

U.S. Army Environmental Command

And

Fort Stewart Directorate of Public Works Under Contract Number W91ZLK-05-D-0015 D.O. 0003

Final 2010 Site Investigation Report

HAA-18, Boundary Investigation Site Hunter Army Airfield Savannah, Georgia

July 8, 2010

ARCADIS

5 mi Killenlack

Eric Killenbeck Senior Geologist

C. Scott Bostian, PE Senior Engineer

Charles A. Bertz, PE Senior Project Manager

Final 2010 Site Investigation Report

HAA-18, Boundary Investigation Site

Prepared for:

U.S. Army Environmental Command

Prepared by:
ARCADIS
801 Corporate Center Drive
Suite 300
Raleigh
North Carolina 27607
Tel 919.854.1282
Fax 919.854.5448

Our Ref.:

GP08HAFS.H18B.DPCSR

Date:

July 8, 2010

ARCADIS Table of Contents

Ac	ronyms				iv									
1.	Introdu	ction			1-1									
2.	· ·													
	2.1	Regula	atory Statı	us	2-1									
	2.2	Site D	escription	and Setting	2-1									
		2.2.1	Site De	scription	2-1									
		2.2.2	Topogra	aphic Setting of the Airfield	2-1									
		2.2.3	Regiona	al Geology/Hydrogeology	2-2									
	2.3	Previo	us Investi	gations	2-3									
		2.3.1		arracks Site Investigation: 2005 and 2006 Site gations	2-3									
		2.3.2	North F	Perimeter Road: 2007 Preliminary Investigation	2-4									
			2.3.2.1	Groundwater Sampling Results	2-4									
			2.3.2.2	Soil Sampling Results	2-5									
		2.3.3	Decem	ber 2008 Groundwater Sampling and Surveying	2-6									
			2.3.3.1	Top-of-Casing Survey	2-6									
			2.3.3.2	Water Level Measurements	2-6									
			2.3.3.3	Groundwater Sampling Results	2-6									
		2.3.4	Februa	ry 2009 Water Level Gauging	2-7									
3.	Investi	gation	Activitie	s conducted January through March 2010	3-1									
	3.1	Groun	dwater Mo	onitor Well Installation and Development	3-1									
	3.2	Piezor Canal		allation; Groundwater/Surface Water Flow near Lamar	3-2									
	3.3	Water-	-Level Me	asurements	3-3									
	3.4	Sampl	ling of Nev	w and Existing Monitor Wells	3-3									
	3.5	Soil Sa	ampling A	long Abandoned Pipeline	3-4									
4.	Results	s from	Investig	ation Conducted between January and March	4-1									

ARCADIS Table of Contents

6.	Refere	nces		6-1
	5.3	Ground	dwater Sampling Results	5-2
	5.2	Soil Sa	ampling Results	5-1
	5.1	Hydrog	geology	5-1
5.	Compr	ehensiv	ve Data Summary	5-1
		4.2.2	Groundwater Sampling Results	4-4
		4.2.1	Soil Sampling Results	4-4
	4.2	Nature	and Extent	4-4
		4.1.4	Surface water flow	4-3
		4.1.3	Groundwater flow direction	4-2
		4.1.2	Hydrogeologic conditions	4-1
		4.1.1	Geologic conditions	4-1
	4.1	Geolog	gy and Hydrogeology	4-1

Figures

Figure 1-1	Site Location Map
Figure 2-1	Site Layout with Abandoned Pipeline Approximate Location
Figure 2-2	Site Layout with Sampling Locations
Figure 2-3	VOCs in DPT Groundwater Samples (10 ft bgs) (2007 USACE Preliminary Investigation)
Figure 2-4	VOCs Detected in DPT Groundwater Samples (25 ft bgs) (2007 USACE Preliminary Investigation)
Figure 2-5	VOCs and SVOCs Detected in Groundwater Monitor Wells (2006-2010)
Figure 2-6	VOCs Detected in DPT Soil Samples (2007 USACE Preliminary Investigation)
Figure 2-7	Groundwater Potentiometric Map (December 2008)

ARCADIS Table of Contents

Figures (Continued)

Figure 2-8	Groundwater Potentiometric Map (February 2009)
Figure 3-1	Site Layout with Monitor Well Locations
Figure 4-1	Geologic Cross Section A-A'
Figure 4-2	Topographic Contours with Monitor-Well Locations
Figure 4-3	Groundwater Potentiometric Map for the Shallow Portion of the Upper Aquifer (February 2010)
Figure 4-4	Groundwater Potentiometric Map for the Deep Portion of the Upper Aquifer (February 2010)
Figure 4-5	VOCs and SVOCs Detected in Soil Samples from 2010 Pipeline Investigation

Tables

Table 2-1	Monitor Well / Piezometer Construction Summary
Table 2-2	Groundwater Elevation Data, 2007 - 2010
Table 2-3	2007 USACE Preliminary Investigation - DPT Groundwater Results
Table 2-4	2007 USACE Preliminary Investigation - DPT Soil Results
Table 2-5	Monitor Well Groundwater Analytical Results, 2006-2010
Table 4-1	Groundwater Elevations at Well Pairs
Table 4-2	Soil Analytical Results, DPT Pipeline Investigation, 2010

Appendices

- Appendix A Huddleston (1988) Cross Section A-A'
- Appendix B Monitor Well / Piezometer Installation Logs
- Appendix C Groundwater Sampling Sheets
- Appendix D Pipeline Investigation Boring Logs
- Appendix E Laboratory Analytical Reports

Acronyms

Acronyms

bgs below ground surface

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

DO Dissolved Oxygen

DPT Direct Push Technology

ft Feet

GA EPD Georgia Environmental Protection Division

GPR Ground Penetrating Radar

HAAF Hunter Army Airfield HGL HydroGeoLogic, Inc.

HSRA Hazardous Site Response Act

I.D. Inner Diameter

IDW Investigation Derived Waste

IWQS Instream Water Quality StandardsMCA Military Construction AccountMCL Maximum Contaminant Level

MDL Method Detection Limit
mg/kg milligrams per kilogram
mL/min milliliters per minute
msl mean sea level

μg/L micrograms per Liter

MW Monitor well

ORP Oxidation Reduction Potential
PID Photo Ionization Detector
PQL Practical Quantitation Limit

PVC Polyvinyl Chloride

RRS Risk Reduction Standards

SESD Science and Ecosystem Support Division

SVOC Semivolatile Organic Compound

TCE Trichloroethene

USACE United States Army Corps of Engineers

USAEC United States Army Environmental Command
USDOT United State Department of Transportation
USEPA U. S. Environmental Protection Agency

ARCADIS

Final 2010 Site Investigation Report, HAA-18

Acronyms

VOC Volatile Organic Compound

ARCADIS

Introduction

1. Introduction

The U.S. Army Environmental Command (USAEC) has retained ARCADIS on behalf of Hunter Army Airfield (HAAF) to investigate the potential soil and groundwater impacts at the Boundary Investigation Site, also known as site HAA-18. During the March 2006 sampling event conducted to delineate the groundwater impacts at HAA-15 (Military Construction Account [MCA] Barracks Site) at HAAF, petroleum hydrocarbons were detected in a monitor well (MW) located along North Perimeter Road. The petroleum hydrocarbons were determined to be unrelated to the HAA-15 plume and the area was designated as HAA-18, Boundary Investigation Site (Figure 1-1). A soil and groundwater investigation was conducted by the U.S. Army Corps of Engineers (USACE) in 2007 to evaluate the extent and potential sources for the petroleum hydrocarbon impacts. Additional groundwater sampling and elevation data collection were conducted by ARCADIS in December 2008 and February 2009. A Site Investigation Data Summary Report presenting all data collected for the HAA-18 investigation through February 2009 was submitted in May 2009 (ARCADIS 2009b). A Site Investigation Work Plan for HAA-18 Boundary Investigation (ARCADIS 2009c) was submitted in November 2009. The work plan proposed additional investigation tasks for the site. This 2010 Site Investigation Report includes data previously submitted in the referenced documents and data collected from January through March 2010 during implementation of the scope presented in the Site Investigation Work Plan for HAA-18 Boundary Investigation.

ARCADIS

Site Background

2. Site Background

The following information was presented previously in the Site Investigation Work Plan for HAA-18 Boundary Investigation.

2.1 Regulatory Status

HAA-18 was defined as an area of concern when petroleum hydrocarbons were detected in groundwater during sampling at HAA-15. A subsequent environmental site assessment confirmed the presence of petroleum hydrocarbons (USACE 2008), unrelated to HAA-15 or any other proximate area of concern. Site HAA-18 is not currently regulated under a Georgia Environmental Protection Division (GA EPD) program. Georgia Hazardous Site Response Act (HSRA) program procedures are being utilized to guide investigation goals. HAAF has pursued delineation of contaminated soil and groundwater within the installation boundary on a voluntary basis.

2.2 Site Description and Setting

2.2.1 Site Description

HAAF is an active military installation located in Savannah, Georgia, encompassing areas of industrial, commercial, and temporary residential property occupied by a variety of administrative, maintenance, and barracks facilities as well as an active air field. HAA-18 is located in the northeastern portion of HAAF and is bound by Interstate Highway 516 to the north and northeast, HAAF property to the east and south, and by a CSX switching yard and rail lines to the west and northwest. Based on historical documents, an underground fuel pipeline that was constructed in 1958 and was reportedly abandoned in place in the 1960s enters HAAF from the north and runs along the western HAAF boundary to the Bulk Fuel Storage Facility (USACE 2005). A site map depicting the HAA-18 area and the approximate petroleum pipeline location is shown on Figure 2-1. A site layout with sampling locations is shown on Figure 2-2.

2.2.2 Topographic Setting of the Airfield

HAAF is located on a southwest-northeast trending ridge of about 20 feet (ft) to 40 ft elevation mean sea level (msl) and is surrounded on all sides by lower topography of about 10 to 15 ft msl elevation. The first runways were likely constructed on the highest part of the ridge when HAAF was first built in 1928. The HAA-18 site, located at the

ARCADIS

Site Background

northeastern boundary of HAAF is an area of lower topography at approximately 15 ft msl elevation.

2.2.3 Regional Geology/Hydrogeology

HAAF is located on the Lower Coastal Plain physiographic province, which is typified by very low relief that slopes toward the Atlantic Ocean. The geology is composed of a seaward thickening sequence of unconsolidated sediments. Previous regional investigations suggest that there has been minor structural deformation in the Savannah, Georgia area during deposition of the sediments starting in the early Cretaceous Period. The sediments form a thickening wedge into the Atlantic Ocean deposited from sediment erosion of the Blue Ridge Mountains located to the west-northwest. The total thickness of the sediments in the Savannah, Georgia, area is over 2,000 ft. (Huddleston 1988)

HAAF is located on top of the relict Pamlico beach ridge that was formerly the shoreline during the late Pleistocene time. The shallow sediments at HAAF are comparable to sediments that form the nearby modern barrier islands along the Atlantic coast. The Pamlico Terrace is only slightly older (in geologic time) and is at a slightly higher elevation than the modern beach. Published investigations of modern barrier islands can be used to predict the shallow stratigraphy at HAAF. In a typical barrier system, the highest part of the ridge is the beach composed of fine to mediumgrained well-sorted quartz sand. The beach itself consists of well sorted sand consisting of little clay and silt because it is reworked by the constant wave action and migration of tidal inlets. There should be only minor clay units unless the beach has prograded over a remnant of marsh clay. Deposited sediments east of the Pamlico Terrace and beach system should consist of finer sands resulting from increasing water depth and lower energy and wave action. Behind the barrier to the west were marshes and bays that deposited lower energy silts and silty clay units. Sand units observed in these low energy areas are the result of deposition from tidal inlets that migrated along the barrier and wash-over fans from storms. The individual units of sand will drape off of the central barrier massive sands onto these clays and silts.

The regional water supply aquifer in the lower coastal plain of Georgia and Florida is the Floridan Aquifer. The Floridan Aquifer is a regionally extensive aquifer that is approximately 800 feet thick at Savannah. The top of the Floridan Aquifer at HAAF is approximately 200 ft below ground surface (bgs). It is composed primarily of Oligocene age and Eocene age porous limestones. The Floridan Aquifer is the principal water supply aquifer throughout coastal Georgia and most of Florida. Overlying the Floridan

ARCADIS

Site Background

Aquifer at and surrounding Savannah, Georgia is two continuous clay units, which are effective confining units that preclude downward groundwater migration of shallow groundwater from uppermost aguifer system to the deeper Floridan water supply aguifer. These two clay units are named the Coosawhatchie Formation and Berryville Clay member of the Hawthorne Group (Huddleston 1988). Lithologic samples and fossils suggest that these two units were deposited during the Middle Miocene Period in a low-energy open marine environment over a wide area. The open ocean depositional environment resulted in the widespread and continuous nature of these clay units. A deep test well in Savannah (GGS-3139) shows that the clay units extend from a depth of 45 ft to 167 ft near HAAF (Huddleston 1988). Due to the thick confining unit that separates the uppermost aguifer system from the underlying Floridan Aguifer, there is minimal potential for groundwater found above the clay confining layer to affect deeper groundwater quality in the underlying Floridan Aquifer. A copy of the crosssection referenced from the Huddleston study, which shows deep test well GGS-3139 is provided in Appendix A (Huddleston 1988). After deposition of the Hawthorne Clays, there was no preserved deposition of sediments at the study area until the late Pleistocene Period. The sediments overlying the Hawthorne Group clays are composed of a sequence of near shore to shoreface (barrier island) sediments that prograde over the Hawthorne Group. Published investigations have identified nine sets of overlapping relict beach ridges of Pleistocene age to Holocene age on the Lower Coastal Plain that prograde towards the Atlantic Ocean. Each barrier sequence forms a ridge (also termed terrace) that is progressively lower and closer to the modern barrier island. The ancient beaches formed during higher sea levels and are approximately parallel to the modern beach. Each barrier system is at a consistent elevation above sea level with about 20 ft of relief above the surrounding land. HAAF is located on a relict beach ridge named the Pamlico Terrace, which has elevations ranging from about 20 ft msl to 40 ft msl. This abandoned beach ridge was formed during the late Pleistocene (>10,000 years) age. The Pamlico Terrace sediments are about 40 to 50 ft thick at HAAF and are the upper most aguifer at the site.

2.3 Previous Investigations

2.3.1 MCA Barracks Site Investigation: 2005 and 2006 Site Investigations

The volatile organic compounds (VOCs) in groundwater near North Perimeter Road were first discovered in 2006 by HydroGeoLogic, Inc. (HGL) during a site investigation for the MCA Barracks Site (i.e. the HAA-15 site), where chlorinated VOCs (primarily

ARCADIS

Site Background

trichloroethene [TCE]) are the constituents of concern (HydroGeoLogic 2007). The monitor well network installed for site HAA-15 extends north of the HAA-15 plume to near the North Perimeter Road and the HAAF property boundary. In 2006, monitor well HGL-3C, which is screened from 29.4 to 39.4 ft bgs, was sampled as part of HAA-15 investigation activities to delineate the horizontal extent of chlorinated VOCs. However, petroleum VOCs, not chlorinated VOCs, were detected in samples from the well (including benzene at 14 micrograms per liter [• g/L]). Adjacent monitor well HGL-3B, which is screened from 14.7 to 24.7 ft bgs, was also sampled as part of the investigation and no impacts were detected. The detection of benzene, toluene, ethylbenzene and xylenes (BTEX) was inconsistent with the chlorinated VOCs found at the HAA-15 site. Therefore, a separate investigation was initiated to assess the area near monitor well HGL-3C. The area was designated as the Boundary Investigation Site, HAA-18.

2.3.2 North Perimeter Road: 2007 Preliminary Investigation

In 2007 the USACE (Savannah District) conducted a site assessment to investigate the petroleum hydrocarbons detected in monitor well HGL-3C. The investigation included soil and groundwater sampling using direct push technology (DPT) and installation and sampling of five permanent groundwater monitor wells. At 10 DPT boring locations along the boundary, unsaturated soils were collected in 5 foot intervals using macro core sleeves and screened for VOC vapors using a photo ionization detector (PID). Samples from each location were collected for laboratory analysis. Groundwater samples were collected with DPT from 25 locations oriented in a grid pattern on approximately 175 foot centers. At each location, groundwater samples were collected from two discrete intervals (at approximately 10 ft bgs and at approximately 25 ft bgs). Based on the results from the DPT investigation, five permanent monitor wells (MW-1 through MW-5) were installed to depths ranging from 25.5 to 30.5 ft bgs and sampled. Each of the soil and groundwater samples was submitted for laboratory analysis of VOCs and naphthalene in accordance with U.S. Environmental Protection Agency (USEPA) Method 8260B. The results of the investigation were presented in the Internal Draft North Perimeter Road Preliminary Investigation (USACE 2008). Results from this investigation are summarized in the following sections.

2.3.2.1 Groundwater Sampling Results

The results from the USACE investigation confirmed the presence of VOCs in groundwater in the area proximate to monitor well HGL-3C. Naphthalene and BTEX were the primary VOCs detected. The results indicated the impacts were

ARCADIS

Site Background

predominantly in the deeper groundwater zone of the upper aquifer (defined within this USACE report as being from 25 to 39 ft bgs) near well HGL-3C. Monitor well construction data are provided in Table 2-1 and groundwater elevation data are provided in Table 2-2. DPT groundwater results from 2007 are provided in Table 2-3.

During the DPT investigation, groundwater samples were taken at 10 ft bgs. Naphthalene was detected in four DPT groundwater samples taken at 10 ft bgs. BTEX compounds were not detected in groundwater samples taken at 10 ft bgs. Two of the naphthalene-impacted samples were collected from locations near well HGL-3C (DPT-2S and DPT-14S). The remaining two naphthalene-impacted samples were collected from locations further south (DPT-3S and DPT-4S) along the western HAAF boundary. The highest concentration of naphthalene was detected in sample DPT-2S (42 μ g/L). Groundwater data from vertical profile samples taken at 10 ft bgs during the 2007 Preliminary Investigation are illustrated on Figure 2-3.

During the DPT investigation, groundwater samples were also taken at 25 ft bgs. DPT samples collected from 25 ft bgs in close proximity to deep well HGL-3C (DPT-1D, DPT-2D, DPT-6D) had the highest detections of petroleum hydrocarbons. The highest concentrations were in sample DPT-1D, where naphthalene was detected at a concentration of 950 μ g/L. These DPT sample locations as well as monitor well HGL-3C are located along the northwest facility boundary. Groundwater data from samples taken at 25 ft bgs during the 2007 Preliminary Investigation are illustrated on Figure 2-4.

Based on the results from the DPT investigation, five permanent monitor wells (MW-1 through MW-5) were installed with 10-ft screens to depths ranging from 25 to 30 ft bgs. The new monitor wells and existing monitor well HGL-3C were sampled in September 2007. Monitor well HGL-3C and nearby monitor well MW-2 had detections of petroleum hydrocarbons consisting predominantly of naphthalene and benzene. Groundwater data from sampling of monitor wells as part of the 2007 Preliminary Investigation is included on Figure 2-5.

2.3.2.2 Soil Sampling Results

Sampling of unsaturated soil (1.2-4.0 ft bgs) was conducted along the northwest boundary. Benzene or naphthalene was not detected in the samples. One or more VOCs were detected in 8 of the 10 soil samples. Acetone, potentially attributable to laboratory contamination, was detected most frequently and at the highest concentrations. Acetone concentrations ranged from 0.0072 to 0.078 mg/kg (milligrams

ARCADIS

Site Background

per kilogram), well below the HSRA notification concentration value of 2.47 mg/kg. Other organic constituents detected in soil included 1,2,3-trichloropropane (0.029 mg/kg), 1,1-dichloropropene (0.0094 mg/kg), 2-hexanone (0.0096 mg/kg), p-lsopropyltoluene (0.0021 mg/kg), toluene (0.0012 mg/kg in 2 samples) and methylene chloride (maximum of 0.0042 mg/kg). Toluene, acetone, and methylene chloride were the only constituents detected in both soil and groundwater samples collected as part of the 2007 Preliminary Investigation. All of the constituents detected in unsaturated soil were below the HSRA Notification Concentrations. Soil analytical data from the 2007 investigation are provided in Table 2-4 and illustrated on Figure 2-6.

2.3.3 December 2008 Groundwater Sampling and Surveying

2.3.3.1 Top-of-Casing Survey

In December 2008, a survey of location and top-of-casing elevation for all monitor wells installed by USACE was performed by Chatham Surveying Services, Inc., a Georgia-licensed surveyor. These data were used to calculate relative groundwater elevations and groundwater flow direction at the site. The survey was completed for each of the five monitor wells installed in 2007 (MW-1 through MW-5) and monitor well HGL-3C.

2.3.3.2 Water Level Measurements

A comprehensive set of water level data was collected prior to sampling in December 2008. The data were used to generate a potentiometric surface map of overall groundwater flow direction (Figure 2-7). All of the monitor wells on the HAA-18 site at that time except HGL-3C were screened at 30.5 ft bgs or above. Monitor well HGL-3C was screened to a depth of 39 ft bgs. The data indicated groundwater flows south-southeast from offsite onto HAAF property. Water level data are provided in Table 2-2.

2.3.3.3 Groundwater Sampling Results

Following water level measurement collection in December 2008, ARCADIS collected groundwater samples from six (6) existing monitor wells at HAA-18 (MW-1 through MW-5 and HGL-3C). The wells were sampled using peristaltic pumps and low-flow sampling methodology. VOCs were detected in samples from all wells except for HGL-3C. Benzene was detected in samples from four monitor wells at concentrations ranging from 1.1 to 82 μ g/L, with the highest benzene concentration being detected in MW-1. The highest concentration of a single constituent was 100 μ g/L of toluene in the

ARCADIS

Site Background

sample from MW-4. Data from monitor well samples are provided in Table 2-5 and illustrated on Figure 2-5.

The December 2008 groundwater data and the September 2007 data showed some significant differences. In September 2007, wells HGL-3C and MW-2 were the only wells which exhibited signs of groundwater impact. In December 2008, all of the monitor wells except for HGL-3C showed impacts.

2.3.4 February 2009 Water Level Gauging

Water levels were collected again in February 2009 to confirm the groundwater flow direction at HAA-18. Overall, the water levels increased approximately a foot compared to the previous water elevations. The data confirmed that groundwater flows south-southeast from offsite onto the HAAF facility property. Water level data are provided in Table 2-2. Water elevations from the February 2009 water level gauging event are illustrated on Figure 2-8.

ARCADIS

Investigation Activities

3. Investigation Activities conducted January through March 2010

In accordance with the Site Investigation Work Plan submitted by ARCADIS in November 2009, the scope of the investigation conducted in 2010 was to delineate the extent of the groundwater impacts within the shallow and deep groundwater zones in the upper aquifer. In addition, soil sampling was planned along the route of the reportedly abandoned petroleum pipeline.

All procedures and techniques utilized for this investigation conformed to USEPA Region 4 Science and Ecosystem Support Division (SESD) guidance and the approved Sampling and Analysis Plan and Quality Assurance Project Plan (ARCADIS 2009a). All soil and groundwater samples collected by ARCADIS field personnel were analyzed by Shealy Environmental Services, Inc. All laboratory practical quantitation limits (PQLs) were below applicable screening levels.

The activities comprising the site investigation at HAA-18 included the following:

- § Installation and development of three monitor well pairs to determine the down-gradient extent of VOC-impacted groundwater on-site;
- § Installation of two piezometers to evaluate the groundwater/surface water relationship and flow near Lamar Canal;
- § Collection of water–level measurements from all monitor wells and piezometers associated with HAA-18;
- § Sampling of newly installed and existing on-site monitor wells to confirm previous data and delineate down-gradient groundwater impacts;
- § Installation of fifteen (15) shallow temporary borings using a hand auger to investigate any impacts to soil in the area of the abandoned petroleum pipeline in the northwest portion of the site.

3.1 Groundwater Monitor Well Installation and Development

Three pairs of monitor wells were installed down-gradient of the known groundwater impacts to delineate the horizontal and vertical extent of the VOC-impacted groundwater. The wells were identified as H18-MW-6S/6D, H18-MW-7S/7D and H18-MW-8S/8D. Wells H18-MW-6S through H18-MW-8S were installed within the shallow zone of the upper aquifer unit. The screen interval in each of the three wells was 15 to 25 ft bgs. Wells H18-MW-6D through H18-MW-8D were installed within a

ARCADIS

Investigation Activities

deeper groundwater zone of the upper aquifer. The screen interval in each of the three wells was 35 to 45 ft bgs. The wells were constructed of 2-inch diameter Schedule 40 polyvinyl chloride (PVC). Well screens consisted of a 2-inch diameter, flush-threaded, 0.010-inch slotted Schedule 40 PVC. Clean, inert, siliceous sand was used to construct a uniform and continuous filter pack to 2 ft above the top of the screen. A seal consisting of hydrated bentonite pellets measuring between 2 and 3 ft thick was poured into the annular space above the sand filter pack. A grout mix consisting of Portland cement and bentonite was pumped into the remaining annular space using a 1-inch tremie pipe to a depth of approximately 1-ft bgs. The monitor wells were then completed at ground surface with concrete and a flushmount cover. Boring logs for the newly installed wells are located in Appendix B.

Following well installation, which was completed by ARM Environmental Services, Inc. under the supervision of an ARCADIS geologist, the monitor wells were developed. Development activities were conducted using a high-powered submersible pump, which surged the well and removed fines. Well development was considered complete when the water became clear. Development water was contained in United States Department of Transportation (USDOT)-approved 55-gallon drums. The monitor wells were surveyed for location and elevation by Bateman Civil Survey Company, a Georgia-certified land surveyor. All soil investigation-derived waste (IDW) from installation of monitor wells was segregated by borehole and collected in USDOT-approved 55-gallon drums. The drums were staged in a centralized location, pending proper off-site disposal. Monitor well locations are shown on Figure 3-1.

3.2 Piezometer Installation; Groundwater/Surface Water Flow near Lamar Canal

Two piezometers were installed in the south side of Lamar Canal to obtain data on the relationship between shallow groundwater and surface water within the canal. The piezometers were designated as H18-PZ-01 and H18-PZ-02. Piezometers were constructed of ¾-inch inner diameter stainless steel. For both piezometers, a one-foot slotted stainless steel well point was attached to a four-foot stainless steel riser. No sand pack or bentonite seal was used during installation as the piezometers were not installed for sampling purposes. Boring logs from the piezometers are included in Appendix B. Soil IDW from the installation of the piezometers was stored in USDOT-approved 55-gallon drums and staged in a centralized location as described above. Following completion of all site activities, a waste characterization sample was collected from each drum to determine proper disposal practices. Piezometer locations are shown on Figure 3-1.

ARCADIS

Investigation Activities

3.3 Water-Level Measurements

Two (2) sets of water-level measurements were collected from the HAA-18 site as part of this investigation. The first set of water levels was collected prior to the sampling of the new and existing monitor wells in January 2010. A second set was collected in mid-February 2010 following installation of the two new piezometers. The first set of water-level measurements was taken to provide a comprehensive view of vertical and horizontal gradients in the area. The second set was taken both to analyze the vertical and horizontal gradients as well as to analyze the hydraulic relationship between surface water in Lamar Canal and shallow groundwater. Water elevation data is included in Table 2-2.

3.4 Sampling of New and Existing Monitor Wells

Groundwater samples were collected from the new monitor wells installed as described above. Existing wells were also sampled to confirm the results of previous investigations and to obtain data to potentially delineate the down-gradient extent of VOC impacts. The following wells were sampled:

- HGL-3B, HGL-3C (HGL-installed wells in the shallow (B) and deep (C) zones of the upper aquifer);
- MW-1, MW-2, MW-3, MW-4, MW-5 (USACE-installed shallow wells; MW-2 was sampled at a later date as it could not initially be located); and
- H18-MW-6S, H18-MW-6D, H18-MW-7S, H18-MW-7D, H18-MW-8S and H18-MW-8D (ARCADIS-installed wells in the shallow (S) and deep (D) zones of the upper aquifer)

Low-flow techniques were used to collect groundwater samples from the monitor wells. During well purging activities groundwater was removed from the wells at a rate ranging from 180 to 250 milliliters per minute (mL/min). Field measurements were collected at five-minute intervals and included pH, specific conductance, temperature, oxidation reduction potential (ORP), dissolved oxygen (DO), and turbidity. Once field parameters stabilized according to standard procedures, the groundwater samples were collected and submitted to Shealy Environmental Services, Inc. Each of the samples was analyzed for VOCs in accordance with USEPA Method 8260B and SVOCs in accordance with USEPA Method 8270D. In addition, a duplicate sample was collected from one selected monitor well (MW-3). Groundwater sampling sheets are included in Appendix C. Purge water IDW collected prior to sample collection was stored in a USDOT-approved 55-gallon drum and staged

ARCADIS

Investigation Activities

in a centralized location pending proper disposal. A composite sample was collected from the drum and submitted to the laboratory for waste characterization analysis.

3.5 Soil Sampling Along Abandoned Pipeline

The Internal Draft Phase II Report for Hunter Army Airfield (USACE 2005) stated that a pipeline that initiated at the Southland Tank Farm System at the Savannah Dock and terminated at the Bulk Fuel Facility entered the HAAF property in the HAA-18 area. The report further stated that the six-inch pipeline was buried approximately 30-inches below street level and conveyed jet fuel to the storage tanks and fueling pits. An interviewee cited in the USACE report stated that the pipeline was abandoned in place reportedly in the 1960s. Drawings of the pipeline location included in the Internal Draft Archive Search Report for HAA-15 MCA Barracks Site (USACE 2004) show that the pipeline entered HAAF between the current locations of monitor wells MW-3 and MW-4. As part of this investigation, ground-penetrating radar (GPR) was used to evaluate the location of the pipeline. GPR data indicated that a pipeline was present along the route indicated in the referenced documents. The estimated location of the abandoned pipeline based on these documents is included on Figure 2-1 and subsequent figures.

In order to investigate potential impacts from the abandoned-in-place petroleum pipeline, fifteen (15) temporary shallow borings were installed using a hand auger. Borings were designated as H18-SB01 through H18-SB15 and were installed to the water table (depths ranging from 2.0 to 6.0 ft bgs). The completion depths of the hand auger borings were a function of depth to shallow groundwater, which decreased with proximity to the adjacent off-site ditch. The locations of the temporary borings are included on Figure 2-2.

The soil was screened for VOCs with a PID. The PID readings did not indicate VOC detections in any sample. Since there were no indications of impacts, one soil sample was collected from each boring location from the interval directly above the water table. All temporary borings were backfilled and hydrated with bentonite chips from total depth to just below land surface. The borings were completed with material consistent with the surrounding surficial material, in this case, topsoil. Boring logs for the temporary soil boring installation are included in Appendix D. The soil IDW from the temporary boring installation was stored in a USDOT-approved 55-gallon drum. In order to determine the waste characterization for disposal purposes, a sample was collected from the drum and submitted for analysis.

ARCADIS

Investigation Results

4. Results from Investigation Conducted between January and March 2010

4.1 Geology and Hydrogeology

4.1.1 Geologic conditions

The shallow geology, based on the investigations at HAA-18, is indicative of the expected depositional environment of a back bay area behind and up to the former beach, which is where the current runways are located, with an underlying confining unit.

A geologic cross section (Figure 4-1), which spans from southwest to northeast commencing north of Pond 29 across the HAA-18 site shows a massive homogeneous sand unit that extends from land surface down to approximately ten to 20 ft bgs in the northern portion of the adjacent HAA-15 site. The massive fine grained sand unit at the top of the sequence appears to be part of the beach. The cross-section also illustrates that minor silt and clay seams are found between five and ten ft bgs at monitor well locations HGL-3C and H18-MW-8D on the HAA-18 site. A series of silty clay and sandy silt units interbedded with fine sands underlies the massive sand unit consistently across the HAA-18 site and the northern portion of the HAA-15 site observed during installation of the new monitor wells. These units are interpreted as marsh, bay or lagoon deposits behind the Pamlico barrier terrace. Additionally, increasing silt and clay content was consistently encountered site-wide between 45 and 50 ft bgs. This is interpreted as the upper part of the Hawthorne, which acts as a confining unit to the underlying Floridan aquifer.

4.1.2 Hydrogeologic conditions

Groundwater flows within the shallow zone of the upper aquifer under unconfined conditions. During 2010 and previous investigations, the water table was approximately 1 to 4 ft bgs. Based on groundwater levels, Lamar Canal appears to be an important hydrogeologic feature. The canal is a local discharge for groundwater, resulting in groundwater flow in the shallow zone of the upper aquifer to be toward the canal from both sides, mirroring the local topography. Groundwater flow across the HAA-18 site is in a southeastern direction toward the canal. The groundwater at adjacent HAA-15 site flows to the northwest.

Silt and clay seams at HAA-18 and HAA-15 divide parts of the uppermost unconsolidated aquifer system into separate zones. Downward vertical hydraulic

ARCADIS

Investigation Results

gradients in a majority of the on-site well pairs suggest that the upper aquifer unit in sections of HAA-15 and across the southern sections of HAA-18 functions as two distinct zones. The boring logs for monitor wells HGL-2B/C and 3B/C have been included in Appendix B, along with the logs for the wells installed in 2010. A summary of groundwater elevations at monitor well pairs is included in Table 4-1. At the adjacent HAA-15 site, differences in hydraulic heads are greater than 1 foot downward at four well pairs (HGL-1, HGL-6, HGL-7, and HGL-8) where the screen intervals are separated by 10 ft. This robust downward gradient suggests that the aquifers are separated at some locations by the persistent clayey silt unit acting as a confining layer at HAA-15. In comparison, water elevations show smaller differences in hydraulic heads in two of the four well pairs on the HAA-18 site. There is an approximate 1.0-foot and 0.5-foot vertical hydraulic head difference from the shallow zone to the deep zone of the upper aguifer in the H18-MW-7 and H18-MW-8 well pairs, respectively. No significant hydraulic head difference is observed at the H18-MW-6 and HGL-3B/C well pairs. This illustrates that although clay/silt layers may exist throughout the HAA-18 site, the separated aquifer zones are limited in extent. In general and for consistent reference, groundwater found anywhere from 1 to 30 ft bgs is considered part of the shallow zone of the upper aquifer. The deep portion of the upper aquifer consists of groundwater encountered between 30 and 45 ft bgs. Groundwater wells MW-1 through MW-5, HGL-3B, and H18-MW-6S through H18-MW-8S are screened within the shallow portion of the upper aguifer (i.e. total depth between 25 and 30.5 ft bgs). Groundwater wells HGL-3C and H18-MW-6D through H18-MW-8D are screened within the deep portion of the upper aguifer (i.e. total depth between 39.4 and 45 ft bgs).

4.1.3 Groundwater flow direction

As part of the initial site investigation activities completed by ARCADIS in 2008 and 2009, potentiometric surface figures were completed for the site based on water levels collected in December 2008 and February 2009. Because of the limited number of wells at the site in 2008 and 2009, data from all monitor wells (screened in the shallow and deep portions of the upper aquifer) were combined to provide an overall potentiometric surface depiction. These figures were developed to determine overall groundwater flow direction and guide subsequent investigations. These figures are included as Figures 2-7 and 2-8. The potentiometric contours showed that overall groundwater flow in the upper aquifer is towards the south-southeast.

During the February 2010 groundwater sampling event, a complete round of water levels was collected to confirm groundwater flow directions, which included the newly installed on-site piezometers. It appeared based on the data collected from the

ARCADIS

Investigation Results

piezometers, that a more significant hydraulic gradient is found near Lamar Canal in the shallow zone of the upper aquifer and that the canal is likely acting as a discharge point for shallow groundwater. On the adjacent HAA-15 site, shallow groundwater appears to flow to the northwest towards the canal, while shallow groundwater on the HAA-18 site flows southeast, also towards the canal. This is consistent with the findings that shallow groundwater appears to primarily follow topographic contours toward drainage ditches, canals and first-order streams. Groundwater along the northwest slope of the ridge at adjacent site HAA-15 flows to the northwest down the slope. However, at HAA-18 there is a subtle elevation drop from North Perimeter Road to the southeast to Lamar Canal. Lamar Canal is considered the local discharge boundary for the shallow groundwater in the area of HAA-18 and HAA-15. Based on past and current data, shallow groundwater consistently flows to this canal. A site map with topographic contours is included as Figure 4-2.

Using data from the monitoring wells that had been recently installed within the shallow and deep portion of the upper aquifer, groundwater flow directions were reevaluated for both the shallow and deep zones of the upper aquifer. Groundwater gauging measurements from shallow wells and piezometers (HGL-3B, MW-1, MW-3 through MW-5, H18-MW-6S through H18-MW-8S, H18-PZ-01 and H18-PZ-02) are presented separately from the deep wells (HGL-3C and H18-MW-6D through H18-MW-8D) on potentiometric figures generated with 2010 data. Figure 4-3 and Figure 4-4 present the February 2010 groundwater flow conditions in the shallow and deep zones of the upper aquifer, respectively. Water elevation data is included in Table 2-2. Overall, groundwater flow directions based on the February 2010 event appear consistent with previous conclusions. The data indicate that the flow directions for the shallow and deep zones of the upper aquifer may be slightly different. The shallow zone groundwater flow direction across most of the site is to the southeast toward Lamar Canal, while the flow direction in the deep aquifer appears to be toward the south.

4.1.4 Surface water flow

With the exception of Lamar Canal, which traverses the southern portion of HAA-18 and runs in a southwesterly direction, there were no surface water features observed on the HAA-18 site. As described previously, ARCADIS installed two piezometers into the south side of the canal to monitor the relationship between the surface water level in the canal and the shallow groundwater levels. It appears, based on the recent observation of the piezometer levels, that the two are related and that the canal is acting as a local discharge point for shallow groundwater, as shown on Figure 4-3. Water level data is included in Table 2-2. The surface water in the drainage canal west

ARCADIS

Investigation Results

of the HAAF boundary appears to be an expression of groundwater and likely affects the hydraulics of the upper aquifer. However, this ditch is not on HAAF property and could not be evaluated during this investigation.

4.2 Nature and Extent

4.2.1 Soil Sampling Results

In January 2010, ARCADIS conducted additional unsaturated soil sampling along the route of the abandoned pipeline that runs along the northwest site boundary. As described previously, a petroleum pipeline was constructed in approximately 1958 and was reportedly abandoned in place sometime in the 1960s. Fifteen (15) shallow soil borings were installed using a hand auger along the on-site extent of this abandoned pipeline. VOCs were not detected during PID screening. Only very low levels of acetone (maximum concentration of 0.065 mg/kg, well below notification standards and a common laboratory contaminant) were detected in soil samples sent for laboratory analysis of VOCs. No SVOCs were detected in samples sent for laboratory analysis. No evidence of a release from the pipeline was found. Table 4-2 provides a summary of the soil sample results from the pipeline investigation. Sample results are shown on Figure 4-5. Laboratory analytical data is located in Appendix E.

4.2.2 Groundwater Sampling Results

Five (5) existing monitor wells (HGL-3C, MW-1 and MW-3 through MW-5) and six (6) new monitor wells (H18-MW-6S through H18-MW-8S and H18-MW-6D through H18-MW-8D) were sampled as part of the January 2010 event. In addition, two (2) existing monitor wells (HGL-3B and MW-2) that were inadvertently omitted in January were sampled during the March 2010 sampling event.

Contaminant distribution in the 2010 sampling results was similar to that observed during the 2007 event, although concentrations of VOCs were significantly lower. The only VOC detected above the PQL in the monitor wells screened in the shallow zone was benzene. Benzene was detected in the sample from MW-2 at a concentration of 0.59 μ g/L. This concentration is below all the applicable screening criteria. SVOCs were not detected above the PQL or applicable screening criteria, as shown in Table 2-5. Laboratory analytical data is located in Appendix E.

Benzene (1.7 μ g/L), ethylbenzene (0.9 μ g/L) and naphthalene (16 μ g/L) were the only petroleum hydrocarbon VOCs detected above PQLs in groundwater samples from

ARCADIS

Investigation Results

monitor wells screened in the deep zone of the upper aquifer. These compounds were only detected in samples from monitoring well HGL-3C and were not detected in samples from any of the other monitor wells screened within the deep zone of the upper aquifer. The only other VOC detected above PQL was chloroform, which was detected at a concentration of 0.85 µg/L in the sample from monitor well H18-MW-8D. This value is below all applicable screening standards. Other VOCs, including acetone, bromodichloromethane, carbon disulfide, dibromochloromethane, methylene chloride, toluene and xylenes were detected below the PQL in the deep monitor well network. The reported concentrations are estimated values that are below laboratory PQLs but above laboratory method detection limits (MDLs). Two SVOCs, acenaphthylene and caprolactam, were also detected below PQL and are listed as estimated values. Complete groundwater results from the January 2010 ARCADIS investigation are shown in Table 2-5 and illustrated on Figure 2-5. Table 2-5 also shows a comparison to applicable screening criteria consisting of USEPA Maximum Contaminant Levels (MCLs), 2009 Industrial Water Quality Standards (IWQS) and Type I Risk Reduction Standards (RRS).

ARCADIS

Data Summary

5. Comprehensive Data Summary

5.1 Hydrogeology

The following summarizes the results of the investigation of site hydrogeology:

- Overall groundwater flow direction in the upper aquifer unit has consistently been to the south-southeast, indicating that groundwater flows from off-site onto HAAF in the area of HAA-18.
- The flow direction of shallow and deep groundwater may differ slightly.
 Shallow groundwater appears to be influenced by topography and flows towards Lamar Canal to the southeast while deep groundwater appears to flow in a more consistent southern direction.
- Calculated groundwater elevations in the piezometers in the Lamar Canal and the new well pairs indicate that Lamar Canal is a discharge point for water from the shallow groundwater zone of the upper aquifer. Groundwater elevations show a higher horizontal gradient in the area of the canal.
- Measured hydraulic heads suggest that there is a semi-confining unit in the southern portion of the site (i.e. H18-MW-07S/D and H18-MW-08S/D) with head differences of 0.4 and 1.1 ft. There was little to no difference in the hydraulic heads observed in the two northern well pairs (i.e. H18-MW-06S/D and HGL-3B/C).
- Hydraulic conductivities calculated from data taken during the adjacent site
 HAA-15 investigation varied from 8 ft/year to 250 ft/year and similar variations
 are expected in the HAA-18 area. Widely varying hydraulic conductivities are
 typical in back barrier sequences and represent the variation from low energy
 marsh deposits of clays and silts to high energy tidal channel deposits of well
 sorted sands.
- Overall, the local stratigraphy of HAA-18 fits the depositional environment of a lagoon and/or marsh behind a barrier island up to a beach.

5.2 Soil Sampling Results

The following summarizes the results and conclusions of the investigation of unsaturated soil at the site:

 Data from unsaturated soil samples collected by USACE from a grid of locations for PID screening did not indicate the presence of VOCs.

ARCADIS

Data Summary

- Unsaturated soil samples collected for laboratory analysis by USACE along the northern boundary of the site and by ARCADIS in the area of the abandoned petroleum pipeline did not contain concentrations of any compound above GA EPD HSRA notification standards.
- A source area was not located on the subject site during the investigations.

5.3 Groundwater Sampling Results

The following summarizes the results of the investigation of groundwater at the site:

- Based on the results from the 2006 sampling of monitor well HGL-3C, the site
 was designated as a separate area of concern (HAA-18) and the primary
 constituents of concern were identified as BTEX and naphthalene.
 Subsequent groundwater data confirmed BTEX and naphthalene as the
 primary contaminants of concern.
- None of the contaminants detected in groundwater samples from the site were at concentrations that indicate equilibrium with NAPL. A potential source for the groundwater impacts was not identified during the investigation.
- Most groundwater impacts have been detected in DPT and monitor well
 locations along the northern and western boundary, predominantly in the area
 around monitor well HGL-3B/C. Results from groundwater samples collected
 by the USACE using DPT in 2007 and from monitor well samples collected in
 2007 and 2010 matched this distribution. Results from groundwater samples
 taken from monitor wells in 2008 indicated a different distribution with more
 contaminant mass south and east of monitor well HGL-3C.
- Groundwater sample results from monitor wells HGL-3B (screened in the shallow zone of the upper aquifer immediately above HGL-3C) and previous DPT groundwater sampling results indicate the predominant groundwater impacts are in the deeper zone of the upper aquifer.
- Monitor well data indicate that the down-gradient extent of the VOC-impacted groundwater in the shallow and deep zones of the upper aquifer may have been reached. No VOCs were detected above applicable screening standards in the down-gradient shallow or deep zone wells that were installed in January 2010. VOC concentrations in these groundwater samples did not exceed any USEPA MCLs, IWQS or Type I RRS concentrations. With the exception of chloroform which was detected at 0.85 μg/L, there were no VOC concentrations above the PQL in groundwater samples taken in January 2010 from these three downgradient well pairs.

ARCADIS

Data Summary

- During sampling in 2010, VOC concentrations in samples from monitor wells were in most cases below PQL and were lower than the results from previous monitor well sampling events. The highest concentrations were detected in the sample from monitor well HGL-3C, which contained 16 μg/L of naphthalene and 1.7 μg/L of benzene. Both concentrations were below the applicable screening criteria.
- Results from the 2010 investigation indicate that groundwater in the top portion
 of the shallow zone of the upper aquifer likely discharges to Lamar Canal.
 Since no impacts have been detected in shallow groundwater adjacent to the
 canal, impacts to the canal from HAA-18 groundwater are unlikely.

ARCADIS

References

6. References

- ARCADIS. 2009a. Sampling and Analysis Plan and Quality Assurance Project Plan, Ft. Stewart Military Reservation and Hunter Army Airfield, Georgia. February.
- ARCADIS. 2009b. Final Site Investigation Summary Report, HAA-18 Boundary Investigation, Hunter Army Airfield, Savannah, Georgia. April.
- ARCADIS. 2009c. Site Investigation Work Plan, HAA-18 Boundary Investigation, Hunter Army Airfield, Savannah, Georgia. October.
- HydroGeoLogic. 2007. Draft Compliance Status Report, MCA Barracks Site, Hunter Army Airfield, Savannah, Georgia. Prepared for USACE-Savannah District, January.
- Huddleston, Paul. 1988. "A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia." Georgia Geologic Survey Bulletin v.104.
- U.S. Army Corps of Engineers (USACE) Savannah. 2008. Internal Draft North Perimeter Road Preliminary Investigation, Hunter Army Airfield, Georgia. Prepared for Fort Stewart Directorate of Public Works. January.
- USACE St. Louis. 2005. Internal Draft Phase II Report for Hunter Army Airfield (HAAF), Savannah, Georgia. January.
- USACE St. Louis. 2004. Internal Draft Archive Search Report for HAA-15 MCA Barracks Site, Hunter Army Airfield, Savannah, Georgia. April.

ARCADIS

Tables

Table 2-1

Monitor Well / Piezometer Construction Summary
Hunter Army Airfield, Savannah, Georgia
HAA-18 (Boundary Investigation Site)

Location ID	Installation Date	Northing	Easting	TOC Elevation (ft MSL)	Well Diameter (in)	Screen Interval (ft bgs)	Screen Length (ft)
MW-1	9/1/2007	741307.62	976478.18	13.31	2	18.8 - 28.8	10
MW-2	9/1/2007	741511.53	975936.10	15.9	2	20.5 - 30.5	10
MW-3	9/1/2007	741505.30	975758.78	14.62	2	15.5 - 25.5	10
MW-4	9/1/2007	741294.55	975562.77	15.65	2	19.1 - 29.1	10
MW-5	9/1/2007	740922.90	975626.24	14.7	2	20.0 - 30.0	10
HGL-2B ¹¹	3/1/2006	740679.10	975180.65	12.71	2	15.0 - 25.0	10
HGL-2C ¹¹	3/1/2006	740679.10	975180.65	12.75	2	34.0 - 44.0	10
HGL-3B	3/14/2006	741608.26	976012.63	14.57	2	14.7 - 24.7	10
HGL-3C	3/14/2006	741608.26	976012.63	14.49	2	29.4 - 39.4	10
H18-MW-6S	1/18/2010	741041.86	976603.25	13.14	2	15.0 - 25.0	10
H18-MW-6D	1/15/2010	741039.95	976596.80	12.83	2	35.0 - 45.0	10
H18-MW-7S	1/15/2010	740930.19	976029.63	14.19	2	15.0 - 25.0	10
H18-MW-7D	1/15/2010	740938.36	976033.98	13.78	2	35.0 - 45.0	10
H18-MW-8S	1/15/2010	741013.71	975360.66	12.61	2	15.0 - 25.0	10
H18-MW-8D	1/15/2010	741021.73	975364.92	12.53	2	35.0 - 45.0	10
H18-PZ-01	1/27/2010	741009.02	976607.45	12.24	1	4.0 - 5.0	1
H18-PZ-02	1/27/2010	740892.16	976027.33	11.55	1	4.0 - 5.0	1

Notes:

- 1.) ft feet
- 2.) ft bgs feet below ground surface
- 3.) ft MSL feet above mean sea level
- 4.) in inches
- 5.) TOC Top of Casing
- 6.) All wells (except MW-6/6D through MW-8/8D, PZ-01, PZ-02 and HGL-3B) surveyed on December 16, 2008 by Chatham Surveying Services, Inc.
- 7.) Wells MW-6/6D through MW-8/8D, PZ-01 and PZ-02 surveyed by Bateman Civil Survey on February 10, 2010.
- 8.) Well coordinates are based on Georgia State Plane (NAD 1983 feet)
- 9.) Installation date for MW-1 through 5 is approximate
- 10.) Data for HGL wells taken from HAA-15 historical documents.
- 11.) HGL-2B/C destroyed in late 2009.

Table 2-2 Groundwater Elevation Data, 2007-2010 HAA-18 (Boundary Investigation Site) Hunter Army Airfield, Savannah, Georgia

Location ID	TOC Elevation (ft MSL)	Screened Interval (ft)	Measurement Date	Depth to Water (ft BTOC)	Groundwater Elevation (ft MSL)	Change in Elevation (ft)								
		Shallo	w Zone of Upper A	Aquifer										
	13.31 18.8 - 28.8 9/5/2007 1.15 12.16 13.31 18.8 - 28.8 12/16/2008 1.60 11.71													
	13.31	18.8 - 28.8	12/16/2008	1.60	11.71	-0.45								
MW-1	13.31	18.8 - 28.8	2/26/2009	2.23	11.08	-0.63								
	13.31	18.8 - 28.8	1/27/2010	0.51	12.80	1.72								
	13.31	18.8 - 28.8	2/16/2010	0.60	12.71	-0.09								
	15.90	20.5 - 30.5	9/5/2007	3.73	12.17									
NAVA / O	15.90	20.5 - 30.5	12/16/2008	4.00	11.90	-0.27								
MW-2	15.90	20.5 - 30.5	2/26/2009	4.93	10.97	-0.93								
	15.90	20.5 - 30.5	3/30/2010	3.65	12.25	1.28								
	14.62	15.5 - 25.5	12/16/2008	1.57	13.05									
NAVA (O	14.62	15.5 - 25.5	2/26/2009	2.67	11.95	-1.10								
MW-3	14.62	15.5 - 25.5	1/27/2010	0.33	14.29	2.34								
	14.62	15.5 - 25.5	2/16/2010	0.45	14.17	-0.12								
	15.65	19.1 - 29.1	9/6/2007	3.66	11.99									
	15.65	19.1 - 29.1	12/16/2008	3.98	11.67	-0.32								
MW-4	15.65	19.1 - 29.1	2/26/2009	4.94	10.71	-0.96								
	15.65	19.1 - 29.1	1/27/2010	2.88	12.77	2.06								
	15.65	19.1 - 29.1	2/16/2010	3.05	12.60	-0.17								
	14.70	20.0 - 30.0	9/6/2007	3.10	11.60									
	14.70	20.0 - 30.0	12/16/2008	3.65	11.05	-0.55								
MW-5	14.70	20.0 - 30.0	2/26/2009	4.30	10.40	-0.65								
	14.70	20.0 - 30.0	1/27/2010	2.80	11.90	1.50								
	14.70	20.0 - 30.0	2/16/2010	2.99	11.71	-0.19								
	14.57	14.7 - 24.7	2/26/2009	3.39	11.18									
LIOL OD	14.57	14.7 - 24.7	1/27/2010	1.28	13.29	2.11								
HGL-3B	14.57	14.7 - 24.7	2/16/2010	1.54	13.03	-0.26								
	14.57	14.7 - 24.7	3/30/2010	2.16	12.41	-0.62								
	13.14	15.0 - 25.0	1/27/2010	0.72	12.42									
H18-MW-6S	13.14	15.0 - 25.0	2/16/2010	1.25	11.89	-0.53								
1140 1	14.19	15.0 - 25.0	1/27/2010	1.49	12.70									
H18-MW-7S	14.19	15.0 - 25.0	2/16/2010	1.82	12.37	-0.33								
1140 1111 00	12.61	15.0 - 25.0	1/27/2010	1.07	11.54									
H18-MW-8S	12.61	15.0 - 25.0	2/16/2010	1.20	11.41	-0.13								
H18-PZ-01	12.24	4.0 - 5.0	2/16/2010	1.30	10.94									
H18-PZ-02	11.55	4.0 - 5.0	2/16/2010	2.50	9.05									

Table 2-2 Groundwater Elevation Data, 2007 - 2010 HAA-18 (Boundary Investigation Site) Hunter Army Airfield, Savannah, Georgia

Location ID	TOC Elevation (ft MSL)	Screened Interval (ft)	Measurement Date	Depth to Water (ft BTOC)	Groundwater Elevation (ft MSL)	Change in Elevation (ft)								
Deep Zone of Upper Aquifer														
	14.49	29.4 - 39.4	9/5/2007	2.25	12.24									
	14.49	29.4 - 39.4	12/16/2008	2.44	12.05	-0.19								
HGL-3C	14.49	29.4 - 39.4	2/26/2009	3.36	11.13	-0.92								
	14.49	29.4 - 39.4	1/27/2010	1.32	13.17	2.04								
	14.49	29.4 - 39.4	2/16/2010	1.58	12.91	-0.26								
LIAO MWA CD	12.83	35.0 - 45.0	1/27/2010	0.52	12.31									
H18-MW-6D	12.83	35.0 - 45.0	2/16/2010	0.75	12.08	-0.23								
1140 104 70	13.78	35.0 - 45.0	1/27/2010	2.25	11.53									
H18-MW-7D	13.78	35.0 - 45.0	2/16/2010	2.52	11.26	-0.27								
	12.53	35.0 - 45.0	1/27/2010	1.44	11.09									
H18-MW-8D	12.53	35.0 - 45.0	2/16/2010	1.56	10.97	-0.12								

Notes:

1.) ft : feet

2.) ft BTOC: feet below top of casing3.) ft MSL: feet above mean sea level

4.) -- : No data

5.) Water level data for September 2007 were obtained from groundwater sampling logs in the North Perimeter Road Preliminary Investigation (USACE 2008).

Table 2-3
2007 USACE Preliminary Investigation - DPT Groundwater Results
Hunter Army Airfield, Savannah, Georgia
HAA-18 (Boundary Investigation Site)

			Location ID	DPT-1S	DPT-1D	DPT-2S	DPT-2D	DPT-3S	DPT-3D	DPT-4S	DPT-4D	DPT-5S	DPT-5D
			Sample Date	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007
			Depth	10 ft	25 ft								
Chemical Name	MCL	2009 IWQS	Type I RRS										
VOCs - USEPA Method	l 8260B (μg/L)												
Acetone			4,000	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	13	< 5.0 U				
Benzene	5	51	5	< 1.0 U	9.3	< 1.0 U							
Ethylbenzene	700	2,100	700	< 1.0 U	7.6	< 1.0 U							
Isopropylbenzene	ı		DL	< 1.0 U	2	< 1.0 U							
m-Xylene/p-Xylene	10,000 11	-	10,000 ¹¹	< 2.0 U	2.1	< 2.0 U							
Naphthalene	,		20	< 1.0 U	950	42	74	6.4	< 1.0 U	20	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	10,000 11	-	10,000 ¹¹	< 1.0 U	5.7	< 1.0 U							
Toluene	1,000	5,980	1,000	< 1.0 U	1.8	< 1.0 U							
-		-		<u> </u>		<u> </u>				<u> </u>			
			Location ID	DPT-6S	DPT-6D	DPT-7S	DPT-7D	DPT-8S	DPT-8D	DPT-9S	DPT-9D	DPT-10S	DPT-10D
			Sample Date	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/22/2007	5/22/2007	5/22/2007	5/22/2007	5/22/2007	5/22/2007
			Depth	10 ft	25 ft								
Chemical Name	MCL	2009 IWQS	Type I RRS										
VOCs - USEPA Method	8260B (μg/L)												
1,2,4-Trimethylbenzene			DL	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.2	< 1.0 U				
Benzene	5	51	5	< 1.0 U	18	< 1.0 U							
Ethylbenzene	700	2,100	700	< 1.0 U	6.8	< 1.0 U							
m-Xylene/p-Xylene	10,000 11		10,000 11	< 2.0 U	3.2	< 2.0 U							
Naphthalene			20	< 1.0 U	45	< 1.0 U							
o-Xylene	10,000 11		10,000 ¹¹	< 1.0 U	6.3	< 1.0 U							
Toluene	1,000	5,980	1,000	< 1.0 U	0.72	< 1.0 U							
Vinyl chloride	2	2.4	2	< 1.0 U	3	< 1.0 U							

Table 2-3 2007 USACE Preliminary Investigation - DPT Groundwater Results Hunter Army Airfield, Savannah, Georgia HAA-18 (Boundary Investigation Site)

			Location ID	DPT-11S	DPT-11D	DPT-12S	DPT-12D	DPT-13S	DPT-13D	DPT-14S	DPT-14D	DPT-15S	DPT-15D
			Sample Date	5/22/2007	5/22/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007
			Depth	10 ft	25 ft								
Chemical Name	MCL	2009 IWQS	Type I RRS										
VOCs - USEPA Metho	d 8260B (µg/L)												
Acetone	-		4,000	< 5.0 U	12	< 5.0 U	< 5.0 U						
Naphthalene			20	< 1.0 U	14	< 1.0	< 1.0 U	< 1.0 U					
•	-	-		-									
			Location ID	DPT-16S	DPT-16D	DPT-17S	DPT-17D	DPT-18S	DPT-18D	DPT-19S	DPT-19D	DPT-20S	DPT-20D
			Sample Date	5/24/2007	5/24/2007	5/23/2007	5/23/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007
			Depth	10 ft	25 ft								
Chemical Name	MCL	2009 IWQS	Type I RRS										
VOCs - USEPA Metho	d 8260B (μg/L)												
Acetone			4,000	7.2	< 5.0 U								
Naphthalene	-	-	20	< 1.0 U	5	< 1.0 U							
			Location ID	DPT-21S	DPT-21D	DPT-22S	DPT-22D	DPT-23S	DPT-23D	DPT-24S	DPT-24D	DPT-25S	DPT-25D
			Sample Date	5/24/2007	5/24/2007	5/24/2007	5/24/2007	5/23/2007	5/23/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007
			Depth	10 ft	25 ft								
Chemical Name	MCL	2009 IWQS	Type I RRS										
VOCs - USEPA Metho	d 8260B (µg/L)												
Acetone			4,000	< 5.0 U	< 5.0 U	< 5.0 U	34	< 5.0 U					
Methylene Chloride			5	< 1.0 U	< 1.0 U	2.6	< 1.0 U						

Notes:

- 1.) Only detected compounds are shown on this table; if a VOC was not detected in any of the sampling locations, it is not shown.
- 2.) DL = Detection Limit. Defined as practical quantitation limit.
- 3.) ft = feet
- 4.) IWQS = In-stream Water Quality Standard. GA EPD Rule 391-3-6-.03.
- 5.) MCL = Maximum Contaminant Level. USEPA National Priority Drinking Water Regulations (May 2009)
- 6.) μg/L = Microgram per Liter
- 7.) RRS = Risk Reduction Standard. GAEPD Rule 391-3-19-.07 (July 23, 2003).
- 8.) U = Analyte was not detected at or above the practical quantitation limit.
- 9.) USACE = U.S. Army Corps of Engineers
- 10.) VOCs = Volatile Organic Compounds
- 11.) The Type I RRS and MCL are both 10,000 mg/kg for total Xylenes.
- 12.) **Bold** = Concentration above laboratory reporting limit
- 13.) Highlighted = Concentration above one or more applicable standards

Table 2-4
2007 USACE Preliminary Investigation - DPT Soil Results
Hunter Army Airfield, Savannah, Georgia
HAA-18 (Boundary Investigation Site)

	Location ID	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	SS-8	SS-9	SS-10
	Sample Depth	2.5-3.2 ft	3.0-4.0 ft	2.4-2.9 ft	1.4-1.9 ft	1.4-1.9 ft	1.2-1.8 ft	1.6-2.2 ft	3.0-3.5 ft	2.9-3.6 ft	2.2-2.9 ft
	Date	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007
Chemical Name	Notification Concentrations (see Note 11)										
VOCs - USEPA Method	8260B (mg/kg)										
1,1-Dichloropropene	0.2	<0.006 U	<0.0055 U	<0.0069 U	0.0094	0.0087	<0.0058 U	<0.0067 U	<0.0042 U	<0.0058 U	<0.007 U
1,2,3-Trichloropropane	0.54	<0.006 U	<0.0055 U	<0.0069 U	0.029	0.03	<0.0058 U	<0.0067 U	<0.0042 U	<0.0058 U	<0.007 U
2-Hexanone		<0.06 U	<0.055 U	<0.069 U	<0.065 U	0.0096	<0.058 U	<0.067 U	<0.042 U	<0.058 U	<0.070 U
Acetone	2.74	<0.06 U	0.025	0.056	0.063	0.078	0.076	0.019	0.0072	<0.058 U	0.058
Methylene Chloride	0.08	<0.006 U	<0.0055 U	<0.0069 U	0.0041	<0.0066 U	<0.0058 U	0.0042	0.0031	<0.0058 U	<0.007 U
p-Isopropyltoluene		<0.006 U	<0.0055 U	<0.0069 U	<0.0065 U	<0.0066 U	0.0021	<0.0067 U	<0.0042 U	<0.0058 U	<0.007 U
Toluene	14.4	<0.006 U	<0.0055 U	<0.0069 U	<0.0065 U	<0.0066 U	0.0012	<0.0067 U	0.00086	<0.0058 U	<0.007 U

Notes:

- 1.) Only detected compounds are shown on this table; if a VOC was not detected in any of the sampling locations, it is not shown
- 2.) ft = feet
- 3.) mg/kg = milligrams per kilograms
- 4.) VOCs = Volatile Organic Compounds
- 5.) U = Analyte was not detected at or above the practical quantitation limit.
- 6.) **Bold** = Concentration above laboratory practical quantitation limit
- 7.) Highlighted = Concentration above one or more applicable standard
- 8.) A HSRA Notification Concentration does not exist for 1,1-Dichloropropene; listed concentration based on a dichloropropene mixture
- 9.) -- = No HSRA Notification Concentration or Type I RRS exists for this compound

Table 2-5 Monitor Well Groundwater Analytical Results, 2006-2010 HAA-18 (Boundary Investigation Site) Hunter Army Airfield, Savannah, Georgia

			Location ID	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4
			Sample Date	9/5/2007	12/16/2008	1/21/2010	9/5/2007	12/16/2008	3/30/2010	9/5/2007	9/5/2007	12/16/2008	1/22/2010	1/22/2010	9/6/2007	12/16/2008	1/22/2010
Chemical Name	MCL	2009 IWQS	Type I RRS														
VOCs - USEPA Method 82	60B (µg/L)																
1,2,3-Trichlorobenzene			DL	< 1.0 U	< 0.50 U	NA	< 1.0 U	< 0.50 U	NA	< 1.0 U	< 1.0 U	< 0.50 U	NA	NA	< 1.0 U	< 0.50 U	NA
1,2,4-Trichlorobenzene	70	70	70	< 1.0 U	< 0.50 U	0.33 J	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U
1,2-Dichloroethane	5	37	5	< 1.0 U	2.2	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U
4-Isopropyltoluene			DL	< 1.0 U	1.5	NA	2.9	< 0.50 U	NA	< 1.0 U	< 1.0 U	< 0.50 U	NA	NA	< 1.0 U	< 0.50 U	NA
Acetone			4,000	< 5.0 U	38	1.5 J	< 5.0 U	< 10 U	2.4 UB	< 5.0 U	< 5.0 U	< 10 U	1.9 J	2.9 J	< 5.0 U	22	< 10.0 U
Benzene	5	51	5	< 1.0 U	82	< 0.50 U	9.3	3.3	0.59	< 1.0 U	< 1.0 U	1.1	< 0.50 U	< 0.50 U	< 1.0 U	76	< 0.50 U
Bromodichloromethane			100 ¹⁸	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U
Carbon Disulfide			4,000	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U
Chloroform		470	100	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U
Chloromethane		DL	3	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	0.63	< 0.50 U
Cyclohexane			DL	NA	56	< 0.50 U	NA	< 0.50 U	< 0.50 U	NA	NA	< 0.50 U	< 0.50 U	< 0.50 U	NA	10	< 0.50 U
Dibromochloromethane			100 ¹⁸	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U
Ethylbenzene	700	2,100	700	< 1.0 U	8.6	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	6.9	< 0.50 U
Isopropylbenzene			DL	< 1.0 U	6.7	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	1	< 0.50 U
Methylcyclohexane			DL	NA	15	< 5.0 U	NA	< 5.0 U	< 5.0 U	NA	NA	< 5.0 U	< 5.0 U	< 5.0 U	NA	< 5.0 U	< 5.0 U
Methylene Chloride	5	590	5	< 1.0 U	1.9	< 0.50 U	< 1.0 U	< 0.50 U	0.20 UB	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	3.7	< 0.50 U
m-Xylene/p-Xylene	10,000 ¹⁹		10,000 ¹⁹	< 2.0 U	NA	NA	< 2.0 U	NA	NA	< 2.0 U	< 2.0 U	NA	NA	NA	< 2.0 U	NA	NA
o-Xylene	10,000 ¹⁹		10,000 ¹⁹	< 1.0 U	NA	NA	< 1.0 U	NA	NA	< 1.0 U	< 1.0 U	NA	NA	NA	< 1.0 U	NA	NA
Toluene	1,000	5,980	1,000	< 1.0 U	3.7	< 0.50 U	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 U	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 1.0 U	100	< 0.50 U
Xylenes (total)	10,000		10,000	< 3.0 U ^a	8.8	< 0.50 U	< 3.0 ^a	< 0.50 U	< 0.50 U	< 3.0 U ^a	< 3.0 U ^a	20	< 0.50 U	< 0.50 U	< 3.0 U ^a	60	< 0.50 U
SVOCs - USEPA Method 8	3270D (µg/L)			•													
Acenaphthylene		DL	DL	NA	NA	< 1.0 U	NA	NA	< 1.1 U	NA	NA	NA	< 1.0 U	< 1.0 U	NA	NA	< 1.0 U
Caprolactam			DL	NA	NA	< 5.0 U	NA	NA	< 5.6 U	NA	NA	NA	< 5.0 U	< 5.0 U	NA	NA	< 5.0 U
Naphthalene			20	< 1.0 U	20	< 1.0 U	14	3.6	< 1.1 U	< 1.0 U	< 1.0 U	2.1	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U

Table 2-5 Groundwater Monitoring Data Summary (2006 - 2010) - VOCs and SVOCs HAA-18 (Boundary Investigation Site) Hunter Army Airfield, Savannah, Georgia

			Location ID	MW-5	MW-5	MW-5	HGL-3B	HGL-3B	HGL-3C	HGL-3C	HGL-3C	HGL-3C	H18-MW-6S	H18-MW-6D	H18-MW-7S	H18-MW-7D	H18-MW-8S	H18-MW-8D
			Sample Date	9/6/2007	12/16/2008	1/22/2010	3/1/2006	3/30/2010	3/1/2006	9/5/2007	12/16/2008	1/25/2010	1/26/2010	1/26/2010	1/26/2010	1/26/2010	1/26/2010	1/26/2010
Chemical Name	MCL	2009 IWQS	Type I RRS															
VOCs - USEPA Method 82	VOCs - USEPA Method 8260B (μg/L)		•															
1,2,3-Trichlorobenzene			DL	< 1.0 U	< 0.50 U	NA	NR	NA	NR	1.7	< 0.50 U	NA						
1,2,4-Trichlorobenzene	70	70	70	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	1.1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-Dichloroethane	5	37	5	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
4-Isopropyltoluene			DL	< 1.0 U	< 0.50 U	NA	NR	NA	NR	< 1.0 U	< 0.50 U	NA						
Acetone			4,000	< 5.0 U	< 10 U	< 10.0 U	< 5.0 J	2.2 UB	< 5.0 U	< 5.0 U	< 10 U	2.8 J	2.5 J	2.8 J	3.4 J	2.6 J	3.1 J	5.0 J
Benzene	5	51	5	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 J	< 0.50 U	14	11	< 0.50 U	1.7	< 0.50 U					
Bromodichloromethane			100 ¹⁸	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	0.20 J	< 0.50 U	< 0.50 U	< 0.50 U	0.35 J
Carbon Disulfide			4,000	< 1.0 U	< 0.50 U	< 0.50 U	< 5.0 J	< 0.50 U	< 5.0 U	< 1.0 U	< 0.50 U	0.17 J	< 0.50 U	< 0.50 U	0.11 J	< 0.50 U	< 0.50 U	0.31 J
Chloroform		470	100	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	0.34 J	0.19 J	< 0.50 U	< 0.50 U	0.85
Chloromethane			3	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Cyclohexane			DL	NA	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	NA	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Dibromochloromethane			100 ¹⁸	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	0.21 J
Ethylbenzene	700	2,100	700	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 J	< 0.50 U	10	4.7	< 0.50 U	0.9	< 0.50 U					
Isopropylbenzene			DL	< 1.0 U	< 0.50 U	< 0.50 U	NR	< 0.50 U	NR	< 1.0 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Methylcyclohexane			DL	NA	< 5.0 U	< 5.0 U	NR	< 5.0 U	NR	NA	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Methylene Chloride		590	5	< 1.0 U	1.2	< 0.50 U	< 1.0 J	0.21 UB	< 1.0 U	< 1.0 U	< 0.50 U	0.20 BJ	0.20 BJ	0.21 BJ	0.21 BJ	0.18 BJ	0.18 BJ	0.20 BJ
m-Xylene/p-Xylene	10,000 ¹⁹		10,000 ¹⁹	< 2.0 U	NA	NA	< 2.0 J	NA	5.1	0.81	NA	NA	NA	NA	NA	NA	NA	NA
o-Xylene	10,000 ¹⁹		10,000 ¹⁹	< 1.0 U	NA	NA	< 1.0 J	NA	7.6	3.4	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	1,000	5,980	1,000	< 1.0 U	< 0.50 U	< 0.50 U	< 1.0 J	< 0.50 U	1.6	1	< 0.50 U	0.19 J	< 0.50 U					
Xylenes (total)	10,000		10,000	< 3.0 U ^a	< 0.50 U	< 0.50 U	< 3.0 J	< 0.50 U	12.7 ^a	4.21	< 0.50 U	0.46 J	< 0.50 U					
SVOCs - USEPA Method 8	SVOCs - USEPA Method 8270D (μg/L)																	
Acenaphthylene			DL	NA	NA	< 1.0 U	NR	< 1.1 U	NR	NA	NA	< 1.0 U	0.62 J					
Caprolactam			DL	NA	NA	< 5.0 U	NR	< 5.6 U	NR	NA	NA	< 5.0 U	< 5.1 U	1.8 J	< 5.1 U	< 5.0 U	1.7 J	< 5.0 U
Naphthalene			20	< 1.0 U	< 0.50 U	< 1.0 U	NR	< 1.1 U	NR	360	< 0.50 U	16	< 1.0 U					

Notes:

- 1.) Only detected compounds are shown on this table; if a VOC was not detected in any of the sampling locations, it is not shown
- 2.) B = Analyte was detected in associated blank.
- 3.) DL = Detection Limit. Defined as practical quantitation limit.
- 4.) IWQS = In-stream Water Quality Standard. GA EPD Rule 391-3-6-.03.
- 5.) J = Analyte was detected below practical quantitation limit and is estimated..
- 6.) MCL = Maximum Contaminant Level. USEPA National Priority Drinking Water Regulations (May 2009)
- 7.) NA = Not analyzed
- 8.) NR = Not Reported
- 9.) μg/L = Microgram per Liter
- 10.) RRS = Risk Reduction Standard. GAEPD Rule 391-3-19-.07 (July 23, 2003).
- 11.) USACE = U.S. Army Corps of Engineers
- 12.) VOCs = Volatile Organic Compounds
- 13.) SVOCs = Semi-volatile Organic Compounds
- 14.) U = Analyte was not detected at or above the method detection limit. Value is expressed as less than practical quantitation limit.
- 15.) **Bold** = Concentration above laboratory practical quantitation limit
- 16.) Highlighted = Concentration exceeds one or more applicable standards
- 17.) a Represents the combination of m-Xylene/p-Xylene and o-Xylene; Total Xylenes were not included as part of the laboratory report
- 18.) Total Trihalomethanes limit = 100 μ g/L
- 19.) The Type I RRS and MCL is 10,000 mg/kg for total Xylenes.

Table 4-1 Groundwater Elevations at Well Pairs HAA-18 (Boundary Investigation Site) Hunter Army Airfield, Savannah, Georgia

Well ID	HGL-3B	HGL-3C	HGL-3B	HGL-3C	HGL-3B	HGL-3C	
Date	2/26/	2009	1/27/	/2010	2/16/2010		
Well Depth (ft BGS)	24.7	39.4	24.7	39.4	24.7	39.4	
TOC Elevation (ft MSL)	14.57	14.49	14.57	14.57 14.49		14.49	
Water Level (ft BTOC)	3.39	3.36	1.28	1.32	1.54	1.58	
Groundwater Elevation (ft MSL)	11.18	11.13	13.29	13.17	13.03	12.91	
Hydraulic Head Difference	-0.05			.12	-0.12		

Well ID	H18-MW-6S	H18-MW-6D	H18-MW-6S	H18-MW-6D		
Date	1/27/	2010	2/16/	/2010		
Well Depth (ft BGS)	25.0	45.0	25.0	45.0		
TOC Elevation (ft MSL)	13.14	12.83	13.14	12.83		
Water Level (ft BTOC)	0.72	0.52	1.25	0.75		
Groundwater Elevation (ft MSL)	12.42	12.31	11.89	12.08		
Hydraulic Head Difference	-0.	11	0.19			

Table 4-1 Groundwater Elevations at Well Pairs HAA-18 (Boundary Investigation Site) Hunter Army Airfield, Savannah, Georgia

Well ID	H18-MW-7S	H18-MW-7D	H18-MW-7S	H18-MW-7D		
Date	1/27/	2010	2/16/2010			
Well Depth (ft BGS)	25.0	45.0	25.0	45.0		
TOC Elevation (ft MSL)	14.19	13.78	14.19	13.78		
Water Level (ft BTOC)	1.49	2.25	1.82	2.52		
Groundwater Elevation (ft MSL)	12.70	11.53	12.37	11.26		
Hydraulic Head Difference	-1.	17	-1.11			

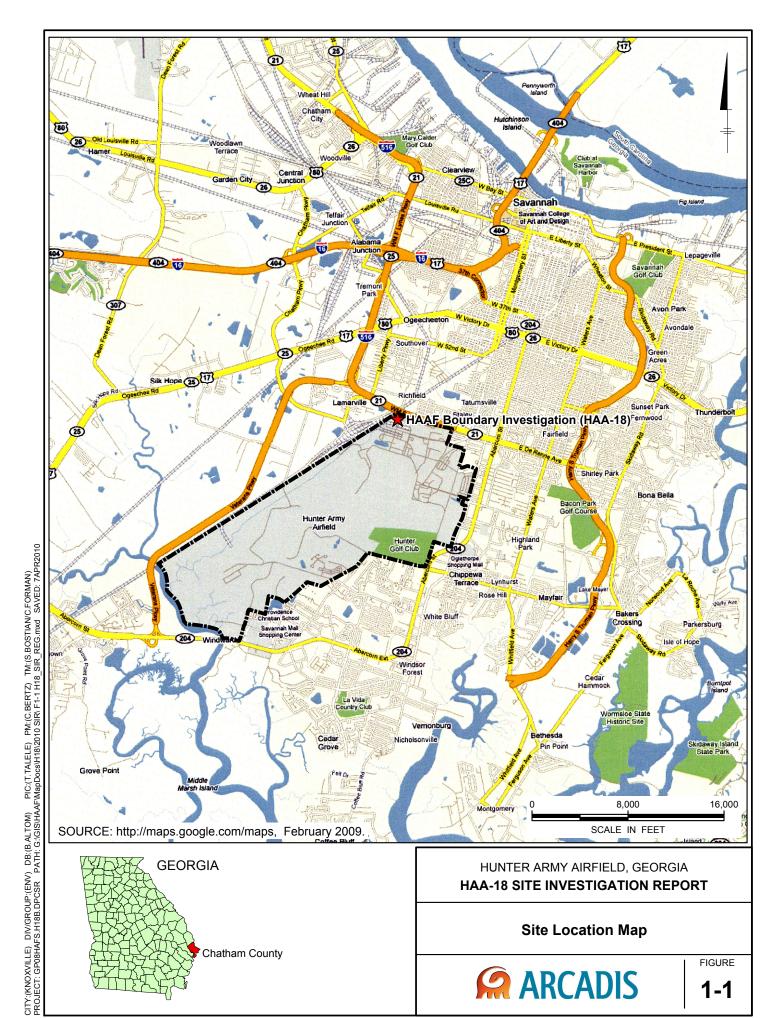
Well ID	H18-MW-8S	H18-MW-8D	H18-MW-8S	H18-MW-8D		
Date	1/27/	2010	2/16/2010			
Well Depth (ft BGS)	25.0	45.0	25.0	45.0		
TOC Elevation (ft MSL)	12.61	12.53	12.61	12.53		
Water Level (ft BTOC)	1.07	1.44	1.20	1.56		
Groundwater Elevation (ft MSL)	11.54	11.09	11.41	10.97		
Hydraulic Head Difference	-0.	45	-0.44			

Notes:

1.) ft BGS: feet below ground surface2.) ft BTOC: feet below top of casing3.) ft MSL: feet above mean sea level

Table 4-2
Soil Analytical Results, DPT Pipeline Investigation, 2010
HAA-18 (Boundary Investigation Site)
Hunter Army Airfield, Savannah, Georgia

	Location ID		H18-SB02	H18-SB03	H18-SB04	H18-SB05	H18-SB06			
	Sample Depth	H18-SB01 4.0 - 5.0	4.0 - 5.0	4.0 - 5.0	5.0 - 6.0	1.0 - 2.0	1.0 - 2.0			
	Sample Date	1/14/2010	1/14/2010	1/14/2010	1/14/2010	1/14/2010	1/14/2010			
	Notification									
Chemical Name	Concentrations									
VOCs - USEPA Method 8260B (mg/k	(g)									
Acetone	2.74	< 0.011U	0.045	0.027	0.019	0.011 J	< 0.016U			
SVOCs - USEPA Method 8270D (mg	/kg)									
No SVOCs detected.										


	Location ID	H18-SB07	H18-SB08	H18-SB09	H18-SB10	H18-SB11	H18-SB12			
	Sample Depth	1.0 - 2.0	2.0 - 3.0	2.0 - 3.0	4.0 - 5.0	4.0 - 5.0	2.0 - 3.0			
	Sample Date	1/14/2010	1/14/2010	1/14/2010	1/14/2010	1/14/2010	1/14/2010			
Chemical Name	Notification Concentrations									
VOCs - USEPA Method 8260B (mg/k	(g)									
Acetone	2.74	< 0.012U	0.052	0.065	< 0.011U	0.014 J	0.012 J			
SVOCs - USEPA Method 8270D (mg	/kg)									
No SVOCs detected.										

	Location ID	H18-SB13	H18-SB14	H18-SB15						
	Sample Depth	4.0 - 5.0	3.0 - 4.0	3.0 - 4.0						
	Sample Date	1/14/2010	1/14/2010	1/14/2010						
	Notification									
	Concentrations									
Chemical Name	(see Note 9)									
VOCs - USEPA Method 8260B (mg/k	(g)									
Acetone	2.74	0.029	0.015 J	0.024						
SVOCs - USEPA Method 8270D (mg	/kg)									
No SVOCs detected.										

Notes:

- 1.) Only detected compounds appear on table. If a compound was not detected in any soil boring, the compound is not included in the table.
- 2.) All soil samples were analyzed for VOCs and SVOCs.
- 3.) **Bold** values represent concentrations above the laboratory practical quantitation limit.
- 4.) J = Analyte was detected below practical quantitation limit and is estimated..
- 5.) VOCs = Volatile Organic Compounds
- 6.) SVOCs = Semivolatile Organic Compounds
- 7.) U = Analyte was not detected at or above the method detection limit. Value is expressed as less than practical quantitation limit.
- 8.) USEPA = United States Environmental Protection Agency
- 9.) GAEPD Rule 391-3-19-.04 Release Notification Appendix I

Figures

LEGEND

- **★** → Fence at Hunter Army Airfield property boundary
 - Storm Water Drainage System
 - Surface Water Flow Direction
 - Former Fuel Transfer Line (6") Reportedly Abandoned in Place

- REFERENCES: 1) SAGIS (2008). 2) JAMES M. KEATON SURVEY (DECEMBER 2008). 3) BATEMAN CIVIL SURVEY (FEBRUARY 2010).

HUNTER ARMY AIRFIELD, GEORGIA **HAA-18 SITE INVESTIGATION REPORT**

Site Layout with Abandoned Pipeline Approximate Location

Fence at Hunter Army Airfield property boundary

Storm Water Drainage System Surface Water Flow Direction

Former Fuel Transfer Line

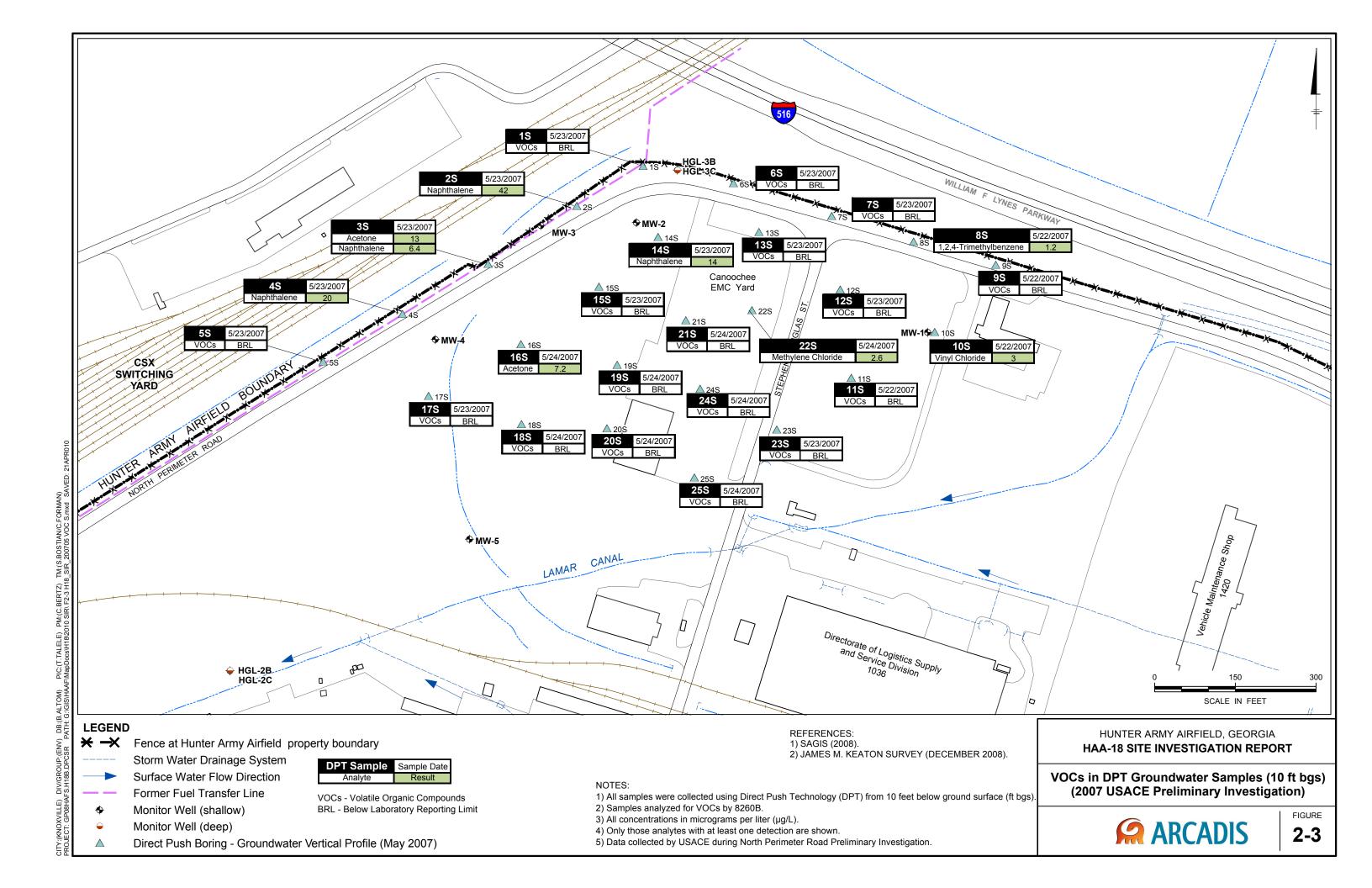
Monitor Well (deep)

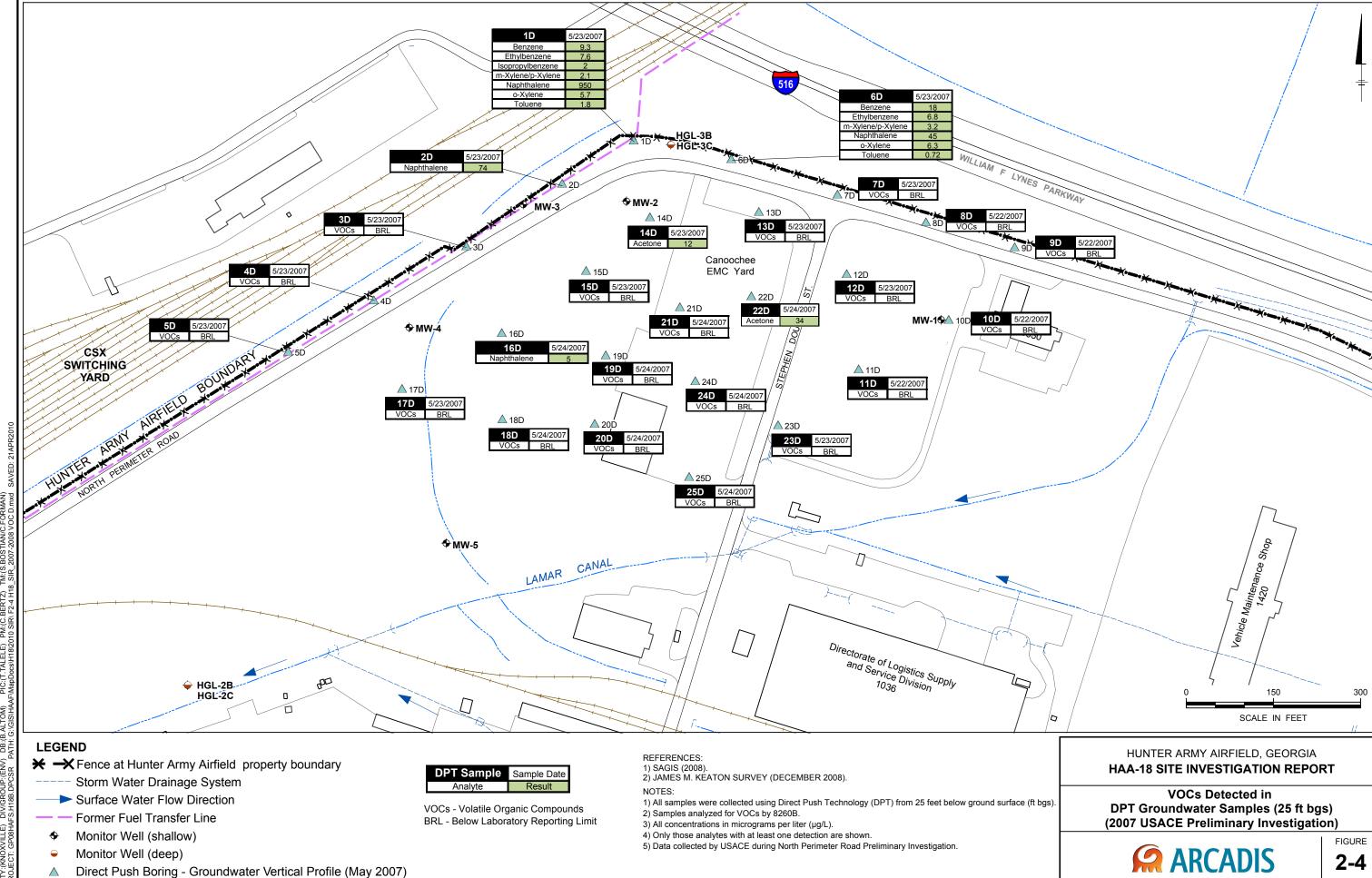
Monitor Well (destroyed) Monitor Well (shallow)

Piezometer

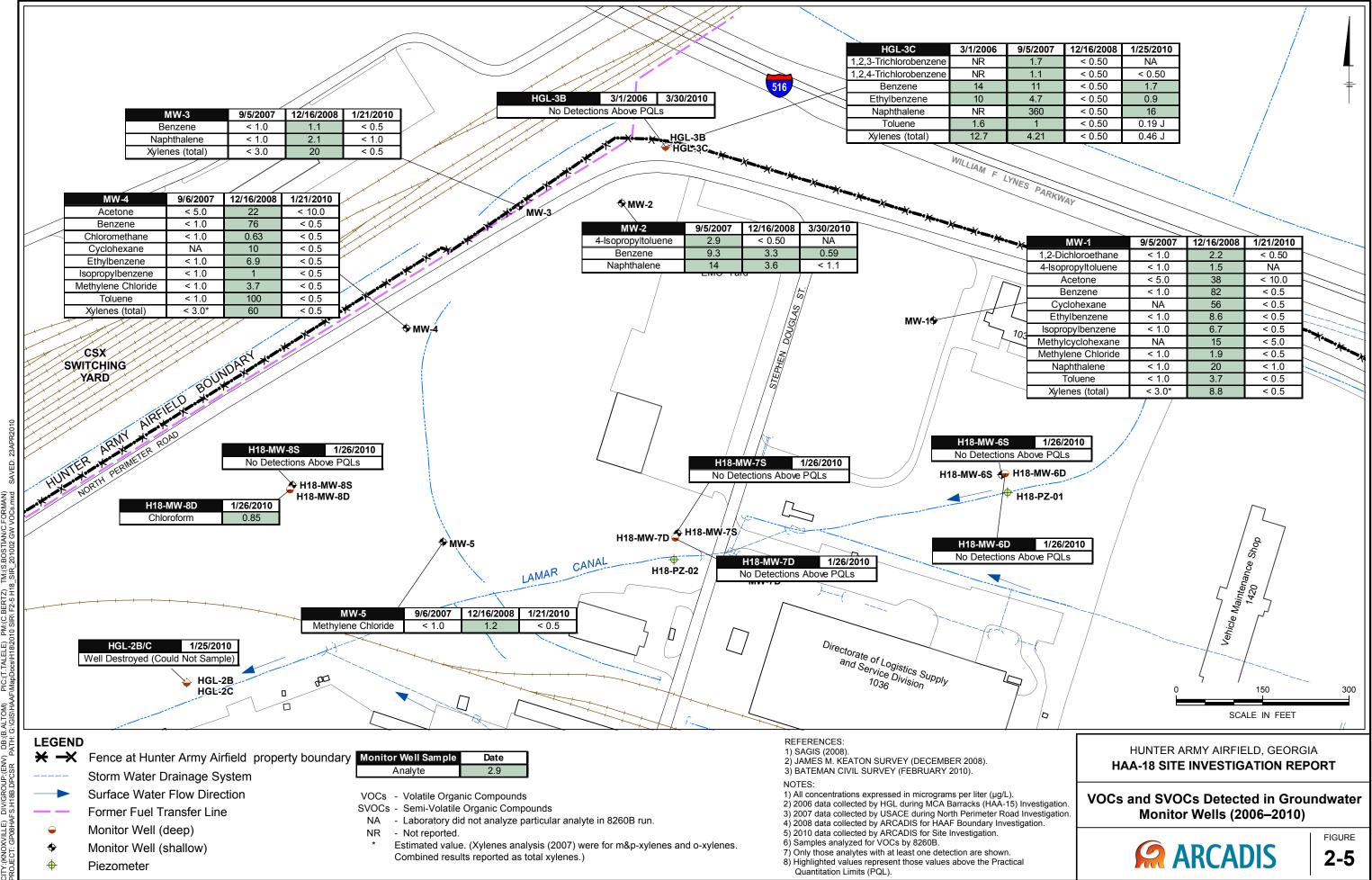
Direct Push Boring - Groundwater Vertical Profile (May 2007)

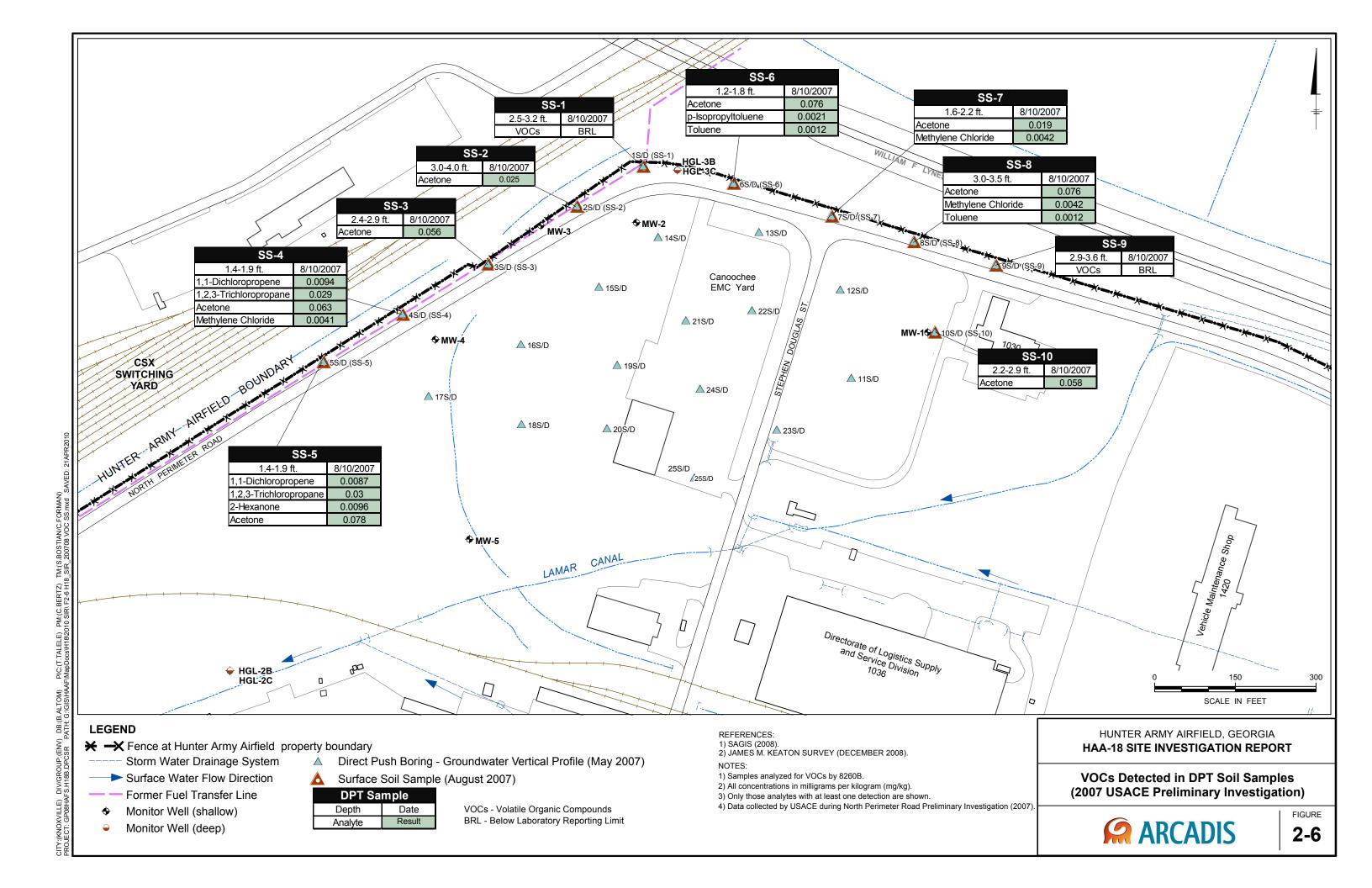
Surface Soil Sample (August 2007) Soil Boring (January 2010)

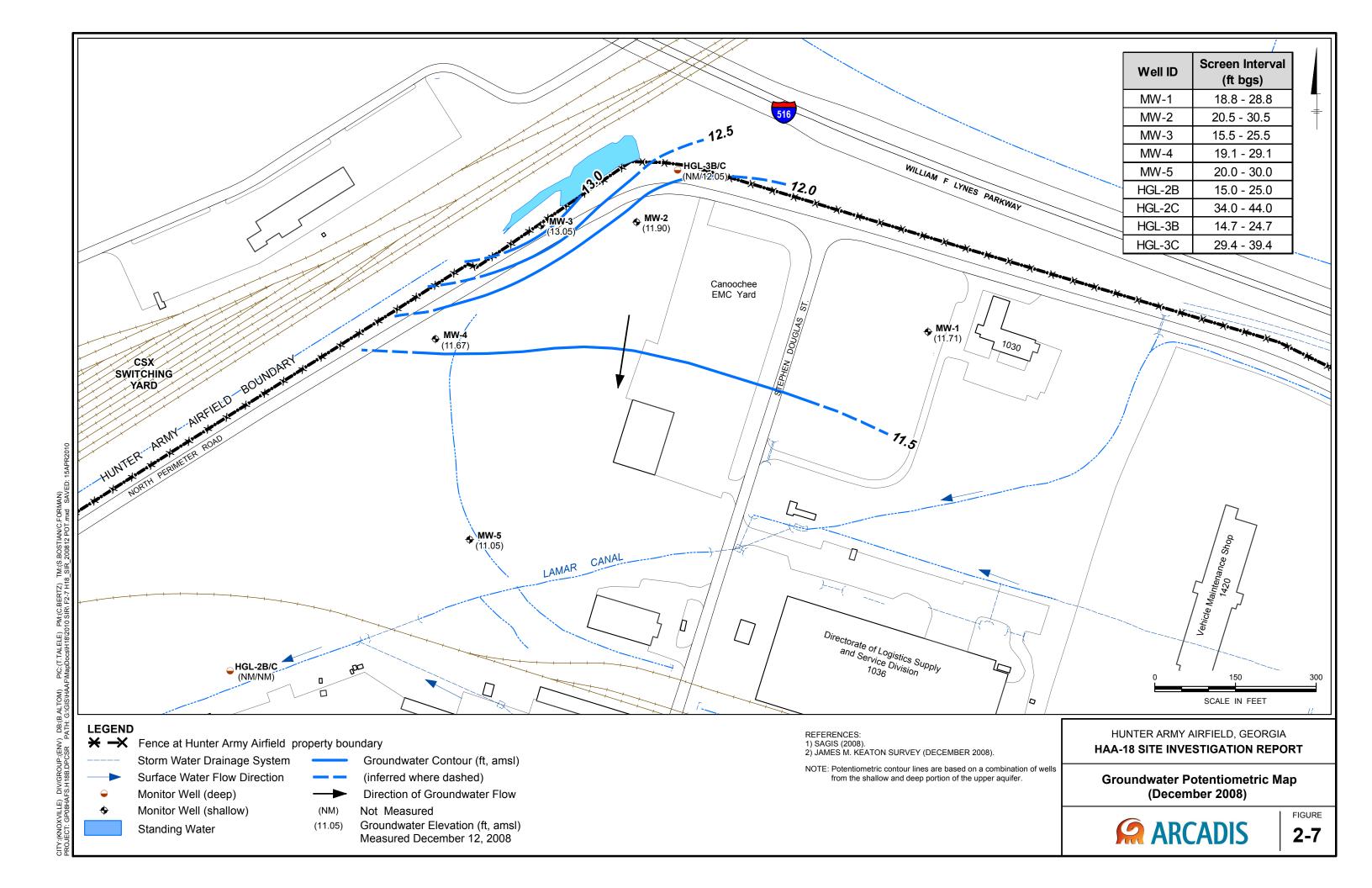

(a) HGL-2B/2C could not be located after February 2009 and apparently was destroyed during construction activities in late 2009.

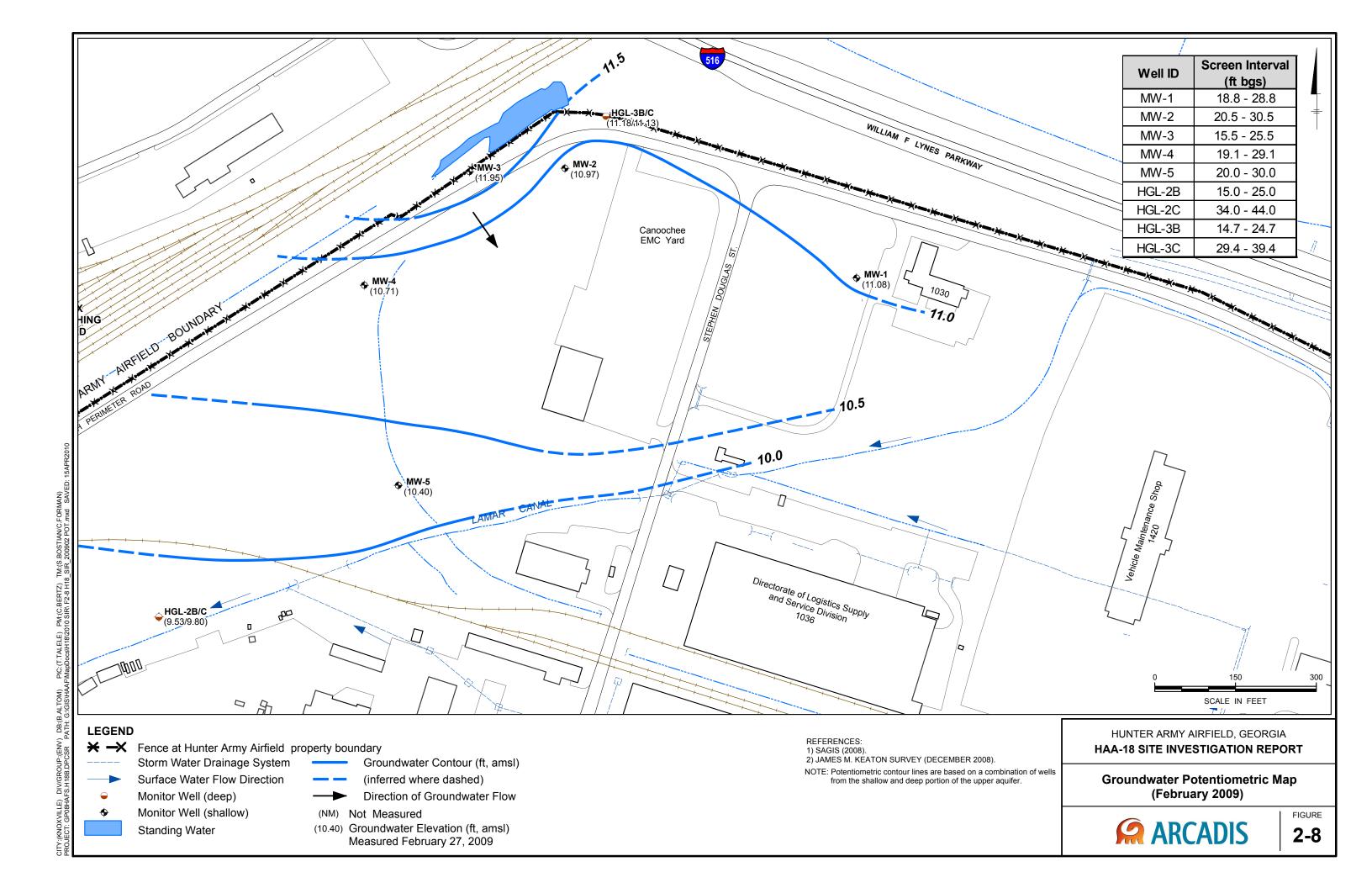

2) JAMES M. KEATON SURVEY (DECEMBER 2008). 3) BATEMAN CIVIL SURVEY (FEBRUARY 2010).

HAA-18 SITE INVESTIGATION REPORT


Site Layout with Sampling Locations

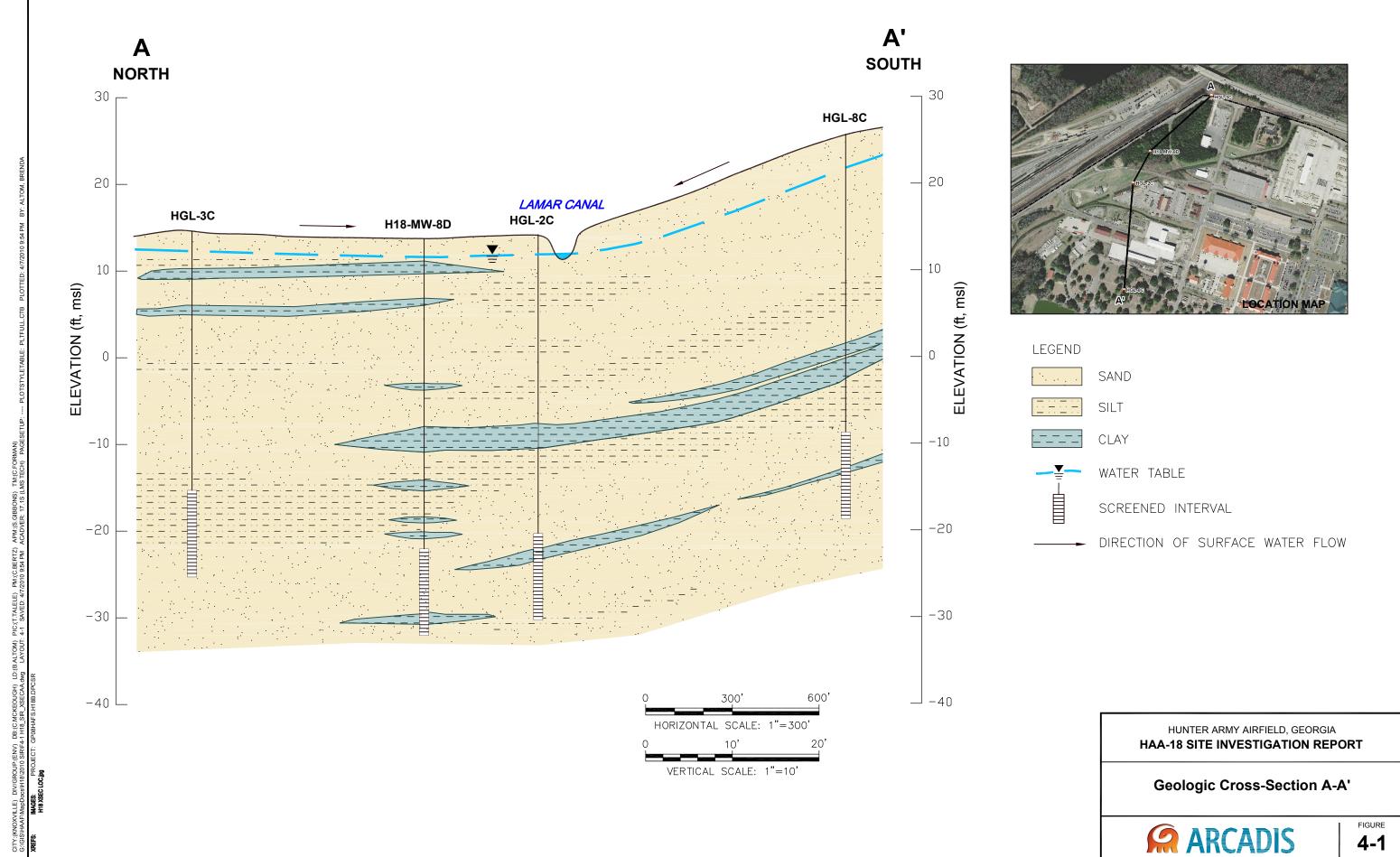






CITY:(KNOXVILLE) DIV/GROUP:(ENV) DB:(B.ALTOM) PIC:(T.TALELE

LEGEND


- **★** → Fence at Hunter Army Airfield property boundary
- Storm Water Drainage System
- Surface Water Flow Direction
- Former Fuel Transfer Line (6") Abandoned in Place
- Monitor Well (deep)
- Monitor Well (destoyed)
- Monitor Well (shallow)
- Piezometer

- REFERENCES: 1) SAGIS (2008). 2) JAMES M. KEATON SURVEY (DECEMBER 2008). 3) BATEMAN CIVIL SURVEY (FEBRUARY 2010).

HUNTER ARMY AIRFIELD, GEORGIA **HAA-18 SITE INVESTIGATION REPORT**

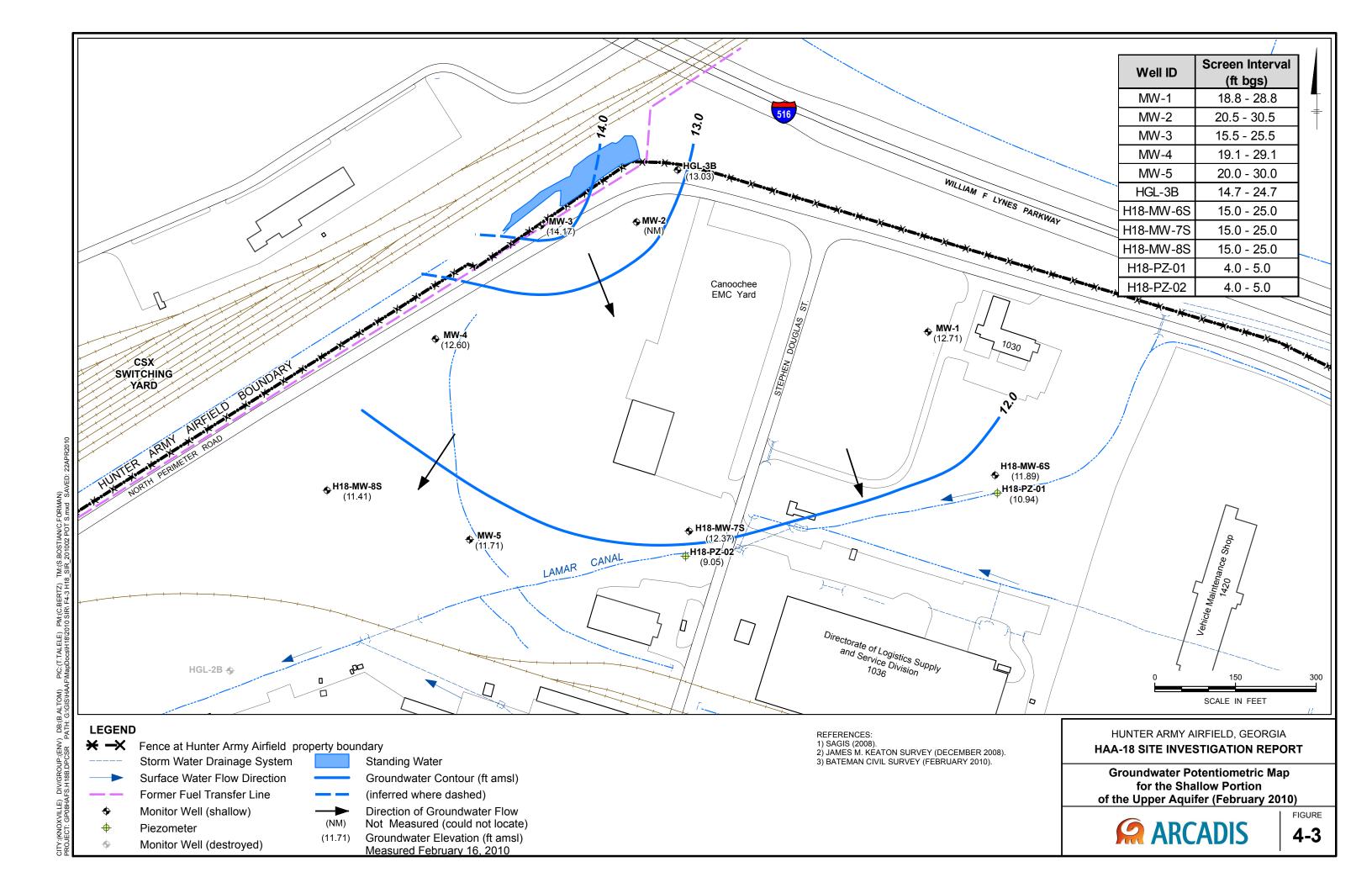
Site Layout with Monitor Well Locations

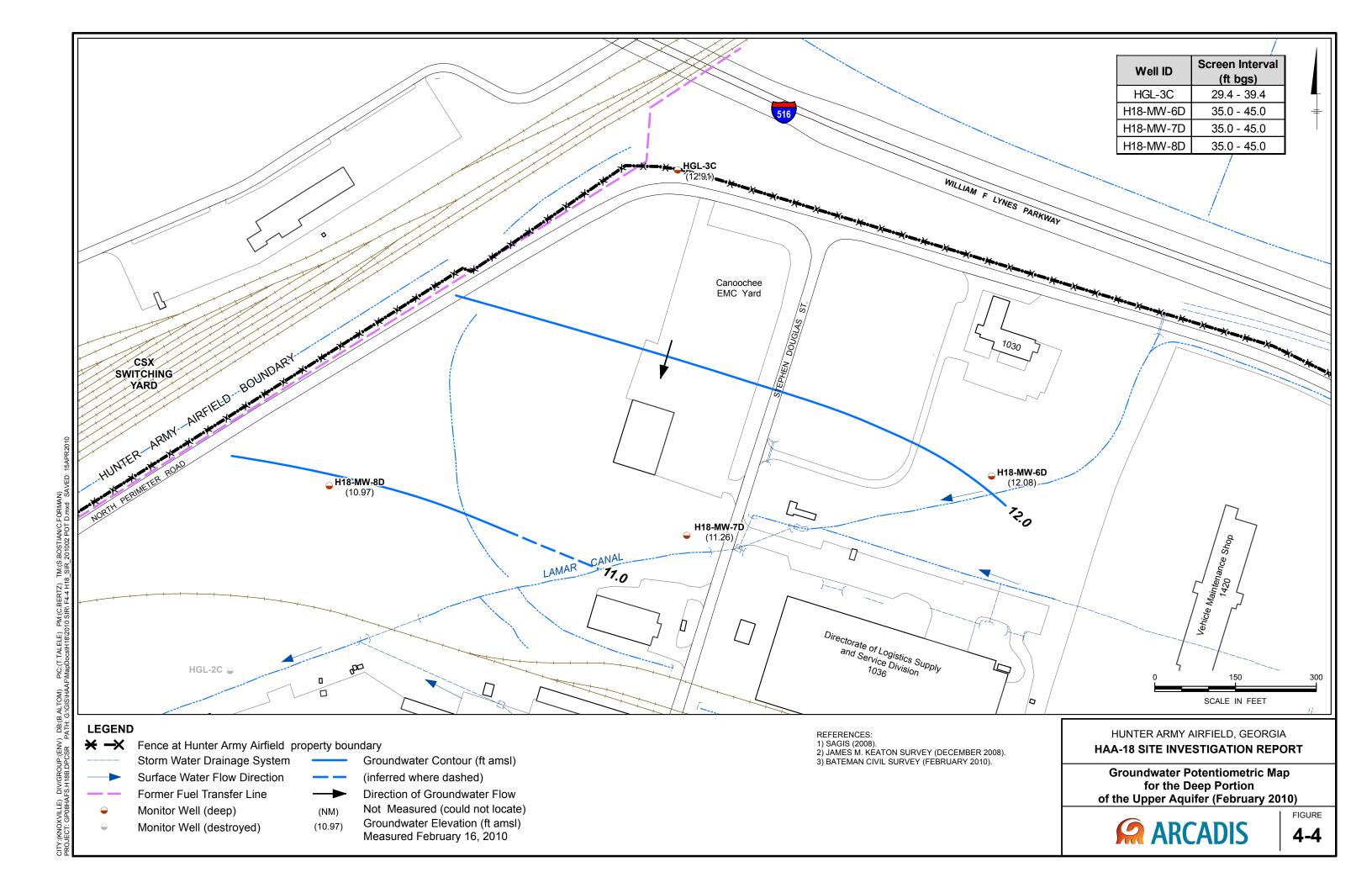
Fence at Hunter Army Airfield property boundary

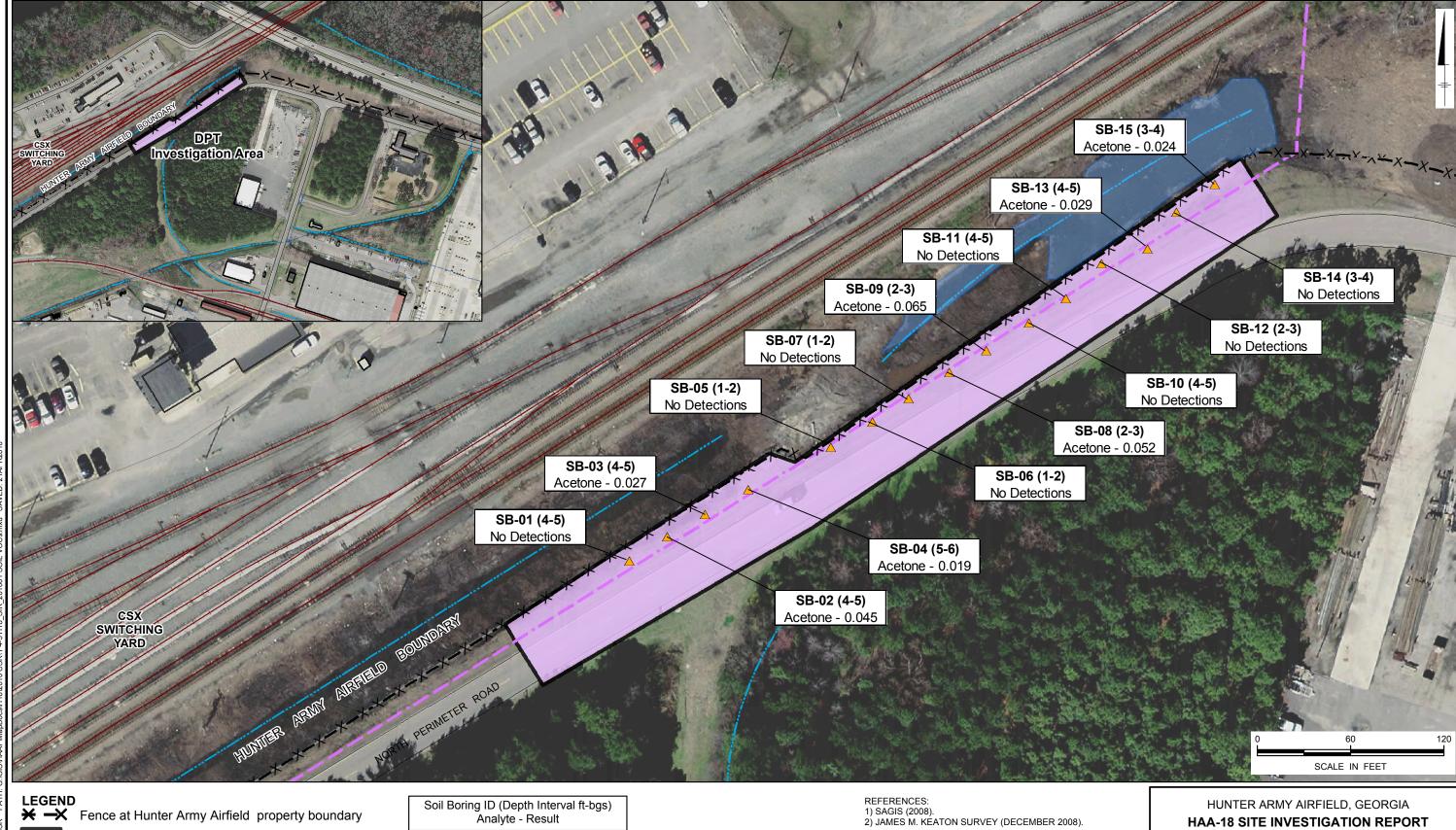
Storm Water Drainage System

Surface Water Flow Direction

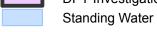
Former Fuel Transfer Line


Topographic Contour Line (ft, msl) General Surface Slope Direction


- Monitor Well (shallow)
- Monitor Well (deep)
 - Monitor Well (destoyed)
- Piezometer


HAA-18 SITE INVESTIGATION REPORT

Topographic Contours with Monitor-Well Locations



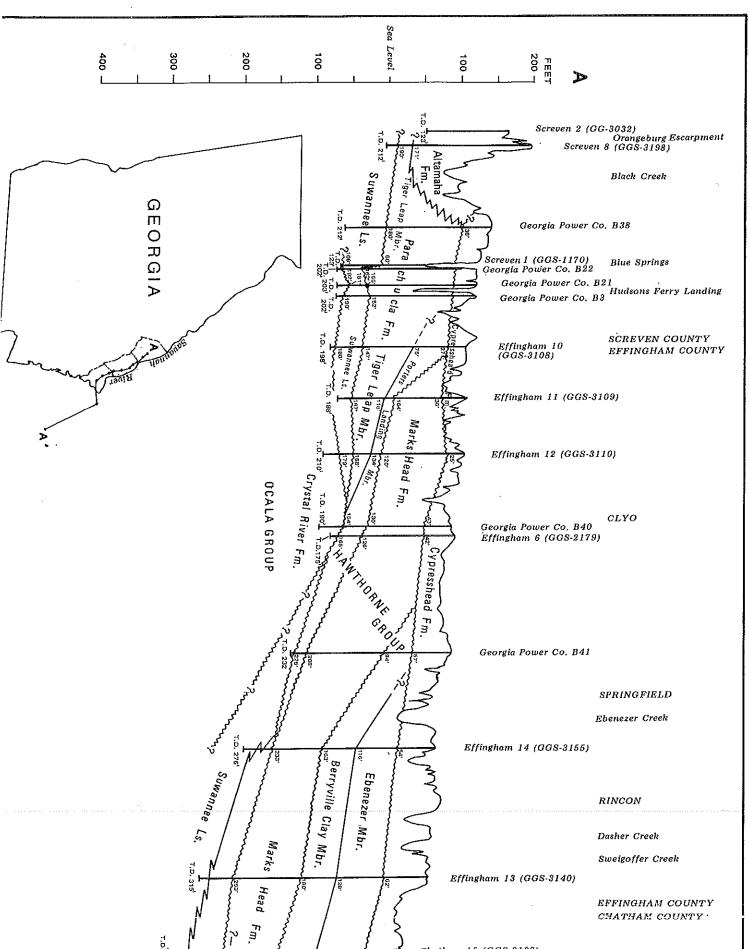
DPT Investigation Area

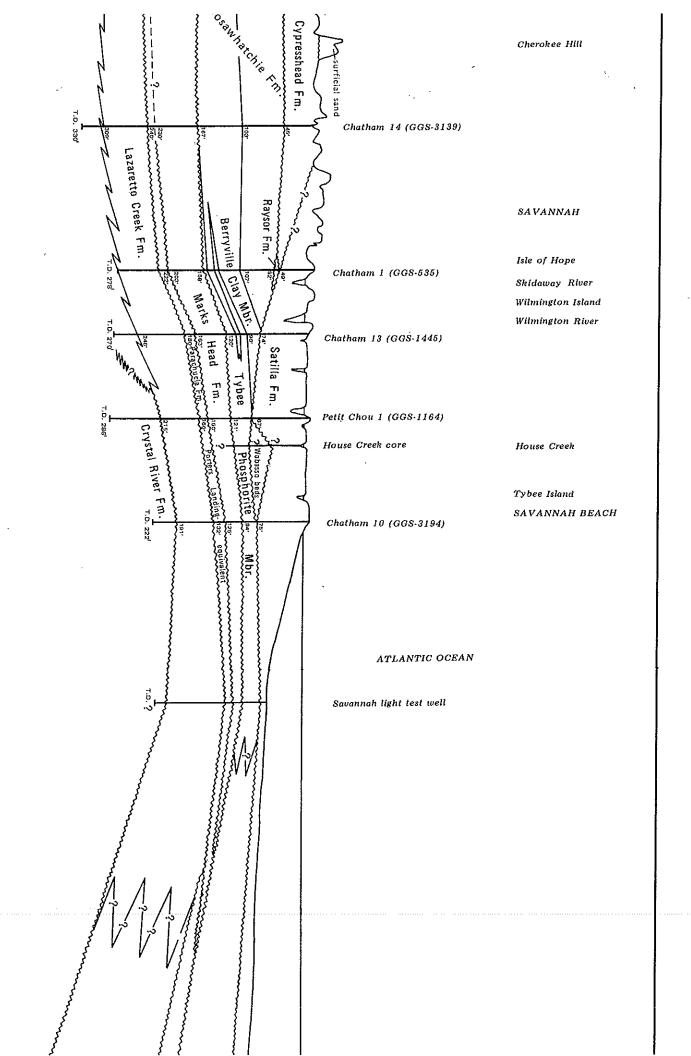
Storm Water Drainage System

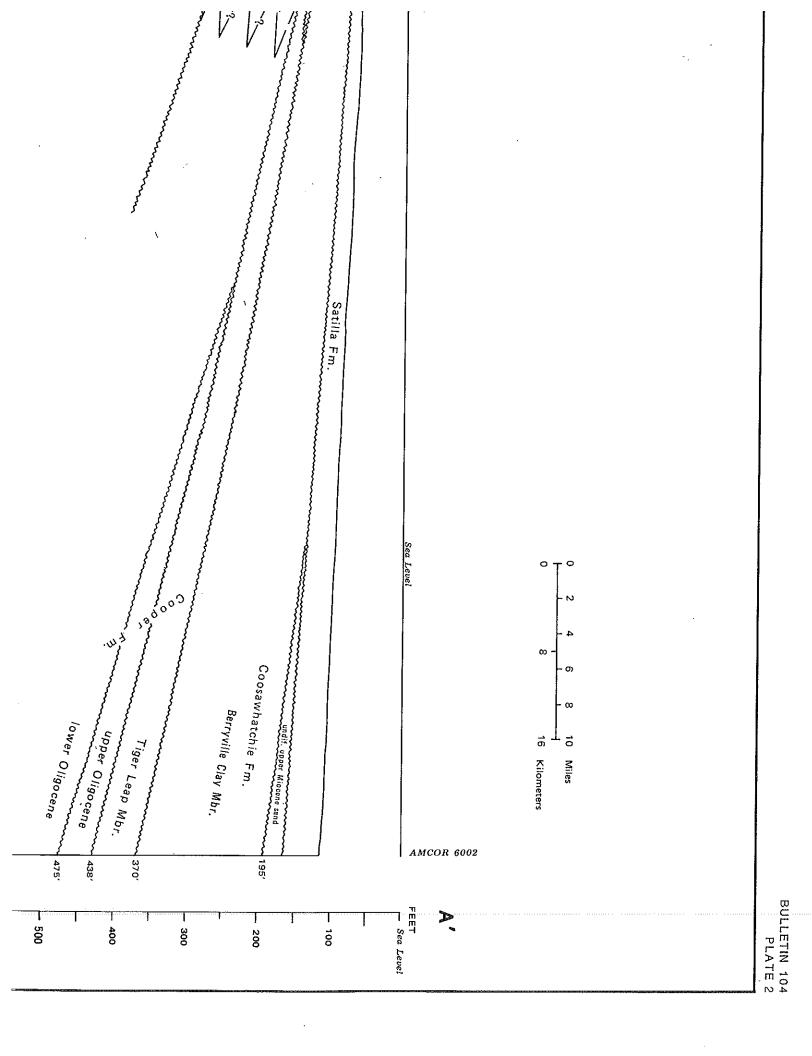
Surface Water Flow Direction

Former Fuel Transfer Line (6") Abandoned in Place Soil Boring (January 2010)

1) All samples collected in January 2010.


- All concentrations expressed in milligrams per kilogram (mg/kg).
 Acetone is a common laboratory contaminant.
 ft-bgs feet below ground surface


VOCs and SVOCs Detected in Soil Samples from 2010 Pipeline Investigation



Appendix A

Cross-Section A-A' from Huddleston, 1988

Appendix B

Monitor Well / Piezometer Installation Logs

Project: HAA-18 Page___1_ of___2__ Borehole and Well Construction Log Project No. GP08HAFS Site Location Savannah, GA MW-6D Well ID Contractor/Driller ARM Total Depth Drilled Date Begin 1/15/2010 Rig Type Mobile B-57/Geoprobe Sample Method/Size Macro Core Date End Cutting Disposal HSA (lithology by DPT) Drum Borehole Log 3low Count Depth (ft) Spl Run Ft. Rec. Well Construction Log Class Description 8" Time Begin: Dia. Time Begin: 1250 10 YR s/2 grayish brown silty well sorted fine sand 10 YR 4/1 dark gray sandy soft moderate plasticity clay Construction 2 Intervals (ft BGS) 10 YR 4/2 dark grayish brown sandy medium firm high plasticity clay 0'-35' Riser: 3 35'-45' 0'-30' Surf. Seal: 30'-33' 0.0 Filter Pack: 33'-45' 5 Backfill: N/A 6 Materials Riser: 2" sch. 40 PVC 2" sch. 40 Screen: 8 PVC 9 Surf. Seal: Portland/bentonite Bentonite Filter Pack: Sand Backfill: **Surface Completion** Protection: Pad: 2' x 2' concrete Date/Time: ARCADIS G&M Personel lithology: Josh Frizzell Field Work: Log Draft: Symbols 20 Grout Bentonite 21 Gravel 22 Backfill: Contact: Implied or Gradational Contact:

Project: HAA-15 Page___1_ of___1__ Borehole and Well Construction Log Project No. GP08HAFS Site Location Savannah, GA Well ID PZ-2 Contractor/Driller Total Depth Drilled Date Begin 1/27/2010 Rig Type Sample Method/Size Date End 1/27/2010 Cutting Disposal Water Jet Borehole Log 3low Count Depth (ft) Ft. Rec. Spl Run Well Construction Log Description Time Begin: End: Time Begin: PZ installed in bed of Lamar Canal, total riser length= 10 feet, PZ installed to approx. 5 feet below canal sediment with stickup above canal water Construction 2 Intervals (ft BGS) Riser: 3 Surf. Seal: Filter Pack: 5 Backfill: 6 Materials Riser: 3/4" Glav. Steel Stainless Screen: 8 Well Point 9 Filter Pack: Backfill: Surface Completion Protection: Threaded Cap Date/Time: ARCADIS G&M Personel Field Work: JDF Log Draft: Symbols Grout Bentonite 21 Gravel: 22 Backfill: Contact: Implied or Gradational -----Contact:

Project: Hunter AAF Page___1_ of__ Borehole and Well Construction Log Project No. GP08HAFS Site Location HAA-18 Well ID MW-6S Contractor/Driller ARM Total Depth Drilled Date Begin 1/18/2010 Rig Type Mobile B-57 Sample Method/Size Date End 1/18/2010 Cutting Disposal drum (65-gal) Hollow-Stem Anger Borehole Log 3low Count Depth (ft) Ft. Rec. Spl Run Well Construction Log Description Time Begin: End: Time Begin: See MW-6D log for lithology Construction 2 Intervals (ft BGS) 0'-15' Riser: 3 15'-25' Surf. Seal: 11'-13.2' Filter Pack: 13.2'-25' 5 Backfill: N/A 6 Materials Riser: 2" sch.40 PVC 2" sch. 40 8 PVC 0.01" slot 9 Surf. Seal: Portland/bentonite Bentonite Filter Pack: Sand Backfill: N/A **Surface Completion** Protection: Pad: 2' x 2' concrete Date/Time: ARCADIS G&M Personel Field Work: B. Wolf Log Draft: J. Frizzell Symbols 20 Grout Bentonite 21 Gravel: 22 Backfill: Contact: Implied or Gradational Contact:

Project: HAA-18 Page___1_ of__2_ Borehole and Well Construction Log Project No. GP08HAFS Site Location Savannah, GA MW-7D Well ID Contractor/Driller ARM Total Depth Drilled Date Begin 1/15/2010 Rig Type Mobile b-57 Sample Method/Size Macro Core Date End HAS (lithology by DPT) Cutting Disposal Drum Borehole Log 3low Count Depth (ft) Spl Run . Rec. Well Construction Log Class Description 8" Time Begin: Dia. Time Begin: 10 YR 4/2 dark grayish brown silty well sorted fine sand, roots Construction 10 YR 7/2 light gray silty well sorted fine sand 2 Intervals (ft BGS) 10 YR 3/1 very dark gray sandy medium firm high plasticity clay 0'-35' Riser: 3 35'-45' 0'-30' Surf. Seal: 30'-33' Filter Pack: 33'-45' 0.0 5 Backfill: N/A 6 Materials Riser: 2" sch. 40 PVC 2" sch. 40 0.0 Screen: 8 PVC 0.01" slot 9 Surf. Seal: Portland/bentonite 10 YR 7/2 gray clayeye well sorted fine sand, wood fragments Bentonite 10 YR 5/1 gray sandy soft clay, high plasticity, wood fragment Filter Pack: Sand 0.0 Backfill: N/A **Surface Completion** Protection: Pad: 2' x 2' concrete 0.0 Date/Time: ARCADIS G&M Personel lithology: Josh Frizzell 0.0 Field Work: Log Draft: Symbols 20 Grout 0.0 Bentonite 21 Gravel 22 Backfill: Contact: Implied or Gradational Contact: 10 YR 4/1 gray silty poorly sorted fine to coarse sand, ~2" thick 10 YR 4/1 gray sand soft clay les @ 25" 0.0

Project: HAA-18 Page___1_ of__1_ Borehole and Well Construction Log Project No. GP08HAFS Site Location Savannah, GA Well ID MW-7S Contractor/Driller ARM Total Depth Drilled Date Begin 1/15/2010 Rig Type Mobile b-57 Sample Method/Size Macro Core Date End Method HAS (lithology by DPT) Cutting Disposal Drum Borehole Log 3low Count Depth (ft) Ft. Rec. Spl Run Well Construction Log Class Description 8" Time Dia. Begin: End: Time Begin: Construction 2 Intervals (ft BGS) 0'-15' Riser: 3 15'-25' 0'-11' Surf. Seal: 11'-13' Filter Pack: 13'-25' 5 Backfill: N/A 6 Materials Riser: 2" sch. 40 PVC 2" sch. 40 Screen: 8 PVC 0.01" slot 9 Surf. Seal: Portland/bentonite Bentonite Filter Pack: Sand Backfill: N/A **Surface Completion** Protection: Pad: 2' x 2' concrete Date/Time: ARCADIS G&M Personel lithology: B. Wolf Field Work: Log Draft: Symbols 20 Grout Bentonite 21 Gravel: 22 Backfill: Contact: Implied or Gradational Contact:

Project: Hunter AAF (HAA-18) Page___1_ of__2_ Borehole and Well Construction Log Project No. GP08HAFS Site Location HAA-18 Well ID MW-8D Contractor/Driller ARM Total Depth Drilled Date Begin 1/15/2010 Rig Type Geoprobe, Mobil Drill (well installation) Sample Method/Size Date End 1/15/2010 DPT and HAS Cutting Disposal 58-gal drum Borehole Loa Slow Coun Depth (ft) Spl Run Rec. Well Construction Log Class Description 6.25" Time 0:00 Begin: Time Begin: 1135 1255 Tan/white, fine grained SAND, poorly graded, loose Construction 0.0 Black CLAY, stiff, very plastic 2 Intervals (ft BGS) 0'-35' 0.0 Riser: 3 35'-45' Surf. Seal: 0'-30' 30'-33' 33'-45' Filter Pack: 0.0 5 Backfill: N/A 6 Materials Tan/gray CLAY, mod stiff, very plastic 0.0 Riser: 2" sch. 40 Tan, fine grained SAND with clay (~25%), poorly graded 0.0 PVC Gray CLAY with fine sand (~15%), mod stiff, plastic becoming softer and sandier with depth, mois 0.0 2" sch. 40 Screen: 8 PVC, 0.01 slot Gray, fine grained SAND with silt and clay (~25%) poorly graded, loose, saturate 0.0 9 Surf. Seal: Portland/bentonite Bentonite 0.0 Filter Pack: Sand Gray, fine grained SAND with silty and clay (~25%) poorly grained, loose, saturade 0.0 Backfill: N/A **Surface Completion** steel manhole 2' x 2' 0.0 concrete 0.0 Date/Time: ARCADIS G&M Personel Field Work: B. Wolf Log Draft: 0.0 Gray fine to medium SAND with silty and clay (~15%), mod loose, poorly graded, wet (lost last 6" of core Symbols 20 Grout Bentonite Gray, sandy CLAY (~20% F sand), soft, plastic, saturated 0.0 21 Gray, F/M SAND with silty and clay (~10%) mod dense well graded, subangular to subrounded grains 0.0 Gravel 0.0

Gray F/M/C SAND, <20% silt and clay, med dense, well graded, subangular to subrounded grains, saturated

22

Backfill: Contact: Implied or Gradational Contact:

Project: Hunter AAF (HAA-18) Page___1_ of__1_ Borehole and Well Construction Log Project No. GP08HAFS Site Location HAA-18 MW-8S Well ID Contractor/Driller ARM Total Depth Drilled Date Begin 1/15/2010 Rig Type Geoprobe, Mobil Drill (well installation) Sample Method/Size Date End 1/15/2010 Cutting Disposal HSA 55-gal drum Borehole Log 3low Count Depth (ft) Ft. Rec. Spl Run Well Construction Log Description 6.25" Time 0:00 Dia. Begin: End: Time Begin: See MW-8D log for lithology Construction 2 Intervals (ft BGS) 0'-15' Riser: 3 15'-25' 0'-11' Surf. Seal: 11'-13' Filter Pack: 13'-25' 5 Backfill: N/A 6 Materials Riser: 2" sch. 40 PVC 2" sch. 40 Screen: 8 PVC, 0.01 slot 9 Surf. Seal: Portland/bentonite Bentonite Filter Pack: Sand Backfill: N/A **Surface Completion** steel manhole 2' x 2' concrete Date/Time: ARCADIS G&M Personel Field Work: B. Wolf Log Draft: Symbols 20 Grout Bentonite 21 Gravel 22 Backfill: Contact: Implied or Gradational Contact: Gray F/M/C SAND, <20% silt and clay, med dense, well graded, subangular to subrounded grains, saturated

Project: HAA-15 Page___1_ of__ Borehole and Well Construction Log Project No. GP08HAFS Site Location Savannah, GA Well ID PZ-1 Contractor/Driller Total Depth Drilled Date Begin 1/27/2010 Rig Type Sample Method/Size Date End Cutting Disposal Water Jet Borehole Log 3low Count Depth (ft) Ft. Rec. Spl Run Well Construction Log Description Time Begin: End: Time Begin: PZ installed bed of Lamar Canal, total riser length= 10 feet, PZ installed to approx, 5 feet below canal sediment with stickup above canal water Construction 2 Intervals (ft BGS) Riser: 3 Surf. Seal: Filter Pack: 5 Backfill: 6 Materials Riser: 3/4" Galv. Steel Stainless Screen: 8 Well Point 9 Filter Pack: Backfill: **Surface Completion** Threaded Cap Date/Time: ARCADIS G&M Personel Field Work: JDF Log Draft: Symbols 20 Grout Bentonite 21 Gravel: 22 Backfill: Contact: Implied or Gradational ----Contact:

Appendix C

Groundwater Sampling Sheets

ARCADIS -

Groundwater Sampling Form

Site Loca	ation:	Fort Stewart/HAAF HAA-18			Project No. GP08HAFS			well ID: <u>P-HGL-3C</u>				
Date:		1-25	-10		Sampled E	Ву:	Rvan	Kontas,	Acco	dis		
Sampling	Time:	179	15		Recorded	Ву:	Ryan	Konto				
Weather:	:	Breezy	Cless.	~ 65°	Duplicate/	QA/QC:	ms/m					
Instrume	ent Identif	ication					,					
Instrume	nt:			PID			Water Quality Meter(s)					
Serial #:		YSI	' <i>556</i>	R1040	oy Lamo-			4c 2020/ R8767				
Purging	Informatio	on										
Casing M	laterial:	P	VC		Pur	ge Method:(d	ircle one) Sub	mersible Cer	ntrifugal Bia	adder Baile	er (Peristaltic)	
Casing Diameter:				Scre	en Interval:	From:	29.4	To:	39.4			
Total Dep	oth:		9.4		Pun	np Intake Se	tting:		0450	ren -	v 251	
Depth to	Water:	1.10	2		Volu	ımes to be F	urged:	COW				
Water Co			3			al Volume Pu	-	~3,692				
Gallons/F	oot:	0.1			Pun	gr	On:	1615	Off:	17.15		
Gallons in	r Well:	6.1				•						
Field Parameter Measurements During Purging												
	Minutes	Rate	Volume	Depth to	Turbidity	pН	Conductivity	Temp	ORP	Diss.		
Time	Elapsed		(gpm of m) Purged Water		(NTUs)	(SI Units)	(µmhos/cm)	(CO)r °F)	(mV)	Oxygen	Comments	
1920	·	250ml	250ml	1.80	13/	5.3/	481			0.99		
1025		 		1.95	119	5.26	48/		-10.9	0.86		
1430	15			1.98	93.3	5.26	482	18.46	-115.8	0.70		
1435	25		—	1.99	99.3	5-26	485	18.70	8.7	0.5/		
1640			-	1.99	81.6	5.28	490	18-71	- 27.2	0.45		
1645	30		 	1,99	72.1	5.29	495	18.72	72.1	0.50		
1650	35			1.99	58.3	5.30	498	18.72	-156	0.47		
1700	45			1.99	36.6	5.31	500	18.73	-218	0.40		
1705	50			1.99	29.2	5.33	503	18.73	-312	0.46		
1710	55			1.99	19.60	5.35	507	18.79	-34 <u>/</u> -333	0.39		
1715) (G	1/			17.1 15.5	5.38	510 512	18.74	-345°			
				/. "/ / 	15.5	<u>ه ر</u>	310	10-77	J 75	0.50		
Observati	one Durir	o Samnli	20		· · · · · · · · · · · · · · · · · · ·							
Well Cond		(2000	-		Purc	je Water Dis	nosal·	Dealin				
Color:		6/10			-	idity(qualitat	•	210	117/15			
Odor: Slight						er (OVA, HN		<u> </u>				
	-	- 7						1				
_	450	- 0 1	. 7				Container De	escription				
C	onstituent	s Sampled	1	From Lab	ARCADIS			Preservative				
820	00 BT	Ex		9x 400	1 44	- C	12	HCC-				
8270 SVOC 6 X 18						A				····		
	<u> </u>			<u>~ ^ </u>				1		-		
							··					

Boring/Casing Volumes 2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Loca	tion:	Fort	Fort Stewart/HAAF HAA-18			Project No.		GP08HAFS Well ID:			P-MW	- /	
Date:				-10	<u></u>	Sampled E		Ryan	ontos/				
Sampling	Time:		905		····	Recorded	By:		Kontos				
Weather:					n ~60°	Duplicate/0	QAVQC:	N/A					
1	at Idonéisi	,			·								
Instrumer	nt Identifi	Cation	1		PID				Water Quality Meter(s)				
instrume	ιι.				FID				vvales Quality Meter(s)				
Serial #:		75	/ 3	56/	P10404			Lamotte 2020/R8767					
Purging !	nformatio	n											
Casing M			Ĩ	PVC		Pur	ge Method:(circle one) Sub	mersible Ce	ntrifugal Bl	adder Baile	er Peristaltic	
Purging Information Casing Material: Casing Diameter:					- een Interval:		18.8		28.8				
Total Dep		28.8			Pun	np Intake Se	etting:	Middle	of 50	ren ~	24		
Depth to \		0.70				Volu	imes to be I	Purged:	Low				
Water Co		28.1				Tota	al Volume P	urged:	~ 2.1 gal				
Gallons/F	oot:		0.	16		Pun	ηp	On:	0820		0855	-	
Gallons in	Well:		4.	99							-		
Field Par	ameter Mo	easur	eme	nts Dur	ng Purging								
	Minutes	Rat		Volume		Turbidity	рН	Conductivity	Temp	ORP	Diss.		
Time	Elapsed	(gpm c	~		Water	(NTUs)	(SI Units)	(µmhos/cm)	((°C)or °F)	(mV)	Oxygen	Comments	
0825	5	250	لع	0.390		20.2	5 79	162	17.74	686	0.86		
0830	10	1	_		0.84	9.69	6.04	164	17.92	-54/	0.70		
0835	15				0.84	5.24	6.07	164	17.97	-55-/	0.48	,	
0840	20				0.84	6.69	6.10	105	18.08	-560	0.44		
0845	25				0.84	7.01	6.13	165	18.12	-572	0.41		
0850	30		, -	1,	0.84	4.20	6.16	164	18.21	·578	0.37		
0855	3 <i>5</i>	- 4		<u> </u>	0.84	4.02	6.17	162	18.30	-586	0.33		
			ᅴ	-								1 <u>.</u>	
									<u> </u>	ļ	 		
				· · · · · · · · · · · · · · · · · · ·								-	
				·					<u> </u>				
Observati	ons Durir	on Sar	mnli	na									
Well Cond			00.			Puro	je Water Di	sposal:	Drux	7			
Color:	•		100				, pidity(qualita		410	NTOS			
Odor:			vo	NE		Othe	er (OVA, HN	IU,etc.):	~/	A			
C	onstituent	s Sam	nled	ł	From Lab		ARCADIS	Container D	escription 	Pres	ervative		
C	onoutuent	o veili	ipie0		Tivilicab		MINOMOIO			1 : 03			
VOC' 8240B 3x40					16			1766					
3 VUC' 8270 2 x /					1 AG				-				
- 10	- 400.7.5				- ^ '								
			·							***			

Boring/Casing Volumes

2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Location: Date: Sampling Time: Weather: Instrument Identi Instrument: Serial #:	1-2 0 Misty	vart/HAAF 22-10 940 Rwin	PID PID	Project No Sampled B Recorded I Duplicate/0	iy: By:	GPOSHAFS Erica Erica DUP-H YSISS R8740	Mad Mac AA-18 Water	Quality M	eter(s)	202de
Purging Informaticasing Material: Casing Diameter: Total Depth: Depth to Water: Water Column: Gallons/Foot: Gallons in Well:		PVC 2" 25.5 0.4 25.1 0.16 4.02		Scre Pum Volt	een Interval: np Intake Se umes to be f at Volume Pi	etting: Purged:	15.5 MID S	To: <u>creen</u> Flow		5. S 9. S
Field Parameter Minutes Time Elapsed 0 850 5 0855 10 0 900 15 0 905 20 0 910 25 0 910 25 0 910 35 0 925 40 0 930 45	Rate	Volume	Depth to Water 0.40 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38	Turbidity (NTUs) 35.2 24.9 10.56 6.91 5.62 4.89 4.69 4.50 4.22	5.94 5.94 5.94 5.94 5.94 5.94	Conductivity (µmhos/cm) 436 433 424 427 427 429 429 430 432	Temp (°C or °F) 15.02 15.38 16.06 15.94 16.14 16.22 16.25 16.27	ORP (mV) 91.1 68.0 58.2 49.0 42.9 40.7 40.7 40.2 39.9	Diss. Oxygen 4.99 5.01 124 0.80 0.51 0.50 0.47 0.44	Comments
				Turb	ARCADIS	tive): (U,etc.): Container D	1+0	Pres	m ticl servative	<u> </u>

Boring/Casing Volumes 2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Loca	1-22-10 bling Time: 1025				Project No	,	GP08HAFS		Well ID:	4MW	-4	
Date:					Sampled B		Ryan	Kontos			-	
Sampling	Time:	1-22-10			Recorded I	Ву:	Ryan	Koutos				
Weather:		1025 Fosoy ~ 60°			Duplicate/0	QA/QC:	NA					
Instruma	nt Identifi		 _				_ ,					
Instrumer		Gation		PID	<u></u>		<u> </u>	Water	Quality Me	eter(s)		
litoti witte.				1 100-								
Serial #:		Y515	.56 R	210404			Lamoi	He 2016	28	767		
Purging I	Informatio	on									<i>></i>	
Casing M		_ PV	'C		Purç	ge Method:(c	circle one) Sub	mersible Cer	ntrifugal Bla	ıdder Baile	r Peristallic	
Casing Di	ameter:	2"			Scre	een Interval:	From:	19.1		Z9./		
Total Dep	th:	2	9./		Pun	np Intake Se	tting:	Mida	le of	Screen	~ 24.1	
Depth to \	Nater:	2.	52		Volu	ımes to be F	urged:	low	Flow			
Water Co	lumn:	20	.58		Tota	al Volume Pu	urged:	3.0gal				
Gallons/F	oot:				Pun	ıρ	On:	0925	Off:	1015	·.	
Gallons in	: Well:	4.	25									
Field Para	ameter M	easureme	ents Durin	a Purging								
	Minutes			Depth to	Turbidity	Hq	Conductivity	Temp	ORP	Diss.		
Time	Elapsed		Purged	Water	(NTUs)	(SI Units)	(µmhos/cm)	(®Oor °F)	(mV)	Oxygen	Comments	
0930	5	250~1	0.3001	2.69	25-8	5.92	53/ 17.33 -462 0.72					
0935	10	<u> </u>		2.69	27.3	5.92	5 Z5	17.58	-476	0.91		
0940		-	1		18.8	5793	527	17.70	-491	0.56		
0945	75 2.69 20 2.69				14.6	5.94	530	17.91	517	0.37 0.39	· · · · · · · · · · · · · · · · · · ·	
0950	25	 	 		10.17	5.93	532					
0955	30 35	 			9.02	5.94	534	18.13	-549	0.52		
1000	40		 		8.83	5,94	540	18.13	-500			
1005	45		 		8.54	5.93	541	18.14	-565			
1010	50	, /			9.01	5.94	543	18.15	-569	0.41		
7073			-	6.00				20.				
										,		
Obconvati	one Duris	— ca Samnli	ina		_							
		_	7		Pirr	ge Water Dis	enosal:	Tru	t 1			
Color:						oidity(qualita		C10 M	17123			
Color: Clear Odor: Slight					er (OVA, HN		11/1/					
Odor: Signt												
						Container D	Container Description					
Constituents Sampled From Lab				ARCADIS		Preservative						
mac black				<u> </u>	<u></u>		HCL					
X 6	8260 BOC3 3x4					***********		NON				
82.	\$260 BOC3 3x5			-6 X /	L AC	<u></u>		NON	<u> </u>			

Boring/Casing Volumes 2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Location: Date: Sampling Time: Weather: Instrument Identific	Fort Stewart/HAAF 1-72-10 0980 Foggy ~ 66 cation		Project No Sampled E Recorded Duplicate/0	By:	GP08HAFS Ryan Ryan N/H	Kontos, Kontos	Well ID: Acco. Quality M		W-S
Serial #:	451556/.	10400			Lound	te 2021	V 88	0/07	
Purging Informatio Casing Material: Casing Diameter: Total Depth: Depth to Water: Water Column: Gallons/Foot: Gallons in Well:	n PUC Z" 30 2-49 7.7.51 0.16 4,4		Purge Method:(circle one) Submersible Centrifugal Bladder Bailer (e. Screen Interval: From: ZO To: 30 Pump Intake Setting: Middle of Surren ~ 25 Volumes to be Purged: Low Flow Total Volume Purged: ~ 2,7gal Pump On: 0805 Off: 0850						r (Peristaltic)
Field Parameter Me Time Elapsed ()810 5 ()815 10 ()825 20 ()830 25 ()835 30 ()840 35 ()845 40 ()850 45	Rate Volume (gpm or/mi) Purged 2501 0:3991	Depth to Water 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	Turbidity (NTUs) 44.0 121 75.4 18.1 21.1 11.0 9.57 8.91 9.03	pH (SI Units) 5-89 5-79 5-77 5-74 5-73 5-72 5-72 5-72	Conductivity (µmhos/cm) / 42 / 43 / 43 / 43 / 44 / 43 / 44 / 43 / 44 / 44	Temp (Chr °F) 16.05 16.74 16.94 17.21 17.43 17.48 17.52 17.56 17.58	-592	Diss. Oxygen 2.16 1.34 1.02 0.88 0.97 0.90 0.87 0.85 0.80	Comments
Color: Odor: Constituents	(2 000 Clear NOME Sampled	Turb	ARCADIS	tive):	Но		ervative		

Boring/Casing Volumes

2" = 0.16 4" = 0.65

Low Flow GW Sample.xls - 12/7/2009

Groundwater Sampling Form

Site Loca Date: Sampling Weather: Instrumer Instrumer Serial #:	g Time: : ent Identifi	1-26 0 Clear fication	1e-10 1945 - Cool	~ 45° PID	Sampled B Recorded I Duplicate/0	Ву: Ву:	ny)	Konros, Kantos 1/4	Quality Me	eter(s)	V- O
Casing M Casing Di Total Dep Depth to V Water Coi Gallons/Fo	turging Information tasing Material: tasing Diameter: total Depth: tepth to Water: Vater Column: tallons/Foot: tallons in Well: Time Minutes Rate Volume Depth to Elapsed (gpm or ml) Purged Water P				Sore Pum Volu Tota	Purge Method:(circle one) Submersible Centrifugal Bladder Baile Screen Interval: From: 15 To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: From: 15 To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal Bladder Baile Screen Interval: To: 25 Pump Intake Setting: M. ddle of Succentrifugal					
	Minutes	es Rate Volume Depth to			Turbidity (NTUs) 12.66 6.91 3.66 3.01 2.73 2.63 2.51 2.25	pH (SI Units) 5-88 5-80 5-75 5-72 5-69 5-69 5-69 5-67	Conductivity (µmhos/cm) 102 100 100 99 99 98 98	Temp (**Qor *F) 15.31 16.44 17.18 17.43 17.58 17.66 17.70	-682 -685 -687 -490	Diss. Oxygen 1.69 0.84 0.95 0.90 0.32 0.30 0.27 0.79	Comments
				From Lab	Turb Othe	ARCADIS	tive): IU,etc.): Container De	- n	NTU' //B Pres	servative	
8260 BTEX 3 40 8270 PAU 2 1											

Boring/Casing Volumes

2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Location Date: Sampling Townstrument: Instrument: Instrument: Serial #:	ime: t Identifi	1-26 1115 Cleas cation	- ~ 4.	-	Project No. Sampled B Recorded I Duplicate/0	iy: By:	GPO8HAFS Ryan k Ry N/H Lamo	. "741	Acza		/-GD
Purging In Casing Mat Casing Diar Total Depth Depth to W Water Colu Gallons/Foo Gallons in W	erial: meter: :: ater: mn: ot:	- F - Z - 7 - 0. - 90 - 0.	15:0 37 4.63 16		Scre Pum Volu	een Interval: np Intake Se imes to be F al Volume Pu	tting: ourged:	35	To: pf 50 Plaw	45	.40'
Time 10 10 10 15 10 20 10 25 10 30 10 35 10 40 10 45 10 50 10 55 11 00 3	0 5 250m1 0.30m1 0.48 5 10 0 0.49 6 15 0.49 5 20 0.49 5 30 0.49 5 30 0.49 6 45 0.49 6 50 0.49 6 50 0.49 7 55 00 0.49 7 55 00 0.49 7 55 00 0.49 7 55 00 0.49				Turbidity pH Conductivity Temp ORP Diss (NTUs) (SI Units) (µmhos/cm) (${}^{\circ}$ Cor ${}^{\circ}$ F) (mV) 0xyg 50.1						Comments
Observation Well Conditi Color: Odor: Con	nstituent	Sample Social Clear Non s Sample TEX	/ Ne	い From Lab 3x 40 フェ	Turk Othe	ge Water Dis pidity(qualita er (OVA, HN ARCADIS (CO)	tive); (U,etc.): Container De	escription	m NTU ^S 9 Presi	ervative	

Boring/Casing Volumes 2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Loca	tion:	Fort Stev	vart/HAAF	HAA-18	Project No		GP08HAFS		Well ID:	PMW	-7			
Date:		1-26	-10		Sampled E	By:	Ryan	Contos/	Accad.	3				
Sampling	Time:		715		Recorded	Ву:		Kari tos						
Weather:		Clear	Breezy	~60°	Duplicate/0	QA/QC:	NA							
Instrume	nt identifi	ication	-				•							
Instrumer				PID				Water	Quality Me	eter(s)				
Serial #:		Y.S.1	556/	, R10404	/		Lamo to	te 2020	1887	67				
Purging I	nformatio	on												
Casing M	aterial:	_P	10		Pur	ge Method:(d	circle one) Sub	mersible Cei	ntrifugal Blo	adder Baile	r Reristaltic			
Casing Di	ameter:		ç i		Scre	een Interval:	From:	_/4	•	<u> 24</u>				
Total Dep	th:		24		Pun	np Intake Se	tting:	Middle	of sco	een a	19'			
Depth to \	Nater:		1.41		Volu	ımes to be F		LOW F						
Water Co	lumn:		259		Tota	al Volume Pu	urged: ~	3.39al						
Gallons/F	oot:		16		Pun	ηp	On:	1610	Off:	170	5			
Gallons in	Well:	3	.6											
Field Para	ameter Mo	easureme	nts Durin	g Purging										
	Minutes	Rate	Volume	Depth to	Turbidity	рH	Conductivity	Temp	ORP	Diss.				
Time	Elapsed	(gpm com)		Water	(NTUs)	(SI Units)	(µmhos/cm)	(C) 17	(mV)	Oxygen	Comments			
1620	10	25041	0.300	1.46	31.2	6.03 5.79	190	19.22	-643	1.69				
1625	15	}	- 		25.8	5.68	189	19.40	-693	0.60				
1630	20		1.46			5.62	193	19-11	-666	0.47				
1635	25			1.46	19.9	5.60	194	19.45 -	681	0.35				
1640	30		1	1.46	15.5	5.58	195	19.49	-709	0.29				
1645	35			1.46	12.60	5.55	199	19.55	-688	0.31				
1450	40			1.46	10.69	5,5-4	194	19.64	-678	0.45				
1655	45			1.46	8.34	5-,52	193	19.69	-669	0.39				
1700	50			1.46	8.88	5.51	193	19.71	-675	0,33				
1705	55.	₩	Ψ	1.40	9.27	5.50	193	19.75	-683	0.90				
	3													
				<u> </u>										
Observations During Sampling														
Well Condition: OK/Fort Print on PAD Purge Water Disposal: Drum														
Color: Clear 1						oidity(qualita	tive):	6101	UTUS					
Odor: Slight					Othe	er (OVA, HN	U,etc.):	NA		<u> </u>				
						Container D	escription							
Constituents Sampled From Lab				ARCADIS			Pres	ervative						
8240 BTEX 3× 40			ul Ca	 9		14	W							
82	8270 PAHS 2× 10				AG									
8270 VAH- CX								CIONTUS						

Boring/Casing Volumes

 $2^{\circ} = 0.16$ $4^{\circ} = 0.65$

Groundwater Sampling Form

Site Loca	tion:	Fort Stev	wart/HAAF	HAA-18	Project No	١.	GP08HAFS		Well ID:	PMW-	70_
Date:		1-26.	10		Sampled B	Ву:	Rvan K	onto!	Arcade	3	
Sampling	Time: 🥻	Kt45	1545		Recorded	Ву:	Ryan K			•	
Weather:		Chear	Breezy	~60°	Duplicate/0	QA/QC:	NA				
Instrume	nt Identif	ication					•				
Instrumer	nt:			PID				Water	Quality M	eter(s)	
Serial #:		1515	56/ X	210404			Lamoti	k 2020	1 R87	67	
Purging !	Informatio	on									
Casing Ma	aterial:	P	VC		Pur	ge Method:(circle one) Sub	mersible Cer	ntrifugal Bl	adder Baile	er Peristaltic
Casing Di	ameter:	Z			Scre	een Interval:	From:	35		45	
Total Dep	th:	4	5.0		Pun	np Intake Se	tting:	Middl	e of s	Creen	~40
Depth to V	Nater:		2.15		Volu	imes to be F	ourged:	Low			
Water Col	lumn:	a	42.85	<u></u>	Total Volume Purged:						
Gallons/Fo	oot:		16		Pun	ηp	On:	1455	Off:	153	5
Gallons in	eld Parameter Measurements During Purgin										
Field Para	ameter M	easureme	nts Durin	g Purging							
	Minutes	Rate	Volume	Depth to	Turbidity	Hq	Conductivity	Temp	ORP	Diss.	
Time	Time Elapsed (gpm or ml) Purged Water				(NTUs)	(SI Units)	(µmhos/cm)	(°C of °F)	(mV)	Oxygen	Comments
1500	00 5 250ml 0.3gal 2.19				13.6	6.91	212	20.43	330	1.23	
1505	105 10 1 7 2.19				7.14	6.87	209	20.29	43	0-71	
15/0	15			2.19	6.60	4.88	209	20.37	-37 <u>3</u>	0.600	
1515 1520	20 25			Z.19 Z.19	5.83	6.86	210	20.43 20.47	-264 -294	0.55	
1575	30			2-19							
1530	35			2-19	5.11 6.85 711 70.51 -303 0.41 4.88 6.23 711 70.49 - 791 0.36						
15.35	40		1/	2-19	4.02	6.82	210	20.50	- 288	0.33	-
	- <u> </u>			011		9.02	- ۱۷	2000		0/00	
					<u></u>						
									-	 	
Observation		ig Sampli <i>Good</i>		'eW	Purç	je Water Dis	sposal:	Drum			
Well Condition: <u>Good/New</u> Color: Clesc					_	, idity(qualita		<10 i	UTUS		
Odor: NoNE					Othe	er (OVA, HN	U,etc.):	~//			
							Container De	escription			7
Constituents Sampled From Lab				ARCADIS			Pres	ervative			
	8210	0 B76	EX	3×40	m/	6		HCC			
				Z×1		12					
82.70 PAHS					-						

Boring/Casing Volumes 2" = 0.16 4" = 0.65

Groundwater Sampling Form

Casing Diameter: 2" Screen Interval: From: 5 To: Z5	Site Location: Date: Sampling Time: Weather: Instrument Identifi	Fort Stewart/HA 1-26-10 1420 Clear Breeze		Project No. Sampled B Recorded i Duplicate/0	By: By:	GPOSHAFS Ryan k Ryan N/A	Kon 103	Arca			
Purging Information Casing Material: PV C	Sarial #	1/2-					702	2/2			
Casing Material: PVC	Ochar W.	151 566/	X10404		·····	Camoti	e con	1 R87	61		
Minutes Rate Volume Depth to Turbidity pH Conductivity Temp ORP Diss.	Casing Material: Casing Diameter: Total Depth: Depth to Water: Water Column: Gallons/Foot: Gallons in Well:	casing Material: Casing Diameter: Cotal Depth: Cotal Dept				Screen Interval: From: 15 To: 25 Pump Intake Setting: Middle of Screen **: Volumes to be Purged: Low From Total Volume Purged: ~2.1ga					
Time Elapsed (gpm orm) Pygeg (pm orm) Water (NTUs) (SI Units) (µmhos/cm) @O or $^{\circ}$ F) (mV) Oxygen Comments 1340 5 250 m) 1.04 24.6 6.37 728 19.00 -140 1.54 1345 10 6.3gal 1.06 10.08 6.30 736 19.03 -148 0.72 1350 15 1.06 9.11 6.29 731 18.81 -149 0.55 1355 20 1.06 7.51 6.29 728 18.87 -148 0.49 1400 25 1.06 5.27 6.28 725 18.91 -146 0.40 1405 30 1.06 6.39 6.28 721 18.95 -141 0.38 1410 35 1.06 7.27 6.27 719 18.99 -149 0.35	, and the second se	***************************************		T (17.15)		A de la consta	I =	000	Disa		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1)			,	•				Comments	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			er i								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					6.30						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1350 15	1			6.29						
1405 30 1.06 6.39 6.28 721 18.95 -141 0.38 1410 35 \ \ \ \ \ 1.00 7.27 6.27 719 18.99 -144 0.35	1355 20		1.00	7.51	6.29	728	18,87	-148	0.44	·	
1410 35 1 1 1.00 7.27 6.27 719 18.99 -144 0.35	1400 25		1.06	5.22	6.28						
	1405 30		1.06	6.39		721	18.95				
		VV	1.00	7.27	6.27	719	18.99	-149	0.35		
									3		
		,									
						***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Color: Cleat Turbidity(qualitative): 40 NTU3		Good In F.	lood Arca	Turb	idity(qualita	tive):		VTU'S			
Container Description Constituents Sampled From Lab ARCADIS Preservative	Constituents Sampled From Lab					Container De	escription	Preservative			
8260 BTEX 3x40m/ CG HCC	7260 E	Tale Peter 2 1/2					1.1	77			
8260 BTEX 3x40x1 C6 HCC 8270 PAHS ZXIC AG							- 61	<u>レレ</u>		l	

Boring/Casing Volumes 2" = 0.16 4" = 0.65

Groundwater Sampling Form

Site Loca Date: Sampling Weather: Instrume Instrumer Serial #:	Time: ent Identif	1- Z(1315 Clear ication	6-10 5 8mez	HAA-15	Sampled E Recorded Duplicate/0	By: By:	_'N/K	GPOSHAFS Well ID: PMW-8D Ryan Kontos/ Arcadis Ryan Kontos Water Quality Meter(s) Lamotte 2020/ 88767				
Purging Casing M Casing D Total Dep Depth to Water Co Gallons/F Gallons in	iameter: oth: Water: fumn: oot:	on	15.0 15.0 13.69 16		Purq Scre Pun Volu	een Interval: np Intake Se umes to be F al Volume Pu	circle one) Sub From: etting: Purged:		ntrifugal Bl To: OFSCI FIOW	adder Baile		
Time 1230 1235 1240 1245 1250 1255 1300 1305	ameter Minutes Elapsed 5 10 15 20 25 30 35 40	easureme Rate (gpm or fi) ZSOm i		g Purging Depth to Water 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34	Turbidity (NTUs) 14.2 11.4 9.69 6.37 4.24 3.69 4.55 5-39	pH (SI Units) 6.81 6.82 6.83 6.84 6.85 6.85	Conductivity (µmhos/cm) 249 250 249 750 250 250 250 251 251	Comments				
	ition: (Sampleo	In Flo leas ONIE	From Lab	Turb Othe	ARCADIS	tive): U,etc.): Container De	escription	NTO' Pres	ervative		

Boring/Casing Volumes

2" = 0.16 4" = 0.65

HA-18

Groundwater Sampling Form

Site Location: Date: Sampling Time: Weather: Instrument Identif	Fort Stewart/HAAF 3-3 D-10 1632 70°F, Sunn	Project No. Sampled B Recorded I Duplicate/0	y: 3; 7 By: 3; 7	S Well ID		
Instrument: Serial #:	L N	PID		Water Quality N S56 / La doo7 / C	Neter(s) Mette 2020 ES 200 8	
Purging Information Casing Material: Casing Diameter: Total Depth: Depth to Water: Water Column: Galfons/Foot: Gallons in Well:	PVC z" 3-65 0.16	Scre Pum Volu	ge Method:(circle one) So een Interval: From: op Intake Setting: imes to be Purged: il Volume Purged: op On:	To	on gallons	
Field Parameter Minutes Time Elapsed 1607 10 1612 X 1617 20 1624 28 1627 30 1632 35	(gpm o(fm)) Purged 150 0 2	Purging Depth to Turbidity Water (NTUs) 3-71	pH Conductivity (SI Units) (µmhos/cm) (Q.1.3 477 (g.1.3 473 (g.1.3 469 (g.1.5 464 (g.1.6 464)		0.95 0.85 Paiticul	tes enterio
Observations Durin Well Condition: Color: Odor:	ng Sampling	Turbi	e Water Disposal: idity(qualitative): r (OVA, HNU,etc.):	Drum Slightly N/A	Cloudy	-
Constituent		rom Lab Sharly 3 40-n 2-L	Container I ARCADIS L /OA Amber	Description Pre		

Boring/Casing Volumes

2° = 0.16 4° = 0.65

H-K

ARCADIS

Groundwater Sampling Form

Site Locat Date: Sampling Weather: Instrumen	Time:	3-3 15 75°	526	A PID	Project No. Sampled B Recorded E Duplicate/C	By:	GPO8HAFS J.	Tillats. Tillats Water	Quality Me		2020
Serial #:			7V	111			CES	Z00 7	170	CES	2008
Casing Ma Casing Dia Total Dept Depth to V Water Col Gallons/Fo	iameter: th: Water: lumn: oot:	>n	7 P 2 2 2.16 2.39 0.16	V C 31	Scre Pum Volu	een Interval: np Intake Se umes to be F al Volume Pu	etting: Purged:	mersible Cer /S 26 (34)43	To:	2.5 w	r (Peristattic
	Sallons in Well:			- Develop							
Time 1441 1446 1951 1456 1501 1506 1511 1524 1524	Minutes	Rate (gpm of file) 200 200 200 200 200 200 200 2	Volume	Depth to Water 2,20 2,19 2,19 2,19 2,19 2,19 2,19 2,19 2,19	Turbidity (NTUs) 8-01 18-8 37.9 27.1 19.5 18.2 16.0 15.8	pH (SI Units) (6.13 (6.14 (6.16 (6.16) (6.07 (6.08 (6.07 (6.08	Conductivity (µmhos/cm) 508/ 504/ 504 504 504 504 507 507 507 507 508 508	Temp (C) 1257 20-09 20-10 20-15 20-07 20-37 20-17 20-17 20-19 20-10	08P (my) 11.4 1.5 1.50 3.2 -0.5 -1.9 -3.6 -3.3 -49 -5.5	Diss. Oxygen 1.76 6.87 0.67 0.49 0.45 0.39 0.35 0.33	Comments
Observations During Sampling Well Condition: Color: Odor: Constituents Sampled From			From Lab	Turb Othe	ge Water Dis oidity(qualita er (OVA, HN	tive):	MA MA	last Presi	ervative		
Bay Vocs 3			3	40 m	L VO	A	<u> </u>	ICI			
SVOCs S			a	1-6	Amb	2,-		V/A			

Boring/Casing Volumes

2" = 0.16 4" = 0.65

Appendix D

Pipeline Investigation Boring Logs

Boring/Well		SB-01		Project/No.	HAA-18			Page	1	of	1
Site Location	Savannah, C	GA				Drilling Started 1/14	Drilling 4/2010 Completed	1/14/2	010		
Drilling Contractor	ARM					Driller Jo	osh	Helper_	Josh		
Drilling Flui	d Used	None				Drilling I	Method				
Length and lof Coring De		NA				Sampling 1	Interval Continuous		eet		
Land-Surfac	e Elev.			feet	Surveyed	Estimated	Datum				
Total Depth	Drilled	6		Feet	Hole Diameter	Coring	Device Hand Aug	er			
Prepared By	JDF					Hammer Weight	NA	Hammer Drop	NA	in	ns.
Sampling [Data:										
Dej	pth	Grab/Co	mposite	Time			oratory Analysis				
4-5 ft bls		Grab		855	Volatile and Semi-	-volatile organics					
Soil Chara											
Sample/Core (Fee From	e Depth t bls) To	Core Recovery (Feet)	OVM Reading (ppm)	Blow Counts per 6 Inches		Sample	e/Core Description				
0.0	1.0	(2 223)	(FF)	F	10YR3/1 verv darl	c gray silty well sorte	ed fine sand, roots				
1.0	2.0		0.0			brown clayey well s		ightly plast	ic		
2.0	3.0					andy medium fine to					
3.0	4.0		0.0			,	<u> </u>	,			
4.0	5.0				—						
5.0	6.0		0.0		wet at 5 feet						
										·	

Boring/Well SB-02				Project/No.	HAA-18			Page	1 o	f 1
Site Location	Savannah,			_			Drilling	_		
Drilling	·					-	_ •			
Contractor	ARM					Driller Josh		Helper	Josh	
Drilling Flu	iid Used	None				Drilling Method	i			
Length and of Coring I		NA				Sampling Interva				
Land-Surfa	ce Elev.			feet	Surveyed	Estimated Datum	n			
Total Deptl	n Drilled	6		Feet	Hole Diameter 2'	Coring Device	e Hand Aug	er		
Prepared By	JDF					Hammer Weight NA		Hammer Drop	NA	ins.
Sampling	Data:									
De	epth	Grab/Co	mposite	Time		Laboratory	Analysis			
4-5 ft bls		Grab		915	Volatile and Semi-vola	atile organics				
Soil Char	acterizatio									
Sample/Co		Core	Core OVM Blow Recovery Reading Counts Sample/Core Description							
(Fe	et bls) To	(Feet)	Reading (ppm)	Counts per 6 Inches		Sample/Core	Description			
0.0	1.0				10YR3/4 very dark gra	ay silty well sorted fine	sand, roots			
1.0	2.0		0.0		\downarrow	,	•			
2.0	3.0				7.5YR5/2 brown sand	v medium firm high pla	asticity clay			
3.0	4.0		0.0			5 1				
4.0	5.0									
5.0	6.0		0.0		wet at 5.5 feet					
	1									
	1									
	 	1								

		GD 02		D	TT 4 4 10			ъ		c .	
Site	Savannah, G			Project/No.	HAA-18	Drilling D Started 1/14/2010 C	rilling	Page		ot	<u> </u>
	Savannan, s	0.1				5tarted 1/11/2010 C	ompieted	1/11/20	10		—
Drilling Contractor	ARM					Driller Josh		Helper	Josh		
Drilling Flu		None				Drilling Method					
Length and of Coring D	Diameter	NA				Sampling Interval C					
Land-Surfac	ce Elev.			feet	Surveyed	Estimated Datum_					
Гotal Depth	Drilled	6		Feet		" Coring Device I					
Prepared By	JDF					Hammer Weight NA		Hammer Drop	NA	ins.	•
Sampling I	Data:										
	epth	Grab/Co	mposite	Time		Laboratory Ar	nalysis		-		
4-5 ft bls		Grab		930	Volatile and Semi-vol	atile organics					
	acterizatio		OVINA	Dl							
Sample/Cor (Fee	et bls)	Core Recovery	OVM Reading	Blow Counts		Sample/Core De	scription				
From	То	(Feet)	(ppm)	per 6 Inches							
0.0	1.0					ay silty well sorted fine sa	nd, roots				
1.0	2.0		0.0		\downarrow						
2.0	3.0				7.5YR5/2 brown sand	y medium firm high plasti	city clay				
3.0	4.0		0.0								
4.0	5.0				\downarrow						
5.0	6.0		0.0		wet at 5 feet						
	-										
		<u> </u>									

Boring/Well SB-04				Project/No.	HAA-18 Page 1 of 1
Site Location	Savannah, C	GA			Drilling Drilling Started 1/14/2010 Completed 1/14/2010
Drilling Contractor	ARM				Driller Josh Helper Josh
Drilling Flu	id Used	None			Drilling Method
Length and of Coring D		NA			Sampling Interval Continuous feet
Land-Surfac	ce Elev.			feet	Surveyed Estimated Datum
Total Depth	Drilled	6		Feet	Hole Diameter 2" Coring Device Hand Auger
Prepared By	JDF				Hammer Hammer Weight NA Drop NA ins.
Sampling I	Data:				
	pth	Grab/Co	mposite	Time	Laboratory Analysis
5-6 ft bls		Grab		955	Volatile and Semi-volatile organics
Soil Char	acterizatio	n:			
Sample/Cor (Fee From	e Depth et bls) To	Core Recovery (Feet)	OVM Reading (ppm)	Blow Counts per 6 Inches	Sample/Core Description
0.0	1.0	(1 cct)	Фрин	per o menes	10YR5/4 yellowish brown silty to clayey well sorted fine sand, roots
1.0	2.0				T 🗸
2.0	3.0		0.0		10YR5/2 grayish brown silty well sorted fine sand
3.0	4.0				7.5YR6/6 reddish yellow sandy medium firm high plasticity clay (3-4')
4.0	5.0		0.0		10YR7/2 light gray silty well sorted fine sand
5.0	6.0		0.0		10YR5/1 clayey well sorted fine sand, moderate plasticity
	ļ				
		ļ			

Boring/Well	/Well SB-05			Project/No.	HAA-18		Page	<u>1</u> of	1
Site Location	Savannah, C	GA				Drilling Drilling Started 1/14/2010 Completed	1/14/20	10	
Drilling									
Contractor						Driller Josh	_		
Drilling Flui		None				Drilling Method			
Length and of Coring D		NA				Sampling Interval Continuous			
Land-Surfac	e Elev.			feet	Surveyed	Estimated Datum			
Total Depth	Drilled	2		Feet	Hole Diameter 2"	Coring Device Hand Aug	ger		
Prepared By	JDF					Hammer Weight NA	Hammer Drop	NA	ins.
Sampling [Data:								
De		Grab/Co	mposite	Time		Laboratory Analysis			
1-2 ft bls		Grab		1010	Volatile and Semi-vola	tile organics			
	acterizatio								
Sample/Cor (Fee	e Depth t bls)	Core Recovery	OVM Reading	Blow Counts		Sample/Core Description			
From	To	(Feet) (ppm) per 6 Inches							
0.0	1.0		0.0		10YR3/1 very dark gra	y silty well sorted fine sand			
1.0	2.0		0.0		10YR4/2 dary grayish	brown sandy soft clay, high plastic	city, wet at 2	eet	
2.0	3.0				(borehole on slope bel	ow pipeline)			

Boring/Well	l	SB-06		Project/No.	HAA-18		Page	1	of <u>1</u>
Site Location	Savannah, C	GA				Drilling Drilling Started 1/14/2010 Completed	1/14/2	.010	
Drilling Contractor	ARM					Driller Josh	Helper	Josh	
Drilling Flu	id Used	None				Drilling Method			
Length and of Coring D		NA				Sampling Interval Continuou	<u>s</u>	feet	
Land-Surfac	ce Elev.			feet	Surveyed Est	imated Datum			
Total Depth	Drilled	2		Feet	Hole Diameter 2"	Coring Device Hand Au	ger		
Prepared By	JDF					Hammer Weight NA	Hammer Drop	NA	ins.
Sampling [Data:								
De	pth	Grab/Co	mposite	Time		Laboratory Analysis			
1-2 ft bls		Grab		1025	Volatile and Semi-volatile	organics			
	acterizatio	n:							
Sample/Cor (Fee From	re Depth et bls) To	Core Recovery (Feet) (ppm) Per 6 Inches Sample/Core Description 0.0 10YR3/1 very dark gray silty well sorted fine sand, roots							
0.0	1.0				10YR3/1 very dark gray s	silty well sorted fine sand, roots	;		
1.0	2.0		0.0			oft high plasticity clay, wet at 2'			
2.0	3.0				(borehole on slope below				

Boring/Wel	1	SB-07		Project/No.	HAA-18		Page	1 (of 1
Site Location	Savannah, C	GA			Drilling Started	Drilling 1/14/2010 Completed	1/14/2	010	
Drilling Contractor	ARM				Drille	er Josh	Helper	Josh	
Drilling Flu	id Used	None			Drilli	ing Method			
Length and of Coring D		NA			Sampli	ing Interval Continuous	f	eet	
Land-Surfac	ce Elev.			feet	Surveyed Estimated	Datum			
Total Depth	Drilled	2		Feet	Hole Diameter 2" Cor	ring Device Hand Aug	er		
Prepared By	JDF				Hammo Weigl		Hammer Drop	NA	ins.
Sampling I	Data:								
	pth	Grab/Co	mposite	Time		Laboratory Analysis			
1-2 ft bls		Grab		1040	/olatile and Semi-volatile organics	1			
	acterizatio								
Sample/Cor (Fee From	re Depth et bls) To	Core Recovery (Feet)							
0.0	1.0				0YR3/1 very dark gray silty well s				
1.0	2.0		0.0		0YR3/1 very dark gray sandy soft		et at 2'		
2.0	3.0				borehole on slope below pipeline)				
					· · · · · · · · ·				
·		1			·	·			

Boring/Well		SB-08		Project/No.	HAA-18 Page 1 of 1	
Site Location	Savannah, C	GA			Drilling Drilling Started 1/14/2010 Completed 1/14/2010	
Drilling Contractor	ARM				Driller Josh Helper Josh	
Drilling Flui	id Used	None			Drilling Method	
Length and of Coring D		NA			Sampling Interval Continuous feet	
Land-Surfac	e Elev.			feet	Surveyed Estimated Datum	
Total Depth	Drilled	3		Feet	Hole Diameter 2" Coring Device Hand Auger	
Prepared By	JDF				Hammer Hammer Weight NA Drop NA ins.	
Sampling [Data:					
De	pth	Grab/Co	mposite	Time	Laboratory Analysis	\Box
2-3 ft bls		Grab		1055	Volatile and Semi-volatile organics	4
						-
Soil Chara	acterizatio	n:				
Sample/Core (Fee From	e Depth t bls) To	Core Recovery (Feet)	OVM Reading (ppm)	Sample/Core Description		
0.0	1.0		0.0		10YR3/1 very dark gray silty well sorted fine sand, roots	
1.0	2.0				V	
2.0	3.0		0.0		10YR3/1 very dark gray sandy soft high plasticity clay, wet at 3 feet	
					(borehole on slope below pipeline)	

Boring/Wel	1	SB-09		Project/No.	HAA-18		Page	1 (of 1
Site	Savannah, G			_110,000,110.		Drilling Drilling Started 1/14/2010 Completed	_		
Drilling						<u> </u>	-		
Contractor	ARM					Driller Josh	Helper	Josh	
Drilling Flu	id Used	None				Drilling Method			
Length and of Coring D		NA				Sampling Interval Continuou			
Land-Surfac	ce Elev.			feet	Surveyed	Estimated Datum			
Total Depth	Drilled	3		Feet	Hole Diameter	Coring Device Hand Aug	ger		
Prepared By	JDF					Hammer Weight <u>NA</u>	Hammer Drop	NA	ins.
Sampling I	Data:								
De	pth	Grab/Co	mposite	Time		Laboratory Analysis			
2-3 ft bls		Grab		1110	Volatile and Semi-vo	latile organics			
	acterizatio		Lorna						
Sample/Cor Fee	e Depth et bls)	Core Recovery	OVM Reading	Blow Counts		Sample/Core Description			
From	То	(Feet)	(ppm)	per 6 Inches		Sumple Core Description			
0.0	1.0		0.0		10YR3/1 very dark gı	ray silty well sorted fine sand			
1.0	2.0				\downarrow				
2.0	3.0		0.0		10YR6/1 gray sandy	soft high plasticity clay, wet at 3'			
	+								
	 								
		ļ							

Boring/Wel	Soring/Well SB-10 Project/No. HAA-18				HAA-18		Page1of1
Site Location	Savannah, C	GA				Drilling Drilling Started 1/14/2010 Completed	1/14/2010
Drilling Contractor	ARM					Driller <u>Josh</u>	Helper Josh
Drilling Flu	id Used	None				Drilling Method	
Length and of Coring D		NA				Sampling Interval Continuo	us feet
Land-Surfa	ce Elev.			feet	Surveyed	Estimated Datum	
Total Depth	Drilled	5		Feet	Hole Diameter	2" Coring Device Hand Au	ıger
Prepared By	JDF					Hammer Weight NA	Hammer Drop NA ins.
Sampling	Data:						
De	pth	Grab/Co	mposite	Time		Laboratory Analysis	
4-5 ft bls		Grab		1130	Volatile and Semi-vo	latile organics	
	acterizatio						
Sample/Cor (Fee From	re Depth et bls) To	Core Recovery (Feet)	OVM Reading (ppm)	Blow Counts per 6 Inches		Sample/Core Description	
0.0	1.0				10YR3/1 silty well so		
1.0	2.0		0.0			wn silty to clayey well sorted fine s	and
2.0	3.0					wn sandy soft high plasticity clay	
3.0	4.0		0.0		V		
4.0	5.0		0.0		wet at 5 feet		
		1					
		1					
		1					
	ļ		ļ				

Boring/Well	oring/Well SB-11		Project/No.	HAA	A-18				Page	1	of	1	
Site Location	Savannah, G	GA		•			Drilling Started		Drilling Completed	_		•	
Drilling							<u> </u>		_				
Contractor	ARM						Dı	riller Josh		Helper	Josh		
Drilling Flu		None					Dı	rilling Method	d				
Length and of Coring D	evice	NA							l Continuous				
Land-Surfac	ce Elev.			feet	Surv	eyed	Estimated	Datun	n				
Total Depth	Drilled	5		Feet	Н	ole Diameter	2"	Coring Device	e Hand Aug	er			
Prepared By	JDF							nmer eight NA		Hammer Drop	NA		ins.
Sampling [Data:												
De	pth	Grab/Co	mposite	Time				Laboratory	Analysis				
4-5 ft bls		Grab		1310	Volatil	e and Semi-v	olatile organ	ics					
	acterizatio												
Sample/Cor (Fee	e Depth et bls)		Core OVM Blow Recovery Reading Counts Sample/Core Description										
From	To	(Feet)											
0.0	1.0				10YR4	/1 very dark	gray silty wel	ll sorted fine	sand, roots				
1.0	2.0		0.0		10YR4	/2 dark grayi	sh brown sar	ndy soft mod	derate plastic	ity clay			
2.0	3.0												
3.0	4.0		0.0										
4.0	5.0		0.0		wet at	5 feet							
	1	1	i —		1								

D /XX/ - 1		CD 10		Danis at /NI	II A A 10		D
Boring/Well SB-12 Site				Project/No.	HAA-18	Drilling Drillin	Page 1 of 1
Location	Savannah, G	GA				Started 1/14/2010 Comp	
Drilling Contractor	ARM					Driller Josh	Helper Josh
Drilling Flu		None					
Length and of Coring D	Diameter	NA				Sampling Interval Conti	
Land-Surfac	ce Elev.				Surveyed		
Гotal Depth	Drilled	3		Feet		2" Coring Device Hand	
Prepared By	JDF					Hammer Weight <u>NA</u>	Hammer Drop NA ins.
Sampling I	Data:						
De	pth	Grab/Co	mposite	Time		Laboratory Analys	is
2-3 ft bls		Grab		1350	Volatile and Semi-v	olatile organics	
	acterizatio						
Sample/Cor Fee	re Depth et bls)	Core Recovery	OVM Reading			Sample/Core Descrip	ition
From	То	(Feet)	(ppm)	per 6 Inches		Sample/ Core Descrip	
0.0	1.0				10YR6/1 gray silty v		
1.0	2.0		0.0		10YR6/1 gray sandy	soft high plasticity clay	
2.0	3.0				wet at 3 feet		
	ļ						
	ļ						
	ļ						
	•	1					

Boring/Well	1	SB-13		Project/No.	HAA-18			Page	1	of	1
Site Location	Savannah, C	GA				Drilling Started 1/14/2010	Drilling Completed	1/14/2	010		
Drilling Contractor	ARM					Driller Josh		Helper_	Josh		
Drilling Flu	id Used	None				Drilling Method		_			
Length and of Coring D		NA				Sampling Interval	Continuous	f	feet		
Land-Surfac	ce Elev.			feet	Surveyed	Estimated Datum					
Total Depth	Drilled	5		Feet	Hole Diameter 2	Coring Device	Hand Aug	er			
Prepared By	JDF					Hammer Weight NA		Hammer Drop	NA		ins.
Sampling [Data:										
	pth	Grab/Co	mposite	Time		Laboratory A	Analysis				
4-5 ft bls		Grab		1430	Volatile and Semi-vol	atile organics					
Soil Chara	acterizatio	n:									
Sample/Cor (Fee From	re Depth et bls) To	Core Recovery (Feet)									
0.0	1.0	(1 000)	(PP)	per o menes	10YR4/1 dark grav si	tv well sorted fine sand.	roots				
1.0	2.0		0.0			soft high plasticity, firm		feet			
2.0	3.0				1	5 1 3,					
3.0	4.0		0.0		\						
4.0	5.0		0.0		wet at 5 feet						

Boring/Well	1	SB-14		Project/No.	HAA-18 Page 1 of 1	
Site Location	Savannah, G	GA			Drilling Drilling Started 1/14/2010 Completed 1/14/2010	
Drilling Contractor	ARM				Driller Josh Helper Josh	
Drilling Flu	id Used	None			Drilling Method	
Length and of Coring D	Diameter	NA			Sampling Interval Continuous feet	
Land-Surfac	ce Elev.			feet	Surveyed Estimated Datum	
Total Depth	Drilled	4		Feet	Hole Diameter 2" Coring Device Hand Auger	
Prepared By	JDF				Hammer Hammer Weight NA Drop NA ins.	
Sampling [Data:					
De	pth	Grab/Co	mposite	Time	Laboratory Analysis	
3-4 ft bls		Grab		1450	Volatile and Semi-volatile organics	4
						\dashv
	acterizatio	n:				
Sample/Cor (Fee From	re Depth et bls) To	Core Recovery (Feet)	OVM Reading (ppm)	Blow Counts per 6 Inches	Sample/Core Description	
0.0	1.0	(2 2 2 3)	(FF)	F	10YR4/1 very dark gray clayey well sorted fine sand, roots	
1.0	2.0		0.0		10YR3/1 sandy soft high plasticity clay	_
2.0	3.0					٦
3.0	4.0		0.0			
4.0	5.0		0.0		wet at 4 feet	٦
						_
						٦
						٦
						7

Boring/Well		SB-15		Project/No.	HAA-18 Page 1 of	1
Site Location	Savannah, C	GA			Drilling Drilling Started 1/14/2010 Completed 1/14/2010	
Drilling Contractor	ARM				Driller Josh Helper Josh	
Drilling Flui	id Used	None			Drilling Method	
Length and of Coring D		NA			Sampling Interval Continuous feet	
Land-Surfac	e Elev.			feet	Surveyed Estimated Datum	
Total Depth	Drilled	4		Feet	Hole Diameter 2" Coring Device Hand Auger	
Prepared By	JDF				Hammer Hammer Weight NA Drop NA	ins.
Sampling [Data:					
De	pth	Grab/Co	mposite	Time	Laboratory Analysis	
3-4 ft bls		Grab		1510	Volatile and Semi-volatile organics	
Soil Chara	acterizatio	n:				
Sample/Core (Fee From	e Depth t bls) To	Core Recovery (Feet)	OVM Reading (ppm)	Blow Counts per 6 Inches	Sample/Core Description	
0.0	1.0		di /		10YR4/1 dark gray silty well sorted fine sand	
1.0	2.0		0.0		↓	
2.0	3.0				10YR5/2 brown sandy soft high plasticity clay	
3.0	4.0		0.0		<u> </u>	
4.0	5.0		0.0		wet at 4 feet	

Appendix E

Laboratory Analytical Reports

Report of Analysis

ARCADIS U.S., Inc.
30 Patewood Drive
Suite 155
Greenville, SC 29615
Attention: Janet Christy

Project Name: HAA-18

Project Number: GP08HAFS. HI8B. DG0FI

Lot Number: LA15023

Date Completed: 01/26/2010

Nisreen Saikaly
Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

LA15023

SC DHEC No: 32010 NELAC No: E87653 NC DEHNR No: 329

Case Narrative ARCADIS U.S., Inc. Lot Number: LA15023

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Volatile Organic Compounds

The RPD for Acetone and Chloromethane (Methyl chloride) exceeded method control limits in batch 25504; however, all other QA/QC criteria for the LCS/LCSD were within acceptance criteria and method control limits. The associated sample results were reported and no corrective action was required.

The RPD for Acetone, Bromomethane (Methyl bromide), Chloroethane, Chloromethane (Methyl chloride) and Vinyl chloride exceeded method control limits in batch 25567; however, all other QA/QC criteria for the LCS/LCSD were within acceptance criteria and method control limits. The associated sample results were reported and no corrective action was required.

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Sample Summary ARCADIS U.S., Inc.

Lot Number: LA15023

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	H18-SB01(011410)(4-5)	Solid	01/14/2010 0855	01/15/2010
002	H18-SB02(011410)(4-5)	Solid	01/14/2010 0915	01/15/2010
003	H18-SB03(011410)(4-5)	Solid	01/14/2010 0930	01/15/2010
004	H18-SB04(011410)(5-6)	Solid	01/14/2010 0955	01/15/2010
005	H18-SB05(011410)(1-2)	Solid	01/14/2010 1010	01/15/2010
006	H18-SB06(011410)(1-2)	Solid	01/14/2010 1025	01/15/2010
007	H18-SB07(011410)(1-2)	Solid	01/14/2010 1040	01/15/2010
800	H18-SB08(011410)(2-3)	Solid	01/14/2010 1055	01/15/2010
009	H18-SB09(011410)(2-3)	Solid	01/14/2010 1110	01/15/2010
010	H18-SB10(011410)(4-5)	Solid	01/14/2010 1130	01/15/2010
011	H18-SB11(011410)(4-5)	Solid	01/14/2010 1310	01/15/2010
012	H18-SB12(011410)(2-3)	Solid	01/14/2010 1350	01/15/2010
013	H18-SB13(011410)(4-5)	Solid	01/14/2010 1430	01/15/2010
014	H18-SB14(011410)(3-4)	Solid	01/14/2010 1450	01/15/2010
015	H18-SB15(011410)(3-4)	Solid	01/14/2010 1510	01/15/2010

(15 samples)

Executive Summary ARCADIS U.S., Inc.

Lot Number: LA15023

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
002	H18-SB02(011410)(4-5)	Solid	Acetone	8260B	45		ug/kg	9
003	H18-SB03(011410)(4-5)	Solid	Acetone	8260B	27		ug/kg	13
004	H18-SB04(011410)(5-6)	Solid	Acetone	8260B	19		ug/kg	17
005	H18-SB05(011410)(1-2)	Solid	Acetone	8260B	11	J	ug/kg	21
800	H18-SB08(011410)(2-3)	Solid	Acetone	8260B	52		ug/kg	33
009	H18-SB09(011410)(2-3)	Solid	Acetone	8260B	65		ug/kg	37
011	H18-SB11(011410)(4-5)	Solid	Acetone	8260B	14	J	ug/kg	45
012	H18-SB12(011410)(2-3)	Solid	Acetone	8260B	12	J	ug/kg	49
013	H18-SB13(011410)(4-5)	Solid	Acetone	8260B	29		ug/kg	53
014	H18-SB14(011410)(3-4)	Solid	Acetone	8260B	15	J	ug/kg	57
015	H18-SB15(011410)(3-4)	Solid	Acetone	8260B	24		ug/kg	61

(11 detections)

Volatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc.

Description: H18-SB01(011410)(4-5)

Date Sampled:01/14/2010 0855

% Solids: 79.4 01/15/2010 1943

Laboratory ID: LA15023-001

Matrix: Solid

Date Received: 01/15/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1623	DLB		25504	11.18

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acetone	67-64-1	8260B	ND		11	3.8	ug/kg	1
Benzene	71-43-2	8260B	ND		2.8	0.62	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		2.8	0.96	ug/kg	1
Bromoform	75-25-2	8260B	ND		2.8	0.39	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		2.8	1.0	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		5.6	1.4	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		2.8	0.73	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		2.8	1.0	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		2.8	0.96	ug/kg	1
Chloroethane	75-00-3	8260B	ND		2.8	0.73	ug/kg	1
Chloroform	67-66-3	8260B	ND		2.8	0.47	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		2.8	0.56	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		2.8	0.38	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		2.8	0.84	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		2.8	0.96	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		2.8	0.48	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		2.8	0.96	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		2.8	0.96	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		2.8	0.96	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		2.8	0.90	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND		2.8	0.41	ug/kg	1
1,2-Dichloroethane	107-06-2	8260B	ND		2.8	0.56	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND		2.8	0.96	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		2.8	0.43	ug/kg	1
rans-1,2-Dichloroethene	156-60-5	8260B	ND		2.8	0.84	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		2.8	0.51	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		2.8	0.38	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		2.8	0.46	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND		2.8	0.96	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		5.6	0.73	ug/kg	1
sopropylbenzene	98-82-8	8260B	ND		2.8	0.45	ug/kg	1
Methyl acetate	79-20-9	8260B	ND		2.8	0.38	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		2.8	0.23	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		5.6	0.84	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		2.8	0.34	ug/kg	1
Methylene chloride	75-09-2	8260B	ND		2.8	1.5	ug/kg	1
Styrene	100-42-5	8260B	ND		2.8	0.62	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		2.8	0.26	ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND		2.8	1.3	ug/kg	1
Toluene	108-88-3	8260B	ND		2.8	0.96	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		2.8	1.2	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		2.8	0.96	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		2.8	0.48	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		2.8	0.44	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

E = Quantitation of compound exceeded the calibration range

Volatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc.

Description: H18-SB01(011410)(4-5)

Date Sampled:01/14/2010 0855

Matrix: Solid

Laboratory ID: LA15023-001

% Solids: 79.4 01/15/2010 1943

Date Received: 01/15/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1623	DLB		25504	11.18

Parameter		CAS Number	Analytical Method	Result	Q F	PQL	MDL	Units	Run
Trichloroethene		79-01-6	8260B	ND		2.8	1.1	ug/kg	1
Trichlorofluoromethane		75-69-4	8260B	ND		2.8	0.84	ug/kg	1
Vinyl chloride		75-01-4	8260B	ND		2.8	0.48	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND		2.8	1.6	ug/kg	1
Surrogate		ın 1 Accept covery Limi							
1,2-Dichloroethane-d4		87 53-1	42						
Bromofluorobenzene	1	08 47-1	38						
Toluene-d8	1	00 68-1	24						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Semivolatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc.

Description: H18-SB01(011410)(4-5)

Date Sampled:01/14/2010 0855

Date Received: 01/15/2010

Laboratory ID: LA15023-001

Matrix: Solid

% Solids: 79.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2025	JGH	01/19/2010 1136	25580

Parameter	CAS Number	Analytical Method	Result	Q P	QL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		84	13	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		84	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		84	23	ug/kg	1
Anthracene	120-12-7	8270D	ND		84	9.3	ug/kg	1
Atrazine	1912-24-9	8270D	ND		84	21	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		84	21	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		84	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		84	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		84	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		84	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		84	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		84	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		84	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		160	55	ug/kg	1
Caprolactam	105-60-2	8270D	ND		84	21	ug/kg	1
Carbazole	86-74-8	8270D	ND		84	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		84	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		84	8.5	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		84	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		84	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		84	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		84	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		84	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		84	14	ug/kg	1
Chrysene	218-01-9	8270D	ND		84	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		84	11	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		84	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4	420	46	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		84	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		84	28	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		84	28	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		84	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		84	28	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4	420	160	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	4	420	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		160	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		160	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		84	40	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		84	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		84	13	ug/kg	1
Fluorene	86-73-7	8270D	ND		84	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		84	18	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		84	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4	420	31	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 7 of 85

Semivolatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc.

Description: H18-SB01(011410)(4-5)

Laboratory ID: LA15023-001 Matrix: Solid

% Solids: 79.4 01/15/2010 1943

Date Received: 01/15/2010

Date Sampled:01/14/2010 0855

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 1 3550C 8270D 01/24/2010 2025 JGH 01/19/2010 1136 25580

	CAS	Analytical					
Parameter	Number	Method	Result	Q PQL	MDL	Units	Run
Hexachloroethane	67-72-1	8270D	ND	84	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	84	12	ug/kg	1
Isophorone	78-59-1	8270D	ND	84	9.3	ug/kg	1
2-Methylnaphthalene	91-57-6	8270D	ND	84	12	ug/kg	1
2-Methylphenol	95-48-7	8270D	ND	84	7.6	ug/kg	1
3 & 4-Methylphenol	106-44-5	8270D	ND	160	15	ug/kg	1
Naphthalene	91-20-3	8270D	ND	84	13	ug/kg	1
2-Nitroaniline	88-74-4	8270D	ND	160	29	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND	160	49	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND	160	24	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND	84	6.8	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND	160	23	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND	420	120	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	84	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	84	10	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND	420	170	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	84	11	ug/kg	1
Phenol	108-95-2	8270D	ND	84	11	ug/kg	1
Pyrene	129-00-0	8270D	ND	84	17	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	84	12	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	84	12	ug/kg	1
	Run 1 Accept	ance					

Surrogate	Run 1 Acceptance Q % Recovery Limits	
2-Fluorobiphenyl	44 33-102	
2-Fluorophenol	65 28-104	
Nitrobenzene-d5	43 22-109	
Phenol-d5	50 27-103	
Terphenyl-d14	58 41-120	
2,4,6-Tribromophenol	56 30-117	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: ARCADIS U.S., Inc.

Description: H18-SB02(011410)(4-5)

Date Sampled:01/14/2010 0915

Date Received: 01/15/2010

Laboratory ID: LA15023-002

Matrix: Solid

% Solids: 78.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1646	DLB		25504	11.69

Acetone	Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Benzene 71-43-2 82608 ND 2.7 0.60 ug/kg 1	Acetone			45	11	3.7	ua/ka	1
Bromodichloromethane 75-27-4 82608 ND 2.7 0.93 ug/kg 1 Bromoform 75-25-2 82608 ND 2.7 0.98 ug/kg 1 Bromomethane (Methyl bromide) 74-83-9 82608 ND 5.5 1.3 ug/kg 1 2-Butanone (MEK) 78-93-3 82608 ND 5.5 1.3 ug/kg 1 Carbon disulfide 75-16-0 82608 ND 2.7 0.98 ug/kg 1 Chlorobenzene 108-90-7 52608 ND 2.7 0.93 ug/kg 1 Chlorobenzene 108-90-7 52608 ND 2.7 0.75 ug/kg 1 Chlorodemane 67-66-3 82608 ND 2.7 0.75 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 82608 ND 2.7 0.45 ug/kg 1 Lyclobrome-3-chloropropane (DBCP) 95-12-8 82608 ND 2.7 0.37								
Bromoform 75-25-2 82608 ND 2.7 0.38 ug/kg 1 Bromomethane (Methyl bromide) 74-83-9 82608 ND 2.7 0.98 ug/kg 1 2-Butanone (MEK) 78-93-3 82608 ND 2.5 1.3 ug/kg 1 Carbon tetrachoride 56-23-5 82608 ND 2.7 0.98 ug/kg 1 Chloroeltane 108-90-7 82608 ND 2.7 0.93 ug/kg 1 Chloroethane 75-00-3 82608 ND 2.7 0.45 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 82608 ND 2.7 0.45 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 82608 ND 2.7 0.55 ug/kg 1 1,2-Dibromomethane 108-2-8 82608 ND 2.7 0.46 ug/kg 1 1,2-Dibromothane (EDB) 106-83-4 82608 ND 2.7 0.46 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Bromomethane (Methyl bromide)								
2-Butanone (MEK) 78-93-3 8260B ND 5.5 1.3 ug/kg 1 Carbon disulfide 75-15-0 8260B ND 2.7 0.71 ug/kg 1 Carbon ettarchioride 56-623-5 8260B ND 2.7 0.93 ug/kg 1 Chlorobenzene 108-90-7 8260B ND 2.7 0.71 ug/kg 1 Chloroethane 75-00-3 8260B ND 2.7 0.71 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 2.7 0.55 ug/kg 1 Cyclohexane 110-82-7 8260B ND 2.7 0.55 ug/kg 1 L2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.52 ug/kg 1 L2-Dibromochloromethane 124-48-1 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichlorochlerane 95-50-1 8260B ND 2.7 0.93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Carbon disulfide 75-15-0 8260B ND 2.7 0.71 ug/kg 1 Carbon tetrachloride 56-23-5 8260B ND 2.7 0.98 ug/kg 1 Chloroethane 160-90-7 8260B ND 2.7 0.71 ug/kg 1 Chloroethane 75-00-3 8260B ND 2.7 0.45 ug/kg 1 Chloroethane (Methyl chloride) 74-87-3 8260B ND 2.7 0.57 0.93 ug/kg 1 Cyclobaxane 110-82-7 8260B ND 2.7 0.37 ug/kg 1 Cyclobrachae 12-Dibromochachoromethane 124-48-1 8260B ND 2.7 0.82 ug/kg 1 1,2-Dichlorobenzene 95-10-1 8260B ND 2.7 0.46 ug/kg 1 1,3-Dichlorobenzene 95-150-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 95-10-1 8260B ND								
Carbon tetrachloride 56-23-5 8260B ND 2,7 0.88 ug/kg 1 Chlorobenzene 108-90-7 8260B ND 2,7 0.93 ug/kg 1 Chlorotorm 67-60-3 8260B ND 2,7 0.51 ug/kg 1 Chlorotorm 67-66-3 8260B ND 2,7 0.55 ug/kg 1 Chlorotorm 74-87-3 8260B ND 2,7 0.57 ug/kg 1 Cyclohexane 110-82-7 8260B ND 2,7 0.57 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2,7 0.93 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2,7 0.93 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260B ND 2,7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260B ND 2,7 0.93 u	` '							
Chlorobenzene 108-90-7 8260B ND 2.7 0.93 ug/kg 1 Chlorotenhane 75-00-3 8260B ND 2.7 0.71 ug/kg 1 Chloromethane 67-66-3 8260B ND 2.7 0.45 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 2.7 0.55 ug/kg 1 Cyclohexane 110-82-7 8260B ND 2.7 0.37 ug/kg 1 L2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.93 ug/kg 1 Dibromochloromethane 124-48-1 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 75-73-8 8260B ND 2.7 0.81								
Chloroethane 75-00-3 8260B ND 2.7 0.71 ug/kg 1 Chloroform 67-66-3 8260B ND 2.7 0.45 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 2.7 0.55 ug/kg 1 Cyclohexane 110-82-7 8260B ND 2.7 0.82 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.93 ug/kg 1 1,2-Dibromo-dhane 108-93-4 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 156-71-8 8260B ND 2.7 0.93 ug/kg 1 1,1-Dichloroethane 157-34-3 8260B ND 2.7 0.40	Chlorobenzene	108-90-7	8260B	ND	2.7	0.93		1
Chloroform 67-66-3 8260B ND 2.7 0.45 ug/kg 1 Chloromethane (Methyl chloride) 74-87-3 8260B ND 2.7 0.55 ug/kg 1 Cyclohexane 110-82-7 8260B ND 2.7 0.37 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.93 ug/kg 1 1,2-Dibromochloromethane (EDB) 106-93-4 8260B ND 2.7 0.93 ug/kg 1 1,2-Dibromochloromethane (EDB) 106-93-4 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 95-50-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichloroethane 75-71-8 8260B ND 2.7 0.93 ug/kg 1 1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.55 ug/kg 1 1,2-Dichloroethane 156-69-3 8260B ND 2.7<	Chloroethane	75-00-3	8260B		2.7	0.71		1
Chloromethane (Methyl chloride) 74-87-3 8260B ND 2.7 0.55 ug/kg 1 Cyclohexane 110-82-7 8260B ND 2.7 0.37 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.93 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichlorobenzene 541-73-1 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorothenzene 75-54-3 8260B ND 2.7 0.07 ug/kg 1 1,2-Dichlorothane 75-54-3 8260B ND 2.7 0.07 ug/kg 1 1,2-Dichlorothane 75-54-3 8260B ND 2.7	Chloroform	67-66-3	8260B		2.7	0.45		1
Cyclohexane 110-82-7 8260B ND 2.7 0.37 ug/kg 1 1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.82 ug/kg 1 1,2-Dibromo-shane (EDB) 106-93-4 8260B ND 2.7 0.46 ug/kg 1 1,2-Dibromoethane (EDB) 106-93-4 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-66-7 8260B ND 2.7 0.93 ug/kg 1 Dichlorodifluoromethane 75-71-8 8260B ND 2.7 0.07 ug/kg 1 1,1-Dichloroethane 75-35-4 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichloroethane 156-59-2 8260B ND 2.7	Chloromethane (Methyl chloride)	74-87-3	8260B		2.7	0.55		1
1,2-Dibromo-3-chloropropane (DBCP) 96-12-8 8260B ND 2.7 0.82 ug/kg 1 Dibromochloromethane 124-48-1 8260B ND 2.7 0.93 ug/kg 1 1,2-Dibromochane (EDB) 106-93-4 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 55-50-1 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobethane 75-71-8 8260B ND 2.7 0.97 ug/kg 1 1,1-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,2-Dichloroethane 156-59-2 8260B ND 2.7 0.52 ug/kg 1 cis-1,2-Dichloroethene 156-69-5 8260B ND 2.7	Cyclohexane	110-82-7	8260B	ND	2.7	0.37		1
Dibromochloromethane 124-48-1 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichloromethane (EDB) 106-93-4 8260B ND 2.7 0.46 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorothane 75-71-8 8260B ND 2.7 0.93 ug/kg 1 1,1-Dichloroethane 75-71-8 8260B ND 2.7 0.93 ug/kg 1 1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.40 ug/kg 1 1,1-Dichloroethane 156-59-2 8260B ND 2.7 0.41 ug/kg 1 1,2-Dichloroethane 156-69-5 8260B ND 2.7 0.41 ug/kg 1 1,3-Dichloropropane 78-87-5 8260B ND 2.7 0.42	1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	2.7	0.82		1
1,2-Dibromoethane (EDB) 106-93-4 8260B ND 2.7 0.46 ug/kg 1 1,2-Dichlorobenzene 95-50-1 8260B ND 2.7 0.93 ug/kg 1 1,3-Dichlorobenzene 541-73-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 Dichlorodifluoromethane 75-71-8 8260B ND 2.7 0.87 ug/kg 1 1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethane 156-59-2 8260B ND 2.7 0.41 ug/kg 1 cis-1,2-Dichloroethane 156-69-2 8260B ND 2.7 0.41 ug/kg 1 trans-1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 cis-1,3-Dichloropropane 1061-01-5 82	Dibromochloromethane	124-48-1	8260B	ND	2.7	0.93		1
1,3-Dichlorobenzene 541-73-1 8260B ND 2.7 0.93 ug/kg 1 1,4-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 Dichlorodifluoromethane 75-71-8 8260B ND 2.7 0.87 ug/kg 1 1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.55 ug/kg 1 1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethane 75-35-4 8260B ND 2.7 0.41 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260B ND 2.7 0.41 ug/kg 1 tans-1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.42 ug/kg 1 tans-1,3-Dichloropropane 1061-01-5 8260B ND 2.7 0.57 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7	1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	2.7	0.46		1
1,4-Dichlorobenzene 106-46-7 8260B ND 2.7 0.93 ug/kg 1 Dichlorodifluoromethane 75-71-8 8260B ND 2.7 0.87 ug/kg 1 1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.40 ug/kg 1 1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethene 75-34-4 8260B ND 2.7 0.55 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260B ND 2.7 0.41 ug/kg 1 1,2-Dichloroptoethene 156-69-5 8260B ND 2.7 0.82 ug/kg 1 1,2-Dichloroptopane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 trans-1,3-Dichloroptopene 10061-01-5 8260B ND 2.7 0.51 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.9	1,2-Dichlorobenzene	95-50-1	8260B	ND	2.7	0.93	ug/kg	1
Dichlorodifluoromethane 75-71-8 8260B ND 2.7 0.87 ug/kg 1 1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.40 ug/kg 1 1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethene 75-35-4 8260B ND 2.7 0.41 ug/kg 1 1,2-Dichloroethene 156-59-2 8260B ND 2.7 0.41 ug/kg 1 1,2-Dichloroptopene 156-60-5 8260B ND 2.7 0.41 ug/kg 1 1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 1,2-Dichloropropane 10061-01-5 8260B ND 2.7 0.50 ug/kg 1 1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.37 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.93	1,3-Dichlorobenzene	541-73-1	8260B	ND	2.7	0.93		1
1,1-Dichloroethane 75-34-3 8260B ND 2.7 0.40 ug/kg 1 1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethene 75-35-4 8260B ND 2.7 0.93 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260B ND 2.7 0.41 ug/kg 1 1,2-Dichloroethene 156-60-5 8260B ND 2.7 0.50 ug/kg 1 1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 cis-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.37 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 591-78-6 8260B ND 2.7 0.44 ug/kg 1 Leptoanone 591-78-6 8260B ND 2.7 0.44 ug/kg	1,4-Dichlorobenzene	106-46-7	8260B	ND	2.7	0.93	ug/kg	1
1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethene 75-35-4 8260B ND 2.7 0.93 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260B ND 2.7 0.41 ug/kg 1 trans-1,2-Dichloropthene 156-60-5 8260B ND 2.7 0.50 ug/kg 1 1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 1,2-Dichloropropane 10061-01-5 8260B ND 2.7 0.37 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.93 ug/kg 1 2-Hexanone 591-78-6 8260B ND 2.7 0.44 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.37	Dichlorodifluoromethane	75-71-8	8260B	ND	2.7	0.87		1
1,2-Dichloroethane 107-06-2 8260B ND 2.7 0.55 ug/kg 1 1,1-Dichloroethene 75-35-4 8260B ND 2.7 0.93 ug/kg 1 cis-1,2-Dichloroethene 156-69-2 8260B ND 2.7 0.41 ug/kg 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 2.7 0.82 ug/kg 1 1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 cis-1,3-Dichloropropane 10061-01-5 8260B ND 2.7 0.37 ug/kg 1 trans-1,3-Dichloropropane 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.45 ug/kg 1 2-Hexanone 591-78-6 8260B ND 2.7 0.44 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 82	1,1-Dichloroethane	75-34-3	8260B	ND	2.7	0.40		1
1,1-Dichloroethene 75-35-4 8260B ND 2.7 0.93 ug/kg 1 cis-1,2-Dichloroethene 156-59-2 8260B ND 2.7 0.41 ug/kg 1 trans-1,2-Dichloroethene 156-60-5 8260B ND 2.7 0.82 ug/kg 1 1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260B ND 2.7 0.45 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 ttmsn-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 ttmsn-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.03 ug/kg 1 ttmsn-1,3-Dichloropropene 8260B ND 2.7 0.03 ug/kg 1 Lyblance 98-82-8 826	1,2-Dichloroethane	107-06-2	8260B	ND	2.7	0.55		1
trans-1,2-Dichloroethene 156-60-5 8260B ND 2.7 0.82 ug/kg 1 1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260B ND 2.7 0.37 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.93 ug/kg 1 Ethylbenzene 591-78-6 8260B ND 2.7 0.93 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 5.5 0.71 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.37 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 5.5 0.82 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 0.33 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.60 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 0.26 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.27 0.39 ug/kg 1 1,1,2,4-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 0.93 ug/kg 1 1,2,4-Trichloroethezene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	1,1-Dichloroethene	75-35-4	8260B	ND	2.7	0.93		1
1,2-Dichloropropane 78-87-5 8260B ND 2.7 0.50 ug/kg 1 cis-1,3-Dichloropropene 10061-01-5 8260B ND 2.7 0.37 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.93 ug/kg 1 2-Hexanone 591-78-6 8260B ND 2.7 0.93 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl tetriary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 2.7 0.22 ug/kg 1 Methylcyclohexane 75-0-9-2 8260B ND 2.7 0.3<	cis-1,2-Dichloroethene	156-59-2	8260B	ND	2.7	0.41	ug/kg	1
cis-1,3-Dichloropropene 10061-01-5 8260B ND 2.7 0.37 ug/kg 1 trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.93 ug/kg 1 2-Hexanone 591-78-6 8260B ND 2.7 0.94 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl bether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 2.7 0.22 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg </td <td>trans-1,2-Dichloroethene</td> <td>156-60-5</td> <td>8260B</td> <td>ND</td> <td>2.7</td> <td>0.82</td> <td>ug/kg</td> <td>1</td>	trans-1,2-Dichloroethene	156-60-5	8260B	ND	2.7	0.82	ug/kg	1
trans-1,3-Dichloropropene 10061-02-6 8260B ND 2.7 0.45 ug/kg 1 Ethylbenzene 100-41-4 8260B ND 2.7 0.93 ug/kg 1 2-Hexanone 591-78-6 8260B ND 5.5 0.71 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26	1,2-Dichloropropane	78-87-5	8260B	ND	2.7	0.50	ug/kg	1
Ethylbenzene 100-41-4 8260B ND 2.7 0.93 ug/kg 1 2-Hexanone 591-78-6 8260B ND 5.5 0.71 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg </td <td>cis-1,3-Dichloropropene</td> <td>10061-01-5</td> <td>8260B</td> <td>ND</td> <td>2.7</td> <td>0.37</td> <td>ug/kg</td> <td>1</td>	cis-1,3-Dichloropropene	10061-01-5	8260B	ND	2.7	0.37	ug/kg	1
2-Hexanone 591-78-6 8260B ND 5.5 0.71 ug/kg 1 Isopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1 Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,2,4-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND </td <td>trans-1,3-Dichloropropene</td> <td>10061-02-6</td> <td>8260B</td> <td>ND</td> <td>2.7</td> <td>0.45</td> <td>ug/kg</td> <td>1</td>	trans-1,3-Dichloropropene	10061-02-6	8260B	ND	2.7	0.45	ug/kg	1
Sopropylbenzene 98-82-8 8260B ND 2.7 0.44 ug/kg 1	Ethylbenzene	100-41-4	8260B	ND	2.7	0.93	ug/kg	1
Methyl acetate 79-20-9 8260B ND 2.7 0.37 ug/kg 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 0.26 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 0.1<	2-Hexanone	591-78-6	8260B	ND	5.5	0.71	ug/kg	1
Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 2.7 0.22 ug/kg 1 4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 <	Isopropylbenzene	98-82-8	8260B	ND	2.7	0.44	ug/kg	1
4-Methyl-2-pentanone 108-10-1 8260B ND 5.5 0.82 ug/kg 1 Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 0.93 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Methyl acetate	79-20-9	8260B	ND	2.7	0.37	ug/kg	1
Methylcyclohexane 108-87-2 8260B ND 2.7 0.33 ug/kg 1 Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	2.7	0.22		1
Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	4-Methyl-2-pentanone	108-10-1	8260B	ND	5.5	0.82	ug/kg	1
Methylene chloride 75-09-2 8260B ND 2.7 1.4 ug/kg 1 Styrene 100-42-5 8260B ND 2.7 0.60 ug/kg 1 1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Methylcyclohexane	108-87-2	8260B	ND	2.7	0.33		1
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Methylene chloride	75-09-2	8260B	ND	2.7	1.4		1
1,1,2,2-Tetrachloroethane 79-34-5 8260B ND 2.7 0.26 ug/kg 1 Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Styrene	100-42-5	8260B	ND	2.7	0.60	ug/kg	1
Tetrachloroethene 127-18-4 8260B ND 2.7 1.3 ug/kg 1 Toluene 108-88-3 8260B ND 2.7 0.93 ug/kg 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	2.7	0.26		1
1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 8260B ND 2.7 1.1 ug/kg 1 1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Tetrachloroethene	127-18-4	8260B	ND	2.7	1.3	ug/kg	1
1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	Toluene	108-88-3	8260B	ND	2.7	0.93	ug/kg	1
1,2,4-Trichlorobenzene 120-82-1 8260B ND 2.7 0.93 ug/kg 1	1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1			2.7		ug/kg	1
		120-82-1			2.7	0.93	ug/kg	1
	1,1,1-Trichloroethane		8260B					1
1,1,2-Trichloroethane 79-00-5 8260B ND 2.7 0.43 ug/kg 1	1,1,2-Trichloroethane	79-00-5	8260B			0.43		1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB02(011410)(4-5)

Date Sampled:01/14/2010 0915

Laboratory ID: LA15023-002 Matrix: Solid

% Solids: 78.4 01/15/2010 1943

Date Received: 01/15/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1646	DLB		25504	11.69

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-0	1-6	8260B	ND		2.7	1.0	ug/kg	1
Trichlorofluoromethane		75-6	9-4	8260B	ND		2.7	0.82	ug/kg	1
Vinyl chloride		75-0	1-4	8260B	ND		2.7	0.47	ug/kg	1
Xylenes (total)		1330-2	0-7	8260B	ND		2.7	1.6	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	cceptan Limits							
1,2-Dichloroethane-d4		94	53-142	<u>)</u>						
Bromofluorobenzene		109	47-138	3						
Toluene-d8		100	68-124	ļ						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB02(011410)(4-5)

Description: H16-3B02(011410)(4-

Date Sampled:01/14/2010 0915

Date Received: 01/15/2010

Laboratory ID: LA15023-002

Matrix: Solid

% Solids: 78.4 01/15/2010 1943

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3550C
 8270D
 1
 01/24/2010 2045
 JGH
 01/19/2010 1136
 25580

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	85	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	85	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND	85	23	ug/kg	1
Anthracene	120-12-7	8270D	ND	85	9.4	ug/kg	1
Atrazine	1912-24-9	8270D	ND	85	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND	85	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	85	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	85	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	85	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	85	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	85	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND	85	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	85	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND	170	56	ug/kg	1
Caprolactam	105-60-2	8270D	ND	85	22	ug/kg	1
Carbazole	86-74-8	8270D	ND	85	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	85	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND	85	8.6	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	85	13	ug/kg ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	85	12	ug/kg ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND	85	14	ug/kg ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND	85	14	ug/kg ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND	85	12	ug/kg ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	85	15	ug/kg	1
Chrysene	218-01-9	8270D	ND	85	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	85	12	ug/kg ug/kg	1
Dibenzofuran	132-64-9	8270D	ND	85	13	ug/kg ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	420	46	ug/kg ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND	85	13	ug/kg ug/kg	1
Diethylphthalate	84-66-2	8270D	ND	85	28	ug/kg ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND	85	28	ug/kg ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND	85	16	ug/kg ug/kg	1
	84-74-2	8270D	ND	85	28		1
Di-n-butyl phthalate	534-52-1	8270D 8270D	ND	420	160	ug/kg	
4,6-Dinitro-2-methylphenol		8270D 8270D				ug/kg	1
2,4-Dinitrophenol	51-28-5		ND	420	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	170	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	170	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND	85 85	41	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	85 85	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	85	13	ug/kg	1
Fluorene	86-73-7	8270D	ND	85	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND	85	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND	85	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	420	31	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

 $\label{eq:energy} {\sf E} = {\sf Quantitation} \ {\sf of} \ {\sf compound} \ {\sf exceeded} \ {\sf the} \ {\sf calibration} \ {\sf range}$

 $\mathsf{ND} = \mathsf{Not}$ detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Page: 11 of 85

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Client: ARCADIS U.S., Inc.

Description: H18-SB02(011410)(4-5)

Description: H16-3B02(011410)(4-

Date Sampled:01/14/2010 0915

Date Received: 01/15/2010

Laboratory ID: LA15023-002

Matrix: Solid

% Solids: 78.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2045	JGH	01/19/2010 1136	25580

Parameter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Hexachloroethane		67-72-1	8270D	ND		85	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene	1	93-39-5	8270D	ND		85	12	ug/kg	1
Isophorone		78-59-1	8270D	ND		85	9.4	ug/kg	1
2-Methylnaphthalene		91-57-6	8270D	ND		85	13	ug/kg	1
2-Methylphenol		95-48-7	8270D	ND		85	7.7	ug/kg	1
3 & 4-Methylphenol	1	06-44-5	8270D	ND		170	15	ug/kg	1
Naphthalene		91-20-3	8270D	ND		85	13	ug/kg	1
2-Nitroaniline		88-74-4	8270D	ND		170	29	ug/kg	1
3-Nitroaniline		99-09-2	8270D	ND		170	49	ug/kg	1
4-Nitroaniline	1	00-01-6	8270D	ND		170	24	ug/kg	1
Nitrobenzene		98-95-3	8270D	ND		85	6.8	ug/kg	1
2-Nitrophenol		88-75-5	8270D	ND		170	23	ug/kg	1
4-Nitrophenol	1	00-02-7	8270D	ND		420	120	ug/kg	1
N-Nitrosodi-n-propylamine	6	321-64-7	8270D	ND		85	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)		86-30-6	8270D	ND		85	11	ug/kg	1
Pentachlorophenol		87-86-5	8270D	ND		420	180	ug/kg	1
Phenanthrene		85-01-8	8270D	ND		85	11	ug/kg	1
Phenol	1	08-95-2	8270D	ND		85	12	ug/kg	1
Pyrene	1	29-00-0	8270D	ND		85	17	ug/kg	1
2,4,5-Trichlorophenol		95-95-4	8270D	ND		85	12	ug/kg	1
2,4,6-Trichlorophenol		88-06-2	8270D	ND		85	13	ug/kg	1
Surrogate	Run 1 Q % Recov		ance ts						
2-Fluorobiphenyl	54	33-1	02					·	
2-Fluorophenol	41	28-1	04						
Nitrobenzene-d5	41	22-1	09						
Phenol-d5	60	27-1	03						
Terphenyl-d14	68	41-1	20						

PQL = Practical quantitation limit

2,4,6-Tribromophenol

B = Detected in the method blank

72

30-117

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB03(011410)(4-5)

Date Sampled:01/14/2010 0930

Date Received: 01/15/2010

Laboratory ID: LA15023-003

Matrix: Solid

% Solids: 78.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1709	DLB		25504	8.40

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acetone	67-64-1	8260B	27	15	5.1	ug/kg	1
Benzene	71-43-2	8260B	ND	3.8	0.84	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND	3.8	1.3	ug/kg	1
Bromoform	75-25-2	8260B	ND	3.8	0.53	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	3.8	1.4	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND	7.6	1.8	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND	3.8	0.99	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND	3.8	1.4	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND	3.8	1.3	ug/kg	1
Chloroethane	75-00-3	8260B	ND	3.8	0.99	ug/kg	1
Chloroform	67-66-3	8260B	ND	3.8	0.63	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	3.8	0.76	ug/kg	1
Cyclohexane	110-82-7	8260B	ND	3.8	0.51	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	3.8	1.1	ug/kg ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND	3.8	1.3	ug/kg ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	3.8	0.65	ug/kg ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	3.8	1.3	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	3.8	1.3	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	3.8	1.3	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND	3.8	1.2	ug/kg ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND	3.8	0.55	ug/kg ug/kg	1
1,2-Dichloroethane	107-06-2	8260B	ND	3.8	0.76	ug/kg ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND	3.8	1.3	ug/kg ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	3.8	0.58	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	3.8	1.1	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND	3.8	0.69	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	3.8	0.52	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	3.8	0.62	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND	3.8	1.3	ug/kg	1
2-Hexanone	591-78-6	8260B	ND	7.6	0.99	ug/kg	1
Isopropylbenzene	98-82-8	8260B	ND	3.8	0.61	ug/kg	1
Methyl acetate	79-20-9	8260B	ND	3.8	0.51	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	3.8	0.30	ug/kg ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	7.6	1.1	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND	3.8	0.46	ug/kg ug/kg	1
Methylene chloride	75-09-2	8260B	ND	3.8	2.0	ug/kg ug/kg	1
Styrene	100-42-5	8260B	ND	3.8	0.84	ug/kg ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	3.8	0.36	ug/kg ug/kg	1
Tetrachloroethene	79-34-3 127-18-4	8260B	ND	3.8	1.7	ug/kg ug/kg	1
Toluene	108-88-3	8260B	ND	3.8	1.7	ug/kg ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	3.8	1.6		1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND ND	3.8	1.6	ug/kg	1
						ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	3.8	0.65	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	3.8	0.60	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Client: ARCADIS U.S., Inc.

Description: H18-SB03(011410)(4-5)

410)(4-5)

Laboratory ID: LA15023-003

Matrix: Solid

% Solids: **78.4 01/15/2010 1943**

Date Sampled:01/14/2010 0930 Date Received: 01/15/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1700	DLB		25504	8.40

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Trichloroethene	79-01-6	8260B	ND	3.8	1.4	ug/kg	1
Trichlorofluoromethane	75-69-4	8260B	ND	3.8	1.1	ug/kg	1
Vinyl chloride	Number 79-01-6 79-01-6 75-69-4 75-01-4 1330-20-7 Run 1 Acceptance Q % Recovery Limits 95 53-142		ND	3.8	0.65	ug/kg	1
Xylenes (total)	1330-20-7	8260B	ND	3.8	2.2	ug/kg	1
Surrogate							
1,2-Dichloroethane-d4	95 53-1	42					
Bromofluorobenzene	116 47-1	38					
Toluene-d8	105 68-1	24					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

 $\mathsf{ND} = \mathsf{Not}$ detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB03(011410)(4-5)

Date Sampled:01/14/2010 0930

Date Received: 01/15/2010

Laboratory ID: LA15023-003

Matrix: Solid

% Solids: 78.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/22/2010 0012	MZ	01/19/2010 1136	25580

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		85	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		85	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		85	23	ug/kg	1
Anthracene	120-12-7	8270D	ND		85	9.4	ug/kg	1
Atrazine	1912-24-9	8270D	ND		85	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		85	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		85	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		85	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		85	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		85	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		85	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		85	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		85	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		170	56	ug/kg	1
Caprolactam	105-60-2	8270D	ND		85	22	ug/kg	1
Carbazole	86-74-8	8270D	ND		85	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		85	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		85	8.6	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		85	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		85	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		85	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		85	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		85	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		85	15	ug/kg	1
Chrysene	218-01-9	8270D	ND		85	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		85	12	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		85	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		420	46	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		85	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		85	28	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		85	28	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		85	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		85	28	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		420	160	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		420	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		170	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		170	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		85	41	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		85	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		85	13	ug/kg	1
Fluorene	86-73-7	8270D	ND		85	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		85	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		85	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		420	31	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 15 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB03(011410)(4-5)

Date Sampled:01/14/2010 0930

Date Received: 01/15/2010

Laboratory ID: LA15023-003

Matrix: Solid

% Solids: 78.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/22/2010 0012	MZ	01/19/2010 1136	25580

	CAS	Analytical						
Parameter	Number	Method	Result	Q I	PQL	MDL	Units	Run
Hexachloroethane	67-72-1	8270D	ND		85	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND		85	12	ug/kg	1
Isophorone	78-59-1	8270D	ND		85	9.4	ug/kg	1
2-Methylnaphthalene	91-57-6	8270D	ND		85	13	ug/kg	1
2-Methylphenol	95-48-7	8270D	ND		85	7.7	ug/kg	1
3 & 4-Methylphenol	106-44-5	8270D	ND		170	15	ug/kg	1
Naphthalene	91-20-3	8270D	ND		85	13	ug/kg	1
2-Nitroaniline	88-74-4	8270D	ND		170	29	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND		170	49	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND		170	24	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND		85	6.9	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND		170	23	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND		420	120	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND		85	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND		85	11	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND		420	180	ug/kg	1
Phenanthrene	85-01-8	8270D	ND		85	11	ug/kg	1
Phenol	108-95-2	8270D	ND		85	12	ug/kg	1
Pyrene	129-00-0	8270D	ND		85	17	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND		85	12	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND		85	13	ug/kg	1
Surrogate		ptance mits						
2-Fluorobiphenyl	61 33	3-102						
2-Fluorophenol	61 28	3-104						
Nitrobenzene-d5	56 22	2-109						
Phenol-d5	60 27	7-103						

41-120

30-117

PQL = Practical quantitation limit

Terphenyl-d14

2,4,6-Tribromophenol

B = Detected in the method blank

71

69

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB04(011410)(5-6)

Date Sampled:01/14/2010 0955

Date Received: 01/15/2010

Laboratory ID: LA15023-004

Matrix: Solid

% Solids: 80.6 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260B	1	01/19/2010 0120	DLB		25567	8.59

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acetone	67-64-1	8260B	19	14	4.8	ug/kg	2
Benzene	71-43-2	8260B	ND	3.6	0.79	ug/kg	2
Bromodichloromethane	75-27-4	8260B	ND	3.6	1.2	ug/kg	2
Bromoform	75-25-2	8260B	ND	3.6	0.51	ug/kg	2
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	3.6	1.3	ug/kg	2
2-Butanone (MEK)	78-93-3	8260B	ND	7.2	1.7	ug/kg	2
Carbon disulfide	75-15-0	8260B	ND	3.6	0.94	ug/kg	2
Carbon tetrachloride	56-23-5	8260B	ND	3.6	1.3	ug/kg	2
Chlorobenzene	108-90-7	8260B	ND	3.6	1.2	ug/kg	2
Chloroethane	75-00-3	8260B	ND	3.6	0.94	ug/kg	2
Chloroform	67-66-3	8260B	ND	3.6	0.60	ug/kg	2
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	3.6	0.72	ug/kg	2
Cyclohexane	110-82-7	8260B	ND	3.6	0.49	ug/kg	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	3.6	1.1	ug/kg	2
Dibromochloromethane	124-48-1	8260B	ND	3.6	1.2	ug/kg	2
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	3.6	0.61	ug/kg	2
1,2-Dichlorobenzene	95-50-1	8260B	ND	3.6	1.2	ug/kg	2
1,3-Dichlorobenzene	541-73-1	8260B	ND	3.6	1.2	ug/kg	2
1,4-Dichlorobenzene	106-46-7	8260B	ND	3.6	1.2	ug/kg	2
Dichlorodifluoromethane	75-71-8	8260B	ND	3.6	1.2	ug/kg	2
1,1-Dichloroethane	75-34-3	8260B	ND	3.6	0.53	ug/kg	2
1,2-Dichloroethane	107-06-2	8260B	ND	3.6	0.72	ug/kg	2
1,1-Dichloroethene	75-35-4	8260B	ND	3.6	1.2	ug/kg	2
cis-1,2-Dichloroethene	156-59-2	8260B	ND	3.6	0.55	ug/kg	2
trans-1,2-Dichloroethene	156-60-5	8260B	ND	3.6	1.1	ug/kg	2
1,2-Dichloropropane	78-87-5	8260B	ND	3.6	0.66	ug/kg	2
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	3.6	0.49	ug/kg	2
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	3.6	0.59	ug/kg	2
Ethylbenzene	100-41-4	8260B	ND	3.6	1.2	ug/kg	2
2-Hexanone	591-78-6	8260B	ND	7.2	0.94	ug/kg	2
Isopropylbenzene	98-82-8	8260B	ND	3.6	0.58	ug/kg	2
Methyl acetate	79-20-9	8260B	ND	3.6	0.48	ug/kg	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	3.6	0.29	ug/kg	2
4-Methyl-2-pentanone	108-10-1	8260B	ND	7.2	1.1	ug/kg	2
Methylcyclohexane	108-87-2	8260B	ND	3.6	0.44	ug/kg	2
Methylene chloride	75-09-2	8260B	ND	3.6	1.9	ug/kg	2
Styrene	100-42-5	8260B	ND	3.6	0.79	ug/kg	2
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	3.6	0.34	ug/kg	2
Tetrachloroethene	127-18-4	8260B	ND	3.6	1.7	ug/kg	2
Toluene	108-88-3	8260B	ND	3.6	1.2	ug/kg	2
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	3.6	1.5	ug/kg	2
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	3.6	1.2	ug/kg	2
1,1,1-Trichloroethane	71-55-6	8260B	ND	3.6	0.61	ug/kg	2
1,1,2-Trichloroethane	79-00-5	8260B	ND	3.6	0.57	ug/kg	2

PQL = Practical quantitation limit

B = Detected in the method blank

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

Client: ARCADIS U.S., Inc.

Description: H18-SB04(011410)(5-6)

Matrix: Solid

Batch

Laboratory ID: LA15023-004

Date Received: 01/15/2010

Run

Date Sampled:01/14/2010 0955

Prep Method

% Solids: 80.6 01/15/2010 1943

Sample Wt.(g)

2	5035	8260B	1	1 01/19/2010 0120 DLB				25567	9			
Paramete	r		I	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run	
Trichloroe	thene			79-01-6	8260B	ND		3.6	1.4	ug/kg	2	
Trichlorofle	uoromethane			75-69-4	8260B	ND		3.6	1.1	ug/kg	2	
Vinyl chlor	ride			75-01-4	8260B	ND		3.6	0.62	ug/kg	2	
Xylenes (t	otal)		13	30-20-7	8260B	ND		3.6	2.1	ug/kg	2	

Analyst

Prep Date

Dilution Analysis Date

Surrogate	Q	Run 2 A % Recovery	cceptance Limits
1,2-Dichloroethane-d4		77	53-142
Bromofluorobenzene		96	47-138
Toluene-d8		105	68-124

Analytical Method

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB04(011410)(5-6)

200011ption: 1110 0204(011410)(

Date Sampled:01/14/2010 0955

Date Received: 01/15/2010

Laboratory ID: LA15023-004

Matrix: Solid

% Solids: 80.6 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2105	JGH	01/19/2010 1136	25580

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	81	13	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	81	12	ug/kg	1
Acetophenone	98-86-2	8270D	ND	81	22	ug/kg	1
Anthracene	120-12-7	8270D	ND	81	8.9	ug/kg	1
Atrazine	1912-24-9	8270D	ND	81	20	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND	81	20	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	81	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	81	11	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	81	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	81	14	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	81	11	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND	81	12	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	81	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND	160	53	ug/kg	1
Caprolactam	105-60-2	8270D	ND	81	20	ug/kg	1
Carbazole	86-74-8	8270D	ND	81	17	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	81	10	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND	81	8.2	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	81	12	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	81	11	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND	81	13	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND	81	13	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND	81	11	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	81	14	ug/kg	1
Chrysene	218-01-9	8270D	ND	81	13	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	81	11	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND	81	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	400	44	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND	81	12	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND	81	27	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND	81	27	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND	81	15	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND	81	27	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	400	160	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	400	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	160	22	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	160	21	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND	81	39	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	81	27	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	81	13	ug/kg	1
Fluorene	86-73-7	8270D	ND	81	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND	81	18	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND	81	13	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	400	30	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

 $[\]label{eq:energy} {\sf E} = {\sf Quantitation} \ {\sf of} \ {\sf compound} \ {\sf exceeded} \ {\sf the} \ {\sf calibration} \ {\sf range}$

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB04(011410)(5-6)

Date Sampled:01/14/2010 0955

Date Received: 01/15/2010

Laboratory ID: LA15023-004

Matrix: Solid

% Solids: 80.6 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2105	JGH	01/19/2010 1136	25580

Parameter.		CAS	Analytical	December	•	DOL	MDI	11-26-	ъ.
Parameter		Number	Method	Result	Q	PQL	MDL	Units	Run
Hexachloroethane		67-72-1	8270D	ND		81	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND		81	12	ug/kg	1
Isophorone		78-59-1	8270D	ND		81	8.9	ug/kg	1
2-Methylnaphthalene		91-57-6	8270D	ND		81	12	ug/kg	1
2-Methylphenol		95-48-7	8270D	ND		81	7.3	ug/kg	1
3 & 4-Methylphenol		106-44-5	8270D	ND		160	14	ug/kg	1
Naphthalene		91-20-3	8270D	ND		81	12	ug/kg	1
2-Nitroaniline		88-74-4	8270D	ND		160	28	ug/kg	1
3-Nitroaniline		99-09-2	8270D	ND		160	47	ug/kg	1
4-Nitroaniline		100-01-6	8270D	ND		160	23	ug/kg	1
Nitrobenzene		98-95-3	8270D	ND		81	6.5	ug/kg	1
2-Nitrophenol		88-75-5	8270D	ND		160	22	ug/kg	1
4-Nitrophenol		100-02-7	8270D	ND		400	120	ug/kg	1
N-Nitrosodi-n-propylamine		621-64-7	8270D	ND		81	15	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)		86-30-6	8270D	ND		81	9.9	ug/kg	1
Pentachlorophenol		87-86-5	8270D	ND		400	170	ug/kg	1
Phenanthrene		85-01-8	8270D	ND		81	11	ug/kg	1
Phenol		108-95-2	8270D	ND		81	11	ug/kg	1
Pyrene		129-00-0	8270D	ND		81	16	ug/kg	1
2,4,5-Trichlorophenol		95-95-4	8270D	ND		81	11	ug/kg	1
2,4,6-Trichlorophenol		88-06-2	8270D	ND		81	12	ug/kg	1
Surrogate	Q	Run 1 Accept % Recovery Limi							
2-Fluorobiphenyl		55 33-1	02						
2-Fluorophenol		64 28-1	04						
Nitrobenzene-d5		62 22-1	09						
Phenol-d5		67 27-1	03						
Terphenyl-d14		56 41-1	20						
2,4,6-Tribromophenol		64 30-1	17						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB05(011410)(1-2)

Date Sampled:01/14/2010 1010

Date Received: 01/15/2010

Laboratory ID: LA15023-005

Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1756	DLB		25504	9.93

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acetone	67-64-1	8260B	11	J	13	4.3	ug/kg	1
Benzene	71-43-2	8260B	ND		3.2	0.71	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		3.2	1.1	ug/kg	1
Bromoform	75-25-2	8260B	ND		3.2	0.45	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		3.2	1.2	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		6.5	1.6	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		3.2	0.84	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		3.2	1.2	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		3.2	1.1	ug/kg	1
Chloroethane	75-00-3	8260B	ND		3.2	0.84	ug/kg	1
Chloroform	67-66-3	8260B	ND		3.2	0.54	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		3.2	0.65	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		3.2	0.44	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		3.2	0.97	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		3.2	1.1	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		3.2	0.55	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		3.2	1.1	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		3.2	1.1	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		3.2	1.1	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		3.2	1.0	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND		3.2	0.47	ug/kg	1
1,2-Dichloroethane	107-06-2	8260B	ND		3.2	0.65	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND		3.2	1.1	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		3.2	0.49	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND		3.2	0.97	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		3.2	0.59	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		3.2	0.44	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		3.2	0.53	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND		3.2	1.1	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		6.5	0.84	ug/kg	1
Isopropylbenzene	98-82-8	8260B	ND		3.2	0.52	ug/kg ug/kg	1
Methyl acetate	79-20-9	8260B	ND		3.2	0.43	ug/kg ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		3.2	0.26	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		6.5	0.97	ug/kg ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		3.2	0.40	ug/kg ug/kg	1
Methylene chloride	75-09-2	8260B	ND		3.2	1.7	ug/kg ug/kg	1
Styrene	100-42-5	8260B	ND		3.2	0.71	ug/kg ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		3.2	0.30	ug/kg ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND		3.2	1.5	ug/kg ug/kg	1
Toluene	108-88-3	8260B	ND		3.2	1.1	ug/kg ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		3.2	1.4	ug/kg ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		3.2	1.4	ug/kg ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		3.2	0.55	ug/kg ug/kg	1
1,1,2-Trichloroethane	71-33-6 79-00-5	8260B	ND		3.2	0.55		1
1,1,2-111011101061114116	7 9-00-5	OZOUD	טאו		٥.∠	0.51	ug/kg	'

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Client: ARCADIS U.S., Inc.

Description: H18-SB05(011410)(1-2)

Matrix: Solid

Laboratory ID: LA15023-005

% Solids: 77.7 01/15/2010 1943

Date Received: 01/15/2010

Date Sampled:01/14/2010 1010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1756	DLB		25504	9.93

Parameter		CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Trichloroethene		79-01-6	8260B	ND	3.2	1.2	ug/kg	1
Trichlorofluoromethane		75-69-4	8260B	ND	3.2	0.97	ug/kg	1
Vinyl chloride		75-01-4	8260B	ND	3.2	0.56	ug/kg	1
Xylenes (total)		1330-20-7	8260B	ND	3.2	1.9	ug/kg	1
Surrogate	Ru Q % Red							
1,2-Dichloroethane-d4	g	06 53-1	42					
Bromofluorobenzene	1	14 47-1	38					
Toluene-d8	1	05 68-1	24					

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB05(011410)(1-2)

Date Sampled:01/14/2010 1010

Date Received: 01/15/2010

Laboratory ID: LA15023-005

Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	
1	3550C	8270D	1	01/24/2010 2125	JGH	01/19/2010 1136	25580	

Parameter	CAS Number	Analytical Method	Result	Q P	QL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		86	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		86	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		86	23	ug/kg	1
Anthracene	120-12-7	8270D	ND		86	9.5	ug/kg	1
Atrazine	1912-24-9	8270D	ND		86	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		86	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		86	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		86	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		86	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		86	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		86	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		86	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		86	13	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		170	57	ug/kg	1
Caprolactam	105-60-2	8270D	ND		86	22	ug/kg	1
Carbazole	86-74-8	8270D	ND		86	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		86	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		86	8.7	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		86	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		86	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		86	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		86	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		86	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		86	15	ug/kg	1
Chrysene	218-01-9	8270D	ND		86	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		86	12	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		86	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4	420	47	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		86	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		86	28	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		86	28	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		86	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		86	28	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4	420	170	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	4	420	150	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	•	170	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	•	170	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		86	41	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		86	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		86	14	ug/kg	1
Fluorene	86-73-7	8270D	ND		86	12	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		86	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		86	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4	420	32	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 23 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB05(011410)(1-2)

Date Sampled:01/14/2010 1010

Date Received: 01/15/2010

Laboratory ID: LA15023-005

Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2125	JGH	01/19/2010 1136	25580

				nalytical	5 <i>1</i> ,	_	201			_
Parameter		Numb	er	Method	Result	Q	PQL	MDL	Units	Run
Hexachloroethane		67-72	2-1	8270D	ND		86	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39)-5	8270D	ND		86	13	ug/kg	1
Isophorone		78-59	9-1	8270D	ND		86	9.5	ug/kg	1
2-Methylnaphthalene		91-57	'- 6	8270D	ND		86	13	ug/kg	1
2-Methylphenol		95-48	3-7	8270D	ND		86	7.8	ug/kg	1
3 & 4-Methylphenol		106-44	-5	8270D	ND		170	15	ug/kg	1
Naphthalene		91-20)-3	8270D	ND		86	13	ug/kg	1
2-Nitroaniline		88-74	1-4	8270D	ND		170	29	ug/kg	1
3-Nitroaniline		99-09	9-2	8270D	ND		170	50	ug/kg	1
4-Nitroaniline		100-01	-6	8270D	ND		170	24	ug/kg	1
Nitrobenzene		98-95	5-3	8270D	ND		86	6.9	ug/kg	1
2-Nitrophenol		88-75	5-5	8270D	ND		170	24	ug/kg	1
4-Nitrophenol		100-02	2-7	8270D	ND		420	120	ug/kg	1
N-Nitrosodi-n-propylamine		621-64	- -7	8270D	ND		86	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)		86-30)-6	8270D	ND		86	11	ug/kg	1
Pentachlorophenol		87-86	S-5	8270D	ND		420	180	ug/kg	1
Phenanthrene		85-01	-8	8270D	ND		86	12	ug/kg	1
Phenol		108-95	i-2	8270D	ND		86	12	ug/kg	1
Pyrene		129-00)-0	8270D	ND		86	17	ug/kg	1
2,4,5-Trichlorophenol		95-95	5-4	8270D	ND		86	12	ug/kg	1
2,4,6-Trichlorophenol		88-06	6-2	8270D	ND		86	13	ug/kg	1
Surrogate	Q	Run 1 A	cceptance Limits							
2-Fluorobiphenyl		51	33-102							
2-Fluorophenol		53	28-104							
Nitrobenzene-d5		52	22-109							
Phenol-d5		55	27-103							
Terphenyl-d14		58	41-120							
2,4,6-Tribromophenol		66	30-117							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB06(011410)(1-2)

Date Sampled:01/14/2010 1025

Date Received: 01/15/2010

Laboratory ID: LA15023-006

Matrix: Solid

% Solids: 76.5 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260B	1	01/19/2010 0143	DLB		25567	8.21

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acetone	67-64-1	8260B	ND	16	5.3	ug/kg	2
Benzene	71-43-2	8260B	ND	4.0	0.88	ug/kg	2
Bromodichloromethane	75-27-4	8260B	ND	4.0	1.4	ug/kg	2
Bromoform	75-25-2	8260B	ND	4.0	0.56	ug/kg	2
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	4.0	1.4	ug/kg	2
2-Butanone (MEK)	78-93-3	8260B	ND	8.0	1.9	ug/kg	2
Carbon disulfide	75-15-0	8260B	ND	4.0	1.0	ug/kg	2
Carbon tetrachloride	56-23-5	8260B	ND	4.0	1.4	ug/kg	2
Chlorobenzene	108-90-7	8260B	ND	4.0	1.4	ug/kg	2
Chloroethane	75-00-3	8260B	ND	4.0	1.0	ug/kg	2
Chloroform	67-66-3	8260B	ND	4.0	0.66	ug/kg	2
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	4.0	0.80	ug/kg	2
Cyclohexane	110-82-7	8260B	ND	4.0	0.54	ug/kg	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	4.0	1.2	ug/kg	2
Dibromochloromethane	124-48-1	8260B	ND	4.0	1.4	ug/kg	2
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	4.0	0.68	ug/kg	2
1,2-Dichlorobenzene	95-50-1	8260B	ND	4.0	1.4	ug/kg	2
1,3-Dichlorobenzene	541-73-1	8260B	ND	4.0	1.4	ug/kg	2
1,4-Dichlorobenzene	106-46-7	8260B	ND	4.0	1.4	ug/kg	2
Dichlorodifluoromethane	75-71-8	8260B	ND	4.0	1.3	ug/kg	2
1,1-Dichloroethane	75-34-3	8260B	ND	4.0	0.58	ug/kg	2
1,2-Dichloroethane	107-06-2	8260B	ND	4.0	0.80	ug/kg	2
1,1-Dichloroethene	75-35-4	8260B	ND	4.0	1.4	ug/kg	2
cis-1,2-Dichloroethene	156-59-2	8260B	ND	4.0	0.61	ug/kg	2
trans-1,2-Dichloroethene	156-60-5	8260B	ND	4.0	1.2	ug/kg	2
1,2-Dichloropropane	78-87-5	8260B	ND	4.0	0.72	ug/kg	2
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	4.0	0.54	ug/kg	2
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	4.0	0.65	ug/kg	2
Ethylbenzene	100-41-4	8260B	ND	4.0	1.4	ug/kg	2
2-Hexanone	591-78-6	8260B	ND	8.0	1.0	ug/kg	2
Isopropylbenzene	98-82-8	8260B	ND	4.0	0.64	ug/kg	2
Methyl acetate	79-20-9	8260B	ND	4.0	0.53	ug/kg	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	4.0	0.32	ug/kg	2
4-Methyl-2-pentanone	108-10-1	8260B	ND	8.0	1.2	ug/kg	2
Methylcyclohexane	108-87-2	8260B	ND	4.0	0.49	ug/kg	2
Methylene chloride	75-09-2	8260B	ND	4.0	2.1	ug/kg	2
Styrene	100-42-5	8260B	ND	4.0	0.88	ug/kg	2
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	4.0	0.37	ug/kg	2
Tetrachloroethene	127-18-4	8260B	ND	4.0	1.8	ug/kg	2
Toluene	108-88-3	8260B	ND	4.0	1.4	ug/kg	2
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	4.0	1.7	ug/kg	2
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	4.0	1.4	ug/kg	2
1,1,1-Trichloroethane	71-55-6	8260B	ND	4.0	0.68	ug/kg	2
1,1,2-Trichloroethane	79-00-5	8260B	ND	4.0	0.63	ug/kg	2
• • • • • • • • • • • • • • • • • • • •						- 3 3	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Client: ARCADIS U.S., Inc.

Laboratory ID: LA15023-006

Description: H18-SB06(011410)(1-2)

Matrix: Solid

% Solids: 76.5 01/15/2010 1943

Date Received: 01/15/2010

Date Sampled:01/14/2010 1025

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260B	1	01/19/2010 0143	DLB		25567	8.21

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-0	1-6	8260B	ND		4.0	1.5	ug/kg	2
Trichlorofluoromethane		75-6	9-4	8260B	ND		4.0	1.2	ug/kg	2
Vinyl chloride		75-0	1-4	8260B	ND		4.0	0.68	ug/kg	2
Xylenes (total)		1330-2	0-7	8260B	ND		4.0	2.3	ug/kg	2
Surrogate	Q %	Run 2 A % Recovery	cceptan Limits							
1,2-Dichloroethane-d4		95	53-142							
Bromofluorobenzene		111	47-138	;						
Toluene-d8		108	68-124	Į.						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB06(011410)(1-2)

Date Sampled:01/14/2010 1025

Date Received: 01/15/2010

Laboratory ID: LA15023-006

Matrix: Solid

% Solids: 76.5 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2146	JGH	01/19/2010 1136	25580

	CAS	Analytical						
Parameter	Number	Method	Result	Q PQL	MDL	Units	Run	
Acenaphthene	83-32-9	8270D	ND	87	14	ug/kg	1	
Acenaphthylene	208-96-8	8270D	ND	87	13	ug/kg	1	
Acetophenone	98-86-2	8270D	ND	87	23	ug/kg	1	
Anthracene	120-12-7	8270D	ND	87	9.6	ug/kg	1	
Atrazine	1912-24-9	8270D	ND	87	22	ug/kg	1	
Benzaldehyde	100-52-7	8270D	ND	87	22	ug/kg	1	
Benzo(a)anthracene	56-55-3	8270D	ND	87	11	ug/kg	1	
Benzo(a)pyrene	50-32-8	8270D	ND	87	12	ug/kg	1	
Benzo(b)fluoranthene	205-99-2	8270D	ND	87	12	ug/kg	1	
Benzo(g,h,i)perylene	191-24-2	8270D	ND	87	15	ug/kg	1	
Benzo(k)fluoranthene	207-08-9	8270D	ND	87	12	ug/kg	1	
1,1'-Biphenyl	92-52-4	8270D	ND	87	13	ug/kg	1	
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	87	13	ug/kg	1	
Butyl benzyl phthalate	85-68-7	8270D	ND	170	57	ug/kg	1	
Caprolactam	105-60-2	8270D	ND	87	22	ug/kg	1	
Carbazole	86-74-8	8270D	ND	87	18	ug/kg	1	
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	87	11	ug/kg	1	
4-Chloroaniline	106-47-8	8270D	ND	87	8.8	ug/kg	1	
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	87	13	ug/kg	1	
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	87	12	ug/kg	1	
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND	87	14	ug/kg	1	
2-Chloronaphthalene	91-58-7	8270D	ND	87	14	ug/kg	1	
2-Chlorophenol	95-57-8	8270D	ND	87	12	ug/kg	1	
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	87	15	ug/kg	1	
Chrysene	218-01-9	8270D	ND	87	14	ug/kg	1	
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	87	12	ug/kg	1	
Dibenzofuran	132-64-9	8270D	ND	87	14	ug/kg	1	
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	430	47	ug/kg	1	
2,4-Dichlorophenol	120-83-2	8270D	ND	87	13	ug/kg	1	
Diethylphthalate	84-66-2	8270D	ND	87	28	ug/kg	1	
Dimethyl phthalate	131-11-3	8270D	ND	87	28	ug/kg	1	
2,4-Dimethylphenol	105-67-9	8270D	ND	87	16	ug/kg	1	
Di-n-butyl phthalate	84-74-2	8270D	ND	87	28	ug/kg	1	
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	430	170	ug/kg	1	
2,4-Dinitrophenol	51-28-5	8270D	ND	430	150	ug/kg	1	
2,4-Dinitrotoluene	121-14-2	8270D	ND	170	24	ug/kg	1	
2,6-Dinitrotoluene	606-20-2	8270D	ND	170	22	ug/kg	1	
Di-n-octylphthalate	117-84-0	8270D	ND	87		ug/kg	1	
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	87	28	ug/kg	1	
Fluoranthene	206-44-0	8270D	ND	87	14	ug/kg	1	
Fluorene	86-73-7	8270D	ND	87	12	ug/kg	1	
Hexachlorobenzene	118-74-1	8270D	ND	87	19	ug/kg	1	
Hexachlorobutadiene	87-68-3	8270D	ND	87		ug/kg	1	
Hexachlorocyclopentadiene	77-47-4	8270D	ND	430	32	ug/kg	1	
				, ,		5 5		

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Page: 27 of 85 Level 1 Report v2.1

Client: ARCADIS U.S., Inc.

Description: H18-SB06(011410)(1-2)

Date Sampled:01/14/2010 1025

Laboratory ID: LA15023-006

Matrix: Solid

% Solids: 76.5 01/15/2010 1943

Date Received: 01/15/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 1 3550C 8270D 01/24/2010 2146 JGH 01/19/2010 1136 25580

Method 8270D	Result	Q PQL	MDL	Units	Run
8270D				_	
	ND	87	11	ug/kg	1
8270D	ND	87	13	ug/kg	1
8270D	ND	87	9.5	ug/kg	1
8270D	ND	87	13	ug/kg	1
8270D	ND	87	7.8	ug/kg	1
8270D	ND	170	15	ug/kg	1
8270D	ND	87	13	ug/kg	1
8270D	ND	170	30	ug/kg	1
8270D	ND	170	50	ug/kg	1
8270D	ND	170	25	ug/kg	1
8270D	ND	87	7.0	ug/kg	1
8270D	ND	170	24	ug/kg	1
8270D	ND	430	120	ug/kg	1
8270D	ND	87	17	ug/kg	1
8270D	ND	87	11	ug/kg	1
8270D	ND	430	180	ug/kg	1
8270D	ND	87	12	ug/kg	1
8270D	ND	87	12	ug/kg	1
8270D	ND	87	17	ug/kg	1
8270D	ND	87	12	ug/kg	1
8270D	ND	87	13	ug/kg	1
	8270D 8270D 8270D 8270D 8270D 8270D	8270D ND 8270D ND 8270D ND 8270D ND 8270D ND 8270D ND	8270D ND 430 8270D ND 87 8270D ND 87 8270D ND 87 8270D ND 87 8270D ND 87	8270D ND 430 180 8270D ND 87 12 8270D ND 87 12 8270D ND 87 17 8270D ND 87 12 8270D ND 87 13	8270D ND 87 11 ug/kg 8270D ND 430 180 ug/kg 8270D ND 87 12 ug/kg 8270D ND 87 12 ug/kg 8270D ND 87 17 ug/kg 8270D ND 87 12 ug/kg 8270D ND 87 12 ug/kg 8270D ND 87 13 ug/kg

Surrogate	Q	% Recovery	Limits
2-Fluorobiphenyl		63	33-102
2-Fluorophenol		88	28-104
Nitrobenzene-d5		58	22-109
Phenol-d5		58	27-103
Terphenyl-d14		64	41-120
2,4,6-Tribromophenol		74	30-117

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB07(011410)(1-2)

Date Sampled:01/14/2010 1040

Laboratory ID: LA15023-007 Matrix: Solid

% Solids: 77.2 01/15/2010 1943

Date Received: 01/15/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date Batch** Sample Wt.(g) 5035 8260B 01/18/2010 1843 DLB 25504 10.85

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acetone	67-64-1	8260B	ND		12	4.0	ug/kg	1
Benzene	71-43-2	8260B	ND		3.0	0.66	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		3.0	1.0	ug/kg	1
Bromoform	75-25-2	8260B	ND		3.0	0.42	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		3.0	1.1	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		6.0	1.4	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		3.0	0.78	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		3.0	1.1	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		3.0	1.0	ug/kg	1
Chloroethane	75-00-3	8260B	ND		3.0	0.78	ug/kg	1
Chloroform	67-66-3	8260B	ND		3.0	0.50	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		3.0	0.60	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		3.0	0.40	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		3.0	0.89	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		3.0	1.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		3.0	0.51	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		3.0	1.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		3.0	1.0	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		3.0	1.0	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		3.0	0.95	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND		3.0	0.44	ug/kg	1
1.2-Dichloroethane	107-06-2	8260B	ND		3.0	0.60	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND		3.0	1.0	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		3.0	0.45	ug/kg	1
rans-1,2-Dichloroethene	156-60-5	8260B	ND		3.0	0.89	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		3.0	0.54	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		3.0	0.41	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		3.0	0.49	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND		3.0	1.0	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		6.0	0.78	ug/kg	1
sopropylbenzene	98-82-8	8260B	ND		3.0	0.48	ug/kg	1
Methyl acetate	79-20-9	8260B	ND		3.0	0.40	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		3.0	0.24	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		6.0	0.89	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		3.0	0.36	ug/kg	1
Methylene chloride	75-09-2	8260B	ND		3.0	1.6	ug/kg	1
Styrene	100-42-5	8260B	ND		3.0	0.66	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		3.0	0.28	ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND		3.0	1.4	ug/kg	1
Toluene	108-88-3	8260B	ND		3.0	1.0	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		3.0	1.3	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		3.0	1.0	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		3.0	0.51	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		3.0	0.47	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

Client: ARCADIS U.S., Inc.

Description: H18-SB07(011410)(1-2)

Laboratory ID: LA15023-007

Matrix: Solid

Date Sampled:01/14/2010 1040

% Solids: 77.2 01/15/2010 1943

Date Received: 01/15/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1843	DLB		25504	10.85

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-0	1-6	8260B	ND		3.0	1.1	ug/kg	1
Trichlorofluoromethane		75-6	9-4	8260B	ND		3.0	0.89	ug/kg	1
Vinyl chloride		75-0	1-4	8260B	ND		3.0	0.51	ug/kg	1
Xylenes (total)		1330-2	0-7	8260B	ND		3.0	1.7	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	cceptan Limits							
1,2-Dichloroethane-d4		99	53-142	<u>)</u>						
Bromofluorobenzene		117	47-138	3						
Toluene-d8		110	68-124	ļ						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB07(011410)(1-2)

Date Sampled:01/14/2010 1040

Date Received: 01/15/2010

Laboratory ID: LA15023-007

Matrix: Solid

% Solids: 77.2 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2206	JGH	01/19/2010 1136	25580

Parameter	CAS Number	Analytical Method	Result	Q P	QL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		86	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		86	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		86	23	ug/kg	1
Anthracene	120-12-7	8270D	ND		86	9.5	ug/kg	1
Atrazine	1912-24-9	8270D	ND		86	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		86	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		86	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		86	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		86	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		86	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		86	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		86	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		86	13	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		170	57	ug/kg	1
Caprolactam	105-60-2	8270D	ND		86	22	ug/kg	1
Carbazole	86-74-8	8270D	ND		86	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		86	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		86	8.7	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		86	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		86	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		86	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		86	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		86	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		86	15	ug/kg	1
Chrysene	218-01-9	8270D	ND		86	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		86	12	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		86	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	4	420	47	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		86	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		86	28	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		86	28	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		86	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		86	28	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	4	420	170	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	4	420	150	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	•	170	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	•	170	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		86	41	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		86	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		86	14	ug/kg	1
Fluorene	86-73-7	8270D	ND		86	12	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		86	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		86	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	4	420	32	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 31 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB07(011410)(1-2)

Date Sampled:01/14/2010 1040

Date Received: 01/15/2010

Laboratory ID: LA15023-007

Matrix: Solid

% Solids: 77.2 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2206	JGH	01/19/2010 1136	25580

Hexachloroethane Indeno(1,2,3-c,d)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 3 & 4-Methylphenol Naphthalene 2-Nitroaniline	67-72-1 193-39-5 78-59-1 91-57-6 95-48-7 106-44-5	8270D 8270D 8270D 8270D	ND ND ND	86 86 86	11 13	ug/kg	1
Isophorone 2-Methylnaphthalene 2-Methylphenol 3 & 4-Methylphenol Naphthalene	78-59-1 91-57-6 95-48-7	8270D 8270D	ND		13	/1	
2-Methylnaphthalene 2-Methylphenol 3 & 4-Methylphenol Naphthalene	91-57-6 95-48-7	8270D		86		ug/kg	1
2-Methylphenol 3 & 4-Methylphenol Naphthalene	95-48-7			00	9.5	ug/kg	1
3 & 4-Methylphenol Naphthalene		00705	ND	86	13	ug/kg	1
Naphthalene	106-44-5	8270D	ND	86	7.8	ug/kg	1
•		8270D	ND	170	15	ug/kg	1
2-Nitroaniline	91-20-3	8270D	ND	86	13	ug/kg	1
	88-74-4	8270D	ND	170	29	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND	170	50	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND	170	24	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND	86	6.9	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND	170	24	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND	420	120	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	86	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	86	11	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND	420	180	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	86	12	ug/kg	1
Phenol	108-95-2	8270D	ND	86	12	ug/kg	1
Pyrene	129-00-0	8270D	ND	86	17	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	86	12	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	86	13	ug/kg	1
Surrogate Q	Run 1 Accept % Recovery Limi						
2-Fluorobiphenyl	47 33-1	02					
2-Fluorophenol	47 28-1	04					
Nitrobenzene-d5	49 22-1	09					
Phenol-d5	49 27-1	03					
Terphenyl-d14	64 41-1	20					

PQL = Practical quantitation limit

2,4,6-Tribromophenol

B = Detected in the method blank

72

30-117

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB08(011410)(2-3)

Date Sampled:01/14/2010 1055

Laboratory ID: LA15023-008 Matrix: Solid

% Solids: 78.3 01/15/2010 1943

Date Received: 01/15/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date Batch** Sample Wt.(g) 5035 8260B 01/18/2010 1907 DLB 25504 9.56

	CAS	Analytical						
Parameter	Number	Method	Result	Q PQL	MDL	Units	Run	
Acetone	67-64-1	8260B	52	13	4.5	ug/kg	1	
Benzene	71-43-2	8260B	ND	3.3	0.73	ug/kg	1	
Bromodichloromethane	75-27-4	8260B	ND	3.3	1.1	ug/kg	1	
Bromoform	75-25-2	8260B	ND	3.3	0.47	ug/kg	1	
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	3.3	1.2	ug/kg	1	
2-Butanone (MEK)	78-93-3	8260B	ND	6.7	1.6	ug/kg	1	
Carbon disulfide	75-15-0	8260B	ND	3.3	0.87	ug/kg	1	
Carbon tetrachloride	56-23-5	8260B	ND	3.3	1.2	ug/kg	1	
Chlorobenzene	108-90-7	8260B	ND	3.3	1.1	ug/kg	1	
Chloroethane	75-00-3	8260B	ND	3.3	0.87	ug/kg	1	
Chloroform	67-66-3	8260B	ND	3.3	0.55	ug/kg	1	
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	3.3	0.67	ug/kg	1	
Cyclohexane	110-82-7	8260B	ND	3.3	0.45	ug/kg	1	
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	3.3	1.0	ug/kg	1	
Dibromochloromethane	124-48-1	8260B	ND	3.3	1.1	ug/kg	1	
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	3.3	0.57	ug/kg	1	
1,2-Dichlorobenzene	95-50-1	8260B	ND	3.3	1.1	ug/kg	1	
1,3-Dichlorobenzene	541-73-1	8260B	ND	3.3	1.1	ug/kg	1	
1,4-Dichlorobenzene	106-46-7	8260B	ND	3.3	1.1	ug/kg	1	
Dichlorodifluoromethane	75-71-8	8260B	ND	3.3	1.1	ug/kg	1	
1,1-Dichloroethane	75-34-3	8260B	ND	3.3	0.49	ug/kg	1	
1,2-Dichloroethane	107-06-2	8260B	ND	3.3	0.67	ug/kg	1	
1,1-Dichloroethene	75-35-4	8260B	ND	3.3	1.1	ug/kg	1	
cis-1,2-Dichloroethene	156-59-2	8260B	ND	3.3	0.51	ug/kg	1	
trans-1,2-Dichloroethene	156-60-5	8260B	ND	3.3	1.0	ug/kg	1	
1,2-Dichloropropane	78-87-5	8260B	ND	3.3	0.61	ug/kg	1	
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	3.3	0.45	ug/kg	1	
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	3.3	0.55	ug/kg	1	
Ethylbenzene	100-41-4	8260B	ND	3.3	1.1	ug/kg	1	
2-Hexanone	591-78-6	8260B	ND	6.7	0.87	ug/kg	1	
Isopropylbenzene	98-82-8	8260B	ND	3.3	0.53	ug/kg	1	
Methyl acetate	79-20-9	8260B	ND	3.3	0.45	ug/kg	1	
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	3.3	0.27	ug/kg	1	
4-Methyl-2-pentanone	108-10-1	8260B	ND	6.7	1.0	ug/kg	1	
Methylcyclohexane	108-87-2	8260B	ND	3.3	0.41	ug/kg	1	
Methylene chloride	75-09-2	8260B	ND	3.3	1.7	ug/kg	1	
Styrene	100-42-5	8260B	ND	3.3	0.73	ug/kg	1	
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	3.3	0.31	ug/kg	1	
Tetrachloroethene	127-18-4	8260B	ND	3.3	1.5	ug/kg	1	
Toluene	108-88-3	8260B	ND	3.3	1.1	ug/kg	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	3.3	1.4	ug/kg	1	
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	3.3	1.1	ug/kg	1	
1,1,1-Trichloroethane	71-55-6	8260B	ND	3.3	0.57	ug/kg	1	
1,1,2-Trichloroethane	79-00-5	8260B	ND	3.3	0.53	ug/kg	1	
ı,ı,∠-ıricnioroetnane	79-00-5	8260B	ND	3.3	0.53	ug/kg	1	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Page: 33 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB08(011410)(2-3)

Laboratory ID: LA15023-008

Matrix: Solid

% Solids: 78.3 01/15/2010 1943

Date Sampled:01/14/2010 1055

Date Received: 01/15/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch Sample Wt.(g) 5035 8260B 01/18/2010 1907 DLB 25504 9.56

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-0	1-6	8260B	ND		3.3	1.3	ug/kg	1
Trichlorofluoromethane		75-6	9-4	8260B	ND		3.3	1.0	ug/kg	1
Vinyl chloride		75-0	1-4	8260B	ND		3.3	0.57	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		3.3	1.9	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptar Limits							
1,2-Dichloroethane-d4		86	53-142	2			•	•	•	
Bromofluorobenzene		99	47-138	3						
Toluene-d8		92	68-124	1						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB08(011410)(2-3)

Description: H16-3B06(011410)(2-3

Date Sampled:01/14/2010 1055

Date Received: **01/15/2010**

Laboratory ID: LA15023-008

Matrix: Solid

% Solids: 78.3 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2226	JGH	01/19/2010 1136	25580

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		83	13	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		83	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		83	22	ug/kg	1
Anthracene	120-12-7	8270D	ND		83	9.2	ug/kg	1
Atrazine	1912-24-9	8270D	ND		83	21	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		83	21	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		83	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		83	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		83	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		83	14	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		83	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		83	12	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		83	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		160	55	ug/kg	1
Caprolactam	105-60-2	8270D	ND		83	21	ug/kg	1
Carbazole	86-74-8	8270D	ND		83	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		83	10	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		83	8.4	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		83	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		83	11	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		83	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		83	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		83	11	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		83	14	ug/kg	1
Chrysene	218-01-9	8270D	ND		83	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		83	11	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		83	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		410	45	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		83	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		83	27	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		83	27	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		83	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		83	27	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		410	160	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		410	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		160	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		160	21	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		83	40	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		83	27	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		83	13	ug/kg	1
Fluorene	86-73-7	8270D	ND		83	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		83	18	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		83	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		410	30	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

 $\label{eq:energy} {\sf E} = {\sf Quantitation} \ {\sf of} \ {\sf compound} \ {\sf exceeded} \ {\sf the} \ {\sf calibration} \ {\sf range}$

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Client: ARCADIS U.S., Inc.

Description: H18-SB08(011410)(2-3)

Date Sampled:01/14/2010 1055

Date Received: 01/15/2010

Laboratory ID: LA15023-008

Matrix: Solid

% Solids: 78.3 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2226	JGH	01/19/2010 1136	25580

Parameter	C Num	AS Analytical ber Method	Result	Q PQ	L MDL	Units	Run
Hexachloroethane	67-7	2-1 8270D	ND	8	3 11	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-3	9-5 8270D	ND	8	3 12	ug/kg	1
Isophorone	78-5	9-1 8270D	ND	8	3 9.1	ug/kg	1
2-Methylnaphthalene	91-5	7-6 8270D	ND	8	3 12	ug/kg	1
2-Methylphenol	95-4	8-7 8270D	ND	8	3 7.5	ug/kg	1
3 & 4-Methylphenol	106-4	4-5 8270D	ND	16	0 15	ug/kg	1
Naphthalene	91-2	0-3 8270D	ND	8	3 13	ug/kg	1
2-Nitroaniline	88-7	4-4 8270D	ND	16	0 28	ug/kg	1
3-Nitroaniline	99-0	9-2 8270D	ND	16	0 48	ug/kg	1
4-Nitroaniline	100-0	1-6 8270D	ND	16	0 24	ug/kg	1
Nitrobenzene	98-9	5-3 8270D	ND	8	3 6.7	ug/kg	1
2-Nitrophenol	88-7	5-5 8270D	ND	16	0 23	ug/kg	1
4-Nitrophenol	100-0	2-7 8270D	ND	41	0 120	ug/kg	1
N-Nitrosodi-n-propylamine	621-6	4-7 8270D	ND	8	3 16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-3	0-6 8270D	ND	8	3 10	ug/kg	1
Pentachlorophenol	87-8	6-5 8270D	ND	41	0 170	ug/kg	1
Phenanthrene	85-0	1-8 8270D	ND	8	3 11	ug/kg	1
Phenol	108-9	5-2 8270D	ND	8	3 11	ug/kg	1
Pyrene	129-0	0-0 8270D	ND	8	3 16	ug/kg	1
2,4,5-Trichlorophenol	95-9	5-4 8270D	ND	8	3 12	ug/kg	1
2,4,6-Trichlorophenol	88-0	6-2 8270D	ND	8	3 12	ug/kg	1
Surrogate	Run 1 A Q % Recovery	cceptance Limits					
2-Fluorobiphenyl	51	33-102					
2-Fluorophenol	62	28-104					
Nitrobenzene-d5	55	22-109					
Phenol-d5	54	27-103					
Terphenyl-d14	57	41-120					

30-117

PQL = Practical quantitation limit

2,4,6-Tribromophenol

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

64

H = Out of holding time N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB09(011410)(2-3)

Date Sampled:01/14/2010 1110

Date Received: 01/15/2010

Laboratory ID: LA15023-009

Matrix: Solid

% Solids: 79.6 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1930	DLB		25504	7.41

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acetone	67-64-1	8260B	65	17	5.7	ug/kg	1
Benzene	71-43-2	8260B	ND	4.2	0.93	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND	4.2	1.4	ug/kg	1
Bromoform	75-25-2	8260B	ND	4.2	0.59	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	4.2	1.5	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND	8.5	2.0	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND	4.2	1.1	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND	4.2	1.5	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND	4.2	1.4	ug/kg	1
Chloroethane	75-00-3	8260B	ND	4.2	1.1	ug/kg	1
Chloroform	67-66-3	8260B	ND	4.2	0.70	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	4.2	0.85	ug/kg	1
Cyclohexane	110-82-7	8260B	ND	4.2	0.57	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	4.2	1.3	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND	4.2	1.4	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	4.2	0.72	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	4.2	1.4	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	4.2	1.4	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	4.2	1.4	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND	4.2	1.4	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND	4.2	0.62	ug/kg	1
1,2-Dichloroethane	107-06-2	8260B	ND	4.2	0.85	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND	4.2	1.4	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	4.2	0.64	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	4.2	1.3	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND	4.2	0.77	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	4.2	0.58	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	4.2	0.69	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND	4.2	1.4	ug/kg	1
2-Hexanone	591-78-6	8260B	ND	8.5	1.1	ug/kg	1
Isopropylbenzene	98-82-8	8260B	ND	4.2	0.68	ug/kg	1
Methyl acetate	79-20-9	8260B	ND	4.2	0.57	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	4.2	0.34	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	8.5	1.3	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND	4.2	0.52	ug/kg	1
Methylene chloride	75-09-2	8260B	ND	4.2	2.2	ug/kg	1
Styrene	100-42-5	8260B	ND	4.2	0.93	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	4.2	0.40	ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND	4.2	1.9	ug/kg	1
Toluene	108-88-3	8260B	ND	4.2	1.4	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	4.2	1.8	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	4.2	1.4	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	4.2	0.72	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	4.2	0.67	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

E = Quantitation of compound exceeded the calibration range

Client: ARCADIS U.S., Inc.

Description: H18-SB09(011410)(2-3)

P00/044440\/2-2\

Laboratory ID: LA15023-009

Matrix: Solid

% Solids: 79.6 01/15/2010 1943

Date Received: 01/15/2010

Date Sampled:01/14/2010 1110

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 1930	DI B		25504	7.41

Parameter	Num		Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene	79-0	01-6	8260B	ND		4.2	1.6	ug/kg	1
Trichlorofluoromethane	75-6	69-4	8260B	ND		4.2	1.3	ug/kg	1
Vinyl chloride	75-0	01-4	8260B	ND		4.2	0.73	ug/kg	1
Xylenes (total)	1330-2	20-7	8260B	ND		4.2	2.5	ug/kg	1
Surrogate	Run 1 / Q % Recovery	Acceptanc Limits	е						
1,2-Dichloroethane-d4	96	53-142							
Bromofluorobenzene	125	47-138							
Toluene-d8	107	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB09(011410)(2-3)

Date Sampled:01/14/2010 1110

Date Received: 01/15/2010

Laboratory ID: LA15023-009

Matrix: Solid

% Solids: 79.6 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2246	JGH	01/19/2010 1136	25580

	CAS	Analytical					
Parameter	Number	Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	83	13	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	83	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND	83	22	ug/kg	1
Anthracene	120-12-7	8270D	ND	83	9.1	ug/kg	1
Atrazine	1912-24-9	8270D	ND	83	21	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND	83	21	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	83	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	83	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	83	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	83	14	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	83	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND	83	12	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	83	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND	160	54	ug/kg	1
Caprolactam	105-60-2	8270D	ND	83	21	ug/kg	1
Carbazole	86-74-8	8270D	ND	83	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	83	10	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND	83	8.4	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	83	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	83	11	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND	83	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND	83	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND	83	11	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	83	14	ug/kg	1
Chrysene	218-01-9	8270D	ND	83	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	83	11	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND	83	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	410	45	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND	83	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND	83	27	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND	83	27	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND	83	15	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND	83	27	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	410	160	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	410	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	160	22	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	160	21	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND	83	40	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	83	27	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	83	13	ug/kg	1
Fluorene	86-73-7	8270D	ND	83	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND	83	18	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND	83	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	410	30	ug/kg	1
, , 						3 0	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 39 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB09(011410)(2-3)

Date Sampled:01/14/2010 1110

Date Received: 01/15/2010

Laboratory ID: LA15023-009

Matrix: Solid

% Solids: 79.6 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2246	JGH	01/19/2010 1136	25580

Parameter	Nur		alytical lethod	Result	Q	PQL	MDL	Units	Run
Hexachloroethane	67-	72-1	8270D	ND		83	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-	39-5	8270D	ND		83	12	ug/kg	1
Isophorone	78-	59-1	8270D	ND		83	9.1	ug/kg	1
2-Methylnaphthalene	91-	57-6	8270D	ND		83	12	ug/kg	1
2-Methylphenol	95-	48-7	8270D	ND		83	7.4	ug/kg	1
3 & 4-Methylphenol	106-	44-5	8270D	ND		160	15	ug/kg	1
Naphthalene	91-	20-3	8270D	ND		83	13	ug/kg	1
2-Nitroaniline	88-	74-4	8270D	ND		160	28	ug/kg	1
3-Nitroaniline	99-	09-2	8270D	ND		160	48	ug/kg	1
4-Nitroaniline	100-	01-6	8270D	ND		160	23	ug/kg	1
Nitrobenzene	98-	95-3	8270D	ND		83	6.6	ug/kg	1
2-Nitrophenol	88-	75-5	8270D	ND		160	23	ug/kg	1
4-Nitrophenol	100-	02-7	8270D	ND		410	120	ug/kg	1
N-Nitrosodi-n-propylamine	621-	64-7	8270D	ND		83	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-	30-6	8270D	ND		83	10	ug/kg	1
Pentachlorophenol	87-	86-5	8270D	ND		410	170	ug/kg	1
Phenanthrene	85-	01-8	8270D	ND		83	11	ug/kg	1
Phenol	108-	95-2	8270D	ND		83	11	ug/kg	1
Pyrene	129-	00-0	8270D	ND		83	16	ug/kg	1
2,4,5-Trichlorophenol	95-	95-4	8270D	ND		83	12	ug/kg	1
2,4,6-Trichlorophenol	88-	06-2	8270D	ND		83	12	ug/kg	1
Surrogate	Run 1 Q % Recovery	Acceptance Limits							
2-Fluorobiphenyl	46	33-102							
2-Fluorophenol	46	28-104							
Nitrobenzene-d5	46	22-109							
Phenol-d5	50	27-103							
Terphenyl-d14	60	41-120							

30-117

PQL = Practical quantitation limit

2,4,6-Tribromophenol

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

66

Client: ARCADIS U.S., Inc.

Description: H18-SB10(011410)(4-5)

Date Sampled:01/14/2010 1130

Date Received: 01/15/2010

Laboratory ID: LA15023-010

Matrix: Solid

% Solids: 78.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260B	1	01/19/2010 0206	DLB		25567	11.44

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acetone	67-64-1	8260B	ND	11	3.7	ug/kg	2
Benzene	71-43-2	8260B	ND	2.8	0.61	ug/kg	2
Bromodichloromethane	75-27-4	8260B	ND	2.8	0.94	ug/kg	2
Bromoform	75-25-2	8260B	ND	2.8	0.39	ug/kg	2
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	2.8	1.0	ug/kg	2
2-Butanone (MEK)	78-93-3	8260B	ND	5.6	1.3	ug/kg	2
Carbon disulfide	75-15-0	8260B	ND	2.8	0.72	ug/kg	2
Carbon tetrachloride	56-23-5	8260B	ND	2.8	1.0	ug/kg	2
Chlorobenzene	108-90-7	8260B	ND	2.8	0.94	ug/kg	2
Chloroethane	75-00-3	8260B	ND	2.8	0.72	ug/kg	2
Chloroform	67-66-3	8260B	ND	2.8	0.46	ug/kg	2
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	2.8	0.56	ug/kg	2
Cyclohexane	110-82-7	8260B	ND	2.8	0.37	ug/kg	2
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	2.8	0.83	ug/kg	2
Dibromochloromethane	124-48-1	8260B	ND	2.8	0.94	ug/kg	2
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	2.8	0.47	ug/kg	2
1,2-Dichlorobenzene	95-50-1	8260B	ND	2.8	0.94	ug/kg	2
1,3-Dichlorobenzene	541-73-1	8260B	ND	2.8	0.94	ug/kg	2
1,4-Dichlorobenzene	106-46-7	8260B	ND	2.8	0.94	ug/kg	2
Dichlorodifluoromethane	75-71-8	8260B	ND	2.8	0.89	ug/kg	2
1.1-Dichloroethane	75-34-3	8260B	ND	2.8	0.41	ug/kg	2
1.2-Dichloroethane	107-06-2	8260B	ND	2.8	0.56	ug/kg	2
1,1-Dichloroethene	75-35-4	8260B	ND	2.8	0.94	ug/kg	2
cis-1,2-Dichloroethene	156-59-2	8260B	ND	2.8	0.42	ug/kg	2
trans-1,2-Dichloroethene	156-60-5	8260B	ND	2.8	0.83	ug/kg	2
1,2-Dichloropropane	78-87-5	8260B	ND	2.8	0.51	ug/kg	2
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	2.8	0.38	ug/kg	2
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	2.8	0.46	ug/kg	2
Ethylbenzene	100-41-4	8260B	ND	2.8	0.94	ug/kg	2
2-Hexanone	591-78-6	8260B	ND	5.6	0.72	ug/kg	2
Isopropylbenzene	98-82-8	8260B	ND	2.8	0.44	ug/kg	2
Methyl acetate	79-20-9	8260B	ND	2.8	0.37	ug/kg	2
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	2.8	0.22	ug/kg	2
4-Methyl-2-pentanone	108-10-1	8260B	ND	5.6	0.83	ug/kg	2
Methylcyclohexane	108-87-2	8260B	ND	2.8	0.34	ug/kg	2
Methylene chloride	75-09-2	8260B	ND	2.8	1.4	ug/kg	2
Styrene	100-42-5	8260B	ND	2.8	0.61	ug/kg	2
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	2.8	0.26	ug/kg	2
Tetrachloroethene	127-18-4	8260B	ND	2.8	1.3	ug/kg ug/kg	2
Toluene	108-88-3	8260B	ND	2.8	0.94	ug/kg	2
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	2.8	1.2	ug/kg ug/kg	2
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	2.8	0.94	ug/kg ug/kg	2
1,1,1-Trichloroethane	71-55-6	8260B	ND	2.8	0.47	ug/kg ug/kg	2
1,1,2-Trichloroethane	79-00-5	8260B	ND	2.8	0.47	ug/kg ug/kg	2
1, 1,2-111011010601a116	1 3-00-3	02000	ND	2.0	0.44	ug/kg	4

PQL = Practical quantitation limit

B = Detected in the method blank

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time

Shealy Environmental Services, Inc.

E = Quantitation of compound exceeded the calibration range

Client: ARCADIS U.S., Inc.

Description: H18-SB10(011410)(4-5)

Date Sampled:01/14/2010 1130

Date Received: 01/15/2010

Toluene-d8

Laboratory ID: LA15023-010

Matrix: Solid

% Solids: 78.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
2	5035	8260B	1	01/19/2010 0206	DLB		25567	11.44

104

Parameter		CAS Number	Analytical Method	Result	Q PQ	L MDL	Units	Run
Trichloroethene		79-01-6	8260B	ND	2	8 1.1	ug/kg	2
Trichlorofluoromethane		75-69-4	8260B	ND	2	8 0.83	ug/kg	2
Vinyl chloride		75-01-4	8260B	ND	2	8 0.48	ug/kg	2
Xylenes (total)		1330-20-7	8260B	ND	2	8 1.6	ug/kg	2
Surrogate		ın 2 Accepta covery Limi						
1,2-Dichloroethane-d4		95 53-1	42				•	
Bromofluorobenzene	1	12 47-1	38					

68-124

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB10(011410)(4-5)

Date Sampled:01/14/2010 1130

% Solids: 78.7 01/15/2010 1943

Laboratory ID: LA15023-010

Matrix: Solid

Date Received: 01/15/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date** Batch 3550C 8270D 01/24/2010 2307 JGH 01/19/2010 1136 25580

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		85	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		85	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		85	23	ug/kg	1
Anthracene	120-12-7	8270D	ND		85	9.4	ug/kg	1
Atrazine	1912-24-9	8270D	ND		85	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		85	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		85	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		85	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		85	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		85	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		85	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		85	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		85	12	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		160	56	ug/kg	1
Caprolactam	105-60-2	8270D	ND		85	22	ug/kg	1
Carbazole	86-74-8	8270D	ND		85	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		85	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		85	8.6	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		85	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		85	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		85	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		85	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		85	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		85	14	ug/kg	1
Chrysene	218-01-9	8270D	ND		85	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		85	11	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		85	13	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		420	46	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		85	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		85	28	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		85	28	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		85	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		85	28	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		420	160	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		420	140	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		160	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		160	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		85	41	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		85	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		85	13	ug/kg	1
Fluorene	86-73-7	8270D	ND		85	11	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		85	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		85	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		420	31	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 43 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB10(011410)(4-5)

Date Sampled:01/14/2010 1130

Date Received: 01/15/2010

Laboratory ID: LA15023-010

Matrix: Solid

% Solids: 78.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2307	JGH	01/19/2010 1136	25580

Parameter.		CAS	Analytical	Decel	•	DOL	MDI	11-26-	ъ.
Parameter		Number	Method	Result	Q	PQL	MDL	Units	Run
Hexachloroethane		67-72-1	8270D	ND		85	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND		85	12	ug/kg	1
Isophorone		78-59-1	8270D	ND		85	9.3	ug/kg	1
2-Methylnaphthalene		91-57-6	8270D	ND		85	13	ug/kg	1
2-Methylphenol		95-48-7	8270D	ND		85	7.6	ug/kg	1
3 & 4-Methylphenol		106-44-5	8270D	ND		160	15	ug/kg	1
Naphthalene		91-20-3	8270D	ND		85	13	ug/kg	1
2-Nitroaniline		88-74-4	8270D	ND		160	29	ug/kg	1
3-Nitroaniline		99-09-2	8270D	ND		160	49	ug/kg	1
4-Nitroaniline		100-01-6	8270D	ND		160	24	ug/kg	1
Nitrobenzene		98-95-3	8270D	ND		85	6.8	ug/kg	1
2-Nitrophenol		88-75-5	8270D	ND		160	23	ug/kg	1
4-Nitrophenol		100-02-7	8270D	ND		420	120	ug/kg	1
N-Nitrosodi-n-propylamine		621-64-7	8270D	ND		85	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)		86-30-6	8270D	ND		85	10	ug/kg	1
Pentachlorophenol		87-86-5	8270D	ND		420	170	ug/kg	1
Phenanthrene		85-01-8	8270D	ND		85	11	ug/kg	1
Phenol		108-95-2	8270D	ND		85	11	ug/kg	1
Pyrene		129-00-0	8270D	ND		85	17	ug/kg	1
2,4,5-Trichlorophenol		95-95-4	8270D	ND		85	12	ug/kg	1
2,4,6-Trichlorophenol		88-06-2	8270D	ND		85	12	ug/kg	1
Surrogate	Run Q % Reco								
2-Fluorobiphenyl	54	33-1	02						
2-Fluorophenol	83	28-1	04						
Nitrobenzene-d5	60	22-1	09						
Phenol-d5	69	27-1	03						
Terphenyl-d14	63	41-1	20						

PQL = Practical quantitation limit

2,4,6-Tribromophenol

B = Detected in the method blank

66

30-117

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB11(011410)(4-5) Date Sampled:01/14/2010 1310

Laboratory ID: LA15023-011 Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Date Received: 01/15/2010

Run **Prep Method Analytical Method Dilution Analysis Date** Analyst **Prep Date Batch** Sample Wt.(g) 5035 8260B 01/18/2010 2017 DLB 25504 6.48

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acetone	67-64-1	8260B	14	J	20	6.7	ug/kg	1
Benzene	71-43-2	8260B	ND		5.0	1.1	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		5.0	1.7	ug/kg	1
Bromoform	75-25-2	8260B	ND		5.0	0.70	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		5.0	1.8	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		9.9	2.4	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		5.0	1.3	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		5.0	1.8	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		5.0	1.7	ug/kg	1
Chloroethane	75-00-3	8260B	ND		5.0	1.3	ug/kg	1
Chloroform	67-66-3	8260B	ND		5.0	0.82	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		5.0	0.99	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		5.0	0.67	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		5.0	1.5	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		5.0	1.7	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		5.0	0.84	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		5.0	1.7	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		5.0	1.7	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		5.0	1.7	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		5.0	1.6	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND		5.0	0.73	ug/kg ug/kg	1
1.2-Dichloroethane	107-06-2	8260B	ND		5.0	0.99	ug/kg ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND		5.0	1.7	ug/kg ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		5.0	0.75	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND		5.0	1.5	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		5.0	0.90	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		5.0	0.68	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		5.0	0.81	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND		5.0	1.7	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		9.9	1.3	ug/kg ug/kg	1
Isopropylbenzene	98-82-8	8260B	ND		5.0	0.79	ug/kg ug/kg	1
Methyl acetate	79-20-9	8260B	ND		5.0	0.67	ug/kg ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		5.0	0.40	ug/kg ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		9.9	1.5	ug/kg ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		5.0	0.61	ug/kg ug/kg	1
Methylene chloride	75-09-2	8260B	ND		5.0	2.6	ug/kg ug/kg	1
Styrene	100-42-5	8260B	ND		5.0	1.1		1
1,1,2,2-Tetrachloroethane		8260B					ug/kg	
Tetrachloroethene	79-34-5 127-18-4	8260B	ND ND		5.0 5.0	0.47 2.3	ug/kg ug/kg	1 1
Toluene	108-88-3	8260B	ND		5.0	2.3 1.7	ug/kg ug/kg	
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND ND			2.1		1
1,1,2-Trichloro-1,2,2-Trilluoroethane 1,2,4-Trichlorobenzene	120-82-1	8260B	ND ND		5.0 5.0	∠. i 1.7	ug/kg	1
							ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		5.0	0.84	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		5.0	0.78	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

H = Out of holding time N = Recovery is out of criteria

Shealy Environmental Services, Inc.

Page: 45 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB11(011410)(4-5)

Date Sampled:01/14/2010 1310

Date Received: 01/15/2010

Laboratory ID: LA15023-011

Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2017	DLB		25504	6.48

Parameter		(Num	CAS ber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-01-6		8260B	ND		5.0	1.9	ug/kg	1
Trichlorofluoromethane		75-69-4		8260B	ND		5.0	1.5	ug/kg	1
Vinyl chloride		75-01-4		8260B	ND		5.0	0.85	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		5.0	2.9	ug/kg	1
Surrogate		Run 1 A Recovery	Acceptan Limits	ce						
1,2-Dichloroethane-d4	_	89	53-142					•	•	•
Bromofluorobenzene		109	47-138							
Toluene-d8		102	68-124							

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL $J = Estimated \ result < PQL \ and \ge MDL$ Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

P = The RPD between two GC columns exceeds 40%

N = Recovery is out of criteria

H = Out of holding time

Client: ARCADIS U.S., Inc.

Description: H18-SB11(011410)(4-5)

Date Sampled:01/14/2010 1310

Date Received: 01/15/2010

Laboratory ID: LA15023-011

Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	
1	3550C	8270D	1	01/24/2010 2327	JGH	01/19/2010 1136	25580	

	CAS	Analytical						
Parameter	Number	Method	Result	Q F	QL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		86	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		86	13	ug/kg	1
Acetophenone	98-86-2	8270D	ND		86	23	ug/kg	1
Anthracene	120-12-7	8270D	ND		86	9.5	ug/kg	1
Atrazine	1912-24-9	8270D	ND		86	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		86	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		86	11	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		86	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		86	12	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		86	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		86	12	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		86	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		86	13	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		170	57	ug/kg	1
Caprolactam	105-60-2	8270D	ND		86	22	ug/kg	1
Carbazole	86-74-8	8270D	ND		86	18	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		86	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		86	8.7	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		86	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		86	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		86	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		86	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		86	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		86	15	ug/kg	1
Chrysene	218-01-9	8270D	ND		86	14	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		86	12	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		86	14	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		420	47	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		86	13	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		86	28	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		86	28	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		86	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		86	28	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		420	170	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		420	150	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		170	23	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		170	22	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		86	41	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		86	28	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		86	14	ug/kg	1
Fluorene	86-73-7	8270D	ND		86	12	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		86	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		86	14	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND		420	32	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$ P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 47 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB11(011410)(4-5)

Date Sampled:01/14/2010 1310

Date Received: 01/15/2010

Laboratory ID: LA15023-011

Matrix: Solid

% Solids: 77.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2327	JGH	01/19/2010 1136	25580

Parameter	CAS	Analytical	Result	Q PQL	MDL	Units	Run
	Number	Method					
Hexachloroethane	67-72-1	8270D	ND	86	11	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270D	ND	86	13	ug/kg	1
Isophorone	78-59-1	8270D	ND	86	9.5	ug/kg	1
2-Methylnaphthalene	91-57-6	8270D	ND	86	13	ug/kg	1
2-Methylphenol	95-48-7	8270D	ND	86	7.8	ug/kg	1
3 & 4-Methylphenol	106-44-5	8270D	ND	170	15	ug/kg	1
Naphthalene	91-20-3	8270D	ND	86	13	ug/kg	1
2-Nitroaniline	88-74-4	8270D	ND	170	29	ug/kg	1
3-Nitroaniline	99-09-2	8270D	ND	170	50	ug/kg	1
4-Nitroaniline	100-01-6	8270D	ND	170	24	ug/kg	1
Nitrobenzene	98-95-3	8270D	ND	86	6.9	ug/kg	1
2-Nitrophenol	88-75-5	8270D	ND	170	24	ug/kg	1
4-Nitrophenol	100-02-7	8270D	ND	420	120	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270D	ND	86	16	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270D	ND	86	11	ug/kg	1
Pentachlorophenol	87-86-5	8270D	ND	420	180	ug/kg	1
Phenanthrene	85-01-8	8270D	ND	86	12	ug/kg	1
Phenol	108-95-2	8270D	ND	86	12	ug/kg	1
Pyrene	129-00-0	8270D	ND	86	17	ug/kg	1
2,4,5-Trichlorophenol	95-95-4	8270D	ND	86	12	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270D	ND	86	13	ug/kg	1
Surrogate	Run 1 Accepta Q % Recovery Limit						
2-Fluorobiphenyl	47 33-1	02					
2-Fluorophenol	67 28-1	04					
Nitrobenzene-d5	57 22-1	09					
Phenol-d5	53 27-1	03					

PQL = Practical quantitation limit

Terphenyl-d14

2,4,6-Tribromophenol

B = Detected in the method blank

56

61

41-120 30-117

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated \ result < PQL \ and \ge MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB12(011410)(2-3)

Date Sampled:01/14/2010 1350

Date Received: 01/15/2010

Laboratory ID: LA15023-012

Matrix: Solid

% Solids: 74.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2040	DLB		25504	9.90

	CAS	Analytical						
Parameter	Number	Method	Result	Q	PQL	MDL	Units	Run
Acetone	67-64-1	8260B	12	J	14	4.5	ug/kg	1
Benzene	71-43-2	8260B	ND		3.4	0.74	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND		3.4	1.1	ug/kg	1
Bromoform	75-25-2	8260B	ND		3.4	0.47	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND		3.4	1.2	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND		6.8	1.6	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND		3.4	0.88	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND		3.4	1.2	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		3.4	1.1	ug/kg	1
Chloroethane	75-00-3	8260B	ND		3.4	0.88	ug/kg	1
Chloroform	67-66-3	8260B	ND		3.4	0.56	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		3.4	0.68	ug/kg	1
Cyclohexane	110-82-7	8260B	ND		3.4	0.46	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		3.4	1.0	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		3.4	1.1	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND		3.4	0.57	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND		3.4	1.1	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND		3.4	1.1	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND		3.4	1.1	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		3.4	1.1	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND		3.4	0.49	ug/kg	1
1,2-Dichloroethane	107-06-2	8260B	ND		3.4	0.68	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND		3.4	1.1	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND		3.4	0.51	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND		3.4	1.0	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND		3.4	0.62	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND		3.4	0.46	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND		3.4	0.55	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND		3.4	1.1	ug/kg	1
2-Hexanone	591-78-6	8260B	ND		6.8	0.88	ug/kg	1
Isopropylbenzene	98-82-8	8260B	ND		3.4	0.54	ug/kg	1
Methyl acetate	79-20-9	8260B	ND		3.4	0.45	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		3.4	0.27	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND		6.8	1.0	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		3.4	0.41	ug/kg	1
Methylene chloride	75-09-2	8260B	ND		3.4	1.8	ug/kg	1
Styrene	100-42-5	8260B	ND		3.4	0.74	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		3.4	0.32	ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND		3.4	1.6	ug/kg	1
Toluene	108-88-3	8260B	ND		3.4	1.1	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		3.4	1.4	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND		3.4	1.1	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND		3.4	0.57	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND		3.4	0.53	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB12(011410)(2-3)

Date Sampled:01/14/2010 1350

Laboratory ID: LA15023-012 Matrix: Solid

% Solids: 74.7 01/15/2010 1943

Date Received: 01/15/2010

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2040	DI B		25504	9.90

Parameter		(Num	CAS iber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-0	1-6	8260B	ND		3.4	1.3	ug/kg	1
Trichlorofluoromethane		75-6	9-4	8260B	ND		3.4	1.0	ug/kg	1
Vinyl chloride		75-0	1-4	8260B	ND		3.4	0.58	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		3.4	2.0	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits							
1,2-Dichloroethane-d4		95	53-142)						
Bromofluorobenzene		111	47-138	3						
Toluene-d8		102	68-124	ļ						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB12(011410)(2-3)

Date Sampled:01/14/2010 1350

Date Received: 01/15/2010

Laboratory ID: LA15023-012

Matrix: Solid

% Solids: 74.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2347	JGH	01/19/2010 1136	25580

	CAS	Analytical					
Parameter	Number	Method	Result	Q PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND	89	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND	89	14	ug/kg	1
Acetophenone	98-86-2	8270D	ND	89	24	ug/kg	1
Anthracene	120-12-7	8270D	ND	89	9.8	ug/kg	1
Atrazine	1912-24-9	8270D	ND	89	23	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND	89	23	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND	89	12	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND	89	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND	89	13	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND	89	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND	89	13	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND	89	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND	89	13	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND	170	59	ug/kg	1
Caprolactam	105-60-2	8270D	ND	89	23	ug/kg	1
Carbazole	86-74-8	8270D	ND	89	19	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND	89	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND	89	9.0	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND	89	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND	89	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND	89	15	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND	89	15	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND	89	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND	89	15	ug/kg	1
Chrysene	218-01-9	8270D	ND	89	15	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND	89	12	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND	89	14	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND	440	48	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND	89	14	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND	89	29	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND	89	29	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND	89	17	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND	89	29	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND	440	170	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND	440	150	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND	170	24	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND	170	23	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND	89	43	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND	89	29	ug/kg	1
Fluoranthene	206-44-0	8270D	ND	89	14	ug/kg	1
Fluorene	86-73-7	8270D	ND	89	12	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND	89	20	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND	89	15	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270D	ND	440	33	ug/kg	1
						3. 3	

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 51 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB12(011410)(2-3)

Date Sampled:01/14/2010 1350

Date Received: 01/15/2010

Laboratory ID: LA15023-012

Matrix: Solid

% Solids: 74.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/24/2010 2347	JGH	01/19/2010 1136	25580

_		CAS	Analytical						
Parameter		Number	Method	Result	Q	PQL	MDL	Units	Run
Hexachloroethane		67-72-1	8270D	ND		89	12	ug/kg	1
Indeno(1,2,3-c,d)pyrene		193-39-5	8270D	ND		89	13	ug/kg	1
Isophorone		78-59-1	8270D	ND		89	9.8	ug/kg	1
2-Methylnaphthalene		91-57-6	8270D	ND		89	13	ug/kg	1
2-Methylphenol		95-48-7	8270D	ND		89	8.0	ug/kg	1
3 & 4-Methylphenol		106-44-5	8270D	ND		170	16	ug/kg	1
Naphthalene		91-20-3	8270D	ND		89	14	ug/kg	1
2-Nitroaniline		88-74-4	8270D	ND		170	30	ug/kg	1
3-Nitroaniline		99-09-2	8270D	ND		170	51	ug/kg	1
4-Nitroaniline		100-01-6	8270D	ND		170	25	ug/kg	1
Nitrobenzene		98-95-3	8270D	ND		89	7.1	ug/kg	1
2-Nitrophenol		88-75-5	8270D	ND		170	24	ug/kg	1
4-Nitrophenol		100-02-7	8270D	ND		440	130	ug/kg	1
N-Nitrosodi-n-propylamine		621-64-7	8270D	ND		89	17	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)		86-30-6	8270D	ND		89	11	ug/kg	1
Pentachlorophenol		87-86-5	8270D	ND		440	180	ug/kg	1
Phenanthrene		85-01-8	8270D	ND		89	12	ug/kg	1
Phenol		108-95-2	8270D	ND		89	12	ug/kg	1
Pyrene		129-00-0	8270D	ND		89	18	ug/kg	1
2,4,5-Trichlorophenol		95-95-4	8270D	ND		89	12	ug/kg	1
2,4,6-Trichlorophenol		88-06-2	8270D	ND		89	13	ug/kg	1
Surrogate	Q	Run 1 Accept % Recovery Limi							
2-Fluorobiphenyl		52 33-1	02						
2-Fluorophenol		77 28-1	04						
Nitrobenzene-d5		55 22-1	09						
Phenol-d5		49 27-1	03						
Terphenyl-d14		68 41-1	20						
2,4,6-Tribromophenol		61 30-1	17						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: ARCADIS U.S., Inc.

Description: H18-SB13(011410)(4-5)

Date Sampled:01/14/2010 1430

Date Received: 01/15/2010

Matrix: Solid

Laboratory ID: LA15023-013

% Solids: 75.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2103	DLB		25504	8.70

Parameter	CAS Number	Analytical Method	Result	Q PQL	MDL	Units	Run
Acetone	67-64-1	8260B	29	15	5.1	ug/kg	1
Benzene	71-43-2	8260B	ND	3.8	0.84	ug/kg	1
Bromodichloromethane	75-27-4	8260B	ND	3.8	1.3	ug/kg	1
Bromoform	75-25-2	8260B	ND	3.8	0.53	ug/kg	1
Bromomethane (Methyl bromide)	74-83-9	8260B	ND	3.8	1.4	ug/kg	1
2-Butanone (MEK)	78-93-3	8260B	ND	7.6	1.8	ug/kg	1
Carbon disulfide	75-15-0	8260B	ND	3.8	0.99	ug/kg	1
Carbon tetrachloride	56-23-5	8260B	ND	3.8	1.4	ug/kg	1
Chlorobenzene	108-90-7	8260B	ND	3.8	1.3	ug/kg	1
Chloroethane	75-00-3	8260B	ND	3.8	0.99	ug/kg	1
Chloroform	67-66-3	8260B	ND	3.8	0.63	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND	3.8	0.76	ug/kg	1
Cyclohexane	110-82-7	8260B	ND	3.8	0.51	ug/kg	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND	3.8	1.1	ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND	3.8	1.3	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260B	ND	3.8	0.65	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260B	ND	3.8	1.3	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260B	ND	3.8	1.3	ug/kg	1
1,4-Dichlorobenzene	106-46-7	8260B	ND	3.8	1.3	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND	3.8	1.2	ug/kg	1
1,1-Dichloroethane	75-34-3	8260B	ND	3.8	0.56	ug/kg	1
1,2-Dichloroethane	107-06-2	8260B	ND	3.8	0.76	ug/kg	1
1,1-Dichloroethene	75-35-4	8260B	ND	3.8	1.3	ug/kg	1
cis-1,2-Dichloroethene	156-59-2	8260B	ND	3.8	0.58	ug/kg	1
trans-1,2-Dichloroethene	156-60-5	8260B	ND	3.8	1.1	ug/kg	1
1,2-Dichloropropane	78-87-5	8260B	ND	3.8	0.69	ug/kg	1
cis-1,3-Dichloropropene	10061-01-5	8260B	ND	3.8	0.52	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260B	ND	3.8	0.63	ug/kg	1
Ethylbenzene	100-41-4	8260B	ND	3.8	1.3	ug/kg	1
2-Hexanone	591-78-6	8260B	ND	7.6	0.99	ug/kg	1
Isopropylbenzene	98-82-8	8260B	ND	3.8	0.61	ug/kg	1
Methyl acetate	79-20-9	8260B	ND	3.8	0.51	ug/kg	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND	3.8	0.30	ug/kg	1
4-Methyl-2-pentanone	108-10-1	8260B	ND	7.6	1.1	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND	3.8	0.47	ug/kg	1
Methylene chloride	75-09-2	8260B	ND	3.8	2.0	ug/kg	1
Styrene	100-42-5	8260B	ND	3.8	0.84	ug/kg	1
1,1,2,2-Tetrachloroethane	79-34-5	8260B	ND	3.8	0.36	ug/kg	1
Tetrachloroethene	127-18-4	8260B	ND	3.8	1.8	ug/kg	1
Toluene	108-88-3	8260B	ND	3.8	1.3	ug/kg	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND	3.8	1.6	ug/kg	1
1,2,4-Trichlorobenzene	120-82-1	8260B	ND	3.8	1.3	ug/kg	1
1,1,1-Trichloroethane	71-55-6	8260B	ND	3.8	0.65	ug/kg	1
1,1,2-Trichloroethane	79-00-5	8260B	ND	3.8	0.60	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40% H = Out of holding time

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Page: 53 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB13(011410)(4-5)

Date Sampled:01/14/2010 1430

Date Received: 01/15/2010

Laboratory ID: LA15023-013

Matrix: Solid

% Solids: 75.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2103	DLB		25504	8.70

Parameter		(Num	CAS iber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-0	1-6	8260B	ND		3.8	1.4	ug/kg	1
Trichlorofluoromethane		75-6	9-4	8260B	ND		3.8	1.1	ug/kg	1
Vinyl chloride		75-0	1-4	8260B	ND		3.8	0.66	ug/kg	1
Xylenes (total)		1330-2	20-7	8260B	ND		3.8	2.2	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptan Limits							
1,2-Dichloroethane-d4		90	53-142	2						
Bromofluorobenzene		115	47-138	3						
Toluene-d8		101	68-124	ļ						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria H = Out of holding time

Client: ARCADIS U.S., Inc.

Description: H18-SB13(011410)(4-5)

Date Sampled:01/14/2010 1430

0/ Colido: **75 4** 04/45/2040 40

Laboratory ID: LA15023-013

Matrix: Solid

% Solids: **75.4 01/15/2010 1943**

Date Received: 01/15/2010

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3550C
 8270D
 1
 01/25/2010 0008
 JGH
 01/19/2010 1136
 25580

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Acenaphthene	83-32-9	8270D	ND		88	14	ug/kg	1
Acenaphthylene	208-96-8	8270D	ND		88	14	ug/kg	1
Acetophenone	98-86-2	8270D	ND		88	24	ug/kg	1
Anthracene	120-12-7	8270D	ND		88	9.7	ug/kg	1
Atrazine	1912-24-9	8270D	ND		88	22	ug/kg	1
Benzaldehyde	100-52-7	8270D	ND		88	22	ug/kg	1
Benzo(a)anthracene	56-55-3	8270D	ND		88	12	ug/kg	1
Benzo(a)pyrene	50-32-8	8270D	ND		88	12	ug/kg	1
Benzo(b)fluoranthene	205-99-2	8270D	ND		88	13	ug/kg	1
Benzo(g,h,i)perylene	191-24-2	8270D	ND		88	15	ug/kg	1
Benzo(k)fluoranthene	207-08-9	8270D	ND		88	13	ug/kg	1
1,1'-Biphenyl	92-52-4	8270D	ND		88	13	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270D	ND		88	13	ug/kg	1
Butyl benzyl phthalate	85-68-7	8270D	ND		170	58	ug/kg	1
Caprolactam	105-60-2	8270D	ND		88	22	ug/kg	1
Carbazole	86-74-8	8270D	ND		88	19	ug/kg	1
4-Chloro-3-methyl phenol	59-50-7	8270D	ND		88	11	ug/kg	1
4-Chloroaniline	106-47-8	8270D	ND		88	8.9	ug/kg	1
bis(2-Chloroethoxy)methane	111-91-1	8270D	ND		88	13	ug/kg	1
bis(2-Chloroethyl)ether	111-44-4	8270D	ND		88	12	ug/kg	1
bis(2-Chloroisopropyl)ether	108-60-1	8270D	ND		88	14	ug/kg	1
2-Chloronaphthalene	91-58-7	8270D	ND		88	14	ug/kg	1
2-Chlorophenol	95-57-8	8270D	ND		88	12	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270D	ND		88	15	ug/kg	1
Chrysene	218-01-9	8270D	ND		88	15	ug/kg	1
Dibenzo(a,h)anthracene	53-70-3	8270D	ND		88	12	ug/kg	1
Dibenzofuran	132-64-9	8270D	ND		88	14	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270D	ND		430	48	ug/kg	1
2,4-Dichlorophenol	120-83-2	8270D	ND		88	14	ug/kg	1
Diethylphthalate	84-66-2	8270D	ND		88	29	ug/kg	1
Dimethyl phthalate	131-11-3	8270D	ND		88	29	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270D	ND		88	16	ug/kg	1
Di-n-butyl phthalate	84-74-2	8270D	ND		88	29	ug/kg	1
4,6-Dinitro-2-methylphenol	534-52-1	8270D	ND		430	170	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270D	ND		430	150	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270D	ND		170	24	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270D	ND		170	23	ug/kg	1
Di-n-octylphthalate	117-84-0	8270D	ND		88	42	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270D	ND		88	29	ug/kg	1
Fluoranthene	206-44-0	8270D	ND		88	14	ug/kg	1
Fluorene	86-73-7	8270D	ND		88	12	ug/kg	1
Hexachlorobenzene	118-74-1	8270D	ND		88	19	ug/kg	1
Hexachlorobutadiene	87-68-3	8270D	ND		88	14	ug/kg	1
	77-47-4	8270D	ND		50	32	ug/kg ug/kg	

PQL = Practical quantitation limit

B = Detected in the method blank

 $\label{eq:energy} {\sf E} = {\sf Quantitation} \ {\sf of} \ {\sf compound} \ {\sf exceeded} \ {\sf the} \ {\sf calibration} \ {\sf range}$

ND = Not detected at or above the MDL

J = Estimated result < PQL and ≥ MDL

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

Client: ARCADIS U.S., Inc.

Description: H18-SB13(011410)(4-5)

Date Sampled:01/14/2010 1430

Date Received: 01/15/2010

Laboratory ID: LA15023-013

Matrix: Solid

% Solids: 75.4 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3550C	8270D	1	01/25/2010 0008	JGH	01/19/2010 1136	25580

		CAS	Analytical						
Parameter	Nu	mber	Method	Result	Q	PQL	MDL	Units	Run
Hexachloroethane	67	-72-1	8270D	ND		88	12	ug/kg	1
Indeno(1,2,3-c,d)pyrene	193-	-39-5	8270D	ND		88	13	ug/kg	1
Isophorone	78	-59-1	8270D	ND		88	9.7	ug/kg	1
2-Methylnaphthalene	91-	-57-6	8270D	ND		88	13	ug/kg	1
2-Methylphenol	95	-48-7	8270D	ND		88	7.9	ug/kg	1
3 & 4-Methylphenol	106-	-44-5	8270D	ND		170	16	ug/kg	1
Naphthalene	91-	-20-3	8270D	ND		88	13	ug/kg	1
2-Nitroaniline	88	-74-4	8270D	ND		170	30	ug/kg	1
3-Nitroaniline	99-	-09-2	8270D	ND		170	51	ug/kg	1
4-Nitroaniline	100-	-01-6	8270D	ND		170	25	ug/kg	1
Nitrobenzene	98	-95-3	8270D	ND		88	7.1	ug/kg	1
2-Nitrophenol	88	-75-5	8270D	ND		170	24	ug/kg	1
4-Nitrophenol	100-	-02-7	8270D	ND		430	130	ug/kg	1
N-Nitrosodi-n-propylamine	621-	-64-7	8270D	ND		88	17	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86	-30-6	8270D	ND		88	11	ug/kg	1
Pentachlorophenol	87-	-86-5	8270D	ND		430	180	ug/kg	1
Phenanthrene	85	-01-8	8270D	ND		88	12	ug/kg	1
Phenol	108-	-95-2	8270D	ND		88	12	ug/kg	1
Pyrene	129-	-00-0	8270D	ND		88	17	ug/kg	1
2,4,5-Trichlorophenol	95	-95-4	8270D	ND		88	12	ug/kg	1
2,4,6-Trichlorophenol	88	-06-2	8270D	ND		88	13	ug/kg	1
Surrogate	Run 1 Q % Recovery	Acceptand	ce						
2-Fluorobiphenyl	51	33-102				_			
2-Fluorophenol	75	28-104							
Nitrobenzene-d5	61	22-109							
Phenol-d5	60	27-103							

Surrogate	Q	% Recovery	Limits
2-Fluorobiphenyl		51	33-102
2-Fluorophenol		75	28-104
Nitrobenzene-d5		61	22-109
Phenol-d5		60	27-103
Terphenyl-d14		62	41-120
2.4.6-Tribromophenol		63	30-117

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Client: ARCADIS U.S., Inc.

Description: H18-SB14(011410)(3-4)

Date Sampled:01/14/2010 1450

Date Received: 01/15/2010

Laboratory ID: LA15023-014

Matrix: Solid

% Solids: 70.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2127	DLB		25504	8.59

Acetone Benzene Bromodichloromethane Bromoform Bromomethane (Methyl bromide) P-Butanone (MEK) Carbon disulfide	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5	8260B 8260B 8260B 8260B 8260B 8260B 8260B	15 ND ND ND ND	J	16 4.1 4.1	5.5 0.91	ug/kg ug/kg	1
Bromodichloromethane Bromoform Bromomethane (Methyl bromide) B-Butanone (MEK) Carbon disulfide	75-27-4 75-25-2 74-83-9 78-93-3 75-15-0	8260B 8260B 8260B	ND ND					1
Bromodichloromethane Bromoform Bromomethane (Methyl bromide) B-Butanone (MEK) Carbon disulfide	75-27-4 75-25-2 74-83-9 78-93-3 75-15-0	8260B 8260B 8260B	ND ND					
Bromoform Bromomethane (Methyl bromide) 2-Butanone (MEK) Carbon disulfide	75-25-2 74-83-9 78-93-3 75-15-0	8260B 8260B	ND			1.4	ug/kg	1
Bromomethane (Methyl bromide) 2-Butanone (MEK) Carbon disulfide	74-83-9 78-93-3 75-15-0	8260B			4.1	0.58	ug/kg	1
-Butanone (MEK) Carbon disulfide	78-93-3 75-15-0				4.1	1.5	ug/kg	1
Carbon disulfide	75-15-0		ND		8.2	2.0	ug/kg	1
		8260B	ND		4.1	1.1	ug/kg	1
Carbon tetrachloride	00-/0-0	8260B	ND		4.1	1.5	ug/kg ug/kg	1
Chlorobenzene	108-90-7	8260B	ND		4.1	1.4	ug/kg	1
Chloroethane	75-00-3	8260B	ND		4.1	1.1	ug/kg	1
Chloroform	67-66-3	8260B	ND		4.1	0.68	ug/kg ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260B	ND		4.1	0.82	ug/kg ug/kg	1
Cyclohexane	110-82-7	8260B	ND		4.1	0.56	ug/kg ug/kg	1
,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260B	ND		4.1	1.2	ug/kg ug/kg	1
Dibromochloromethane	124-48-1	8260B	ND		4.1	1.4		1
,2-Dibromoethane (EDB)	106-93-4	8260B	ND ND		4.1	0.70	ug/kg ug/kg	1
	95-50-1	8260B	ND		4.1	1.4		1
,2-Dichlorobenzene ,3-Dichlorobenzene	541-73-1	8260B	ND		4.1	1.4	ug/kg	
	106-46-7		ND				ug/kg	1
,4-Dichlorobenzene		8260B			4.1	1.4	ug/kg	1
Dichlorodifluoromethane	75-71-8	8260B	ND		4.1	1.3	ug/kg	1
,1-Dichloroethane	75-34-3	8260B	ND		4.1	0.60	ug/kg	1
,2-Dichloroethane	107-06-2	8260B	ND		4.1	0.82	ug/kg	1
,1-Dichloroethene	75-35-4	8260B	ND		4.1	1.4	ug/kg	1
is-1,2-Dichloroethene	156-59-2	8260B	ND		4.1	0.63	ug/kg	1
rans-1,2-Dichloroethene	156-60-5	8260B	ND		4.1	1.2	ug/kg	1
,2-Dichloropropane	78-87-5	8260B	ND		4.1	0.75	ug/kg	1
is-1,3-Dichloropropene	10061-01-5	8260B	ND		4.1	0.56	ug/kg	1
rans-1,3-Dichloropropene	10061-02-6	8260B	ND		4.1	0.68	ug/kg	1
thylbenzene	100-41-4	8260B	ND		4.1	1.4	ug/kg	1
-Hexanone	591-78-6	8260B	ND		8.2	1.1	ug/kg	1
sopropylbenzene	98-82-8	8260B	ND		4.1	0.66	ug/kg	1
Methyl acetate	79-20-9	8260B	ND		4.1	0.55	ug/kg	1
Nethyl tertiary butyl ether (MTBE)	1634-04-4	8260B	ND		4.1	0.33	ug/kg	1
-Methyl-2-pentanone	108-10-1	8260B	ND		8.2	1.2	ug/kg	1
Methylcyclohexane	108-87-2	8260B	ND		4.1	0.50	ug/kg	1
Methylene chloride	75-09-2	8260B	ND		4.1	2.1	ug/kg	1
Styrene	100-42-5	8260B	ND		4.1	0.91	ug/kg	1
,1,2,2-Tetrachloroethane	79-34-5	8260B	ND		4.1	0.39	ug/kg	1
etrachloroethene	127-18-4	8260B	ND		4.1	1.9	ug/kg	1
oluene	108-88-3	8260B	ND		4.1	1.4	ug/kg	1
,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260B	ND		4.1	1.7	ug/kg	1
,2,4-Trichlorobenzene	120-82-1	8260B	ND		4.1	1.4	ug/kg	1
,1,1-Trichloroethane	71-55-6	8260B	ND		4.1	0.70	ug/kg	1
,1,2-Trichloroethane	79-00-5	8260B	ND		4.1	0.65	ug/kg	1

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

N = Recovery is out of criteria

H = Out of holding time Page: 57 of 85

Client: ARCADIS U.S., Inc.

Description: H18-SB14(011410)(3-4)

Date Sampled:01/14/2010 1450

Date Received: 01/15/2010

Laboratory ID: LA15023-014

Matrix: Solid

% Solids: 70.7 01/15/2010 1943

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch	Sample Wt.(g)
1	5035	8260B	1	01/18/2010 2127	DLB		25504	8.59

Parameter		Num	CAS iber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Trichloroethene		79-01-6		8260B	ND		4.1	1.6	ug/kg	1
Trichlorofluoromethane		75-69-4		8260B	ND		4.1	1.2	ug/kg	1
Vinyl chloride		75-01-4		8260B	ND		4.1	0.71	ug/kg	1
Xylenes (total)	1330-20-7		20-7	8260B	ND		4.1	2.4	ug/kg	1
Surrogate	Q	Run 1 A % Recovery	Acceptar Limits							
1,2-Dichloroethane-d4		92	53-142	2			•			•
Bromofluorobenzene		113	47-138	3						
Toluene-d8		103	68-124	1						

PQL = Practical quantitation limit

B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq MDL$

P = The RPD between two GC columns exceeds 40%

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"