laboratory's precision control limits which are primarily derived from their in-house quality control data.

RPDs for all methods of analysis of groundwater and surface water spiked samples were within required control limits with the exception of eleven matrix spikes which exhibited slightly high RPDs for PAH's. RPDs for all methods of analysis of sediment samples were within required control limits with the exception of one matrix spike which exhibited slightly high RPDs for acenaphthene and one matrix spikes for one volatile organics. No qualifiers were required. RPDs of field duplicates for all methods of analysis of groundwater, surface water and sediment were within the established control limits with the exception of six PAH and five volatile organics sample. No qualifiers were required.

2.4 Surrogate Recovery

Surrogates are compounds similar to analytes of interest but are not normally found in environmental samples. Prior to sample preparation and analysis, surrogates are spiked into laboratory control samples, calibration and check standards, matrix spiked samples and field samples. Accuracy is measured by calculating percent recoveries for each surrogate as follows:

%R = Concentration of spike found Concentration of spike added

Samples run by method 8021B and reported as volatile aromatics were spiked with a single surrogate standard. Surrogate recoveries for groundwater, surface water and sediment were all within the required control limits.

2.5 Holding Time

Holding time is the storage time allowed between sample collection and sample analysis when the designated preservation and storage techniques are employed.

All groundwater, surface water and sediment samples were analyzed within required holding times for all methods of analysis.

2.6 Temperature

Chain of custody forms and cooler receipts document that the laboratory received all samples at temperatures ranging from 1 °C to 6 °C. These temperatures are within the acceptable limits of the required preservation requirement of 4 °C plus or minus 2 °C.

2.7 Completeness

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness.

3.0 DATA VALIDATION

The objective when evaluating the quality of chemical data is to determine its usability. The evaluation is based upon the interpretation of the laboratory QC data, the field QC data, and the project Data Quality Objectives (DQOs). The evaluation process is often termed "data validation".

3.1 Laboratory Data Validation

Laboratory data were evaluated to assess, holding times, laboratory blanks, laboratory control samples, surrogate recoveries, and matrix spike/matrix spike duplicate (MS/MSD) relative percent differences (RPDs). These criteria were used to evaluate the bias and precision of the data generated by the laboratory. The bias of the laboratory data was assessed through consideration of the following:

- Adherence to the prescribed method
- Recovery of MS/MSD from field samples
- Method blank contamination
- Adherence to sample preparation and holding times
- Recovery of surrogate spikes
- Field duplicate precision

3.2 Definition of Data Qualifiers

During the data validation process, all laboratory data had to be evaluated and assigned a data qualifier, as applicable. These qualifiers are defined in the February 1994 EPA documents titled, "National Functional Guidelines for Organic and Inorganic Data Review." The guidance also describes procedures to be followed when qualifying data. The data qualifiers are defined as follows:

U = the compound was analyzed for, but was not detected above the level of the associated value

J = the associated value is an estimated quantity. The reported result is qualitatively accurate but quantitatively imprecise.

UJ = the compound was analyzed for, but was not detected, and the associated value is an estimated value due to a variance from quality control limits.

R = the reported result or quantitation limit is rejected and unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte can not be verified

Data qualifier flags were not assigned to data that were totally in compliance with Quality Control requirements.

For organic data, specifically VOCs, the positive and undetected (U) results were qualified as estimated (J/UJ) if one surrogate compound was detected outside acceptable recovery limits and/or the recovery was greater than 10 percent. If the recoveries of one surrogate compound were less than 10 percent, then the positive results were qualified as estimated (J) and the undetected results were rejected (R). Results of PAH compounds are validated in the same manner as VOC, the qualifiers are applied to results with one or more surrogate compounds detected outside the acceptable recovery limits.

3.3 Qualified Results

Groundwater and Surface water:

<u>PAHs</u> - Acenaphthene and Benzo(a)anthracene were qualified as estimated (J), due to low matrix spike recoveries for samples; 728MW01, 728MW06, 728MW11, 728MW60, 728MW61, 728MW63, 728MW64, 728MW65, 728SWE01 and 710MW02.

Sediment:

<u>PAHs</u> - All detects were qualified as estimated (J), due to low matrix spike recoveries for sample; 728SWE03.

<u>VOCs</u> - Toluene was qualified as estimated (J), for due to high matrix spike recovery for sample; 728SWE03.

4.0 PROBLEMS ENCOUNTERED

Any problems encountered during sample analysis for this investigation are described in detail below. Analytical data that did not meet the QC requirements were qualified as stated in Section 3.3.

4.1 Holding Times

No problems were present regarding hold times.

4.2 Surrogate Recovery

Samples run by method 8021B and reported as volatile aromatics were spiked with a single surrogate standard. No other problems were encountered.

4.3 Precision (% RPD)

No problems were encountered outside of a few field duplicate outliers. No qualifiers were applied.

4.4 Field Duplicates

In addition to the matrix spike sample, field duplicates were collected to assess sampling precision. Duplicate samples were collected at a frequency of one per site, per matrix, per sampling event. Field duplicate RPDs were within the quality control limits for 95% of the parameters analyzed. Sample duplicate precision is indicative that these data are comparable and representative of field conditions.

4.5 Equipment Rinsates

One equipment rinsate was analyzed in with this set of groundwater and surface water samples. The rinsate blank was found to be free of contamination.

4.6 Laboratory Blanks

Laboratory blanks were within the specified method criteria and the sample results required no qualifications with the exception of the samples mentioned under Section 3.3.

4.7 Laboratory Control Standards

Laboratory control standards were within the specified method criteria and the sample results required no qualifications with the exception of the samples mentioned under Section 3.3.

5.0 SUMMARY OF DATA QUALITY

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness. The results of the data validation indicate the quality of the data is within QC limits and is acceptable to verify or deny any contamination present in the groundwater at this site.

Reviewed by: Date:

hunter1\chem\reports\3rdqtr.ltm

Page: 1A of 1B

HUNTER ARMY AIRFIELD LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS

728-MW6304 <0.0311 J 728MW63 <0.302 J < 0.0311 < 0.0311 < 0.0311 02/17/99 <0.157 < 0.0311 < 0.103 < 0.123 <0.0311 < 0.107 <0'02 < 0.092 < 0.214 < 0.031 <5.0 Primary <5.0 < 5.0 < 5.0 **4**0 120 130 066 7.3 28-MW6104 <0.0311 J <0.0311 < 0.302 J 728MW61 < 0.0311 < 0.0311 < 0.0311 02/17/99 < 0, 157 < 0.097 <0,0311 < 0.031 < 0.123 < 0.164 < 0.214 < 0.107 Primary <5.0 0.60 <5.0 <5.0 < 5.0 < 5.0 540 0.44 280 130 728-MW6004 <0.0311 <0.0311 J 728MW60 < 0.302 J < 0.0311 < 0.0311 < 0.0311 02/17/99 <0.157 < 0.097 < 0.0311 < 0.123 <0.214 < 0.103 < 0.031 < 0.107 < 0.164 Primary 2700 м У 3300 <13 < 13
 13 230 1.6 630 728-MW1104 <0.0311 J < 0.302 J 728MW11 < 0.0311 < 0.097 < 0.0311 02/17/99 < 0.157 < 0.0311 < 0.0311 < 0.123 < 0.0311 < 0.103 < 0.031 < 0.107 < 0.092 < 0.214 < = Not detected at indicated reporting limit --- = Not analyzed Primary < 0 S <0.5 <0.5 <0.5 62 0 7 9.8 1. 56 728-MW0604 <0.0311 J <0.302 J < 0.0311 728MW06 < 0.097 <0.0311 < 0.157 02/17/99 < 0.0311 < 0.0311 < 0.0311 < 0.123 < 0.031 Primary < 0.214 < 0.107 2,4 ₹0.5 0.1 V <0.5 <0.5 0 <0.5 ත. ෆ 1.8 7.3 9.3 4 728-MW0104 <0.0311 J 728MW01 < 0.302 J < 0:0311 < 0:0311 < 0.0311 < 0.157 < 0.0311 02/17/99 <0.103 < 0.164 <0.097 < 0.031 < 0.0311 < 0.123 < 0.092 < 0.214 < 0.107 Primary <0.5 <0.5 0.1 V <0.5
 <0.5
 < 0.5 <0.5 < 0.5 RESULT TYPE SAMPLE ID Values represent total concentrations unless noted DATE SITE (Units in ug/l) Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene 1,2-Dichlorobenzene 1,3-Dichlorobenzene (,4-Dichlorobenzene Benzo(a)anthracene Benzo(ghi)perylene Benzo(a)pyrene Acenaphthylene Acenaphthene Chlorobenzene CONSTITUENT Anthracene Fluoranthene Xylene (total) Phenanthrene Ethylbenzene Toluene Chrysene Naphthalene Fluorene Benzene Pyrene

For RCL 8000ABASI

"J = RESULT IS ESTIMATED. R = RESULT IS REJECTED.

Page: 1B of 1B

HUNTER ARMY AIRFIELD LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS

8	SITE	728MW64	728MW64	728MW65	728SWE01	728SWE03	728SWE03
CONSTITUENT (Units in ug/l) SA	SAMPLE ID	728-MW6404	728-MW8004	728-MW6504	728-SW0104	728-SW0304	728-SW1004
Ĝ	DATE	02/17/99	66/17/20	02/17/99	02/17/99	02/17/99	02/17/99
RI	RESULT TYPE	Primary	Duplicate 1	Primary	Primary	Primary	Duplicate 1
Benzene		290	310	<0.5	2.5	2.1	1.9
Totuene		560	590	<0.5	1.4	0.59	<0.5
Ethylbenzene		190	210	<0.5	<0.5	<0.5	<0.5
Xylene (total)		1400	1500	<1.0	4.7	4.9	<1.0
Chiorobenzene		<2.5	<2.5	<0.5	<0.5	<0.5	<0.5
1.2-Dichlorobenzene		<2.5	<2:5	<0.5	<0.5	0.5 م	<0.5
1,3-Dichlorobenzene		<2.5	<2.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene		<2.5	<2.5	<0.5	<0.5	<0.5	<0.5
		-		1	****		
Acenaphthene		<0.302 J	<0.302 J	<0.302 J	<0.302 J	< 0.302	<0.302
Acenaphthylene		15	16	<0.164	<0.164	<0.164	<0.164
Anthracene		<0.097	<0.097	<0.097	<0.097	<0.097	<0.097
Benzo(a)anthracene		< 0.0311 J	<0.0311 J	<0.0311 J	<0.0311 J	< 0.0311	< 0.0311
Benzo(a)pyrene		<0.0311	<0.0311	<0.0311	<0.0311	<0.0311	<0.0311
Benzo(b)fluoranthene		< 0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311	0.08
Benzo(ghi)perylene		<0.157	<0.157	<0.157	<0.157	<0.157	<0.157
Benzo(k)fluoranthene		< 0.0311	<0.0311	< 0.0311	< 0.0311	< 0.0311	< 0.0311
Chrysene		<0.0311	<0.0311	<0.0311	<0.0311	<0.0311	0.07
Dibenz(a,h)anthracene		< 0.031	<0.031	< 0.031	< 0.031	< 0.031	< 0.031
Fluoranthene		<0.123	<0.123	<0.123	<0.123	<0.123	<0.123
Fluorene		< 0.092	<0.092	<0.092	< 0.092	<0.092	< 0.092
Indeno(1,2,3-cd)pyrene		<0.0311	<0.0311	<0.0311	<0.0311	<0.0311	<0.0311
Naphthalene		<0.214	<0.214	< 0.214	0.79 J	0.40	< 0.214
Phenanthrene		<0.103	<0.103	<0.103	<0.103	<0.103	<0.103
Pyrene		<0.107	<0.107	<0.107	<0.107	<0.107	<0.107
Values represent total concentrations unless noted	V	=Not detected at indicated rej	icated reporting limit= No	= Not analyzed			
							(

For RCL 800

ល៊

RESULT IS ESTIMATED. R = RESULT IS REJECTED.

HUNTER ARMY AIRFIELD PRIMARY RESULTS BUILDING 728

<=Not detected at indicated reporting limit ---=Not analyzed</p> <0.30 728-SE1004 728SWE03 **Duplicate 1** 0.0066 J < 0.0035 < 0.0035 < 0.0035 02/17/99 < 0.30 < 0:30 0.81 J < 0.35 0.53 J < 0.30 < 0.30 < 0.30 0.54 J 0.91 J 0.91 J < 0.30 1.3 J < 0.30 1.3 J 0.00 1.4 J 1 70 J 728-SE0304 728SWE03 <0.0029 0.0040 J < 0.0029 < 0.0029 <0.24 02/17/99 1.1 J < 0.24 < 0.24 Primary 0.25 J < 0.24 0.81 J 0.27 J 0.48 J 0.48 J 0.55 J < 0.24 < 0.24 < 0.24 C 06:0 0.34 1.1 J 1 0:00 72 J RESULT TYPE SAMPLE ID DEPTH (ft) Values represent total concentrations unless noted DATE SITE (Units in mg/kg) Indeno(1,2,3-cd)pyrene Gasoline Range Organics Dibenzo(a,h)anthracene **Diesel Range Organics** Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Benzo(a)anthracene Phenanthrene Acenaphthene Acenaphthylene Xylene (total) CONSTITUENT Fluoranthene Ethyl benzene Anthracene Naphthalene Chrysene Toluene Fluorene Benzene Pyrene

For RCL 8000AJASI

Page: 1A of 1A

	-	··· · ·							i X	m	۲. ۲.		سال	~	5	ž	<u> </u>	3	$\underline{\mathbb{C}}$	88 2.2 2.2				
X		<u>a</u> ~{	0		- \	4	vo orin a				-	12	1						1	li li			z	
6	PARAMETERS/METHODS	• • •	12.	00	a pr	70	BURNOR				T	7	Т							: Ivrine	STANDABD DBESEBVATION (Y)		IN ICE Y/N	3
*	/MET	- e I	<u> </u>	< Ö		-														erue:		2	N C	
	TERS		Q.<	4 7	٤.	0	00-00					*R	ł							lemperatu の行う		CLA V	tALS	5
	RAME	<u>т</u> п (3)		<u> </u>	шv															-		HCI/VOC,	HINO3/METALS H ₂ SQ/ OTHER	
		ТШК	a - c) – a								N-SV								Cooler Tene RANC		E P	HNQ/ H_SQ/ OTHER	5
	ANALYTICAL	E w - •	ע ר א	<u>5</u>	£	CVAA GFAA						9_1								F	STA STA	Ē	<u> ୧୭୦</u>	
	ANA A	*> 0.	ە ك ،	4:	±_	2	0-200		ц	Ŕ		5 2		3						÷			5	
78	2	>000	s		Ż		1000-	ŝŊ	М	Μ		5		Μ	\mathcal{M}	η	Μ	η	M	J.			lite 11	
47			I			A	.oN borteM		1								I			19			INC.	
455+04-738						222	FILTERED (L) LAB (F)FIELD	- .	1		1		1)	ſ)	1			99	-14		EDDY, V Squa	5
A V						2 M														Date/Time: 2/)&/	1 to	•	LF& Colony 72-31	0-3
1						0/2	STANRDARD PRESERV. (YN)*	\times	\succ	\succ	2	S	N	\succ	\succ	\geq	\succ	ㅅ	>			-	4ETCA 400	
	S	<u></u>				2m	NO. OF CONTS			10			2	ۍر ا	\sim					· · · · ·	7		C/0 N.E. 10361	
	RECORD					N,		ŝ	5	ۇىر	6		2	, - , - , - , - , - , - , - , - , - , -	\sim	\sim	M	$\frac{1}{2}$	~			s to:	ttinger tree Si rgia 3	
	RE(B	DEPTH (FT)	$\left \right\rangle$		\backslash	\backslash	$\left \right\rangle$	\backslash	\backslash		$\sum_{i=1}^{n}$	\backslash	\backslash	\backslash		1 por	Send Results to:	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 Atlanta, Georgia 30361 Atlanta, Stat.8010 FAX (404) 872-3161	
	י ר) SIGNATURE:	S E	11			01	Ξ		10	=		1	_	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Seal	endF	Christ 1201 Atlant	-
	ТОРУ		Ň.	VENT:	TYPE:	SIGN	RES CODE	BTII	ppol	PDII	PP01	511	PDII	10dd	BRII	PPOI	ppol	PPOI	ppol	an a	1 \ . 1	N.		_
	ST		ORDER	EEVE	AM TY	ER(S)						•								Received by:	el re-		ב	H
	CG		TASK ORDER NO	SAMPLE E	PROGRAM	SAMPLER(З	3	33	03	03	63	_	1		0		m		to regel		29	7
	۱ لل		F	Di	Ē	ווט	STE D	E O.	о П С	Ш	<u>З</u>	<u>з</u>	<i>у</i> П	L 三	W	NO M	WG	N C.	N G	00	· ·		X X X	
	Ō							7285WE03	7285WE03	7285WE03	7285WE03	7285WE03	7285WE03	7285WE01	728MWD	728 MW01	728MW60	728 MW 61	728MW 63	1900	2/18/29		Fed Ex	2
	Ż					1		725	12	72.	72.	L'L	728	128	72	R	72.5	728	72	0	6		2 cl	-
	CHAIN - OF - CUS					GROWE										Ŧ		·····	-	Date/Time: 2//7/0	The second secon		AIRBILL CO. Fed EX TRACKING NO: #1116292396	0
	ວ		5	3		Ro	0	728-7803	728-5W030H	728-5W 1004	728-5E030H	728-5E0304 MSD	728-5E1004	728-5W DIOH	10	HOIOMW-87L	728-MW6004	728-MW6104	728-MW6304	N B	M	•	o' z	
l			LTM	110		Q	FIELD SAMPLE ID	18	SWC	SW)	E0	5030	SEL	Q M	586	<u>х</u> З	MW(1 W 6	NWG	Y	$\left[\right]$		AIRBILL CO. TRACKING NO	
			-4	1	1 1	8	SAN	8	- 2	- 20	r) 1 100	8-SI	<u>ئ</u>	8	728-E801	8-1	8-1	2-2	8-1	ř			AIRB	
			ter F	μL	X	201		72	ñ					12	72	72	72	ñ	72	£	inero			
			Hunter	021974-4103	A V	Howard	HATRIX (SW)	З	3	3	ž,	ž,	УХ Ж	M	M	M	M	3	3	David Hura	173 total containers			
-			1	0			AF									†				, P	14		ź	
		E	AME:	<u>بر</u>	ΥıD:	NAM	TINE MILITARY	3915	0130	0930	0930	0530	0930	1045	1130	1135	1155	1200	IHOS		124		. (
		Metcalf & Eddy	PROJECT NAME:	PROJECT NO:	LABORATORY ID:	sampler(s) name: D		21199 0915	2		-)		_		7		_	Relinquished by (Signature)	1 1	· ·		
ſ		Metc	PROJE	PROJE	ABOF	SAMPL	DATE	217										<u> </u>	\geq	Relingt (Signat	Remarks:			
-			.—1			1																		

1/210E = 3 2 T 1 Å みよ 20 MAN STORED/SHIPPED IN ICE NN /METHODS STANDARD PRESERVATION (Y): 0 × 0 I ١ TEMUS BLONK = 2°6. ત Cooler Temperature: $\vdash a \perp \smallsetminus \Box \simeq O$ HNO3/METALS H2SQ4/ OTHER പറത S N HCI/VOC, ANALYTICAL PARAME a u v F U — **О Ш О** 5 **т** ш ж в – О – О ж м € VA €200 GFAA ក្លិ 0-M0 ゕ> 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 19pt 3 η η (m)M \mathbf{M} M 9 > 0 0 0 m pod 1 822701#ISA Method No. Christine Hettinger c/o METCALF & EDDY, INC. FILTERED (L) LAB (F) FIELD 94 ۱ Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161 Date/Time: STANRDARD I 2 (N/A): >≻ > >>SAMPLER(S) SIGNATURE: David Havan \geq > \succ CHAIN - OF - CUSTOD - - RECORD NO. OF CONTS. \mathcal{M} 3 З ŝ \mathcal{O} 3 2 \mathbb{M} Send Results to: 12420 DEPTH (FT.) 199 lodd PPOI RES CODE lodd PPOI Ppol P I P 1 add 3 C TASK ORDER NO. PROGRAM TYPE: SAMPLE EVENT: Received by: 728MMSO64 728MW65 HOMWELL 728MW06 728MW06 ZOMWOIL /ダム 728 MW II IOM WOIL FedEx Site D 006 Š Y 17/99 Ø, Date/Time: Rowr 728-MWD604 MSD 728-MW6404 HOOSMW-SZL 728-MW0604 728-MW6504 728-MW1104 21974-4103 710-MW0213 Ellomm-OIL TRACKING NO: Ċ HunterLTM AIRBILL CO. \mathcal{O} FIELD SAMPLE ID D HOWARd すく NATRIX (SW) کے 3 3 \geq 3 3 3 2 3 0 1505 1525 TIME 1525 750 SAMPLER(S) NAME: 1450 1200 415 2/17/99/14 15 Metcalf & Eddy PROJECT NAME: LABORATORY ID: Relinquished by PROJECT NO: (Signature) Remarks: DATE

•		J ab
		8
	K	
		Me

						AST 401 #ICA	E,201	7.8 ANALYTICAL PARAMETERS/METHODS	AL PARA	METERS	/METH	SOO
Metral & Edda		- - 	•				> 0 (Σ Ш H	ΣW	<u>е С</u>	⊢ ດ .:	o مر
	ł						U N		сс са ·		Ξ 🔨 (0
PROJECT NAME: /7 u	Munter LIM	TASK ORDER NO	NO.					אר אר	- U	- u	2 œ	
PROJECT NO: 0219	021974-4103	SAMPLE EVENT:	:ĽN					G	- 0	- 0	0	
LABORATORY ID:	AST	PROGRAM TYPE:	PE:					He He	шv	ш <i>о</i>		
SAMPLER(S) NAME: \mathcal{D} H	DHoward GROWE!] SAMPLER(S)		Hanil Han	2/Jan	Renel		CVAA GFAA	4 4			
DATE MILTARY WAT	MATRIX FIELD (SW) SAMPLEID	SITE	RES DI (DEPTH NO. DF (FT.) CONTS.	E STANRDARD PRESERY.	FILTERED (L) LAB (F) FIELD	Vethod No.	10m-0		_		
2/17/99/1415 W	128-MW6404	728MW64	lodd	7	2	1		И				14/-
1415 W	HOOSMW-STL (728 MWGH	- II Qd	7	N	1		2				5
W 65H		728 MW65	PP01	5	N	ļ		7				9/2
1525 W	728-MW1104	IIMW82L	- lodd	4	2	l		d				17
1525 W	728-MW0604	90MW & ZL	lodd	R	R)		Ц				$\frac{\infty}{1}$
M M		Blank										
·		-										
									· .			
				$\overline{\ }$								
Relinquished by:	Pate/Time:	ime: Received by:	ρλ;		Date/Time:	lime:			Coole	Cooler Temperature:	rature:	
Hend	Howard 2/17	199/1920 / 16h.	Plue D'		2	13/95 .	5/160		2aisn/	209=20	- TEWOB	TENNE BLANK
Remerks:		the appropriately and	Jac 1	ng de l'h	1 504/00	tact p		STA	STANDARD PRESERVATION (Y):	RESERV	ATION	ΪË
		· ·	Send Results to:	sults to:				33 	HCI/VOC, HNO,/ME	HCI/VOC, HNOA/METALS		
(AIRBILL CO.	FedEx	Christine 1201 Pe	e Hettinger c. achtree St.,	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101	& EDDY, INC ony Square, 3	Suite 11(000 	H_SQ/			
	TRACKING NO: S	807146292409		*lanta, Georgia 30361 34) 881-8010, FAX (anta, Georgia 30361 34) 881-8010, FAX (404) 872-3161	-3161		<u> </u>	STORED	(ED IN ICE WN	EØN

(콤
		8
	Ľ	Gait
		Ĭ

t T	
	CHAIN - OF - CUSTOD RECORD

LUT TTS ANALYTICAL PARAME METHODS	2 2	о — о ш		<i>№М</i> - <i>О</i>	H -19 ms, -28m	2	2						r Temperature:			200	STORED/SHIPPED IN ICEON
	ROJECT NAME: Hunter LTM TASK ORDER ND	021974-4103 SAMP		DATE TIME MATRIX FIELD STE RES DEFTH NO. OF STANNDARD FULTERED V. (1) LAB (1) CONTS (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	2/17/17/1525 W 723-MW0604 MS/ 728MW06 5411 4 N -	1750 W 710-MW0113 7/0/MW01 PP01 2 N -	710-MW0213 71	V - W / EMP Blank / 1						and	Sand Besuits to	Fel Ex	TRACKING NO: 807146292383 (404) 881-8010, FAX (404) 872-3161

Ų	U	& Eddy
		Metcalf

		-	またら」 井欠ナ	10477	90				
			1	ANA	ANALYTICAL PARAMETERS/METHODS	PARAM	ETERS/	METH.	oDS
	CHAIN - OF			- 61 : 	Σι	Ŧ	٩.	Ŧ	G
Metcalf & Eddy				- 	<u>ц</u> н	<u>ш к</u>	ပ က 	Δ <u>Τ</u>	~ O
PROJECT NAME: Hunter LTM	W	TASK ORDER NO.		s S	o L	0 – م م – ں		<u> </u>	
PROJECT NO: 021974-4103	03	SAMPLE EVENT:		4	<u>5</u>	- a		0	
LABORATORY ID: AST		PROGRAM TYPE:	-	A _	£	ш (л 	· · ·		
SAMPLER(S) NAME: D Howard / G Rowel	G Rowell	SAMPLER(S) SIGNATURE: David House	2 Anell	D	CVA				
			•		GFAA				

SAMPLER	S) NAME:	110	SAMPLER(S) NAME: D HOWArd / G KOWEI	SAMPLE	R(S) SIGNATURE:	mzA	K Mura	17/17	Konell	<u> </u>	GFAA		
DATE	TIME	MATRIX (SW)	FIELD SAMPLE ID	SITE ID	RES	DEPTH N (FT) C	NO OF P	STANADARD PRESERV. (YN)*	(I) LAB (I) LAB (I) HELD	.oV bodteM	6-614		
21199	2/17/99 1130	3	728-EB01	IOMWSZL	B# 14		С	2	(7		0
	1135	3	728-MW01041	IOMW82L	1 Qdd		R	2			ч		0/-
	1155	M.	728-MW6004	728MW60	PPOI	$\overline{\ }$	ч	N	L		7		-[]-
	1200	Ż	728-MW6104	728MW61	PPOL		Ъ	2	l		х		())
	1405	M	728-MW6304	728MW63	PPOL		ц	N			え		M
>		M	TEMP	Blank									
	-			· ·									
		•		· · ·									
						-							
													*
						\square							
Relinquished, by:	Xq-þ	<	Date/Time:	ime: Received, by:	by:			Date/Time:	me:			Cooler Temperature:	ture:
(Signature) ⁽	Am		7/17 Dur	2/17/99/1900 Lip.	Paye-1.	J		12	18 99 09	09:15	TEMI	TEMPBRANK= 1°C	
Remarka:	-		(den M.C.	minally 21 34 39		Erce	les: c	aller	let i en	H=A		(09156)	<56.58)
			i i		Sand F	Sand Beelifts to:	· 			•• •		CH) HOLVOC	
			AIRRILI CO	E . I T <	Christ 1201	ine Hetting	ger c/o NE.	IETCALF &	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St. N.E. 400 Colony Square. Suite 1101	uite 110		HNO3/METALS H2SQ4/	
	(់ត	9237		Atlanta, Georgia 30361 4) 881-8010, FAX (404) 872-3161	a 30361 0, FAX (4	04) 872-3	161			UI HEK	D IN ICE
]:		

ĺ

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

neicail & coug	
TO BE COMPLETED BY. SUBCENTARCHOR CONTRACTOR	T RECEIVED FROM METCALF & EDOY
UPON COMPLETION, FAX TO THE DESIGNATED MAE REPRESENTATIVE LISTED BEL	OW SAME DAY AS SHIPMENT
C. Hettinger	FAX # (404) 872-3161
NETCALF & EDDY Representative <u>C. METTINGET</u>	PROJECT # Hunter LTM
	TODAY'S DATE 2/18 99
AMPLE CUSTODIAN PARTY	
ATE/TIME SAMPLES RECEIVED	NO. OF COCLERS
IRBILL NUMBER _ 807 146 292 394	IN SHIPMENT
COCLER OPENED: DATE _ 2/18/99 _ TIME _ 9:40	-
CHAIN OF CUSTODY SEAL INTACT? YES NO	
SAMPLE LABELS PRESENT? YES NO	
BOTTLE LABELS CORRESPOND W/COC? YES NO	i de la companya de l
TYPE OF COLLANT USED BAGGED 1CE	X
COOLANT CONDITION: MELTED PARTIAL	LY MELTED/FROZEN
COOLER NUMBER $\# \frac{1400}{1400}$ (cooler #1) TEMP IN	
#	
#	
#	
#	(3)
RECORD TEMPERATURE BLANK (1) (2)	
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT	
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING INTACT	T) NFFECTED
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT	TT) NEFECTED
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES A	(FFECTED
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES A	(FFECTED
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES A	(FFECTED
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES A	(FFECTED
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT	(FFECTED

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCINTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY. UPON COMPLETION, FAX TO THE DESIGNATED M&E REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT .: .: ~ N 872-3161 404 FAX # 1 METCALF & EDDY Representative . LTM PROJECT # ASI SUBCONTRACTOR ____ TODAY'S DATE RUAN DIVER SAMPLE CUSTODIAN_ 19:15 2/18/ 99 DATE/TIME SAMPLES RECEIVED NO. OF COOLERS 6 807 146 292 409 IN SHIPMENT AIRBILL NUMBER __ 2/18/99 9145 TIME COOLER OPENED: DATE NO YES CHAIN OF CUSTODY SEAL INTACT? NO YES CHAIN OF CUSTODY PROVIDED? NO YES SAMPLE LABELS PRESENT? BOTTLE LABELS CORRESPOND W/COC? YES NO 15AGGED TYPE OF COLLANT USED PARTIALLY MELTED/FROZEN COOLANT CONDITION: MELTED FROZEN 6 °C 1685 TEMP INSIDE COOLER COOLER NUMBER 200 (3) (2) RECORD TEMPERATURE BLANK (1) _ CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT?) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED LIST SAMPLE ID'S IN EACH SHIPMENT: 728- MW6404, 728-MW8WH 228-MW6504 TEMP BLANK 728-MWNOY, 728-MWOGOY

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTOCIAN FOR EACH SHIPMENT RECEIVED FROM METCALE & EDDY. UPON COMPLETION, FAX TO THE DESIGNATED MAE REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT

	(1 1) 972-3141
METCALF & EDDY Representative	FAX# (404) 872-3161
SUBCONTRACTOR ASI	PROJECT # Hunter LTM
SAMPLE CUSTODIAN RYAN DIVER	TODAY'S DATE _ 2/18/99
DATE/TIME SAMPLES RECEIVED 2/18/99 09:15	
AIRBILL NUMBER	NO. OF COCLERS
COOLER OPENED: DATE TIME TIME	
CHAIN OF CUSTODY SEAL INTACT? YES NO	
CHAIN OF CUSTODY PROVIDED? YES NO	
SAMPLE LABELS PRESENT? YES X NO	
BOTTLE LABELS CORRESPOND W/COC? YES X NO	
TYPE OF COLLANT USED BAGGED ICE	X
COOLANT CONDITION: MELTED PARTIALI	LY MELTED/FROZEN
COOLER NUMBER # 1684 Cod A #44 TEMP INS # # # RECORD TEMPERATURE BLANK (1) (2) CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING INTACT? IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AF	SIDE COOLER <u>3 °C</u> (3) (3) FECTED
LIST SAMPLE ID'S IN EACH SHIPMENT: 728 -MWO664 MS TEMP BLANK	=/MSD, 710-MW0113,710-MWC

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

ľ

SUBCONTRACTOR A S I PROJECT # TUPATCI LITT SAMPLE CUSTODIAN Eyan Divee TODAY'S DATE 2 18 99 DATE/TIME SAMPLES RECEIVED 2 18 95 05:15 NO. OF COOLERS AIRBILL NUMBER 807 196 292 372 NO. OF COOLERS 6 COOLER OPENED: DATE 2/18/99 TIME 9:56 COOLER OPENED: DATE 2/18/99 TIME 9:56 CHAIN OF CUSTODY SEAL INTACT? YES NO 10 CHAIN OF CUSTODY PROVIDED? YES NO 10 SAMPLE LABELS PRESENT? YES NO 10 SAMPLE LABELS CORRESPOND W/COC? YES NO 10 TYPE OF COLLANT USED BACGED / CE 70 10 COOLER NUMBER # 16 89 (cooler #5) TEMP INSIDE COOLER 3°C COOLER NUMBER # 16 89 (cooler #5) TEMP INSIDE COOLER 3°C #	Meicall & Divy	
METCALF & EDDY Representative C. Hottimger FAX # $(4cA) 872-3161$ SUBCONTRACTOR A'S I PROJECT # Humter LTM SAMPLE CUSTODIAN Evant Divee TODAY'S DATE 2.18/39 DATE/TIME SAMPLES RECEIVED 2.18/39 05:15 NO. OF COOLERS AIRBILL NUMBER 807/96 292 372 NO. OF COOLERS 6 COOLER OPENED: DATE 2/18/99 TIME 9:55 CHAIN OF CUSTODY SEAL INTACT7 YES NO IN SHIPMENT CHAIN OF CUSTODY FROVIDED? YES NO IN SHIPMENT SAMPLE LABELS ORRESPOND W/COC7 YES NO IN SHIPMENT FROZEN COOLER NUMBER $\frac{1689}{(cooler ftS)}$ TEMP INSIDE COOLER 3°C COOLER NUMEER $\frac{1689}{(cooler ftS)}$ TEMP INSIDE COOLER 3°C #		
METCALF & EDDY Representative		(ADA) 872-3161
SUBCONTRACTOR ASL FROLEN # SAMPLE CUSTODIAN $Eyanl Divee$ TODAY'S DATE $2 18 99$ DATE/TIME SAMPLES RECEIVED $2 18 99$ OS!15 NO. OF COCLERS AIRBILL NUMBER $807/96 292372$ IN SHIPMENT 6 AIRBILL NUMBER $807/96 292372$ IN SHIPMENT 6 COOLER OPENED: DATE $2/18/99$ TIME $7:56$ CHAIN OF CUSTODY SEAL INTACT? YES NO In SHIPMENT CHAIN OF CUSTODY PROVIDED? YES NO In SHIPMENT CHAIN OF CUSTODY PROVIDED? YES NO In SHIPMENT SAMPLE LABELS CORRESPOND W/COC? YES NO In SHIPMENT BOTTLE LABELS CORRESPOND W/COC? YES NO In SHIPMENT COOLANT CONDITION: MELTED PARTIALLY MELTED/FROZEN Image: Non State S		- The france of The
SAMPLE CUSTODIAN Evant Evant <td>SUBCONTRACTORA'S I</td> <td></td>	SUBCONTRACTORA'S I	
DATE/TIME SAMPLES RECEIVED NO. OF COOLERS AIRBILL NUMBER	SAMPLE CUSTODIAN DIVER	_ TODAY'S DATE
AIRBILL NUMBER $307/96292372$ NO. OF COOLENS 6 NO. OF COOLENS 6	DATE/TIME SAMPLES RECEIVED _ 2/18/95 05:15	
COOLER OPENED: DATEYESNO	RAD 1414 297, 377	
CHAIN OF CUSTODY SEAL INTACT? YES NO CHAIN OF CUSTODY PROVIDED? YES NO CHAIN OF COLLANT USED <u>BACGED / CC</u> BOTTLE LABELS CORRESPOND W/COC? YES NO CHAIN OF COLLANT USED <u>BACGED / CC</u> COOLANT CONDITION: MELTED PARTIALLY MELTED/FROZEN FROZEN FROZEN FROZEN FROZEN COOLER NUMBER # <u>1689 (CCC) (CCC</u>	COOLER OPENED: DATE 7/18/99 TIME 9:56	.
CHAIN OF COSTOL FRONTED. SAMPLE LABELS PRESENT? YES NO BOTTLE LABELS CORRESPOND W/COC? YES NO TYPE OF COLLANT USED <u>BACGED / LG</u> COOLANT CONDITION: MELTED COOLER NUMBER # <u>/ 6 & 9 (creater 45)</u> TEMP INSIDE COOLER <u>3°C</u> # # # # RECORD TEMPERATURE BLANK (1) <u>/ °C</u> (2) (3) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED	CHAIN OF CUSTODY SEAL INTACT? YES V NO	
SAMPLE LABELS PRESENT: UN NO BOTTLES IN SHIPMENT: (BROKEN OF BOTTLES IN SHIPMENT: (BROKEN OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT?)) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED		
TYPE OF COLLANT USED		
TYPE OF COLLANT OSES	BOTTLE LABELS CORRESPOND W/COC? YES	- · · · · · · · · · · · · · · · · · · ·
COOLER NUMBER # 1689 (cooler t+5) TEMP INSIDE COOLER 3°C # #	TYPE OF COLLANT USED	
COOLER NUMBER #	COOLANT CONDITION: MELTED PARTIAL	LLY MELTED/FROZEN
#	FROZEN	
#	COOLER NUMBER # (689 (cooler #5) TEMP IN	
#	#	
#	#	
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT?) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED	#	
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT?) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED	#	
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT?) IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED	RECORD TEMPERATURE BLANK (1) / °C (2)	(3)
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFFECTED	CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT	?)
	IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES A	AFFECTED
UT CANDIE ID'S IN EACH SHIPMENT: 728-EBOI, 728-MW0104, 728-MW 6004,		
UT CANDIE ID'S IN EACH SHIPMENT: 728-EBOI, 728-MW0104, 728-MW 6004,		
LIST CANDIE ID'S IN EACH SHIPMENT: 708-EBOI, 728-MWOIDY, FOO-MW OODI,		TO HALL GADY
728-MW6104, 728-MW6304, TEMP BLANK	LIST SAMPLE ID'S IN EACH SHIPMENT: 78-EBOI, 728- 728-MW6104, 728-MW6304, TEMP,	-MWOIDY, FLD-MW ODDI, BRANK

÷

FIELD LOG	BOOK SAMPLI	NG DATA: WELL WORK SH	IEET	Molcall & Eddy
•····	6. Rowell D. H.	/		728-MW/
PROJECT NAME:	HAAF 3rd at	v Sampling	LOCATION	B.728
	- <u>17 - 99</u> Time s		Well secured	upon arrival? 🕅 N
1. Casing Diameter	(d) <u>}</u> inches + 12	e = <u>0.17</u> ft	1. Standing water (g	al.) = <u>/.7</u>
2. Depth of water fi	rom T.O.C3	<u>5.28</u> ft	2. X <u> </u>	weil volumes
3. Depth of well from	m T.O.C/ 3	<u>.2</u> ft	3. =5.)	gallons to purge
4. Feet of standing	water (h)?,	<u>92ft</u>	4. Purging Method	Waterra Pump
CALCULATION: Standing water volu	me = $\pi[(d)^2 +$	4](h)		
	= 3.14 [(_0	<u>.17</u> tt.)2+4](<u>9.9</u>	2ft.) x 7.48 gal / ft.3 = _	<u>/.7</u> gal
	_	pН	Conductivity	Temperature, (F)
1.Well volume =	<u> </u>	6.15	220	18.3
2.Well volume =		6.52	225	18-4
3.Well volume =	<u> </u>	6.18	217	18.4
4.Well volume =	gal.		<u> </u>	<u>.</u>
5.Well volume =	gal.			
Ground water sam	ple			· · · · · · · · · · · · · · · · · · ·
Sampling method	- Disposable Tet	for Bailer	Field preservation -	
Sample Descriptio	ח		· · · · · · · · · · · · · · · · · · ·	·
Odor:		• · · · · · · · · · · · · · · · · · · ·	·····	
Appearanc	e:			· · · · · · · · · · · · · · · · · · ·
			·	
Air Monitoring Equ	vipment used: <u>OVA</u>			
Reading:	Breathing zone:	Ø ppm.		
COMMENTS:				
		•		
·			<u> </u>	· · · · · · · · ·

FIELD LOG BOOK SAMPLING DATA: GROUNDWATER MONITORING WELL WORK S	
SAMPLED BY: G. Prewell D. Howinsid	
PROJECT NAME: HAAF 3rd atr Sampling	LOCATION: B.728
Date sampled: 2- 17-59 Time start 1514 End 1	Well secured upon arrival? (Y) N
1. Casing Diameter (d) inches + 12 =ft	1. Standing water (gal.) =/. L/
2. Depth of water from T.O.C. 4.83 ft	2. X <u> </u>
3. Depth of well from T.O.C. 12.9 tt	3. = <u>4. </u> gallons to purge
4. Feet of standing water (h)6.07ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
$= 3.14 [(0.17 \text{ ft.})^2 + 4] (8.10 \text{ ft.})^2$	$\frac{0.7}{1.0}$ ft.) x 7.48 gal / ft.3 = <u>1.9</u> gal
рH	Conductivity Temperature, (F)
1.Well volume = <u>1.9</u> gal. <u>6.12</u>	687 20,0
2.Well volume = 2.8 gai. 6,19	598 20,0
3.Well volume = <u>4.2</u> gal. <u>6.3.3</u>	613 20,3
4.Well volume ≂ gal.	(
5.Well volume = gal.	
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor: <u>Petroleum</u>	
Color:	
Appearance:	
Weather Conditions:	· · · · · · · · · · · · · · · · · · ·
Air Monitoring Equipment used: <u>OVA</u>	· · ·
Reading: Breathing zone: <i>Sppm</i>	
1., - In Well:	· · · · · · · · · · · · · · · · · · ·
COMMENTS:	
· · · · · · · · · · · · · · · · · · ·	
₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>	

N

FIELD LOG	BOOK SA	MPLING RING W	DATA:	ET	Melcal & Eddy
SAMPLED BY:	6. Rower	1/ D.Ho	neard		728-MW11
PROJECT NAME:	HAAF 3	atr	Sampling	LOCATION:_	B.728
Date sampled:				Well secured u	pon arrival? 🕅 N
1. Casing Diameter	(d) inc	hes + 12 =	<u>0.17</u> ft	1. Standing water (ga	l.) = <i>1. 0</i>
2. Depth of water fr	om T.O.C	6.22	ft	2. X <u> </u>	well volumes
3. Depth of well from				3. = 3.0	_ gallons to purge
4. Feet of standing	water (h)	6.08	ft	4. Purging Method	Waterra Pump
CALCULATION: Standing water volu	me = π	(d) ² +4]	(h)	e e e	
	= 3.	14 [(<u>0, /</u>	<u>7_ft.)2+4](6.08</u>	_ft.) x 7.48 gal / ft.3 =	1.0 gal
1.Well volume =	1. ()	gal.	рн ^{р.н.} . 6,1,5 .5.72	Conductivity 81.6	Temperature, (F)
2.Well volume =	•	gal.	Dir 6.5 5,65	77.6	19,2
3.Well volume =	7.0	gal.	DH 6.18 5.52	68.6	19.0
$4.Well volume = \$			5.5 04	······································	
5.Well volume =				·	
Ground water sam				· · · · · · · · · · · · · · · · · · ·	
Sampling method		le Teflo	n Bailer	Field preservation -	
Sample Descriptic	n			·	
• •	-				
					·
Reading:		1	· · · · ·	· · · · · · · · · · · · · · · · · · ·	
neading.					
		,	• .	<u></u>	
	. <u></u>				
.					
· · · · · · · · · · · · · · · · · · ·					

FIELD LOG BOOK SAM	PLING DATA: NG WELL WORK SH	IEET	Melcali & Eddy
SAMPLED BY: 6. howel	D. Howard	WELL ID:	728-MW60
PROJECT NAME: HAAF 312	atr Sampling	LOCATION:	B.728
Date sampled: 2 - 17-99 Ti	ime start <u>1/45</u> End <u>1/5</u>	55 Well secured up	oon arrival? (Y) N
1. Casing Diameter (d) inches		1. Standing water (gal.	
2. Depth of water from T.O.C.	6.6/ ft	2. X <u>3</u>	well_volumes
3. Depth of well from T.O.C.	<u>/3.0</u> ft	3. = <u>3.3</u>	gallons to purge
4. Feet of standing water (h)	<u>6.39</u> ft	4. Purging Method <u>1</u>	Vaterra Pump
CALCULATION: Standing water volume $=\pi[(d)$	l) ² +4](h)		
= 3.14	[(<u>0.17</u> tt.) ² + 4](<u>6.</u> 3		Ć,
1.Well volume = .	pH gal. 5.82	Conductivity	Temperature, (\mathbf{F})
	gal. <u>5.8/</u>	239	19.9
3.Well volume = <u>9.3</u>	<u> </u>	218	18.8
4.Well volume =	_gal		(
5.Well volume =	_gal	·	
Ground water sample		· · · · · · · · · · · · · · · · · · ·	·
Sampling method - D:sposable	Teflon Bailer	Field preservation	· · · · · · · · · · · · · · · · · · ·
Sample Description	· · ·		
Odor:			·
Color:			
Appearance:	· · · · · · · · · · · · · · · · · · ·		
Weather Conditions:	· .		
Air Monitoring Equipment used:O			
Reading: Breathing zon	е: _ <i>Øppm</i>		
	ppm		
COMMENTS:			
	·	···· · ·	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		······································	

GROUNDWATER	JOK SAMPLING	UATA: LL WORK SI	IFFT	Metcalt & Eddy
SAMPLED BY:				728-MW61
PROJECT NAME:				B.728
Date sampled:				upon arrival? (Y) N
Date sampled.				
1. Casing Diameter (d)_	inches + 12 =	<u>0.17</u> ft	1. Standing water (ga	ll.) =/. /
2. Depth of water from	т.о.с. 6.6	<u>}ft</u>	2. X <u> </u>	
3. Depth of well from T.	0.C. <u>13</u> .	<u>D</u> tt	3. =	gallons to purge
4. Feet of standing wate	er (h) 6.33	ft	4. Purging Method _	Waterra Pump
CALCULATION: Standing water volume	$=\pi[(d)^{2}+4]($	h)		
•	= 3.14 [(<u>0.17</u>	_ft.) ² + 4] (<u>6.</u> 3	<u></u> ft.) x 7.48 gal / ft. ³ = _	
		рН	Conductivity	Temperature, (P)
1.Well volume =	gal.	5.63	126	
2.Well volume =	<u>2.2</u> gal.	5.97	123	19.3
3.Well volume =	3.3 gal.	5.62	118	19,3
4.Well volume =	gal		<u> </u>	
5.Well volume =	gal.			
Ground water sample_	· · · · · · · · · · · · · · · · ·		· ·	
Sampling method	Disposable Teflon	Bailer	Field preservation -	
Sample Description _			·	
Odor:				· · · · · ·
	· · · · · · · · · · · · · · · · · · ·			
	·.			
Weather Conditions: _				
Air Monitoring Equipme				
• • • •	-			
COMMENTS:	,,			
<u>x</u>		· .		
<u>, , , , , , , , , , , , , , , , , , , </u>			······································	

SAMPLED BY:	6. Rowel				728-MW63
PROJECT NAME:_	HAAF 35	atr	Sampling		N: <u>B.728</u>
Date sampled: 2	- 17 . 59	Time start	1350End 14	Well secure	ed upon arrival? 🚫 N
I. Casing Diameter (d) inch	es + 12 = _	0.17 ft	1. Standing water	(gal.) =/, ~
2. Depth of water fro	m T.O.C	6.8	7_ft	2. X <u> </u>	well volumes
3. Depth of well from	T.O.C	14.0	<u> </u>	3. = <u>3. </u>	gallons to purge
4. Feet of standing w	/ater (h)	7.1	<u>3 </u>	4. Purging Metho	d Waterra Pum
CALCULATION:		(d) ² +4]		. · ·	
Standing water volun	-	•••	-	<u>/3_</u> ft.) x 7.48 gal / ft.3 -	= <u>(. 2</u> gal
			pH	Conductivity	Temperature, (F
1.Well volume =	1.2	gal.	5,69	141.8	19,2
2.Well volume =	2.4	gal.	5.69	139.1	19,1
3.Well volume =	3.4	gal.	5.77	139.5	19.5
4.Well volume =		_ gal.			<u> </u>
5.Well volume =		gal.	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		· · · · · · · · · · · · · · · · · · ·
Ground water samp	le				
Sampling method -	Disposable	Teflos	- Bailer	_ Field preservation	1
Sample Description)				
Odor:				· · · · · · · · · · · · · · · · · · ·	
Color:					
Appearance	•			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Weather Conditions	s:				
Air Monitoring Equi	pment used:	OVA		· · · · · · · · · · · · · · · · · · ·	
Reading:	Breathing zo	one:	opm		
	In Well:	Pi	pm	· · · · · · · · · · · · · · · · · · ·	
COMMENTS:	,	<u> </u>	·		

•

:

	FIELD LOG BOOK SAMPLING DATA GROUNDWATER MONITORING WELL WO	A: DRK SHEET	Metcall & Eddy
1	SAMPLED BY: G. Ruwell D. Hurm		728-MW64
N 🔎	PROJECT NAME: HAAF Zond atr Samp		: B.728
	Date sampled: 2 - 17 - 99 Time start 1350		upon arrival? (Y) N
	1. Casing Diameter (d) inches + 12 =t	1. Standing water (g	gal.) =/.3
	2. Depth of water from T.O.C. <u>5.44</u> ft	2. X <u> </u>	well volumes
	3. Depth of well from T.O.Cft	3. = 3.9	gallons to purge
	4. Feet of standing water (h) 7.56 ft	4. Purging Method	Waterra Pump
·	CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$		
	= 3.14 [(<u>0.17</u> ft.) ² + 4	$\frac{7.56}{\text{ft.}} \times 7.48 \text{ gal} / \text{ft.}^3 = \frac{1}{2}$	<u>1.3</u> gal
	pH	Conductivity	Temperature, (F)
	1.Well volume = 1.3 gal. 5.12	2 127.8	1917
	2.Well volume = 2.6 gal. 5,3	4 46.6	19,1
	3.Well volume = 3.9 gal. 5.3	3 43.9	18.9
	4.Well volume = gal.		· · · · · · · · · · · · · · · · · · ·
	5.Well volume = gal.		
	Ground water sample	· · · · · · · · · · · · · · · · · · ·	
	Sampling method - Disposable Teflon Bain	Field preservation	
	Sample Description	·	
	Odor:		
	Color:	· · ·	
	Appearance:	· · · · · · · · · · · · · · · · · · ·	
	Weather Conditions:		
	Air Monitoring Equipment used: <u>OVA</u>		
	Reading: Breathing zone: <u><i>Ppm</i></u>	·	
	In Well:ppm	· · · · · · · · · · · · · · · · · · ·	
	COMMENTS:		
		\sim	

FIELD LOG BOOK SAMPLING DATA: GROUNDWATER MONITORING WELL WORK SHEET		Molcali & Eddy
SAMPLED BY: G. Proweel / D. Howard	WELL ID:	728-MW65(
PROJECT NAME: HAAF 312 Atr Sampling	LOCATION:	
Date sampled: 2-17-99 Time start 1440 End 1450	Well secured u	pon arrival? 🚫 N
1. Casing Diameter (d) 2 inches + 12 = <u>0.7</u> ft 1. Si	tanding water (gal	.) = 1.1
2. Depth of water from T.O.C. L. 20 ft 2. X	3	well volumes
3. Depth of well from T.O.C. <u>/3.0</u> ft 3. =	3.3	gallons to purge
4. Feet of standing water (h) 6.60 ft 4. P	urging Method	Naterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$		
$= 3.14 [(0.17 \text{ ft.})^2 + 4] (10.60 \text{ ft.}) \times 10^{-10}$	7.48 gal / ft. ³ =/	<u>' , / g</u> al
pH 0 1.Well volume =	Conductivity	Temperature, (P) 20.7
2.Well volume = 2.2 gal. 5.86	158.9	20.5
3.Well volume = <u>3.3</u> gal. <u>5.84</u>	151.2	20.3
4.Well volume = gal		
5.Well volume = gal	······································	
Ground water sample		
Sampling method - Disposable Teflon Bailer Field	d preservation	· .
	н 	
Sample Description		·
Odor:		
Color:		
Appearance:	•	
Weather Conditions:		
Air Monitoring Equipment used: <u>OVA</u>		
Reading: Breathing zone: <i>ppm</i>		
In Well:		
COMMENTS:		
	<u> </u>	(
		· · · · · · · · · · · · · · · · · · ·

FIELD LOGBOOK SOIL/SEDIMENT SAMPLING DATA

Date 2/17/99	Location 728 - SWE 01
Samplers Used <u>55 bow</u>	······································
recent excavations, vegetation, etc.)	cription as well as the presence of debris, surface sheens, $\int_{a}^{b} \frac{1}{\sqrt{2}} \frac{1}$
Weather	ID
Description of sample <u>No Sediment</u> Time of sample collection <u>1045</u> OVA Readings Depth of water (for sediment sampling)	
Decontamination (page number references) <u><i>Wa</i></u>	,
Trowel	
Hand corer Hand auger	
BowlsSplit spoons	
Photograph frame numbers NA	
Signature of field team personnel making data entry	G. Rowell

FIELD LOGBOOK SOIL/SEDIMENT SAMPLING DATA

Date $2/17/99$ Location 728 SWE03
Samplers Used <u>55 bowl</u> , <u>55 spoon</u> , <u>encore</u>
Drawing of sampling location (including location description as well as the presence of debris, surface sheens,
recent excavations, vegetation, etc.) / /
Duncan st. N
Ditch
SWE03 A 728
Weather
Soil/sediment sampling parameters: 8260 (8021) 8100 8310 8270 GRO DRO PPM RCRA 8080 Description of sample
Time of sample collection 0930
OVA Readings Depth of water (for sediment sampling) $3''$
Depth of water (for sediment sampling) 3 "
Decontamination (page number references) <u>hoveplan pA/O-Z</u>
Spoons or spatulas
Trowel
Hand corer
Hand auger Bowls
Split spoons
Photograph frame numbers
Signature of field team personnel making data entry 6. Rowell

SITE RANKING FORM

000	nty: <u>Chatham</u>	Facility ID#: <u>9025035</u>	and 9025049 Date Ranked: 3/19/	99	
soil	_ CONTAMINATION	·		·	
Α.	Total PAHs - Maximum Concentrat site (Assume <0.660		Total Benzene - Maximum Concentration found on the site		
	gasoline was stored o		□ ≤ 0.005 mg/kg = 0		
	□ ≤ 0.660 mg/kg	= 0	□ >0.005-.05 mg/kg = 1		
	□ > 0.66 - 1 mg/kg	= 10	■ >.05- 1 mg/kg* = 10		
		= 25	□ > 1-10 mg/kg = 25		
	■ > 10 mg/kg	= 50	□ > 10 - 50 mg/kg = 40		
			□ > 50 mg/kg = 50		
	Depth to Groundwater (bls = below land surf			•	
	□ > 50' bls	= 1			
	□ > 25'-50' bls	= 2			
			·		
	□ > 10'-25' bis	= 5			
	 □ > 10'-25' bis ≤10 bls 	= 5 = 10			
i III i	■ <10 bls	= 10	<u>0) x (C. 10) = (D. 600)</u>	•	
	■ ≤10 bls n the blanks: (A. <u>50</u>	= 10 _) + (B. <u>10</u>) = (<u>6</u>	<u>0)</u> x (C. <u> 10)</u> = (D. <u> 600)</u>		
	■ <10 bls	= 10 _) + (B. <u>10</u>) = (<u>6</u>	<u>0)</u> x (C. <u>10</u>) = (D. <u>600</u>)		
RO	■ ≤10 bls In the blanks: (A. <u>50</u> OUNDWATER CONTAMI Free Product (Nonaque) hydrocarbons; See gui) definition of "sheen").	= 10 _) + (B. <u>10</u>) = (<u>6</u> <u>NATION</u> eous-phase liquid F.	0) x (C. 10) = (D. 600) Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release)	Df	
RO	■ ≤10 bls In the blanks: (A. <u>50</u> <u>SUNDWATER CONTAMI</u> Free Product (Nonaque hydrocarbons; See gui definition of "sheen").	= 10 _) + (B. <u>10</u>) = (<u>6</u> <u>NATION</u> eous-phase liquid F.	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release)	Df	
RO	 I > 10 bls In the blanks: (A. <u>50</u> CUNDWATER CONTAMI Free Product (Nonaqui hydrocarbons; See gui definition of "sheen"). No free product = 	= 10 _) + (B. <u>10</u>) = (<u>6</u> <u>NATION</u> eous-phase liquid F. delines for	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release) $\Box \leq 5 \text{ ug/L} \Rightarrow 0$	of	
<u>RO</u>	 I ≤ 10 bls In the blanks: (A. <u>50</u> CUNDWATER CONTAMI Free Product (Nonaquinydrocarbons; See guidefinition of "sheen"). No free product Sheen - 1/8" = 	= 10 _) + (B. <u>10</u>) = (<u>6</u> <u>NATION</u> eous-phase liquid F. delines for	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release) □ < 5 ug/L = 0 □ > 5 - 100 ug/L = 5	of	
)RO	 ≤10 bls n the blanks: (A. <u>50</u> DUNDWATER CONTAMI Free Product (Nonaque hydrocarbons; See gui definition of "sheen"). No free product = Sheen - 1/8" = > 1/8" - 6" = 	= 10 _) + (B. <u>10</u>) = (<u>6</u> <u>NATION</u> eous-phase liquid F. delines for 0 250	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release) $ \le 5 \text{ ug/L} = 0$ > 5 - 100 ug/L = 5 > 100 - 1,000 ug/L = 50	Df	
SRO C	 ≤10 bls n the blanks: (A. <u>50</u> DUNDWATER CONTAMI Free Product (Nonaque hydrocarbons; See gui definition of "sheen"). No free product = Sheen - 1/8" = > 1/8" - 6" = > 6" - 1 ft = 	= 10 _) + (B. <u>10</u>) = (<u>6</u> <u>NATION</u> eous-phase liquid F. delines for 0 250 500 1,000	Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source of the release) □ < 5 ug/L = 0 □ > 5 - 100 ug/L = 5	of	

*Two samples had detection levels <60 mg/kg due to dilutions.

Ĺ

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

H.	Public Water Supply	I.	Non-Public Water Supply
	$ \begin{array}{c cccc} & & & & = 2000 \\ \hline & \leq 500' & & = 500 \\ \hline & > 500' - \frac{1}{4} & & & = 25 \\ \hline & > 1/4 & & & = 10 \\ \hline & > 1 & & & = 10 \\ \hline & > 1 & & & = 2 \\ \hline & > 2 & & & & = 2 \\ \hline & > 2 & & & & = 0 \\ \hline & & & & & & = 0 \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		
J. Fill in	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water table. Impacted = 500 ≤ 500' = 50 > 500' - 1,000' = 5 > 1,000' = 1 the blanks: = (H0) + (I0) + (J50)	К.)) + (К	Distance from any Free Product to basements and crawl spaces □ Impacted = 500 □ ≤ 500' = 50 □ > 500' - 1,000' = 5 ■ > 1,000' or = 0 no free product X) = L50
	(G. <u>1100</u>) x (L	. <u> 500)</u> = M. <u> 55,000</u>
	(M. <u>55,000</u>) + (D	0. <u>600</u>) = N. <u>55,600</u>
<u>P.</u>	SUSCEPTIBILITY AREA MULTIPLIER		
	□ If site is located in a low Groundwater Pollution		
	 All other sites = 1) Suscep	tibility Area - 0.5
Q.) Suscep	tibility Area - 0.5
Q.	All other sites = 1	om this re	elease, been detected in any subsurface
Q.	 All other sites = 1 <u>EXPLOSION HAZARD</u> Have any explosion vapors, possibly originating from the second second	om this re	elease, been detected in any subsurface
Q.	 All other sites = 1 <u>EXPLOSION HAZARD</u> Have any explosion vapors, possibly originating frostructure (e.g., utility trenches, basements, vaults, explosion) 	om this re	elease, been detected in any subsurface
	 All other sites = 1 <u>EXPLOSION HAZARD</u> Have any explosion vapors, possibly originating frostructure (e.g., utility trenches, basements, vaults, or structure (e.g., utility trenches, basements, vaults, or Yes = 200,000 	om this re crawl sp	elease, been detected in any subsurface

SITERANK FRM

9/97

EXHIBIT D

FOURTH QUARTERLY MONITORING ONLY REPORT

FINAL

FOURTH QUARTERLY MONITORING ONLY REPORT FOR FORMER UNDERGROUND STORAGE TANKS #1-#16 FACILITY ID NUMBER 9025035 and 9025049 FORMER BUILDING 728 HUNTER ARMY AIRFIELD, GEORGIA

Prepared for:

U.S. Army Corps of Engineers – Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA01-96-D-0020

Delivery Order CV03

Prepared by:

Metcalf & Eddy Two Sun Court Suite 200 Norcross, Georgia 30092

July 1999

FINAL FOURTH QUARTERLY MONITORING PROGRESS REPORT FORMER BUILDING 728 EPD FACILITY NO. 9025035 AND 9025049 HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

TABLE OF CONTENTS

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION	1
II. PROJECT SUMMARY	2
III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS.A. Potentiometric Data:B. Analytical Data:	
IV. SITE RANKING	
V. CONCLUSIONS/RECOMMENDATIONS	5
VI. REIMBURSEMENT	5

APPENDICES

I Figures

	_		. C . 1	1.1	T		35-	
1.		All	me.	la .	Locat	иоп	Ivia	p

- 2a. Potentiometric Surface Map, Third Quarterly Sampling (February 1999)
- 2b. Potentiometric Surface Map, Fourth Quarterly Sampling (May 1999)
- 3a. Concentrations of Hydrocarbons in Groundwater and Surface Water, Third Quarterly Sampling (February 1999)
- 3b. Concentrations of Hydrocarbons in Groundwater and Surface Water, Fourth Quarterly Sampling (May 1999)
- 4. Annual Monitoring Spreadsheet (Benzene)

II Tables

- 1. Groundwater Elevations (May 1999)
- 2. Groundwater Analytical Results (May 1999)
- 3. Surface Water Analytical Results (May 1999)
- 4. Sediment Analytical Results (May 1999)
- III Laboratory Analytical Results
- IV Site Ranking Results

MONITORING ONLY REPORT

 Submittal Date:
 July 1999
 Monitoring Report Number: 4th Quarterly Sampling

 For Period Covering:
 March 1999
 to
 May 1999

 Facility Name:
 Former Building 728
 Street Address:
 Hunter Army Airfield

 Facility ID: 9025035 and 9025049
 City: Savannah
 County:
 Chatham
 Zip Code_31409

 Latitude:
 32° 01' 48"
 Longitude:
 81° 08' 03"
 Endote 100 (2000)

Submitted by UST Owner/Operator:	Prepared by Consultant/Contractor:		
Name: Mr. Tom Fry	Name: David Wilderman		
Company: HQs, 3d ID (Mech) & Fort Stewart	Company: Metcalf & Eddy, Inc.		
Address: 1557 Frank Cochran Drive	Address: <u>Two Sun Court</u>		
	Suite 200		
City: Fort Stewart State: GA	City: <u>Norcross</u> State: <u>GA</u>		
Zip Code: 31314-4928	Zip Code: 30092		
Telephone: 912-767-1078	Telephone: 678-966-8299		

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologist. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: David Humphin's Signature: David Humpl Signature; Date:

Georgia Stamp or Seal
II. PROJECT SUMMARY

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

The former Building 728 site consisted of twelve USTs and eight oil/ water separators associated with the former Northern Fuel Battery and four USTs located near the rail spur; south of the fuel battery. The former Building 728 site is located on the northwestern portion of Hunter Army Airfield (HAAF) as illustrated in Figure 1 (Appendix I). A plan view of the former Northern Fuel Battery area is provided on Figure 2a. During the 1940s, the tanks held aviation fuel which was pumped via pipelines to fueling pits on the runway. Around 1957, the entire system was converted to store an alcohol/water mixture used as an aircraft de-icer. Later, some of the tanks near former Building 728 were used to store waste oil. The four USTs located directly adjacent to former Building 728 had a capacity of 12,000 gallons. These tanks held aviation fuel and appear to have been part of the fuel hydrant system.

UST removal activities in the former Building 728 area were completed by Anderson Columbia Environmental, Inc. (ACE) in June 1994. A total of 43,140 gallons of hazardous and non-hazardous waste water was disposed of by Industrial Water Services, Inc. A total of 25 tanks (12 JP-4/aviation gas USTs, 4 aviation gas USTs, 8 oil/water separators, 1 water control pit) were removed. During tank removal activities, 2623.91 tons of soil was removed and transported to Laidlaw Environmental Services for incineration. Soil and groundwater samples were collected below the tank excavations in accordance with Georgia EPD UST closure requirements. Contamination in soil and groundwater has been confirmed by the sampling and no free product was encountered during the removal activities.

Metcalf & Eddy completed an initial investigation of the former Building 728 area in September 1995. The findings of the subsurface investigation were summarized in the Final CAP-Part A submitted to the Georgia EPD UST Program in August 1996. A summary of the UST closure activities was also presented in the CAP-Part A. A follow up investigation of the former Building 728 site culminated in the submittal of a CAP-Part B which was submitted to the EPD in December 1997. Free product was detected in monitoring wells MW08, MW59, and MW62. Free product recovery utilized a belt skimmer at well MW08 and absorbent socks (changed monthly) at wells MW59 and MW62. Pending funding for a remediation system recommended in the CAP-Part B, the USACE elected to perform quarterly monitoring to aid in the design of the remediation system. An active remediation pilot study conduced by Science Applications International Company (SAIC) began in May, 1999 and is ongoing. This report documents the fourth quarterly sampling and analytical results.

5/98

III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS

Groundwater table elevations were measured in nineteen of twenty monitoring wells on May 5, 1999 (MW56 was not gauged) in order to determine the direction of groundwater flow. Eight monitoring wells (MW01, MW06, MW11, MW60, MW61, MW63, MW64, and MW65) were selected for sampling by the USACE. These monitoring wells were purged and sampled on May 5, 1999. All samples were analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX - Method 8021) and polynuclear aromatic hydrocarbons (PAHs - Method 8310). Purge water was containerized in drums and stored at the PDO Yard until proper disposal is arranged. Surface water samples were collected from upgradient (SWE-01) and downgradient (SWE-03) of former Building 728. A sediment sample was also collected from the SWE-03 location. No sediment sample could be collected at the upgradient SWE-01 location because sediment was not present in the drainage culvert. The surface water and sediment samples were collected on May 5, 1999. Surface water and sediment were analyzed for BTEX and PAHs as above with the additional sediment analyses of total petroleum hydrocarbons-diesel range organics (DRO) and gasoline range organics (GRO) (both Method 8015M)

A. <u>Potentiometric Data</u>:

Tabulate all data and illustrate last 2 monitoring events findings in Figures 2a and 2b. (Appendix I, Figure 2a and 2b: Potentiometric Surface Maps) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

Water levels were measured in nineteen monitoring wells (the two deep wells were not measured) on May 5, 1999. Table 1 (Appendix II) lists the wells and water level elevations. Compared to the third quarterly sampling measurements taken on February 16, 1999, water levels are an average of 0.74 feet lower. Figures 2a and 2b show the potentiometric surface map generated from the water levels from the third and fourth quarter sampling, respectively. Groundwater flow is generally to the northwest with a gradient of approximately 0.006 ft/ft. No significant changes were observed in the potentiometric surface, flow direction, or gradient compared to the information presented in the third quarterly monitoring report.

B. <u>Analytical Data</u>:

Tabulate all data for monitoring events findings in Table 2, illustrate last two events findings in Figures 3a and 3b, and graph the trend of contaminant concentration in Figure 4.

(Appendix I, Figure 3a and 3b: Groundwater Quality Maps) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix II, Table 2, 3, and 4: Analytical Results) (Appendix III, Laboratory Analysis Results)

(Appendix II, Table 2, 3, and 4: Analytical Results) (Appendix III, Laboratory Analysis Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

Well sampling began with the well located in the area suspected of least contamination. Protective gloves were worn during sampling and changed between samples. The sampling procedures used were identical to those used in previous sampling episodes (CAP-Part A and B). Samples were shipped via Federal Express overnight to Analytical Services, Inc. (ASI) located in Norcross, Georgia for BTEX and PAH analyses. Analytical results are summarized in Table 2.

The eight monitoring wells were sampled on May 5, 1999 for BTEX (Method 8021) and PAHs (Method 8310). The potable well (Hunter 1) was not sampled since monitoring at this location ended with the twelfth quarterly sampling event at former Building 710. Analytical results confirm wells MW06, MW11, MW60, MW61, MW63, and MW64 remain impacted by petroleum hydrocarbons as identified in the previous sampling episodes. Analytical results indicate decreases in benzene and total BTEX concentrations in monitoring wells MW06, MW60, and MW64. No changes were observed at MW01 and MW65 where benzene and total BTEX are below detection limits. The benzene concentrations at MW11, MW60, MW61, MW63, and MW64 exceed the Georgia EPD In-Stream Water Quality Standard (IWQS) of 71.28 $\mu g/L$ (Table 2). Figure 4 lists the benzene concentrations for each quarter plus a graph of the benzene values over time. Figures 3a and 3b show the concentrations of hydrocarbons in groundwater from the third and fourth quarterly monitoring periods, respectively.

PAHs were detected in monitoring wells MW06, MW11, MW60, MW61, MW63, MW64, and MW65. No PAH constituent detected exceeded the IWQS ($0.0311 \mu g/L$ for individual compounds) at any well location. The PAHs identified are indicative of a diesel source rather than gasoline.

Surface water results indicate no IWQS exceedences of BTEX compounds (**Table 3**). Benzene was detected at 2.1J μ g/L (J = estimated) at SWE01 (upgradient). Benzene was not detected at SWE03 (downgradient). **Figures 3a** and **3b** show the two surface water sampling locations and results. The IWQS of 0.0311 μ g/L was exceeded at SWE03 for the following constituents: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

Sediment was not observed at SWE01 and was therefore collected only from SWE03. No BTEX compounds were detected. Of the regulated PAHs detected, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene exceeded soil threshold levels (STL) of 0.660 mg/kg. The STLs are listed in Georgia Rule Chapter 391-3-15.09, Table B, less than 500 feet to surface water. DRO and GRO were not detected. All analytical data is presented in **Appendix III**.

4

5/98

IV. SITE RANKING (NOTE: RE-RANK SITE AFTER EACH MONITORING EVENT)

(Appendix IV: Site ranking results)

Environmental Site Sensitive Score: 55,600 The Site Ranking Form is presented in Appendix IV.

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

This completes the fourth and final quarter of monitoring at this site under the existing contract. No significant changes in the groundwater flow direction or gradient were observed. Soluble petroleum hydrocarbon constituents continue to impact six monitoring wells. Free product recovery stopped in monitoring wells MW08, MW59, and MW62 in May 1999 due to the ongoing pilot study conducted by SAIC. An Annual Monitoring Report will be submitted under separate cover with recommendations for future monitoring at this site.

VI. REIMBURSEMENT

ATTACHED N/A

(Appendix V: Reimbursement Application)

Hunter Army Airfield is a federally owned facility and has funded the "Monitoring Only" activities for UST# 1-16, former Building 728, Facility I.D.# 9025035 and 9025049, using Environmental Restoration Account funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

021974\728-4qmr.doc

MONITOR.TEM

5/98

APPENDIX I

FIGURES

.

(

• • •

.

. .

I-1

I-2

SWE01 - SURFACE WATER/SEDIMENT LOCATION FIRE HYDRANT POWER POLE NS - NOT SAMPLED BENZENE (U-UNDETECTED) TOTAL BTEX TOTAL PAHs (J-ESTIMATED) CONCENTRATIONS IN UG/L SAMPLES TAKEN 02/17/99 SCALE: 1" = 60' 60' U.S. ARMY ENGINEER DISTRICT, SAVANNAH CORPS OF ENGINEERS SAVANNAH, GEORGIA FORMER BUILDING 728 AREA EPD FACILITY NO. 9025035 AND 9025049 CONCENTRATIONS OF HYDROCARBONS IN GROUNDWATER AND SURFACE WATER THIRD QUARTERLY SAMPLING SAVANNAH, GEORGIA

FIGURE 4

ANNUAL MONITORING SPREADSHEET (BENZENE) - FOURTH QUARTER FORMER BUILDING 728, EPD FACILITY NO. 9025035 and 9025049 HUNTER ARMY AIRFIELD

			BENZENE RESUL	TS (ug/L)	
WELL #	CAP-B	l'st QTR	2'nd QTR	3'rd QTR	4'th QTR
MW01	0	0	0	0	0
MW02	0	NS	NS	NS	NS
MW03	4.2	NS	NS	NS	NS
MW05	0	NS	NS	NS	NS
MW06	24	0	7.5	9.3	0
MW09	0	NS	NS	NS	NS
MW10	0	NS	NS	NS	NS
MW11	1700	95	62	56	170
MW12	56	NS	NS	NS	NS
MW13	1.4	NS	NS	NS	NS
MW14	0	NS	NS	NS	NS
MW55	0	NS	NS	NS	NS
MW56	17	NS	NS	NS	NS
MW57	24	NS	NS	NS	NS
MW58	41	NS	NS	NS	NS
MW60	1400	3000	3500	3300	1900
MW61	910	850	930	280	900
MW63	2400	930	910	990	1900
MW64	81	450	270	290	220
MW65	0	0	0	0	0
SMW01	0	0	0	0	NS

NS - Not Sampled

APPENDIX II

TABLES

	Fo	rmer Building Hu	728, Fourth O Inter Army Airl	ATIONS (May 19 Quarterly Samplin field 025035 and 902	g	
	Screen	Water	тос	Water Level	Surface	Free Prod.
Location	Interval	Depth,	Elevation,	Elevation,	Elevation,	Thickness
	ft, bgs	тос	ft, msl	ft, msl	ft, msl	ft.
CAP-A						
MW01	3.2-13.2	4.04	19.20	15.16	19,5	
MW02	3.8-13.8	5.89	20.51	14.62	20.8	
MW03	2.6-12.6	6.47	20.80	14.33	21.1	
MW04	3.4-13.4	Destroyed	3/97			
MW05	3.3-13.3	6.50	20.37	13.87	20.7	
MW06	2.9-12.9	5.95	20.02	14.07	20.4	
MW08	3.5-13.5	Product	Recovery		19.6	0.85 (11/98)
MW09	3.1-13.1	7.31	20.27	12.96	20.5	
MW10	2.9-12.9	6.77	19.11	12.34	19.4	
MW11	2.3-12.3	6.74	18.89	12.15	19.3	
MW12	2.9-12.9	4.46	18.51	14.05	18.8	
MW13	4.0-14.0	6.31	18.39	12.08	18.7	
MW14	4.0-14.0	7.22	18.76	11.54	19.0	
САР-В						
MW55	2.0-12.0	3.60	18.32	14.72	18.5	
MW56	1.4-11.4	NA	19.69	NA	19.8	
MW57	2.0-12.0	5.76	20.10	14.34	20.3	
MW58	2.0-12.0	5.04	19.21	14.17	19.4	
MW59	2.0-12.0	Product	Recovery	NA	19.4	0.04 (3/99)
MW60	3.0-13.0	7.44	20.30	12.86	20.4	
MW61	3.0-13.0	7.37	20.34	12.97	20.5	
. MW62	3.0-13.0	Product	Recovery	NA	19.9	0.66 (3/99)
MW63	4.0-14.0	7.50	20.15	12.65	20.3	
MW64	3.0-13.0	6.12	18.98	12.86	19.1	
MW65	3.0-13.0	7.21	18.41	11.20	18.6	
MW66	35.6-40.6	NA	18.60	NA	18.8	
MW67	33.0-38.0	NA	18.82	NA	19.0	

bgs-below ground surface

TOC-top of easing

msi-mean sea level

Measurements on 5/5/99

NA- not measured

(p:\hazwaste\hunt_ltm\reports\b728\4th_qtr\wellsum,xls)

TABLE 2 : GROUNDWATER ANALYTICAL RESULTS, FOURTH QUARTERLY SAMPLING

Ę

(MAY 1999)

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	ТҮРЕ	(I/gu)	(I/gu)	(I/6n)	(I/gn)	(I/g/I)	(I/gn)
MW01	5/5/99	Primary	D))	>	Þ	n	n
MW06	5/5/99	Primary	D	D	12	D	12	21.04J
MW11	5/5/99	Primary	170	14	14	79	277	0.94J
MW60	5/5/99	Primary	1900J	160	410	1900	4370J	4.3J
MW61	5/5/99	Primary	1000 COO	22	270	1100	2292J	2.4J
MW63	5/5/99	Primary	1900	250	330	1400	3880	0.47
MW64	5/5/99	Primary	220	360	140	1200	1920	0.39
MW61	5/5/99	Duplicate 1	C068	22	270	1100	2282J	1.66J
MW65	5/5/99	Primary	5	5	5	∍	D	1.60
SMW01(B710)			NS	.SN	NS	NS	NS	NS
ARARS		IWQS	71.28	200,000	28,718	1		1

U = Not Detected.

(-) = No IWOS listed.
 J = Result is estimated
 NS = Not Sampled

(p:\hazwaste\hunt_ltm\reports\b.728\4th_qtr\728q4t2.xls)

TABLE 3 : SURFACE WATER ANALYTICAL RESULTS, FOURTH QUARTERLY SAMPLING (MAY 1999)

ť

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Ethylbenzene	Xylenes	TOTAL BTEX	TOTAL PAH
SITE	DATE	ТҮРЕ	(l/6n)	(I/gn)	(l/gn)	(I/gn)	(I/gn)	(I/6n)
SW01	2/5/99	Primary	2.15	-	0.8	2.3	6.2J	0.33J
SW03	2/5/99	Primary	∍	Þ	D	Þ	D	4.8.)
SW1005	2/5/99	Duplicate	2.0J	1	0.8	2.2	6.0J	1.48J
ARARS		IWOS	71.28	200,000	28,718	-		F

U = Not Detected.

(-) = No IWOS listed.
 J = Estimated

(p:\hazwaste\hunt_ltm\reports\b.728\4th_qtr\728q4t3.xls)

TABLE 4 : SEDIMENT ANALYTICAL RESULTS, FOURTH OUARTERLY SAMPLING (MAY 1999)

ţ

Former Building 728 Hunter Army Airfield Chatham County, Facility ID No. 9025035 & 9025049

		RESULT	Benzene	Toluene	Fthvlhenzene	Xvlenes	TOTA! RTFX	TOTAI PAH
SITE	DATE	ТҮРЕ	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW03	2/5/99	Primary	n	_	n	n	n	11.03J
SW1005	2/5/99	Duplicate	n N	Э	D	D	þ	5.92J
ARARS		STL STL	0.017	115	18	200		E.

U = Not Detected.

J = Estimated

(-) = No STL listed (Table B, <500 ft to surface water).

(p:\hazwaste\hunt_ltm\reports\b.728\4th_qtr\728q4t4.xls)

APPENDIX III

LABORATORY ANALYTICAL RESULTS

DATA QUALITY SUMMARY REPORT

Hunter Army Airfield - Long Term Monitoring Former Buildings 728, 1310 & Fire Fighter Training Area June 21, 1999

1.0 INTRODUCTION

Metcalf & Eddy, Inc. was contracted by the United States Army Corps of Engineers, Savannah District, to perform quarterly groundwater monitoring at various locations at the former Hunter Army Airfield. This event represents the long term monitoring analytical data for November 1998.

Metcalf & Eddy, Inc. contracted with Analytical Services Inc. (ASI) Laboratories to perform the required analyses of groundwater, surface water and sediment samples. The analytical data was validated using the guidance found in USEPA National Functional Guidelines for Organics Data Review and Inorganics Analysis. This guidance follows the Quality Assurance (QA)/Quality Control (QC) requirements outlined in the USEPA's Test Methods for Evaluating Solid Waste (EPA SW-846). Overall these guidelines mimic the most current editions of the EPA's Functional Guidelines for Reviewing Organic and Inorganic Analyses conducted outside the EPA's Contract Laboratory Program (CLP).

The following sections of this Data Quality Summary Report discuss the laboratory reporting, data validation, problems encountered and corrective actions as applied to the samples and data collected during this determination.

1.1 Field Samples and Analysis

The following report summarizes the validation findings of the samples included in the Sample Data Groups listed below.

SDG	Date	<u>Matrix</u>	Samples	Field Duplicates	Trip <u>Blanks</u>	Equipment <u>Blanks</u>
107713	05/15/99	WATER	21	3	1	1
		SEDIMENT	1	1	0	0

Nineteen groundwater samples, two surface water samples, one sediment sample, four field duplicates one trip blank and one equipment rinsate were analyzed. All water samples were analyzed for PAH's by EPA method 8310. All sediment samples were analyzed for PAH's by EPA method 8100. Groundwater, surface water and sediment from buildings 728, 1310 and the fire fighter training area (FTA) were analyzed for volatile aromatics by EPA method 8021. All samples were analyzed by ASI Laboratories, Norcross, Georgia using the above listed USEPA SW-846 Methods.

2.0 LABORATORY REPORTING

2.1 Laboratory Blanks

Laboratory blanks or method blanks are artificial samples prepared from the same matrix type as the samples to be analyzed. These blanks are taken through sample preparation and analyzed before the field samples to determine if the glassware, sample preparation or laboratory environment has contaminated the field samples.

Laboratory blanks for all methods of analysis of groundwater, surface water and sediment were analyzed at the required frequency and were free of contaminants.

2.2 Laboratory Control Samples (% Recovery)

Laboratory control samples are artificial samples prepared from the same matrix type as the samples to be analyzed. These samples are processed through sample preparation and analyzed to assess the performance of each analytical system that the laboratory uses to analyze the field samples.

All laboratory control samples for all methods of analysis of groundwater, surface water and sediment were analyzed at the required frequency.

2.3 Precision (% RPD)

Laboratory precision is evaluated by calculating the relative percent difference (RPD) between the values reported for a matrix spiked (MS) sample and its duplicate, the matrix spiked duplicate (MSD), or any other set of duplicate parameters. The following equation is utilized for this calculation:

$$RPD = \frac{|Vs - Vd|}{[Vs + Vd] / 2} X 100$$

Where Vs is the value reported for the matrix spiked (MS) sample and Vd is the value reported for it's duplicate (MSD). Sample RPDs are compared to the analyzing laboratory's precision control limits which are primarily derived from their in-house quality control data.

RPDs for all methods of analysis of matrix spiked groundwater and surface water samples were within required control limits with the exception of three matrix spikes which exhibited RPDs outside of acceptance criteria for five VOC's and two matrix spikes which exhibited RPD's outside of acceptance criteria for two PAH's. No qualifiers were required.

RPDs for all methods of analysis of matrix spiked sediment samples were within required control limits with the exception of one matrix spike which exhibited RPDs outside of acceptance criteria for twelve PAH's. No qualifiers were required.

RPDs of field duplicates for all methods of analysis of groundwater and surface water were within the established control limits with the exception of two PAH and two VOC samples. No qualifiers were required.

RPDs of field duplicates for all methods of analysis of sediment were within the established control limits with the exception of one PAH sample. No qualifiers were required.

2.4 Surrogate Recovery

Surrogates are compounds similar to analytes of interest but are not normally found in environmental samples. Prior to sample preparation and analysis, surrogates are spiked into laboratory control samples, calibration and check standards, matrix spiked samples and field samples. Accuracy is measured by calculating percent recoveries for each surrogate as follows:

%R = Concentration of spike found Concentration of spike added

Surrogate recoveries for groundwater, surface water and sediment were all within the required control limits with the exception of three samples; (FTAHMW-4, FTAHMW-9 and FTAHMW-11), which exhibited slightly high recoveries for 1,2-dichloroethane-d4.

2.5 Holding Time

Holding time is the storage time allowed between sample collection and sample analysis when the designated preservation and storage techniques are employed.

All groundwater, surface water and sediment samples were analyzed within required holding times for all methods of analysis.

2.6 Temperature

Chain of custody forms and cooler receipts document that the laboratory received all samples at temperatures ranging from 1 °C to 6 °C. These temperatures are within the acceptable limits of the required preservation requirement of 4 °C plus or minus 2 °C.

2.7 Completeness

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness.

3.0 DATA VALIDATION

The objective when evaluating the quality of chemical data is to determine its usability. The evaluation is based upon the interpretation of the laboratory QC data, the field QC data, and the project Data Quality Objectives (DQOs). The evaluation process is often termed "data validation".

3.1 Laboratory Data Validation

Laboratory data were evaluated to assess, holding times, laboratory blanks, laboratory control samples, surrogate recoveries, and matrix spike/matrix spike duplicate (MS/MSD) relative percent differences (RPDs). These criteria were used to evaluate the bias and precision of the data generated by the laboratory. The bias of the laboratory data was assessed through consideration of the following:

- Adherence to the prescribed method
- Recovery of MS/MSD from field samples
- Method blank contamination
- Adherence to sample preparation and holding times
- Recovery of surrogate spikes
- Field duplicate precision

3.2 Definition of Data Qualifiers

During the data validation process, all laboratory data had to be evaluated and assigned a data qualifier, as applicable. These qualifiers are defined in the February 1994 EPA documents titled, "National Functional Guidelines for Organic and Inorganic Data Review." The guidance also describes procedures to be followed when qualifying data. The data qualifiers are defined as follows:

U = the compound was analyzed for, but was not detected above the level of the associated value

J = the associated value is an estimated quantity. The reported result is qualitatively accurate but quantitatively imprecise.

UJ = the compound was analyzed for, but was not detected, and the associated value is an estimated value due to a variance from quality control limits.

R = the reported result or quantitation limit is rejected and unusable for all purposes. The analyte was analyzed for, but the presence or absence of the analyte can not be verified

Data qualifier flags were not assigned to data that were totally in compliance with Quality Control requirements.

For organic data, specifically VOCs, the positive and undetected (U) results were qualified as estimated (J/UJ) if one surrogate compound was detected outside acceptable recovery limits and/or the recovery was greater than 10 percent. If the recoveries of one surrogate compound were less than 10 percent, then the positive results were qualified as estimated (J) and the undetected results were rejected (R). Results of PAH compounds are validated in the same manner as VOC, the qualifiers are applied to results with one or more surrogate compounds detected outside the acceptable recovery limits.

3.3 Qualified Results

Groundwater and Surface water:

<u>VOC's</u> - Benzene was qualified as estimated (J), due to high matrix spike recoveries for samples;728SWE01, 728MW60, 728MW61, FTAHMW-11, FTAHMW-4, FTAHMW-6 and FTAHMW-8.

Ethylbenzene and total xylenes were qualified as estimated (J), due to high matrix spike recoveries for sample;FTAHMW-11.

<u>PAHs</u> - Naphthalene was qualified as estimated (J), due to high matrix spike recoveries for samples;728SWE01, 728SWE03, FTAHMW-8 & FTAHMW-10. Dibenz(a,h)anthracene was qualified as estimated (J), due to low matrix spike recovery for samples; 728MW06 and 728MW-11.

Phenanthrene was qualified as estimated (J), due to high matrix spike recoveries for samples;728MW06, 728MW60, 728MW61, FTAHMW-11 & FTAHMW-6. Fluoranthene and Pyrene were qualified as estimated (J), due to high matrix spike recoveries for sample;FTAHMW-6.

Sediment:

<u>PAHs</u> - Acenaphthene was qualified as estimated (J), due to low matrix spike recovery for sample; 728SWE03.

Naphthalene, phenanthrene and pyrene were qualified as estimated (J), due to high matrix spike recoveries for sample; 728SWE03.

4.0 PROBLEMS ENCOUNTERED

Any problems encountered during sample analysis for this investigation are described in detail below. Analytical data that did not meet the QC requirements were qualified as stated in Section 3.3.

4.1 Holding Times

No problems were present regarding hold times.

4.2 Surrogate Recovery

No problems were encountered other than a few outliers were encountered.

4.3 Precision (% RPD)

No problems were encountered outside of a few field duplicate outliers. No qualifiers were applied.

4.4 Field Duplicates

In addition to the matrix spike sample, field duplicates were collected to assess sampling precision. Duplicate samples were collected at a frequency of one per site, per matrix, per sampling event. Field duplicate RPDs were within the quality control limits for 95% of the parameters analyzed. Sample duplicate precision is indicative that these data are comparable and representative of field conditions.

4.5 Equipment Rinsates

One equipment rinsate was analyzed in with this set of groundwater and surface water samples. The rinsate blank was found to be free of contamination.

4.6 Laboratory Blanks

Laboratory blanks were within the specified method criteria and the sample results required no qualifications with the exception of the samples mentioned under Section 3.3.

4.7 Laboratory Control Standards

Laboratory control standards were within the specified method criteria and the sample results required no qualifications with the exception of the samples mentioned under Section 3.3.

5.0 SUMMARY OF DATA QUALITY

The amount of data obtained compared to the amount of data that was expected to be obtained is enough to achieve the goal of >99% completeness. The results of the data validation indicate the quality of the data is within QC limits and is acceptable to verify or deny any contamination present in the groundwater at this site.

Reviewed by: Date:

hunter1\chem\reports\4thqtr.ltm

18 đ Page: 1A

> LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS FOR GROUNDWATER EPD FACILITY NO. 9025035 & 9025049 HUNTER ARMY AIRFIELD

00002 728-MW6105 728MW61 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 05/05/39 <0.157 < 0.031 < 0.123 1.1.J < 0.097 < 0.302 < 0.214 < 0.107 < 0.164 Primary 1100 <5.0 <5.0 < 5.0 < 5.0 500 J 22 270 <u>е</u> 728-MW8005 < 0.0311 <0.157 Duplicate 1 < 0.302 728MW61 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 05/05/99 < 0.123 < 0.097 1.0.J < 0.107 < 0, 164 < 0.031 < 0.214 <5.0 1100 <5.0 <5.0 < 5.0 L 068 0.66 22 270 RESULT IS REJECTED. 728-MW6005 < 0.302 728MW60 <0.157 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.097 < 0.123 05/05/99 < 0.031 < 0.214 1.4 J < 0.164 <0.107 <0.5 Primary 1900 J <0.5 < 1900 160 < 0.5 < 0.5 2.9 410 728-MW1105 = RESULT IS ESTIMATED. <0.157 < 0.0311 <0.031 J <0.123 <0.302 728MW11 < 0.0311 < 0.097 < 0.0311 < 0.0311 05/05/99 < 0.0311 < 0.0311 <0.103 < 0.164 < 0.092 < 0.107 --- = Not analyzed 0.94 J <0.5 Primary €.0× 62 < 0.5 < 0.5 170 4 4 728-MW0605 < 0.0311 < = Not detected at indicated reporting limit <0.031 J 0.56 J 728MW06 <0.157 < 0.0311 <0.0311 < 0.0311 < 0.0311 05/02/99 < 0.0311 0.18 3.4 J <0.5 < 0.107 1.8 Primary 0. V <0.5 < 0.5 <0.5 < 0.5 < 0.5 6.5J 5.5J ы. Т 2 ł 728-MW0105 728MW01 <0.157 < 0.0311 < 0:0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 05/05/99 <0.097 <0.123 < 0.092 < 0.103 < 0.302 < 0.214 < 0.164 < 0.031 < 0.107 Primary <0.5 <0.5 < 0.5 0.1V <0.5 <0.5 < 0.5 < 0.5 I RESULT TYPE SAMPLE ID DATE Values represent total concentrations unless noted SITE (Units in ug/l) Indeno[1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Benzo(k)fluoranthene 1, 2-Dichlorobenzene Benzo(b)fluoranthene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Fluoranthene Benzo(a)anthracene Benzo(a)pyrene CONSTITUENT Phenanthrene Acenaphthene Acenaphthylene Chlorobenzene Xylene (total) Ethylbenzene Anthracene Naphthalene Chrysene Toluene Fluorene Benzene Pyrene

£

EPA METHODS:8021,8310.

18 ٥f Page: 1B

> LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS FOR GROUNDWATER EPD FACILITY NO. 9025035 & 9025049 HUNTER ARMY AIRFIELD

728-SW0305 £ 728SWE03 1. U (05/05/99 < 0.302 < 0.097 < 0.157 0.50 0.11 < 0.164 0.34 <0.092 Primary < 0.5 0.47 0.22 < 0.5 <1:0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.39 0.69 0.12 1.6J 0.25 0.11 728-SW1005 728SWE01 **Duplicate 1** < 0.0311 05/05/99 < 0.0311 < 0.097 < 0.157 < 0.302 0.080 < 0.123 < 0.103 < 0.164 < 0.092 0.090 < 0.107 0.072 <0.5 < 0.35J <0.5 < 2.2 <0.5 0.047 < 0.5 0.84 2.0 J 1.0 = RESULT IS REJECTED. 0.8 728-SW0105 < 0.302 728SWE01 < 0.0311 <0.097 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.157 05/05/99 < 0.123 < 0.103 < 0.164 < 0.092 <0.5 < 0.031 < 0.107 Primary < 0.5 0.33J 2.3 < 0.5 2.1 J < 0.5 1.0 0.8 728-MW6505 <0.302 <0.097 <0.0311 728MW65 < 0.0311 < 0.0311 05/05/99 < 0.0311 < 0.0311 < 0.123 < 0.103 < 0.0311 <0,157 < 0.031 < 0.164 < 0.092 < 0.107 ---- = Not analyzed Primary <0.5 <0.5 <1.0 <0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.I 728-MW6405 < = Not detected at indicated reporting limit 728MW64 < 0.097 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 < 0.0311 <0.157 05/05/99 < 0.214 < 0.103 < 0.302 <0.123 < 0.164 < 0.031 < 0.107 Primary 360 <0.5 1200 < 0.5 <0.5 < 0.5 0.39 220 140 728-MW6305 <0.0311 728MW63 < 0.0311 < 0.0311 05/05/99 < 0:302 <0.097 < 0.0311 < 0.0311 < 0.0311 < 0.157 < 0.103 < 0.123 < 0.214 < 0.107 < 0.164 < 0.031 Primary 1400 ₹0.5 <0.5 <0.5 < 0.5 1900 250 0.47 330 RESULT TYPE SAMPLE ID DATE Values represent total concentrations unless noted SITE (Units in ug/l) Fluoranthene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Anthracene Benzo(ghi)penylene I,4-Dichlorobenzene Benzo(b)fluoranthene 1,2-Dichlorobenzene Benzo(k)fluoranthene 1,3-Dichlorobenzene Benzo(a)anthracene Benzo(a)pyrene Xylene (total) Acenaphthene Phenanthrene Acenaphthylene CONSTITUENT Chlorobenzene Ethylbenzene Chrysene Naphthalene Foluene Fluorene Benzene Pyrene

œ

RESULT IS ESTIMATED.

3021,8310.

EPA METH(

	LONG TERM N PRIMARY	LONG TERM MONITORING - BUILDING 728 PRIMARY RESULTS FOR SEDIMENT	
	EPD FACILITY	EPD FACILITY NO. 9025035 & 9025049	
SITE SAMPLE ID SAMPLE ID DATE DEPTH (ft) RESULT TYPE	7285WE03 728-5E0305 05/05/99 0.00 Primary	7285WE03 728.5E1005 05/05/33 0.00 Duplicate 1	
Benzene Toluene Ethvl herzene	< 0.0029 < 0.0029 < 0.0029	<0.0029 <0.0029 <0.0029	
		×0.0029 ×0.0029	
		<0.15.J	
Acenaphthylene Anthracene	<0.15 ≪0.15	<0.15 <0.15	
Benzo(a) anthracene Benzo(a) pyrene	0.37 J 0.76 J	0.18 J 037 J	
Benzo(b)fluoranthene Benzo(ghi)perviene		0.34 J 0.47 J	
Benzo(k)fiuoranthene Chrisena			
16			
	10	0./2.J <0.15	
Indeno(1,2,3-cd)pyrene Naohthalene	0.44 4.4.J	021 2.2 J	
8		0.21 J	
Diesel Range Organics Gasoline Range Organics	<10 <0.29	<10 0.32	
Values represent total concentrations unless noted <=Not dett For RCL 8000AJASI	< = Not detected at indicated reporting limit	oorting limit=Not analyzed 0.0009	

Page: 1A of 1A

(

Ć

Ć

HUNTER ARMY AIRFIELD

	3			10	it.			
	CHAIN - OF - CUSTC	CUSTODY - RECORD		·	ANALYTICAL P.	6		•
Mercal & Eddy		X51# 107713	C1 1-9 6-0	> 0 4	≝ 82 6 		2 X >	× 0
PROJECT NAME: MUNTERLT	M TASK ORDER NO	NO.		, ,	(- v	. <u>D</u> =	
PROJECT NO: 0/9457	SAMPLE EVENT:	ï		84	<u> </u>	- 0 1	0	
LABORATORY ID: AST	PROGRAM TYPE:	λ <u>Ε.</u>	-	922	£	<u> </u>		
SAMPLER(S) NAME: PANID FUM HIPOL	NA. SAMPLER(S) SIGNATURE	SIGNATURE: U/ L		8_2	GFAA			
mite [BUEL] MURRA	RI		GTANBONARD FRITERED Z					
	B05003	SIND TIJ	CIBR(1)	· · · ·				
5/5/1/ Dr-Su030-	728SWEDZ(UPV)	PPU 3	X X	Μ				-
- 15/19 02/5 W PDO-SW0205		Pro1 3	λ	\mathcal{O}			1. 	à
OBYS W	1 . · · ·	Pp// 3		5				
5/2/99 0900 W DDO 500105	~	PBI 2		ξ				7
\mathcal{N}	5			\sim		47 1		<u>ک</u>
15/5/19/1030 W 728-5/20305	1	PPOI 3		M	#* 5	5 - 2 - 2 		٩
\mathcal{M}	1	PPM 31		M				
24/m 100 1 728-50/005	5 728SwEO/	(2 / 1a		3				00
5/2 mar 1525 W 727 - 21-10-62 m 33	(con) Proving the	PP0/ 3	<u> </u>	M			•	6
5/2/19/1545 W 778-MW0605	ZPMW	Pro/ 3		3		+ +	▼. -	0/
	242	Sci1 6	/	9			m -	2m [- sull
2020/14/22 [11] 00/14/2/2	- 728MW 60	C 100		M			7	12
,	Derte/Time: Received by:		Date/Time:			Cooler Ten	Cooler Temperature:	
Supplied for the second	AP 1800 5.	ar Kson	51099 19	19:15Am	- - - -	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12(22)
Romartas (60 le + 41 (1727)	la dell'attender 5/2/109 V	Ensedue: centru	ti ptinh	ļ	STAND	STANDARD PRESERVATION (Y):	ERVATION	Ë
		Send Results to:	750 cont.			Halvoc, Hno,Metals	צא	-
	FED EX	Christine Hettinger c/o METCALF & EDDY, INC. 201 Peadmree St., N.E., 400 Colony Square, Suite 1101 	etcale & EDDY, INC. 400 Colony Square, S	tic 1101	<u>.</u> 32	H_SQ/ OTHER	PIN KC YN	K AN
NU SURVER	V (17/2X XX/W	(404) 881-8010, FAX (4	M) 872-3161					

:		CJ- C		Ć	l
	CHAIN - OF - CUSTODY - RECORD			N-	ETHODS T G
	EIFFOI #ICA	م الم الم الم	> 0 c	н с С С С С С С С С С С С С С С С С С С С	≪ 0
- 1	PROJECT NAME: HUNTER LTM TASK ORDER NO.				
1		 	<u><u></u></u>		
.			H 20		
·	SAMPLER(S) NAME: DAUD HUMPHRIS SIGNATUREU.	28			
82	ONTE TAUE MATRIX FIELO DATE TAUE MATRIX FIELO BULTART SAMP FIELO DATE DOLE (FT) COMTS (CM)	TAND FATFHED 20. EPP (3) LAB (
		Mar			
ا ر	35AP1 1600 W 728-MW8005 728 MW60 PD/1 3 X	<u> </u>			-14
5	\$5/m/65 W 728-MU6105- 778MW6/ PPOI 3 X		S		1/5
<i>`</i> २	505 MM-822 (1) 259/ 14/5	~)	~		
13	W 728-MW6305 728 MW63 PBOI				4
ı ۲	W 728-MW 1105 728MW11	3			
1×	W 728-ML46505 728 MW65	<u></u>			5
Y	- <i>1</i> /		M		<u>0</u>
3			<u>}</u>	An Auto	
17				we of	- SC
3					
12					
1-2					
. 🔪	Reinstructured by: / / DeterTure: Received by: / / / (Signatured) (Sign	DeterTime: K.J. GO O' IC'		Cooter Temperature	(درزیه)
八糸	the states	27-10-1-1-1-1-	۰ لــ)	The CAL	NS of Cale
]	Trio Rlank Site I. D. Dov mother list from		(H)	HCLVOC	
	Alreal to. Fall PX	CALF & EDOY, INC. X0 Colony Square, Suite	2 (S (S)	HAND/MEINES HSO/ OTHER	
	s 8766831673) 872-3161		STORED/SHIPPED IN ICE Y/N	N ICE Y.V.

s/METHODS	ж			105m61-5m11-						Coolar Yamparture: 5'L E. Kup P. J. Ander 3'C.	STANDARD PRESERVATION (Y):	HCL/VOC, HAND, METALS H_SOL/ OTHER OTHER STORED/S J (N ICE Y/N
		0N bad155M	72	A N	2	2				(1:30 Ta	. L	£290
RECORD	ASS IT 1072473 PY 8 = 517 TURE:	DEFTH NO. OF PRESERV CLUAR (FT) CONTS (YAY (FLEID (YAY)	22	74	2	2				Date/Time:	yeller march if the nd	end Results to: Christine Hetunger c/o METCALF & EDOY, INC. 201 Peachtree St., N.E., 400 Colory Square, Suite 1101 (anta, Georgia 30361 (404) BB1-B010, FAX (404) B72-3161
CUSTODY -	ASS ORDER NO. SAMPLE EVENT: PROGRAM TYPE: SAMPLER(S) SIGNATURE:		1041 HON XZT	129 Mindo Sull		729MW66 PD11 /				Received by:	alls 5/3/57 Eng	Send Results to: Christine Hettinge 201 Peachtree S clanta, Georgia (404) 881-8010,
CHAIN - OF -	HUNDER LTM BIGHEST MST MATHENERARYCANK WANNENERARYCANK		OWM & ZTZ ZOOWH-BT	<u>н у/к</u> 3	728-Mulelos 728,	728-4W805 729.				Duta/Time:) Sapler	AIRBILL CO.
		The Burner	199 1345 W 728-)	524 11 WY by	100	14 165 W 728	· · · · ·	 		Reinquiabad by: (Signa ura)	RAMITER CORLER #5(1164)	(

00014

Co-ler #1 (ASI 1727)

Number of Coolers: IIMS # 107713 Date Received: S7/5/77 Project: Hank LTM, Power # 019457 Use other side of this form to note details concerning check in problems A. Preliminary Examination Phase: Date cooler was opened: 5/6/19 by (print): TALMM. (sign) Fallers. 1. Did cooler come with a shipping slip (airbill, etc.)? (a) No 1. Did cooler come with a shipping slip (airbill, etc.)? (a) No 1. Were custody eeals on outside of cooler? (a) No 1. Were custody eeals on outside of cooler? (a) No 2. Were custody eeals on outside of cooler? (a) No 3. Were custody aeals unbroken and intact at the date and time of arrival? (a) No 4. Did you screen samples for radioactivity udng a Geiger counter? (b) No 5. Were custody papers filled out properly (ink, signed, etc.)? (b) No 6. Were custody papers in the appropriate place? (c) No 7. Did you sign custody papers in the appropriate place? (c) No 8. Was project identifiable from custody papers?		Cooler Receipt Form	1.1	
Project: Hark LTM., Payed # 019927 Use other side of this form to note details concerning check-in problems A. Preliminary Examination Phase: Date cooler was opened: 5/1/29 by (print): Intervention Phase: Date cooler was opened: 5/1/29 by (print): Intervention Phase: Date cooler was opened: 5/1/29 by (print): Intervention Phase: Date cooler was opened: 5/1/29 by (print): Intervention Phase: Date cooler was opened: 5/1/29 by (print): Intervention Phase: Date cooler was opened: 5/1/29 cooler come with a shipping slip (airbill, etc.)? If YES, then enter carrier name and airbill number here: Faller # 374633/673 1 Were custody seals on outside of cooler? If YES, then enter carrier name and airbill number here: Faller # 374633/673 2 Were custody seals unbroken and intact at the date and time of arrival? If YES, not fall source of cooler? 4 Did you sign custody papers filled out properly (ink, signed, etc.)? If Yes No 5 Were custody papers filled out properly (ink, signed, etc.)? If yes No 6 Were custody papers filled out properly (ink, signed, etc.)? If yes No 7 Did you sign cus		Date Received:	_5/1/2	1
Use other side of this form to note details concerning Check in problems A. Preliminary Examination Phase: Date cooler was opened:	•	1 1. 17m Prever # 019937		
 A Preliminary Examination Phase: Date cooler was opened: 5/6/17 by (print): 6/6/6/9/6/9/6/9/6/9/6/9/6/9/6/9/6/9/6/9	Projecti	The other side of this form to note details concerning check-in problems		
by (print): ACLAPM (sign) Control See No 1. Did cooler come with a shipping slip (airbill, etc.)? If YES, then enter carrier name and airbill number here: Falter # 8746693/673 2. Were custody seals on outside of cooler? If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and airbill number here: If YES, then enter carrier name and intact at the date and time of arrival? If YES, No 4. Did you serve namples for radioactivity using a Geiger counter? If See No 5. Were custody papers sealed in a plastic bag & taped inside to the lid? Yes If See 6. Were custody papers in the appropriate place? If See No 7. Did you sign custody papers? If See No 8. Was project identifiable from custody papers?<		Duliningry Examination Phase: Date cooler was opened: 5/6/99		·
by (nm)	Α.	(sign)	<u> </u>	<u></u> .
If YES, then enter carrier name and airbill number here: Parce of the property file 2. Were custody seals on outside of cooler? How many & where: 2 "field" seal date: No Dade, seal name: M HE not Signed 3. Were custody seals unbroken and intact at the date and time of arrival? Tess No 4. Did you screen samples for radioactivity using a Geiger counter? Tess No 5. Were custody papers sealed in a plastic bag & taped inside to the lid? Yes Tess No 6. Were custody papers filled out properly (ink, signed, etc.)? Tess No 7. Did you sign custody papers in the appropriate place? Tess No 8. Was project identifiable from custody papers? Tess No 9. If required, was enough ice used? Type of fce: Daged Tess No 9. If required, was enough ice used? Type of fce: Daged Tess No 10. Have designated person initial here to acknowledge receipt of cooler: Match the fill Tess No 11. Describe type of packing in cooler: baged in: Staff Staff No 12. Were al		by (pandy		No
 Were custody seals on outside of cooler? How many & where:	۶.	to ves then gater carrier name and airbill number here:Fell 5c # 87668	·	
How many & where: Image: Seal date: No 3. Were custody seals unbroken and intact at the date and time of arrival? Tes No 4. Did you sereen samples for radioactivity using a Geiger counter? Tes No 5. Were custody papers sealed in a plastic bag & taped inside to the lid? Yes No 6. Were custody papers filled out properly (ink, signed, etc.)? Tes No 7. Did you sign custody papers in the appropriate place? Tes No 8. Was project identifiable from custody papers? Tes No 9. If required, was enough ice used? Type of fice: Dagsd Seal No 10. Have designated person initial here to acknowledge receipt of ucoler. Clare? Seal No 11. Describe type of packing in cooler: Seag	-	We austody stals on outside of cooler?		. 0
3. Were custody seals unbroken and intact at the date and time of arrival? (Yes) No 4. Did you screen samples for radioactivity using a Geiger counter? Yes No 5. Were custody papers sealed in a plastic bag & taped inside to the lid? Yes No 6. Were custody papers filled out properly (ink, signed, etc.)? Yes No 7. Did you sign custody papers in the appropriate place? Yes No 8. Was project identifiable from custody papers? Yes No 9. If required, was enough ice used? Type of Ice: Daysed Yes No 9. If required, was enough ice used? Yes Yes No 10. Have designated person initial here to acknowledge receipt of cooler (date): S/L/47 10. Have designated person initial here to acknowledge receipt of cooler Yes No 11. Describe type of packing in cooler: S/Z/177 May No 12. Were all bottles sealed in separate plastic bags? Yes No 13. Did all bottle labels complete (ID, date, time, signature, preservative, etc.)? Yes No 15. Did al	2.		MIEM	of signal
 A. Did you screen samples for radioactivity using a Geiger counter? Ware custody papers scaled in a plastic bag & taped inside to the lid? Ware custody papers filled out properly (ink, signed, etc.)? Were custody papers filled out properly (ink, signed, etc.)? To Did you sign custody papers in the appropriate place? Was project identifiable from custody papers? If required, was enough ice used? Type of Ice: bagsed Have designated person initial here to acknowledge receipt of cooler. the start of the		How many a where	Yes	No
 5. Were custody papers scaled in a plastic bag & taped inside to the lid? 6. Were custody papers filled out properly (ink, signed, etc.)? 7. Did you sign custody papers in the appropriate place? 8. Was project identifiable from custody papers? 16 YES, enter project name at the top of this form. 9. If required, was enough jee used? Type of Ice: bagsed (date): 5/c/49 10. Have designated person initial here to acknowledge receipt of cooler. 2000 (date): 5/c/49 10. Have designated person initial here to acknowledge receipt of cooler. 2000 (date): 5/c/49 11. Describe type of packing in cooler: (sign) 12. Were all bottles sealed in separate plastic bags? 13. Did all bottle samples unbroken and were labels in good condition? 14. Were all bottle labels agree with custody papers? 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 19. Was a sufficient amount of sample sent for the tests indicated? 		Were custous sense the radioactivity using a Geiger counter?	Tes	
 6. Were custody papers filled out properly (ink, signed, etc.)? 7. Did you sign custody papers in the appropriate place? 8. Was project identifiable from custody papers? 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? Type of fice: bagsed 9. If required, was enough ice used? 9. If required, was enough ice used for the tests indicated? 9. Was a sufficient amount of sample sent for the tests indicated? 9. Was a sufficient amount of sample sent for the tests indicated? 		Did you server samples to the din a plastic bag & taped inside to the lid?	Yes	
 7. Did you sign custody papers in the appropriate place? 8. Was project identifiable from custody papers? 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. If required, was enough ice used? Type of fice: <u>bagsed</u> 9. Ing-in Phase: Date samples were logged-in: <u>5/7/77</u> 9. Log-in Phase: Date samples were logged-in: <u>5/7/77</u> 9. Log-in Phase: Date samples were logged-in: <u>5/7/77</u> 9. Log-in Phase: Date samples were logged-in: <u>5/7/77</u> 9. Were all bottles scaled in separate plastic bags? 11. Describe type of packing in cooler: <u>bagsed</u> is good condition? 12. Were all bottles arrive unbroken and were labels in good condition? 13. Did all bottle scomplete (ID, date, time, signature, preservative, etc.)? 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 19. Was a sufficient amount of sample sent for the tests indicated? 		Were custody papers filled out properly (ink, signed, etc.)?	(Yes	No
 8. Was project identifiable from custody papers? If YES, enter project name at the top of this form. 9. If required, was enough ice used? Type of Ice: brassed (date): 5/c/19 10. Have designated person initial here to acknowledge receipt of cooler. June (date): 5/c/19 B. Log-in Phase: Date samples were logged-in: 5/1/19 Mere all bottles arrive unbroken and were labels in good condition? Mere all bottle labels complete (ID, date, time, signature, preservative, etc.)? Mo Mere correct containers used for the tests indicated? Mo Mere correct preservatives added to samples? Mo Mere correct preservatives added to samples? Mo Mas a sufficient amount of sample sent for the tests indicated? 		Were clistody papers in the appropriate place?	Ces	No
If YES, enter project name at the top of this form. If required, was enough ice used? Type of Ice: Drgsad Tes No 9. If required, was enough ice used? Type of Ice: Drgsad Tes No 10. Have designated person initial here to acknowledge receipt of cooler: (date): 5/c/frg 10. Have designated person initial here to acknowledge receipt of cooler: (date): 5/c/frg 10. Log-in Phase: Date samples were logged-in: 5/z/rg (date): 5/c/frg 11. Describe type of packing in cooler: based in the base base? Yes No 12. Were all bottles sealed in separate plastic bags? Yes No 13. Did all bottles arrive unbroken and were labels in good condition? Yes No 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? Yes No 15. Did all bottle labels agree with custody papers? Yes No 16. Were correct preservatives added to samples? Yes No 17. Were correct preservatives added to samples? Yes No 18. Was a aufficient amount of sample sent for the tests indicated?		Did you sign custody papers?	(Tes)	No
 9. If required, was enough ice used? Type of Ice: Dagsed (date): S/L/17 10. Have designated person initial here to acknowledge receipt of cooler: (date): S/L/17 10. Log-in Phase: Date samples were logged-in: S/1/17 11. Describe type of packing in cooler: (sign) 12. Were all bottles scaled in separate plastic bags? 13. Did all bottles arrive unbroken and were labels in good condition? 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 	8.	W_{23} project identifiable from $y = 1$ the top of this form.		•
 Have designated person initial here to acknowledge receipt of cooler. <u>Market (date)</u>. <u>Drefet</u> Log-in Phase: Date samples were logged-in: <u>5</u>/7/17 by (print): <u>brack for (sign)</u> (sign) Describe type of packing in cooler: <u>brack information for the tests indicated?</u> Yes No Were all bottle labels agree with custody papers? Were correct preservatives added to samples? Were all ficient amount of sample sent for the tests indicated? Was a sufficient amount of sample sent for the tests indicated? 		If YES, enter project mind as the of the bagsed	(inters	No
 B. Log-in Phase: Date samples were logged-in: <u>S</u> 7179 by (print): <u>Describe type of packing in cooler</u>. <u>(sign)</u> <u>(sign)</u> <u>(sign)</u> 11. Describe type of packing in cooler: <u>based in backle wrap</u> 12. Were all bottles sealed in separate plastic bags? 13. Did all bottles arrive unbroken and were labels in good condition? 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 		It required, was chough for the to acknowledge receipt of cooler. (date): 5/4	17
by (print): Describe type of packing in cooler: (sign) (backlewrap) 11. Describe type of packing in cooler: backlewrap) 12. Were all bottles sealed in separate plastic bags? Yes No 13. Did all bottles arrive unbroken and were labels in good condition? Yes No 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? Yes No 15. Did all bottle labels agree with custody papers? Yes No 16. Were correct containers used for the tests indicated? Yes No 17. Were correct preservatives added to samples? Yes No 18. Was a sufficient amount of sample sent for the tests indicated? Yes No		Have designated person many were logged-in: 5/2/17 ///	I de	· .
11. Describe type of packing in cooler: based in packing in cooler: based in packing in cooler: Yes 12. Were all bottles scaled in separate plastic bags? Yes No 13. Did all bottles arrive unbroken and were labels in good condition? Yes No 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? Yes No 15. Did all bottle labels agree with custody papers? Yes No 16. Were correct containers used for the tests indicated? Yes No 17. Were correct preservatives added to samples? Yes No 18. Was a sufficient amount of sample sent for the tests indicated? Yes No	В.	Log-in Phase: Date samples for some (sign)	<u> </u>	
 12. Were all bottles sealed in separate plastic bags? 13. Did all bottles arrive unbroken and were labels in good condition? 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 		by (print): _ the price in cooler: based in the letter wap		
 Did all bottles arrive unbroken and were labels in good condition? Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? Did all bottle labels agree with custody papers? No Were correct containers used for the tests indicated? Were correct preservatives added to samples? Was a sufficient amount of sample sent for the tests indicated? No Were correct preservatives added to sample sent for the tests indicated? No 		Describe type of packing in course plastic bass?	Yes	
 14. Were all bottle labels complete (ID, date, time, signature, preservative, etc.)? 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 		Were all bottles scaled in septence plant were labels in good condition?	(es	No
 15. Did all bottle labels agree with custody papers? 16. Were correct containers used for the tests indicated? 17. Were correct preservatives added to samples? 18. Was a sufficient amount of sample sent for the tests indicated? 		Did all bottles arrive unbroken and white time, signature, preservative, etc.)?	Tes	No
16. Were correct containers used for the tests indicated? Yes No 17. Were correct preservatives added to samples? Yes No 18. Was a sufficient amount of sample sent for the tests indicated? Yes No			Yes	No
17.Were correct preservatives added to samples?TesNo18.Was a sufficient amount of sample sent for the tests indicated?No			Yes) No
18. Was a sufficient amount of sample sent for the tests indicated? No			es	No
18. Was a autorient amount of sample sent for the tost material			(as) No
(Yes) No			Yes) No
19. Were bubbles absent from VOA samples: If IVO, hist by camples details on back. Yes (No)		Were bubbles absent from VOA samples: 11100, ist of chapter		· · · · ·
20. Was the project manager called and status discussed? If TES, give details on one date			-	

ı

1.17

		•		•
	Cooler Receipt Form LIMS #_107713 Date Received:	<u>5/7/</u>	19	
Number	of Coolers:		·	·
Project:	Use other side of this form to note details concerning check-in problems			
	Use other side of this form to hote details that 5/7/99			
Α.	Preliminary Examination Phase: Date cooler was opened: 5/7/99	>		
	by (print): W. Ryan Diver (sign) als Ry 10-	Yes	(No.)	
4.	Did cooler come with a shipping slip (airbill, etc.)?			•
	If YES, then enter carrier name and airbill number here:	Yes	(No)	
Z .	Were custody seals on outside of cooler? How many & where:, seal date:, seal name:			. .
	How many & where:, seal one	Yes	No	N/A
3.	Were custody seals unbroken and intact at the date and time of arrival?	(tes)	No	
4.	Did you screen samples for radioactivity using a Geiger counter?	·Yes	5	
5.	Were custody papers sealed in a plastic bag & taped inside to the lid?	Yes) No	
6.	Were custody papers filled out properly (ink, signed, etc.)?	Ves	No	
7	Did you sign custody papers in the appropriate place?	Yes	No	
8.	Was project identifiable from custody papers?	\sim		
	If YES, enter project name at the top of this form.	(Yes)	No	
9.	If required, was enough ice used? Type of Ice: 57389	5	7hz	_
10.	Have designated person initial here to acknowledge receipt of observe		,	
В.	Log-in Phase: Date samples were logged-in: 5/7/97			
	by (print): by (. Mueler (sign) bla have)			
11.	Describe type of packing in cooler: bassed ice babble wrap	Yes	No	5
12.	Were all bottles sealed in separate plastic bags?	(Test	No No	
13,	Did all bottles arrive unbroken and were labels in good condition?	Yes) No	
14.	Were all bottle labels complete (ID, date, time, signature, preservative, etc.)?	(Yes		
15.	Did all bottle labels agree with custody papers?	(Tes	ノー 、 No	
. 16.	Were correct containers used for the tests indicated?	- Qui		
17.	Were correct preservatives added to samples?	Yes		
18.		Ye:		
19.	Were bubbles absent from VOA samples? If NO, list by sample#		-	~ `
20.	Was the project manager called and status discussed? If YES, give details on back.	Yes	Und	1
21.	Who was called:by whomdate			

AO/10/1322

전신학교에서

(ooler# 3 (ASI 1478)

00017

Cooler#4(ASI HOS)

	Cooler Receipt Form	- la
	of Coolers: LIMS # 107713 Date Received:	<u> >1+144</u>
	Lunter ITM Preject # 017425	
Project:,	Use other side of this form to note details concerning check-in problems	
	Duliningry Examination Phase: Date cooler was opened:	
А.	by (print): W. RYAN DIVER (sign) Calor Ryund	
_	Did cooler come with a shipping slip (airbill, etc.)?	Yes No.
·1.	If YES, then enter carrier name and airbill number here:	
	Were custody seals on outside of cooler?	Yes No
2.		114
	How many & where:, seal date:, seal date:	Yes No NA
3.	Did you screen samples for radioactivity úsing a Geiger counter?	(es) No
4.	Were custody papers sealed in a plastic bag & taped inside to the lid?	Yes No
5.	Were custody papers filled out properly (ink, signed, etc.)?	Yes No
б.	Did you sign custody papers in the appropriate place?	Ves No
7.	Was project identifiable from custody papers?	Yes No
8.	If YES, enter project name at the top of this form.	
	If YES, enter project name at the top of and the top of loe:	Yes No
9.	If required, was enough the used. A provide the second of cooler: fun (date): Have designated person initial here to acknowledge receipt of cooler: fun (date):	5/7/19
10.	Have designated person minut net to designed in: 5/7/97 Log-in Phase: Date samples were logged-in: 5/7/97	
В,	by (print): 0 seph (. Mueller (sign)	
	by (print):O Sept1 bagsed ice / babble wrap	
11.		Yes 🔊
12.	Were all bottles scaled in separate plastic bags?	Yes No
13.	Did all bottles arrive unbroken and were labels in good condition? Were all bottle labels complete (ID, date, time, signature, preservative, etc.)?	No No
14,		Tes No
15.	Did all bottle labels agree with custody papers?	Ves No
16	Were correct containers used for the tests indicated?	Q No
17.	Were correct preservatives added to samples?	Yes No
18.		Yes No NA
19.	Were bubbles absent from VOA samples? If NO, list by sample!	
. ́. 20 .	Was the project manager called and status discussed? If YES, give details on back.	
21.	Who was called:by whomdate	

٦.

......

5/10/1.995	<u> </u>		י שלים עם יוי לי יווערים ייי אוריניין ייי איזיי ייי איזיעע אורייניען אייייאי איירעעייע אייייי י		1	
				cooler # 5(V 21 11	シ
•				•	•	· · ·
				•		
			Cooler Receipt Form		~ /2/99	
	NT	of Coolers:	LIMS # 107713	Date Received:		
		Lleinter / TM	1, Project # 019457			
	Project:_	The other side of	of this form to note details concerning	check-in problems		
		Enemination P	hase: Date cooler was opened:	5/7/99		· · · · · · · · · · · · · · · · · · ·
	А.	Prehminary Examination) Divéte (sign) (1)	h Ry b		
		Did cooler come with a shi	inoing slip (alrbill, etc.)?	1	Yes (No.
	1.	Did cooler come with a sin	name and airbill number here:	-	<u>.</u>	
		If YES, then enter carrier n			Yes (No
	2.	Were custody seals on out	side of coorer	, seal name:		
		How many & where:		urival?	Yes	No N
	3. ,	Were custody seals unbrok	ten and intact at the date and time of a	4	(es)	No
	4,	Did you screen samples fo	or radioactivity using a Geiger counter	e lid?	Yes	(No)
	5.	Were custody papers seale	ed in a plastic bag & taped inside to th		Yes	No
	6.	Were custody papers fille	d out properly (ink, signed, etc.)?		(Tes)	No
	7.	Did you sign custody pape	ers in the appropriate place?		(Yes)	No
	8,	Was project identifiable f	rom custody papers?	· · ·		•
		If YES, enter project nam	ie at the top of this form.		Yes	No
	9.	If required, was enough in	ce used? Type of Ice:	coaler: Aun (date):	5/7	ha
	10.	How designated person i	initial here to acknowledge receipt of	cooler: (baller.		
•	В,	t an in Phase. Date same	ales were logged in: 5/TINT	I Selvale	<u>م</u>	
		by (print):	h (, mueller (sigh)	muc II-		
	11.	Describe type of packing	in cooler: bagged ref be	ubble wrap		No
	12.	Were all bottles sealed ir	n separate plastic bags?	•	Yes	
÷	13.	Did all bottles arrive unb	proken and were labels in good conditi	ion?	(YES)	No
	14.	Were all bottle labels co	mplete (ID, date, time, signature, pres	ervative, etc.)?	Est Ces	No
	14.	Did all bottle labels agre			Cres /	No
	· 16.	Were correct containers	used for the tests indicated?		(Co)	No
		Were correct preservativ			40	No
	17.	Was a sufficient amount	t of sample sent for the tests indicated	?	(G)	No
	18.	Was hubbles absent fro	om VOA samples? If NO, list by sam	ple#	Yes	No V
	19.	Were unputes absolution	er called and status discussed? If YES	, give details on back.	Yes	No
	20,		by whom	date		
	21.	Who was called:				

Contraction of the
coder # 9(1683)

	Cooler Receipt Form	11		
Number	of Coolers: LIMS # 107713 Date Received:	5/7/	19	
Project:	1 1 1 1 1 1 1 1 1 1			
	Use other side of this form to note details concerning check-in problems			
А.	Preliminary Examination Phase: Date cooler was opened: 5/7/99			
	by (print): W. Ryan Diver (sign) an Ry 1	<u>ر</u>	<u> </u>	
i.	Did cooler come with a shipping slip (airbill, etc.)?	Yes	$\mathbb{N}_{\mathbb{O}}$	
	If YES, then enter carrier name and airbill number here:		~	
2.	Were custody seals on outside of cooler?	Yes	(N₀)	
	How many & where:, seal date:, seal date:, seal name:			. 1 1 4
3,	Were custody seals unbroken and intact at the date and time of arrival?	Yes	No	NA
4.	Did you screen samples for radioactivity using a Geiger counter?	(les)	No	
5,	Were custody papers sealed in a plastic bag & taped inside to the lid?	Yes	Ø	
6.	Were custody papers filled out properly (ink, signed, etc.)?	(Yes)	No	
7.	Did you sign custody papers in the appropriate place?	Yes	No	
8.	Was project identifiable from custody papers?	(Yes)	No	
	If YES, enter project name at the top of this form.	<u> </u>		
9.	If required, was enough ice used? Type of Ice:	(Yes)	No	
10.	Have designated person initial here to acknowledge receipt of cooler: (date):	7	-119	•
B.	tor in Pharm: Date sumples were logged-in: 5/7/92			
	by (print): 0 seph (. Mueller (sign)	<u></u>		
11.	Describe type of packing in cooler: bassed ice / babble wrap	•		
12.	Were all bottles sealed in separate plastic bags?	Yes	No	
13.	Did all bottles arrive unbroken and were labels in good condition?	(es)	No	
14.	Were all bottle labels complete (ID, date, time, signature, preservative, etc.)?	Tes	No	
15,	Did all bottle labels agree with custody papers?	(Yes)	No	
. 16.	Were correct containers used for the tests indicated?	(Tes)	No	tari A
17.	Were correct preservatives added to samples?	40	No	
18.		A	No	174
19.	Were bubbles absent from VOA samples? If NO, list by sample#	Yes	No	NA
20.	Was the project manager called and status discussed? If YES, give details on back.	Yes	(No)	
21.	Who was called:by whomdate		·	

İ

BAUE
Metcal & Eddy

FIELD LOG GROUNDWATE	BOOK SAMPLII R MONITORING	NG DATA: WELL WORK SI	HEET	Metcair & Eddy
SAMPLED BY:	DH/WV		WELL ID:	728-MW/
PROJECT NAME:_	HAAF OF	r Sampling	LOCATION:	B.728
Date sampled:	<u>HAAF Q1</u> 5/5/95 Time s	tart /520 End /5	Well secured u	oon arrival? 🕅 N
-	d) inches + 12		1. Standing water (gal	
2. Depth of water fro	om T.O.C. <u> </u>	04ft	2. X <u>3</u>	
3. Depth of well from	T.O.C. <u>/</u> 3	5.2ft	3. =	gallons to purge
4. Feet of standing w	vater (h)	<u>9.16</u> ft	4. Purging Method _l	Vaterra Puny
CALCULATION: Standing water volum	$\pi = \pi [(d)^2 +$	4](h)	× •	
•	= 3.14 [(_0	<u>.17_ft.)</u> 2 + 4] (ft.) x 7.48 gal / ft. ³ =	gal
· · ·		pН	Conductivity	Temperature, (F)
1.Well volume =	<u>[.</u> 5gal.	5.65	232	21.0 0
2.Well volume =	3_0gal.	- 64	240	20.6
3.Well volume =	4.6 gal.	5.90	239	20.7
	gal.			·
5.Well volume =	gal.			
Ground water sample	· .	·	•	
Sampling method -	D:sposable Tet	for Bailer	_ Field preservation	
Sample Description				· · · · · · · · · · · · · · · · · · ·
Odor:	Noe		·	·
Color:	Lt: Br.			
Appearance	: Turbicl			
Weather Conditions	: Cloudy 151.	breeze		
	,			·
Reading:	•		·····	
J		.,		
COMMENTS	· · · · · · · · · · · · · · · · · · ·	<i>/ (</i>	·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	• • • •		
]			, <u> </u>	

) SAMPLED BY: $DH / W.V.$	WELL ID:	728-MW6
PROJECT NAME: HAAF atr Sampling	LOCATION:	B.728
Date sampled: 5/5/99 Time start 1450 End 1546	Well secured	upon arrival? 🕅 N
1. Casing Diameter (d) 2 inches + 12 =0.17_ft	1. Standing water (g	al.) =/.2
2. Depth of water from T.O.C. 5.95 ft	2. X <u>3</u>	
3. Depth of well from T.O.C. <u>12.9</u> ft	3. =	gallons to purge
4. Feet of standing water (h) <u>6.95</u> ft	4. Purging Method	Waterra Puny
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	• • •	
$= 3.14 \left[\left(\underline{0.17} \text{ ft.} \right)^2 + 4 \right] \left(\underline{1} \right]$	_ft.) x 7.48 gal / ft.3 = _	gal
pH L2 CC		Temperature, (F
1.Well volume = 1.2 gal. 5.85	703	21.3 C
2.Well volume = 2.4 gal. $5.9/$		21.2
3.Well volume = 3.5 gal. -224		<u>.</u>
) 4.Well volume = gal		(
5.Well volume = gal	• <u>••••</u> ••	* ************************************
Ground water sample		· · · · · · · · · · · · · · · · · · ·
Sampling method - Disposable Teflon Bailer	Field preservation -	
Sample Description		
Odor: <u>Str. HC adur</u>		
Color: br Appearance:furbid		·
Appearance:furfic	· · · · · · · · · · · · · · · · · · ·	
Weather Conditions: closely, sl. breeze		
Air Monitoring Equipment used: OVA	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Reading: Breathing zone: <u> <i>Øppm</i></u>		·
In Well:ppm		
COMMENTS:		
M5/MBD		
	- · · · · · · · · ·	. (

00022

÷

FIELD LOG		Motcal & Eddy			
GROUNDWATE			LL WORK S		728-MW11
PROJECT NAME:			Sc. dine	_	B.728
Date sampled: 5/					upon arrival? (Y) N
1. Casing Diameter (ir	nches + 12 =	<u>0.17 ft</u>	1. Standing water (g	al.) = <u>0.9</u>
2. Depth of water fro	m T.O.C	6.74	ft	2. X <u> </u>	well volumes
3. Depth of well from	T.O.C	12.3	ft	3. = 2.8	gallons to purge
4. Feet of standing w	ater (h)	5.56	ft	4. Purging Method	Waterra Pump
CALCULATION: Standing water volum		t[(d) ² +4](<u>.</u>	
	= (3.14 [(<u>0,17</u>	_ft.) ² + 4] (ft.) x 7.48 gal / ft.3 = _	gal
			pH	Conductivity	· · · · · ·
1.Well volume =			\	56	20.4
2.Well volume =		guii	5.38	56	20.3
3.Well volume =	2.8	gal	DKH 4	T 1.5 6AL	
4.Well volume =		gal		· · · · · · · · · · · · · · · · · · ·	
5.Well volume =		gal.			
Ground water sample		·			
Sampling method -	D:sposal	he Teflon	Bailer	_ Field preservation -	·
Sample Description					
Odor:		ar .	·····		
Color:					
Appearance:	Lov	5.0		·	
Appearance.	. <u></u>	cest al bro			
Reading:					
COMMENTS:		, ,			
· · ·					
)					
· ·					

(

(

GROUNDWATE	R MONITORING WELL WORK SH	EET
SAMPLED BY:	DH /W.V.	WELL ID: 728-MW60
PROJECT NAME:	HAAF Atr Sampling	LOCATION: B.728
Date sampled: 5/	5/99 Time start 1615 End 162	2.0 Well secured upon arrival? (YN)
1. Casing Diameter (d) 2^{-1} inches + 12 = 0.17 ft	1. Standing water (gal.) = 0 - 9
2. Depth of water fro	m T.O.C. <u>7.44</u> tt	2. X <u>3</u> well volumes
	T.O.C. <u>/3.0</u> ft	3. = 2.8 gallons to purge
4. Feet of standing w	vater (h) <u>5,56</u> ft	4. Purging Method Waterra Pump
CALCULATION:	$=\pi[(d)^2 + 4](h)$	
	$= 3.14 [(0.17 ft.)^2 + 4]($	ft.) x 7.48 gal / ft.3 = gal
1 Well volume =	0.9 gal. 5.64 5.30	Conductivity Temperature, (F) Z_{55} $\frac{90}{20}$ Z_{5} $\frac{90}{20}$ Z_{5}
	<u>1.8</u> gal. <u>5.84</u>	319 20.9
3.Well volume =	2.8 gal. <u>5.88</u>	315 21.0
\	gal	(
5.Well volume =	gal.	· · · · · · · · · · · · · · · · · · ·
Ground water sampl	e	
Sampling method -	Disposable Teflon Bailer	Field preservation
Sample Description		
Odor:	If C	
	Br	
Appearance	: Tarbid	
Weather Conditions	: Over cest, warm.	
Air Monitoring Equip	oment used: <u>OVA</u>	·
Reading:	Breathing zone: <u><i>Ppm</i></u>	
	In Well:	
COMMENTS:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
)		7
/ <u></u>	······································	(
		• • • •

FIELD LOG BOOK SAMPLING DATA:

FIELD LOG BOOK SAMPLING DATA: GROUNDWATER MONITORING WELL WOR	
SAMPLED BY: DH WV	WELL ID: <u>728 - MW61</u>
PROJECT NAME: HAAF Qtr Samplin	LOCATION: B.728
Date sampled: 5/5/99 Time start 1600 End	
1. Casing Diameter (d) 2 inches + 12 = 0.17 ft	1. Standing water (gal.) =?
2. Depth of water from T.O.C. 7,37 ft	2. X <u>3</u> well volumes
3. Depth of well from T.O.C. <u>13.0</u> ft	3 = 2.8 gallons to purge
4. Feet of standing water (h) <u>5.63</u> ft	4. Purging Method Waterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
$= 3.14 [(0.17 ft.)^2 + 4]($	ft.) x 7.48 gal / ft.3 = gal
рН	Conductivity Temperature, (F)
1.Well volume = 0.9 gal. 5.30	<u>90 - 20.4 č</u>
2.Well volume = 1.8 gal. 5.44	106 20.4
3.Well volume = 2.8 gal. 5.53	114 20.4
4.Weli volume = gai.	
5.Well volume = gal	· · · · · · · · · · · · · · · · ·
Ground water sample	
Sampling method - Disposable Teflon Bailer	Field preservation
Sample Description	
Odor: <u>AC odov</u>	
Odor: <u>HC odov</u> Color: <u>Bv</u>	
Appearance:	
Weather Conditions: DVU(as f	
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <u><i>Ppm</i></u>	
in Well:ppm	·.
COMMENTS:	
)	

FIELD LOG BOOK SAMPLING DA	
SAMPLED BY: DH (W.J.	WELL ID: 728-MWE
PROJECT NAME: HAAF Qtr Sa	
Date sampled: 5/5/99 Time start 164	
1. Casing Diameter (d) inches + 12 =0.17	tt 1. Standing water (gal.) = / / /
2. Depth of water from T.O.C. 7.50	
3. Depth of well from T.O.C	_ft 3. = 3.3 gallons to purg
4. Feet of standing water (h) 6.5	_ft 4. Purging Method Waterra Pu
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$	
= 3.14 [(<u>0.17</u> ft.) ²	+ 4] (ft.) x 7.48 gal / ft. ³ = gal
	pH Conductivity Temperature
1.Well volume = / / gal	492 76 20.3
2.Well volume = <u>2.2</u> gal.	5.35 76 49.92
3.Well volume = $3, 3$ gal.	5.37 75 20.1
4.Well volume = gal	
5.Well volume =gal.	
Ground water sample	
Sampling method - D: sposable Teflon B.	a lev Field preservation
Sample Description	
Odor:HC	
Color:L4.Br-	· · · ·
Appearance:	
Weather Conditions:	<u> </u>
Air Monitoring Equipment used: <u>OVA</u>	
Reading: Breathing zone: <u>Ppm</u>	
COMMENTS:	
	······································

FIELD LOG BOOK SAMPLING DATA: GROUNDWATER MONITORING WELL WORK SH	FFT	Metcall & Eddy
SAMPLED BY: $DK / W.V.$		728-MW64
•	LOCATION:_	B.728
PROJECT NAME: <u>HAAF</u> Qtr Sampling Date sampled: $5/6/99$ Time start <u>1630</u> End <u>163</u>	35 Well secured u	pon arrival? 🔿 N
1. Casing Diameter (d)	1. Standing water (gal	l.) =/ , /
2. Depth of water from T.O.C. <u>6.12</u> tt	2. X <u>3</u>	well volumes
3. Depth of well from T.O.C. 13.0 ft	3. = 3.4	gallons to purge
4. Feet of standing water (h) <u>6.88</u> ft	4. Purging Method _	Naterra Pump
CALCULATION: Standing water volume $=\pi[(d)^2 + 4](h)$		· · · · ·
$= 3.14 [(0.17 ft.)^2 + 4]($	ft.) x 7.48 gal / ft. ³ =	gal
pH 1.Well volume =/./gal4.446	Conductivity	Temperature, (F) ZOS
2.Well volume = 2.2 gal. $5.3/$	45	20,5
3.Well volume = 3.4 gal. 5.35	43	20.5
4.Well volume = gal		
5.Well volume = gal.		
Ground water sample		
Sampling method - Disposable Teflon Bailer	Field preservation	
Sample Description		
Odor:L+.BY	· · · · · · · · · · · · · · · · · · ·	
Color: <u>LT. BY</u> Appearance: <u>Furbid</u>	·	
Weather Conditions: <u>wurcast</u> , warm		
Air Monitoring Equipment used: <u>OVA</u>		
Reading: Breathing zone: <u><i>Pppm</i></u>		
COMMENTS:		

FIELD LOG I GROUNDWATE	BOOK SAMPL R MONITORING		HEET	Meicai & Eddy
)SAMPLED BY:	/			728-MW65
		Hr Sampling	1	B.728
		start 1995 End 17		upon arrival? 🔗 N
1. Casing Diameter (c			1. Standing water (ga	al.) = Ə
2. Depth of water from			2. X <u> </u>	
3. Depth of well from			3. = 2.9	gallons to purge
4. Feet of standing w	ater (h)	<u>5.79</u> ft	4. Purging Method	Waterra Pump
CALCULATION: Standing water volum	$e = \pi[(d)^2]$	+4](h)		
	= 3.14 [(<u>0.17</u> ft.) ² + 4] (ft.) x 7.48 gal / ft. ³ =	gal
1.Well volume = 2.Well volume = 3.Well volume =	<u> </u>	5.77	Conductivity 65 66 66	Temperature, (F) 2/: 6 2/:-5 2/: 4
) 4.Well volume =	_			
5.Well volume =	-			
Ground water sample	······································			
Sampling method		flom Bailer	Field preservation -	
Sample Description		·	· · · · · · · · · · · · · · · · · · ·	
Odor:	None			
Appearance:	sl. fursid	V		
Weather Conditions:	mercast,	Warm	· · · · · · · · · · · · · · · · · · ·	
Air Monitoring Equip	ment used: <u>OVA</u>		· .	
Reading:	Breathing zone: _	Ø ppm		
	In Well:	ppm	· · · · · · · · · · · · · · · · · · ·	<u> </u>
COMMENTS:			· _ · · · · · · · · · · · · · · · · · ·	
)				·

FIELD LOGBOOK SOIL/SEDIMENT SAMPLING DATA

Date5/5/99	Location 728 - 5WE01
Samplers Used <u>55 bow</u>	
Samplers Used	
· · · · · · · · · · · · · · · · ·	
Drawing of sampling location (including location descr	iption as well as the presence of debris, surface sheens,
recent excavations, vegetation, etc.)	NO Sourple DE NO Sourple Inks dale Cincle Dury Inter
Weather	arks date Circle Only Note
	V*
Soil/sediment sampling parameters: 8260 8021 810 Description of sample Time of sample collection //20 OVA Backlings	
OVA Readings Depth of water (for sediment sampling)	
Decontamination (page number references)	k plan p A10-2
Trowel	
Hand corer	
Hand auger	
Bowls	
Split spoons	
Photograph frame numbers NA	
Signature of field team personnel making data entry	D. Humphe

FIELD LOGBOOK SOIL/SEDIMENT SAMPLING DATA

Date 55999 Location 728 SWE03
Samplers Used <u>33 bowl, 55 spoon</u> , encore
Drawing of sampling location (including location description as well as the presence of debris, surface sheens,
recent excavations, vegetation, etc.)
Duncan st.
SWE03
SWE03 / [A] [728
Weather Overcast, rainy, warm
Soil/sediment sampling parameters: 8260 (8021) 810(8310) 8270 GRO DRO PPM RCRA 8080
Description of sample Lt. Br. Sand Lots for presences
Time of sample collection I 0 30 OVA Readings N A
2//
Depth of water (for sediment sampling) 5''
Decontamination (page number references) <u>Workplan pA10-z</u>
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers
Signature of field team personnel making data entry D. Hump

APPENDIX IV

SITE RANKING RESULTS

SITE RANKING FORM

County: Chatham	ner Building 728	Ranked by: <u>G. Rowell</u>	00
oodinty	Facility ID#:902	5035 and 9025049 Date Ranked: 6/3/	33
		B. Total Benzene -	
Maximum Concer	ntration found on the	Maximum Concentration found on the s	ite
site (Assume <0.660 n gasoline was stored or		□ ≤ 0.005 mg/kg = 0	
·		□ > 0.00505 mg/kg = 1	
□ ≤ 0.660 mg/kg	-	■ >.05- 1 mg/kg* = 10	
□ > 0.66 - 1 mg/	-	□ > 1-10 mg/kg = 25	
□ > 1 - 10 mg/kg	g = 25 = 50	□ > 10 - 50 mg/kg = 40	
■ > 10 mg/kg	= 50	□ > 50 mg/kg = 50	
C. Depth to Groundw (bls = below land s			
⊂ > 50' bis	= 1		
□ > 25'-50' bls	= 1		
□ > 10'-25' bis	- = 5		
. ■ ≤10 bis	= 10		
		(<u>60</u>) x (C. <u>10</u>) = (D. <u>600</u>)	
GROUNDWATER CONT			
	aqueous-phase liquid guidelines for	F. Dissolved Benzene - Maximum Concentration at the site (One well must be located at the source the release)	e of
E. Free Product (Non hydrocarbons; See	aqueous-phase liquid guidelines for	Maximum Concentration at the site (One well must be located at the source the release)	e of
 Free Product (Non hydrocarbons; See definition of "sheer No free product Sheen - 1/8" 	aqueous-phase liquid guidelines for 1").	Maximum Concentration at the site (One well must be located at the source the release)	e of
 Free Product (Non-hydrocarbons; See definition of "sheer No free product Sheen - 1/8" > 1/8" - 6" 	aqueous-phase liquid guidelines for 1"). = 0 = 250 = 500	Maximum Concentration at the site (One well must be located at the source the release) □ ≤ 5 ug/L = 0 □ > 5 - 100 ug/L = 5	e of
 Free Product (Non-hydrocarbons; See definition of "sheer No free product Sheen - 1/8" > 1/8" - 6" > 6" - 1 ft 	aqueous-phase liquid guidelines for n"). = 0 = 250 = 500 = 1,000	Maximum Concentration at the site (One well must be located at the source the release) □ ≤ 5 ug/L = 0 □ > 5 - 100 ug/L = 5	e of
 Free Product (Non-hydrocarbons; See definition of "sheer No free product Sheen - 1/8" > 1/8" - 6" > 6" - 1 ft For every additior 	aqueous-phase liquid guidelines for n"). = 0 = 250 = 500 = 1,000 mal inch, add another	Maximum Concentration at the site (One well must be located at the source the release) $\Box \leq 5 \text{ ug/L} = 0$ $\Box > 5 - 100 \text{ ug/L} = 5$ $\Box > 100 - 1,000 \text{ ug/L} = 50$	ə of =
 Free Product (Non-hydrocarbons; See definition of "sheer No free product Sheen - 1/8" > 1/8" - 6" > 6" - 1 ft 	aqueous-phase liquid guidelines for n"). = 0 = 250 = 500 = 1,000 mal inch, add another	Maximum Concentration at the site (One well must be located at the source the release) □ ≤ 5 ug/L = 0 □ > 5 - 100 ug/L = 5 □ > 100- 1,000 ug/L = 50 ■ > 1,000-10,000 ug/L	ə of =
 Free Product (Non-hydrocarbons; See definition of "sheer No free product Sheen - 1/8" > 1/8" - 6" > 6" - 1 ft For every addition 100 points = 1.000 	aqueous-phase liquid guidelines for n"). = 0 = 250 = 500 = 1,000 mal inch, add another	Maximum Concentration at the site (One well must be located at the source the release) □ ≤ 5 ug/L = 0 □ > 5 - 100 ug/L = 5 □ > 100- 1,000 ug/L = 50 ■ > 1,000-10,000 ug/L 100 □ > 10,000 ug/L = 250	e of =
 hydrocarbons; See definition of "sheer No free product Sheen - 1/8" > 1/8" - 6" > 6" - 1 ft For every addition 	aqueous-phase liquid guidelines for n"). = 0 = 250 = 500 = 1,000 hal inch, add another 0+ (E. <u>1000</u>) + (F	Maximum Concentration at the site (One well must be located at the source the release) □ ≤ 5 ug/L = 0 □ > 5 - 100 ug/L = 5 □ > 100- 1,000 ug/L = 50 ■ > 1,000-10,000 ug/L = 50 □ > 10,000 ug/L = 250 100 = 10,000 ug/L □ > 10,000 ug/L = 250	e of

}

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

н.	Public Water Supply	I. Non-Public Water Supply	
J.	Distance from nearest Contaminant Plume boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trencl		basements
	may be omitted from ranking if its invert elevation is more than 5 feet above the water table.	$ \begin{array}{c cccc} \square & \text{Impacted} & = 500 \\ \square & \leq 500' & = 50 \\ \square & > 500' - 1,000' & = 5 \\ \blacksquare & > 1,000' \text{ or} & = 0 \end{array} $	
	$\square Impacted = 500 \leq 500' = 50 \square > 500' - 1,000' = 5 \square > 1,000' = 1 $	no free product	
Fill in	the blanks: $=(H._0] + (I._0] + (J._1)$	<u>50</u>) + (K. <u>0</u>) = L. <u>50</u>	· .
	(G. <u>110</u>	00) x (L. <u>50_</u>) = M. <u>55,000</u>	· · · ·
	(M. <u> 55,00</u>)	0) + (D. <u>_600</u>) = N. <u>_55,600</u>	
<u>P.</u>	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a low Groundwater Polluti	on Susceptibility Area - 0.5	
	All other sites = 1		
Q.	EXPLOSION HAZARD		
Q.		from this release, been detected in any subsurfa ;, crawl spaces, etc.)?	ace
Q.	EXPLOSION HAZARD Have any explosion vapors, possibly originating f	from this release, been detected in any subsurfa s, crawl spaces, etc.)?	ace
Q.	EXPLOSION HAZARD Have any explosion vapors, possibly originating t structure (e.g., utility trenches, basements, vaults	from this release, been detected in any subsurfa s, crawl spaces, etc.)?	ace
	EXPLOSION HAZARD Have any explosion vapors, possibly originating to structure (e.g., utility trenches, basements, vaults Yes = 200,000 No = 0	from this release, been detected in any subsurfa s, crawl spaces, etc.)?) = (L. <u>55,600</u>) + (Q <u>0</u>)	ace
	EXPLOSION HAZARD Have any explosion vapors, possibly originating to structure (e.g., utility trenches, basements, vaults Yes = 200,000 No = 0	s, crawl spaces, etc.)?	ace

SITERANK.FRM

9/97

The following information is presented to provide supplemental information to Item H of the Site Ranking Form and provides detailed information relating to the geologic and hydrogeologic conditions at Hunter Army Airfield, which supports Hunter Army Airfield's determination that the water withdrawal point(s) located at Hunter Army Airfield are not hydraulically connected to the surficial aquifer.

1.0 REGIONAL AND LOCAL GEOLOGY

Hunter Army Airfield is located within the coastal plain physiographic province. This province is typified by nine southeastward dipping strata that increase in thickness from 0 feet at the fall line located approximately 350 miles inland from the Atlantic coast, to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 feet BGS. This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata in the region.

The Cretaceous section was found to be approximately 1,970 feet thick and dominated by clastics. The Tertiary section was found to be approximately 2,170 feet thick and dominated by limestone with a 175-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated into separate formations.

The surface soil located throughout the Hunter Army Airfield garrison area consists of Stilson loamy sand. The surface layer of this soil is typically dark grayish-brown loamy sand measuring approximately 6 inches in depth. The surface layer is underlain by material consisting of pale yellow loamy sand and extends to a depth of approximately 29 inches. The subsoil is dominantly sandy clay loam and extends to a depth of 72 inches or more.

2.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of Hunter Army Airfield is dominated by two aquifers referred to as the Principal Artesian and the surficial aquifers. The Principal Artesian aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer is composed primarily of Tertiary-age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. These formations are approximately 800 feet thick, and groundwater from this aquifer is used primarily for drinking water (Arora 1984).

The uppermost hydrologic unit is the surficial aquifer, which consists of widely varying amounts of sand and clay ranging from 55 to 150 feet in thickness. This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 to 10 feet BGS (Geraghty and Miller 1993). The base of the aquifer corresponds to the top of the underlying dense clay of the Hawthorn Group. The Hawthorn Group was not encountered during drilling at this site but is believed to be located at 40 to 50 feet BGS; thus, the effective aquifer thickness would be approximately 35 to 45 feet. Soil surveys for Liberty and Long Counties describe the occurrence of a perched water table within the Stilson loamy sands present within Hunter Army Airfield (Looper 1980).

The confining layer for the Principal Artesian aquifer is the phosphatic clay of the Hawthorn Group and ranges in thickness from 15 to 90 feet. The vertical hydraulic conductivity of this confining unit is on the order of 10^{-8} cm/sec. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited

SITERANK FRM

utilization (Miller 1990). The Hawthorn Group has been divided into three formations: Coosawhatchie Formation, Markshead Formation, and Parachula Formation, which are listed from youngest to oldest.

The Coosawhatchie Formation is composed predominantly of clay but also has sandy clay, argillaceous sand, and phosphorite units. The formation is approximately 170 feet thick in the Savannah Georgia area. This unit disconformably overlies the Markshead Formation and is distinguished from the underlying unit by dark phosphatic clays or phosphorite in the lower part and fine-grained sand in the upper part.

The Markshead Formation is approximately 70 feet thick in the Savannah Georgia area and consists of lightcolored phosphatic, slightly dolomitic, argillaceous sand to fine-grained sandy clay with scattered beds of dolostone and limestone.

The Parachula Formation consists of sand, clay, limestone, and dolomite, and is approximately 10 feet thick in the Savannah Georgia area. The Parachula Formation generally overlies the Suwannee Limestone in Georgia.

Groundwater encountered at all the underground storage tank investigation sites is part of the Surficial Aquifer system. Based on the fact that all public and non-public water supply wells draw water from the Principal (Floridan) Aquifer, and that the Hawthorn confining unit separates the Principal Aquifer from the Surficial Aquifer, it is concluded that there is no hydraulic interconnection between the Surficial Aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at Hunter Army Airfield.

p:\wp\021974\728-4qmr.doc