

North Perimeter Road Preliminary Investigation Hunter Army Airfield, Georgia

January 2008

Prepared for:

Fort Stewart Directorate of Public Works Environmental and Natural Resources Division Environmental Branch Fort Stewart, Georgia 31314

Prepared by:

U.S. Army Corps of Engineers, Savannah District P.O. Box 889 Savannah, Georgia 31402-0889

North Perimeter Road Preliminary Investigation Hunter Army Airfield Savannah, Georgia

INTRODUCTION

During the March 2006 sampling event for the investigation/remediation work under contract at the MCA Barracks Site Project, a ground water sample from a monitoring well (HGL-3), detected petroleum compounds near the northern boundary of the HAAF facility. Benzene was detected in this well at an isolated depth of approximately 30 feet below grade at a concentration of 34 ug/l. A shallow well (15 feet) paired with the deep well at HGL-3 detected no petroleum contamination (Figure 1). The petroleum detection at 30 feet was considered not consistent with the TCE plume under investigation and possibly associated with a separate potential source area.

Based on these findings, this preliminary investigation was conducted in three phases to verify the presence and identify the likely source of petroleum contamination in ground water at the North Perimeter Road area.

The following is a description of the investigative approach Conducted by USACE – Savannah District and a summary of results.

FIELD ACTIVITIES

Field activities included three phases. A Direct push rig (DPT) was utilized for collecting ground water samples at temporary locations. At each location, two depth intervals were sampled and analyzed for VOCs. A grid pattern was used to establish sample locations starting along the fence boundary moving up gradient toward the south.

Based on the screening results of phase 1, the second phase initiated verification of previous results and some further delineation in the ground water by installing permanent ground water monitoring wells. Soil samples were also collected during phase 2 to verify any potential source area above the water table that may be tied to historical activities or the detected ground water contaminants.

The following is a summary of field activities conducted during each phase:

Phase 1:

- Collected 50 direct push ground water samples; a shallow and deep ground water sample from 25 locations oriented in a grid pattern on 175 foot centers. Shallow DPT ground water samples were collected at 10 feet and deep samples at 25 feet below grade.
- Ground water samples were analyzed at an offsite laboratory for VOCs.
- At each grid location, an macro core soil sample was collected for description and headspace gas analysis using a photo-ionization detector (PID).

Phase 2:

- Collected soil samples at 10 locations to be analyzed for VOCs. Sample locations were based on results of field headspace gas analysis.
- Installed 5 ground water monitoring wells, 2 inch PVC, screen length 10 feet, total depths ranging from 25.5 to 30.5 feet below grade. Well locations and screen depth were determined based on evaluation of phase 1 data.

Phase 3:

• Collected ground water samples from 5 newly installed monitoring wells and monitoring well HGL-3. Samples were analyzed at an offsite laboratory for VOCs. Field parameters for each well are measured during low flow sampling.

SUMMARY OF RESULTS

On May 22 through 24, 2007, a DPT rig was utilized for installing temporary wells at 25 locations as presented in figure 2. At each location, a ground water sample was collected at discrete intervals, 10 and 25 feet below ground surface. Macro core soil samples were collected to document lithology at the sample interval. A PID was used at each location to screen for volatiles within the shallow soils. PID results indicated random readings with meter deflections ranging up to 360 units, in the end suggesting that moisture was affecting instrument performance.

DPT ground water results indicate detections of one or more volatile organic compounds at 10 of the 25 sampled locations. At locations DPT-1 and DPT-6, analytical results verify the presence of petroleum related compounds previously discovered in monitoring well HGL-3. These two sample locations also verified petroleum contamination is deep, 25 feet below ground surface and not present between the water table and 10 feet. The remaining 8 locations (DPT-2, DPT-3, DPT-4, DPT-8, DPT-10, DPT-14, DPT-16 and DPT-22) indicate low levels of mostly naphthalene and few detections of acetone and methylene chloride. Vinyl chloride was detected (3.0 ug/L) in shallow ground water at DPT-10. Trace level of 1,2,4 -Trimethylbenzene was detected in shallow ground water at location DPT-8. Table 1 presents DPT ground water results and Figure 2 shows DPT sample locations. Upon evaluation of the phase 1 ground water data, 10 soil sample locations were determined based on VOC detections at 10 locations. Five ground water monitoring wells were placed in areas to verify the DPT ground water results. Figure 3 shows monitoring well locations.

On August 10, 2007, soil samples were collected using a DPT rig. Samples were retrieved in 5 foot intervals using macro core sleeves. At each location, the soil cores were screened with a PID and discrete portions collected for laboratory analysis.

Analytical results indicate detections of one or more compounds at 8 sample locations. Sample locations SS-4 and SS-5 indicate detections of 1,1-Dichloropropene and 1,2,3-Trichloropropane in addition to 2-Hexanone and Acetone in SS-5 and Methylene Chloride and Acetone in SS-4. Trace levels of Toluene and p-Isopropyltoluene were detected in SS-6 and Toluene in SS-8. The remaining 6 sample locations (SS-1, SS-2, SS-3, SS-7, SS-9 and SS-10) indicate slight detections of Acetone and/or Methylene Chloride.

Results from these soil samples do not indicate an apparent release or contaminant source area above the water table. Table 2 presents DPT soil sampling results and Figure 3 shows soil sample locations.

On September 5, 2007, ground water monitoring well samples was collected using low flow sampling method. Well evacuation data and field instrument parameters for each monitoring well sampled is provided in the Ground Water Field Data Log.

Analytical results from the monitoring well samples indicate detections of petroleum related compounds in 2 of the 6 well locations sampled. Well location, HGL-3, reported Benzene at 11 ug/L, a decrease in concentration since the previous sample result. Other compounds detected in HGL-3 during this sampling event include, 1,2,3-Trichlorobenze, 1,2,4-Trichlorobenzene, Ethylbenzene, m-Xylene/p-Xylene, Naphthalene, 0-Xylene and Toluene. Ground water samples from well location MW-2, located approximately 100 feet south of HGL-3 reported benzene at 9.3 ug/L with trace levels of 4-Isopropyltoluene and Naphthalene. The remaining 4 wells indicated no detections above reporting limits. Table 3 presents ground water monitoring well sample results and Figure 3 shows monitoring well locations.

Results of this investigation address an area extending to the property boundary located roughly along North Perimeter Road. Samples were not collected beyond the property line, which is inferred to be in the down gradient direction with ground water flow. In the vicinity of North Perimeter Road and well HGL-3, detection of benzene and petroleum related compounds in ground water appears isolated to an area including wells MW-2, DPT-1 and DPT -6. Benzene in all 4 wells is only detected at depth (25-39 feet below ground surface).

RECOMMENDATIONS

Future work should include further delineation of contaminated ground water beyond the property boundary to verify extent. Ground water flow direction should be verified. The 5 recently installed monitoring wells should be surveyed for elevation and location to generate ground water maps. Future investigation approach should consider recently discovered information with regards to the jet fuel pipeline constructed in the late 50's used to convey fuel from the Savannah port to Hunter. Historical information indicates a 6 inch diameter pipeline was installed from the Bulk Fuels Facility, extending along Perimeter Road and exiting at the property boundary in the vicinity of monitoring well HGL-3. Details are unclear as to the decommissioning of the pipeline however if decommissioning of the pipeline occurred at this location and at depth near HGL-3 further investigation may verify this as the source of the benzene detection.

Table 1 Hunter Army Airfield, Savannah, Georgia North Perimeter Road **DPT Ground Water Results**

Location	1	1	2	2	3	3	4	4	5	5
Sample #	PR-DPT-1S	PR-DPT-1D	PR-DPT-2S	PR-DPT-2D	PR-DPT-3S	PR-DPT-3D	PR-DPT-4S	PR-DPT-4D	PR-DPT-5S	PR-DPT-5D
Date:	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007
Depth:	10 ft	25 ft								
	(µg/L)									
Analyte:										
VOCs, 8260B:										
Acetone	BRL	BRL	BRL	BRL	13	BRL	BRL	BRL	BRL	BRL
Benzene	BRL	9.3	BRL							
Ethylbenzene	BRL	7.6	BRL							
Isopropylbenzene	BRL	2.0	BRL							
m-Xylene/p-Xylene	BRL	2.1	BRL							
Naphthalene	BRL	950	42	74	6.4	BRL	20	BRL	BRL	BRL
o-Xylene	BRL	5.7	BRL							
Toluene	BRL	1.8	BRL							

Notes:

KEY:

VOCs = Volatile Organic Compounds

BRL = Below reporting limit

Location	6	6	7	7	8	8	9	9	10	10
Sample #	PR-DPT-6S	PR-DPT-6D	PR-DPT-7S	PR-DPT-7D	PR-DPT-8S	PR-DPT-8D	PR-DPT-9S	PR-DPT-9D	PR-DPT-10S	PR-DPT-10D
Date:	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/22/2007	5/22/2007	5/22/2007	5/22/2007	5/22/2007	5/22/2007
Depth:	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft
	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Analyte:										
<u>VOCs, 8260B:</u>										
1,2,4-Trimethylbenzene	BRL	BRL	BRL	BRL	1.2	BRL	BRL	BRL	BRL	BRL
Benzene	BRL	18	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Ethylbenzene	BRL	6.8	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
m-Xylene/p-Xylene	BRL	3.2	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Naphthalene	BRL	45	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
o-Xylene	BRL	6.3	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Toluene	BRL	0.72	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Vinyl chloride	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	3.0	BRL

Notes:

KEY:

VOCs = Volatile Organic Compounds BRL = Below reporting limit

Table 1 Hunter Army Airfield, Savannah, Georgia North Perimeter Road DPT Ground Water Results

Location	11	11	12	12	13	13	14	14	15	15		
Sample #	PR-DPT-11S	PR-DPT-11D	PR-DPT-12S	PR-DPT-12D	PR-DPT-13S	PR-DPT-13D	PR-DPT-14S	PR-DPT-14D	PR-DPT-15S	PR-DPT-15D		
Date:	5/22/2007	5/22/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007	5/23/2007		
Depth:	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft		
	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$		
Analyte:												
VOCs, 8260B:												
Acetone	BRL	BRL	BRL	BRL	BRL	BRL	BRL	12	BRL	BRL		
Naphthalene	BRL	BRL	BRL	BRL	BRL	BRL	14	BRL	BRL	BRL		

Notes:

KEY:

VOCs = Volatile Organic Compounds

BRL = Below reporting limit

Location	16	16	17	17	18	18	19	19	20	20
Sample #	PR-DPT-16S	PR-DPT-16D	PR-DPT-17S	PR-DPT-17D	PR-DPT-18S	PR-DPT-18D	PR-DPT-19S	PR-DPT-19D	PR-DPT-20S	PR-DPT-20D
Date:	5/24/2007	5/24/2007	5/23/2007	5/23/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007
Depth:	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft	10 ft	25 ft
	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Analyte:										
<u>VOCs, 8260B:</u>										
Acetone	7.2	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Naphulaiene	BKL	5.0	BKL	BKL	BRL	BKL	BRL	BKL	BKL	BRL

Notes: KEY:

VOCs = Volatile Organic Compounds

BRL = Below reporting limit

Location	21	21	22	22	23	23	24	24	25	25
Sample #	PR-DPT-21S	PR-DPT-21D	PR-DPT-22S	PR-DPT-22D	PR-DPT-23S	PR-DPT-23D	PR-DPT-24S	PR-DPT-24D	PR-DPT-25S	PR-DPT-25D
Date:	5/24/2007	5/24/2007	5/24/2007	5/24/2007	5/23/2007	5/23/2007	5/24/2007	5/24/2007	5/24/2007	5/24/2007
Depth:	10 ft	25 ft	10 ft	25 ft						
	(µg/L)	$(\mu g/L)$	$(\mu g/L)$							
Analyte:										
VOCs, 8260B:										
Acetone	BRL	BRL	BRL	34	BRL	BRL	BRL	BRL	BRL	BRL
Methylene Chloride	BRL	BRL	2.6	BRL	BRL	BRL	BRL	BRL	BRL	BRL

Notes: KEY: VOCs = Volatile Organic Compounds BRL = Below reporting limit

Table 2 Hunter Army Airfield, Savannah, Georgia North Perimeter Road DPT Soil Sampling Results

Location	1	2	3	4	5	6	7	8	9	10
Sample #	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	SS-8	SS-9	SS-10
Sample Depth	2.5-3.2 ft	3.0-4.0 ft	2.4-2.9 ft	1.4-1.9 ft	1.4-1.9 ft	1.2-1.8 ft	1.6-2.2 ft	3.0-3.5 ft	2.9-3.6 ft	2.2-2.9 ft
Date:	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007	8/10/2007
	(µg/Kg)									
Analyte:										
VOCs, 8260B:										
1,1-Dichloropropene	BRL	BRL	BRL	9.4	8.7	BRL	BRL	BRL	BRL	BRL
1,2,3-Trichloropropane	BRL	BRL	BRL	29	30	BRL	BRL	BRL	BRL	BRL
2-Hexanone	BRL	BRL	BRL	BRL	9.6	BRL	BRL	BRL	BRL	BRL
Acetone	BRL	25	56	63	78	76	19	7.2	BRL	58
Methylene Chloride	BRL	BRL	BRL	4.1	BRL	BRL	4.2	3.1	BRL	BRL
p-Isopropyltoluene	BRL	BRL	BRL	BRL	BRL	2.1	BRL	BRL	BRL	BRL
Toluene	BRL	BRL	BRL	BRL	BRL	1.2	BRL	0.86	BRL	BRL

KEY:

VOCs = Volatile Organic Compounds

BRL = Below reporting limit

Table 3Hunter Army Airfield, Savannah, GeorgiaNorth Perimeter RoadGround Water Monitoring Well Sample Results

Location	MW-1	MW-2	MW-3	MW-4	MW-5	HGL-3	MW-3
Sample #	P-MW-1-9-07	P-MW-2-9-07	P-MW-3-9-07	P-MW-4-9-07	P-MW-5-9-07	P-HGL-3-9-07	P-DUP
Sample Depth	28.8 ft	30 .5 ft	25.5 ft	29.1 ft	30.0 ft	39.42 ft	25.5 ft
Date:	9/5/2007	9/5/2007	9/5/2007	9/6/2007	9/6/2007	9/5/2007	9/5/2007
	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)
Analyte:							
VOCs, 8260B:							
1,2,3-Trichlorobenzene	BRL	BRL	BRL	BRL	BRL	1.7	BRL
1,2,4-Trichlorobenzene	BRL	BRL	BRL	BRL	BRL	1.1	BRL
4-Isopropyltoluene	BRL	2.9	BRL	BRL	BRL	BRL	BRL
Benzene	BRL	9.3	BRL	BRL	BRL	11	BRL
Ethylbenzene	BRL	BRL	BRL	BRL	BRL	4.7	BRL
m-Xylene/p-Xylene	BRL	BRL	BRL	BRL	BRL	0.81	BRL
Naphthalene	BRL	14	BRL	BRL	BRL	360	BRL
o-Xylene	BRL	BRL	BRL	BRL	BRL	3.4	BRL
Toluene	BRL	BRL	BRL	BRL	BRL	1.0	BRL

KEY:

VOCs = Volatile Organic Compounds BRL = Below reporting limit

1. CLIENT: Hunter Army Airfield DATE: 9/05/07 TIME: 1345 SAMPLED BY: Jon Coombs WEATHER CONDITIONS: Sunny, Warm

Location: North Perimeter Road

PRESERVATIVE: HCl	
ANALYSES REQUESTE	ED <u>: VOC</u>
# OF CONTAINERS: 3	
SAMPLING METHOD:	Peristaltic Pump
	Bladder Pump
SAMPLES FILTERED:	YES NO

LOW FLOW: \Box YES \boxtimes NO DUPLICATE SAMPLE: \Box YES \boxtimes NO

Sample ID: P-MW-1-9-07

2. WATER LEVEL DATA

MEASURING POINT:	Top of cas	sing 🗌	Other:
METHOD OF MEASURI	EMENT: <u>Wate</u>	er Level	l Indicator

3. WELL EVACUATION DATA

Well Depth (wd): <u>28.80</u> (ft)	Diameter (d): <u>2.00</u> (in)
Depth to Water (dw): 1.15 (ft)	Diameter (d): 0.167 (ft)
Well Volume = $(5.904 \times d^2 \text{ (wd-dw)}) =$	4.5 (gallons)
Flow Rate : N/A (ml/min)	Purge vol: 13.50 (gallons)
Length of Time Purged: 53 (minutes)	Purge time: 1252
Amount Purged= 25.0 (gallons)	

4. **FIELD PARAMETERS**

INSTRUMENT	CALIBRATED
pH Meter –Hydrolab Minisonde 4a	\boxtimes
Conductivity Meter - Hydrolab Minisonde 4a	\boxtimes
Temperature – Hydrolab Minisonde 4a	\boxtimes
Turbidity Meter – Hach 2100 P	\boxtimes
DO Meter – Hydrolab Minisonde 4a	\boxtimes
ORP Meter – Hydrolab Minisonde 4a	\boxtimes
CO ₂ – Hach Digital Titrator	

Time	1315	1320	1325	1330	1335	1340
pН	6.60	6.63	6.66	6.68	6.68	6.72
Sp. Cond	0.17	0.17	0.17	0.17	0.17	0.17
Temp. °C	20.91	20.84	20.91	20.89	21.20	20.97
Turbidity	905	793	795	590	533	541
DO	1.34	1.20	1.10	1.07	2.50	1.11
ORP	-210	-206	-207	-206	-204	-202

5. COMMENTS: More than 5 times volume

1. CLIENT: Hunter Army Airfield DATE: 9/05/07 TIME: 1425 SAMPLED BY: Jon Coombs WEATHER CONDITIONS: Sunny, Warm

Location: North Perimeter Road

PRESERVATIVE: HCl	
ANALYSES REQUESTE	ED <u>: VOC</u>
# OF CONTAINERS: 3	
SAMPLING METHOD:	Peristaltic Pump
	Bladder Pump
SAMPLES FILTERED:	YES NO

LOW FLOW: YES NO DUPLICATE SAMPLE: YES NO

Sample ID: P-MW-2-9-07

2. WATER LEVEL DATA

MEASURING POINT: Top of casing Other: METHOD OF MEASUREMENT: Water Level Indicator

3. WELL EVACUATION DATA

Well Depth (wd): <u>30.50</u> (ft)	Diameter (d): <u>2.00</u> (in)
Depth to Water (dw): 3.73 (ft)	Diameter (d): 0.167 (ft)
Well Volume = $(5.904 \times d^2 \text{ (wd-dw)}) =$	4.4 (gallons)
Flow Rate : N/A (ml/min)	Purge vol: 13.20 (gallons)
Length of Time Purged: <u>13</u> (minutes)	Purge time: 1412
Amount Purged= 13.2 (gallons)	

4. **FIELD PARAMETERS**

INSTRUMENT	CALIBRATED
pH Meter –Hydrolab Minisonde 4a	\boxtimes
Conductivity Meter - Hydrolab Minisonde 4a	\boxtimes
Temperature – Hydrolab Minisonde 4a	\boxtimes
Turbidity Meter – Hach 2100 P	\boxtimes
DO Meter – Hydrolab Minisonde 4a	\boxtimes
ORP Meter – Hydrolab Minisonde 4a	\boxtimes
CO ₂ – Hach Digital Titrator	

Time	1415	1420	1425		
pН	6.46	6.46	6.46		
Sp. Cond	0.48	0.46	0.46		
Temp. °C	20.50	20.46	20.44		
Turbidity	9.14	5.84	4.75		
DO	1.72	1.22	1.08		
ORP	-169	-172	-170		

5. COMMENTS: None

1. CLIENT: Hunter Army Airfield DATE: 9/05/07 TIME: 1510 SAMPLED BY: Jon Coombs WEATHER CONDITIONS: Sunny, Warm

Location: North Perimeter Road

PRESERVATIVE: HCl	
ANALYSES REQUESTE	ED <u>: VOC</u>
# OF CONTAINERS: 3	
SAMPLING METHOD:	Peristaltic Pump
	Bladder Pump
SAMPLES FILTERED:	YES NO

LOW FLOW: YES	NO
DUPLICATE SAMPLE:	YES NO

Sample ID: P-MW-3-9-07

2. WATER LEVEL DATA

MEASURING POINT:	Top of casing	Other:
METHOD OF MEASUR	EMENT: <u>Water L</u>	evel Indicator

3. WELL EVACUATION DATA

Well Depth (wd): 25.50 (ft)	Diameter (d): 2.00 (in)
Depth to Water (dw): 14.30 (ft)	Diameter (d): 0.167 (ft)
Well Volume = $(5.904 \times d^2 \text{ (wd-dw)}) =$	1.8 (gallons)
Flow Rate : N/A (ml/min)	Purge vol: 5.40 (gallons)
Length of Time Purged: 23 (minutes)	Purge time: 1447
Amount Purged= 12.0 (gallons)	

4. **FIELD PARAMETERS**

INSTRUMENT	CALIBRATED
pH Meter –Hydrolab Minisonde 4a	\boxtimes
Conductivity Meter - Hydrolab Minisonde 4a	\boxtimes
Temperature – Hydrolab Minisonde 4a	\boxtimes
Turbidity Meter – Hach 2100 P	\boxtimes
DO Meter – Hydrolab Minisonde 4a	\boxtimes
ORP Meter – Hydrolab Minisonde 4a	\boxtimes
CO ₂ – Hach Digital Titrator	

Time	1452	1457	1502	1506	1509	
pН	5.95	5.97	5.97	5.96	5.97	
Sp. Cond	0.64	0.70	0.70	0.70	0.69	
Temp. °C	22.05	21.94	21.84	21.87	21.83	
Turbidity	5.57	6.15	14.2	10.9	9.74	
DO	1.67	1.25	1.11	1.05	1.02	
ORP	-105	-111	-113	-114	-114	

5. COMMENTS: More than 6 times volume.

Dup taken, P-Dup:1600.

1. CLIENT: Hunter Army Airfield DATE: 9/06/07 TIME: 0845 SAMPLED BY: Jon Coombs WEATHER CONDITIONS: Sunny, Warm

Location: North Perimeter Road

PRESERVATIVE: HCl	
ANALYSES REQUESTE	ED <u>: VOC</u>
# OF CONTAINERS: 3	
SAMPLING METHOD:	Peristaltic Pump
	Bladder Pump
SAMPLES FILTERED:	YES NO

LOW FLOW:	YES	🛛 NO	
DUPLICATE S	SAMPLE:	YES	NO

Sample ID: P-MW-4-9-07

2. WATER LEVEL DATA

MEASURING POINT:	Пор о	of casing	Other:
METHOD OF MEASURI	EMENT:	Water Le	vel Indicator

3. WELL EVACUATION DATA

Well Depth (wd): <u>29.10</u> (ft)	Diameter (d): <u>2.00</u> (in)
Depth to Water (dw): 3.66 (ft)	Diameter (d): 0.167 (ft)
Well Volume = $(5.904 \times d^2 \text{ (wd-dw)}) =$	4.2 (gallons)
Flow Rate : N/A (ml/min)	Purge vol: 12.60 (gallons)
Length of Time Purged: <u>33</u> (minutes)	Purge time: 812
Amount Purged= 12.7 (gallons)	

4. **FIELD PARAMETERS**

INSTRUMENT	CALIBRATED
pH Meter –Hydrolab Minisonde 4a	\boxtimes
Conductivity Meter - Hydrolab Minisonde 4a	\boxtimes
Temperature – Hydrolab Minisonde 4a	\boxtimes
Turbidity Meter – Hach 2100 P	\boxtimes
DO Meter – Hydrolab Minisonde 4a	\boxtimes
ORP Meter – Hydrolab Minisonde 4a	\boxtimes
CO ₂ – Hach Digital Titrator	

Time	0821	0831	0836	0841	
pН	6.19	6.26	6.28	6.30	
Sp. Cond	0.53	0.53	0.54	0.53	
Temp. °C	20.86	20.82	20.77	20.81	
Turbidity	6.84	2.44	1.33	1.45	
DO	2.82	1.37	1.22	1.13	
ORP	-127	-133	-135	-137	

5. COMMENTS: None

1. CLIENT: Hunter Army Airfield DATE: 9/06/07 TIME: 0935 SAMPLED BY: Jon Coombs WEATHER CONDITIONS: Sunny, Warm

Location: North Perimeter Road

PRESERVATIVE: HCl	
ANALYSES REQUESTE	ED <u>: VOC</u>
# OF CONTAINERS: 3	
SAMPLING METHOD:	Peristaltic Pump
	Bladder Pump
SAMPLES FILTERED:	YES NO

LOW FLOW: YES NO DUPLICATE SAMPLE: YES NO

Sample ID: P-MW-5-9-07

2. WATER LEVEL DATA

MEASURING POINT: Top of casing Other: METHOD OF MEASUREMENT: Water Level Indicator

3. WELL EVACUATION DATA

Well Depth (wd): <u>30.00</u> (ft)	Diameter (d): 2.00 (in)
Depth to Water (dw): 3.10 (ft)	Diameter (d): 0.167 (ft)
Well Volume = $(5.904 \times d^2 \text{ (wd-dw)}) =$	4.4 (gallons)
Flow Rate : N/A (ml/min)	Purge vol: 13.20 (gallons)
Length of Time Purged: <u>35</u> (minutes)	Purge time: 900
Amount Purged= 16.0 (gallons)	

4. **FIELD PARAMETERS**

INSTRUMENT	CALIBRATED
pH Meter –Hydrolab Minisonde 4a	\boxtimes
Conductivity Meter - Hydrolab Minisonde 4a	\boxtimes
Temperature – Hydrolab Minisonde 4a	\boxtimes
Turbidity Meter – Hach 2100 P	\boxtimes
DO Meter – Hydrolab Minisonde 4a	\boxtimes
ORP Meter – Hydrolab Minisonde 4a	\boxtimes
CO ₂ – Hach Digital Titrator	

Time	0907	0917	0922	0927	0935
pН	5.87	5.82	5.83	5.84	5.86
Sp. Cond	0.18	0.18	0.18	0.18	0.18
Temp. °C	20.08	20.22	20.24	20.32	20.66
Turbidity	193	31.6	16.3	20.2	6.26
DO	1.19	1.05	1.03	1.11	1.10
ORP	-63	-66	-67	-69	-71

5. COMMENTS: Blank taken, P-Blank:1100

1. CLIENT: Hunter Army Airfield **DATE: 9//07** TIME: 1610 SAMPLED BY: Jon Coombs WEATHER CONDITIONS: Sunny, Warm

Location: North Perimeter Road Sample ID: P-HGL-3-9-07 PRESERVATIVE: HCl ANALYSES REQUESTED: VOC **# OF CONTAINERS: 3** SAMPLING METHOD: <u>Peristaltic Pump</u> LOW FLOW: \Box YES \boxtimes NO Bladder Pump SAMPLES FILTERED: YES NO DUPLICATE SAMPLE: YES NO WATER LEVEL DATA 2. MEASURING POINT: Top of casing Other: METHOD OF MEASUREMENT: Water Level Indicator 3. WELL EVACUATION DATA Well Depth (wd): <u>39.42</u> (ft) Diameter (d): 2.00 (in) Depth to Water (dw): 2.25 (ft) Diameter (d): 0.167 (ft) Well Volume = $(5.904 \times d^2 \text{ (wd-dw)}) =$ 6.1 (gallons) Flow Rate : N/A (ml/min) 18.30 (gallons) Purge vol: Length of Time Purged: _____38 (minutes) Purge time: 1532 Amount Purged= 25.0 (gallons)

4. **FIELD PARAMETERS**

INSTRUMENT	CALIBRATED
pH Meter –Hydrolab Minisonde 4a	\boxtimes
Conductivity Meter - Hydrolab Minisonde 4a	\boxtimes
Temperature – Hydrolab Minisonde 4a	\boxtimes
Turbidity Meter – Hach 2100 P	\boxtimes
DO Meter – Hydrolab Minisonde 4a	\boxtimes
ORP Meter – Hydrolab Minisonde 4a	\boxtimes
CO ₂ – Hach Digital Titrator	

Time	1543	1547	1552	1600	1605	1608
pН	6.35	6.41	6.47	6.52	6.55	6.57
Sp. Cond	0.60	0.59	0.59	0.58	0.57	0.57
Temp. °C	21.61	21.60	21.54	21.60	21.48	21.50
Turbidity	22.5	22.7	11.6	5.25	4.24	6.94
DO	1.80	1.27	1.15	1.03	1.01	1.00
ORP	-125	-135	-142	-151	-154	-157

5. COMMENTS: None

15130 South Keeler, Olathe, Kansas 66062 Phone: (913) 829-0101 • Fax: (913) 829-1181

June 19, 2007

Mr. Mark S. Harvison Project Chemist, CESAS-EN-GG U.S. Army Corps of Engineers, Savannah District 100 W. Oglethorpe Ave. P. O. Box 889 Savannah, GA 31402 Phone: 912-652-5151 Fax: 912-652-5311

Dear Mr. Harvison:

RE: Hunter Perimeter Sampling, Task Order 0085 W912HN-05-D-0013 AML Work Order Number: AAL12050

Attached, please find the hardcopy analytical report (1D2 total pages) for environmental samples collected by CESAS for the project described above. Problems encountered in the analysis of these samples are documented in the laboratory case narrative. The electronic data deliverables (EDDs) for this report will be e-mailed within a few days of this report. Please feel free to contact me by phone (913-829-0101-ext. 23), fax (913-829-1181) or email (mharris@amlabinc.com) if you have any questions.

Respectfully Submitted, Analytical Management Laboratories, Inc.

Melanía Harris Project Manager

AML Case Narrative

Project:	Hunter Perimeter Sampling, Task Order 0085
Your Reference:	W912HN-05-D-0013
Our Reference:	AML Work Order Number: AAL12050

Project and Sample Information

Technical support for the analysis of samples collected for the referenced project was provided by Accura Analytical Laboratory, Inc, 6017 Financial Drive, Norcross, GA 30071. The analytical report prepared by the subcontract laboratory (certified by the State of South Carolina) is attached. Please feel free to contact Mr. David Fuller directly (770-449-8800) if there are any questions on this report.

15-JUN-07

Analytical Management Laboratories, Inc. 15130 South Keeler Olathe, KS 66062 Client Contact: Vis Viswanathan

Reference: Accura Analytical Laboratory, Inc. (AAL) Work Order No: 12050 Project Name :Hunter Perimeter Sampling Project Number: Task Order 0085

Dear Vis Viswanathan :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Chain of Custody(s) Numbered 47456 47457 47458 47459. All results being reported under this Chain of Custody apply to the samples analyzed and properly identified with an AAL Sample ID number.

All the results for the quality control samples were reviewed. Also, all parameters for data reduction and validation were reviewed. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by AAL. This report will be filed for at least 7 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 47456 47457 47458 47459 will be filed for 90 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Accura Analytical Laboratory Inc. to serve your analytical needs. If you have any questions concerning this report, please feel free to contact me at any time.

Sincerely,

David Fuller Project Manager

6017 Financial Drive Norcross, GA 30071 Phone: 770-449-8800 Fax: 770-449-5477

AAL Work Order # 12050

Client Project: Hunter Perimeter Sampling / AML TO #0085

Accura Analytical Laboratory Inc. certifies that the results meet all requirements of the NELAC Standards.

The data package includes a 2 page case narrative, 4 Chain of Custody pages, a 2 page Sample Receipt Checklist, 64 analytical results pages, 9 QC surrogate recovery pages, 6 QC Blank Spike, 9 QC Matrix Spike / Matrix Spike Duplicate recovery page, 2 QC Sample Duplicate recovery page, and a list of common EPA qualifier codes and abbreviations used by AAL.

The following items were noted concerning this work order:

Receiving Notations:

1. Upon receipt, air bubbles greater than ¼ inch were noted in all vials submitted for the following samples: PR-DPT-8-S, PR-DPT-10-S, PR-DPT-7-S, and PR-DPT-23-S.

<u>Michael F. Broome</u>	<u>May 24, 2007</u>
Receiving	Date

VOCs by SW8260B Notations:

- 1. The pH of the water samples was >2.0 prior to the VOC analysis.
- Methylene Chloride was outside laboratory control limits (bias high) for the Laboratory Blank Spike and Matrix Spike in analytical batch #36120 due to possible laboratory contamination. The RPD for Methylene Chloride in the Matrix Spike and Matrix Spike Duplicate was also outside laboratory control limits. (Note: Methylene Chloride was not detected in any of the samples.)
- 3. Methylene Chloride was outside laboratory control limits (bias high) for the Laboratory Blank Spike in analytical batch #36132 due to possible laboratory contamination. The recoveries for the MS and MSD were within the acceptable limits. (Note: Methylene Chloride was not detected in any of the samples.)
- 4. Methylene Chloride was outside laboratory control limits (bias high) for the Laboratory Blank Spike (Batch #36193) due to possible laboratory contamination. The recoveries for the MS and MSD were within the acceptable limits. (Note: Methylene Chloride was not detected in any of the samples.)

ACCURA ANALYTICAL LABORATORY, INC. (AAL)

6017 Financial Drive, Norcross, GA 30071, Phone: (770) 449-8800 FL Certification #E87429 • NC Certification #483 SC Certification #98015 • Utah Certification #AALI1 USACE Approved • Navy Certification Code NFESC 413

Case Narrative

5. The recoveries for Acetone and Acrolein for the Matrix Spike and Matrix Spike Duplicate were outside laboratory control limits. The Laboratory Blank Spike recoveries were within the acceptable limits, therefore the data satisfies the method requirements. (Batch#36193)

<u>Dawn Sengsourichanh</u>

VOC Analyst

June 07, 2007 Date

This Case Narrative & Notations have been generated, reviewed, and edited by:

David C. Fuller Project Manager <u>June 15, 2007</u> Date

	:	
		7
	and the second	
A STATE		

ACCURA ANALYTICAL LABORATORY, INC.

Environmental Analytical Services

 $\frac{1}{100} \frac{1}{100} \frac{1}$

(770) 449-8800 Fax # (770) 449-5477			AAL LIMS System ID: 7 3005	Receiver's Initials/Temp: SN 2C	AAL Work Order # 1/2050		Field Comments:			AALLab D: D:	140.50		NO 01661 VAR 5 002	// = 003	11 - 004	1/ - 005	// ⁻ Cob	1/ - 00 4			11 - 068	by: (Circle One) PS / DHL / AAL Pickup / Hand / Other	Turnaround Time Requested:		ir Cartridge)
Phone #(address: APPL	if required):	aboratory Use Only:	svej, 1 🙆 3 4 CLP-Like	dy Seal(s) 🚄 🔌 N Tape	Analysis Requested																Date / Time Delivered	Date / Time	5/24/07 10:85	ii) (SD=Solid) (SL=Sladge) (A=Air) (C=Ai
CHAIN OF CUSTODY	Billing	06 BV P. P.O.# (Rorle	OC IA	+ Custo	Sampling	Preservation Code: (See below)	oler(s): (printed)	thous liternesson	20	Sample Location Containers	2	3	3	2	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	-(1070) 3 N	1020 3 A	3	2) Received By:	4) Repeited By	IV XORATING - FROMON	W=Surface Water) (L=Liquid) (O=Oil) (S=Soi
	MIN COLOS of En	red wist on 10 that	ntact): ANL		-617-6077 Fax	Hunter Persmeter	1 TO # 00 85	Sam		ajite [X (wo)	Sample Sample Date / Time Composition Comp		5/22/67 1030 X 6W	5/22/67 1045 K.W	5/22/67 /200 X FW	5/22/07/230 × NL	NOW SK122213	52267, VOU 964)	Sign Type Star	Clarket range (K)	My Shhi Coperis	Date / Time	Date / Time	ssion to tes	=Drinking Water) (GW=Groundwater) (S
	Company Name: US	Address:	Results Sent to: (Client Con	Email address:	Contact Phone #. 9/2	Project (Site) Name:	Project Number:	Sampler(s): (signature)	C A		Line No Sample ID #	1 Vilo Blank	2 R DDT-8-5	3 PR-DA-8-0	4 M-DATYS	5 PR. DPT. 9.D	6 f.R. 007-10-5	7 7R - 01-10-D	8 42-205-11-5	- 61 11 10 - 901 6	10 PR-DPT-75	1) Relinquished By:	3) Relinqui Status	HCD CX	Matrix Guide: (W=Water) (DW=

Preservation Codes: 1=HCL / 2=HNO₃ / 3=H₂SO₄ / 4=NaOH+NaAsO₂ / 5=NaOH+ZnAc / 6=Na₅S₂O₃ / 7=NaHSO₄ / 8=MeOH

ACCURA ANALYTICAL LABORATORY, INC. Burinemental Analytical Services CHAIN OF CUSTODY Remonential Analytical Services Device Market Analytical Servi	$\frac{47457}{017}$ Page $\frac{47457}{01}$ of $\frac{17457}{01}$ of $\frac{170}{011}$ bold $\frac{1700}{149-8800}$ Fax # (770) 449-5477	mple		AAL LIMS System TD: 1 7065	Receiver's İnitials/Temp. 2 2	e 👘 AAL Work Onder # 12050	9	Field Comments:		;	ALL Lab			010 - 010 - 010), = 03			1/ //016		80 = (r	Delityered by: (Circle One) Fed Ex/ UPS / DHL / AAL Pickup / Hand / Other		Turnaround Time Requested:	=Air) (C=Air Cartridge)
ACCURA AN Employ Name: ACCURA AN Employ ppuny Name: $[U]$ $[U]$ $[U]$ Em press: $[U]$ $[U]$ $[U]$ Em tress: $[U]$ $[U]$ $[U]$ $[U]$ tress: $[U]$ $[U]$ $[U]$ $[U]$ uits Sent to: $[U]$ $[U]$ $[U]$ $[U]$ uits Sent to: $[U]$ $[U]$ $[U]$ $[U]$ text: $[U]$ $[U]$ <	ALYTICAL LABORATORY, INC. ironmental Analytical Services AAIN OF CUSTODY	δ Billing address: δ	RUC P:O.# (if required):	For Laboratory Use Only:	QC Level: 1 23 4. CIP-Like	Custody Seal(s): 2 · ON Tap	Analysis Requeste	Preservation Code: (See below)	(s): (printed)	athree Flore SE	5	ample Location Containers		, ~ ~	× ×			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	3	3) Received By: Date / Time) -1/1/2001	Dr Hync, Podron Szylon 10:55	urface Water) (L=Liquid) (O=Oil) (S=Soil) (SD=Solid) (SL=Sludge) (A
	ACCURAAN Env CF	ompany Name: US AV m)/ CUPS of En	ddress: 16 w PSA OS/P There P	esults Sent to: (Client Contact): PVN(mail address:	ontact Phone #. 7/2 ~ 6 27 - 6 0 7 7 Fax#.	roject (Site) Name: Munter Parinetter	roject Number: AMC 70 4 00 85	ampler(s): (signature) Sampler	1 hours and the	(m) (m)	Sample ID # Date / Time Sample S	PR. DOT 7- D 5/22/07 1500 0161	00,007,02 5 23/07/2010 x 64	0. 007. 23. D 5/23/07 Carl 0 641	PR-007.12.5 \$123(0) 09/2 0/2 0/2	06.001-12-20 5/23/c/ c920 0 6 L	0 - 0 17-13.5 State 1 100 0 64	08-007-13-0 5/33/67 100 0 6W	06.007-6.5 522/07 102 102	PR-DDT. 6-0 5/22/07 104/0 64	12-007-1-5 522107 12-20 02 194	nquished By: Date / Time 2)	1 2/1/1/00	Dete Time 4	Guide: (W=Water) (DW=Drinking Water) (GW=Groundwater) (SW=S

Page A 7 4 5 8 Mg	Phone # (770) 449-8800 Fax # (770) 449-5477	AMC	4	AAL LIMS System ID: 7005	Receiver's Initials/Temp: Sw 22	oe AAL Work Order # 12050	p;	Field Comments:			AALLab		me ares well the 1019					nco 1	1 025			800	Delivered by: (Circle One) Fed Ex/ UPS / DHL / AAL Pickup / Hand / Other	Turnaround Time Requested:	ı=Air) (C=Air Cartridge)
iRY, INC.		Billing address:	P.O.# (if required);	For Laboratory Use Only:	OCLEVEI: 1 03 4 CLP-Like	Custody Seal(s) 2 ON Tap	Analysis Requeste			<u> </u>	, 7	2	8			8	6					~	Date / Time	n 5/24/07 10:55	(S=Soil) (SD=Solid) (SL=Sludge) (A
ANALYTICAL LABORATO Environmental Analytical Services	CHAIN OF CUSTODY	Ensi	Ave			<i>c</i> #.	11 m S	Preservation Code: (See below)	tpler(s): (printed)	Rethods Tover a		No. of Sample Location Containers	<u> </u>		`~	~	~	~	~	ţ	~	C	2) Received By:	() Tout the Rank	W=Surface Water) (L=Liquid) (O=Oil)
ACCURA	, r	15 Army Caussed	west clethour	act): Bry L		622-6c27 Fa	whe Revineder Same	PML TO HOCSS	LIES		ite ite	Sample Sample Compos Compos	25/2300 /215 A GU	stash pac of 15W	5/2407 1230 × 64	5/23/07 13cc 9 64	5/23/07 13/5 A 64	52-3/c) 1330 a 64	723/07 1345 × 64	12407 1920 M GW	123/07 1430 × 6W	123/07/450 A GW	Date / Time	107 10,55	brinking Water) (GW=Groundwater) (S
		Company Name:	Address:	Results Sent to: (Client Cont	Email address:	Contact Phone #: 2/2-1	Project (Site) Name: <u>M_{fa}</u>	Project Number:	Sampler(s): (signature)	1 1 m		Line Vo Sample ID #	1 PK-DOT-10 0	2 R-DOL- 2-5.	3 PR-DDT-2.0	4 PR-DPT-3-5	5 KR-DOT-3-D -	6 PR-007.4.5	7 PR-POTY-D 5	8 PR-PPT-5-5 5	9 PR-DOTSN 5.	10 pe- pop-17.5 5	1) Refinquished By:	FED EX S/2C	Matrix Guide: (W=Water) (DW=D

Preservation Codes: 1=HCL / 2=HNO₃ / 3=H₂SO₄ / 4=NaOH+NaAsO₂ / 5=NaOH+ZnAc / 6=Na₂S₂O₃ / 7=NaHSO₄ / 8=MeOH

ACCURA ANALYTICAL LABORATORY, INC.

Environmental Analytical Services

6017 Financial Drive, Norcross, GA 30071

² ax # (770) 449-547			m; 7005	mp. 131 2.2	u# 120SO		aments:			AAL Lab TD:	12050	erother 029		1	1							/ Hand / Other	equested:	
nne # (770) 449-8800 F	1		AAL LIMS System	Receiver's Initials/Te	AAL Work Ord		Field Con															/ered by: (Circle One)	Turnaround Time R	C=Air Cartridge)
Pho	illing address: A-M	O.# (if required):	or Laboratory Use Only:	CLevel 123 4 CLP-Like	ustody Seal(s): 🔔 🖉 N Tape	Analysis Requested				()<	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~										Date / Time Deliv	5/24/104 10, 55	=Soil) (SD=Solid) (SL=Studge) (A=Air) (
CHAIN OF CUSTODY	Ers B	the Bill P			ζ#.	melite	Preservation Code: (See below)	apler(s): (printed)	mother perses		Sample Location Containers	» د							7			2) Received By: Shipe PO	4) Received By: 1 JULETING ACIDINON	W=Surface Water) (L=Liquid) (O=Oil) (S=
	In Solos Mad	lest coletta	Ame		2-6277 Fa	CONTRATEd Son	TO A OOST	San		below) otrix perior	/ Time Corrad	7 5ac a Gr		· ·								Date / Time	W.55 Date/Time	Water) (GW=Groundwater) (S
	ompany Name: US M.	ddress: JCC	esults Sent to: (Client Contact):	mail address:	ontact Phone #. 7/2 622	oject (Site) Name: Hunter v	oject Number: RMDL	unpler(s): (signature)		 N	Sample ID # Date	VEODE PED 523/6										Iquished By:	Aguisation By.)	Juide: (W=Water) (DW=Drinking
	Ū	Ā	Ŗ	ជា	Ŭ	Ч	ų L			.0N	əal.I	-	2	ω	4	S	Q	~	æ	൭	₽	1) Relit	3) Reli	Matrix (

Preservation Codes: 1=HCL / 2=HNO₃ / 3=H₂SO₄ / 4=NaOH+NaAsO₂ / 5=NaOH+ZnAc / 6=Na₂S₂O₃ / 7=NaHSO₄ / 8=MeOH

	۰. ۲٦		•	
SAM	PLE RECEIPT CHECKLIST VERSION 6 Client Code: 015 AAL Pro	oject Mg	r: <u>DP</u>	
Client l	Project Name: HUNER Brimeter Scimpling ACCURAW	ork Order	#: <u>1205</u> (\bigcirc
Are th If YES, j Prelimi	nere EnCores , tests with 48Hr field times , or RUSH TAPS requested? you must communicate RUSH analyses to the appropriate analyst(s) immediately!!! / or present nary Examination: Initials: Date received:D4D4 to cooler	YES rve EnCore was opene	NO s (see #16 be ed: <u>5/24/</u>	low)!!!
1.	Did cooler/package come with a shipping slip (airbill, Etc.)? If YES, enter carrier name and airbill number here: Fed $kx - 859705150848$	(TES)		NOR
	Describe type of packing in cooler: Bubble Wrap TTCE ****If cooler was hand delivered, CIRCLE HERE skip to item #5****			
2.	Were custody seals on outside of cooler? If YES, how many: <u>2</u> seal dated: <u>5/23/07</u> seal name: <u>M.H.</u>	(YES)	N. Contraction of the second s	NO
3.	Were custody seals unbroken and intact at the date and time of arrival?	(TES)	N/A	NO
4.	Were custody papers sealed in a plastic bag to prevent damage to chain of custody?	(YES)		NO
5.	If required, was enough ice used? (Internal cooler temperature, $2C$)	Ē	N/A	NO
6.	Did you sign custody papers in the appropriate place?	(TES)		NO
7.	Was project identifiable from custody papers? If YES, enter project name at the top.	(res)		NO
Comple Receipt	ete project file with green sheet, proper file tag, and shipping documentation. Line up samples follow t Verification form (include extra containers for dissolved metals filtrates). Complete login in XENC(ing chain. (D and gener	Complete Con ate AAL ID I	tainer Labels.
8.	Did all containers arrive unbroken and were labels in good condition?	YES) ·	NO
9.	Were custody papers filled out properly and did all labels agree with custody papers?	YES	>	NO
10.	Were correct containers and sufficient amount of sample sent for the test indicated?	YES		NO
11.	All samples collected within three days of date received for these analyses (Reactive Cn & S, Solids in H2O, Sulfide, Sulfite, IALLI Extractable Organic Waters)? If NO, coordinate with the project manager to ensure that no samples go out of hold!!!	YES	N/A	NO
12.	No residual chlorine found in waters for these analyses: (Cyanide, PAH, SVOC, Pesticides, PCB's, Herbicides)? Checked by:	YES	N/A hittials	NO
13.	Were samples properly chemically preserved, if required, upon receipt? (For example: pH checked for waters for all Metals, Wet Chemistry, Pesticides, PCB's, Herbic	YES ides, and	N/A	NO
	VOC/BTEX samples submitted with HCL for waters and in either Encore samplers or NaHS Preservation checked by:	י De labeled תו)	vials for soil atials)	s}
14.	Were air bubbles (>1/4 inch) absent in VOC/BTEX samples?	YES	N/A	(NO)
15.	If there are samples for dissolved metals, were they field filtered? If NO, list date and time samples were filtered and preserved in lab:	YES	N/A	NO
16.	Were Encore samplers included?	YES	***********	NO
17.	If YES, date and time preserved with NaHSO4:By whom: Does this submittal contain soil NaHSO4 vials for BTEX/GRO/VOC'S?	YES	í	NO
18.	If YES, vials weighed by and entered into vial database by: Initials of laboratory personnel responsible for labeling laboratory I.D. numbers on cor	itainers:		<u>·</u>
Keep s	amples and chain out. Before moving samples to their appropriate location, another person must revi at information on the AAL ID Barcode label matches the container label, and that all information is o Final check and samples logged to locations by:	ew the entir consistent w	e project ensitt the chain. itials)	uring
19.	Was it necessary to call the assigned project manager in order to proceed with login? If YES, give details on the back of this form.	YES	-	NO
20.	Who was called? By whom? Date/Time	e:	111 4 11	
Project	Mgr. Review:(Initials)5/2 \/07 (Date)		Page	1 of 2

ACCURA ANALYTICAL LABORATORY, INC. SAMPLE RECEIPT VARIANCE FORM

em #		
	Discrepancies Noted:	
<u></u>	received sampes, PR-UPI-8-S, PR-OPT-IC)- <u>S</u>
	PR-DPT-7-S, and semple PR-DPT-23-S all	with
	"Hofman air snans all samples with la	held
	isth a pail will know and lotal	
<u> </u>		· · · · · · · · · · · · · · · · · · ·
1	all the company of th	
<u> </u>	an somes received wignest rectipic	<u>90103</u> 410
	OD SIDDIE Sampto Chark by the	
		······································
	· · · · · · · · · · · · · · · · · · ·	
		<u> </u>
·	·	
		-
<u></u>	if analysis and note variances on case namedine	<u>Orieck</u>
		5/29/07
	Not-fred and the war received	<u> </u>
-1	Not-fied and ysts upon receipt.	197 5/29/07
- <u>·</u>	Not-fied and ysts upon receipt.	199/07 5/29/07
<u>-1</u>	Not-fied and 1813 upon receipt.	<u>D9</u> <u>\$/29</u> /07
-1	Not-fied and/813 upon receipt.	<u>\$729</u> /07 <u>\$729</u> /07
-1	Not: fied and 7813 upon receipt.	<u>\$729</u> /07 <u>\$729</u> /07
	Not-fied and ysta upon receijot.	<u> </u>
	Not.fred and/1813 upon receijot.	<u>V</u> <u>\$/29/07</u>
	Not-fied andysts upon receipt.	<u>\$729</u> /07
	Not: fied andysts upen receipt.	<u>\$729</u> /07
	Not:fied andysts upon receipt.	<u>V</u> <u>\$/29/07</u>
	Notified and ysts upen receipt.	<u>V</u> <u>\$/29/07</u>
	Not:fied and ysts upen receijel	<u>V</u> 7/29/07 <u>\$/29/07</u>

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: Trip Blank	Matri	x: WATE	R	% Moistur	e:		<u></u>
Lab Sample Id: 12050-001	Date Collecte	d: Mav-2	2-07 00:00	Date Receive	d: May-24-	07 10:5	5
Sample Denth:							
Sumple Deput.							
Analytical Method: USACE V	DCs by SW8260B			Prep 1	Method: SW	/5030B	
Date Analyzed: May-26-07 16:36	Analyst: MJL01	j	Date Prep: M	av-26-07 08:09	Tech	MIL01	
	Seq Number: 36120		1	2			
Parameter	Cas Number	Result	Ren Limit	MDI	Unite	Flag	Dil
	Cas Number	Acsult	кер слин	MDL	Cints	Ting	Du
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	I
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	\mathbf{U}	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	\mathbf{U}	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	\mathbf{U}	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	u g/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	t
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRI	1.0	0.25	ug/L	Ŭ	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	u g /L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	u g 4	ខ្មែប	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: Trip Blank	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-001	Date Collected: May-22-07 00:00	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VC	OCs by SW8260B	Prep Method: SW5030B						
Date Analyzed: May-26-07 16:36	Analyst: MJL01 Seq Number: 36120]	Date Prep: M	ay-26-07 08:09	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1	
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1	
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1	
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1	
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1	
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1	
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1	
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1	
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1	
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1	
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1	
o-Xylene	95-47-6	BRL	1. 0	0.20	ug/L	U	1	
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	\mathbf{U}	1	
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1	
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1	
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1	
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1	
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1	
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1	
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1	
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1	
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1	

Analytical Method: USACE VOCs by SW8260B

Certificate of Analytical Results 12050

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-8-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-002	Date Collected: May-22-07 10:30	Date Received: May-24-07 10:55
Sample Depth:		

Analyst: MJL01 Date Analyzed: May-26-07 17:32 Date Prep: May-26-07 08:09 Tech: MJL01 Seq Number: 36120 **Result Rep Limit** Units Flag Dil Parameter Cas Number MDL ug/L BRL 0.24 U 1 1,1,1,2-Tetrachloroethane 630-20-6 1.0 ug/L U 1,1,1-Trichloroethane 71-55-6 BRL 1.0 0.16 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 U 1 ug/L U 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 1 ug/L U 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 1 ug/L U 1.1-Dichloroethene 75-35-4 BRL 1.0 0.20 1 ug/L 1.1-Dichloropropene 563-58-6 BRL 1.0 0.10 U 1 ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL. 1.0 0.25 1 BRL 1.0 0.21 ug/L U 1 1,2,3-Trichloropropane 96-18-4 BRL ug/L U 1,2,4-Trichlorobenzene 120-82-1 1.0 0.17 1 ug/L 1.2.4-Trimethylbenzene 95-63-6 1.2 1.0 0.14 1 BRL 0.19 ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 1.0 1 106-93-4 BRL 1.0 ug/L U 1,2-Dibromoethane 0.18 1 ug/L U 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0,14 1 ug/L 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 U 1 ug/L U 1,2-Dichloropropane 78-87-5 BRL 1.0 0.15 1 ug/L U 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L U 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 1 ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 U 1 106-46-7 ug/L U 1,4-Dichlorobenzene BRL 1.0 0.17 1 ug/L U 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 1 ug/L U 2-Butanone 78-93-3 BRL 5.0 0.28 1 ug/L 2-Chlorotoluene 95-49-8 BRL 1.0 0.19 U 1 ug/L U 2-Hexanone 591-78-6 BRL 5.0 0.32 1 ug/L 106-43-4 BRL 1.0 U 4-Chlorotoluene 0.13 1 ug/L U 1 4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 ug/L U 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 1 BRL 5.0 ug/L U Acetone 67-64-1 0.35 1 BRL 20 ug/L U 1 Acrolein 107-02-8 6.6 2.0 ug/L U Acrylonitrile 107-13-1 BRL 0.49 1 ug/L U Benzene 71-43-2 BRL 1.0 0.16 1 ug/L U Bromobenzene 108-86-1 BRL 1.0 0.21 1 ug/L Ŭ Bromochloromethane 74-97-5 BRL 1.0 0.20 1 ug/L U Bromodichloromethane 75-27-4 BRL 1.0 0.25 1 ug/L Bromoform 75-25-2 BRL 1.0 0.17 U 1 ug/L Ŭ Bromomethane 74-83-9 BRL 1.0 0.25 1 ug/L U 75-15-0 BRL 1.0 0.26 1 Carbon disulfide ug/L Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 U 1 ug/L 108-90-7 Chlorobenzene BRL 1.0 0.15 U 1 ug/L Chloroethane 75-00-3 BRL 1.0 0.26 U 1 ug/L U 67-66-3 BRL 1.0 1 Chloroform 0.16 ug/L U Chloromethane 74-87-3 BRL 1.0 0.25 1 ug/L U cis-1,2-Dichloroethene 156-59-2 BRL 1.0 0.21 1 ug/L U cis-1,3-Dichloropropene 10061-01-5 BRL 1.0 0.10 1 BRL we/4 14 U 1 Dibromochloromethane 124-48-1 1.0 0.15

Prep Method: SW5030B

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample ld: PR-DPT-8-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-002	Date Collected: May-22-07 10:30	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B		Prep Method: SW5030B					
Date Analyzed: May-26-07 17:32	Analyst: MJL01 Seq Number: 36120]	Date Prep: M	ay-26-07 08:09	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	I
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

		ACTIVA STATISTICS AND A
Sample Id: PR-DPT-8-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-003	Date Collected: May-22-07 10:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-26-07 17:59 Analyst: MJL01 Date Prep: May-26-07 08:09 Tech: MJL01 Seq Number: 36120 Flag Dil Cas Number **Result Rep Limit** MDL Units Parameter 630-20-6 BRL 1.0 0.24 ug/L U 1,1,1,2-Tetrachloroethane 1 ug/L U 1,1,1-Trichloroethane 71-55-6 BRL 1.0 0.16 1 ug/L U 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 1 ug/L 0.25 U 1 1,1,2-Trichloroethane 79-00-5 BRL 1.0 ug/L U 1.1-Dichloroethane 75-34-3 BRL 1.0 0.11 1 ug/L U 1.1-Dichloroethene 75-35-4 BRL 1.0 0.20 1 ug/L U 1.1-Dichloropropene 563-58-6 BRL 1.0 0.10 1 ug/L U BRL 1.0 0.25 1 1.2.3-Trichlorobenzene 87-61-6 ug/L U 1 1.2.3-Trichloropropane 96-18-4 BRL 1.0 0.21 ug/L U 1.2.4-Trichlorobenzene 120-82-1 BRL 1.0 0.17 1 ug/L U BRI. 1 1,2,4-Trimethylbenzene 95-63-6 1.0 0.14 ug/L BRL 0.19 U 1 1,2-Dibromo-3-chloropropane 96-12-8 1.0 ug/L U 1.2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 U ug/L 1.2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L U 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 1 ug/L U 1,2-Dichloropropane 78-87-5 BRL 1.0 0.15 1 ug/L U 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L BRL U 1,3-Dichlorobenzene 541-73-1 1.0 0.17 1 142-28-9 BRL 1.0 0.19 ug/L U 1 1,3-Dichloropropane ug/L U 1 1,4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 ug/L U 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 1 ug/L U 2-Butanone 78-93-3 BRL 5.0 0.28 1 ug/L U 1 95-49-8 BRL 1.0 0.19 2-Chlorotoluene ug/L U 2-Hexanone 591-78-6 BRL 5.0 0.32 1 ug/L U 1 4-Chlorotoluene 106-43-4 BRL. 1.0 0.13 ug/L U 99-87-6 BRL 1.0 0.13 1 4-Isopropyltoluene ug/L U 108-10-1 BRL 5.0 0.26 1 4-Methyl-2-pentanone ug/L U 5.0 0.35 1 Acetone 67-64-1 BRL ug/L U Acrolein 107-02-8 BRL 20 6.6 1 0.49 ug/L U Acrylonitrile 107-13-1 BRL 2.01 1.0 ug/L τĩ Benzene 71-43-2 BRL 0.16 1 ug/L U Bromobenzene 108-86-1 BRL 1.0 0.21 1 ug/L Bromochloromethane 74-97-5 BRL 1.0 0.20 U 1 75-27-4 BRL 1.0 0.25 ug/L U 1 Bromodichloromethane 75-25-2 1.0 ug/L U 1 Bromoform BRL 0.17 ug/L U Bromomethane 74-83-9 BRL 1.0 0.25 1 ug/L U 1 Carbon disulfide 75-15-0 BRL 1.0 0.26 ug/L U 1 Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 ug/L U Chlorobenzene 108-90-7 BRL 1.0 0.15 1

75-00-3

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

BRL

BRL

BRL

BRL

BRL

BRL

1.0

1.0

1.0

1.0

1.0

1.0

0.26

0.16

0.25

0.21

0.10

0.15

Chloroethane

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Chloroform

UNE U

U

U

U

U

U

1

1

1

1

1

1

ug/L

ug/L

ug/L

ug/L

ug/L

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-8-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-003	Date Collected: May-22-07 10:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-26-07 17:59 Analyst: MJL01 Date Prep: May-26-07 08:09 Tech: MJL01 Seq Number: 36120 **Cas Number Result Rep Limit** MDL Units Flag Dil Parameter 74-95-3 BRL 1.0 0.24 ug/L U 1 Dibromomethane BRL 0.22 ug/L U Dichlorodifluoromethane 75-71-8 1.0 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L BRL 0.13 U Hexachlorobutadiene 87-68-3 1.0 1 ug/L 98-82-8 BRL 1.0 0.15 U 1 Isopropylbenzene ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 U 1 Naphthalene 91-20-3 BRL 1.0 0.22 ug/L U 1 ug/L n-Butylbenzene 104-51-8 BRL 1.0 0.17 U 1 ug/L U 103-65-1 BRL 1 n-Propylbenzene 1.0 0.18 ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 1 ug/L U 100-42-5 BRL 1.0 0.18 1 Styrene ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L Tetrachloroethene 127-18-4 BRL 1.0 0.16 U 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 ug/L Trichloroethene 79-01-6 BRL 1.0 0.19 U 1 ug/L U 75-69-4 BRL 1.0 0.53 Trichlorofluoromethane 1 ug/L U 5.0 Vinyl acetate 108-05-4 BRL 1.3 1 ug/L U Vinyl chloride 75-01-4 BRL 1.0 0.19 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-9-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-004	Date Collected: May-22-07 12:00	Date Received: May-24-07 10:55
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Analyst: MJL01 Date Prep: May-26-07 08:09 Date Analyzed: May-26-07 09:49 Tech: MJL01 Seq Number: 36120 **Result Rep Limit** MDL Units Flag Dil Cas Number Parameter ug/L U BRL 1.0 0.24 1 1,1,1,2-Tetrachloroethane 630-20-6 BRL 1.0 0.16 ug/L U 1 71-55-6 1,1,1-Trichloroethane ug/L U 1 79-34-5 BRL 1.0 0.18 1,1,2,2-Tetrachloroethane ug/L U 1 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 ug/L 75-34-3 BRL 1.0 0.11 Ű 1 1.1-Dichloroethane ug/L BRL 1.0 0.20 U 1 75-35-4 1,1-Dichloroethene ug/L 1.0 0.10 U 1 563-58-6 BRL 1,1-Dichloropropene ug/L U 87-61-6 BRL 1.0 0.25 1 1,2,3-Trichlorobenzene U ug/L 96-18-4 BRL 1.0 0.21 1 1,2,3-Trichloropropane ug/L 120-82-1 BRL 1.0 0.17U 1 1,2,4-Trichlorobenzene ug/L U 95-63-6 BRL 1.00.14 1 1.2.4-Trimethylbenzene ug/L U 96-12-8 BRL 1.0 0.19 1 1,2-Dibromo-3-chloropropane ug/L υ 106-93-4 BRL 1.0 0.18 1 1,2-Dibromoethane ug/L 95-50-1 BRL 1.0 0.14 U 1 1,2-Dichlorobenzene ug/L BRL 1.0 0.18 U 1 1.2-Dichloroethane 107-06-2 ug/L U 78-87-5 BRL 1.0 0.15 1 1,2-Dichloropropane ug/L 108-67-8 BRL 1.0 0.17 U 1 1,3,5-Trimethylbenzene ug/L 541-73-1 BRL 1.0 0.17 U 1 1,3-Dichlorobenzene ug/L BRL 1.0 0.19 U 1 142-28-9 1,3-Dichloropropane ug/L U 106-46-7 BRL 1.0 0.17 1 1,4-Dichlorobenzene ug/L 594-20-7 BRL 1.0 0.21 U 1 2,2-Dichloropropane ug/L 78-93-3 BRL 5.0 0.28 U 1 2-Butanone ug/L BRL 1.0 0.19 U 1 95-49-8 2-Chlorotoluene ug/L 591-78-6 BRL 5.0 0.32 U 1 2-Hexanone ug/L 4-Chlorotoluene 106-43-4 BRL 1.0 0.13 U 1 1.0 ug/L U 1 99-87-6 BRL 0.13 4-Isopropyltoluene 5.0 0.26 ug/L U 1 108-10-1 BRL 4-Methyl-2-pentanone 5.0 0.35 ug/L U 1 67-64-1 BRL Acetone ug/L U 107-02-8 BRL 20 6.6 1 Acrolein ug/L 2.0 0.49 U 107-13-1 BRL 1 Acrylonitrile 1.0 0.16 ug/L U 1 71-43-2 BRL Benzene ug/L U 1 108-86-1 BRL 1.0 0.21 Bromobenzene ug/L U 74-97-5 BRL 1.0 0.20 1 Bromochloromethane ug/L U 1 75-27-4 BRL 1.0 0.25 Bromodichloromethane ug/L U 1 75-25-2 BRL 1.0 0.17 Bromoform ug/L U 1 74-83-9 BRL 1.0 0.25 Bromomethane ug/L U 75-15-0 BRL 1.0 0.26 1 Carbon disulfide ug/L U 56-23-5 BRL 1.0 0.33 1 Carbon Tetrachloride ug/L U 1 BRL 1.0 0.15 Chlorobenzene 108-90-7 ug/L U 1 75-00-3 BRL 1.0 0.26 Chloroethane ug/L U 67-66-3 BRL 1.0 0.16 1 Chloroform ug/L U 0.25 1 74-87-3 **BRL** 1.0 Chloromethane ug/L U BRL 1.0 0.21 1 156-59-2 cis-1,2-Dichloroethene ug/L U 1 10061-01-5 BRL 1.0 0.10 cis-1,3-Dichloropropene usabiaU 1 Dibromochloromethane 124-48-1 BRL 1.0 0.15

Version: 1.008

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-9-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-004	Date Collected: May-22-07 12:00	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VC	Cs by SW8260B			Prer	Method: SV	V5030B	
Date Analyzed: May-26-07 09:49	Analyst: MJL01 Seq Number: 36120]	Date Prep: M	lay-26-07 08:09	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	u g/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/I.	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-9-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-005 Sample Depth:	Date Collected: May-22-07 12:30	Date Received: May-24-07 10:55
Analytical Method: USACE VOCs by	SW8260B	Prep Method: SW5030B

Date Analyzed: May-26-07 18:27	Analyst: MJL01 Seq Number: 36120]	Date Prep: M	ay-26-07 08:09	Tech:	МЛL0 1	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	\mathbf{U}	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	J
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	10	0.26	ug/L	Ū	1
Carbon Tetrachloride	56-23-5	BRL	10	0.33	ug/L	Ŭ	1
Chlorobenzene	108-90-7	BRI	1.0	015	ug/L	Ū	1
Chloroethane	75-00-3	BRI	10	0.26	ug/L	Ū	1
Chloroform	67-66-3	BRI	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRI	1.0	0.25	ug/L	Ū	ī
cis-1 2-Dichloroethene	156-59-2	BRI	1.0	0.21	ug/L	Ū	1
cis-1 3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	Ū	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	u di	े भे U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-9-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-005	Date Collected: May-22-07 12:30	Date Received: May-24-07 10:

Sample Depth:

55

Prep Method: SW5030B

Tech: MJL01

Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-26-07 18:27 Analyst: MJL01 Date Prep: May-26-07 08:09

Seq Number: 36120							
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	I
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-10-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-006	Date Collected: May-22-07 13:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE V(OCs by SW8260B	Prep Method: SW50301			V5030B		
Date Analyzed: May-27-07 13:26	Analyst: MJL01 Seg Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
	(20.20.4	DDI	10	0.24	11 0 /I	TI	1
1,1,1,2-Tetrachloroethane	630-20-6	BKL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BKL	1.0	0.10	ug/L uo/l		1
1,1,2,2-Tetrachloroethane	79-34-5	BKL	1.0	0.18	ug/L 110/I	U	1
1,1,2-Trichloroethane	79-00-5	BKL	1.0	0.25	ug/L ug/I	U	1
1,1-Dichloroethane	75-34-3	BKL	1.0	0.11	ug/L ug/I	U	1
1,1-Dichloroethene	/5-35-4	BKL	1.0	0.20	ug/L 110/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L ug/I		1
1,2,3-Trichlorobenzene	87-61-6	BKL	1.0	0.25	ug/L	U U	1
1,2,3-Trichloropropane	96-18-4	BKL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BKL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	l
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	\mathbf{U}	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ū	1
cis-1 2-Dichloroethene	156-59-2	BRI.	1.0	0.21	ug/L	U	1
cis-1.3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	u r/h i,	ŻŻ U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-10-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-006	Date Collected: May-22-07 13:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-27-07 13:26 Analyst: MJL01 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 Parameter **Result Rep Limit** MDL Units Flag Dil **Cas Number** ug/L Dibromomethane 74-95-3 BRL 1.0 0.24 U 1 ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 U 1 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene U 179601-23-1 BRL 2.00.51 1 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L n-Butylbenzene 104-51-8 BRL 1.0 U 1 0.17ug/L 103-65-1 n-Propylbenzene BRL 1.0 0.18 U 1 ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 ug/L Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 U 1 Styrene 100-42-5 BRL 1.0 0.18 ug/L U 1 tert-Butylbenzene 98-06-6 BRL 1.0 0.18 ug/L U 1 Tetrachloroethene 127-18-4 BRL 1.0 ug/L U 0.16 1 ug/L Toluene 108-88-3 BRL 1.0 0.14 U 1 trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 ug/L U 1 trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 ug/L U 0.11 1 Trichloroethene BRL 1.0 ug/L U 79-01-6 0.19 1 ug/L Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 U 1 ug/L Vinyl acetate 108-05-4 BRL 5.0 1.3 U 1 ug/L Vinyl chloride 75-01-4 3.0 1.0 0.19 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-10-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-007	Date Collected: May-22-07 14:00	Date Received: May-24-07 10:55
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Prep: May-27-07 09:08 Date Analyzed: May-27-07 13:53 Analyst: MJL01 Tech: MJL01 Seq Number: 36132 MDL Units Flag Dil Cas Number **Result Rep Limit** Parameter U BRL. 1.0 0.24 ug/L 1 630-20-6 1.1.1.2-Tetrachloroethane BRL 0.16 ug/L U 1 71-55-6 1.0 1,1,1-Trichloroethane ug/L U 1 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 ug/L U 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 1 ug/L 75-34-3 BRL 1.0 0.11 U 1 1.1-Dichloroethane ug/L BRL 1.0 0.20 U 1 75-35-4 1.1-Dichloroethene ug/L U 1 563-58-6 BRL 1.0 0.10 1.1-Dichloropropene ug/L U 87-61-6 BRL 1.0 0.25 1 1,2,3-Trichlorobenzene U 96-18-4 BRL 1.0 0.21 ug/L 1 1,2,3-Trichloropropane 120-82-1 BRL 1.0 0.17 ug/L U 1 1,2,4-Trichlorobenzene BRL 1.0 0.14 ue/L П 1 1.2.4-Trimethylbenzene 95-63-6 ug/L U 96-12-8 BRL 1.0 0.19 1 1,2-Dibromo-3-chloropropane ug/L 106-93-4 BRL 1.0 0.18 U 1 1,2-Dibromoethane 95-50-1 BRL 1.0 0.14 ug/L U 1 1,2-Dichlorobenzene BRL 1.0 0.18 ug/L U 1 1.2-Dichloroethane 107-06-2 ug/L 78-87-5 BRL 1.0 0.15 U 1 1,2-Dichloropropane 108-67-8 BRL 1.0 0.17 ug/L U 1 1,3,5-Trimethylbenzene BRL 1.0 0.17 ug/L U 1 541-73-1 1.3-Dichlorobenzene 0.19 ug/L U 1 142-28-9 BRL 1.0 1.3-Dichloropropane ug/L BRL 1.0 0.17 U 1 1,4-Dichlorobenzene 106-46-7 ug/L 594-20-7 BRL 1.0 0.21 U 1 2,2-Dichloropropane ug/L 78-93-3 BRL 5.0 0.28 U 1 2-Butanone ug/L 0.19 U 1 95-49-8 BRL 1.0 2-Chlorotoluene ug/L 591-78-6 BRL 5.0 0.32 U 1 2-Hexanone ug/L 4-Chlorotoluene 106-43-4 BRL 1.0 0.13 U 1 ug/L U 99-87-6 BRL 1.0 0.13 1 4-Isopropyltoluene ug/L 0.26 U 1 108-10-1 BRL 5.0 4-Methyl-2-pentanone ug/L U 1 67-64-1 BRL 5.0 0.35 Acetone ug/L U 107-02-8 BRL 20 6.6 1 Acrolein ug/L U 107-13-1 BRL 2.0 0.49 1 Acrylonitrile ug/L U 1 BRL 1.0 0.16 Benzene 71-43-2 ug/L U 108-86-1 BRL 1.0 0.21 1 Bromobenzene ug/L U 74-97-5 BRL 1.0 0.201 Bromochloromethane ug/L U BRL 1.0 0.25 1 75-27-4 Bromodichloromethane ug/L U 1 BRL 0.17 Bromoform 75-25-2 1.0 ug/L U 1 74-83-9 BRL 1.0 0.25 Bromomethane ug/L 75-15-0 BRL 1.0 0.26 U 1 Carbon disulfide ug/L U BRL 1.0 0.33 1 56-23-5 Carbon Tetrachloride ug/L U 0.15 1 108-90-7 BRL 1.0 Chlorobenzene ug/L 75-00-3 BRL 1.0 0.26 U 1 Chloroethane ug/L BRL 1.0 0.16 U 1 67-66-3 Chloroform ug/L U 74-87-3 BRL 1.0 0.25 1 Chloromethane ug/L U 1 156-59-2 BRL 1.0 0.21 cis-1,2-Dichloroethene ug/L U 10061-01-5 BRL 1.0 0.10 1 cis-1,3-Dichloropropene 124-48-1 BRL 1.0 0.15 ug/147.4 U 1 Dibromochloromethane

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-10-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-007	Date Collected: May-22-07 14:00	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-27-07 13:53 Analyst: MJL01 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 **Result Rep Limit** MDL Dil Parameter Cas Number Units Flag BRL ug/L U Dibromomethane 74-95-3 1.0 0.24 ug/L Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 U ug/L Ethylbenzene 100-41-4 BRL 1.0 0.19 U ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U ug/L Methylene Chloride 75-09-2 BRL 1.0 0.42 U ug/L Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 U m-Xylene/p-Xylene 179601-23-1 2.0 ug/L U BRL 0.51 Naphthalene BRL 0.22 ug/L U 91-20-3 1.0 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 ug/L U o-Xylene BRL ug/L U 95-47-6 1.0 0.20 ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 BRL 1.0 ug/L U Styrene 100-42-5 0.18 tert-Butylbenzene 98-06-6 BRL ug/L U 1.0 0.18 ug/L Tetrachloroethene U 127-18-4 BRL 1.0 0.16 ug/L Toluene 108-88-3 BRL 1.0 0.14 U

BRL

BRL

BRL

BRL

BRL

BRL

1.0

1.0

1.0

1.0

5.0

1.0

0.21

0.11

0.19

0.53

1.3

0.19

156-60-5

79-01-6

75-69-4

108-05-4

75-01-4

10061-02-6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

U

U

U

U

U

U

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

Vinyl acetate

Vinyl chloride

trans-1,3-Dichloropropene

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-7-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-008	Date Collected: May-22-07 10:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep N	Method: SW	/5030B	
Date Analyzed: May-27-07 10:45	Analyst: MЛL01 Seq Number: 36132	J	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	\mathbf{U}	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	ູັບ	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	uppi	75 U	1

Version: 1.008

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-7-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-008	Date Collected: May-22-07 10:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep	Method: SW	'5030B	
Date Analyzed: May-27-07 10:45	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	млоі	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	J
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-7-D	Matri	x: WATI	ER	% Moistur	e:		
Lab Sample Id: 12050-009	Date Collecte	d: May-2	22-07 15:00	Date Receive	d: May-24	-07 10:5	5
Sample Denth					·		
Sumple Depin.							
Analytical Method: USACE V	OCs by SW8260B			Prep	Method: SV	V5030B	
Data Analyzad: May 27.07.11:11	Analyst: MII 01		Data Brow M		Taska	3411 01	
Date Analyzed. May-27-07 11.11	Allaryst. Willon		Date riep. M	ay-27-07 09.08	lecn;	MJLUI	
	Seq Number: 36132						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	ប	1
I.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1 1 2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1 1-Dichloroethene	75-35-4	BRL	10	0.20	ug/L	U	1
1 1-Dichloropropene	563-58-6	BRL	10	0.10	ug/L	Ū	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ũ	1
1.2.3 Trichloropropage	96-18-4	BRI	10	0.21	ug/L	Ū	1
1.2.4 Trichlorobenzene	120-82-1	BRI	1.0	0.17	ue/L	Ŭ	1
1,2,4- Themorobelizene	95-63-6	BBI	1.0	0,17	ug/L	ŭ	í
1.2 Dibrora 2 abloranona	95-05-0	BDI	1.0	0.19	ug/L	т П	1
1,2-Dibromo-5-chloropropane	70-12-0 106 02 4		1.0	0.19	ug/1	U U	1
1,2-Dibromoetnane	100-93-4	DRL	1.0	0.16	ug/L	U U	1
1,2-Dichlorobenzene	95-50-1	DRL	1.0	0.14	ug/L		1
1,2-Dichloroethane	107-06-2	BKL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BKL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	0	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	0	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	பத/ட	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	. 5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	. 20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	RRI	10	0.26	ug/L	Ũ	1
Carbon Tetrachloride	56_73_5	1 AB	1.0	0.33	ug/L	ũ	1
Chlorobenzene	102-00-7	199 IST	1.0	0.15	ug/L	ň	1
Chloroothana	75 00 2	ועם	1.0	0.15	ue/L	й	1
Chloroform	13-00-3 ET 66 3		, 1.0 1.0	0.20	- <i>a</i> - ug/i.	U U	1
Chloremathana	71 97 2	DAL וסמ	, 1.0	0.10	т е — 110/Т.	U U	1
cinoromethane	/+-0/-J 156 50 0		. 1.0	0.23	че 1. 110/Л	U U	1
cis-1,2-Dichlerogramme	100-19-2	דעם זימים	. 1.0	0.10	ч _Б , Г. 110/I	о П	1
Difference ship and the	10001-01-0	DKL זתת	. 1.0	0.10	ug L	् स्रिकेश	1
Dipromocnioromethanc	124-48-1	BKL	. 1.0	0.15	បង្កល្អដ្	<u>an u</u>	Į.

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-7-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-009	Date Collected: May-22-07 15:00	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-27-07 11:11 Analyst: MJL01 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 Parameter **Cas Number Result Rep Limit** MDL Units Flag Dil Dibromomethane 74-95-3 BRL ug/L U 1.0 0.24 1 Dichlorodifluoromethane 75-71-8 BRL 1.0 ug/L U 0.22 1 ug/L Ethylbenzene BRL 1.0 U 100-41-4 0.19 1 ug/L Hexachlorobutadiene U 87-68-3 BRL 1.0 0.13 1 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U 1 ug/L Methylene Chloride U 75-09-2 BRL 1.0 0.42 1 ug/L Methyl tert-Butyl Ether 1634-04-4 U BRL 1.0 0.11 1 m-Xylene/p-Xylene ug/L 179601-23-1 BRL 2.0 0.51 U 1 Naphthalene ug/L U 0.22 91-20-3 BRL 1.0 1 n-Butylbenzene ug/L 104-51-8 BRL 1.0 0.17 U 1 n-Propylbenzene ug/L U 103-65-1 BRL 1.0 0.18 1 o-Xylene ug/L U 95-47-6 BRL 1.0 0.20 1 Sec-Butylbenzene ug/L 135-98-8 BRL 1.0 0.21 U 1 ug/L Styrene 100-42-5 BRL 1.0 0.18 U 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 Tetrachloroethene ug/L υ 127-18-4 BRL 1.0 0.16 1 Toluene 108-88-3 BRL 1.0 0.14 ug/L U 1 trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 ug/L U 1 ug/L trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 U 1 ug/L Trichloroethene 79-01-6 BRL 1.0 0.19 U 1 ug/L Trichlorofluoromethane U 75-69-4 BRL 1.0 0.53 J Vinyl acetate 108-05-4 BRL 5.0 ug/L U 1.3 1 Vinyl chloride 75-01-4 BRL 1.0 0.19 ug/L U 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-23-S	Matri	x: WATE	R	% Moistur	<u></u>	2000/0700.00	mang pang pang
Lab Sample Id: 12050-010	Date Collecte	d: Mav-2	3-07 08:45	Date Receive	d: Mav-24-	07 10:5	5
Somple Denth:	Dute content	u		2.4.0			-
Sample Depth.							
Analytical Method: USACE VO	Analytical Method: USACE VOCs by SW8260B Prep Method: SW50				/5030B		
Date Analyzed: May-27-07 14:47	Analyst: MJL01	1	Date Prep: M	av-27-07 09:08	Tech	мп.01	
	Sea Number: 36132		······································	3	10011	110201	
							- D 4
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	ות
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	\mathbf{U}	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	\mathbf{U}	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	ູັບ	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug / [4]	<u>sh</u> U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-23-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-010	Date Collected: May-23-07 08:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep M	Method: SV	V5030B	
Date Analyzed: May-27-07 14:47	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	u <u>e</u> /L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-23-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-011	Date Collected: May-23-07 09:00	Date Received: May-24-07 10:55

Sample Depth:

Analytical Method: USACE VOCs by SW8260B				Prep I	Method: SW	V5030B	
Date Analyzed: May-27-07 15:14	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	МЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ū	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	Ŭ	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1 3-Dichloropropage	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	Ū	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	Ū	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ū	ĩ
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ŭ	ī
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	Ū	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ū	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ū	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ū	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	ĩ
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ũ	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	Ū	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRI	1.0	0.15	ug/L	Ŭ	1
Chloroethane	75-00-3	BRI	1.0	0.26	ug/L	Ŭ	1
Chloroform	67-66-3	BRI	1.0	0.16	ug/L	Ŭ	î
Chloromethane	74-87-3	BRU	1.0	0.25	ug/L	ŭ	i
cis-1.2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	Ū	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	Ū	ī
Dibromochloromethane	124-48-1	BRL	1.0	0.15	u	<u>32</u> U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-23-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-011	Date Collected: May-23-07 09:00	Date Received: May-24-07 10:55
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-27-07 15:14 Analyst: MJL01 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 Dil Parameter Cas Number Result Rep Limit MDL Units Flag ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 U 1 ug/L Ethylbenzene 100-41-4 BRL 1.0 0.19 U 1 ug/L 87-68-3 BRL 1.0 0.13 U 1 Hexachlorobutadiene ug/L BRL U 1 Isopropylbenzene 98-82-8 1.0 0.15 ug/L Methylene Chloride 75-09-2 BRL 1.0 0.42 U 1 ug/L Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 U 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 1 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 1 ug/L Styrene 100-42-5 BRL 1.0 0.18 U 1 tert-Butylbenzene 98-06-6 BRL 1.0 0.18 ug/L U 1 ug/L Tetrachloroethene 127-18-4 BRL 1.0 0.16 U 1 ug/L U BRL 1.0 0.14 1 Toluene 108-88-3 trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 ug/L U 1 trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 ug/L U 1 ug/L U Trichloroethene BRL 1.0 0.19 1 79-01-6 ug/I. U BRL 1.0 0.53 1 Trichlorofluoromethane 75-69-4 ug/L 108-05-4 BRL 5.0 1.3 U 1 Vinyl acetate ug/L Vinyl chloride 75-01-4 BRL 1.0 0.19 U 1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-12-S	Matri	x: WATE	R	% Moistu	re:	<u>1.19.28.7.22</u>	2'elane waaradi
Lab Sample Id: 12050-012	Date Collecte	d: May-2	23-07 09:10	Date Receive	:d: May-24-	07 10:5	55
Sample Depth:		-			2		
Sample Deptil.	·						
Analytical Method: USACE Ve	DCs by SW8260B	Cs by SW8260B			Method: SW	/5030B	
Date Analyzed: May-27-07 15:42	Analyst: MJL01 Sea Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	МЛL01	
					TT . ! .	171	na
Parameter	Cas Number	Result	Rep Limit	MDL	Units	riag	ווע
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	I
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	u g/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	Ū	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ū	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ũ	1
Bromobenzene	108-86-1	BRL	10	0.21	ug/L	Ū	1
Bromochloromethane	74_97_5	BRI	10	0.20	ug/L	Ũ	1
Bromodichloromethane	75-27-4	BRI	1.0	0.25	ug/L	Ŭ	1
Bromoform	75-25-2	BRI	1.0	0.17	ug/L	Ŭ	1
Bromomethane	77-25-2	BRI	1.0	0.25	ug/L	Ŭ	1
Carbon disulfide	75-15-0	BRI	1.0	0.25	ue/L	Ŭ	1
Carbon Tatraphloride	56 23 5	BDICL	1.0	0.33	ug/L	U U	1
Chlorobenzene	108-00 7	DICL DICL	1.0	0.55	ug/L	ŭ	1
Chloroethana	100-70-7	DAL	1.0	0.15	- <i>e</i> ∼ ue/L	U U	1
Chloroform	13-00-3 67 66 3	DNL	1.0	0.20	11 2 /L	U	1
Chloromethana	0/-00-3 7/ Q7 2	DKL	1.0	0.10	ug/L	U	1
ais 1.2 Dishlarasthana	/ 11 0/-2 156 50 2	DAL	1.0	0.25	цо/ Г	U U	1
cis-1,2-Dichlorogenene	1.J0-39-2 10021-01-5		1.0	0.21	110/I	U U	1
Dibromochloromethere	10001-01-3		1.0	0.10	ນອ ງ ໄດ້	ि दिया	1
Dipromocnioromethane	124-48-1	BKL	1.0	0.15	- HH	HI U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-12-S Matrix: WATER % Moisture: Date Received: May-24-07 10:55 Lab Sample Id: 12050-012 Date Collected: May-23-07 09:10 Sample Depth:

Analytical Method: USACE VOCs by SW8260B			Prep Method: SW5030B				
Date Analyzed: May-27-07 15:42	Analyst: MJL01 Seq Number: 36132	1	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	\mathbf{U}	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	' U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-12-D	Matrix: WATER	% Moisture:	
Lab Sample Id: 12050-013 Sample Depth:	Date Collected: May-23-07 09:20	Date Received: May-24-07 10:55	

Analytical Method: USACE VC	Cs by SW8260B	W8260B Prep			ep Method: SW5030B			
Date Analyzed: May-27-07 16:10	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	M ЛL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1	
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1	
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1	
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0,25	ug/L	U	1	
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1	
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1	
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1	
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1	
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1	
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1	
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1	
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0,19	ug/L	U	1	
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1	
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1	
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	Ū	1	
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	Ū	1	
1 3 5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1	
1 3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	- ug/L	Ū	1	
1 3-Dichloropronane	142-28-9	BRL	1.0	0.19	ug/L	Ŭ	ī	
1 4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	Ū	1	
2 2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	Ū	1	
2-Butanone	78-93-3	BRL.	50	0.28	ug/L	Ũ	1	
2-Chlorotoluene	95-49-8	BRL	10	0.19	ug/L	Ŭ	î	
2-Hexanone	591-78-6	BRL	50	0.32	ug/L	Ŭ	1	
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ŭ	î	
4-Isopropyltoluene	99-87-6	BRI	1.0	0.13	ug/L	Ū	1	
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	Ŭ	1	
Acetone	67-64-1	BRL	50	0.35	ug/L	Ũ	1	
Acrolein	107-02-8	BRI	20	66	ug/L	ū	1	
Acrylonitrile	107-13-1	BRL	20	0.49	ug/L	Ŭ	1	
Benzene	71-43-2	BRL	1.0	0.15	ug/L	Ŭ	1	
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1	
Bromochloromethane	74-97-5	BRI	1.0	0.21	ug/L	Ŭ	1	
Bromodichloromethane	75-27-4	BRI	1.0	0.25	ug/L	Ŭ	1	
Bromoform	75-25-2	BRI	1.0	0.17	ug/L	Π	1	
Bromomethane	74-83-9	BRI	1.0	0.25	ug/L	ŭ	1	
Carbon digulfide	75 15 0	BDI	1.0	0.25	11 9/L	й П	1	
Carbon Tetrachlorida	56.73.5	BBI	1.0	0.20	ug/L	U U	1	
Chlorobenzene	108-00-7	BAL	1.0	0.55	ug/L	U U	1	
Chloroothana	75 00 3	DAL	1.0	0.15	ug/L	т П	1	
Chloroform	67 66 3	DKL	1.0	0.20	ug/L	т П	1	
Chloromethane	07-00-3 74_97_3	DKL RRI	1.0	0.10	цу/I.	U	1	
cis-1 2-Dichloroethene	156_50_2	RDI	10	0.21	це/I.	ŭ	1	
cis 1.3 Dichtoronnene	100-17-2		1.0	0.21	nø/l	U U	1	
Dibromochloromethane	174_48_1	RPI	1.0	0.15	นชมีมี	रेंद्रेग	1	
T LIGIONNOCHORONICHIANC	1-07-70-1		1.7	V.1./				

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-12-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-013	Date Collected: May-23-07 09:20	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep	Method: SW	/2030B	
Date Analyzed: May-27-07 16:10	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-13-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-014 Sample Depth:	Date Collected: May-23-07 10:00	Date Received: May-24-07 10:55

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-27-07 16:37 Analyst: MJL01 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 Seq Number: Result Rep Limit MDL Units Flag It 1 2-Tetrachloroethane 630-20-6 BRI 1.0 0.24 ug/L U

1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/I.	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ŭ	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	und si	τŪ	1

Dil

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-13-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-014	Date Collected: May-23-07 10:00	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B			Prep Method: SW5030B					
Date Analyzed: May-27-07 16:37	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1	
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1	
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1	
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1	
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1	
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1	
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1	
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1	
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1	
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1	
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1	
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1	
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1	
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1	
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1	
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1	
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1	
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1	
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1	
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1	
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1	
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1	

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-13-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-015 Sample Depth:	Date Collected: May-23-07 10:10	Date Received: May-24-07 10:55
Analytical Method: USACE VOCs by S	SW8260B	Prep Method: SW5030B

ParameterCas NumberResultRep LimitMDLUnitsFlagDit1,1,1,2.7-trachloroethane71-55-6BRL1.00.16 wgL U11,1,2.7-trachloroethane79-34-5BRL1.00.18 wgL U11,1.2.7-trachloroethane79-34-5BRL1.00.25 wgL U11,1.1-Dichloroethane75-34-3BRL1.00.01 wgL U11,1.1-Dichloroethane75-35-4BRL1.00.01 wgL U11,2.3-Trichlorobenzene\$63-58-6BRL1.00.01 wgL U11,2.3-Trichlorobenzene96-61-6BRL1.00.01 wgL U11,2.3-Trichlorobenzene96-63-6BRL1.00.17 wgL U11,2.4-Trinethylbenzene95-63-6BRL1.00.14 wgL U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.18 wgL U11,2-Dibromo-3-chloropropane95-50-1BRL1.00.18 wgL U11,2-Dibromo-senthane106-93-4BRL1.00.17 wgL U11,2-Dibromo-senthane106-67-8BRL1.00.17 wgL U11,2-Dibromo-senthane106-67-8BRL1.00.17 wgL U11,2-Dibromo-senthane106-67-8BRL1.00.17 wgL U1 <th>Date Analyzed: May-27-07 17:05</th> <th>Analyst: MJL01 Seq Number: 36132</th> <th></th> <th>Date Prep: M</th> <th>ay-27-07 09:08</th> <th>Tech:</th> <th>MJL01</th> <th></th>	Date Analyzed: May-27-07 17:05	Analyst: MJL01 Seq Number: 36132		Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
1,1,2-Tetrachloroethane630-20-6BRL1.00.24ugl.U11,1,1-Trichloroethane71-55-6BRL1.00.16ugl.U11,1,2,2-Tetrachloroethane79-40-5BRL1.00.25ugl.U11,1-Dichloroethane75-34-3BRL1.00.25ugl.U11,1-Dichloroethane75-35-4BRL1.00.20ugl.U11,1-Dichloroethane75-35-4BRL1.00.20ugl.U11,2-3-Trichloroethane87-61-6BRL1.00.22ugl.U11,2-3-Trichlorobenzene95-63-6BRL1.00.17ugl.U11,2-4-Trichlorobenzene95-63-6BRL1.00.14ugl.U11,2-2-Dioromo-3-chloropropane96-12-8BRL1.00.14ugl.U11,2-Dibromo-3-chloropropane95-50-1BRL1.00.18ugl.U11,2-Dichlorobenzene95-50-1BRL1.00.18ugl.U11,2-Dichlorobenzene107-06-2BRL1.00.18ugl.U11,2-Dichloropopane78-87-5BRL1.00.18ugl.U11,2-Dichloropopane108-67-8BRL1.00.17ugl.U11,2-Dichloropopane108-67-8BRL1.00.17ugl.U11,2-Dichloropopane <t< th=""><th>Parameter</th><th>Cas Number</th><th>Result</th><th>Rep Limit</th><th>MDL</th><th>Units</th><th>Flag</th><th>Dil</th></t<>	Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1-Trichloroethane71-55-6BRL1.00.16 wgL U11,1,2,2-Trichloroethane79-34-5BRL1.00.18 wgL U11,1-Dichloroethane75-34-3BRL1.00.25 wgL U11,1-Dichloroethane75-354-3BRL1.00.20 wgL U11,1-Dichloroethane75-354-4BRL1.00.20 wgL U11,2-Trichloroethane87-61-6BRL1.00.21 wgL U11,2,3-Trichloropropane96-18-4BRL1.00.21 wgL U11,2,3-Trichloropropane96-12-8BRL1.00.14 wgL U11,2,4-Trimethylbenzene95-63-6BRL1.00.14 wgL U11,2-Dichlorophrane106-93-4BRL1.00.14 wgL U11,2-Dichlorophrane106-93-4BRL1.00.14 wgL U11,2-Dichlorophrane106-93-4BRL1.00.18 wgL U11,2-Dichloropropane78-87-5BRL1.00.18 wgL U11,2-Dichloropropane18-67-8BRL1.00.17 wgL U11,3-Dichlorophrane106-64-7BRL1.00.17 wgL U11,3-Dichlorophrane94-0-7BRL1.00.17 wgL U11,3-Dichlorophrane94-0-7	1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,2,2-Tictachoroethane79-34-5BRL1.00.18 wgL U11,1,2-Tickhoroethane79-30-5BRL1.00.25 wgL U11,1-Dickhoroethane75-35-4BRL1.00.01 wgL U11,1-Dickhoroethane75-35-4BRL1.00.00 wgL U11,1-Dickhoroethane75-35-4BRL1.00.00 wgL U11,2-3-Tickhoropropane96-18-4BRL1.00.25 wgL U11,2,4-Tickhoroethane95-63-6BRL1.00.17 wgL U11,2,4-Tickhoroethane95-63-6BRL1.00.14 wgL U11,2,4-Tirckhoroethane106-93-4BRL1.00.18 wgL U11,2-Dichorobenzene95-50-1BRL1.00.18 wgL U11,2-Dichoropropane106-93-4BRL1.00.18 wgL U11,2-Dichoropropane178-87-5BRL1.00.18 wgL U11,2-Dichoropropane184-28-9BRL1.00.17 wgL U11,3-Dichoropropane182-28-9BRL1.00.17 wgL U11,3-Dichoropropane164-67BRL1.00.17 wgL U11,3-Dichoropropane194-28-9BRL1.00.17 wgL U12,2-Dichoropropane194-28-9 <td>1,1,1-Trichloroethane</td> <td>71-55-6</td> <td>BRL</td> <td>1.0</td> <td>0.16</td> <td>ug/L</td> <td>U</td> <td>1</td>	1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,12-Trichloroethane79-00-5BRL1.00.25ug/LU11,1-Dickloroethane75-34-3BRL1.00.011ug/LU11,1-Dickloroethane75-35-4BRL1.00.20ug/LU11,1-Dickloroethane85-35-6BRL1.00.20ug/LU11,2,3-Trichloropenzene87-61-6BRL1.00.22ug/LU11,2,3-Trichloropenzene96-18-4BRL1.00.21ug/LU11,2,4-Trinchlyblenzene95-63-6BRL1.00.14ug/LU11,2-2-Trichloropropane96-12-8BRL1.00.14ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU11,2-Dichlorobenzene107-05-2BRL1.00.18ug/LU11,2-Dichloropropane78-75BRL1.00.14ug/LU11,3-Dichloropropane122-82-9BRL1.00.17ug/LU11,3-Dichloropropane142-28-9BRL1.00.17ug/LU11,3-Dichloropropane194-20-7BRL1.00.17ug/LU11,3-Dichloropropane194-22-89BRL1.00.17ug/LU11,3-Dichloropropane194-22-89BRL1.00.17ug/LU12,2-Dichloropropane194-32B	1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1, 1 -Dichloroethane75:34:3BRL1.00.11ug/LU11, 1-Dichloroethane75:35:4BRL1.00.20ug/LU11, 1-Dichloroethane56:35:86BRL1.00.10ug/LU11, 2, 3-Trichloroporpone96:18:4BRL1.00.25ug/LU11, 2, 4-Trichlorobenzene120:82-1BRL1.00.17ug/LU11, 2, 4-Trichlorobenzene95:63:6BRL1.00.14ug/LU11, 2-Dibromo-3-chloropropane96:12:8BRL1.00.18ug/LU11, 2-Dichlorobenzene95:50:1BRL1.00.18ug/LU11, 2-Dichlorobenzene95:50:1BRL1.00.18ug/LU11, 2-Dichlorobenzene107:06-2BRL1.00.18ug/LU11, 3-Dichlorobenzene108:67-8BRL1.00.17ug/LU11, 3-Dichloropropane142:28:9BRL1.00.17ug/LU11, 3-Dichloropropane122:28:40:7BRL1.00.19ug/LU11, 2-Dichloropropane95:40:7BRL1.00.19ug/LU11, 3-Dichloropropane142:28:9BRL1.00.17ug/LU11, 2-Dichloropropane124:28:9BRL1.00.19ug/LU12-Dichloropropa	1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dickloroethene75.35.4BRL1.00.20 ugL U11,1-Dickloropropene563-58-6BRL1.00.20 ugL U11,2.3-Trichlorobenzene87-61-6BRL1.00.21 ugL U11,2.3-Trichlorobenzene120-82-1BRL1.00.17 ugL U11,2.4-Trinethylbenzene95-63-6BRL1.00.14 ugL U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.14 ugL U11,2-Dibromo-3-chloropropane95-50-1BRL1.00.14 ugL U11,2-Dibromo-3-chloropropane107-06-2BRL1.00.14 ugL U11,2-Dichlorobenzene95-50-1BRL1.00.14 ugL U11,2-Dichloropropane78-87-5BRL1.00.17 ugL U11,3-Dichloropropane107-06-2BRL1.00.17 ugL U11,3-Dichloropropane122-28-9BRL1.00.17 ugL U11,3-Dichlorobenzene106-46-7BRL1.00.17 ugL U11,2-Dichloropropane122-8-9BRL1.00.17 ugL U11,2-Dichlorobenzene106-46-7BRL1.00.17 ugL U11,2-Dichlorobenzene106-46-7BRL1.00.13 ugL U12,2-D	1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1, 1-Dickloropropene563-58-6BRL1.00.10ug/LU11,2,3-Trichlorobenzene87-61-6BRL1.00.25ug/LU11,2,3-Trichlorobenzene96-18-4BRL1.00.017ug/LU11,2,4-Trinkhylbenzene95-63-6BRL1.00.17ug/LU11,2-Dibromoethane106-93-4BRL1.00.14ug/LU11,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dibromoethane107-06-2BRL1.00.14ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.15ug/LU11,3-Dichloropenzen78-87-5BRL1.00.17ug/LU11,3-Dichloropenzene541-73-1BRL1.00.17ug/LU11,3-Dichloropenzene164-67-8BRL1.00.17ug/LU11,3-Dichloropenzene164-64-7BRL1.00.17ug/LU12,2-Dichloropenzene591-78-6BRL1.00.17ug/LU12,2-Dichloropenzene591-78-6BRL1.00.17ug/LU12,2-Dichloropropane592-80-7BRL1.00.13ug/LU12,2-Dichloropropane593-3BRL5.00.28ug/LU12,2-Dichloropropane98-80-3BRL <td>1,1-Dichloroethene</td> <td>75-35-4</td> <td>BRL</td> <td>1.0</td> <td>0.20</td> <td>ug/L</td> <td>U</td> <td>1</td>	1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichloropropane96.18.4BRL1.00.21 ψ_{1}^{P} U11,2,4-Trinchlorobenzene120.82-1BRL1.00.17 ψ_{2}^{P} U11,2,4-Trinchlorobenzene95.63-6BRL1.00.19 ψ_{2}^{P} U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.18 ψ_{2}^{P} U11,2-Dibromoethane106-93-4BRL1.00.18 ψ_{2}^{P} U11,2-Dichlorobenzene95-50-1BRL1.00.18 ψ_{2}^{P} U11,2-Dichloroptopane78-87-5BRL1.00.15 ψ_{2}^{P} U11,3.5-Trinchlylbenzene108-67-8BRL1.00.17 ψ_{2}^{P} U11,3.5-Trinchlybenzene104-67-7BRL1.00.17 ψ_{2}^{P} U11,3-Dichloropropane142-28-9BRL1.00.17 ψ_{2}^{P} U11,3-Dichloropropane594-20-7BRL1.00.19 ψ_{2}^{P} U12,2-Dichloropropane594-20-7BRL1.00.19 ψ_{2}^{P} U12,2-Dichloropropane98-49-8BRL1.00.19 ψ_{2}^{P} U12,2-Dichloropropane99-87-6BRL1.00.13 ψ_{2}^{P} U12,4-Dichloropropane98-87-6BRL1.00.13 ψ_{2}^{P} U12,4-Dichloropropane98-87-6BRL <td>1,2,3-Trichlorobenzene</td> <td>87-61-6</td> <td>BRL</td> <td>1.0</td> <td>0.25</td> <td>ug/L</td> <td>U</td> <td>1</td>	1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,4-Trichlorobenzene120-82-1BRL1.00.17 $ugl.$ U11,2,4-Trinichylbenzene95-63-6BRL1.00.14 $ugl.$ U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.18 $ugl.$ U11,2-Dibromoethane106-93-4BRL1.00.18 $ugl.$ U11,2-Dichlorobenzene95-50-1BRL1.00.14 $ugl.$ U11,2-Dichlorobenzene107-06-2BRL1.00.15 $ugl.$ U11,2-Dichlorobenzene108-67-8BRL1.00.17 $ugl.$ U11,3-Dichlorobenzene541-73-1BRL1.00.17 $ugl.$ U11,3-Dichlorobenzene106-46-7BRL1.00.17 $ugl.$ U11,3-Dichlorobenzene106-46-7BRL1.00.17 $ugl.$ U12,2-Dichloropropane594-20-7BRL1.00.17 $ugl.$ U12,2-Dichloroblene95-49-8BRL1.00.19 $ugl.$ U12,2-Dichloropropane591-78-6BRL1.00.13 $ugl.$ U12-Hexanone591-78-6BRL1.00.13 $ugl.$ U12-Hexanone67-64-1BRL1.00.13 $ugl.$ U14-Chlorotoluene67-64-1BRL1.00.13 $ugl.$ U14-Chlorotoluene77-84-8	1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trimethylbenzene95-63-6BRL1.00.14ug/LU11,2-Dibiromo-3-chloropropane96-12-8BRL1.00.19ug/LU11,2-Dibiromo-3-chloropropane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.18ug/LU11,2-Dichloropropane107-06-2BRL1.00.15ug/LU11,3,5-Trimethylbenzene108-67-8BRL1.00.17ug/LU11,3-Dichlorobenzene541-73-1BRL1.00.17ug/LU11,3-Dichloropopane142-28-9BRL1.00.17ug/LU11,4-Dichlorobenzene106-46-7BRL1.00.17ug/LU12,2-Dichloropropane594-20-7BRL1.00.19ug/LU12,2-Dichloropropane594-20-7BRL1.00.19ug/LU12,-Chlorotoluene95-49-8BRL1.00.13ug/LU12-Chlorotoluene99-87-6BRL5.00.22ug/LU14-Chlorotoluene106-43-4BRL1.00.13ug/LU14-Chlorotoluene106-41-4BRL5.00.26ug/LU14-Chlorotoluene106-43-4BRL1.00.13ug/LU14-Methyl-2-pentanone108-10-1	1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2-Dibromo-3-chloropropane96-12-8BRL1.00.19ug/LU11,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU11,2-Dichlorobenzene107-06-2BRL1.00.18ug/LU11,2-Dichloropropane78-87-5BRL1.00.17ug/LU11,3-Dichlorobenzene108-67-8BRL1.00.17ug/LU11,3-Dichloropropane142-28-9BRL1.00.17ug/LU11,3-Dichloropropane142-28-9BRL1.00.17ug/LU11,2-Dichloropropane142-28-9BRL1.00.17ug/LU11,2-Dichloropropane194-20-7BRL1.00.17ug/LU11,2-Dichloropropane594-20-7BRL1.00.17ug/LU12,2-Dichloropropane594-20-7BRL1.00.17ug/LU12-Dichoropropane954-20-7BRL1.00.13ug/LU12-Dichoropropane106-43-4BRL1.00.13ug/LU12-Hexanone591-78-6BRL5.00.32ug/LU14-Chlorotoluene106-43-4BRL5.00.35ug/LU14-Sopropyltoluene99-87-6BRL5.0 <td>1,2,4-Trimethylbenzene</td> <td>95-63-6</td> <td>BRL</td> <td>1.0</td> <td>0.14</td> <td>ug/L</td> <td>U</td> <td>1</td>	1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromoethane106-93-4BRL1.00.18 ψgL U11,2-Dichlorobenzene95-S0-1BRL1.00.14 ψgL U11,2-Dichlorobethane107-06-2BRL1.00.15 ψgL U11,2-Dichloropropane78-87-5BRL1.00.15 ψgL U11,3-Dichloropropane108-67-8BRL1.00.17 ψgL U11,3-Dichloropropane142-28-9BRL1.00.17 ψgL U11,3-Dichloropropane142-28-9BRL1.00.17 ψgL U11,4-Dichloropropane196-46-7BRL1.00.17 ψgL U12,2-Dichloropropane594-20-7BRL1.00.17 ψgL U12,2-Dichloropropane594-84BRL1.00.19 ψgL U12,2-Dichloropropane95-49-8BRL1.00.19 ψgL U12,2-Dichloropropane95-49-8BRL1.00.13 ψgL U12,-Chlorotoluene95-49-8BRL1.00.13 ψgL U12,-Chlorotoluene106-43.4BRI1.00.13 ψgL U14-Sopropyloluene99-87-6BRL1.00.13 ψgL U14-sopropyloluene108-10-1BRL5.00.26 ψgL U1Acerlone67-64-1BR	1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dichlorobenzene95-50-1BRL1.00.14 $ug'L$ U11,2-Dichloroptopane107-06-2BRL1.00.18 $ug'L$ U11,2-Dichloroptopane78-87-5BRL1.00.17 $ug'L$ U11,3,5-Trimethylbenzene108-67-8BRL1.00.17 $ug'L$ U11,3-Dichloroptopane541-73-1BRL1.00.17 $ug'L$ U11,3-Dichloroptopane142-28-9BRL1.00.17 $ug'L$ U12,2-Dichloroptopane594-20-7BRL1.00.21 $ug'L$ U12,2-Dichloroptopane954-20-7BRL1.00.19 $ug'L$ U12,2-Dichloroptopane954-20-7BRL1.00.19 $ug'L$ U12,2-Dichloroptopane954-20-7BRL1.00.19 $ug'L$ U12-Chlorotoluene954-9-8BRL1.00.19 $ug'L$ U12-Hexanone591-78-6BRL1.00.13 $ug'L$ U14-Chlorotoluene106-43-4BRL1.00.13 $ug'L$ U14-Chlorotoluene106-43-4BRL1.00.13 $ug'L$ U14-Stopropyltoluene99-87-6BRL1.00.13 $ug'L$ U1Acctone67-64-1BRL5.00.25 $ug'L$ U1Acrylonitrile107-13-1BRL <t< td=""><td>1.2-Dibromoethane</td><td>106-93-4</td><td>BRL</td><td>1.0</td><td>0.18</td><td>ug/L</td><td>U</td><td>1</td></t<>	1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloroethane107-06-2BRL1.00.18 wg/L U11,2-Dichloropropanc78-87-5BRL1.00.15 wg/L U11,3,5-Trimethylbenzene108-67-8BRL1.00.17 wg/L U11,3-Dichlorobenzene541-73-1BRL1.00.17 wg/L U11,3-Dichlorobenzene142-28-9BRL1.00.17 wg/L U11,4-Dichlorobenzene106-46-7BRL1.00.17 wg/L U12,2-Dichloropropane594-20-7BRL1.00.21 wg/L U12,2-Dichloropropane594-20-7BRL1.00.19 wg/L U12,2-Dichloropropane954-9-8BRL1.00.19 wg/L U12-Hexanone95-49-8BRL1.00.13 wg/L U12-Hexanone591-78-6BRL1.00.13 wg/L U14-Chlorotoluene106-43-4BRL1.00.13 wg/L U14-Stopropylotuene99-87-6BRL1.00.13 wg/L U14-Stopropylotuene99-87-6BRL1.00.13 wg/L U1Acetone6-64-4BRL5.00.35 wg/L U1Acetone76-4-1BRL5.00.35 wg/L U1Acrylonitrile107-13-1BRL2.0 <t< td=""><td>1.2-Dichlorobenzene</td><td>95-50-1</td><td>BRL</td><td>1.0</td><td>0.14</td><td>ug/L</td><td>U</td><td>1</td></t<>	1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloropropane78-87-5BRL1.00.15 wg/L U11,3-5-Trimethylbenzene108-67-8BRL1.00.17 wg/L U11,3-Dichlorobenzene541-73-1BRL1.00.17 wg/L U11,3-Dichlorobenzene106-46-7BRL1.00.19 wg/L U11,4-Dichlorobenzene106-46-7BRL1.00.17 wg/L U12,2-Dichloropropane594-20-7BRL1.00.21 wg/L U12,2-Dichloropropane594-20-7BRL1.00.19 wg/L U12,2-Dichloropropane594-20-7BRL1.00.19 wg/L U12,-Chlorotoluene78-93-3BRL5.00.28 wg/L U12-Hexanone591-78-6BRL1.00.13 wg/L U14-Chlorotoluene106-43.4BRL1.00.13 wg/L U14-Sopropyltoluene99-87-6BRL1.00.13 wg/L U14-Schorotoluene106-13BRL5.00.26 wg/L U14-Schorotoluene107-02-8BRL2.00.66 wg/L U1Acerolein107-02-8BRL2.00.49 wg/L U1Acrolein107-02-8BRL1.00.16 wg/L U1Bromochloromethane74-97-5BRL1.0 <td>1.2-Dichloroethane</td> <td>107-06-2</td> <td>BRL</td> <td>1.0</td> <td>0.18</td> <td>ug/L</td> <td>U</td> <td>1</td>	1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,3,5-Trimethylbenzene108-67-8BRL1.00.17ug/LU11,3,5-Dichlorobenzene541-73-1BRL1.00.17ug/LU11,3-Dichloropopane142-28-9BRL1.00.19ug/LU11,4-Dichlorobenzene106-46-7BRL1.00.17ug/LU12,2-Dichloropropane594-20-7BRL1.00.21ug/LU12-Butanone78-93-3BRL5.00.28ug/LU12-Hexanone991-78-6BRL1.00.19ug/LU12-Hexanone591-78-6BRL1.00.13ug/LU14-Chlorotoluene106-43-4BRL1.00.13ug/LU14-stopropyltoluene99-87-6BRL1.00.13ug/LU14-stopropyltoluene108-10-1BRL5.00.26ug/LU1Acerolein107-02-8BRL206.6ug/LU1Acerolein107-02-8BRL2.00.49ug/LU1Bromochloromethane74-97-5BRL1.00.21ug/LU1Bromochloromethane74-97-5BRL1.00.25ug/LU1Bromochloromethane75-27-4BRL1.00.25ug/LU1Bromodichloromethane75-15-0BRL1.00.26ug/LU <td< td=""><td>1.2-Dichloropropane</td><td>78-87-5</td><td>BRL</td><td>1.0</td><td>0.15</td><td>ug/L</td><td>U</td><td>1</td></td<>	1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3-Dichlorobenzene541-73-1BRL1.00.17ug/LU11,3-Dichlorobenzene142-28-9BRL1.00.19ug/LU11,4-Dichlorobenzene106-46-7BRL1.00.17ug/LU12,2-Dichloropropane594-20-7BRL1.00.21ug/LU12-Butanone78-93-3BRL5.00.28ug/LU12-Chlorotoluene95-49-8BRL1.00.19ug/LU12-Hexanone591-78-6BRL5.00.32ug/LU14-Chlorotoluene106-43-4BRL1.00.13ug/LU14-chorotoluene108-10-1BRL5.00.26ug/LU14-cotore67-64-1BRL5.00.35ug/LU1Acetone67-64-1BRL5.00.35ug/LU1Acrylonitrile107-02-8BRL2.00.49ug/LU1Benzene71-43-2BRL1.00.21ug/LU1Bromochloromethane75-27-4BRL1.00.25ug/LU1Bromodichloromethane75-25-2BRL1.00.25ug/LU1Bromodichloromethane75-15-0BRL1.00.25ug/LU1Carbon Tetrachloride56-23-5BRL1.00.33ug/LU1	1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
13-Dichloropropane142-28-9BRL1.00.19 $ug'L$ U11,4-Dichloropropane106-46-7BRL1.00.17 $ug'L$ U12,2-Dichloropropane594-20-7BRL1.00.21 $ug'L$ U12,2-Dichloropropane78-93-3BRL5.00.28 $ug'L$ U12-Chlorotoluene95-49-8BRL1.00.19 $ug'L$ U12-Hexanone591-78-6BRL5.00.32 $ug'L$ U14-Chlorotoluene106-43-4BRL1.00.13 $ug'L$ U14-Sopropyltoluene99-87-6BRL1.00.13 $ug'L$ U14-Methyl-2-pentanone108-10-1BRL5.00.26 $ug'L$ U1Acetone67-64-1BRL5.00.35 $ug'L$ U1Acerolein107-02-8BRL2.00.49 $ug'L$ U1Benzene71-43-2BRL1.00.16 $ug'L$ U1Bromochloromethane75-27-4BRL1.00.20 $ug'L$ U1Bromodichloromethane74-87-5BRL1.00.25 $ug'L$ U1Bromodichloromethane75-15-0BRL1.00.26 $ug'L$ U1Carbon disulfide75-15-0BRL1.00.26 $ug'L$ U1Chlorobenzene108-90-7BRL1.00.15	1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,4-Dichlorobenzene106-46-7BRL1.00.17ug/LU12,2-Dichloropropane594-20-7BRL1.00.21ug/LU12-Butanone78-93-3BRL5.00.28ug/LU12-Chlorotoluene9549-8BRL1.00.19ug/LU12-Hexanone591-78-6BRL5.00.32ug/LU14-Chlorotoluene106-43-4BRL1.00.13ug/LU14-Sopropyltoluene99-87-6BRL1.00.13ug/LU14-Methyl-2-pentanone108-10-1BRL5.00.26ug/LU1Acetone67-64-1BRL5.00.35ug/LU1Acerolein107-02-8BRL2.00.49ug/LU1Benzene71-43-2BRL1.00.16ug/LU1Bromobenzene108-86-1BRL1.00.21ug/LU1Bromobenzene108-86-1BRL1.00.20ug/LU1Bromochloromethane75-27-2BRL1.00.17ug/LU1Bromomethane75-15-0BRL1.00.25ug/LU1Carbon Tetrachloride56-23-5BRL1.00.33ug/LU1Chlorobenzene108-90-7BRL1.00.33ug/LU1Chlorobenzene	1 3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ŭ	1
1, 1, 1000100010001000100010001000100010002,2-Dichloroppane78-93-3BRL1.00.21 $ug'L$ U12-Butanone95-49-8BRL1.00.19 $ug'L$ U12-Hexanone951-78-6BRL5.00.32 $ug'L$ U14-Chlorotoluene10643-4BRL1.00.13 $ug'L$ U14-Sopropyltoluene99-87-6BRL1.00.13 $ug'L$ U14-Methyl-2-pentanone108-10-1BRL5.00.26 $ug'L$ U1Acetone67-64.1BRL5.00.35 $ug'L$ U1Acetone67-64.1BRL2.00.49 $ug'L$ U1Benzene107-13-1BRL2.00.49 $ug'L$ U1Bromochloromethane74-97-5BRL1.00.21 $ug'L$ U1Bromochloromethane75-27-4BRL1.00.20 $ug'L$ U1Bromochloromethane74-83-9BRL1.00.17 $ug'L$ U1Bromochloromethane74-83-9BRL1.00.25 $ug'L$ U1Carbon disulfide75-15-0BRL1.00.26 $ug'L$ U1Carbon Tetrachloride56-23-5BRL1.00.33 $ug'L$ U1Chlorobenzene108-90-7BRL1.00.15 $ug'L$ <td>1 4-Dichlorobenzene</td> <td>106-46-7</td> <td>BRL</td> <td>1.0</td> <td>0.17</td> <td>ug/L</td> <td>Ū</td> <td>1</td>	1 4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	Ū	1
2. Definition of plane78-93-3BRL5.00.28ug/LU12-Butanone95-49-8BRL1.00.19ug/LU12-Hexanone591-78-6BRL5.00.32ug/LU14-Chlorotoluene106-43-4BRL1.00.13ug/LU14-Sopropyltoluene99-87-6BRL1.00.13ug/LU14-Methyl-2-pentanone108-10-1BRL5.00.26ug/LU1Acetone67-64-1BRL5.00.35ug/LU1Acetone67-64-1BRL2.00.49ug/LU1Benzene107-02-8BRL2.00.49ug/LU1Benzene71-43-2BRL1.00.16ug/LU1Bromobenzene108-86-1BRL1.00.20ug/LU1Bromochloromethane74-97-5BRL1.00.25ug/LU1Bromodichloromethane75-25-2BRL1.00.17ug/LU1Carbon disulfide75-15-0BRL1.00.26ug/LU1Carbon Tetrachloride56-23-5BRL1.00.33ug/LU1Chlorobenzene108-90-7BRL1.00.15ug/LU1Chlorobenzene108-90-7BRL1.00.16ug/LU1Chlorobenzene <td< td=""><td>2 2-Dichloropropane</td><td>594-20-7</td><td>BRL</td><td>1.0</td><td>0.21</td><td>ug/L</td><td>Ū</td><td>1</td></td<>	2 2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	Ū	1
2 -Chlorotoluene95-49-8BRL1.00.19 ugL U12-Hexanone591-78-6BRL5.00.32 ugL U14-Chlorotoluene106-43.4BRL1.00.13 ugL U14-Sopropyltoluene99-87-6BRL1.00.13 ugL U14-Methyl-2-pentanone108-10-1BRL5.00.26 ugL U1Acetone67-64-1BRL5.00.35 ugL U1Acerolein107-02-8BRL2.00.49 ugL U1Benzene104-32BRL1.00.16 ugL U1Bromobenzene108-86-1BRL1.00.16 ugL U1Bromochloromethane74-97-5BRL1.00.21 ugL U1Bromoform75-25-2BRL1.00.17 ugL U1Bromomethane74-83-9BRL1.00.25 ugL U1Bromoform75-25-2BRL1.00.25 ugL U1Carbon disulfide75-15-0BRL1.00.33 ugL U1Chlorobenzene108-90-7BRL1.00.33 ugL U1Chlorobenzene108-90-7BRL1.00.15 ugL U1Chlorobenzene108-90-7BRL1.00.16 ugL U1Chlorobenzene <td< td=""><td>2.Butanone</td><td>78-93-3</td><td>BRL</td><td>5.0</td><td>0.28</td><td>ug/L</td><td>Ū</td><td>1</td></td<>	2.Butanone	78-93-3	BRL	5.0	0.28	ug/L	Ū	1
2-Hexanone 591-78-6 BRL 5.0 0.32 ug/L U 1 4-Chlorotoluene 106-43.4 BRL 1.0 0.13 ug/L U 1 4-Chlorotoluene 99-87-6 BRL 1.0 0.13 ug/L U 1 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 ug/L U 1 Acetone 67-64-1 BRL 5.0 0.35 ug/L U 1 Acetone 107-02-8 BRL 2.0 0.49 ug/L U 1 Acetylonitrile 107-13-1 BRL 2.0 0.49 ug/L U 1 Benzene 71-43-2 BRL 1.0 0.16 ug/L U 1 Bromobenzene 108-86-1 BRL 1.0 0.20 ug/L U 1 Bromochloromethane 75-27-4 BRL 1.0 0.25 ug/L U 1 Bromoform 75-27-2 BRL 1.0 0.25 ug/L U 1 Bromo	2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ū	1
L - Total of the set of t	2-Hexanone	591-78-6	BRI	50	0.32	ug/L	ŭ	1
4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 ug/L U 1 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 ug/L U 1 Acetone 67-64-1 BRL 5.0 0.35 ug/L U 1 Accolein 107-02-8 BRL 20 6.6 ug/L U 1 Accylonitrile 107-13-1 BRL 2.0 0.49 ug/L U 1 Benzene 71-43-2 BRL 1.0 0.16 ug/L U 1 Bromobenzene 108-86-1 BRL 1.0 0.20 ug/L U 1 Bromochloromethane 74-97-5 BRL 1.0 0.25 ug/L U 1 Bromodichloromethane 75-27-4 BRL 1.0 0.17 ug/L U 1 Bromoform 75-25-2 BRL 1.0 0.17 ug/L U 1 Carbon disulfide 75-15-0 BRL 1.0 0.26 ug/L U 1	4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Methyl-2-pentanone108-10-1BRL5.00.26ug/LU1Acetone67-64-1BRL5.00.35ug/LU1Accolein107-02-8BRL206.6ug/LU1Acrylonitrile107-13-1BRL2.00.49ug/LU1Benzene71-43-2BRL1.00.16ug/LU1Bromobenzene108-86-1BRL1.00.21ug/LU1Bromochloromethane74-97-5BRL1.00.20ug/LU1Bromodichloromethane75-27-4BRL1.00.17ug/LU1Bromodifilde75-25-2BRL1.00.17ug/LU1Bromothane74-83-9BRL1.00.25ug/LU1Carbon disulfide75-15-0BRL1.00.26ug/LU1Carbon Tetrachloride56-23-5BRL1.00.33ug/LU1Chlorobenzene108-90-7BRL1.00.15ug/LU1Chloroform67-66-3BRL1.00.26ug/LU1	4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	Ū	1
Acetone 67-64-1 BRL 5.0 0.35 ug/L U 1 Acetone 107-02-8 BRL 20 6.6 ug/L U 1 Acrolein 107-02-8 BRL 20 6.6 ug/L U 1 Acrylonitrile 107-13-1 BRL 2.0 0.49 ug/L U 1 Benzene 71-43-2 BRL 1.0 0.16 ug/L U 1 Bromobenzene 108-86-1 BRL 1.0 0.21 ug/L U 1 Bromochloromethane 74-97-5 BRL 1.0 0.25 ug/L U 1 Bromodichloromethane 75-27-4 BRL 1.0 0.17 ug/L U 1 Bromoform 75-25-2 BRL 1.0 0.25 ug/L U 1 Carbon disulfide 75-15-0 BRL 1.0 0.26 ug/L U 1 Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 ug/L U 1 Chlorobe	4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	Ū	1
Actolic107-02-8BRL206.6 ug/L U1Acrolein107-02-8BRL200.49 ug/L U1Acrylonitrile107-13-1BRL2.00.49 ug/L U1Benzene71-43-2BRL1.00.16 ug/L U1Bromobenzene108-86-1BRL1.00.21 ug/L U1Bromochloromethane74-97-5BRL1.00.20 ug/L U1Bromodichloromethane75-27-4BRL1.00.25 ug/L U1Bromodorm75-25-2BRL1.00.17 ug/L U1Bromodethane74-83-9BRL1.00.26 ug/L U1Carbon disulfide75-15-0BRL1.00.26 ug/L U1Carbon Tetrachloride56-23-5BRL1.00.33 ug/L U1Chlorobenzene108-90-7BRL1.00.15 ug/L U1Chloroform67-66-3BRL1.00.16 ug/L U1	Acetone	67-64-1	BRL	5.0	0.35	ug/L	Ū	1
Acrylonitrile107-13-1BRL2.00.49 ug/L U1Benzene71-43-2BRL1.00.16 ug/L U1Bromobenzene108-86-1BRL1.00.21 ug/L U1Bromochloromethane74-97-5BRL1.00.20 ug/L U1Bromodichloromethane75-27-4BRL1.00.25 ug/L U1Bromodichloromethane75-25-2BRL1.00.17 ug/L U1Bromomethane74-83-9BRL1.00.25 ug/L U1Carbon disulfide75-15-0BRL1.00.26 ug/L U1Carbon Tetrachloride56-23-5BRL1.00.33 ug/L U1Chlorobenzene108-90-7BRL1.00.15 ug/L U1Chloroethane75-00-3BRL1.00.26 ug/L U1Chloroform67-66-3BRL1.00.16 ug/L U1	Acrolein	107-02-8	BRI	20	6.6	ug/L	Ū	1
Reference $71-43-2$ BRL 1.0 0.16 ug/L U 1 Bromobenzene $108-86-1$ BRL 1.0 0.21 ug/L U 1 Bromochloromethane $74-97-5$ BRL 1.0 0.20 ug/L U 1 Bromodichloromethane $75-27-4$ BRL 1.0 0.25 ug/L U 1 Bromodichloromethane $75-27-4$ BRL 1.0 0.25 ug/L U 1 Bromomethane $75-25-2$ BRL 1.0 0.17 ug/L U 1 Bromomethane $74-83-9$ BRL 1.0 0.25 ug/L U 1 Carbon disulfide $75-15-0$ BRL 1.0 0.26 ug/L U 1 Carbon Tetrachloride $56-23-5$ BRL 1.0 0.33 ug/L U 1 Chlorobenzene $108-90-7$ BRL 1.0 0.15 ug/L U 1 Chloroform $75-00-3$ BRL 1.0 0.26 ug/L U 1 Chloroform $67-66-3$ BRL 1.0 0.16 ug/L U 1	Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ŭ	1
Bromobenzene108-2BRL1.00.21 ug/L U1Bromochloromethane74-97-5BRL1.00.20 ug/L U1Bromodichloromethane75-27-4BRL1.00.25 ug/L U1Bromoform75-25-2BRL1.00.17 ug/L U1Bromomethane74-83-9BRL1.00.25 ug/L U1Bromomethane75-15-0BRL1.00.26 ug/L U1Carbon disulfide75-15-0BRL1.00.33 ug/L U1Chlorobenzene108-90-7BRL1.00.15 ug/L U1Chloroethane75-00-3BRL1.00.26 ug/L U1Chloroform67-66-3BRL1.00.16 ug/L U1	Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ū	1
Bromochloromethane74-97-5BRL1.00.20 ug/L U1Bromodichloromethane75-27-4BRL1.00.25 ug/L U1Bromoform75-25-2BRL1.00.17 ug/L U1Bromomethane74-83-9BRL1.00.25 ug/L U1Carbon disulfide75-15-0BRL1.00.26 ug/L U1Carbon Tetrachloride56-23-5BRL1.00.33 ug/L U1Chlorobenzene108-90-7BRL1.00.15 ug/L U1Chloroform67-66-3BRL1.00.16 ug/L U1	Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Distribution113 13Diff U U U Bromodichloromethane75-27-4BRL1.00.25 ug/L U1Bromoform75-25-2BRL1.00.17 ug/L U1Bromomethane74-83-9BRL1.00.25 ug/L U1Carbon disulfide75-15-0BRL1.00.26 ug/L U1Carbon Tetrachloride56-23-5BRL1.00.33 ug/L U1Chlorobenzene108-90-7BRL1.00.15 ug/L U1Chloroform67-66-3BRL1.00.16 ug/L U1	Bromochloromethane	74-97-5	BRL	10	0.20	ug/L	Ū	1
Bromodeline75-25-2BRL1.0 0.17 ug/L U1Bromomethane74-83-9BRL1.0 0.25 ug/L U1Carbon disulfide75-15-0BRL1.0 0.26 ug/L U1Carbon Tetrachloride56-23-5BRL1.0 0.33 ug/L U1Chlorobenzene108-90-7BRL1.0 0.15 ug/L U1Chloroform67-66-3BRL1.0 0.16 ug/L U1	Bromodichloromethane	75-27-4	BRL	10	0.25	ug/L	Ū	1
Bromomethane $74-83-9$ BRL 1.0 0.25 ug/L U 1 Carbon disulfide $75-15-0$ BRL 1.0 0.26 ug/L U 1 Carbon Tetrachloride $56-23-5$ BRL 1.0 0.33 ug/L U 1 Chlorobenzene $108-90-7$ BRL 1.0 0.15 ug/L U 1 Chloroethane $75-00-3$ BRL 1.0 0.26 ug/L U 1 Chloroform $67-66-3$ BRL 1.0 0.16 ug/L U 1	Bromoform	75-25-2	BRI	10	0.17	ug/L	ũ	1
Distribution chance 1403 1402 1402 100 0.25 012 012 100 Carbon disulfide75-15-0BRL 1.0 0.26 ug/L U 1 Carbon Tetrachloride56-23-5BRL 1.0 0.33 ug/L U 1 Chlorobenzene108-90-7BRL 1.0 0.15 ug/L U 1 Chloroethane75-00-3BRL 1.0 0.26 ug/L U 1 Chloroform67-66-3BRL 1.0 0.16 ug/L U 1	Bromomethane	74-83-9	BRI	10	0.25	ug/L	Ŭ	i
Carbon Tetrachloride $56-23-5$ BRL 1.0 0.33 ug/L U 1 Chlorobenzene $108-90-7$ BRL 1.0 0.15 ug/L U 1 Chloroethane $75-00-3$ BRL 1.0 0.26 ug/L U 1 Chloroform $67-66-3$ BRL 1.0 0.16 ug/L U 1	Carbon disulfide	75-15-0	BRI	1.0	0.26	ug/L	Ŭ	1
Chlorobenzene 108-90-7 BRL 1.0 0.15 Ug/L U 1 Chloroethane 75-00-3 BRL 1.0 0.26 Ug/L U 1 Chloroform 67-66-3 BRL 1.0 0.16 Ug/L U 1	Carbon Tatrachloride	56-23-5	BRI	10	0.20	ug/L	Ū	1
Chloroethane 75-00-3 BRL 1.0 0.16 ug/L U 1 Chloroform 67-66-3 BRL 1.0 0.16 ug/L U 1	Chlorobenzene	108-00-7	BBI	10	0.15	ug/L	ŭ	1
Chloroform 67-66-3 BRL 1.0 0.16 ug/L U 1	Chloroethane	75_00_3	RRI	10	0.26	ug/L	ŭ	1
	Chloroform	67 KK 2	נק <u>ט</u>	1.0	0.16	ug/L	Ĩ	1
Chloromethane 74.87-3 RRI 10 0.25 u2/L II 1	Chloromethane	74_87_3	RRI	10	0.25	ue/L	ŭ	1
$ris_1 2$ -Dichloroethene 156-59_2 RRI 10 0.21 uo/L II 1	cis-1 2-Dichloroethene	156_50_7	RDI	10	0.25	<i>2</i> ug/L	Ŭ	1
1.00-1.2 Dick 1.0 0.21 wg/2 0 1 or 1.2 Dickloropropens 10061_01_5 PDI 1.0 0.10 wg/2 U 1	oig 1.2 Dichloropropono	100-37-2	וסם	1.0	0.21	це/Т.	Ŭ	1
Dibromochloromethane $124-48-1$ BRL 10 0.15 under 11	Dibromochloromethane	174-48-1	RRI	1.0	0.15	u 27	an U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-13-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-015	Date Collected: May-23-07 10:10	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-27-07 17:05 Date Prep: May-27-07 09:08 Analyst: MJL01 Tech: MJL01 Seq Number: 36132 Cas Number **Result Rep Limit** MDL Units Flag Dil Parameter U ug/L Dibromomethane 74-95-3 BRL 1.0 0.24 1 ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 1 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 179601-23-1 ug/L U m-Xylene/p-Xylene BRL 2.00.51 1 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L n-Butylbenzene 104-51-8 BRL. 1.0 0.17 U 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 ug/L Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 U 1 ug/L Styrene 100-42-5 BRL 1.0 0.18 U 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L Tetrachloroethene 127-18-4 BRL 1.0 0.16 U 1 ug/L Toluene 108-88-3 BRL 1.0 0.14 U 1 trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 ug/L U 1 ug/L trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 U 1 ug/L U BRL 1.0 0.19 Trichloroethene 79-01-6 I ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 5.0 ug/L U Vinyl acetate 108-05-4 BRL 1.3 1 75-01-4 BRL 1.0 0.19 ug/L U Vinyl chloride 1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-6-S Lab Sample Id: 12050-016 Sample Depth:	Matri Date Collected	Matrix: WATER Date Collected: May-23-07 10:30		:: l: May-24-07 10:55	<u>ang 1860a</u>
Analytical Method: USACE VC	OCs by SW8260B		Prep M	1ethod: SW5030B	
Date Analyzed: May-27-07 18:00	Analyst: MJL01 Seq Number: 36132	Date Prep: Ma	y-27-07 09:08	Tech: MJL01	
Parameter	Cas Number	Result Rep Limit	MDL	Units Flag D	Dil

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	u <u>g</u> /L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	ប	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	սանչ	🔀 U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-6-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-016	Date Collected: May-23-07 10:30	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep	Method: SV	V5030B	
Date Analyzed: May-27-07 18:00	Analyst: MJL01 Seq Number: 36132	1	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-6-D	Matri	x: WATE	R	% Moistu	re:		
Lab Sample Id: 12050-017	Date Collecte	d May-2	3-07 10-40	Date Receive	d May-24	07 10:5	5
Sample Donth:	Dute content	u	5 07 10010	2.000		••••••	-
Sample Depth:							
Analytical Method: USACE VO	OCs by SW8260B			Prep	Method: SW	/5030B	
Date Analyzed: May-27-07 18:28	Analyst: MJL01 Seg Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	МЛL0 1	
B	Car Number	Decult	Don Limit	MDI	Unite	Flog	Dil
rarameter	Cas ivuinoei	Result	Kep Lann		Units	Tag	DI
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2 Dichloroethane	107-06-2	BRL	10	0.18	ug/L	Ū	1
1.2-Dichloropropage	78-87-5	BRI	1.0	0.15	ug/L	Ū	1
1.2.5 Trimethylbenzene	108-67-8	BRI	1.0	0.15	ug/L	Ŭ	î
1.3 Dishlorohanzana	541-73-1	BDI	1.0	0.17	ug/L	U U	1
1,3-Dichloropenzene	142 28 0		1.0	0.17	ug/L	U U	1
1,3-Dichloropropane	142-20-9	DKL	1.0	0.19	ug/L	U U	1
1,4-Dichlorobenzene	100-40-7	DAL	1.0	0.17	11g/L	11	1
2,2-Dichloropropane	594-20-7 79.02.2	BKL	1.0	0.21	ug/L		1
2-Butanone	/8-93-3	BKL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BKL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	I 1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	0	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	18	1.0	0.16	ug/L		1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1.2-Dichloroethene	156-59-2	BRI	1.0	0.21	ug/L	U	1
cis-1 3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	ia U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-6-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-017	Date Collected: May-23-07 10:40	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep	Method: SW	/5030B	
Date Analyzed: May-27-07 18:28	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	МЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	6.8	1.0	0.19	ug/L		I
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	3.2	2.0	0.51	ug/L		1
Naphthalene	91-20-3	45	1.0	0.22	ug/L		1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	6.3	1.0	0.20	ug/L		1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	0.72	1.0	0.14	ug/L	J	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-1-S Lab Sample Id: 12050-018 Sample Depth:	Matrix: WATER Date Collected: May-23-07 12:00	% Moisture: Date Received: May-24-07 10:55
Analytical Method: USACE VOCs b	oy SW8260B	Prep Method: SW5030B

Seq Number: 36193 Parameter Cas Number Result Rep Limit MDL Units Flag Dil 1,1,1,2-Tetrachloroethane 630-20-6 BRL 1.0 0.24 ug/L U 1 1,1,1-Trichloroethane 71-55-6 BRL 1.0 0.16 ug/L U 1 1,1,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 ug/L U 1 1,1,2-Trichloroethane 79-40-5 BRL 1.0 0.18 ug/L U 1 1,1,2-Trichloroethane 79-40-5 BRL 1.0 0.11 ug/L U 1 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 ug/L U 1 1,1-Dichloroptopene 563-58-6 BRL 1.0 0.20 ug/L U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.21 ug/L U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 1.0
ParameterCas NumberResultRep LimitMDLUnitsFlagDil $1,1,1,2$ -Tetrachloroethane $630-20-6$ BRL 1.0 0.24 ug/L U1 $1,1,1$ -Trichloroethane $71-55-6$ BRL 1.0 0.16 ug/L U1 $1,1,2,2$ -Tetrachloroethane $79-34-5$ BRL 1.0 0.16 ug/L U1 $1,1,2$ -Trichloroethane $79-00-5$ BRL 1.0 0.18 ug/L U1 $1,1,2$ -Trichloroethane $79-00-5$ BRL 1.0 0.25 ug/L U1 $1,1$ -Dichloroethane $75-34-3$ BRL 1.0 0.11 ug/L U1 $1,1$ -Dichloroethane $75-35-4$ BRL 1.0 0.10 ug/L U1 $1,1$ -Dichloropropene $563-58-6$ BRL 1.0 0.10 ug/L U1 $1,2,3$ -Trichlorobenzene $87-61-6$ BRL 1.0 0.25 ug/L U1 $1,2,4$ -Trichlorobenzene $120-82-1$ BRL 1.0 0.21 ug/L U1 $1,2,4$ -Trinethylbenzene $95-63-6$ BRL 1.0 0.14 ug/L U1 $1,2-Dibromo-3-chloropropane96-12-8BRL1.00.14ug/LU11,2-Dibromoethane106-93-4BRL1.00.14ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1$
1,1,1,2-Tetrachloroethane630-20-6BRL 1.0 0.24 ug/L U 1 $1,1,1$ -Trichloroethane $71-55-6$ BRL 1.0 0.16 ug/L U 1 $1,1,2,2$ -Tetrachloroethane $79-34-5$ BRL 1.0 0.18 ug/L U 1 $1,1,2$ -Trichloroethane $79-34-5$ BRL 1.0 0.18 ug/L U 1 $1,1,2$ -Trichloroethane $79-00-5$ BRL 1.0 0.25 ug/L U 1 $1,1$ -Dichloroethane $75-34-3$ BRL 1.0 0.11 ug/L U 1 $1,1$ -Dichloroethene $75-35-4$ BRL 1.0 0.20 ug/L U 1 $1,1$ -Dichloroptopene $563-58-6$ BRL 1.0 0.10 ug/L U 1 $1,2,3$ -Trichlorobenzene $87-61-6$ BRL 1.0 0.25 ug/L U 1 $1,2,3$ -Trichlorobenzene $96-18-4$ BRL 1.0 0.21 ug/L U 1 $1,2,4$ -Trinethylbenzene $95-63-6$ BRL 1.0 0.14 ug/L U 1 $1,2$ -Dibromo-3-chloropropane $96-12-8$ BRL 1.0 0.14 ug/L U 1 $1,2$ -Dibromoethane $106-93-4$ BRL 1.0 0.14 ug/L U 1 $1,2$ -Dichlorobenzene $95-50-1$ BRL 1.0 0.14 ug/L U 1
1,1,1-Trichloroethane71-55-6BRL1.00.16 ug/L U11,1,2,2-Tetrachloroethane79-34-5BRL1.00.18 ug/L U11,1,2,2-Trichloroethane79-00-5BRL1.00.25 ug/L U11,1-Dichloroethane75-34-3BRL1.00.11 ug/L U11,1-Dichloroethane75-35-4BRL1.00.11 ug/L U11,1-Dichloroethene75-35-4BRL1.00.10 ug/L U11,1-Dichloropropene563-58-6BRL1.00.10 ug/L U11,2,3-Trichlorobenzene87-61-6BRL1.00.25 ug/L U11,2,4-Trichlorobenzene96-18-4BRL1.00.17 ug/L U11,2,4-Trinethylbenzene95-63-6BRL1.00.14 ug/L U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.18 ug/L U11,2-Dibromoethane106-93-4BRL1.00.18 ug/L U11,2-Dichlorobenzene95-50-1BRL1.00.14 ug/L U1
1,1,2,2-Tetrachloroethane79-34-5BRL1.00.18 ug/L U11,1,2,2-Trichloroethane79-00-5BRL1.00.25 ug/L U11,1-Dichloroethane75-34-3BRL1.00.11 ug/L U11,1-Dichloroethane75-34-3BRL1.00.11 ug/L U11,1-Dichloroethane75-35-4BRL1.00.20 ug/L U11,1-Dichloropropene563-58-6BRL1.00.10 ug/L U11,2,3-Trichlorobenzene87-61-6BRL1.00.25 ug/L U11,2,3-Trichloropropane96-18-4BRL1.00.21 ug/L U11,2,4-Trimethylbenzene120-82-1BRL1.00.17 ug/L U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19 ug/L U11,2-Dibromoethane106-93-4BRL1.00.18 ug/L U11,2-Dichlorobenzene95-50-1BRL1.00.14 ug/L U1
1,1,2-Trichloroethane79-00-5BRL1.00.25ug/LU11,1-Dichloroethane75-34-3BRL1.00.11ug/LU11,1-Dichloroethane75-34-3BRL1.00.11ug/LU11,1-Dichloroethene75-35-4BRL1.00.20ug/LU11,1-Dichloropropene563-58-6BRL1.00.10ug/LU11,2,3-Trichlorobenzene87-61-6BRL1.00.25ug/LU11,2,3-Trichloropropane96-18-4BRL1.00.25ug/LU11,2,4-Trinethylbenzene120-82-1BRL1.00.17ug/LU11,2,4-Trimethylbenzene95-63-6BRL1.00.14ug/LU11,2-Dibromo-3-chloropropane96-12-8BRL1.00.18ug/LU11,2-Dibromoethane106-93-4BRL1.00.14ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1
1,1-Dichloroethane75-34-3BRL1.00.11 ug/L U11,1-Dichloroethane75-35-4BRL1.00.20 ug/L U11,1-Dichloroethane75-35-4BRL1.00.20 ug/L U11,1-Dichloropropene563-58-6BRL1.00.10 ug/L U11,2,3-Trichlorobenzene87-61-6BRL1.00.25 ug/L U11,2,3-Trichloropropane96-18-4BRL1.00.21 ug/L U11,2,4-Trichlorobenzene120-82-1BRL1.00.17 ug/L U11,2,4-Trimethylbenzene95-63-6BRL1.00.14 ug/L U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19 ug/L U11,2-Dibromoethane106-93-4BRL1.00.14 ug/L U11,2-Dichlorobenzene95-50-1BRL1.00.14 ug/L U1
1,1-Dichlorotehene75-35-4BRL1.00.20 ug/L U11,1-Dichloropropene563-58-6BRL1.00.10 ug/L U11,2,3-Trichlorobenzene87-61-6BRL1.00.25 ug/L U11,2,3-Trichloropropane96-18-4BRL1.00.21 ug/L U11,2,4-Trichlorobenzene120-82-1BRL1.00.17 ug/L U11,2,4-Trimethylbenzene95-63-6BRL1.00.14 ug/L U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19 ug/L U11,2-Dibromoethane106-93-4BRL1.00.18 ug/L U11,2-Dichlorobenzene95-50-1BRL1.00.14 ug/L U1
1,1-Dichloropropene563-58-6BRL1.00.10 ug/L U11,2,3-Trichlorobenzene87-61-6BRL1.00.25 ug/L U11,2,3-Trichloropropane96-18-4BRL1.00.21 ug/L U11,2,4-Trichlorobenzene120-82-1BRL1.00.17 ug/L U11,2,4-Trimethylbenzene95-63-6BRL1.00.14 ug/L U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19 ug/L U11,2-Dibromoethane106-93-4BRL1.00.18 ug/L U11,2-Dichlorobenzene95-50-1BRL1.00.14 ug/L U1
1,2,3-Trichlorobenzene87-61-6BRL1.00.25 ug/L U11,2,3-Trichlorobenzene96-18-4BRL1.00.21 ug/L U11,2,4-Trichlorobenzene120-82-1BRL1.00.17 ug/L U11,2,4-Trimethylbenzene95-63-6BRL1.00.14 ug/L U11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19 ug/L U11,2-Dibromoethane106-93-4BRL1.00.18 ug/L U11,2-Dichlorobenzene95-50-1BRL1.00.14 ug/L U1
1,2,3-Trichloropropane96-18-4BRL1.00.21ug/LU11,2,4-Trichlorobenzene120-82-1BRL1.00.17ug/LU11,2,4-Trimethylbenzene95-63-6BRL1.00.14ug/LU11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19ug/LU11,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1
1,2,4-Trichlorobenzene120-82-1BRL1.00.17ug/LU11,2,4-Trimethylbenzene95-63-6BRL1.00.14ug/LU11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19ug/LU11,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1
1,2,4-Trimethylbenzene95-63-6BRL1.00.14ug/LU11,2-Dibromo-3-chloropropane96-12-8BRL1.00.19ug/LU11,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1
1,2-Dibromo-3-chloropropane96-12-8BRL1.00.19ug/LU11,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1
1,2-Dibromoethane106-93-4BRL1.00.18ug/LU11,2-Dichlorobenzene95-50-1BRL1.00.14ug/LU1
1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 ug/L U 1
12-Dichloroethane 107-06-2 BRL 1.0 0.18 vg/L U 1
1.2-Dichloropropage 78-87-5 BRL 1.0 0.15 ug/L U 1
1.3 5-Trimethylbenzene $108-67-8$ BRL 1.0 0.17 ug/L U 1
13-Dichlorobenzene 541-73-1 BRL 1.0 0.17 ug/L U 1
1.3-Dichloropropage 142-28-9 BRL 1.0 0.19 ug/L U 1
1.4 - Dichlorobenzene 106-46-7 BRL 1.0 0.17 ug/L U 1
2.2-Dichloropropage $594-20-7$ BRL 10 0.21 ug/L U 1
$2_{\rm -Butanone} = \frac{78_{-}93_{-}3}{8_{\rm -}93_{-}3} = \frac{100}{8} = \frac{100}{100} = 100$
2-Chlorotoluene $95-49-8$ BRL 10 019 ug/L II 1
2-Hexanone $591-78-6$ BRL 50 0.32 ug/L U 1
4-Chlorotoluene $106-43-4$ BRL 1.0 0.13 ug/L U 1
4-Isopropultoluene $99-87-6$ BRL 1.0 0.13 ug/L U 1
4-Methyl-2-pentanone $108-10-1$ BRL 5.0 0.26 ug/L U 1
Acetone $67-64-1$ BRL 5.0 0.35 ug/L U 1
Acrolein 107-02-8 BRL 20 6.6 ug/L U 1
Acrylopitrile $107-13-1$ BRL 2.0 0.49 ug/L U 1
Benzene 71-43-2 BRL 1.0 0.16 ug/L U 1
Bromobenzene 108-86-1 BRL 1.0 0.21 ug/L U 1
Bromochloromethane $74-97-5$ BRL 10 0.20 ug/L U 1
Bromodichloromethane 75-27.4 BRL 1.0 0.25 ug/L U 1
Bromotorm $75-25-2$ BRL 10 017 ug/L U 1
Bromomethane 74-83-9 BRL 10 0.25 ug/L U 1
Carbon disulfide $75-15-0$ BRL 10 0.26 ug/L U 1
Carbon Tetrachloride $56-73-5$ BRL 10 0.33 ug/L U 1
Chlorobenzene $108-90-7$ BRL 10 0.15 ug/L IJ 1
Chloroethane $75-00-3$ BRL 1.0 0.26 ug/L U 1
Chloroform $67-66-3$ BRI 10 016 ug/L II 1
Chloromethane 74-87-3 BRL 1.0 0.25 ug/L U 1
cis-1 2-Dichloroethene 156-59-2 BRL 1.0 0.21 ug/L U 1
cis-1.3-Dichloropropene $10061-01-5$ BRI 1.0 0.10 ug/L II 1
Dibromochloromethane 124-48-1 BRL 1.0 0.15

Certificate of Analytical Results 12050

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-1-S	Matrix: WATER	% Moisture:	
Lab Sample Id: 12050-018	Date Collected: May-23-07 12:00	Date Received: May-24-07 10:5	
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B			Prep Method: SW5030B				
Date Analyzed: May-29-07 16:17	Analyst: MJL01 Seq Number: 36193]	Date Prep: M	ay-29-07 07:50	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	\mathbf{U}	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Method: USACE VOCs by SW8260B

Certificate of Analytical Results 12050

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-1D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-019 Sample Depth:	Date Collected: May-23-07 12:15	Date Received: May-24-07 10:55

Date Analyzed: May-27-07 19:23	Analyst: MJL01 Sea Number: 36132		Date Prep: M	ay-27-07 09:08	Tech:	МЛ.01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1112-Tetrachloroethane	630-20-6	RRI	- 10	0.24	ղել	11	1
1 1 1 Trichloroathana	71.55.6	BRI	1.0	0.16		Ŭ	1
1,1,1-1 Tellioroethane	70 34 5		1.0	0.18	ug/L	U U	1
1,1,2,2-1 chaemorochane	79-00-5	BRI	1.0	0.15	ug/L	й	1
1 1 Dichloroethane	75-34-3	BRI	1.0	0.11	ue/L	ŭ	1
1,1-Dichloroethane	75-35-4	DICL	1.0	0.20	- <i>a</i> - ug/L	11	1
1 Dichloropropene	563 58 6	DICL	1.0	0.20	ug/L	и П	1
1,1-Dichloropenzene	87-61-6	BRI	1.0	0.25	- <i>8</i> - ug/L	ц Ц	1
1,2,3-Trichloropropage	96-18-4	BRI	1.0	0.25	<u>8</u> 11g/L	ň	1
1.2.4-Trichlorobenzene	120-82-1	RRI	1.0	0.17	ug/L	й И	1
1.2.4-Trimethylbenzene	95-63-6	BRI	1.0	0.14	ug/L	U U	1
1 2-Dibromo-3-chloropropage	96-12-8	BRI	1.0	0.14	ng/L	ŭ	1
1.2 Dibromoethane	106.93.4	BRI	1.0	0.19	ue/L	т П	1
1,2-Diolomoethane	95,50,1	BPI	1.0	0.16	ч <u>ө</u> л.	н П	1
1,2-Dichloroothane	107.06.0	DICL	1.0	0.14	ng/L	л П	1
1,2-Dichloropropage	79.97.5	DICL	1.0	0.15	ug/L	U U	1
1.2.5 Trimethylbengene	109 67 9		1.0	0.15	ч <u>ө</u> /Т	U U	1
1,3,3-1 Timethyloenzene	541 72 1	DIL	1.0	0.17	ug/L 110/I	U	1
1,3-Dichloropenzene	142.29.0	DAL	1.0	0.17	ug/L 110/I	U U	1
1,3-Dichloropropane	142-20-9	DRL	1.0	0.19	ug/L	U U	1
1,4-Dichlorobenzene	100-40-7	DRL	1.0	0.17	ug/L 110/1		1
2,2-Dichloropropane	394-20-7 38 02 2	DKL	1.0	0.21	ug/L	U H	1
2-Butanone	78-93-3	BKL	5.0	0.28	ug/L ua/I	U TT	1
2-Chlorotoluene	95-49-8	BKL	1.0	0.19	ug/L ug/I	U	1
2-Hexanone	291-78-0 106-42-4	BKL	5.0	0.32	ug/L ug/I	U U	1
4-Chlorotoluene	100-43-4		1.0	0.15	ug/L 110/l	U U	1
4-Isopropynomene	99-07-0 100-10-1		1.0	0.15	ug/L ug/I	U TI	1
4-ivietnyi-2-pentanone	108-10-1	DAL	5.0	0.20	ug/L	1	1
Acetone	07-04-1	BKL	5.0	0.35	ug/L vo/l	U	1
Acrolem	107-02-8	BKL	20	0.0	ug/L	U 11	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	L 1
Benzene	/1-43-2	9.3 Maria	1.0	0.16	ug/L	TT	1
Bromobenzene	108-80-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BKL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromotorm	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	l 1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug 🎼	MU	1

Prep Method: SW5030B

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-1D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-019	Date Collected: May-23-07 12:15	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE V	DCs by SW8260B			Prep	Method: SV	/5030B	
Date Analyzed: May-27-07 19:23	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	7.6	1.0	0.19	ug/L		1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	2.0	1.0	0.15	ug/L		1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	2.1	2.0	0.51	ug/L		1
Naphthalene	91-20-3	950	1.0	0.22	ug/L		1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	5.7	1.0	0.20	ug/L		1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	1.8	1.0	0.14	ug/L		ł
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U]
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-2-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-020 Sample Depth:	Date Collected: May-23-07 12:20	Date Received: May-24-07 10:55

Analytical Method: USACE VOCs by SW8260B				Prep I	Method: SW	/5030B	
Date Analyzed: May-27-07 19:50	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	МЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	Ū	1
1 1 2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	Ŭ	i
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	Ū	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloronropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ŭ	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ū	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ū	1
Bromohenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ū	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ū	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	Ū	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	Ū	1
Chloroethane	75-00-3	BRL	10	0.26	ug/L	ŭ	1
Chloroform	67-66-3	BRI	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRI	1.0	0.25	ug/L	Ŭ	1
cis-1.2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	Ū	1
cis-1.3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	Ū	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ប ន្តរដ្ រ	NU	1

Page 39 of 64

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-2-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-020	Date Collected: May-23-07 12:20	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-27-07 19:50 Analyst: MJL01 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 **Result Rep Limit** MDL Units Flag Dil Parameter Cas Number 74-95-3 BRL 1.0 0.24 ug/L U 1 Dibromomethane BRL ug/L U Dichlorodifluoromethane 75-71-8 1.0 0.22 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 1 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 179601-23-1 BRL 2.0 ug/L U ł m-Xylene/p-Xylene 0.51 91-20-3 42 1.0 0.22 ug/L 1 Naphthalene ug/L BRL U 1 n-Butylbenzene 104-51-8 1.0 0.17 ug/L U 1 n-Propylbenzene 103-65-1 BRL 1.0 0.18 ug/L 95-47-6 BRL 1.0 0.20 U 1 o-Xylene ug/L 135-98-8 BRL 1.0 0.21 U 1 Sec-Butylbenzene ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 BRL 1.0 ug/L U 1 Tetrachloroethene 127-18-4 0.16 ug/L BRL 1.0 0.14 U 1 Toluene 108-88-3 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 ug/L 0.19 U Trichloroethene 79-01-6 BRL 1.0 1 ug/L U 0.53 Trichlorofluoromethane 75-69-4 BRL 1.0 1 ug/L U Vinyl acetate 108-05-4 BRL 5.0 1.3 1 ug/L U Vinyl chloride 75-01-4 BRL 1.0 0.19 l

Analytical Method: USACE VOCs by SW8260B

Certificate of Analytical Results 12050

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-2-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-021 Sample Depth:	Date Collected: May-23-07 12:30	Date Received: May-24-07 10:55

Date Analyzed: May-27-07 20:18	Analyst: MJL01		Date Prep: M	ay-27-07 09:08	Tech:	МЛ .01	
	Seq Number: 36132						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	υ	1
1 2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/1.	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1 3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropage	142-28-9	BRL	1.0	0.19	ug/L	Ū	1
1 4-Dichlorobenzene	106-46-7	BRL	10	0.17	ug/L	Ŭ	1
2 2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	Ū	1
2.2 Diemoropropune	78-93-3	BRL	5.0	0.28	ug/L	Ŭ	ĩ
2-Chlorotoluene	95-49-8	BRL	10	0.19	ug/L	ŭ	1
2-Hevanone	591-78-6	BRI	50	0.32	ug/L	ŭ	1
4-Chlorotobuene	106-43-4	BRL	1.0	0.13	ug/L	Ŭ	1
4-Isopropyltoluene	99-87-6	BRI	10	0.13	ug/L	Ū	1
4-Methyl-2-pentanone	108-10-1	BRI	50	0.26	ug/L	Ŭ	ĺ
A cetone	67-64-1	BRL	5.0	0.35	ug/L	Ŭ	1
Acrolein	107-02-8	BRI	20	66	ug/L	Ŭ	1
Acrylonitrile	107-13-1	BRI	20	0.0	ug/L	П П	1
Renzene	71_43_7	BRL	1.0	0.15	ug/L	й	î
Bromohenzene	108-86-1	BRI	1.0	0.21	ue/L	ŭ	1
Bromoshloromethene	74 97.5	BRI	1.0	0.20	ug/L	й П	1
Bromodichloromathana	75.27 4	BBI	1.0	0.25	ug/L	Ц Ц	1
Bromoform	75 25 2	BDI	1.0	0.17	- <i>ə</i> ue/L	и П	1
Biomonorthana	75-25-2	DICL	1.0	0.25	uø/L	т П	I I
Carbon dimitide	74-03-7	DICL	1.0	0.25	ug/L	U U	ĩ
Carbon disunde	73-13-0 54 22 5		1.0	0.20	ng/L	т П	1
Carbon Tetrachioride	30-23-3 109-00-7		1.0	0.55	ng/L	U H	1
Chlorobenzene	75.00.2		1.0	0.15	ug/L	U H	1
Chlassform	/D-UU-3 67 66 2	BKL	1.0	0.20	ч <u>ө</u> , <u>–</u> 110/Л	U IT	1
Chloromethone	0/-00-3	BKL 1001	1.0	0.10	wg/	U	1
chioromethane	/4-8/-3 156 50 0	BKL	1.0	0.23	ug/L	U U	ן 1
cis-1,2-Dichloroethene	100-09-2	BKL	1.0	0.21	ug/I	U U	1
cis-1,3-Dichloropropene	10061-01-5	BKL	1.0	0.10	ugro antes	U T	1
Dibromochloromethane	124-48-1	BKL	1.0	0.15	n Million	NZ U	1

Version: 1.008

Prep Method: SW5030B

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-2-D

Matrix: WATER

% Moisture:

Lab Sample Id: 12050-021 Sample Depth:

Date Collected: May-23-07 12:30

Date Received: May-24-07 10:55

Analytical Method: USACE VOCs by SW8260B				Method: SW	/5030B	
Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
74-95-3	BRL	1.0	0.24	ug/L	U	1
75-71-8	BRL	1.0	0.22	ug/L	U	1
100-41-4	BRL	1.0	0.19	ug/L	U	1
87-68-3	BRL	1.0	0.13	ug/L	U	1
98-82-8	BRL	1.0	0.15	ug/L	U	1
75-09-2	BRL	1.0	0.42	ug/L	U	1
1634-04-4	BRL	1.0	0.11	ug/L	U	1
179601-23-1	BRL	2.0	0.51	ug/L	U	1
91-20-3	74	1.0	0.22	ug/L		1
104-51-8	BRL	1.0	0.17	ug/L	U	I
103-65-1	BRL	1.0	0.18	ug/L	U	1
95-47-6	BRL	1.0	0.20	ug/L	U	1
135-98-8	BRL	1.0	0.21	ug/L	U	1
100-42-5	BRL	1.0	0.18	ug/L	U	1
98-06-6	BRL	1.0	0.18	ug/L	U	1
127-18-4	BRL	1.0	0.16	ug/L	U	1
108-88-3	BRL	1.0	0.14	ug/L	U	1
156-60-5	BRL	1.0	0.21	ug/L	U	1
10061-02-6	BRL	1.0	0.11	ug/L	U	1
79-01-6	BRL	1.0	0.19	ug/L	U	1
75-69-4	BRL	1.0	0.53	ug/L	U	1
108-05-4	BRL	5.0	1.3	ug/L	U	1
75-01-4	BRL	1.0	0.19	ug/L	U	1
	DCs by SW8260B Analyst: MJL01 Seq Number: 36132 Cas Number 74-95-3 75-71-8 100-41-4 87-68-3 98-82-8 75-09-2 1634-04-4 179601-23-1 91-20-3 104-51-8 103-65-1 95-47-6 135-98-8 100-42-5 98-06-6 127-18-4 108-88-3 156-60-5 10061-02-6 79-01-6 75-69-4 108-05-4 75-01-4	DCs by SW8260B Analyst: MJL01 Seq Number: 36132 Cas Number Result 74-95-3 BRL 74-95-3 BRL 75-71-8 BRL 100-41-4 BRL 87-68-3 BRL 98-82-8 BRL 75-09-2 BRL 1634-04-4 BRL 91-20-3 74 104-51-8 BRL 91-20-3 74 104-51-8 BRL 103-65-1 BRL 95-47-6 BRL 135-98-8 BRL 100-42-5 BRL 100-61-02-6 BRL 10061-02-6 BRL 10061-02-6	DCs by SW8260B Analyst: MJL01 Seq Number: 36132 Date Prep: M Cas Number Result Rep Limit 74-95-3 BRL 1.0 75-71-8 BRL 1.0 100-41-4 BRL 1.0 87-68-3 BRL 1.0 98-82-8 BRL 1.0 98-82-8 BRL 1.0 1634-04-4 BRL 1.0 179601-23-1 BRL 2.0 91-20-3 74 1.0 103-65-1 BRL 1.0 106-60-5 BRL	OCs by SW8260B Prep Analyst: MJL01 Date Prep: May-27-07 09:08 Seq Number: 36132 Date Prep: May-27-07 09:08 Cas Number Result Rep Limit MDL 74-95-3 BRL 1.0 0.24 75-71-8 BRL 1.0 0.22 100-41-4 BRL 1.0 0.13 98-82-8 BRL 1.0 0.13 98-82-8 BRL 1.0 0.15 75-09-2 BRL 1.0 0.11 179601-23-1 BRL 2.0 0.51 91-20-3 74 1.0 0.22 104-51-8 BRL 1.0 0.17 103-65-1 BRL 1.0 0.18 95-47-6 BRL 1.0 0.20 135-98-8 BRL 1.0 0.18 98-06-6 BRL 1.0 0.18 98-06-6 BRL 1.0 0.14 156-60-5 BRL 1.0 0.14 156-60-5 </td <td>DCs by SW8260B Prep Method: SW Analyst: MJL01 Seq Number: 36132 Date Prep: May-27-07 09:08 Tech: Cas Number Result Rep Limit MDL Units 74-95-3 BRL 1.0 0.24 ug/L 75-71-8 BRL 1.0 0.22 ug/L 100-41-4 BRL 1.0 0.19 ug/L 87-68-3 BRL 1.0 0.13 ug/L 87-68-3 BRL 1.0 0.15 ug/L 98-82-8 BRL 1.0 0.15 ug/L 75-09-2 BRL 1.0 0.11 ug/L 1634-04-4 BRL 1.0 0.11 ug/L 179601-23-1 BRL 2.0 0.51 ug/L 91-20-3 74 1.0 0.22 ug/L 104-51-8 BRL 1.0 0.18 ug/L 95-47-6 BRL 1.0 0.18 ug/L 95-47-6 BRL 1.0 0.18 ug/L<</td> <td>DCs by SW8260B Prep Method: SW5030B Analyst: MJL01 Seq Number: 36132 Date Prep: May-27-07 09:08 Tech: MJL01 Cas Number Result Rep Limit MDL Units Flag 74-95-3 BRL 1.0 0.24 ug/L U 75-71-8 BRL 1.0 0.19 ug/L U 87-68-3 BRL 1.0 0.13 ug/L U 98-82-8 BRL 1.0 0.13 ug/L U 1634-04-4 BRL 1.0 0.11 ug/L U 179601-23-1 BRL 1.0 0.11 ug/L U 103-65-1 BRL 1.0 0.17 ug/L U 103-65-1 BRL 1.0 0.17 ug/L U 105-65-1 BRL 1.0 0.18 ug/L U 103-65-1 BRL 1.0 0.18 ug/L U 103-65-1 BRL 1.0 0.18 ug/L U</td>	DCs by SW8260B Prep Method: SW Analyst: MJL01 Seq Number: 36132 Date Prep: May-27-07 09:08 Tech: Cas Number Result Rep Limit MDL Units 74-95-3 BRL 1.0 0.24 ug/L 75-71-8 BRL 1.0 0.22 ug/L 100-41-4 BRL 1.0 0.19 ug/L 87-68-3 BRL 1.0 0.13 ug/L 87-68-3 BRL 1.0 0.15 ug/L 98-82-8 BRL 1.0 0.15 ug/L 75-09-2 BRL 1.0 0.11 ug/L 1634-04-4 BRL 1.0 0.11 ug/L 179601-23-1 BRL 2.0 0.51 ug/L 91-20-3 74 1.0 0.22 ug/L 104-51-8 BRL 1.0 0.18 ug/L 95-47-6 BRL 1.0 0.18 ug/L 95-47-6 BRL 1.0 0.18 ug/L<	DCs by SW8260B Prep Method: SW5030B Analyst: MJL01 Seq Number: 36132 Date Prep: May-27-07 09:08 Tech: MJL01 Cas Number Result Rep Limit MDL Units Flag 74-95-3 BRL 1.0 0.24 ug/L U 75-71-8 BRL 1.0 0.19 ug/L U 87-68-3 BRL 1.0 0.13 ug/L U 98-82-8 BRL 1.0 0.13 ug/L U 1634-04-4 BRL 1.0 0.11 ug/L U 179601-23-1 BRL 1.0 0.11 ug/L U 103-65-1 BRL 1.0 0.17 ug/L U 103-65-1 BRL 1.0 0.17 ug/L U 105-65-1 BRL 1.0 0.18 ug/L U 103-65-1 BRL 1.0 0.18 ug/L U 103-65-1 BRL 1.0 0.18 ug/L U

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-3-S	Matrix: WATER
Lab Sample Id: 12050-022	Date Collected: May-23-

% Moisture:

Date Received: May-24-07 10:55

Sample Depth:

07 13:00

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Analyst: MJL01 Date Analyzed: May-27-07 20:45 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 Cas Number Result Rep Limit MDL Units Flag Dil Parameter ug/L U 1.1.1.2-Tetrachloroethane 630-20-6 BRL 1.0 0.24 1 1,1,1-Trichloroethane ug/L U 71-55-6 BRL 1.0 0.16 1 ug/L U 79-34-5 BRL 1.0 0.18 1 1,1,2,2-Tetrachloroethane ug/L 79-00-5 U 1.1.2-Trichloroethane BRL 1.0 0.25 1 ug/L 1,1-Dichloroethane 75-34-3 BRL U 1.00.11 1 ug/L 75-35-4 BRL 1.0 0.20 U 1 1.1-Dichloroethene ug/L U 1,1-Dichloropropene 563-58-6 BRL 1.0 0.10 1 ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.25 1 ug/L U 1.2.3-Trichloropropane 96-18-4 BRL 1.0 0.21 1 BRL ug/L U 1.2.4-Trichlorobenzene 120-82-1 1.0 0.17 1 BRL 0.14 ug/L U 1 1.2.4-Trimethylbenzene 95-63-6 1.0 0.19 ug/L U 1.2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 1 ug/L U 1.2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 ug/L U 1.2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L U 107-06-2 BRL 1.0 0.18 1 1.2-Dichloroethane ug/L U 78-87-5 BRL 1.0 0.15 1 1.2-Dichloropropane ug/L U 1.3.5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L U 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 1 ug/L U 142-28-9 BRL 1.0 0.19 1,3-Dichloropropane 1 ug/L U BRL 0.17 1.4-Dichlorobenzene 106-46-7 1.0 1 ug/L 2,2-Dichloropropane 594-20-7 BRL. 1.0 0.21 U 1 ug/L U 78-93-3 BRL 5.0 0.28 1 2-Butanone ug/L U 95-49-8 BRL 0.19 1 2-Chlorotoluene 1.0 ug/L U 2-Hexanone 591-78-6 BRL. 5.0 0.32 1 ug/L U 4-Chlorotoluene 106-43-4 BRL 1.0 0.13 1 99-87-6 BRL. 0.13 ug/L U 1 4-Isopropyltoluene 1.0 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 ug/L U 1 0.35 ug/L 1 67-64-1 5.0 Acetone 13 BRL ug/L U Acrolein 107-02-8 20 6.6 1 BRL 2.0 0.49 ug/L U Acrylonitrile 107-13-1 1 BRL 1.0 0.16 ug/L U 1 Benzene 71-43-2 ug/L U 108-86-1 BRL 1.0 0.21 1 Bromobenzene ug/L U Bromochloromethane 74-97-5 BRL 1.0 0.20 1 ug/L U Bromodichloromethane 75-27-4 BRL 1.0 0.251 75-25-2 ug/L U BRL 1.0 0.17 1 Bromoform ug/L U 74-83-9 BRL 1.0 0.25 Bromomethane 1 ug/L 75-15-0 BRL 1.0 0.26 U 1 Carbon disulfide ug/L 56-23-5 BRL 1.0 0.33 U 1 Carbon Tetrachloride ug/L U 108-90-7 BRL 0.15 1 Chlorobenzene 1.0 ug/L U Chloroethane 75-00-3 BRL 1.0 0.26 1 ug/L 67-66-3 BRL 0.16 U 1 Chloroform 1.0ug/L 74-87-3 BRL 0.25 U Chloromethane 1.0 1 156-59-2 BRL 1.0 0.21 ug/L U 1 cis-1,2-Dichloroethene

10061-01-5

124-48-1

BRL

BRL

1.0

1.0

0.10

0.15

cis-1,3-Dichloropropene

Dibromochloromethane

U

1

1

ug/L

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-3-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-022	Date Collected: May-23-07 13:00	Date Received: May-24-07 10:55

Sample Depth: Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Analyst: MJL01 Date Analyzed: May-27-07 20:45 Date Prep: May-27-07 09:08 Tech: MJL01 Seq Number: 36132 Units Flag Dil Cas Number **Result Rep Limit** MDL Parameter ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L BRL 1.0 0.22 U 1 Dichlorodifluoromethane 75-71-8 ug/L 1.0 0.19 U 1 Ethylbenzene 100-41-4 BRL ug/L BRL 1.0 0.13 U 1 Hexachlorobutadiene 87-68-3 ug/L 98-82-8 BRL 1.0 0.15 U 1 Isopropylbenzene ug/L 1.0 0.42 U 1 Methylene Chloride 75-09-2 BRL ug/L U 1 Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 U 1 ug/L Naphthalene 91-20-3 6,4 1.0 0.22 1 ug/L U 104-51-8 BRL 1.0 0.17 1 n-Butylbenzene ug/L U 1 103-65-1 BRL 1.0 0.18 n-Propylbenzene ug/L U 95-47-6 BRL 1.0 0.20 1 o-Xylene BRL 1.0 0.21 ug/L U 1 Sec-Butylbenzene 135-98-8 BRL 1.0 0.18 ug/L U 1 100-42-5 Styrene ug/L U 1 BRL 1.0 0.18 tert-Butylbenzene 98-06-6 ug/L U 127-18-4 BRL 1.0 0.16 1 Tetrachloroethene ug/L U 1 108-88-3 BRL 1.0 0.14 Toluene 1.0 ug/L U 1 BRL 0.21 trans-1,2-Dichloroethene 156-60-5 ug/L U 1.0 ł trans-1,3-Dichloropropene 10061-02-6 BRL 0.11 ug/L υ 79-01-6 BRL 1.0 0.19 1 Trichloroethene ug/L U 1 75-69-4 BRL 1.0 0.53 Trichlorofluoromethane ug/L U 1 BRL 5.0 1.3 Vinyl acetate 108-05-4 ug/L U BRL 1.0 0.19 1 Vinyl chloride 75-01-4

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-3-D

Matrix: WATER

% Moisture:

Lab Sample Id: 12050-023 Sample Depth:

Date Collected: May-23-07 13:15

Date Received: May-24-07 10:55

Prep Method: SW8260LL5 Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-29-07 12:11 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Cas Number **Result Rep Limit** MDL Units Flag Dil Parameter ug/L U 630-20-6 BRL 1.0 0.24 1 1,1,1,2-Tetrachloroethane 71-55-6 BRL 1.0 0.16 ug/L Ű 1 1,1,1-Trichloroethane ug/L U BRL 1.0 1 1,1,2,2-Tetrachloroethane 79-34-5 0.18 ug/L U 1,1,2-Trichloroethane 79-00-5 BRL 1.00.25 1 ug/L 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 U 1 ug/L 75-35-4 BRL 1.0 0.20 U 1 1,1-Dichloroethene ug/L 563-58-6 BRL 1.0 0.10 U 1 1,1-Dichloropropene ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.25 1 ug/L U 1,2,3-Trichloropropane 96-18-4 BRL 1.0 0.211 ug/L 1,2,4-Trichlorobenzene 120-82-1 BRL 1.0 0.17 U 1 ug/L U 1,2,4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 1 ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 1 ug/L U 1.2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 ug/L 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14U 1 ug/L 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 U 1 ug/L U 1,2-Dichloropropane 78-87-5 BRL 1.0 0.15 1 ug/L 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 U 1 ug/L 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 U 1 ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 ŬĬ 1 ug/L U 1,4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 1 ug/L 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 U 1 ug/L 78-93-3 BRL 5.0 0.28 U 1 2-Butanone ug/L 95-49-8 BRL 1.0 0.19 U 1 2-Chlorotoluene ug/L 591-78-6 BRL 5.0 0.32 U 1 2-Hexanone ug/L U 4-Chlorotoluene 106-43-4 BRL 1.0 0.13 1 ug/L 99-87-6 BRL 1.0 0.13 U 1 4-Isopropyltoluene 108-10-1 BRL 5.0 0.26 ug/L U 1 4-Methyl-2-pentanone 5.0 0.35 ug/L U 1 Acetone 67-64-1 BRL ug/L U Acrolein 107-02-8 BRL 20 6.6 1 BRL 2.00.49 ug/L U 1 Acrylonitrile 107-13-1 BRL 1.0 0.16 ug/L U 1 Benzene 71-43-2 0.21 ug/L U 1 Bromobenzene 108-86-1 BRL 1.0 ug/L U Bromochloromethane 74-97-5 BRL 1.0 0.20 1 ug/L U 1 Bromodichloromethane 75-27-4 BRL 1.0 0.25 75-25-2 BRL 0.17 ug/L U 1 Bromoform 1.0 ug/L U 1 Bromomethane 74-83-9 BRL 1.0 0.25 ug/L U Carbon disulfide 75-15-0 BRL 1.0 0.26 1

56-23-5

108-90-7

75-00-3

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

BRL

BRL

BRL

BRL

BRL

BRL

BRL

BRL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.33

0.15

0.26

0.16

0.25

0.21

0.10

0.15

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

U

U

U

U

U

U

U

1

1

1

1

1

1

1

1

Carbon Tetrachloride

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-3-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-023	Date Collected: May-23-07 13:15	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW8260LL5 Date Analyzed: May-29-07 12:11 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 **Result Rep Limit** MDL Units Flag Dil Parameter **Cas Number** ug/L Dibromomethane 74-95-3 BRL 1.0 0.24 U 1 ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L U BRL 1.0 0.19 1 Ethylbenzene 100-41-4 ug/L Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 U 1 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U 1 ug/L U 75-09-2 BRL 1.0 0.42 1 Methylene Chloride ug/L U 1634-04-4 BRL 1 Methyl tert-Butyl Ether 1.0 0.11 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL. 2.0 0.51 1 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L 1.0 U 1 n-Propylbenzene 103-65-1 BRL 0.18 ug/L U 1 o-Xylene 95-47-6 BRL 1.0 0.20 ug/L 135-98-8 BRL 1.0 0.21 U 1 Sec-Butylbenzene 100-42-5 BRL 1.0 0.18 ug/L U 1 Styrene ug/L U 1 tert-Butylbenzene 98-06-6 BRL 1.0 0.18 ug/L υ Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L 108-88-3 BRL 1.0 0.14 U 1 Toluene BRL 1.0 0.21 ug/L U 1 156-60-5 trans-1,2-Dichloroethene ug/L U 1 10061-02-6 BRL 1.0 0.11 trans-1,3-Dichloropropene ug/L U Trichloroethene 79-01-6 BRL 1.0 0.19 1 ug/L BRL 1.0 0.53 U 1 Trichlorofluoromethane 75-69-4 ug/L U 5.0 1.3 1 108-05-4 BRL Vinyl acetate ug/L U 0.19

BRL

75-01-4

1.0

1

Vinyl chloride

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Matrix: WATER

% Moisture:

Lab Sample Id:	12050-024
Sample Depth:	

Date Collected: May-23-07 13:30

Date Received: May-24-07 10:55

Prep Method: SW8260LL5 Analytical Method: USACE VOCs by SW8260B Analyst: MJL01 Date Analyzed: May-29-07 12:39 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Cas Number **Result Rep Limit** MDL Units Flag Dil Parameter ug/L U 1 630-20-6 BRL 1.0 0.24 1,1,1,2-Tetrachloroethane ug/L 71-55-6 BRL 1.0 0.16 U 1 1,1,1-Trichloroethane ug/L 79-34-5 BRL 1.0 0.18 U 1 1,1,2,2-Tetrachloroethane ug/L U 1 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 ug/L 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 U 1 ug/L 75-35-4 BRL 1.0 0.20 U 1 1,1-Dichloroethene ug/L 563-58-6 BRL 1.0 0.10 U 1 1.1-Dichloropropene ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.25 1 ug/L U 1,2,3-Trichloropropane 96-18-4 BRL 1.00.21 1 ug/L U 1,2,4-Trichlorobenzene 120-82-1 BRL 1.0 0.17 1 ug/L U 1,2,4-Trimethylbenzene 95-63-6 BRL 10 0.14 1 ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 1 ug/L U 1.2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 ug/L U 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L U 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 1 ug/L U 1.2-Dichloropropane 78-87-5 BRL 1.0 0.15 1 ug/L U 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 U 1 ug/L 142-28-9 BRL 1.0 0.19 U 1 1,3-Dichloropropane ug/L U 1,4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 1 ug/L U 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 1 ug/L 78-93-3 BRL 5.0 0.28 U 1 2-Butanone ug/L U 95-49-8 BRL 1.0 0.19 1 2-Chlorotoluene ug/L U 591-78-6 BRL 5.0 0.32 1 2-Hexanone ug/L U 4-Chlorotoluene 106-43-4 BRL 1.0 0.13 1 ug/L 99-87-6 BRL 1.0 0.13 U 1 4-Isopropyltoluene 108-10-1 BRL 5.0 0.26 ug/L U 1 4-Methyl-2-pentanone ug/L BRL 5.0 0.35 IJ 1 Acetone 67-64-1 ug/L 20 U 1 Acrolein 107-02-8 BRL 6.6 BRL 2.0 0.49 ug/L U 1 Acrylonitrile 107-13-1 71-43-2 BRL 1.0 0.16 ug/L U 1 Benzene BRL 1.0 0.21 ug/L U 1 Bromobenzene 108-86-1 ug/L U Bromochloromethane 74-97-5 BRL 1.0 0.20 1 BRL 0.25 ug/L U 1 Bromodichloromethane 75-27-4 1.0 75-25-2 BRL 1.0 0.17 ug/L U 1 Bromoform ug/L U 1 Bromomethane 74-83-9 BRL 1,0 0.25 ug/L U Carbon disulfide 75-15-0 BRL 1.0 0.26 1 ug/L U 1 Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 ug/L U BRL 1.0 0.15 1 Chlorobenzene 108-90-7 ug/L U 1 Chloroethane 75-00-3 BRL 1.0 0.26 ug/L U Chloroform 67-66-3 BRL 1.0 0.16 1 ug/L U 74-87-3 BRL 1.0 0.25 1 Chloromethane

156-59-2

124-48-1

10061-01-5

BRL.

BRL

BRL

1.0

1.0

1.0

0.21

0.10

0.15

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Version: 1.008

U

U

1

1

1

ug/L

ug/L

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-4-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-024	Date Collected: May-23-07 13:30	Date Received: May-24-07 10:55

Sample Depth:

.....

Analytical Method: USACE VOCs by SW8260B Prep Method: SW8260LL5 Date Analyzed: May-29-07 12:39 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Parameter Cas Number **Result Rep Limit** MDL Units Flag Dil BRL ug/L U Dibromomethane 74-95-3 1.0 0.24 1 ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 Ethylbenzene ug/L U 100-41-4 BRL 1.0 0.19 1 ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 1 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L U BRL m-Xylene/p-Xylene 179601-23-1 2.00.51 1 ug/L Naphthalene 91-20-3 20 1.0 0.22 1 ug/L n-Butylbenzene 104-51-8 BRL 1.0 0.17 U 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 ug/L Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 U 1 ug/L Styrene 100-42-5 BRL 1.0 0.18 U 1 ug/L tert-Butylbenzene 98-06-6 BRL 1.0 0.18 U 1 ug/L Tetrachloroethene 127-18-4 BRL 1.0 0.16 U 1 ug/L Toluene 108-88-3 BRL 1.0 0.14 U 1 trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 ug/L U 1 ug/L trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 U 1 ug/L U Trichloroethene 79-01-6 BRL 1.0 0.19 1 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 5.0 ug/L U Vinyl acetate 108-05-4 BRL 1.3 1 75-01-4 BRL 1.0 0.19 ug/L U Vinyl chloride 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-4-D	Matrix: WATER	% Moisture:	
Lab Sample Id: 12050-025 Sample Depth:	Date Collected: May-23-07 13:45	Date Received: May-24-07 10:55	
Analytical Method: USACE VOCs b	oy SW8260B	Prep Method: SW8260LL5	

Date Analyzed: May-29-07 09:30	Analyst: MJL01 Sea Number: 36103	Date Prep: May-29-07 07:50		Tech:	MJL01		
	Seq ivalitoer: 50195		D 11 1		¥7 \$4	171	D ±1
Parameter	Cas Number	Kesult	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	\mathbf{U}	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	\mathbf{U}	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	I
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	I
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1.3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug	R NU	1

Version: 1.008

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-4-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-025	Date Collected: May-23-07 13:45	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW8260LL5 Date Analyzed: May-29-07 09:30 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Parameter Cas Number **Result Rep Limit** MDL Units Flag Dil Dibromomethane 74-95-3 BRL 1.0 0.24 ug/L U 1 Dichlorodifluoromethane BRL 1.0 0.22 ug/L U 75-71-8 1 BRL ug/L U Ethylbenzene 100-41-4 1.0 0.19 1 ug/L Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 U 1 ug/L Isopropylbenzene 98-82-8 BRL 1.0 0.15 U 1 ug/L 75-09-2 BRL 1.0 U Methylene Chloride 0.42 1 ug/L Methyl tert-Butyl Ether 1634-04-4 υ BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 U 1 ug/L Naphthalene 91-20-3 BRL 1.0 0.22 U 1 ug/L n-Butylbenzene 104-51-8 BRL 1.0 0.17 U 1 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 1 0.18ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 135-98-8 BRL 0.21 ug/L U Sec-Butylbenzene 1.0 1 100-42-5 BRL ug/L U 1 1.0 0.18 Styrene ug/L U tert-Butylbenzene 98-06-6 BRL 0.18 1 1.0 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L U 156-60-5 BRL 1.0 0.21 1 trans-1,2-Dichloroethene ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 ug/L U Trichloroethene 79-01-6 BRL 1.0 0.19 1 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L U 108-05-4 BRL 5.0 Vinyl acetate 1.3 1 ug/L U BRL Vinyl chloride 75-01-4 1.0 0.19 1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-5-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-026	Date Collected: May-23-07 14:20	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B				Prep N	Method: SW	'8260LL	5	
Date Analyzed: May-29-07 13:06	Analyst: MJL01 Seq Number: 36193	Date Prep: May-29-07 07:50			MJL01 Date Prep: May-29-07 07:50 Tech: Mage 36193		MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1	
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1	
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1	
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1	
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1	
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1	
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1	
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1	
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1	
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1	
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1	
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1	
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1	
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	u g/L	U	1	
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1	
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1	
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1	
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1	
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1	
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1	
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1	
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1	
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1	
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1	
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1	
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1	
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1	
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1	
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1	
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1	
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1	
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1	
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1	
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1	
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1	
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1	
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1	
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1	
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	Ū	1	
Chloroform	67-66-3	BRI	1.0	0.16	ug/L	Ũ	1	
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ū	1	
cis-1.2-Dichloroethene	156-59-2	BRI	1.0	0.21	ug/L	Ū	1	
cis-1,3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	Ū	1	
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ugan	₹ <u>₹</u> U	1	

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-5-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-026	Date Collected: May-23-07 14:20	Date Received: May-24-07 10:55
Sample Depth:		

Prep Method: SW8260LL5 Analytical Method: USACE VOCs by SW8260B Date Prep: May-29-07 07:50 Date Analyzed: May-29-07 13:06 Analyst: MJL01 Tech: MJL01 Seq Number: 36193 Units Flag Dil Cas Number **Result Rep Limit** MDL Parameter ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane 0.22 ug/L U 1 75-71-8 BRL 1.0 Dichlorodifluoromethane BRL 0.19 ug/L U ł 100-41-4 1.0 Ethylbenzene ug/L U 1 BRL 1.0 0.13 Hexachlorobutadiene 87-68-3 ug/L U 1 1.0 Isopropylbenzene 98-82-8 BRL 0.15 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 179601-23-1 BRL 2.0 0.51 ug/L U 1 m-Xylene/p-Xylene ug/L 91-20-3 BRL 1.0 0.22 U 1 Naphthalene ug/L n-Butylbenzene 104-51-8 BRL 1.0 0.17 U 1 103-65-1 BRL 1.0 0.18 ug/L U 1 n-Propylbenzene ug/L U 95-47-6 BRL 1.0 0.20 1 o-Xylene ug/L U 1 135-98-8 BRL 1.0 0.21 Sec-Butylbenzene ug/L 100-42-5 BRL 1.0 0.18 U 1 Styrene 98-06-6 BRL 1.0 0.18 ug/L U 1 tert-Butylbenzene BRL 1.0 0.16 ug/L U 1 Tetrachloroethene 127-18-4 BRL ug/L U 1 108-88-3 1.0 0.14 Toluene ug/L BRL 1.0 0.21 U 1 156-60-5 trans-1,2-Dichloroethene BRL 1.00.11 ug/L U 1 10061-02-6 trans-1,3-Dichloropropene ug/L U 1 BRL 1.0 0.19 Trichloroethene 79-01-6 ug/L U 75-69-4 BRL 1.0 0.53 1 Trichlorofluoromethane ug/L 5.0 1.3 U ł Vinyl acetate 108-05-4 BRL ug/L BRL 1.0 0.19 U 1 Vinyl chloride 75-01-4

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-5-D	Matrix: WATER	% Moisture:	
Lab Sample Id: 12050-027	Date Collected: May-23-07 14:30	Date Received: May-24-07 10:55	
Sample Depth:			

Prep Method: SW8260LL5 Analytical Method: USACE VOCs by SW8260B Analyst: MJL01 Date Analyzed: May-29-07 13:33 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 **Result Rep Limit** MDL Flag Dil Parameter **Cas Number** Units BRL 0.24 ug/L U 1,1,1,2-Tetrachloroethane 630-20-6 1.0 1 ug/L 1,1,1-Trichloroethane 71-55-6 BRL 1.0 0.16 U 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 U 1 ug/L U 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 1 ug/L U 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 1 ug/L U 1,1-Dichloroethene 75-35-4 BRL 1.0 0.20 1 пαЛ

1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	I
1,2,3-Trichlorobenzene	87-61-6	BRL.	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/I.	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	u g/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	\mathbf{U}	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	u g/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	\mathbf{U}	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL.	1.0	0.10	ug/L	U	1
Dihasmashlanamathana	104 40 1	DDI	1.0	0.15	11875 34	a T T	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-5-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-027	Date Collected: May-23-07 14:30	Date Received: May-24-07 10:55
Sample Depth:		

Prep Method: SW8260LL5 Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-29-07 13:33 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Cas Number **Result Rep Limit** MDL Units Flag Dil Parameter ug/L U 1 Dibromomethane 74-95-3 BRL 1.0 0.24 ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U 87-68-3 BRL 1.0 1 Hexachlorobutadiene 0.13 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L Methylene Chloride 75-09-2 BRL 1.0 0.42 U 1 ug/L Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 U 1 ug/L 179601-23-1 BRL 2.0 U 1 m-Xylene/p-Xylene 0.51 ug/L U 1 Naphthalene 91-20-3 BRL 1.0 0.22 ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L U 1.0 1 o-Xylene 95-47-6 BRL 0.20 ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 1 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 ug/L U Trichloroethene 79-01-6 BRL 1.0 0.19 1 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L Vinyl acetate 108-05-4 BRL 5.0 1.3 U 1 ug/L U Vinyl chloride 75-01-4 BRL 1.0 0.19 1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-17-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-028	Date Collected: May-23-07 14:50	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW8260LL5 Date Analyzed: May-29-07 14:00 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 36193 36193 36193

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1 3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	Ū	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ū	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	Ū	1
2 2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	Ū	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	Ũ	1
2-Chlorotoluene	95-49-8	BRI	1.0	0.19	ug/L	Ū	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ũ	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRI	5.0	0.26	ug/L	Ū	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ū	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	Ū	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ũ	ī
cis-1.2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1.3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	υ	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug ili	πŪ	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-17-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-028	Date Collected: May-23-07 14:50	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW8260LL5 Date Analyzed: May-29-07 14:00 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Flag Dil **Cas Number** Result Rep Limit MDL Units Parameter U 74-95-3 BRL 1.0 0.24 ug/L 1 Dibromomethane ug/L BRL 1.0 0.22 U 1 Dichlorodifluoromethane 75-71-8 ug/L U 1 Ethylbenzene 100-41-4 BRL 1.0 0.19 ug/L BRL 1.0 0.13 U 1 Hexachlorobutadiene 87-68-3 ug/L BRL 1.0 0.15 U 1 Isopropylbenzene 98-82-8 ug/L U 1 Methylene Chloride 75-09-2 BRL 1.0 0.42 ug/L U 1 Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 1 ug/L U 91-20-3 BRL 1.0 0.22 1 Naphthalene ug/L U 104-51-8 BRL 1.0 0.17 1 n-Butylbenzene ug/L U 1 BRL 1.0 0.18 n-Propylbenzene 103-65-1 ug/L U 95-47-6 BRL 1.0 0.20 ł o-Xylene BRL 0.21 ug/L U 1 Sec-Butylbenzene 135-98-8 1.0 ug/L U 1 BRL 1.0 0.18 Styrene 100-42-5 ug/L U 1 BRL 0.18 tert-Butylbenzene 98-06-6 1.0 ug/L U 127-18-4 BRL 1.0 0.16 1 Tetrachloroethene ug/L U 1 108-88-3 BRL 1.0 0.14 Toluene ug/L U 1 1.0 0.21 trans-1,2-Dichloroethene 156-60-5 BRL ug/L U 1 trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 ug/L U 79-01-6 BRL 1.0 0.19 1 Trichloroethene ug/L U 75-69-4 BRL 1.0 0.53 1 Trichlorofluoromethane ug/L U 1.3 1 Vinyl acetate 108-05-4 BRL 5.0 ug/L U BRL 0.19 Vinyl chloride 75-01-4 1.0 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-17D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-029	Date Collected: May-23-07 15:00	Date Received: May-24-07 10:55

Sample Depth:

Analytical Method: USACE VOCs by SW8260B

Prep Method: SW8260LL5

Date Analyzed: May-29-07 14:27	Analyst: MJL01 See Number: 26103	I	Date Prep: M	ay-29-07 07:50	Tech:	МЛ.01	
Parameter	Cas Number	Result	Ren Limit	MDL	Units	Flag	Dil
	Cas Rumber		hep Linit		- III	B	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	0	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/I.	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2 2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2.Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	50	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Isopropyltoluene	99-87-6	BRI	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRI	50	0.26	ug/L	Ū	1
A cetone	67-64-1	BRL	50	0.35	ug/L	Ū	1
Acrolein	107-02-8	BRI	20	66	ug/L	Ū	1
Acadonitrile	107-13-1	BRI	20	0.49	ug/L	ŭ	1
Bongono	71 /3 2	BRI	1.0	0.42	ug/L	Ŭ	1
Denzelle	109 96 1	DDI	1.0	0.10	<i>3</i> 119/L	ŭ	1
Bromobenzene	74.07.5	DAT	1.0	0.21	ug/L	и U	1
Bromocniorometnane	74-97-3		1.0	0.20	ug/L	U U	1
Bromodicniorometnane	75-27-4		1.0	0.23	ug/L	U U	1
Bromotorm	75-25-2	DRL	1.0	0.17	ug/L	U U	1
Bromomethane	74-83-9	BKL	1.0	0.25	ug/L	U 11	1
Carbon disulfide	/5-15-0	BKL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ugq	<u> 68 U</u>	1

Certificate of Analytical Results 12050

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: PR-DPT-17D	Matrix: WATER	% Moisture:
Lab Sample Id: 12050-029	Date Collected: May-23-07 15:00	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE V(DCs by SW8260B			Prep	Method: SV	V8260LL	.5
Date Analyzed: May-29-07 14:27	Analyst: MJL01 Seq Number: 36193]	Date Prep: M	ay-29-07 07:50	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	u <u>g</u> /L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: 302764 BLK	Matri	x: WATE	R	% Moistur	боной: -э. салболас. 'С.'		<u></u>
Lab Sample Id: 302764 BLK	Date Collecte	٩٠		Date Receive	d.		
Carrola Death	Date Conteste	u .		Date Receive	ų.		
Sample Depth:							
Analytical Method: USACE VOCs by SW8260B Prep Method: SW50						/5030B	
Date Analyzed: May-26-07 09:23	Analyst: MJL01]	Date Prep: M	ay-26-07 08:09	Tech:	MJL01	
	Seq Number: 36120						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ū	1
1 2 3-Trichloropropane	96-18-4	BRI	1.0	0.21	ug/L	U	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	Ū	1
1.2.4.Trimethylbenzene	95-63-6	BRL	10	0.14	ug/L	Ŭ	ĩ
1,2,4-Thineary benzene	96-12-8	BRI	1.0	0.19	ug/L	U U	1
1.2 Dibromoethane	106-93-4	BRI	1.0	0.19	ug/L	Ŭ	1
1,2-Dioblorohongono	95 50 1	DICL	1.0	0.14	ug/L	U U	1
1.2 Dichloroothana	107.06.2		1.0	0.14	ug/L	U U	1
1,2-Dichloroethane	107-00-2	DRL	1.0	0.16	ug/L	U TI	1
1,2-Dichloropropane	/8-8/-3	DRL	1.0	0.13	ug/L ug/I	U	1
1,3,5-1 nmethylbenzene	108-07-8	BKL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ü	I I
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	I
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRI	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRI	10	0.26	ug/L	Ū	1
Carbon Tetrachloride	56_73_5	RRI	10	033	ug/L	Ŭ	1
Chlorohenzene	108_00_7	RPI	1.0	0.15	ug/L	ŭ	1
Chloroothana	75 00 2	זעם	1.0	0.15	ug/J	ī	1
Chloroform	15-00-5		1.0	0.20	це/L	U U	1
Chloromethane	0/-00-3 7/ 07 2	DRL	1.0	0.10	ч <u>е</u> 2 110/Л	U U	1
cinoromethane	14-01-2	DIL	1.0	0.25	ч <u>е</u> , с 1117/I	U U	1
sis 1.2 Disklararran	100-09-2		1.0	0.10	ч <u>ө</u> лс 110/Л	U U	1
CIS-1,5-Dichloropropene	10001-01-3	DKL.	1.0	0.10	ug L vances	U Treas	1
Dibromochloromethane	124-48-1	BKL	1.0	0.15	nation	<u>714 U</u>	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302764 BLK Lab Sample Id: 302764 BLK Sample Depth:	Matri Date Collecte	x: WATH d:	LR.	% Moistur Date Receive	e: d:		
Analytical Method: USACE VC	Cs by SW8260B			Prep	Method: SW	/5030B	
Date Analyzed: May-26-07 09:23	Analyst: MJL01 Seq Number: 36120	:	Date Prep: M	ay-26-07 08:09	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: 302767 BLK	Matri	x: WATE	R	% Moistu	e:		
Lab Sample Id: 302767 BLK	Date Collecte	d-		Date Receive	ed.		
Sample Denth:				2010 1000000			
Sample Depui.							
Analytical Method: USACE VOCs by SW8260B Prep						V5030B	
Date Analyzed: May-27-07 10:19	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1 1 1 7 Totrachloroothono	620.20.6	וממ	- 10	0.24	nali	11 11	,
1,1,1,2-1 effactionoroeffiane	030-20-0	DKL	1,0	0.24	ug/L	0	1
1,1,2,2 Tetrashlarasthana	71-33-0	DRL	1.0	0.10	ug/L	U	1
1,1,2,2-Tetrachioroethane	79-34-3	BKL	1.0	0.18	ug/L	U	1
1,1,2-1 inchiorocthane	79-00-5	BKL	1.0	0.25	ug/L	U	1
1.1 Disklawsethane	75-34-3	BKL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	/5-35-4	BKL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	203-28-0	BKL	1.0	0.10	ug/L	U	1
1,2,3-Trichlessner	8/-01-0 07-18-4	BRL DDI	1.0	0.25	ug/L	U	1
1,2,5-1 richloropropane	90-18-4	BKL	1.0	0.21	ug/L	U	1
1,2,4-1 richlorobenzene	120-82-1	BKL	1.0	0.17	ug/L	U	1
1,2,4-1 rimetnyibenzene	95-63-6	BKL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BKL	1.0	0.19	ug/L.	U	1
1,2-Dibromoethane	106-93-4	BKL	1.0	0.18	ug/L	U	I
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	l
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-1rimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	I
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/1.	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	បន្តរដ្ឋ	U 🕽	1

ŝ

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302767 BLK Lab Sample Id: 302767 BLK	Matri Date Collecte	x: WATE d:	ER	% Moistur Date Receive	re: •d:		
Sample Depth:							
Analytical Method: USACE V		***	Prep	Method: SW	/5030B		
Date Analyzed: May-27-07 10:19	Analyst: MJL01 Seq Number: 36132]	Date Prep: M	ay-27-07 09:08	Tech:	МЛ О1	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302818 BLK Lab Sample Id: 302818 BLK	Matri Date Collecte	ix: WATE :d:	R	% Moisture Date Receivee	e: d:		
Sample Depth:							
Analytical Method: USACE V	OCs by SW8260B		· · · · · · · · · · · · · · · · · · ·	Prep N	Aethod: SW	/8260LL	.5
Date Analyzed: May-29-07 09:03	Analyst: MJL01 Seq Number: 36193	I	Date Prep: M	ay-29-07 07:50	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Di
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	Ū	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	Ũ	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	Ū	1
1.1-Dichloroethene	75-35-4	BRI.	10	0.20	ug/L	Ū	1
1.1-Dichloropropene	563-58-6	BRL	10	0.10	ug/L	Ū	1
1.2.3-Trichlorobenzene	87-61-6	BRI	1.0	0.25	ug/L	ŭ	1
1.2.3-Trichloropropane	96-18-4	BRI	10	0.21	ug/L	Ũ	1
1.2.4-Trichlorobenzene	120-82-1	BRI	10	017	ug/L	Ŭ	1
1.2.4-Trimethylbenzene	95-63-6	BRI	10	0.14	ug/L	Ŭ	1
1.2. Dibromo-3-chloropropage	96-12-8	BRI	1.0	0.19	ug/L	ň	1
1.2-Dibromoethane	106-93-4	BRI	1.0	0.18	-g = ug/L	й	1
1.2 Dichlorohenzene	95 50 1	BBI	1.0	0.13	ug/L	т П	1
1,2-Dichloroethane	107.06.2	BRI	1.0	0.18	-о -2 це/L	U U	
1,2-Dichloropropage	78 97 5	BRL	1.0	0.18	ug/L	U U	
1,2-Dicholopiopane	109 67 9	DAL	1.0	0.15	ug/L	U U	
1,2 Disblossbergere	541 72 1	DNL	1.0	0.17	ug/L	U	
1,3-Dichloropenzene	041-70-1 140-08-0	DAL	1.0	0.17	ug/L vo/l	U	
1,3-Dichlorohonzone	142-20-9	DNL	1.0	0.19	ug/L	U 11	
2.2 Disklassesses	106-46-7	DKL	1.0	0.17	ug/L	11	
2,2-Dichloropropane	594-20-7 78.03.2	BKL	1.0	0.21	ug/15 11g/1	U	
2-Butanone	/8-93-3	BKL	5.0	0.28	ug/L	U	
2-Chlorotoluene	95-49-8	BKL	1.0	0.19	ug/L	U	
2-Hexanone	591-78-6	BKL	5.0	0.32	ug/L	U	
4-Chlorotoluene	106-43-4	BKL	1.0	0.13	ug/L	U	
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ப்துட	U	
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	0	
Acetone	67-64-1	BRL	5.0	0.35	ug/L	0	
Acrolem	107-02-8	BRL	20	6.6	ug/L	U	
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	-
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	
Dibromochloromethane	174-48-1	BRI	10	0.15	บอุสิณ	วี่ส์บ	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302818 BLK Lab Sample Id: 302818 BLK Sample Depth:	Matri Date Collecte	x: WATE d:	R	% Moistur Date Receive	e: d:		
Analytical Method: USACE VOCs by SW8260B Pr					Method: SW	/8260LL	.5
Date Analyzed: May-29-07 09:03	Analyst: MJL01 Seq Number: 36193	I	Date Prep: M	ay-29-07 07:50	Tech:	мл.01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	I
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1.2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinvl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinvl chloride	75-01-4	BRL	1.0	0.19	ug/L	Ū	1

Project	Name:	Hunter	Perimeter	Semuling
TIUJCUL	rame.	пищег	гегинецег	Sampung

Report Date: 06/15/07 15:12 Project ID: Task Order 0085 Work Order #: 12050 Sample: 12037-008 MD / MD Lab Batch #: 36120 1 Matrix: W **Batch**: Units: ug/L SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Limits Found Amount Recovery Flags [A] **[B]** %R %R [D] Analytes 1,2-Dichloroethane-d4 65.4 50.0 131 53-159 Bromofluorobenzene 53.8 50.0 108 30-186 Toluene-D8 53.0 50.0 106 83-136 Sample: 12050-001 / SMP Matrix: W Lab Batch #: 36120 1 Batch: Units: ug/L SURROGATE RECOVERY STUDY VOCs by SW8260B Amount True Control Limits Amount Recovery Flags Found **[B**] %R %R [A] [D] Analytes 1,2-Dichloroethane-d4 60.9 50.0 122 53-159 Bromofluorobenzene 54.4 50.0 109 30-186 50.0 Toluene-D8 106 83-136 53.1 Lab Batch #: 36120 Sample: 12050-002 / SMP **Batch:** 1 Matrix: W Units: ug/L SURROGATE RECOVERY STUDY Control Amount True VOCs by SW8260B Found Amount Recovery Limits Flags **[B]** %R %R [A] **[D**] Analytes 1,2-Dichloroethane-d4 57.7 50.0 115 53-159 Bromofluorobenzene 104 52.0 50.0 30-186 Toluene-D8 53.4 50.0 107 83-136 Sample: 12050-003 / SMP Lab Batch #: 36120 Batch: 1 Matrix: W SURROGATE RECOVERY STUDY Units: ug/L True Control VOCs by SW8260B Amount Limits Found Amount Recovery Flags %R %R [A] **[B]** [D] Analytes 1,2-Dichloroethane-d4 61.6 50.0 123 53-159 Bromofluorobenzene 50.0 108 30-186 53.8 Toluene-D8 108 54.0 50.0 83-136

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Report Date: 06/15/07 15:12

Vork Order #: 12050			Project ID	: Task Order	0085	
Lab Batch #: 36120	Sample: 12050-004 / SMP	Bat	ch: ¹ Matr	ix: W		
Units: ug/L	Γ	SI	URROGATE RE	COVERY S	TUDY	
VOCs by S Analy	W8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4		54.3	50.0	109	53-159	
Bromofluorobenzene		53.1	50.0	106	30-186	
Toluene-D8	.	53.8	50.0	108	83-136	
Lab Batch #: 36120	Sample: 12050-005 / SMP	Bat	ch: ¹ Matr	ix: W	·,	
Units: ug/L		S	URROGATE RI	ECOVERY S	TUDY	·
VOCs by S	W8260B	Amount Found [A]	True Amount [B]	Recovery %R (D)	Control Limits %R	Flags
Anaiy	/tes			(~)		
1,2-Dichloroethane-d4		60.3	50.0	121	53-159	
Bromofluorobenzene		54.8	50.0	110	30-186	
Toluene-D8		53.5	50.0	107	83-136	
Lab Batch #: 36120 Sample: 302764 BLK / BLK Batch: 1 Matrix: W						
Units: ug/L		SURROGATE RECOVERY STUDY				
VOCs by S	W8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analy	tes			[D]		
1,2-Dichloroethane-d4		54.7	50.0	109	65-125	
Bromofluorobenzene		53.8	50.0	108	66-148	
Toluene-D8		53.6	50.0	107	86-127	
Lab Batch #: 36132	Sample: 12050-006 / SMP	Bat	ch: 1 Matr	ix: W		
Units: ug/L		SURROGATE RECOVERY STUDY				
VOCs by S	W8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analy	ytes			D		
1,2-Dichloroethane-d4		59.9	50.0	120	53-159	
Bromofluorobenzene		54.6	50.0	109	30-186	
Toluene-D8		54.2	50.0	108	83-136	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampli	ng
---------------------------------------	----

Report Date: 06/15/07 15:12

Project ID: Task Order 0085

Vork Order #: 12050			Project ID	: Task Order	0085	
Lab Batch #: 36132	Sample: 12050-007 / SMP	Bat	ch: ¹ Matr	ix: W		
Units: ug/L	Γ	SURROGATE RECOVERY STUDY				
VOCs by SW8 Analytes	3260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4		56.9	50.0	114	53-159	
Bromofluorobenzene		54.9	50.0	110	30-186	
Toluene-D8		53.7	50.0	107	83-136	
Lab Batch #: 36132	Sample: 12050-008 / SMP	S / SMP Batch: 1 Matrix: W				
Units: ug/L	Γ	S	URROGATE R	ECOVERY S	FUDY	
VOCs by SW8 Analytes	3260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4		61.2	50.0	122	53-159	
Bromofluorobenzene		54.6	50.0	109	30-186	
Toluene-D8		54.7	50.0	109	83-136	
Lab Batch #: 36132	Sample: 12050-009 / SMP	SMP Batch: 1 Matrix: W				
Units: ug/L	Г	SURROGATE RECOVERY STUDY				
VOCs by SW8	3260B	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1.2-Dichloroethane-d4	·	67.5	50.0	135	53-159	
Bromofluorobenzene		56.7	50.0	113	30-186	
Toluene-D8		56.1	50.0	112	83-136	
Lab Batch #: 36132	Sample: 12050-010 / SMP	MP Batch: 1 Matrix: W				
Units: ug/L	Γ	SURROGATE RECOVERY STUDY				
VOCs by SW8 Analytes	3260B	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags
1,2-Dichloroethane-d4		64.3	50.0	129	53-159	
Bromofluorobenzene		53.5	50.0	107	30-186	
Toluene-D8		54 1	50.0	108	83-136	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:12

Project ID: Task Order 0085

Work Order #: 12050			Project ID	: Task Order	0085		
Lab Batch #: 36132	Sample: 12050-011 / SMP	Bat	ch: 1 Matr	ix: W			
Units: ug/L	Γ	S	URROGATE RI	COVERY S	FUDY		
VOCs by S Analy	W8260B tes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,2-Dichloroethane-d4		63.4	50.0	127	53-159		
Bromofluorobenzene		54.3	50.0	109	30-186		
Toluene-D8		53.9	50.0	108	83-136		
Lab Batch #: 36132	Sample: 12050-012 / SMP	Bat	ch: 1 Matr	ix: W			
Units: ug/L	Г	S	URROGATE RI	ECOVERY S	TUDY		
VOCs by S	W8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analy	tes			נען			
1,2-Dichloroethane-d4		62.6	50.0	125	53-159		
Bromofluorobenzene		54.8	50.0	110	30-186		
Toluene-D8		54.4	50.0	109	83-136		
Lab Batch #: 36132	Sample: 12050-013 / SMP	IP Batch: 1 Matrix: W					
Units: ug/L	ſ	SURROGATE RECOVERY STUDY				······································	
VOCs by S	W8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analy	rtes			[U]			
1,2-Dichloroethane-d4		64.6	50.0	129	53-159		
Bromotluorobenzene		54.5	50.0	109	30-186		
Toluene-D8		54.0	50.0	108	83-136		
Lab Batch #: 36132	Sample: 12050-014 / SMP	Bat	tch: 1 Matr	ix: W			
Units: ug/L	Г	SURROGATE RECOVERY STUDY					
VOCs by S	W8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1.2-Dichloroethane-d4		66.1	50.0	132	53-150		
Bromofluorobenzene		55.4	50.0	111	30-186		
Toluene-D8		54.6	50.0	109	83-136		
1		~		~~~	00 100		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Report Date: 06/15/07 15:12

Project ID:	Task	Order	0085
-------------	------	-------	------

Vork Order #: 12050	Project ID: Task Order 0085						
Lab Batch #: 36132 Sample: 12050-015 / SMP	Batch: ¹ Matrix: W						
Units: ug/L	SURROGATE RECOVERY STUDY						
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1.2-Dichloroethane-d4	64.6	50.0	129	53-159			
Bromofluorobenzene	53.9	50.0	108	30-186			
Toluene-D8	54.4	50.0	109	83-136			
Lab Batch #: 36132 Sample: 12050-016 / SMP	Bat	ch: 1 Mati	ix: W	·			
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY			
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[2]				
1,2-Dichloroethanc-d4	70.3	50.0	141	53-159			
Bromofluorobenzene	53.2	50.0	106	30-186			
101000-128	51.0	50.0	105	63-130			
Lab Batch #: 36132 Sample: 12050-017 / SMF	Bat	atch: 1 Matrix: W					
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY			
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,2-Dichloroethane-d4	64.2	50.0	128	53-159			
Bromofluorobenzene	55.3	50.0	111	30-186			
Toluene-D8	53.6	50.0	107	83-136			
Lab Batch #: 36132 Sample: 12050-019 / SMF) Bat	tch: 1 Mat	rix: W				
Units: ug/L	SURROGATE RECOVERY STUDY						
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1.2-Dichloroethane-d4	64.4	50.0	129	53-159			
Bromofluorobenzene	54.4	50.0	109	30-186			
Toluene-D8	53.9	50.0	108	83-136			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Report Date: 06/15/07 15:12

Project ID • Task Order 0085

/ork Order #: 12050 Project ID: Task Order 0085							
Lab Batch #: 36132	#: 36132 Sample: 12050-020 / SMP Batch: 1 Matrix: W						
Units: ug/L	Г	SURROGATE RECOVERY STUDY					
VOCs by Ana	SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,2-Dichloroethane-d4	•	63.2	50.0	126	53-159		
Bromofluorobenzene		56.0	50.0	112	30-186		
Toluene-D8		54.2	50.0	108	83-136		
Lab Batch #: 36132	Sample: 12050-021 / SMP	Bat	ch: ¹ Matr	ix: W			
Units: ug/L		S	URROGATE R	ECOVERY S	FUDY		
VOCs by Ana	SW8260B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,2-Dichloroethane-d4		63.8	50.0	128	53-159		
Bromofluorobenzene		55.0	50.0	110	30-186		
Toluene-D8		52.7	50.0	105	83-136		
Lab Batch #: 36132	Sample: 12050-022 / SMP	Bat	tch: 1 Mati	rix: W			
Units: ug/L	Γ	S	URROGATE R	ECOVERY S	TUDY		
VOCs by Ana	SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,2-Dichloroethane-d4		64.5	50.0	129	53-159		
Bromofluorobenzene	· ·	55.0	50.0	110	30-186		
Toluene-D8		53.9	50.0	108	83-136		
Lab Batch #: 36132	Sample: 302767 BLK / BLK	Bat	tch: l Mati	rix: W			
Units: ug/L		SURROGATE RECOVERY STUDY					
VOCs by Ana	SW8260B	Amount Found [A]	True Amount [B]	Recovery %R {D]	Control Limits %R	Flags	
1.2-Dichloroethane-d4		58.7	50.0	117	65-125		
Bromofluorobenzene		53.6	50.0	107	66-148		
Toluene-D8		54.1	50.0	108	86-127		

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.
- Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:12

Vork Order #: 12050			Project ID	: Task Order	0085			
Lab Batch #: 36193 Samp	ole: 12050-0187 SMP	Batch: Matrix: W						
VOCs by SW8260E	3	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes				[D]				
1,2-Dichloroethane-d4		57.0	50.0	114	53-159			
Bromofluorobenzene		52.2	50.0	104	30-186			
Toluene-D8		51.2	50.0	102	83-136			
Lab Batch #: 36193 Samp	ole: 12050-023 / SMP	Ba	tch: ^I Matr	ix: W				
Units: ug/L		S	URROGATE RI	ECOVERY S	TUDY			
VOCs by SW8260E Analytes	3	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,2-Dichloroethane-d4		62.5	50.0	125	53-159			
Bromofluorobenzene		54.9	50.0	110	30-186			
Toluene-D8		53.7	50.0	107	83-136			
Lab Batch #: 36193 Samt	ole: 12050-024 / SMP	Ba	tch: 1 Matr	ix: W	<u>, </u>			
Units: ug/L		SURROGATE RECOVERY STUDY						
VOCs by SW8260F Analytes	3	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,2-Dichloroethane-d4		64.6	50.0	129	53-159			
Bromofluorobenzene		55.3	50.0	111	30-186			
Toluene-D8		52.5	50.0	105	83-136			
Lab Batch #: 36193 Samp	ble: 12050-025 / SMP	Ba	tch: 1 Matr	ix: W	L			
Units: ug/L		SURROGATE RECOVERY STUDY						
VOCs by SW8260E Analytes	3	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,2-Dichloroethane-d4		58.5	50.0	117	53-159			
Bromofluorobenzene		54.3	50.0	109	30-186			
Toluene-D8		54.1	50.0	108	83-136			

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Report Date: 06/15/07 15:12

Project ID: Task Order 0085

Vork Order #: 12050		Project ID: Task Order 0085					
Lab Batch #: 36193	Sample: 12050-026 / SMP	AP Batch: 1 Matrix: W SURROGATE RECOVERY STUDY					
Units: ug/L	Г						
VOCs by SW Analyte	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,2-Dichloroethane-d4		63.5	50.0	127	53-159		
Bromofluorobenzene		53.0	50.0	106	30-186		
Toluene-D8		53.3	50.0	107	83-136		
Lab Batch #: 36193	Sample: 12050-027 / SMP	Bat	ch: ¹ Mati	ix:W	<u>_</u>		
Units: ug/L	Γ	S	URROGATE R	ECOVERY S	TUDY		
VOCs by SW	8260B	Amount Found [A]	True Amount [B]	Recovery %R 1D1	Control Limits %R	Flags	
Anaryte	<u> </u>	64.3	50.0	129	53,159		
Bromofluorobenzene		54.3	50.0	129	30-186		
Toluene-D8		53.8	50.0	109	83-136		
L	Semilar 12050 028 / SMP	- Det	ah. 1 Mat	l ive W			
Lab batch #: 50195			URROGATE R	ECOVERY S	TIDY		
VOCs by SW	/8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analyte	s	11.5	<u> </u>	123	62.160		
Promofluorohenzene		00.0 52.5	50.0	133	20 194		
Toluene-D8		53.5	50.0	103	83-136		
Lab Batch #: 36193	Sample: 12050-029 / SMP	Bat	rch: 1 Mat	rix: W	05 100		
Units: ug/L	с амрю: Г	SURROGATE RECOVERY STUDY					
VOCs by SW	8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1 2-Dichloroethane-d4	5	65.2	50.0	130	53-159		
Bromofluorobenzene		54.2	50.0	108	30-186		
Toluene-D8		52.7	50.0	105	83-136		

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:12

Project ID: Task Order 0085

Work Order #: 12050 Lab Batch #: 36193

Batch: 1 Matrix: W

Units: ug/L	SURROGATE RECOVERY STUDY					
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,2-Dichloroethane-d4	58.9	50.0	118	65-125		
Bromofluorobenzene	56.6	50.0	113	66-148		
Toluene-D8	53.1	50.0	106	86-127		

Sample: 302818 BLK / BLK

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

		Rep	ort Date:		06/0	7/07 17:46
Work Order #: 12050		Pi	roiect ID:		Task C	order 0085
Lab Batch #: 36120 St	ample: 302764 I	BKS	Matrix: W	7		
Reporting Units: ug/L B:	atch #: 1	BLANK /	BLANK SPI	KE RECO	OVERY ST	UDY
VOCs by SW8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
1,1,1,2-Tetrachloroethane	<0.24	50	47	94	70-130	
1,1,1-Trichloroethane	<0.16	50	50	100	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	41	82	70-130	
1,1,2-Trichloroethane	<0.25	50	43	86	70-130	
1,1-Dichloroethane	<0.11	50	47	94	70-130	
1,1-Dichloroethene	<0.20	50	45	90	74-127	
1,1-Dichloropropene	<0.10	50	49	98	70-130	
1,2,3-Trichlorobenzene	<0.25	50	46	92	70-130	
1,2,3-Trichloropropane	<0.21	50	43	86	70-130	
1,2,4-Trichlorobenzene	<0.17	50	47	94	70-130	
1,2,4-Trimethylbenzene	<0.14	50	48	96	70-130	
1,2-Dibromo-3-chloropropane	<0.19	50	44	88	70-130	
1,2-Dibromoethane	<0.18	50	44	88	70-130	
1,2-Dichlorobenzene	<0.14	50	45	90	70-130	
1,2-Dichloroethane	<0.18	50	49	98	70-130	
1,2-Dichloropropane	<0.15	50	44	88	70-130	
1,3,5-Trimethylbenzene	<0.17	50	49	98	70-130	
1,3-Dichlorobenzene	<0.17	50	46	92	70-130	
1,3-Dichloropropane	<0.19	50	45	90	70-130	
1,4-Dichlorobenzene	<0.17	50	46	92	70-130	
2,2-Dichloropropane	<0.21	50	53	106	70-130	
2-Butanone	<0.28	100	74	74	70-130	
2-Chlorotoluene	<0.19	50	48	96	70-130	
2-Hexanone	<0.32	100	76	76	70-130	
4-Chlorotoluene	<0.13	50	47	94	70-130	
4-Methyl-2-pentanone	<0.26	100	81	81	70-130	
Acetone	<0.35	100	96	96	70-130	
Acrolein	<6.6	100	95	95	70-130	
Acrylonitrile	<0.49	100	79	79	70-130	
Benzene	<0.16	50	46	92	72-122	
Bromobenzene	<0.21	50	44	88	70-130	
Bromochloromethane	<0.20	50	44	88	70-130	
Bromodichloromethane	<0.25	50	46	92	70-130	
Bromoform	<0.17	50	41	82	70-130	

		Re	oort Date:		06/0	//07 17:46
Work Order #: 12050		F	roject ID:		Task C	Order 0085
Lab Batch #: 36120	Sample: 302764	BKS	Matrix: V	V		
Reporting Units: ug/L	Batch #: 1	BLANK	/BLANK SPI	KE REC	OVERY SI	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes			[C]	[D]		
Bromomethane	<0.25	50	46	92	70-130	
Carbon disulfide	<0.26	50	48	96	70-130	
Carbon Tetrachloride	<0.33	50	51	102	70-130	
Chlorobenzene	<0.15	50	46	92	74-122	
Chloroethane	<0.26	50	48	96	70-130	
Chloroform	<0.16	50	48	96	70-130	
Chloromethane	<0.25	50	40	80	70-130	
cis-1,2-Dichloroethene	<0.21	50	42	84	70-130	
cis-1,3-Dichloropropene	<0.10	50	42	84	70-130	
Dibromochloromethane	<0.15	50	47	94	70-130	
Dibromomethane	<0.24	50	45	90	70-130	
Dichlorodifluoromethane	<0.22	50	40	80	70-130	
Ethylbenzene	<0.19	50	49	98	70-130	
Hexachlorobutadiene	<0.13	50	49	98	70-130	
Isopropylbenzene	<0.15	50	44	88	70-130	
Methylene Chloride	<0.42	50	92	184	70-130	Z
Methyl tert-Butyl Ether	<0.11	100	86	86	70-130	
m-Xylene/p-Xylene	<0.51	100	96	96	70-130	
Naphthalene	<0.22	50	41	82	70-130	
n-Butylbenzene	<0.17	50	48	96	70-130	
n-Propylbenzene	<0.18	50	48	96	70-130	
o-Xylene	<0.20	50	49	98	70-130	
Sec-Butylbenzene	<0.21	50	48	96	70-130	
Styrene	<0.18	50	50	100	70-130	
tert-Butylbenzene	<0.18	50	44	88	70-130	
Tetrachloroethene	<0.16	50	48	96	70-130	
Toluene	<0.14	50	48	96	77-121	
trans-1,2-Dichloroethene	<0.21	50	49	98	70-130	
trans-1,3-Dichloropropene	<0.11	50	47	94	70-130	-
Trichloroethene	<0.19	50	47	94	66-119	
Trichlorofluoromethane	<0.53	50	48	96	70-130	
Vinyl acetate	<1.3	50	40	80	70-130	
Vinyl chloride	<0.19	50	44	88	70-130	

		Ren	ort Date :		06/0	7/07 17:46
Work Order #: 12050		P	roject D:		Task C	order 0085
Lab Batch #: 36132	Sample: 302767 I	BKS	Matrix: W	1		
Reporting Units: ug/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	DVERY ST	UDY
VOCs by SW8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
1 1 2 Tetrachloroethane	<0.24	50	47	94	70-130	
1.1.1 Trichloraethane	<0.16	50	51	102	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	41	82	70-130	
1,1,2,2-1 etrachioioethane	<0.25	50	43	86	70-130	
1.1.2. Thentoroethane	<0.11	50	47	94	70-130	
L 1-Dichloroethene	<0.20	50	46	92	74-127	
1 1-Dichleropropene	<0.10	50	49	98	70-130	
1.2.3.Trichlorohenzene	<0.25	50	47	94	70-130	
1.2.3-Trichloropropage	<0.21	50	44	88	70-130	
1.2.,5 Trichlorobenzene	<0.17	50	48	96	70-130	
1.2.4.Trimethylbenzene	<0.14	50	48	96	70-130	
1.2-Dibromo-3-chloropropane	<0.19	50	42	84	70-130	
1.2-Dibromoethane	<0.18	50	43	86	70-130	
1 2-Dichlorobenzene	<0.14	50	45	90	70-130	
1 2-Dichloroethane	<0.18	50	52	104	70-130	
1.2-Dichloropropage	<0.15	50	45	90	70-130	
1.3.5-Trimethylbenzene	<0.17	50	50	100	70-130	
1,3-Dichlorobenzene	<0.17	50	46	92	70-130	
1,3-Dichloropropane	<0.19	50	46	92	70-130	
1,4-Dichlorobenzene	<0.17	50	46	92	70-130	ł
2,2-Dichloropropane	<0.21	50	52	104	70-130	
2-Butanone	< 0.28	100	76	76	70-130	
2-Chlorotoluene	<0.19	50	47	94	70-130	
2-Hexanone	<0.32	100	78	78	70-130	
4-Chlorotoluene	<0.13	50	47	94	70-130	
4-Methyl-2-pentanone	<0.26	100	82	82	70-130	
Acetone	<0.35	100	93	93	70-130	
Acrolein	<6.6	100	93	93	70-130	
Acrylonitrile	<0.49	100	80	80	70-130	
Benzene	<0.16	50	46	92	72-122	
Bromobenzene	<0.21	50	45	90	70-130	
Bromochloromethane	<0.20	50	43	86	70-130	
Bromodichloromethane	<0.25	50	47	94	70-130	
Bromoform	<0.17	50	41	82	70-130	

		Rep	ort Date :		06/0	7/07 17:46
Work Order #: 12050		P	roject ID:		Task C	order 0085
Lab Batch #: 36132 Sa	ample: 302767	BKS	Matrix: W	7		
Reporting Units: ug/L Ba	itch #: 1	BLANK /	BLANK SPI	KE RECO	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes			[C]	[D]		
Bromomethane	<0.25	50	47	94	70-130	
Carbon disulfide	<0.26	50	48	96	70-130	
Carbon Tetrachloride	<0.33	50	51	102	70-130	
Chlorobenzene	<0.15	50	46	92	74-122	
Chloroethane	<0.26	50	46	92	70-130	
Chloroform	<0.16	50	48	96	70-130	
Chloromethane	<0.25	50	42	84	70-130	
cis-1,2-Dichloroethene	<0.21	50	42	84	70-130	
cis-1,3-Dichloropropene	<0.10	50	43	86	70-130	
Dibromochloromethane	<0.15	50	47	94	70-130	
Dibromomethane	<0.24	50	46	92	70-130	
Dichlorodifluoromethane	<0.22	50	49	98	70-130	
Ethylbenzene	<0.19	50	49	98	70-130	
Hexachlorobutadiene	<0.13	50	49	98	70-130	
Isopropylbenzene	<0.15	50	44	88	70-130	
Methylene Chloride	<0.42	50	92	184	70-130	Z
Methyl tert-Butyl Ether	<0.11	100	87	87	70-130	
m-Xylene/p-Xylene	<0.51	100	96	96	70-130	
Naphthalene	<0.22	50	42	84	70-130	
n-Butylbenzene	<0.17	50	48	96	70-130	
n-Propylbenzene	<0.18	50	48	96	70-130	
o-Xylene	<0.20	50	50	100	70-130	
Sec-Butylbenzene	<0.21	50	48	96	70-130	
Styrene	<0.18	50	50	100	70-130	
tert-Butylbenzene	<0.18	50	44	88	70-130	
Tetrachloroethene	<0.16	50	49	98	70-130	
Toluene	<0.14	50	48	96	77-121	
trans-1,2-Dichloroethene	<0.21	50	49	98	70-130	
trans-1,3-Dichloropropene	<0.11	50	48	96	70-130	
Trichloroethene	<0.19	50	47	94	66-119	
Trichlorofluoromethane	<0.53	50	50	100	70-130	
Vinyl acetate	<1.3	50	40	80	70-130	
Vinyl chloride	<0.19	50	47	94	70-130	

Project Name: Hunter Perimeter Sampling

		Rep	ort Date :		06/0	7/07 17:46
Work Order #: 12050		P	roject ID:		Task C	order 0085
Lab Batch #: 36193	Sample: 302818	BKS	Matrix: W	1		
Reporting Units: ug/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	[44]	(~~)	[C]	[D]	, ure	
1,1,1,2-Tetrachloroethane	<0.24	50	49	98	70-130	
1,1,1-Trichloroethane	<0.16	50	54	108	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	44	88	70-130	
1,1,2-Trichloroethane	<0.25	50	46	92	70-130	
1,1-Dichloroethane	<0.11	50	49	98	70-130	
1,1-Dichloroethene	<0.20	50	48	96	74-127	
1,1-Dichloropropene	<0.10	50	51	102	70-130	
1,2,3-Trichlorobenzene	<0.25	50	50	100	70-130	
1,2,3-Trichloropropane	<0.21	50	37	74	70-130	
1,2,4-Trichlorobenzene	<0.17	50	51	102	70-130	
1,2,4-Trimethylbenzene	<0.14	50	50	100	70-130	
1,2-Dibromo-3-chloropropane	<0.19	50	48	96	70-130	
1,2-Dibromoethane	<0.18	50	47	94	70-130	
1,2-Dichlorobenzene	<0.14	50	48	96	70-130	
1,2-Dichloroethane	<0.18	50	56	112	70-130	
1,2-Dichloropropane	<0.15	50	48	96	70-130	
1,3,5-Trimethylbenzene	<0.17	50	51	102	70-130	
1,3-Dichlorobenzene	<0.17	50	48	96	70-130	
1,3-Dichloropropane	<0.19	50	48	96	70-130	
1,4-Dichlorobenzene	<0.17	50	48	96	70-130	
2,2-Dichloropropane	<0.21	50	57	114	70-130	
2-Butanone	<0.28	100	81	81	70-130	
2-Chlorotoluene	<0.19	50	48	96	70-130	
2-Нехалопе	<0.32	100	84	84	70-130	
4-Chlorotoluene	<0.13	50	49	98	70-130	
4-Isopropyltoluene	<0.13	50	50	100	70-130	
4-Methyl-2-pentanone	<0.26	100	92	92	70-130	
Acetone	< 0.35	100	100	100	70-130	
Acrolein	<6.6	100	120	120	70-130	
Acrylonitrile	<0.49	100	92	92	70-130	
Benzene	<0.16	50	49	98	72-122	
Bromobenzene	<0.21	50	46	92	70-130	
Bromochloromethane	<0.20	50	48	96	70-130	
Bromodichloromethane	<0.25	50	51	102	70-130	

ਸੁਸ਼ੁਸ਼ੁ

		Report Date: Project ID:			06/07/07 17:46 Task Order 0085		
Work Order #: 12050							
Lab Batch #: 36193	Sample: 302818 BKS Matrix: W						
Reporting Units: ug/L	Batch #: 1	Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY					
VOCs by SW8260B	Blank Result	Spike Added	Blank Spike Besult	Blank Spike	Control Limits	Flags	
Analytes		נמן	[C]	-70K [D]	70 K		
Bromoform	<0.17	50	43	86	70-130		
Bromomethane	<0.25	50	49	98	70-130		
Carbon disulfide	<0.26	50	49	98	70-130		
Carbon Tetrachloride	< 0.33	50	53	106	70-130		
Chlorobenzene	<0.15	50	49	98	74-122		
Chloroethane	<0.26	50	50	100	70-130		
Chloroform	<0.16	50	51	102	70-130		
Chloromethane	<0.25	50	43	86	70-130		
cis-1,2-Dichloroethene	<0.21	50	44	88	70-130		
cis-1,3-Dichloropropene	<0.10	50	47	94	70-130		
Dibromochloromethane	<0.15	50	51	102	70-130		
Dibromomethane	<0.24	50	50	100	70-130		
Dichlorodifluoromethane	<0.22	50	49	98	70-130		
Ethylbenzene	<0.19	50	51	102	70-130		
Hexachlorobutadiene	<0.13	50	52	104	70-130		
Isopropylbenzene	<0.15	50	45	90	70-130		
Methylene Chloride	<0.42	50	95	190	70-130	Z	
Methyl tert-Butyl Ether	<0.11	100	95	95	70-130		
m-Xylene/p-Xylene	<0.51	100	100	100	70-130		
Naphthalene	<0.22	50	46	92	70-130		
n-Butylbenzene	<0.17	50	50	100	70-130		
n-Propylbenzene	<0.18	50	49	98	70-130		
o-Xylene	<0.20	50	52	104	70-130		
Sec-Butylbenzene	<0.21	50	50	100	70-130		
Styrene	<0.18	50	53	106	70-130		
tert-Butylbenzene	<0.18	50	45	90	70-130		
Tetrachloroethene	<0.16	50	50	100	70-130		
Toluene	<0.14	50	49	98	77-121		
trans-1,2-Dichloroethene	<0.21	50	49	98	70-130		
trans-1,3-Dichloropropene	<0.11	50	50	100	70-130		
Trichloroethene	<0.19	50	49	98	66-119		
Trichlorofluoromethane	< 0.53	50	54	108	70-130		
Vinyl acetate	<1.3	50	44	88	70-130		
Vinyl chloride	<0.19	50	47	94	70-130		
Work Order #: 12050 Lab Batch ID: 36120

Form 3 - MS / MSD Recoveries

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Project ID: Task Order 0085

QC- Sample ID: 12050-004 MS

MATDIV SDIVE (MATDIV SDIKE DUDI ICATE BECOVERV STUDV Matrix: W Batch #:

-

Reporting Units: ug/L		E	MATRIX SPIR	KE/MAT	RIX SPI	KE DUPLICA'	te reco	VERY S	TUDY		
VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	A]	Added [B]	<u>5</u>	10]	Added [E]	Kesult [F]	<u>פ</u> אָ	%	X•%	%KYD	
1,1,1,2-Tetrachloroethane	<0.24	50	47	94	50	49	98	4	70-130	20	
1,1,1-Trichloroethane	<0.16	50	50	100	50	51	102	2	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	44	88	50	49	98	11	70-130	20	
1,1,2-Trichloroethane	<0.25	50	45	06	50	48	96	9	70-130	20	
1,1-Dichloroethane	<0.11	50	47	94	50	48	96	2	70-130	20	
1, 1-Dichloroethene	<0.20	50	46	92	50	47	94	2	70-135	20	
1,1-Dichloropropene	<0.10	50	48	96	50	52	104	8	70-130	20	
1,2,3-Trichlorobenzene	<0.25	50	50	100	50	53	106	6	70-130	20	
1,2,3-Trichloropropane	<0.21	50	47	94	50	53	106	12	70-130	20	
1,2,4-Trichlorobenzene	<0.17	50	50	001	50	53	106	6	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	49	86	50	51	102	4	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	20	48	96	50	53	106	10	70-130	20	
1,2-Dibromoethane	<0.18	50	46	92	50	51	102	10	70-130	20	
1,2-Dichlorobenzene	<0.14	50	47	94	50	49	86	4	70-130	20	
1,2-Dichloroethane	<0.18	50	49	98	50	54	108	10	70-130	20	
1,2-Dichloropropane	<0.15	50	46	92	50	48	96	4	70-130	20	
1,3,5-Trimethylbenzene	<0.17	50	49	86	50	52	104	6	70-130	20	
1,3-Dichlorobenzene	<0.17	50	48	96	50	50	100	4	70-130	20	
1,3-Dichloropropane	<0.19	50	47	94	50	51	102	8	70-130	20	
1,4-Dichlorobenzene	<0.17	50	46	92	50	50	100	œ	70-130	20	
2,2-Dichloropropane	<0.21	50	53	901	50	54	108	2	70-130	20	
2-Butanone	<0.28	100	85	85	100	86	86	14	70-130	20	
2-Cplorotoluene	<0.19	50	48	96	50	49	98	2	70-130	20	
2-45kanone	<0.32	100	84	84	100	96	96	13	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

 $\mathbf{F} = \mathbf{RPD} \ \mathbf{exceeded}$ the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46 Project ID: Task Order 0085

Work Order #: 12050

Lab Batch ID: 36120 Reporting Units: ug/L

QC-Sample ID: 12050-004 MS Batch #:

l Matrix: W

VOCs by SW8260B	Parent Sample Result	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sample Decult (E)	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	[B]	2			La mean	เอ	0	10/	WLD.	
4-Chlorotoluene	<0,13	50	48	96	50	50	100	4	70-130	20	
4-Isopropyltoluene	<0.13	50	49	98	50	51	102	4	70-130	20	
4-Methyl-2-pentanone	<0.26	100	89	68	100	100	100	12	70-130	20	
Actione	<0.35	100	100	100	001	110	110	10	70-130	20	
Acrolein	<6.6	100	110	011	100	110	110	0	70-130	20	
Acrylonitrile	<0.49	100	87	87	100	96	96	0	70-130	20	
Benzene	<0.16	50	46	92	50	49	86	6	72-128	20	
Bromobenzene	<0.21	50	46	92	50	49	98	9	70-130	20	
Bromochloromethane	<0.20	50	44	88	50	48	96	6	70-130	20	
Bromodichloromethane	<0.25	50	48	96	50	50	100	4	70-130	20	
Вготоботт	<0.17	50	44	88	50	49	98	=	70-130	20	
Bromomethane	<0.25	50	42	84	50	42	84	0	70-130	20	
Carbon disulfide	<0.26	50	46	92	50	47	94	5	70-130	20	
Carbon Tetrachloride	<0.33	50	49	98	50	51	102	4	70-130	20	
Chlorobenzene	<0.15	50	47	94	50	49	86	4	77-121	20	
Chloroethane	<0.26	50	47	94	50	48	96	2	70-130	20	
Chloroform	<0.16	50	46	92	50	48	96	4	70-130	20	
Chloromethane	<0.25	50	40	80	50	41	82	5	70-130	20	
cis-1,2-Dichloroethene	<0.21	50	43	86	50	46	92	7	70-130	20	
cis-t,3-Dichloropropene	<0.10	50	45	90	50	46	92	2	70-130	20	
Dibromochloromethane	<0.15	50	49	98	50	52	104	9	70-130	20	
Dibromomethane	<0.24	50	48	96	50	52	104	~	70-130	20	
Dicalorodifluoromethane	<0.22	50	39	78	50	40	80	٣	70-130	20	
Etation States	<0.19	50	49	86	50	51	102	4	70-130	20	
~											

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Project ID: Task Order 0085

Matrix: W -Batch #:

36120	ug/L
Lab Batch ID:	Reporting Units:

Work Order #: 12050

QC- Sample ID: 12050-004 MS

	Parent		iniked Samol	Spiked		Duplicate	Spiked		Control	Control	
VUCS BY SW826UB	Sample Reult	Spike	Result	Sample %D	Spike 3	piked Sample Result [F]	Dup. %R	RPD %	Limits %R	Limits %RPD	Flag
Analytes	[V]	[B]	2	ē	E		5		1		
Hexachlorobutadiene	<0.13	50	50	001	50	52	104	4	70-130	20	
Isopropylbenzene	<0.15	50	44	88	50	46	92	4	70-130	20	
Methylene Chloride	<0.42	50	06	180	50	48	96	61	70-130	20	ZF
Methyl tert-Butyl Ether	<0.11	100	92	92	100	100	100	8	70-130	20	
m-Xylene/p-Xylene	<0.51	100	96	96	100	100	100	4	10-130	20	
Naphthalene	<0.22	50	48	96	50	52	104	8	70-130	20	-
n-Butylbenzene	<0.17	50	48	96	50	50	100	4	70-130	20	
n-Propylbenzene	<0.18	50	48	96	50	50	100	4	70-130	20	-
o-Xylene	<0.20	50	50	100	50	53	106	6	70-130	20	
Sec-Butylbenzene	<0.21	50	48	96	50	51	102	6	70-130	20	
Styrene	<0.18	50	51	102	50	54	108	6	70-130	20	
tert-Butylbenzene	<0.18	50	44	88	50	46	92	4	70-130	20	
Tetrachloroethene	<0.16	50	49	86	50	51	102	4	70-130	20	
Foluene	<0.14	50	48	96	50	50	100	4	76-124	20	
trans-1,2-Dichloroethene	<0.21	50	48	96	50	49	98	2	70-130	20	
trans-1,3-Dichloropropene	<0.11	50	49	86	50	53	106	8	70-130	20	ľ
Trichloroethene	<0.19	50	47	94	50	49	86	4	68-125	20	
Trichlorofluoromethane	<0.53	50	46	92	50	48	96	4	70-130	20	
Vinyl acetate	<1.3	50	42	84	50	44	88	5	70-130	20	
Vinyl chloride	<0.19	50	44	88	50	44	88	0	70-130	20	

NN93

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery $[G] = 100^{\circ}(F-A)/E$

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Project ID: Task Order 0085

Batch #: QC- Sample ID: 12050-009 MS

Work Order # : 12050 Lab Batch ID: 36132

VITTE SULVE DI TO THE DECOMPTON STITUT Matrix: W

_

Reporting Units: ug/L			MATRIX SPIF	KE / MAT	RIX SPI	KE DUPLICA'	re reco	VERY S	TUDY		T.
VOCs by SW8260B	Parent Sample Result	Spike Added	piked Sampl Result LCI	Spiked Sample %R	Spike Added	Duplicate piked Sampl Result (F)	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[4]	[B]	2	ā	E		<u>פ</u>	!			
1,1,1,2-Tetrachloroethane	<0.24	50	47	94	50	47	94	0	70-130	20	
1,1,1-Trichloroethane	<0.16	50	49	98	50	52	104	6	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	47	94	50	46	92	2	70-130	20	
1,1,2-Trichloroethane	<0.25	50	45	06	50	45	06	0	70-130	20	
1,1-Dichloroethane	<0.11	50	47	94	50	48	96	2	70-130	20	
1,1-Dichloroethene	<0.20	50	46	92	50	47	94	2	70-135	20	
1,1-Dichloropropene	<0.10	50	50	100	50	52	104	4	20-130	20	
1,2,3-Trichlorobenzene	<0.25	50	52	104	50	51	102	2	70-130	20	
1,2,3-Trichloropropane	<0.21	50	50	100	50	50	100	0	70-130	20	
1,2,4-Trichlorobenzene	<0,17	50	51	102	50	51	102	0	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	51	102	50	51	102	0	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	50	53	106	50	51	102	4	70-130	20	
1,2-Dibromoethane	<0,18	50	47	94	05	48	96	2	70-130	20	
1,2-Dichlorobenzene	<0,14	50	48	96	50	48	96	0	70-130	20	
1,2-Dichloroethane	<0.18	50	52	104	50	52	104	0	70-130	20	
1,2-Dichloropropane	<0.15	50	46	92	50	45	06	2	70-130	20	
1,3,5-Trimethylbenzene	<0.17	50	51	102	50	51	102	0	70-130	20	
1,3-Dichlorobenzene	<0.17	50	49	98	50	49	98	0	70-130	20	
1,3-Dichloropropane	<0.19	50	48	96	50	47	94	2	70-130	20	
I,4-Dichlorobenzene	<0.17	50	48	96	50	47	94	2	70-130	20	
2,2-Dichloropropane	<0.21	50	52	104	50	53	106	2	70-130	20	
2-Butanone	<0.28	100	68	68	100	06	60	1	70-130	20	
2-Cp. Jorotoluene	<0.19	50	49	98	50	49	98	0	70-130	20	
2-tien anone	<0.32	100	93	93	100	91	16	2	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

 $\mathbf{F} = \mathbf{RPD}$ exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46 Project ID: Task Order 0085

Work Order #: 12050

Lab Batch ID: 36132

QC- Sample ID: 12050-009 MS Batch #:

l Matrix: W

V. D. D. Target from the spine base of Sample Sample Spine base of Sample Spine base of Sample Spine base of Sample Sample Spine base of Sample Spine Sample Spine Sample Spine Sample Sampl	Analytes 4-Chlorotoluene			biked Sampl	Spiked		Duplicate	opikeu		COLLEGE	CUBLIC 1	
Analytes Analytes Ial [B] [D] [B] [D] [C] <	Analytes 4-Chlorotoluene	Sample Result	Spike Added	Result [C]	Sample %R	Spike Added	piked Sampl Result [F]	Dup.	RPD %	Limits %R	Limits %RPD	Flag
4-Chicorololence (-)1	4-Chlorotoluene	N N	8		a	<u></u>		2				
4-lopporylatione		<0.13	50	49	98	50	49	86	0	0£1-02	20	
••••••••••••••••••••••••••••••••••••	4-lsopropyltoluene	<0.13	50	50	100	50	51	102	2	0€1-02	20	
Acted (-1)	4-Methyl-2-pentanone	<0.26	100	96	96	100	97	67	-	001-02	20	
Actrolith Concluit	Acetone	<0.35	8	120	120	100	110	110	6	70-130	20	
Acylonitrile $(-0,4)$ $(0,0)$ $(0,1)$	Acrolein	<6.6	100	68	89	100	16	16	2	0£1-02	20	
Bentzene < 0.16 < 0.0 < 0.16 < 0.0 < 0.12 < 0.0 < 0.12 < 0.0 < 0.12 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0	Acrylonitrile	<0.49	100	16	61	100	93	93	2	20-130	20	
Bromobenzene	Benzene	<0.16	50	48	96	50	48	96	0	72-128	20	
Bronnechloremethane < 0.20 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 </td <td>Bromobenzene</td> <td><0.21</td> <td>50</td> <td>47</td> <td>94</td> <td>50</td> <td>47</td> <td>94</td> <td>0</td> <td>70-130</td> <td>20</td> <td></td>	Bromobenzene	<0.21	50	47	94	50	47	94	0	70-130	20	
Remodic < 0.25 < 0.0 < 48 < 96 < 0 < 9 < 2 < 0.130 < 20 < 0.013 Remodic < 0.017 < 0.01 < 0.017 < 0.01 < 0.017 < 0.01 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 <td< td=""><td>Bromochloromethane</td><td><0.20</td><td>50</td><td>46</td><td>92</td><td>50</td><td>45</td><td>60</td><td>2</td><td>20-130</td><td>20</td><td></td></td<>	Bromochloromethane	<0.20	50	46	92	50	45	60	2	20-130	20	
Bromothum < 0.17 50 47 94 50 4 $70-130$ 20 Bromouthane < 0.25 50 42 84 50 44 $70-130$ 20 Bromouthane < 0.25 50 42 84 50 47 88 5 $70-130$ 20 Carbon disuffic < 0.25 50 46 52 50 47 94 2 $70-130$ 20 Carbon Termethoride < 0.33 50 46 52 50 47 94 2 $70-130$ 20 Chlorobenzace < 0.16 50 46 50 47 94 2 $70-130$ 20 Chlorobenzace < 0.16 50 46 50 47 94 2 $70-130$ 20 Chlorobenzace < 0.16 50 46 50 47 94 2 $70-130$	Bromodichloromethane	<0.25	50	48	96	50	49	98	2	70-130	20	
Brommethane < 0.25 50 42 84 50 44 88 5 $70-130$ 20 Carbon disulfide < 0.26 50 46 92 50 47 94 2 $70-130$ 20 Carbon Terrehloride < 0.26 50 46 92 50 47 94 2 $70-130$ 20 Carbon Terrehloride < 0.15 50 46 92 50 47 94 2 $70-130$ 20 Chloroberzene < 0.15 50 46 92 50 47 94 2 $70-130$ 20 20 Chloroberzene < 0.15 50 46 92 50 47 94 2 $70-130$ 20 20 Chloroberzene < 0.15 50 44 88 50 47 94 2 $70-130$ 20 20 Chloroberzene < 0.12 50 44 88 50 44 88 0 70 $70-130$ 20 20 Chloroberzene < 0.12 50 44 88 50 44 88 0 70 $70-130$ 20 20 Chloroberzene < 0.12 50 44 88 50 44 88 0 70 $70-130$ 20 20 Chloroberzene < 0.12 50 44 88 50 44 88 70 $70-130$ 20 20 20 20 20 20 <td>Bromoform</td> <td><0.17</td> <td>50</td> <td>47</td> <td>94</td> <td>50</td> <td>45</td> <td>06</td> <td>4</td> <td>061-07</td> <td>20</td> <td></td>	Bromoform	<0.17	50	47	94	50	45	06	4	061-07	20	
Carbon disulfide < 0.26 < 0.026 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.012 < 0.02 < 0.012 < 0.02 < 0.012 < 0.02 < 0.012 < 0.02 < 0.012 < 0.02 < 0.012 < 0.02 < 0.012 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.0200 < 0.020 < 0.0200	Bromomethane	<0.25	50	42	84	50	44	88	5	70-130	20	
Carbon Tetrachloride < 0.33 50 50 50 100 51 102 2 $71-130$ 20 Chlorobenzene < 0.15 50 46 92 50 47 94 2 $77-121$ 20 Chlorobenzene < 0.26 50 48 96 50 47 94 2 $77-130$ 20 Chlorobenzene < 0.26 50 48 96 50 47 94 2 $77-130$ 20 Chlorobenzene < 0.26 50 48 96 50 47 94 2 $77-130$ 20 Chlorobenzene < 0.26 50 44 88 50 47 94 2 $70-130$ 20 Chlorobente < -0.25 50 44 88 50 44 88 50 70 20 20 20 Chloropente < -0.25 50 44 88 50 44 88 50 $70-130$ 20 20 Dibromothane < -0.24 50 44 88 50 44 88 50 $70-130$ 20 20 Dibromothane < -0.24 50 44 88 50 44 88 00 $70-130$ 20 20 Dibromothane < -0.24 50 44 88 50 44 80 20 $70-130$ 20 20 Dibromothane < -0.24 50 49 98 50 70	Carbon disulfide	<0.26	50	46	92	50	47	94	2	70-130	20	
Chiotobenzene < 0.15 50 46 92 50 47 94 2 $77\cdot121$ 20 Chiotobenzene < 0.26 50 48 96 50 48 96 0 $70\cdot130$ 20 Chiotopentane < 0.16 50 48 96 50 47 94 2 $77\cdot13$ 20 Chiotopentane < 0.16 50 44 88 50 47 94 2 $70\cdot130$ 20 Chiotomethane < 0.22 50 44 88 50 44 88 50 44 88 0 $70\cdot130$ 20 Chiotomethane < 0.15 50 44 88 50 44 88 50 44 88 0 $70\cdot130$ 20 Dibromothane < 0.15 50 44 88 50 44 88 0 $70\cdot130$ 20 20 Dibromothane < 0.15 50 44 88 50 44 88 0 $70\cdot130$ 20 20 Dibromothane < 0.15 50 44 88 50 44 88 0 $70\cdot130$ 20 20 Dibromothane < 0.12 50 44 98 50 44 98 0 $70\cdot130$ 20 20 Dibromothane < 0.12 50 44 98 50 44 98 0 $70\cdot130$ 20 20 20 Dibromothane < 0.22 </td <td>Carbon Tetrachloride</td> <td><0.33</td> <td>50</td> <td>50</td> <td>100</td> <td>50</td> <td>51</td> <td>102</td> <td>2</td> <td>70-130</td> <td>20</td> <td></td>	Carbon Tetrachloride	<0.33	50	50	100	50	51	102	2	70-130	20	
Chloroethane < 0.26 < 50 < 48 96 < 96 < 0 $< 70-130$ < 20 < 20 Chloroform $< < 0.16$ < 50 < 46 < 92 < 50 < 47 < 94 < 2 $< 70-130$ < 20 < 20 Chloronethane $< < 0.25$ < 50 < 43 < 86 < 50 < 43 < 86 < 0 $< 70-130$ < 20 < 20 Chloronethane $< < 0.21$ < 50 < 44 < 88 < 50 < 44 < 88 < 0 $< 70-130$ < 20 < 20 Cis-1,2-Dichloroptopene $< < 0.10$ < 50 < 44 < 88 < 50 < 44 < 88 < 50 < 24 < 20 $< 20-130$ < 20 < 20 Dibromochloronethane $< < 0.10$ < 50 < 44 < 88 < 50 < 44 < 88 < 50 < 44 < 88 < 20 $< 70-130$ < 20 < 20 Dibromochloronethane $< < 0.15$ < 50 < 44 < 88 < 50 < 44 < 98 < 0 $< 70-130$ < 20 < 20 Dibromochloronethane $< < 0.15$ < 50 < 49 < 98 < 0 $< 70-130$ < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 <th< td=""><td>Chlorobenzene</td><td><0.15</td><td>50</td><td>46</td><td>92</td><td>50</td><td>47</td><td>94</td><td>2</td><td>77-121</td><td>20</td><td></td></th<>	Chlorobenzene	<0.15	50	46	92	50	47	94	2	77-121	20	
Chloroform < 0.16 50 46 92 50 47 94 2 $70-130$ 20 Chloromethane < 0.25 50 43 86 50 43 86 0 $70-130$ 20 20 Chloromethane < 0.21 50 44 88 50 44 88 0 $70-130$ 20 20 cis-1,2-Dichloropene < 0.21 50 44 88 50 44 88 0 $70-130$ 20 20 Cis-1,3-Dichloropene < 0.16 50 44 88 50 44 88 0 $70-130$ 20 20 Dibromochloromethane < 0.15 50 44 88 50 44 98 0 $70-130$ 20 20 Dibromochloromethane < 0.15 50 49 98 50 49 98 0 $70-130$ 20 20 Dischloroffluoromethane < 0.22 50 49 98 50 49 96 2 $70-130$ 20 20 Dischloroffluoromethane < 0.22 50 49 98 0 $70-130$ 20	Chloroethane	<0.26	50	48	96	50	48	96	0	20-130	20	
Chloromethane < 0.25 50 43 86 00 $70-130$ 20 20 cis-1,2-Dichloroethene < 0.21 50 44 88 50 44 88 0 $70-130$ 20 20 cis-1,3-Dichloroethene < 0.10 50 44 88 50 44 88 0 $70-130$ 20 20 cis-1,3-Dichloroptopene < 0.15 50 44 88 50 44 88 0 $70-130$ 20 20 Dibromochloromethane < 0.15 50 49 98 50 49 98 0 $70-130$ 20 20 Dibromomethane < 0.24 50 49 98 50 49 98 0 $70-130$ 20 20 Dichlorofifluoromethane < 0.22 50 47 94 50 48 96 2 $70-130$ 20 20 Dichlorofifluoromethane < 0.19 50 49 98 0 $70-130$ 20 20 20	Chloroform	<0.16	50	46	92	50	47	94	2	70-130	20	
cis-1,2-Dichlorocthane < 0.21 50 44 88 50 44 88 0 $70-130$ 20 20 cis-1,3-Dichloropropene < 0.10 50 44 88 50 45 90 2 $70-130$ 20 20 Dibromochloromethane < 0.15 50 49 98 50 49 98 0 $70-130$ 20 20 Dibromochloromethane < 0.22 50 49 98 50 49 98 0 $70-130$ 20 Dibromochlaromethane < 0.22 50 47 94 50 48 96 2 $70-130$ 20 Dibromochlaromethane < 0.19 50 49 98 50 49 96 2 $70-130$ 20 Disbloromethane < 0.19 50 49 98 50 49 96 2 $70-130$ 20 Disbloromethane < 0.19 50 49 98 0 $70-130$ 20 20	Chloromethane	<0.25	50	43	86	50	43	86	0	70-130	20	
cis-1,3-Dichloropropene<0 $(10$ (20) (10) (20) <	cis-1,2-Dichloroethene	<0.21	50	44	88	50	44	88	0	70-130	20	
	cis-1,3-Dichloropropene	<0.10	50	44	88	50	45	06	2	70-130	20	
Dibromomethane <0.24 50 49 98 50 49 98 0 70-130 20 Dichlorodifluoromethane <0.22	Dibromochloromethane	<0.15	50	49	98	50	49	86	0	70-130	20	
Dicipilorodifluoromethane <0.22 50 47 94 50 48 96 2 70-130 20 Eterstbenzene <0.19	Dibromomethane	<0.24	50	49	98	50	49	86	0	70-130	20	
Etherbenzene <0.19 50 49 98 50 49 98 0 70-130 20	Dichlorodifluoromethane	<0.22	50	47	94	50	48	96	2	70-130	20	
	Ethelpenzene	<0.19	50	49	86	50	49	98	0	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

F = RPD exceeded the laboratory control limits

Form 3 - MS / MSD Recoveries

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Project ID: Task Order 0085

Work Order #: 12050

Lab Batch ID: 36132 Reporting Units: ug/L

QC- Sample ID: 12050-009 MS Batch #:

l Matrix: W

VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		7 % []	Added [E]	Result [F]	5. 10	%	%К	%RPD	
Hexachlorobutadiene	<0.13	50	51	102	50	51	102	0	70-130	20	
lsopropylbenzene	<0.15	50	46	92	50	46	92	0	70-130	20	
Methylene Chloride	<0.42	50	46	92	50	47	94	2	70-130	20	
Methyl tert-Butyl Ether	<0.11	100	67	26	100	56	56	2	70-130	20	
m-Xylene/p-Xylene	<0.51	100	96	96	100	86	86	2	70-130	20	
Naphthalene	<0.22	50	50	100	50	50	100	0	70-130	20	
n-Butylbenzene	<0.17	50	50	100	50	51	102	2	70-130	20	
n-Propylbenzene	<0.18	50	50	100	50	50	100	0	70-130	20	
o-Xylene	<0.20	50	51	102	50	51	102	0	70-130	20	
Sec-Butylbenzene	<0.21	50	50	100	50	50	001	0	70-130	20	
Styrene	<0.18	50	51	102	50	15	102	0	70-130	20	
tert-Butylbenzene	<0.18	50	46	92	50	46	92	0	70-130	20	
Tetrachloroethene	<0.16	50	54	108	50	27	114	5	70-130	20	
Toluene	<0.14	50	48	96	50	48	96	0	76-124	20	
trans-1,2-Dichloroethene	<0.21	50	47	94	50	49	86	4	70-130	20	
trans-1, 3-Dichloropropene	<0.11	50	50	100	50	48	96	4	70-130	20	
Trichloroethene	61.0>	50	48	96	50	49	86	2	68-125	20	1
Trichlorofluoromethane	<0.53	50	48	96	50	50	100	4	0£1-02	20	
Vinyl acetate	<1.3	50	42	84	50	43	86	2	70-130	20	
Vinyl chloride	<0.19	50	46	92	50	46	92	0	70-130	20	

<u>RR</u>GF

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(D-G)/(D+G)F = RPD exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery $\{G\} = 100^{*}(F-A)/E$

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Project ID: Task Order 0085

Batch #: QC- Sample ID: 12050-025 MS

Work Order #: 12050 Lab Batch ID: 36193

SPIKE DUPI ICATE RECOVERV STUDY Matrix: W

Reporting Units: ug/L		F	MATRIX SPIK	E/MAT	RIX SPII	KE DUPLICA	TE RECO	VERY S	TUDY		
VOCs by SW8260B	Parent Sample Result	Spike Added	piked Sampl Result ICI	Spiked Sample %R	Spike Added	Duplicate piked Sampl Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[4]	[B]		[0]	E		[0]				
1,1,1,2-Tetrachloroethane	<0.24	50	48	96	50	52	104	8	70-130	20	
1,1,1-Trichloroethane	<0.16	50	52	104	50	57	114	6	70-130	20	
1,1,2,2-Tetrachioroethane	<0.18	50	48	96	50	51	102	6	70-130	20	
1,1,2-Trichloroethane	<0.25	50	49	86	50	50	100	2	70-130	20	
1,1-Dichloroethane	<0.11	50	48	96	50	51	102	6	70-130	20	
1,1-Dichloroethene	<0.20	50	48	96	50	49	86	2	70-135	20	
1,1-Dichloropropene	<0.10	50	52	104	50	55	110	6	70-130	20	
1,2,3-Trichlorobenzene	<0.25	50	52	104	50	55	110	6	70-130	20	
1,2,3-Trichloropropane	<0.21	50	53	106	50	56	112	6	70-130	20	
1,2,4-Trichlorobenzene	<0.17	50	51	102	50	55	110	8	70-130	20	_
1,2,4-Trimethylbenzene	<0.14	50	49	98	50	54	108	10	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	50	52	104	50	59	118	13	70-130	20	
1,2-Dibromoethane	<0.18	50	51	102	50	54	108	6	70-130	20	
1,2-Dichlorobenzene	<0.14	50	48	96	50	51	102	6	70-130	20	
1,2-Dichloroethane	<0.18	50	55	110	50	57	114	4	70-130	20	
1,2-Dichloropropane	<0.15	50	46	92	50	49	98	6	70-130	20	
1,3,5-Trimethylbenzene	<0.17	50	50	100	50	54	108	8	70-130	20	
1,3-Dichlorobenzene	<0.17	50	48	96	50	51	102	6	70-130	20	
1,3-Dichleropropane	<0.19	50	50	100	50	53	106	6	70-130	20	
1,4-Dichlorobenzene	<0.17	50	48	96	50	51	102	6	70-130	20	
2,2-Dichloropropane	<0.21	50	54	108	50	57	114	5	70-130	20	
2-Butanone	<0.28	100	100	100	100	100	100	0	70-130	20	
2-Chlprotoluene	<0.19	50	48	96	50	52	104	80	70-130	20	
2-HExanone	<0.32	100	100	100	100	110	110	10	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G) $\mathbf{F} = \mathbf{RPD}$ exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Lab Batch ID: 36193

Reporting Units: ug/L

Form 3 - MS / MSD Recoveries

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Project ID: Task Order 0085

Batch #: 1 Matrix: W

QC-Sample ID: 12050-025 MS

WOC P. SW0260D	Parent		piked Sampl	Spiked		Duplicate	Spiked		Control	Control	
AUCS BY SW0200D	Sample Result	Spike Added	Result IC]	Sample %R	Spike Added	piked Sample Result [F]	Dup. %R	RPD %	Limits %R	Limits %RPD	Flag
Analytes		8		a	ī		5				
Hexachlorobutadiene	<0.13	50	50	100	50	55	011	10	70-130	20	
sopropylbenzene	<0.15	50	45	06	50	49	86	6	70-130	20	
Methylene Chloride	<0.42	50	48	96	50	53	106	10	20-130	20	
Methyl tert-Butyl Ether	<0.11	001	100	100	100	110	110	10	70-130	20	
n-Xylene/p-Xylene	<0.51	001	26	79	001	110	110	13	70-130	20	
Vaphthalene	<0.22	50	52	104	50	55	011	9	70-130	20	
1-Butylbenzene	<0.17	50	49	86	50	54	108	01	70-130	20	
1-Propylbenzene	<0,18	50	49	86	50	53	901	8	0€1-02	20	
o-Xylene	<0.20	50	51	102	50	56	112	6	70-130	20	
Sec-Butylbenzene	<0.21	50	49	86	50	53	106	8	70-130	20	
Styrenc	<0.18	50	51	102	50	56	112	6	70-130	20	
tert-Butylbenzene	<0.18	50	45	06	50	49	98	6	70-130	20	
Tetrachloroethene	<0.16	50	53	106	50	57	114	7	70-130	20	
Toluene	<0.14	50	48	96	50	53	106	10	76-124	20	
rans-1,2-Dichloroethene	<0.21	50	48	96	50	52	104	8	70-130	20	
rans-1, 3-Dichloropropene	<11.0>	50	50	001	50	55	110	10	70-130	20	
Trichloroethene	<0.19	50	48	96	50	52	104	8	68-125	20	
Trichlorofluoromethane	<0.53	50	50	100	50	52	104	4	70-130	20	
Vinyl acetate	<1.3	50	45	06	50	46	92	2	70-130	20	
Vinyl chloride	<0.19	50	45	06	50	48	96	9	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

<u>NN99</u>

Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

Sample Duplicate Recovery

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Lab Batch #: 36120			Project	ID: Task Or	der 0085
QC- Sample ID: 12037-008 MD	Batch #:	1	Matri	x: W	
Reporting Units: ug/L	SAMPLE	E/SAMPLE	DUPLICA	ATE RECO	VERY
VOCs by SW8260B Analyte	arent Sampl Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
1,1,1,2-Tetrachloroethane	<0.24	<0.24	NC	20	
1,1,1-Trichloroethane	<0.16	<0.16	NC	20	
1,1,2,2-Tetrachloroethane	<0.18	<0.18	NC	20	
},1,2-Trichloroethane	<0.25	<0.25	NC	20	
1,1-Dichloroethane	<0.11	<0.11	NC	20	
1,1-Dichloroethene	<0.20	<0.20	NC	20	
I,1-Dichloropropene	<0.10	<0.10	NC	20	
1,2,3-Trichlorobenzene	<0.25	<0.25	NC	20	
1,2,3-Trichloropropane	<0.21	<0.21	NC	20	
1,2,4-Trichlorobenzene	<0.17	<0.17	NC	20	
1,2,4-Trimethylbenzene	<0.14	<0.14	NC	20	
1,2-Dibromo-3-chloropropane	<0.19	<0.19	NC	20	
1,2-Dibromoethane	<0.18	<0.18	NC	20	
1,2-Dichlorobenzene	<0.14	<0.14	NC	20	
1,2-Dichloroethane	<0.18	<0.18	NC	20	
1,2-Dichloropropane	<0.15	<0.15	NC	20	
1,3,5-Trimethylbenzene	<0.17	<0.17	NC	20	
1,3-Dichlorobenzene	<0.17	<0.17	NC	20	
1,3-Dichloropropane	<0.19	<0.19	NC	20	
1,4-Dichlorobenzene	<0.17	<0.17	NC	20	
2,2-Dichloropropane	<0.21	<0.21	NC	20	
2-Butanone	<0.28	<0.28	NC	20	
2-Chlorotoluene	<0.19	<0.19	NC	20	
2-Нехапопе	<0.32	<0.32	NC	20	
4-Chlorotoluene	<0.13	<0.13	NC	20	
4-Isopropyltoluene	<0.13	<0.13	NC	20	
4-Methyl-2-pentanone	<0.26	<0.26	NC	20	
Acetone	<0.35	<0.35	NC	20	
Acrolein	<6.6	<6.6	NC	20	
Acrylonitrile	<0.49	<0.49	NC	20	
Benzene	<0.16	<0.16	NC	20	
Bromobenzene	<0.21	<0.21	NC	20	
Bromochloromethane	<0.20	<0.20	NC	20	
Bromodichloromethane	<0.25	<0.25	NC	20	
Bromoform	<0.17	<0.17	NC	20	

Spike Relative Difference RPD 200 * |(B-A)/(B+A)|All Results are based on MDL and validated for QC purposes. F = RPD exceeded the laboratory control limits

Page 1 of 2 NINH

Sample Duplicate Recovery

Project Name: Hunter Perimeter Sampling

Report Date: 06/07/07 17:46

Lab Batch #: 36120			Project	ID: Task Or	der 0085
QC- Sample ID: 12037-008 MD	Batch #:	1	Matri	x: W	
Reporting Units: ug/L	SAMPL	E / SAMPLE	DUPLICA	ATE RECO	VERY
VOCs by SW8260B Analyte		Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Bromomethane	<0.25	<0.25	NC	20	
Carbon disulfide	<0.26	<0.26	NC	20	
Carbon Tetrachloride	< 0.33	< 0.33	NC	20	
Chlorobenzene	<0.15	<0.15	NC	20	
Chloroethane	<0.26	<0.26	NC	20	
Chloroform	<0.16	<0.16	NC	20	
Chloromethane	<0.25	<0.25	NC	20	
cis-1,2-Dichloroethene	<0.21	<0.21	NC	20	
cis-1,3-Dichloropropene	<0.10	<0.10	NC	20	
Dibromochloromethane	<0.15	<0.15	NC	20	
Dibromomethane	<0.24	<0.24	NC	20	
Dichlorodifluoromethane	<0.22	<0.22	NC	20	
Ethylbenzene	<0.19	<0.19	NC	20	
Hexachlorobutadiene	<0.13	<0.13	NC	20	
Isopropylbenzene	<0.15	<0.15	NC	20	
Methylene Chloride	<0.42	<0.42	NC	20	
Methyl tert-Butyl Ether	<0.11	<0.11	NC	20	
m-Xylene/p-Xylene	<0.51	<0.51	NC	20	
Naphthalene	<0.22	<0.22	NC	20	
n-Butyibenzene	<0.17	<0.17	NC	20	
n-Propylbenzene	<0.18	<0.18	NC	20	
o-Xylene	<0.20	<0,20	NC	20	
Sec-Butylbenzene	<0.21	<0.21	NC	20	
Styrene	<0.18	<0.18	NC	20	
tert-Butylbenzene	<0.18	<0.18	NC	20	
Tetrachloroethene	<0.16	<0.16	NC	20	
Toluene	<0.14	<0.14	NC	20	
trans-1,2-Dichloroethene	<0.21	<0.21	NC	20	
trans-1,3-Dichloropropene	<0.11	<0.11	NC	20	
Trichloroethene	<0.19	<0.19	NC	20	
Trichlorofluoromethane	<0.53	<0.53	NC	20	
Vinyl acetate	<1.3	<1.3	NC	20	
Vinyl chloride	<0.19	<0.19	NC	20	

Spike Relative Difference RPD 200 * |(B-A)/(B+A)|All Results are based on MDL and validated for QC purposes. F = RPD exceeded the laboratory control limits

Abbreviations and EPA Qualifier Codes used by AAL

Rep Limit: This abbreviation on our analytical reports is for: Reporting Limit (RL).

- BRL: This abbreviation indicates that the analytical results were Below the Reporting Limit (BRL).
- MDL: The Method Detection Limit (MDL), as defined by 40 CFR Part 136, Appendix B, is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero.
- U: The compound was analyzed for, but not detected above the specified MDL.
- J: This indicates an estimated value. The target analyte is *positively identified*, but the reported numerical result (analyte concentration) is an *estimated* value and the direction of the bias is unknown. The result is above the MDL, but below the RL.
- B: This is used when the analyte is found in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. The flag shall be used for a tentatively identified compound as well as for a positively identified target compound.
- D: This flag indicates that the identified analyte is reported from the dilution analysis.
- E: This identifies compounds whose concentrations exceed the upper level of the linear calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of the calibration range, the sample or extract should be diluted and re-analyzed.

Note: For Xylenes, Total, where three isomers are quantified as two peaks, the calibration range of each peak is considered separately.

- X: This qualifier is defined by the laboratory in written case narrative.
- Z: Surrogates/Spikes results are outside the laboratory or method quality control limits.
- ZZ: Surrogates/Spikes results are outside the laboratory or method quality control limits in multiple QC samples.
- ***: Surrogate recoveries were diluted out.
- M: Manual integrations were necessary and an "m" qualifying code is present on the quantitation report next to the analyte.
- N: Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds. (TICs), where the identification is based on a mass spectral library search. For generic characterization of a TIC, such as chlorinated hydrocarbon, the "N" flag is not used.

15130 South Keeler, Olathe, Kansas 66062 Phone: (913) 829-0101 • Fax: (913) 829-1181

June 7, 2007

Mr. Mark S. Harvison Project Chemist, CESAS-EN-GG U.S. Army Corps of Engineers, Savannah District 100 W. Oglethorpe Ave. P. O. Box 889 Savannah, GA 31402 Phone: 912-652-5151 Fax: 912-652-5311

Dear Mr. Harvison:

RE: Hunter Perimeter Well Sampling, Task Order 0085 W912HN-05-D-0013 AML Work Order Number: AAL12049

Attached, please find the hardcopy analytical report ($\cancel{19}$ total pages) for environmental samples collected by CESAS for the project described above. Problems encountered in the analysis of these samples are documented in the laboratory case narrative. The electronic data deliverables (EDDs) for this report will be e-mailed within a few days of this report. Please feel free to contact me by phone (913-829-0101-ext. 23), fax (913-829-1181) or email (mharris@amlabinc.com) if you have any questions.

Respectfully Submitted, Analytical Management Laboratories, Inc.

Melania Harris Project Manager

AML Case Narrative

Project:	Hunter Perimeter Well Sampling, Task Order 0085
Your Reference:	W912HN-05-D-0013
Our Reference:	AML Work Order Number: AAL12049

Project and Sample Information

Technical support for the analysis of samples collected for the referenced project was provided by Accura Analytical Laboratory, Inc, 6017 Financial Drive, Norcross, GA 30071. The analytical report prepared by the subcontract laboratory (certified by the State of South Carolina) is attached. Please feel free to contact Mr. David Fuller directly (770-449-8800) if there are any questions on this report.

31-MAY-07

Analytical Management Laboratories, Inc. 15130 South Keeler Olathe, KS 66062 Client Contact: Vis Viswanathan

Reference: Accura Analytical Laboratory, Inc. (AAL) Work Order No: 12049 Project Name :Hunter Perimeter Well Sampling Project Number: Task Order 0085

Dear Vis Viswanathan :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Chain of Custody(s) Numbered 47463. All results being reported under this Chain of Custody apply to the samples analyzed and properly identified with an AAL Sample ID number.

All the results for the quality control samples were reviewed. Also, all parameters for data reduction and validation were reviewed. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by AAL. This report will be filed for at least 7 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 47463 will be filed for 90 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Accura Analytical Laboratory Inc. to serve your analytical needs. If you have any questions concerning this report, please feel free to contact me at any time.

Sincerely,

David Fuller Project Manager

6017 Financial Drive Norcross, GA 30071 Phone: 770-449-8800 Fax: 770-449-5477

ACCURA ANALYTICAL LABORATORY, INC. (AAL) 6017 Financial Drive, Norcross, GA 30071, Phone: (770) 449-8800 FL Certification #E87429 • NC Certification #483 SC Certification #98015 • Utah Certification #AALI1 USACE Approved • Navy Certification Code NFESC 413 Case Narrative

AAL Work Order # 12049

Client Project: Hunter Perimeter Well Sampling / Task Order 0085

Accura Analytical Laboratory Inc. certifies that the results meet all requirements of the NELAC Standards.

The data package includes a 1 page case narrative, 1 Chain of Custody page, a 2 page Sample Receipt Checklist, 4 analytical results pages, 1 QC surrogate recovery page, 2 QC Blank Spike / Blank Spike Duplicate recovery pages, 3 QC Matrix Spike / Matrix Spike Duplicate recovery pages, and a list of common EPA qualifier codes and abbreviations used by AAL.

The following items were noted concerning this work order:

VOCs by SW8260B Notations:

- 1. The pH of the water samples was 7 prior to the VOC analysis.
- 2. The Laboratory Blank Spike sample recovery for Methylene chloride was outside the laboratory control limits (bias high). The MS/MSD recoveries were within the laboratory control limits and there were no reportable concentrations of this analyte in the samples, so the data was accepted.

<u>Mei Liang</u> Senior Analyst <u>May 30, 2007</u> Date

This Case Narrative & Notations have been generated, reviewed, and edited by:

David C. Fuller Project Manager

<u>May 31, 2007</u> Date

TUNN Page 217463 Norcross, GA 3007	none # (1/U) 449-8800 Fax # (770) 449-5477	Cree M		ALLINIS System D: CAR FCC	Receiver's Initials themp. (0) 2 C	AAL WORK OFFER (2049)		Field Comments:			AAL Lab	12049	Alder Hunn 1001	Hadin and									livered by: (Circle One)	1 EX/ UPS / DHL / AAL Pickup / Hand / Other	Turnaround Time Requested:) (C=Air Cartridge)
XX, INC A 7 Ola		Silling address: AMC	?O.# (if required):	For Laboratory Use Only:	QCLevel 1(2)3 4 CLP.Like	Custody Seal(s) 2 DN Tape	Analysis Requested			5,	207	2											Date / Time De	A A A A A A A A A A A A A A A A A A A	M Stat bate / Time	=Soft) (SD=Solid) (SL=Sludge) (A=Air)
ACCURA ANALYTICAL LABORATOR Environmental Analytical Services	CHAIN UF CUSIODY	ANNY Calls al Ens	whit is returned by	in Arole		527-6027 Fax#.	Hunter Relimeter well samalans	Preservation Code: (See below)	Sampler(s): (printed)	Cultury Charlos	S. S. Matrix Matrix S. S. S. S.	Date / Lime C & Sample Location Containers	22/07/45 × 6 w	22/07/430 A 64 3									Date / Time 2) Received By:	Site Bringed	5/24/07/05/ 20000000000000000000000000000000000	king Water) (GW=Groundwater) (SW=Surface Water) (L=Liquid) (O=Oil) (S=
		Company Name: 45	Address:	Results Sent to: (Client Contac	Email address:	Contact Phone #: -2/2 - 4	Project (Site) Name:	Project Number:	Sampler(s): (signature)		ine No.		1 PR-DIF-11-5 51	2 PK-PF-160 31	ß	4	2	9	7	8	6	10	 Relinquished By: 		St Relinquist user.	fatrix Guide: (W=Water) (DW=Drin Peservation Codes: 1=HCT. / ?HNO

WAUTHWARU2 / SENAUH+KNAC / 6ENaSO, / 7ENAHSO, / 8EMEOH F -

Client	Project Name: Hunter Termeter Well Sounding ACCURA We	ork Order	#: <u> </u>	249
A ro f	here Encores, tests with \$481, hold times, or RUSH TAPS requested?	TES	NO	
f YES,	, you must communicate RUSH analyses to the appropriate analyst(s) immediately!!! / or preser	ve EnCore	s (see #16 t	elow)!!!
relin	timary Examination: Initials: \underline{ASM} Date received: $\underline{SA}/\underline{O+}$ Date cooler v	was opene	:d:,	
l.	Did cooler/package come with a shipping slip (airbill, Etc.)? If YES, enter carrier name and airbill number here: For EX -	YES		NO
	Describe type of packing in cooler: <u>Babble Wrap / Tco</u>	-		l
2.	Were custody seals on outside of cooler?) If YES, how many: 2	(YES)		ANO T
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES	ØF	NO
ŧ.	Were custody papers sealed in a plastic bag to prevent damage to chain of custody?	SES		NO
5.	If required, was enough ice used? (Internal cooler temperature, $\hat{Z}_{\hat{c}}^{\hat{c}}$)	ŒS	N/A	NO
5.	Did you sign custody papers in the appropriate place?	ŒS		NO
7.	Was project identifiable from custody papers?	(TES)		NO
*******	If YES, enter project name at the top.	****	****	*****
Comp Recei	plete project file with green sheet, proper file tag, and shipping documentation. Line up samples follow pt Verification form (include extra containers for dissolved metals filtrates). Complete login in XENCO	ing chain. () and gener	Complete Constended ate AAL IE	ontainer Labels.
3.	Did all containers arrive unbroken and were labels in good condition?	TES		NO
Э.	Were custody papers filled out properly and did all labels agree with custody papers?	OES		NO
10.	Were correct containers and sufficient amount of sample sent for the test indicated?	(ES)		NO
11.	All samples collected within three days of date received for these analyses (Reactive Cn & S, Solids in H2O, Sulfide, Sulfite, !ALL! Extractable Organic Waters)? If NO, coordinate with the project manager to ensure that no samples go out of hold!!! No residual chloring found in waters for these analyses:	YES	N/A	NO
12.	(Cyanide, PAH, SVOC, Pesticides, PCB's, Herbicides)? Checked by:	YES (L	N/A) uitials)	NO
13.	Were samples properly chemically preserved, if required, upon receipt?	YES	N/A	NO
	VOC/BTEX samples submitted with HCL for waters and in either Encore samplers or NaHS Preservation checked by:	O₄ labeled (Iı	vials for so uitials)	oils)
14.	Were air bubbles (>1/4 inch) absent in VOC/BTEX samples? If NO, list ID # on back and label vials with "DONGS" is until southed by Managements.	YES	N/A	
15.	If there are samples for dissolved metals, were they field filtered? If NO, list date and time samples were filtered and preserved in lab:	YES	(N/A)	NO
16.	Were Encore samplers included?	YES		1 00
17.	If YES, date and time preserved with NaHSO4:By whom: Does this submittal contain soil NaHSO4 vials for BTEX/GRO/VOC'S?	YES		
	If YES, vials weighed by and entered into vial database by:	tainora	k	-
18. *******	Initials of laboratory personale responsible for labeling laboratory 1.D. numbers on cor	иашегу: _ •******	********	<u> </u>
Keep	o samples and chain out. Before moving samples to their appropriate location, another person must rev that information on the AAL ID Barcode label matches the container label, and that all information is Final check and samples logged to locations by:	iew the enti consistent v (In	re project e vith the cha uitials)	nsuring in.
19.	Was it necessary to call the assigned project manager in order to proceed with login? If YES, give details on the back of this form.	YES	·	NO
- 4	Who was called? O A By whom? Date/Tim	ب و		

ACCURA ANALYTICAL LABORATORY, INC. SAMPLE RECEIPT VARIANCE FORM

# Actions Taken:	<u>#</u>	Discrepancies Noted:
# Actions Taken:		
# Actions Taken:		
# Actions Taken:		
Actions Taken:		
# Actions Taken:		
Actions Taken:		
Actions Taken:		/
# Actions Taken:		
# Actions Taken:		
# Actions Taken:		· · · · · · · · · · · · · · · · · · ·
# Actions Taken:		
# Actions Taken:		/
# Actions Taken:		·
# Actions Taken:		
# Actions Taken:		
Actions Taken:		
# Actions Taken:	•	·
# Actions Taken:		/
Actions Taken:		· <u>·</u>
		·
		/
		/
		·
		/
		5/2
• •		

Certificate of Analytical Results 12049

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Well Sampling

Sample Id: PR-DPT-11-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12049-001	Date Collected: May-22-07 14:15	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B

Date Analyzed: May-25-07 19:05

Analyst: MJL01 Seq Number: 36118 Prep Method: SW5030B

Date Prep: May-25-07 07:47

Tech: MJL01

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	- 1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	Ŭ	Î
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	Ū	1
1,1,2-Trichloroethane	79-00-5	BRL	1. 0 ·	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	\mathbf{U}	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	Ŭ	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Certificate of Analytical Results 12049

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Well Sampling

Sample Id: PR-DPT-11-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12049-001	Date Collected: May-22-07 14:15	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOC	Cs by SW8260B			Prep N	Aethod: SW	5030B	
Date Analyzed: May-25-07 19:05 S	Analyst: MJL01 eq Number: 36118	I	Date Prep: M	Tech: MJL01			
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

*

Certificate of Analytical Results 12049

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Well Sampling

Sample Id: PR-DPT-11-D	Matri	x: WATE	CR	% Moisture	:		1000000000
Lab Sample Id: 12049-002	Date Collecte	d Mav-?	2-07 14:30	Date Received	· · Mav-24.	.07 10:5	5
Sample Denth:	Date conten	u. minj 2.				07 1012	2
Sample Depui.							
Analytical Method: USACE VOCs	by SW8260B			Prep M	lethod: SW	/5030B	
Date Analyzed: May-25-07 19:33	Analyst: MJL01	D	ate Prep: M	ay-25-07 07:47	Tech:	MJL01	
Seq	Number: 36118			.,			
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	Ū	1
1.1-Dichloroethene	75-35-4	BRI	1.0	0.20	ug/L	Ũ	1
1 1-Dichloropropene	563-58-6	BRI	1.0	0.10	ug/L	Ŭ	ī
1.2.3-Trichlorobenzene	87.61.6	BRI	1.0	0.25	ug/L	ŭ	1
1.2.5 Trichloropropage	96.18.4	BRI	1.0	0.25	ue/L.	Ŭ	1
1.2.4 Trichlorohenzene	120 82 1	BDI	1.0	0.21	+æ- uø/L	U U	1
1,2,4-Trimethulbenzene	05.63.6	DRL	1.0	0.17	110/I	U U	1
1.2. Dibaaraa 2. ablaaranaanaa	95-05-0		1.0	0.14	ug/l	U U	1
1,2-Dibromo-3-chloropropane	90-12-0	DKL	1.0	0.19	ug/L ug/I	U	1
1,2-Dibromoetnane	100-93-4	BKL	1.0	0.18	ug/L	U TI	1
1,2-Dichlorobenzene	95-50-1	BKL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BKL	1.0	0.18	цуг.	U	1
1,2-Dichloropropane	78-87-5	BKL	1.0	0.15	ugyr	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ū	1
Bromodichloromethane	75-27-4	BRL	10	0.25	ug/L	ũ	1
Bromoform	75-25-2	BRI	1.0	0.17	ug/L	Ū	1
Bromomethane	74_83_0	RRI	1.0	0.25	ug/l.	Ŭ	1
Carbon disulfide	75_15_0	BBI	1.0	0.25	ug/L	ŭ	1
Carbon Tetrachloride	56-23-5	BBI	1.0	0.20	uø/L	n	1
Chloroberzene	108 00 7		1.0	0.55	ч о 10 110/I	U U	1
Chloroothono	100-90-7		1.0	0.13	ч <i>у</i> с 110/І	U	1

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

BRL

BRL

BRL

BRL

BRL

1.0

1.0

1.0

1.0

1.0

0.16

0.25

0.21

0.10

0.15

Page 644

ug/L

ug/L

ug/L

ug/L

ug/L

U

U

U

U

U

1

1

1

1

1

*

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Chloroform

Certificate of Analytical Results 12049

. . . .

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Well Sampling

Sample Id: PR-DPT-11-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12049-002	Date Collected: May-22-07 14:30	Date Received: May-24-07 10:55
Sample Depth:		

Analytical Method: USACE VOC			Prep N	1ethod: SW	/5030B		
Date Analyzed: May-25-07 19:33	Analyst: MJL01 eq Number: 36118	ľ	Date Prep: M	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	l
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Form 2 - Surrogate Recoveries

Projec	t Name: Hunter Perime	eter Well Samj	pling								
		Report Date:	: 05/31/07 12:	:13							
Vork Order #: 12049		Project ID	: Task Order	0085							
Lab Batch #: 36118 Sample: 120	049-001 / SMP Ba	itch: ¹ Matr	ix: W								
Units: ug/L	S	SURROGATE R	ECOVERY S	TUDY							
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,2-Dichloroethane-d4	55.2	50.0	110	53-159							
Bromofluorobenzene	52.2	50.0	104	30-186							
Toluene-D8	52.5	50.0	105	83-136							
Lab Batch #: 36118 Sample: 120	049-002 / SMP Ba	1P Batch: ¹ Matrix: W									
Units: ug/L	5	SURROGATE RECOVERY STUDY									
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,2-Dichloroethane-d4	52.6	50.0	105	53-159	-						
Bromofluorobenzene	51.3	50.0	103	30-186							
Toluene-D8	54.1	50.0	108	83-136							
Lab Batch #: 36118 Sample: 30	2763 BLK / BLK Ba	atch: 1 Mat	rix: W	,,							
Units: ug/L		SURROGATE R	ECOVERY S	TUDY							
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,2-Dichloroethane-d4	57.2	50.0	114	65-125							
Bromofluorobenzene	54.7	50.0	109	66-148							
Toluene-D8	54.8	50.0	110	86-127							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter Perimeter Well Sampling

		Rep	ort Date:		05/3	1/07 11:57
Work Order #: 12049		Р	roject ID :		Task C	order 0085
Lab Batch #: 36118	Sample: 302763	BKS	Matrix: V	V		
Reporting Units: ug/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	·1	1-1	[C]	[D]		
1,1,1,2-Tetrachloroethane	<0.24	50	49	98	70-130	
1,1,1-Trichloroethane	<0.16	50	55	110	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	44	88	70-130	
1,1,2-Trichloroethane	<0.25	50	46	92	70-130	
1,1-Dichloroethane	<0.11	50	51	102	70-130	
1,1-Dichloroethene	<0.20	50	51	102	74-127	
1,1-Dichloropropene	<0.10	50	52	104	70-130	
1,2,3-Trichlorobenzene	<0.25	50	50	100	70-130	
1,2,3-Trichloropropane	<0.21	50	35	70	70-130	
1,2,4-Trichlorobenzenc	<0.17	50	51	102	70-130	
1,2,4-Trimethylbenzene	<0.14	50	51	102	70-130	
1,2-Dibromo-3-chloropropane	<0.19	50	48	96	70-130	
1,2-Dibromoethane	<0.18	50	48	96	70-130	
1,2-Dichlorobenzene	<0.14	50	48	96	70-130	
1,2-Dichloroethane	<0.18	50	56	112	70-130	
1,2-Dichloropropane	<0.15	50	50	100	70-130	
1,3,5-Trimethylbenzene	<0.17	50	51	102	70-130	
1,3-Dichlorobenzene	<0.17	50	49	98	70-130	
1,3-Dichloropropane	<0.19	50	48	96	70-130	
1,4-Dichlorobenzene	<0.17	50	48	96	70-130	
2,2-Dichloropropane	<0.21	50	57	114	70-130	
2-Butanone	<0.28	100	80	80	70-130	
2-Chlorotoluene	<0.19	50	50	100	70-130	
2-Hexanone	<0.32	100	84	84	70-130	
4-Chlorotoluene	<0.13	50	49	98	70-130	
4-Methyl-2-pentanone	<0.26	100	92	92	70-130	
Acetone	<0.35	100	100	100	70-130	
Acrolein	<6.6	100	91	91	70-130	
Acrylonitrile	<0.49	100	83	83	70-130	
Benzene	<0.16	50	50	100	72-122	
Bromobenzene	<0.21	50	47	94	70-130	
Bromochloromethane	<0.20	50	47	94	70-130	
Bromodichloromethane	<0.25	50	53	106	70-130	
Bromoform	<0.17	50	43	86	70-130	

Project Name: Hunter Perimeter Well Sampling

		Ren	ort Date:		05/3	1/07 11:57
Work Order #: 12049		P	roiect ID:		Task C	Order 0085
Lab Batch #: 36118	Sample: 302763 1	BKS	Matrix: W	7		
Reporting Units: ug/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Bromomethane	<0.25	50	48	96	70-130	
Carbon disulfide	<0.26	50	52	104	70-130	
Carbon Tetrachloride	< 0.33	50	55	110	70-130	
Chlorobenzene	<0.15	50	49	98	74-122	
Chloroethane	<0.26	50	51	102	70-130	
Chloroform	<0.16	50	53	106	70-130	
Chloromethane	<0.25	50	44	88	70-130	
cis-1,2-Dichloroethene	<0.21	50	46	92	70-130	
cis-1,3-Dichloropropene	<0.10	50	46	92	70-130	
Dibromochloromethane	<0.15	50	50	100	70-130	
Dibromomethane	<0.24	50	51	102	70-130	
Dichlorodifluoromethane	<0.22	50	49	98	70-130	
Ethylbenzene	<0.19	50	52	104	70-130	
Hexachlorobutadiene	<0.13	50	51	102	70-130	
Isopropylbenzene	<0.15	50	46	92	70-130	
Methylene Chloride	<0.42	50	100	200	70-130	Z
Methyl tert-Butyl Ether	<0.11	100	95	95	70-130	
m-Xylene/p-Xylene	<0.51	100	100	100	70-130	
Naphthalene	<0.22	50	45	90	70-130	
n-Butylbenzene	<0.17	50	51	102	70-130	
π-Propylbenzene	<0.18	50	50	100	70-130	
о-Хуlеле	<0.20	50	53	106	70-130	
Sec-Butylbenzene	<0.21	50	50	100	70-130	
Styrene	<0.18	50	54	108	70-130	
tert-Butylbenzene	<0.18	50	46	92	70-130	
Tetrachloroethene	<0.16	50	51	102	70-130	
Toluene	<0.14	50	50	100	77-121	
trans-1,2-Dichloroethene	<0.21	50	52	104	70-130	
trans-1,3-Dichloropropene	<0.11	50	50	100	70-130	
Trichloroethene	<0.19	50	51	102	66-119	
Trichlorofluoromethane	<0.53	50	56	112	70-130	
Vinyl acetate	<1.3	50	43	86	70-130	
Vinyl chloride	<0.19	50	49	98	70-130	

Form 3 - MS / MSD Recoveries

Project Name: Hunter Perimeter Well Sampling

Report Date: 05/31/07 11:57

Project ID: Task Order 0085

Matrix: W ---

Lab Batch ID: 36118	QC- Sample ID	: 12037-	003 MS	Ba	tch #:	l Matri	x: W				
Reporting Units: ug/L			MATRIX SPIK	(E / MAT	RIX SPH	KE DUPLICA	te reco	VERY S	TUDY		
VOCs by SW8260B	Parent Sample	Spike	ipiked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		88 [0]	Added	Result [F]	8% 10 10	%	%К	%RPD	
1,1,1,2-Tetrachloroethane	<0.24	50	48	96	50	48	96	0	70-130	20	
1,1,1.1-Trichloroethane	<0.16	50	53	106	50	53	901	0	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	50	100	50	48	96	4	70-130	20	
1,1,2-Trichloroethane	<0.25	50	49	98	50	48	96	2	70-130	20	
1,1-Dichloroethane	<0,11	50	50	100	50	49	86	2	70-130	20	
1,1-Dichloroethene	<0.20	50	50	100	50	48	96	4	70-135	20	
1,1-Dichloropropene	<0.10	50	53	106	50	52	104	2	70-130	20	
1,2,3-Trichlorobenzene	<0.25	50	53	106	50	53	106	0	70-130	20	
1,2,3-Trichloropropane	<0.21	50	53	106	50	53	106	0	70-130	20	
1,2,4-Trichlorobenzene	<0.17	50	51	102	50	52	104	ы	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	50	100	50	49	98	2	70-130	20	
1,2-Dibromo-3-chloropropane	61'0>	50	57	114	50	52	104	6	70-130	20	
1,2-Dibromoethane	<0.18	50	51	102	50	50	100	2	70-130	20	
1,2-Dichlorobenzene	<0.14	50	49	86	50	49	98	0	70-130	20	
1,2-Dichloroethane	<0.18	50	58	116	50	55	110	S	70-130	20	
1,2-Dichloropropane	<0.15	50	48	96	50	48	96	0	70-130	20	
1,3,5-Trimethylbenzene	<0.17	50	51	102	50	49	86	4	70-130	20	
1,3-Dichlorobenzene	<0.17	50	49	98	50	49	86	0	70-130	20	
1,3-Dichloropropane	<0.19	50	51	102	50	50	100	2	70-130	20	
1,4-Dichlorobenzene	<0.17	50	48	96	50	49	98	2	70-130	20	
2,2-Dichloropropane	<0.21	50	53	106	50	53	106	0	70-130	20	
2-Butanone	<0.28	001	100	100	100	96	96	4	70-130	20	
2-Chiprotoluene	<0.19	50	49	98	50	50	100	2	70-130	20	
2-Historic	<0.32	100	100	100	100	97	97	3	70-130	20	

1

1

Т

T

т Т Т Т

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

1

Т

F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Well Sampling

Report Date: 05/31/07 11:57

Project ID: Task Order 0085

Work Order # : 12049

Lab Batch ID: 36118 Reporting Units: ug/L

QC-Sample ID: 12037-003 MS

Batch #:

l Matrix: W

VOCs by SW8260B	Parent Sample Result	Spike Added	piked Sampl Result [C]	Spiked Sample %R	Spike Added	Duplicate piked Sampl Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[v]	8		ē,	E		<u>c</u>				
4-Chlorotoluene	<0.13	50	49	98	50	50	100	2	70-130	20	
4-Methyl-2-pentanone	<0.26	100	110	110	100	001	100	10	70-130	20	
Acetone	<0.35	100	120	120	100	110	110	9	70-130	20	
Acrolein	<6.6	100	110	110	100	001	100	10	70-130	20	
Acrylonitrile	<0.49	001	86	98	100	96	96	2	70-130	20	
Benzene	<0.16	50	49	98	50	49	98	0	72-128	20	
Bromobenzene	<0.21	50	48	96	50	48	96	0	70-130	20	
Bromochloromethane	<0.20	50	48	96	50	47	94	2	70-130	20	
Bromodichloromethane	<0.25	50	51	102	50	50	100	2	70-130	20	
Bromoform	<0.17	50	48	96	50	47	94	2	70-130	20	
Bromomethane	<0.25	50	42	84	50	42	84	0	70-130	20	
Carbon disulfide	<0.26	50	49	86	50	50	100	2	70-130	20	
Carbon Tetrachloride	<0.33	50	52	104	50	51	102	2	70-130	20	
Chlorobenzene	<0.15	50	49	86	50	48	96	2	77-121	20	
Chloroform	<0,16	50	49	98	50	49	86	0	70-130	20	
Chloromethane	<0.25	50	44	88	50	43	86	2	70-130	20	
cis-1,2-Dichloroethene	<0,21	50	45	06	50	44	88	2	70-130	20	
cis-1,3-Dichloropropene	<0.10	50	46	92	50	46	92	0	70-130	20	
Dibromochloromethane	<0.15	50	53	106	50	51	102	4	70-130	20	
Dibromomethane	<0.24	50	54	108	50	52	104	4	70-130	20	
Dichlorodifluoromethane	<0.22	50	46	92	50	46	92	0	70-130	20	
Ethylbenzene	<0.19	50	51	102	50	51	102	0	70-130	20	
Hexacalorobutadiene	<0.13	50	53	106	50	51	102	4	70-130	20	
Isophenzene	<0,15	50	46	92	50	46	92	0	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Well Sampling

Report Date: 05/31/07 11:57 Project ID: Task Order 0085

I Matrix: W

Work Order #: 12049 Lab Batch ID: 36118

Reporting Units: ug/L

QC- Sample ID: 12037-003 MS Batch #:

VOCs by SW8260B	Parent		piked Sampl	Spiked	5.4160	Duplicate	Spiked		Control Limite	Control Limits	E e
Analytes	Result [A]	spike Added [B]		%R %R [D]	apike Added E	Result [F]	10 % ()	%	%R	%RPD	10 1 -
Methylene Chloride	<0.42	50	51	102	50	51	102	0	70-130	20	
Methyl tert-Butyl Ether	<0.11	100	001	100	100	100	100	0	70-130	20	
m-Xylene/p-Xylene	<0.51	100	001	100	100	26	97	ę	70-130	20	
Naphthalene	<0.22	50	53	106	50	51	102	4	70-130	20	
n-Butylbenzene	<0.17	50	50	001	50	51	102	2	70-130	20	
n-Propylbenzene	<0.18	50	51	102	50	51	102	0	70-130	20	
o-Xylene	<0.20	50	52	104	50	51	102	5	70-130	20	
Sec-Butylbenzene	<0.21	50	50	001	50	15	102	2	70-130	20	
Styrene	<0.18	50	52	104	50	49	98	6	70-130	20	
tert-Butylbenzene	<0.18	50	47	94	50	47	94	0	70-130	20	
Tetrachloroethene	<0.16	50	49	98	50	50	100	2	70-130	20	
Toluene	<0.14	50	50	001	50	49	86	2	76-124	20	
trans-1,2-Dichloroethene	<0.21	50	47	94	50	15	102	8	70-130	20	
trans-1,3-Dichloropropene	<0.11	50	52	104	50	52	104	0	70-130	20	
Trichloroethene	<0.19	50	50	001	50	48	96	4	68-125	20	
Trichlorofluoromethane	<0.53	50	52	104	50	15	102	2	70-130	20	
Vinyl acetate	<1.3	50	42	84	50	41	82	2	70-130	20	
Vinyl chloride	<0.19	50	46	92	50	47	94	2	70-130	20	

<u>8817</u>

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery $[G] = 100^{4}(F-A)/E$

Abbreviations and EPA Qualifier Codes used by AAL

- Rep Limit: This abbreviation on our analytical reports is for: Reporting Limit (RL).
 - BRL: This abbreviation indicates that the analytical results were Below the Reporting Limit (BRL).
 - MDL: The Method Detection Limit (MDL), as defined by 40 CFR Part 136, Appendix B, is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero.
 - U: The compound was analyzed for, but not detected above the specified MDL.
 - J: This indicates an estimated value. The target analyte is *positively identified*, but the reported numerical result (analyte concentration) is an *estimated* value and the direction of the bias is unknown. The result is above the MDL, but below the RL.
 - B: This is used when the analyte is found in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. The flag shall be used for a tentatively identified compound as well as for a positively identified target compound.
 - D: This flag indicates that the identified analyte is reported from the dilution analysis.
 - E: This identifies compounds whose concentrations exceed the upper level of the linear calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of the calibration range, the sample or extract should be diluted and reanalyzed.

Note: For Xylenes, Total, where three isomers are quantified as two peaks, the calibration range of each peak is considered separately.

- X: This qualifier is defined by the laboratory in written case narrative.
- Z: Surrogates/Spikes results are outside the laboratory or method quality control limits.
- ZZ: Surrogates/Spikes results are outside the laboratory or method quality control limits in multiple QC samples.
- ***: Surrogate recoveries were diluted out.
- M: Manual integrations were necessary and an "m" qualifying code is present on the quantitation report next to the analyte.
- N: Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds. (TICs), where the identification is based on a mass spectral library search. For generic characterization of a TIC, such as chlorinated hydrocarbon, the "N" flag is not used.

<u>ANTR</u>

October 11, 2007

Mr. Judson Smith Project Chemist, CESAS-EN-GG U.S. Army Corps of Engineers, Savannah District 100 W. Oglethorpe Ave. P. O. Box 889 Savannah, GA 31401-0360 Phone: 912-652-5673 Fax: 912-652-5311

Dear Mr. Smith:

RE: H AAF Perimeter, Task Order# 0090 W912HN-05-D-0013 AML Work Order Number: 0710035

Attached, please find the hardcopy analytical report (\mathcal{H}_{ℓ} total pages) for environmental samples collected by CESAS for the project described above. Problems encountered in the analysis of these samples are documented in the laboratory case narrative. The electronic data deliverables (EDDs) for this report will be e-mailed within a few days of this report. Please feel free to contact me by phone (913-829-0101-ext. 23), fax (913-829-1181) or email (mharris@amlabinc.com) if you have any questions.

Respectfully Submitted, Analytical Management Laboratories, Inc.

Melania Harris Project Manager

Project:	H AAF Perimeter, Task Order# 0090
Your Reference:	W912HN-05-D-0013
Our Reference:	AML Work Order Number: 0710035

Project and Sample Information

Technical support for the analysis of samples collected for the referenced project was provided by Xenco/Accura Analytical Laboratory, Inc, 6017 Financial Drive, Norcross, GA 30071. The analytical reports prepared by the subcontract laboratories are attached. Please feel free to contact Mr. David Fuller directly (770-449-8800) for Xenco/Accura data if there are any questions on these reports.

Field Sample Information

(Chain of Custody Record, Sample Receipt Report, Condition Upon Receipt Report)

O710035 (Sample Delivery Group, SDG)

Projected Projected Date Date Inalytical Analysis Connents P-MW-13-07 09/05/07 13:45 09/27/07 VOCS by 8260B Monalysis Connents P-MW-13-07 09/05/07 14:15 09/27/07 VOCS by 8260B Monalysis Connents P-DUP 09/05/07 15:10 09/27/07 VOCS by 8260B VOCS by 8260B Monalysis P-MU-3-9-07 09/05/07 15:10 09/27/07 VOCS by 8260B VOCS by 8260B Monalysis P-HCL-3-9-07 09/05/07 16:10 09/27/07 VOCS by 8260B Monalysis Monalysis P-HCL-3-9-07 09/05/07 16:10 09/27/07 VOCS by 8260B Monalysis Monalysis P-HCL-3-9-07 09/05/07 11:00 09/27/07 VOCS by 8260B Monalysis Monalysis P-MW-4-9-07 09/06/07 11:00 09/27/07 VOCS by 8260B Monalysis Monalysis P-MU-5-9-07 09/06/07 11:00 09/27/07 VOCS by 8260B Monalysis Monalysis P-MU-5-9-07 09/06/07 11:00 09/27/07		mber Date	0710035 09/27/07		Client AML ID Client Project ID	USACE Savannath HAAF Perimeter, DO# 0090	Report Lvl. 3
T-WW-1-5-01 05/05/07 14:15 09/27/07 00/05/07 14:15 09/27/07 P-DUP 09/05/07 15:10 09/27/07 VOCs by 8260B VOCs by 8260B P-MW-3-9-07 09/05/07 15:10 09/27/07 VOCs by 8260B VOCs by 8260B P-HCL-3-9-07 09/05/07 16:10 09/27/07 VOCs by 8260B VOCs by 8260B P-HCL-3-9-07 09/06/07 06:45 09/27/07 VOCs by 8260B VOCs by 8260B P-HCL-3-9-07 09/06/07 06:36 09/27/07 VOCs by 8260B VOCs by 8260B P-HCL-3-9-07 09/06/07 09:36 09/27/07 VOCs by 8260B VOCs by 8260B TRIP BLANK 09/06/07 00:00 09/27/07 VOCs by 8260B	trix ***	1	Client Sample ID	Date Collected	Projected Analytical Due Date	Analysis MCc by 82608	Comments
P-MW-2-9-07 09/05/07 14:15 09/27/07 VOCS by 8260B P-DUP 09/05/07 16:10 09/27/07 VOCS by 8260B P-MW-3-9-07 09/05/07 15:10 09/27/07 VOCS by 8260B P-HCL-3-9-07 09/05/07 16:10 09/27/07 VOCS by 8260B P-MW-4-9-07 09/05/07 16:10 09/27/07 VOCS by 8260B P-MW-4-9-07 09/06/07 08:45 09/27/07 VOCS by 8260B P-MW-4-9-07 09/06/07 08:35 09/27/07 VOCS by 8260B P-MW-4-9-07 09/06/07 09:35 09/27/07 VOCS by 8260B P-MW-4-9-07 09/06/07 09:35 09/27/07 VOCS by 8260B TRIP BLANK 09/06/07 00:00 09/27/07 VOCS by 8260B	alei		10-8-1-AAW-2	64.61 /D/CD/80	10/17/20	avora vy ozona	
P-DUP09/05/07 16:0009/27/07VOCS by 8260BP-MW-3-9-0709/05/07 15:1009/27/07VOCS by 8260BP-HCL-3-9-0709/05/07 16:1009/27/07VOCS by 8260BP-MW-4-9-0709/06/07 08:4509/27/07VOCS by 8260BP-MW-5-90709/06/07 09:3509/27/07VOCS by 8260BP-MW-5-90709/06/07 11:0009/27/07VOCS by 8260BTRIP BLANK09/06/07 00:0009/27/07VOCS by 8260B	ater		P-MW-2-9-07	09/05/07 14:15	09/27/07	/OCs by 8260B	
P-MW-3-9-0709/05/07 15:1009/27/07VOCs by 8260BP-HCL-3-9-0709/05/07 16:1009/05/07 16:10VOCs by 8260BP-MW-4-9-0709/06/07 08:4509/27/07VOCs by 8260BP-MW-5-9-0709/06/07 09:3509/27/07VOCs by 8260BP-MW-5-9-0709/06/07 09:3509/27/07VOCs by 8260BP-BLANK09/06/07 11:0009/27/07VOCs by 8260BTRIP BLANK09/06/07 00:0009/27/07VOCs by 8260B	ater		P-DUP	09/05/07 16:00	20/22/60	/OCs by 8260B	
P-HCL-3-9-07 09/05/07 18:10 09/27/07 VOCs by 8260B P-MW-4-9-07 09/06/07 08:45 09/27/07 VOCs by 8260B P-MW-5-9-07 09/06/07 09:35 09/27/07 VOCs by 8260B P-MW-5-9-07 09/06/07 09:35 09/27/07 VOCs by 8260B P-BLANK 09/06/07 11:00 09/27/07 VOCs by 8260B TRIP BLANK 09/06/07 00:00 09/27/07 VOCs by 8260B	ater		P-MW-3-9-07	09/05/07 15:10	20/22/00	/OCs by 8260B	
P-MW-4-9-07 09/06/07 08:45 09/27/07 VOCs by 8260B P-MW-5-9-07 09/06/07 09:35 09/27/07 VOCs by 8260B P-BLANK 09/06/07 11:00 09/27/07 VOCs by 8260B TRIP BLANK 09/06/07 00:00 09/27/07 VOCs by 8260B	ater		P-HCL-3-9-07	09/05/07 16:10	20/22/60	/OCs by 8260B	
P-MN-5-9-07 09/06/07 09:27/07 VOCs by 8260B P-BLANK 09/06/07 11:00 09/27/07 VOCs by 8260B TRIP BLANK 09/06/07 00:00 09/27/07 VOCs by 8260B	ater		P-MW-4-9-07	09/06/07 08:45	09/27/07	/OCs by 8260B	
P-BLANK 09/06/07 11:00 09/27/07 VOCs by 8260B TRIP BLANK 09/06/07 00:00 09/27/07 VOCs by 8260B	ater		P-MW-5-9-07	09/06/07 09:35	09/27/07	/OCs by 8260B	
TRIP BLANK 09/06/07 00:00 09/27/07 VOCs by 8260B	ater		P-BLANK	09/06/07 11:00	09/27/02	/OCs by 8260B	
	ater		TRIP BLANK	00:00 20/90/60	09/27/07	/OCs by 8260B	

Analytical Management Laboratories - Sample Status and Receipt Report

Thursday, October 11, 2007

Page 1 of 1

Subcontracted Report

0710035

(AML Sample Delivery Group, SDG)

<u>Accura Analytical Laboratory, Inc-</u> <u>AAL Work Order No: 12607</u> (Laboratory)

21-SEP-07

Analytical Management Laboratories, Inc. 15130 South Keeler Olathe, KS 66062 Client Contact: Vis Viswanathan

Reference: Accura Analytical Laboratory, Inc. (AAL) Work Order No: 12607 Project Name :HAAF Perimeter Hunter Army Airfield Project Number: Task Order 0090

Dear Vis Viswanathan :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Chain of Custody(s) Numbered 216519. All results being reported under this Chain of Custody apply to the samples analyzed and properly identified with an AAL Sample ID number.

All the results for the quality control samples were reviewed. Also, all parameters for data reduction and validation were reviewed. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by AAL. This report will be filed for at least 7 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 216519 will be filed for 90 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Accura Analytical Laboratory Inc. to serve your analytical needs. If you have any questions concerning this report, please feel free to contact me at any time.

Sincerely,

Sherri W. Hernandez Project Manager

6017 Financial Drive Norcross, GA 30071 Phone: 770-449-8800 Fax: 770-449-5477 Ξ

9

12607

Prelogin/Nonconformance Report- Sample Log-In

Army Corps of Engineers

07 0950

Client:

Date/ Time:

Lab ID #:

Initials:

Sample Receipt Checklist

#1	Temperature of container/ cooler?	Yes	No	N/A	۰c
#2	Shipping container in good condition?	Ces/	No	None	
#3	Samples received on ice?	Ces	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	Yes	No	NA	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	(MA)	
#6	Chain of Custody present?	Yes	No		
#7	Sample instructions complete of Chain of Custody?	(es	No		
#8	Any missing/extra samples?	Yes	No		
#9	Chain of Custody signed when relinquished/ received?	Ves	No		
#10	Chain of Custody agrees with sample label(s)?	Yes	No		
#11	Container label(s) legible and intact?	XES	No		
#12	Sample matrix/ properties agree with Chain of Custody?	¥95	No	l	
#13	Samples in proper container/ bottle?	(Tes)	No		
#14	Samples properly preserved?	LES)	No	N/A	
#15	Sample container intact?	Čeş	No		
#16	Sufficient sample amount for indicated test(s)?	d'es	No		
#17	All samples received within sufficient hold time?	Yes	No		
#18	Subcontract of sample(s)?	Yes	No	(N/A)	
#19	VOC samples have zero headspace?	(Yes)	No	N/A	

Nonconformance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:			
Corrective Action Taker):		
Check all that Apply:		Client understands and would like to p Cooling process had begun shortly aff	roceed with analysis er sampling event

0007

Ξ
_			
	シノヒノ	borntories	
	J	و ا	

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD LAB ONLY: 12607

																		1. 1		1 4 4	₹ }		ה ט
Company-City US ADNY CORPS	OF BN	G-INE	EE S	Lone C A	4	0	4	H is	: Sh typical	12h 2v y 5-7 W	th 4t forking	8h 3d J Days	for lev	7d 1 eillar	64 21 104 21	d Sta Worki	ndard Ng day:	FAT is	et III an	specific d IV da	्राष्ट्रं		ł
Project Name CPravious H A A F P B	ky performed at X	ENCO TERO		<i>5</i> 5	a T	L L	숾	20	MY	AIR	ū	ELI		Proj	ot 10	0	*	00	2				
Proj. Manager (PM) ZS61	T HW	E.CLA	29						1.81		7910									+t		Reme	irks
Fax Results to DPM or e-mail to:			цщ.	X No:				1	P O H		בוסר איייה צי									heed b	(
Involce to Accounting	Inc. Invoice with	Final Repo			S ta	Ta P.C		1	109108		Sdd I	844 ·		·						-in S 0)	Aidde III		
Quote No:		2.0 No:				Call fo	a P.C	Jeyk	othe Othe			101	មស្រារ							PZ	M SƏĆ	p	
Reg Program: CLP AFCEE	TARP DW L	ST State	Other) ; T	0490 54		¢ مر ۲	A.8								p	yer:	0 70.	
Target DLs (DW CRDL TI	RP CAPP MD	Ls See La	b PM At	tached	S S			729 	18 17 19) N		 N							M S P	v.v (Surc)	ıdde	
TRRP PCLs: Tier 1 Tier 2	Residential		Industrial					Z09	166 9260		824	\$H								υ ε ι	sis/	b.e-	·····
LPST No.:(Required)			1	5				o T	Pro 014	01	0	/d ⊆	^							184	ijeur	918	
	BOMOS	Signature		Ŕ	A AGE			828	-17 508	68	976	929	:095							4Þ2	, blo	e sdi	
Sample ID	Sampling Date	una E	ци, и. ш. — — — — — — — — — — — — — — — — — —	esizoqm di	, sterietro:	esi2 tenism		EX pÀ 8051	EX-MTBE by	0228 Vd eH	1208 ph 8051	OCs by 8270	мөн • шпаэгч							s Hal Na Ti	H IssoqsiQ bi	u-nselO siqmi	
P-WW-1-9-07	1000016	<u> </u>	™ <u>></u> #	20 20 20 20 20 20 20 20 20 20 20 20 20 2	»#m		~ ~	18	га -тт	19		~ <u>_</u> \S								<u>"</u> <u>G</u>		- 00 00	+_
10-6-2- MM-d	0/20107	415 4	à the second sec		3			zd.			M		<u> </u>			1		 				8	a
P- DUP	9105107	049	2		A	<u> </u>				<u> </u>	5		<u> </u>			ļ	-					ឋ 	m
P- WW-3 -9-07	9 105 Joy	26	3	2	3						5											8	र्र
P. 10-3-9-07	102107	01	, ja Line (1997) Line (1997)	***	M						M											ъ С	Ň
P-MW-9-D-WH-9	166 107 6	345			M		1	4			2											ŏ	ľ,
1 40-2 - S-WH-9	106107 6	52	2	>	Ŋ		4		_		N)			<u></u>								୪	сţ
P-BLANK	16667 1	(W)	à	2	3		I				M											y	ধ
The BLANE	hollan		2		2		-														\mathbf{i}	0	8
	•																				<u></u>		
Reintwared by (Initials	and Sign)	Date &	Тіте	8	sinbuik	hed to	(Initial	s and :	ign)	ő	tte &	Time -	ΗÇ	h Cha	rges a	re Pre-	Appro	red upo	n reque	sting th	em.		
/ NUICT BONN	- PC	10/101	1200	\leq	Z	ad	بإ			You	197	124		ruction									
VEDER-	N	6/2/0	0520	Q		Y	,ď	9	Q	195	6	09.2	₹ Q	(ENOC	Stand	ard Tel	ms and	Condit	ons App	¥		1	
		-	-	, and	•				Ì				č		0,00	- House		C	motor Te			3 0	

WWW.Xenco.com

SDBE Committed to Excellence in Service and Quality since 1990

Matrix: Air (A), Product (P), Solid(S), Water (W)

Ξ

00,08 .

ACCURA ANALYTICAL LABORATORY, INC. (AAL) 6017 Financial Drive, Norcross, GA 30071, Phone: (770) 449-8800 FL Certification #E87429 • NC Certification #483 SC Certification #98015 • Utah Certification #AALI1 USACE Approved Case Narrative

AAL Work Order # 12607

Client Project: HAAF Perimeter Hunter Army Airfield / Task Order 0090

Accura Analytical Laboratory Inc. certifies that the results meet all requirements of the NELAC Standards.

The data package includes a 2 page case narrative, 1 Chain of Custody page, 1 page Sample Receipt Checklist, 22 analytical results pages, 3 QC surrogate recovery pages, 4 QC Blank Spike / Blank Spike Duplicate recovery pages, 6 QC Matrix Spike / Matrix Spike Duplicate recovery pages, and a list of common EPA qualifier codes and abbreviations used by AAL.

The following items were noted concerning this work order:

VOCs by SW8260B Notations:

- 1. The pH of the water samples was <2.0 prior to the VOC analysis.
- 2. The % recoveries for the following analytes were outside laboratory control limits (bias low) for the Laboratory Blank Spike. There were no reportable concentrations of these analytes detected in any of the samples associated with this batch. Acetone and Dichlorodifluoromethane. (Batch#37410).
- The % recoveries for the MS and/or MSD for the following analytes were outside laboratory control limits due to possible matrix interferences. Dichlordifluoromethane-12607-002 MS/MSD (bias low) Tetrachloroethene-12607-002MSD (bias low)
- The RPD for The MS and MSD for the following analyte were outside laboratory control limits for Acrylonitrile due to possible matrix interferences. 12607-002MS/MSD and 12637-006 MS/MSD
- 5. The % recoveries for the following analytes were outside laboratory control limits for the Laboratory Blank Spike. There were no reportable concentrations of these analytes detected in any of the samples associated with this batch. 2-Hexanone (bias low) and Carbon Disulfide (bias high). (Batch#37414).

Ξ

ACCURA ANALYTICAL LABORATORY, INC. (AAL)

6017 Financial Drive, Norcross, GA 30071, Phone: (770) 449-8800 FL Certification #E87429 • NC Certification #483 SC Certification #98015 • Utah Certification #AALI1 USACE Approved Case Narrative

6. The % recoveries for the MS and/or MSD for the following analytes were outside laboratory control limits due to possible matrix interferences.
2-Hexanone-12637-006MSD (bias low) Tetrachloroethene-12637-006MS/MSD (bias low)

<u>Mei Liang</u> Senior VOC Analyst September 21, 2007 Date

This Case Narrative & Notations have been generated, reviewed, and edited by:

Sherri W. Hernandez. Project Manager <u>September 21, 2007</u> Date

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-1-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-001	Date Collected: Sep-05-07 13:45	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE V	OCs by SW8260B			Prep	Method: SV	V5030B	
Date Analyzed: Sep-14-07 15:02	Analyst: MDS01 Seq Number: 37410		Date Prep: Se	p-14-07 07:13	Tech:	MЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	\mathbf{U}	1
I,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50- 1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	\mathbf{U}	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	\mathbf{U}	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	\mathbf{U}	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	\mathbf{U}	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	\mathbf{U}	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	\mathbf{U}	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	\mathbf{U}	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	\mathbf{U}	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	J
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRI	10	015	ug/L	IJ	1

Version: 1.002

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-1-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-001	Date Collected: Sep-05-07 13:45	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE V	OCs by SW8260B			Prej	o Method: SW	/5030B	
Date Analyzed: Sep-14-07 15:02	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	млоі	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0,24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L.	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	I
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-2-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-002 Sample Depth:	Date Collected: Sep-05-07 14:15	Date Received: Sep-07-07 09:50

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: Sep-14-07 09:29 Analyst: MDS01 Date Prep: Sep-14-07 07:13 Tech: MJL01 Seq Number: 37410 Dil **Result Rep Limit** MDL Units Flag Cas Number Parameter ug/L U 1,1,1,2-Tetrachloroethane 630-20-6 BRL 1.0 0.24 1 ug/L 71-55-6 BRL 1.0 0.16 U 1 1,1,1-Trichloroethane 79-34-5 BRL 1.0 0.18 ug/L U 1 1,1,2,2-Tetrachloroethane 79-00-5 BRL 1.0 0.25 ug/L U 1 1,1,2-Trichloroethane ug/L U BRL 1.0 0.11 1 1,1-Dichloroethane 75-34-3 ug/L U 1 BRL 1.0 0.20 1,1-Dichloroethene 75-35-4 ug/L U 0.10 1 1.1-Dichloropropene 563-58-6 BRL 1.0 0.25 ug/L U 1.0 1 1,2,3-Trichlorobenzene 87-61-6 BRL 0.21 ug/L U 1 1,2,3-Trichloropropane 96-18-4 BRL 1.0 ug/L 120-82-1 BRL 1.0 0.17 U 1 1.2.4-Trichlorobenzene ug/L U 1,2,4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 1 ug/L BRL 1.0 0.19 U 1 1,2-Dibromo-3-chloropropane 96-12-8 ug/L U 106-93-4 BRL 1.0 0.18 1 1.2-Dibromoethane ug/L U 95-50-1 BRL 1.0 0.14 1 1.2-Dichlorobenzene ug/L U 1 107-06-2 BRL 1.0 0.18 1.2-Dichloroethane ug/L U 1 1.0 78-87-5 BRL 0.15 1.2-Dichloropropane ug/L U 1 BRL 1.0 0.17 1.3.5-Trimethylbenzene 108-67-8 ug/L U 1 1.3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 ug/L 142-28-9 BRL 1.0 0.19 U 1 1.3-Dichloropropane ug/L 1,4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 U 1 ug/L 0.21 U ł 2,2-Dichloropropane 594-20-7 BRL 1.0 ug/L υ 78-93-3 BRL 5.0 0.28 j 2-Butanone ug/L 95-49-8 BRL 1.0 0.19 υ 1 2-Chlorotoluene ug/L 0.32 U 1 591-78-6 BRL 5.0 2-Hexanone BRL 1.0 0.13 ug/L U 1 4-Chlorotoluene 106-43-4 ug/L 2.9 1.0 0.13 1 4-Isopropyltoluene 99-87-6 ug/L U 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 1 ug/L 0.35 U Acetone 67-64-1 BRL 5.0 1 ug/L Acrolein 107-02-8 BRL 20 6.6 U 1 107-13-1 BRL 2.0 0.49 ug/L U 1 Acrylonitrile 9.3 1.0 0.16 ug/L 1 Benzene 71-43-2 0.21 ug/L U 1 Bromobenzene 108-86-1 BRL 1.0 74-97-5 BRL 1.0 0.20 ug/L U 1 Bromochloromethane ug/L 75-27-4 BRL 1.0 0.25 U 1 Bromodichloromethane ug/L U 75-25-2 BRL 1.0 0.17 1 Bromoform ug/L U Bromomethane 74-83-9 BRL 1.0 0.25 1 ug/L U 1 Carbon disulfide 75-15-0 BRL 1.0 0.26 ug/L U 56-23-5 BRL 1.0 0.33 1 Carbon Tetrachloride ug/L 108-90-7 BRL 1.0 0.15 U 1 Chlorobenzene ug/L U 75-00-3 BRL 1.0 0.26 1 Chloroethane ug/L 67-66-3 BRL 1.0 0.16 U 1 Chloroform 74-87-3 BRL 1.0 0.25 ug/L U 1 Chloromethane ug/L 156-59-2 BRL 1.0 0.21 U 1 cis-1,2-Dichloroethene ug/L 0.10 U 1 10061-01-5 BRL 1.0 cis-1,3-Dichloropropene ug/L U 1 BRL 1.0 0.15 Dibromochloromethane 124-48-1

Version: 1.002

Page 3 of 22

I

Certificate of Analytical Results 12607

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-2-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-002	Date Collected: Sep-05-07 14:15	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE V	OCs by SW8260B			Prep	Method: SW	V5030B	
Date Analyzed: Sep-14-07 09:29	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-0 7 07:13	Tech:	МЛ .01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	ł
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	υ	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	14	1.0	0.22	ug/L		1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	\mathbf{U}	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-DUP	Matri	x: WATI	R	% Moistu	'e:	<u></u>	
Lab Sample Id: 12607-003	Date Collecte	d Sen-0	5-07 16:00	Date Receive	 d: Sen-07-	07 09-50	1
Causala Danda	Date Concele	a. Scp-v.	5-07 10,00	Date Receive	u. oep-v/-	07 07.50	
Sample Depth:							
Analytical Method: USACE V	OCs by SW8260B	-		Prep	Method: SV	V5030B	
Date Analyzed: Sep-14-07 09:57	Analyst: MDS01 See Number: 37410		Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
	Seq Number: 37410						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ū	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1 2 4-Trichlorobenzene	120-82-1	BRI	1.0	0.17	ug/L	Ū	1
1 2 4-Trimethylbenzene	95-63-6	BRL	10	0.14	ug/L	Ū	1
1.2.Dibromo-3.chloropropage	96-12-8	BRI	1.0	0.19	ue/L	Ŭ	1
1.2-Dibromoethane	106-93-4	BRI	1.0	0.18	ue/L	U U	i
1.2.Dichlorobenzene	95-50-1	BRI	1.0	0.18	ue/L	й И	1
1.2 Dichloroothana	107.06.2	DRL	1.0	0.19	ng/L	U U	1
1,2-Dichloropping	70 07 5	DNL	1.0	0.15	ug/I	U U	,
1,2-Dichloropropane	/8-8/-J 109/719	DRL	1.0	0.15	ug/L	U	1
1,3,5-1 ninethyldenzene	108-07-8	DDI	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BKL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BKL	1.0	0.19	u <u>y</u> r.	0	1
I,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRI	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRI	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRI	1.0	0.26	ug/L	Ū	1
Carbon Tetrachloride	56-73-5	BRI	1.0	0.33	ug/L	ŭ	1
Chlorohanzene	102-00-7	DICL	1.0	0.15	ug/L	ŭ	1
Chloroethana	75 00 2	וממ	1.0	0.15	u g/L	U	í
Chloroform	(J-00-J K7 K6 2		1.0	0.20	ug/L	U	1
Chloromethane	07-00-3		1.0	0.10	цеЛ.	U U	1
cinoromethane	/ 4- 0/+J 154 50 0	DILL DDI	1.0	0.23	ч _Б /L 110/I	U 1	1
cis-1,2-Dichloroethene	100-09-2	BRL	1.0	0.21	ug/L	U	1

124-48-1

10061-01-5

1.0

1.0

0.10

0.15

BRL

BRL

cis-1,3-Dichloropropene

Dibromochloromethane

Page 5 of 22

ug/L

ug/L

U

U

1

1

^{*}

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-DUP	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-003	Date Collected: Sep-05-07 16:00	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE V	DCs by SW8260B			Prej	p Method: SW	/5030B	
Date Analyzed: Sep-14-07 09:57	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	\mathbf{U}	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	ł
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U]
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	<u>1</u>
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-3-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-004	Date Collected: Sep-05-07 15:10	Date Received: Sep-07-07 09:50
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: Sep-14-07 10:25 Analyst: MDS01 Date Prep: Sep-14-07 07:13 Tech: MJL01 Seq Number: 37410 **Result Rep Limit** MDL Units Flag Dil Cas Number Parameter 1,1,1,2-Tetrachloroethane BRL 0.24 ug/L U 1 630-20-6 1.0 1,1,1-Trichloroethane 71-55-6 BRL 1.0 0.16 ug/L U 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 U 1 ug/L 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 U 1 ug/L BRL 1.0 0.11 U 1 1,1-Dichloroethane 75-34-3 1.0 0.20 ug/L U BRL 1 1,1-Dichloroethene 75-35-4 ug/L 1.0 0.10 U 563-58-6 BRL 1 1,1-Dichloropropene ug/L BRL 1.0 0.25 U 1 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.21 ug/L U 1 1,2,3-Trichloropropane 96-18-4 ug/L U 1,2,4-Trichlorobenzene 120-82-1 BRL 1.0 0.17 1 ug/L U 1,2,4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 1 ug/L 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 U l ug/L 106-93-4 BRL 1.0 0.18 U 1 1.2-Dibromoethane ug/L U 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L 107-06-2 BRL 1.0 0.18 U 1 1.2-Dichloroethane BRL 1.0 0.15 ug/L U 1 78-87-5 1,2-Dichloropropane ug/L 108-67-8 BRL 1.0 0.17 U 1 1,3,5-Trimethylbenzene ug/L BRL 1.0 0.17 U 1 1,3-Dichlorobenzene 541-73-1 ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 U 1 ug/L 1.4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 U 1 ug/L 594-20-7 BRL 1.0 0.21 U 1 2,2-Dichloropropane ug/L BRL 0.28 U 1 2-Butanone 78-93-3 5.0 ug/L U 2-Chlorotoluene 95-49-8 BRL 1.0 0.19 1 ug/L 591-78-6 BRL 5.0 0.32 U 1 2-Hexanone 4-Chlorotoluene 106-43-4 BRL. 1.0 0.13 ug/L U 1 ug/L 4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 U 1 ug/L BRL 0.26 U 1 4-Methyl-2-pentanone 108-10-1 5.0 ug/L U BRL 5.0 0.35 1 Acetone 67-64-1 ug/L U Acrolein 107-02-8 BRL 20 6.6 1 ug/L Acrylonitrile 107-13-1 BRL 2.0 0.49 U 1 ug/L Benzene 71-43-2 BRL 1.0 0.16 U 1 108-86-1 BRL 1.0 0.21 ug/L U 1 Bromobenzene ug/L Bromochloromethane 74-97-5 BRL 1.0 0.20 U 1 ug/L Bromodichloromethane 75-27-4 BRL 1.0 0.25 U 1 ug/L 75-25-2 BRL 1.0 0.17 U 1 Bromoform ug/L U 74-83-9 BRL 1.0 0.25 1 Bromomethane ug/L U 75-15-0 BRL 1.0 0.26 1 Carbon disulfide ug/L U 0.33 Carbon Tetrachloride 56-23-5 BRL 1.0 1 ug/L U Chlorobenzene 108-90-7 BRL 1.0 0.15 1 ug/L 75-00-3 BRL 1.0 0.26 U 1 Chloroethane ug/L BRL 0.16 U Chloroform 67-66-3 1.0 1 ug/L Chloromethane 74-87-3 BRL 1.0 0.25 U 1 BRL 1.0 0.21 ug/L U cis-1,2-Dichloroethene 156-59-2 1 ug/L U 10061-01-5 BRL 1.0 0.10 1 cis-1,3-Dichloropropene ug/L BRL 1.0 0.15 U 1 Dibromochloromethane 124-48-1

*

Page 7 of 22

ſ

Certificate of Analytical Results 12607

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-3-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-004	Date Collected: Sep-05-07 15:10	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B		Prep Method: SW5030B						
Date Analyzed: Sep-14-07 10:25	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1	
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1	
Ethylbenzene	100-41-4	BRL	0.1	0.19	ug/L	υ	1	
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1	
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1	
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1	
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1	
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1	
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1	
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1	
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1	
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1	
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1	
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1	
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1	
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1	
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1	
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1	
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	\mathbf{U}	1	
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1	
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1	
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1	

*

1

Certificate of Analytical Results 12607

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-HCL-3-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-005	Date Collected: Sep-05-07 16:10	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B		Prep Method: SW5030B					
Date Analyzed: Sep-14-07 12:43	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	МЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	1.7	1.0	0.25	ug/L		1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	1.1	1.0	0.17	ug/L		1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1 4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	11	1.0	0.16	ug/L		1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	I
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Page 9 of 22

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-HCL-3-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-005	Date Collected: Sep-05-07 16:10	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B		Prep Method: SW5030B						
Date Analyzed: Sep-14-07 12:43	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1	
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1	
Ethylbenzene	100-41-4	4.7	1.0	0.19	ug/L		1	
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1	
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1	
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1	
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1	
m-Xylene/p-Xylene	179601-23-1	0.81	2.0	0.51	ug/L	J	1	
Naphthalene	91-20-3	360	1.0	0.22	ug/L		1	
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1	
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1	
o-Xylene	95-47-6	3.4	1.0	0.20	ug/L		1	
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1	
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1	
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	\mathbf{U}	1	
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1	
Toluene	108-88-3	1.0	1.0	0.14	ug/L	J	1	
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	I	
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	ĭ	
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1	
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1	
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1	

*

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-4-9-07 Lab Sample Id: 12607-006 Sample Depth:	Matri Date Collecte	x: WATE d: Sep-00	CR 6-07 08:15	% Moistur Date Receive	e: d: Sep-07-	07 09:5	0
Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B							
Date Analyzed: Sep-14-07 15:30	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	\mathbf{U}	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1

1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	Ŭ	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U]
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

*

Page 11 of 22

Г

Certificate of Analytical Results 12607

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-4-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-006	Date Collected: Sep-06-07 08:15	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE VOUs by SW8260B				Ртер	Method: SW	/5030B	
Date Analyzed: Sep-14-07 15:30	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	МЛ.01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	υ	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-5-9-07	Matrix: WATER		% Moisture:				
Lab Sample Id: 12607-007	Date Collecte	d: Sep-0	6-07 09:35	Date Receive	d: Sep-07-0	07 09:50)
Sample Depth		•			•		
Sampie Depti.							
Analytical Method: USACE V	OCs by SW8260B			Prep	Method: SW	V5030B	
Date Analyzed: Sep-14-07 15:58	Analyst: MDS01]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
	Seq Number: 37410		_	-			
Parameter	Cas Number	Result	Ren Limit	MDL	Units	Flag	Dil
	Custumber	ACGUIT	Kep Linik		Cinto	1.116	2.
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	Ū	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	Ŭ	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	Ũ	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ũ	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	Ŭ	1
2 2-Dichloropropane	594-20-7	BRL	10	0.21	ug/L	U U	1
2-Butanone	78-93-3	BRI	50	0.28	ug/L	Ŭ	1
2-Chlorotoluene	95.49.8	BRI	1.0	0.20	ug/L	ŭ	1
2-Hexprone	591-78-6	BDI	50	0.12	ug/L	11	1
4-Chiorotoluene	106-43-4	BRI	10	0.13	-e/- ue/L	U U	1
4-Isopropyltoluene	00-87-6	BRI	1.0	0.13	ug/L	U U	1
4-Methyl-2-pentanone	108 10 1	BDI	5.0	0.15	ug/l	U U	1
4-Methyl-2-pentatione	67.64.1	DKL	5.0	0.20	ug/L	U	1
According	107 02 9		20	0.33	ug/L	1	1
	107-02-8	DKL	20	0.0	ug/L	U 11	1
Acrylominie Deserve	107-13-1	BKL	2.0	0.49	ug/L	U II	1
Benzene	/1-43-2	BKL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BKL	1.0	0.21	ug/L	U.	1
Bromochloromethane	/4-9/-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromotorm	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1

BRL

124-48-1

1.0

0.15

*

Dibromochloromethane

Page 13 of 22

ug/L

U

1

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-MW-5-9-07	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-007	Date Collected: Sep-06-07 09:35	Date Received: Sep-07-07 09:50
Sample Depth:		

Analytical Method: USACE V	OCs by SW8260B		Prep Method: SW5030B					
Date Analyzed: Sep-14-07 15:58	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1	
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1	
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	υ	1	
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1	
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1	
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1	
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1	
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1	
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1	
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1	
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	\mathbf{U}	1	
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	\mathbf{U}	1	
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	\mathbf{U}	1	
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1	
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1	
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1	
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1	
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1	
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1	
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1	
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	\mathbf{U}	1	
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1	

*

Analytical Method: USACE VOCs by SW8260B

Certificate of Analytical Results 12607

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-Blank	Matrix: WATER	% Moisture:	
Lab Sample Id: 12607-008	Date Collected: Sep-06-07 11:00	Date Received: Sep-07-07 09:50	
Sample Depth:			

Date Analyzed: Sep-14-07 14:06 Analyst: MDS01 Date Prep: Sep-14-07 07:13 Tech: MJL01 Seq Number: 37410 **Result Rep Limit** MDL Units Dil Parameter Cas Number Flag 630-20-6 ug/L BRL 1.0 0.24 U 1 1.1.1.2-Tetrachloroethane ug/L U 1,1,1-Trichloroethane BRL 1.0 0.16 71-55-6 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 U 0.18 1 ug/L 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 Ŭ 1 ug/L 1.1-Dichloroethane 75-34-3 BRL 1.0 0.11 U 1 ug/L 1.1-Dichloroethene 75-35-4 BRL 1.0 0.20U 1 BRL ug/L Ŭ 1,1-Dichloropropene 563-58-6 1.0 0.10 1 ug/L 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.25 U 1 BRL ug/L U 1,2,3-Trichloropropane 96-18-4 1.0 0.21 1 ug/L 1,2,4-Trichlorobenzene 120-82-1 BRL. 1.0 0.17 U 1 ug/L 1,2,4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 U 1 1,2-Dibromo-3-chloropropane BRL 1.0 0.19 ug/L U 1 96-12-8 ug/L U 1,2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 ug/L U 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 U 1 ug/L 1,2-Dichloropropane 78-87-5 BRL 1.0 0.15 U 1 ug/L 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 U 1 BRL ug/L U 1,3-Dichlorobenzene 541-73-1 1.0 0.17 1 ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 U 1 ug/L BRL 1.0 0.17 U 1,4-Dichlorobenzene 106-46-7 1 ug/L U 594-20-7 BRL 1.0 0.21 2,2-Dichloropropane 1 ug/L 78-93-3 U BRL 5.0 0.28 1 2-Butanone ug/L BRL U 2-Chlorotoluene 95-49-8 1.0 0.19 1 ug/L 2-Hexanone 591-78-6 BRL 5.0 0.32 U 1 ug/L U 4-Chlorotoluene 106-43-4 BRL 1.0 0.13 1 ug/L 4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 U 1 ug/L 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 U 1 ug/L 67-64-1 BRL 5.0 0.35 U Acetone 1 ug/L Acrolein 107-02-8 BRL 206.6 U 1 Acrylonitrile 107-13-1 BRL. 2.0 0.49 ug/L U 1 Benzene 71-43-2 BRL 1.0 0.16 ug/L U 1 Bromobenzene ug/L 108-86-1 BRL 1.0 0.21 U 1 ug/L 74-97-5 U Bromochloromethane BRL 1.0 0.20 1 ug/L Bromodichloromethane 75-27-4 BRL 1.0 0.25 U 1 ug/L Bromoform 75-25-2 BRL 1.0 0.17 U 1 ug/L Bromomethane 74-83-9 BRL 1.0 0.25 U 1 Carbon disulfide 75-15-0 BRL 1.0 0.26 ug/L U 1 Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 ug/L U 1 Chlorobenzene 108-90-7 BRL 1.0 0.15 ug/L U 1 ug/L Chloroethane 75-00-3 BRL 1.0 0.26 U 1 ug/L BRL U Chloroform 67-66-3 1.0 0.16 1 ug/L 74-87-3 BRL 1.0 0.25 U Chloromethane 1 ug/L BRL 0.21 U cis-1,2-Dichloroethene 156-59-2 1.0 l ug/L BRL 0.10 U cis-1,3-Dichloropropene 10061-01-5 1.0 1 ug/L Dibromochloromethane 124-48-1 BRL 1.0 0.15 U

•

Page 15 of 22

Prep Method: SW5030B

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: P-Blank Lab Sample Id: 12607-008 Sample Depth:	Matrix: WATER Date Collected: Sep-06-07 11:00	% Moisture: Date Received: Sep-07-07 09:50
Analytical Method: USACE VOCs		Pren Method: SW5030B

Analytical Method: USACE VOCs by SW8260B				Prep	o Method: SW	/5030B	
Date Analyzed: Sep-14-07 14:06	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	ер-14-07 07:13	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	. 1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: Trip Blank	Matri	x: WATE	R	% Moistu	re:		1.700000772
Lab Sample Id: 12607-009	Date Collecte	d: Sen-06	-07 00:00	Date Receive	ed: Sev-07-(07 09:50	
Sample Denth					·····		
Sampie Depui.							
Analytical Method: USACE V	Prep	Method: SW	/5030B				
Date Analyzed: Sep-14-07 14:34	Analyst: MDS01	Γ	Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
	Seq Number: 37410		-				
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
	(20.00.0		r		/Т	a	
1,1,1,2-1 etrachioroethane	630-20-6	BKL	1.0	0.24	ug/L	U	1
1,1,1-1richloroethane	/1-55-6	BRL	1.0	0.16	ug/1_	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	0	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	8/-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	i ·
1,2,4-Trichlorobenzene	120-82-1	BKL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	I
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Page 17 of 22

Г

Certificate of Analytical Results 12607

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: Trip Blank	Matrix: WATER	% Moisture:
Lab Sample Id: 12607-009 Sample Depth:	Date Collected: Sep-06-07 00:00	Date Received: Sep-07-07 09:50

Analytical Method: USACE V	Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B						
Date Analyzed: Sep-14-07 14:34	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	\mathbf{U}	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	\mathbf{U}	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

¥

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: 303758 BLK	Matri	x: WATE	R	% Moistu	re:		
Lab Sample Id: 303758 BLK	Date Collecte	d:		Date Receive	:a:		
Sample Depth:							
Analytical Method: USACE V	OCs by SW8260B			Ргер	Method: SV	V5030B	
Date Analyzed: Sep-14-07 08:31	Analyst: MDS01 Seq Number: 37410	1	Date Prep: Se	p-14-07 07:13	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1 1 2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1 1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1 1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	Ū	1
1.1-Dichloropropene	563-58-6	BRI	1.0	0.10	ug/L	Ū	ī
1.2.3-Trichlorobenzene	87-61-6	BRI	1.0	0.25	ug/L	Ũ	1
1.2.3-Trichloropropane	96-18-4	BRJ.	1.0	0.21	ug/L	Ū	1
1.2.4-Trichlorobenzene	120-82-1	BRI	1.0	0.17	ug/L	Ū	1
1.2.4.Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	Ū	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	Ū	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	Ŭ	i
1.2-Dichlorobenzene	95-50-1	BRI	1.0	0.14	ug/L	Ŭ	1
1.2-Dichloroethane	107-06-2	BRI	1.0	0.18	ug/L	Ŭ	1
1.2-Dichloropropage	78-87-5	BRL	1.0	0.15	ug/L	ŭ	i
1.3 5 Trimethylbenzene	108-67-8	BRI	1.0	0.17	ບg/L	ŭ	i
1.3-Dichlorobenzene	541-73-1	BRI	1.0	0.17	- <i>g</i> - ug/L	ŭ	1
1.3-Dichloropropage	142-28-9	BBI	1.0	0.19	-g - ug/L	ŭ	1
1.4.Dichlorobenzene	106-46-7	BRI	1.0	0.17	ug/L	Ŭ	1
2.2 Dichloropropage	504-20-7	BRI	1.0	0.21	ug/L	ŭ	1
2. Butanona	78-03-3	BRI	5.0	0.21	ug/L	ň	1
2 Chlorotoluene	05-40-8	זעמ	1.0	0.19	ug/L	т П	1
2 Howanono	501 78 6		5.0	0.19	ug/L	ы П	1
4 Chlorotoluene	106-43-4	BRI	5.0	0.32	-g- ug/L	и И	1
4 Isopropultohene	00.87.6	BRI	1.0	0.13	ug/L	ŭ	1
4 Mathul 2 pantanana	109 10 1		5.0	0.15	- <u>e</u> -	ŭ	1
A astone	67 64 1		5.0	0.20	ug/L	ŭ	1
Acetone	107-04-1		5.0 20	66	ug/I	U U	1
Actolem	107-02-8		20	0.0	ug/L	U U	1
Bangana	71 42 2	DRL	2.0	0.49	ug/L	- U	1
Benzene	/1-43-2		1.0	0.10	ug/L	и П	1
Bromobenzene	74.07.6	DAL	1.0	0.21	ug/L	ň	1
Bromocnioromethane	14-71-0 75 00 1	DKL דתת	1.0	0.20	и <u>е</u> /L	U 11	1
Bromodicnioromethane	15-21-4	BKL	1.0	0.43	ug/L	U 11	1
Bromotorm	/5-25-2	BKL	1.0	0.17	ug/L		1
Bromomethane	/4-83-9	BKL	1.0	0.25	ug/L	U	1
Carbon disultide	75-15-0	BKL	1.0	0.20	ug/L	U	1
Carbon Letrachloride	36-23-3	BKL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

*

Page 19 of 22

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: 303758 BLK Lab Sample Id: 303758 BLK Sample Douth	Matri Date Collecte	ix: WATE d:	ER	% Moistu Date Receive	re: ed:		
	00.1. GW92/48					160200	
Analytical Method: USACE V	OCS by SW8260B			Prep	Method: SV	V 2030B	
Date Analyzed: Sep-14-07 08:31	Analyst: MDS01 Seq Number: 37410]	Date Prep: Se	p-14-0 7 07:13	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	\mathbf{U}	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	\mathbf{U}	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: 303761 BLK	Matri	x: WATE	R	% Moistu	ire:		
Lab Sample Id: 303761 BLK	Date Collecte	d٠		Date Receiv	ed:		
Sample Denth:				Dute Hotel			
Sample Depth.							
Analytical Method: USACE VO	OCs by SW8260B			Prep	Method: SV	V5030B	
Date Analyzed: Scp-15-07 12:18	Analyst: MJL01 Seg Number: 37414]	Date Prep: Se	p-15-07 10:05	Tech:	MJL01	
Parameter	Cas Number	Result	Ren Limit	MDL	Units	Flag	Dil
	Cusifumber	ittouit	Rep Emili		CIIICS		
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	I
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	I
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	I
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78 - 87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRI	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRI	1.0	0.26	ug/L	Ū	1
Carbon Tetrachloride	56-23-5	BRI	1.0	0.33	ug/L	Ū	Ĩ
Chlorobenzene	108-90-7	BRI	1.0	0.15	ug/L	Ŭ	î
Chloroethane	75-00-3	BRI	1.0	0.26	ug/L	й Ц	i
Chloroform	67-66-3	RRI	1.0	0.16	ug/L	й П	1
Chloromethane	74-87-3	BRI	10	0.10	ug/L	ŭ	1
cis-1 2-Dichloroethene	156-59-2	BRI	10	0.21	ug/L	Ŭ	1
cis-1 3-Dichloropropene	10061-01-5	BRI	10	0.10	սը/Լ	ŭ	i
Dibromochloromethane	174-48-1	BRI	1.0	0.15	ug/L	ŭ	î

*

Page 21 of 22

Analytical Management Laboratories, Inc., Olathe, KS

HAAF Perimeter Hunter Army Airfield

Sample Id: 303761 BLK Lab Sample Id: 303761 BLK Sample Depth:	Matri Date Collecte	x: WATE d:	ER	% Moistu Date Receiv	re: ed:		
Analytical Method: USACE V	OCs by SW8260B		· · · · · · · · · · · · · · · · · · ·	Ртер	Method: SV	V5030B	
Date Analyzed: Sep-15-07 12:18	Analyst: MJL01 Seq Number: 37414]	Date Prep: Se	p-15-07 10:05	Tech:	МЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	\mathbf{U}	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	\mathbf{U}	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	\mathbf{U}	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	\mathbf{U}	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

*

Form 2 - Surrogate Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Work Order #: 12607		Project ID	: Task Order	0090	
Lab Batch #: 37410 Sample: 12607-00	01 / SMP Bate	h: ¹ Matr	ix: W		
Units: ug/L	SU	JRROGATE RI	ECOVERY ST	FUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	43.1	50.0	86	53-159	
Bromofluorobenzene	50.0	50.0	100	30-186	
Toluene-D8	47.2	50.0	94	83-136	
Lab Batch #: 37410 Sample: 12607-0	02 / SMP Bate	ch: 1 Matr	ix: W		
Units: ug/L	ા	JRROGATE R	ECOVERY S	ΓUDY	
VOCs by SW8260B	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags
Analytes			(2)	62.150	
1,2-Dichloroethane-d4	44.7	50.0	89	53-159	
Bromofluorobenzene	50.1	50.0	100	30-186	
Toluene-D8	47.1	50.0	94	83-130	
Lab Batch #: 37410 Sample: 12607-0	03 / SMP Bat	ch: 1 Mat	rix: W		
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[0]		
1,2-Dichloroethane-d4	43.6	50.0	87	53-159	
Bromofluorobenzene	49.9	50.0	100	30-186	
Toluene-D8	47.0	50.0	94	83-136	
Lab Batch #: 37410 Sample: 12607-0	04 / SMP Bat	ch: 1 Mat	rix: W	<u> </u>	
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	43.3	50.0	87	53-159	
Bromofluorobenzene	50.8	50.0	102	30-186	
Toluene-D8	47.1	50.0	94	83-136	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Work Order #: 12607		Project ID	: Task Order	0090	
Lab Batch #: 37410 Sample: 12607-005 / SMP	Bat	ch: ¹ Matr	ix: W		
Units: vg/L	S	URROGATE RI	COVERY S	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	44.1	50.0	88	53-159	
Bromofluorobenzene	50.4	50.0	101	30-186	
Toluene-D8	46.8	50.0	94	83-136	
Lab Batch #: 37410 Sample: 12607-006 / SMP	Bat	ch: ¹ Matr	ix: W		
Units: ug/L	S	URROGATE RI	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			141		
1,2-Dichloroethane-d4	44.5	50.0	89	33-159	
Bromofluorobenzene	50.4	50.0	101	30-186	
Toluene-D8	47.2	50.0	94	83-130	
Lab Batch #: 37410 Sample: 12607-007 / SMP	Bat	tch: 1 Mat	ix: W		
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount (B)	Recovery %R IDI	Control Limits %R	Flags
Analytes		50.0	1-,	62 160	
1,2-Dichlorolenane-u4	50.1	50.0	100	30 186	
Toluene-D8	46.9	50.0	94	83-136	
Lab Batch #: 37410 Sample: 12607-008 / SMP		teh l Matu			
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	43.6	50.0	87	53-159	
Bromofluorobenzene	50.2	50.0	100	30-186	
Toluene-D8	46.6	50.0	93	83-136	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B
- All results are based on MDL and validated for QC purposes.
- Z = Surrogate Recovery exceeded the Labortatory QC limits

Form 2 - Surrogate Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Work Order #: 12607		Project ID	: Task Order	0090	
Lab Batch #: 37410 Sample: 120	507-009 / SMP Bat	ch: ¹ Matr	ix: W		
Units: ug/L	S	URROGATE RE	ECOVERY ST	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	44.2	50.0	88	53-159	
Bromofluorobenzene	50.7	50.0	101	30-186	
Toluene-D8	47.1	50.0	94	83-136	
Lab Batch #: 37410 Sample: 30	3758 BLK / BLK Bat	ch: ¹ Matr	ix: W		
Units: ug/L	S	URROGATE RI	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Límits %R	Flags
Analytes			1201	(5.105	
1,2-Dichloroethane-d4	44.0	50.0	88	63-125	
Bromofluorobenzene	51.4	50.0	103	86 127	
Toluene-Da	47.7	50.0	93	80-127	
Lab Batch #: 37414 Sample: 12	607-005 DL / DIL Bat	tch: 1 Matr	rix: W		
Units: ug/L	S	URROGATE RI	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[10]		
1,2-Dichloroethane-d4	428	500	86	53-159	
Bromofluorobenzene	509	500	102	30-186	
Toluene-D8	474	500	95	83-136	
Lab Batch #: 37414 Sample: 30	3761 BLK / BLK Ba	tch: 1 Matr	rix: W		
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	41.6	50.0	83	65-125	
Bromofluorobenzene	50.0	50.0	100	66-148	
Toluene-D8	47.2	50.0	94	86-127	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

		Rep	ort Date:		09/2	1/07 12:53
Work Order #: 12607		Pı	oject ID:		Task C	order 0090
Lab Batch #: 37410 S	ample: 3037581	BKS	Matrix: W	/		
Reporting Units: ug/L B	atch #: 1	BLANK /	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	(B)	(C)	%R [D]	% R	
1,1,1,2-Tetrachloroethane	<0.24	50	47	94	70-130	
1,1,1-Trichloroethane	<0.16	50	49	98	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	44	88	70-130	
1,1,2-Trichloroethane	<0.25	50	45	90	70-130	
1,1-Dichloroethane	<0.11	50	48	96	70-130	
1,1-Dichloroethene	<0.20	50	49	98	74-127	
1,1-Dichloropropene	<0.10	50	50	100	70-130	
1,2,3-Trichlorobenzene	<0.25	50	44	88	70-130	
1,2,3-Trichloropropane	<0.21	50	44	88	70-130	
1,2,4-Trichlorobenzene	<0.17	50	47	94	70-130	
1,2,4-Trimethylbenzene	<0.14	50	51	102	70-130	
1,2-Dibromo-3-chloropropane	<0.19	50	41	82	70-130	
1,2-Dibromoethane	<0.18	50	46	92	70-130	
1,2-Dichlorobenzene	<0.14	50	50	100	70-130	
1,2-Dichloroethane	<0.18	50	48	96	70-130	
1,2-Dichloropropane	<0.15	50	48	96	70-130	
1,3,5-Trimethylbenzene	<0.17	50	52	104	70-130	
1,3-Dichlorobenzene	<0.17	50	51	102	70-130	
1,3-Dichloropropane	<0.19	50	46	92	70-130	
1,4-Dichlorobenzene	<0.17	50	51	102	70-130	
2,2-Dichloropropane	<0,21	50	53	106	70-130	
2-Butanone	<0.28	100	83	83	70-130	
2-Chlorotoluene	<0.19	50	50	100	70-130	
2-Hexanone	<0.32	100	73	73	70-130	
4-Chlorotoluene	<0.13	50	50	100	70-130	
4-Methyl-2-pentanone	<0.26	100	83	83	70-130	
Acetone	<0.35	100	68	68	70-130	Z
Acrolein	<6.6	100	89	89	70-130	
Acrylonitrile	<0.49	100	88	88	70-130	
Benzene	<0.16	50	50	100	72-122	
Bromobenzene	<0.21	50	48	96	70-130	
Bromochloromethane	<0.20	50	49	98	70-130	
Bromodichloromethane	<0.25	50	49	98	70-130	
Bromoform	<0.17	50	47	94	70-130	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

		Rep	ort Date:		09/2	1/07 12:53
Work Order #: 12607		Р	roject ID :		Task C	0090 Order
Lab Batch #: 37410	Sample: 303758	BKS	Matrix: W	/		
Reporting Units: ug/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes			[C]	[D]		
Bromomethane	<0.25	50	45	90	70-130	
Carbon disulfide	<0.26	50	55	110	70-130	
Carbon Tetrachloride	<0.33	50	50	100	70-130	
Chlorobenzene	<0.15	50	50	100	74-122	
Chloroethane	<0.26	50	50	100	70-130	
Chloroform	<0.16	50	48	96	70-130	
Chloromethane	<0.25	50	43	86	70-130	
cis-1,2-Dichloroethene	<0.21	50	47	94	70-130	
cis-1,3-Dichloropropene	<0.10	50	49	98	70-130	
Dibromochloromethane	<0.15	50	47	94	70-130	
Dibromomethane	<0.24	50	48	96	70-130	-
Dichlorodifluoromethane	<0.22	50	32	64	70-130	Z
Ethylbenzene	<0.19	50	50	100	70-130	
Hexachlorobutadiene	<0.13	50	50	100	70-130	
lsopropylbenzene	<0.15	50	51	102	70-130	
Methylene Chloride	<0.42	50	51	102	70-130	
Methyl tert-Butyl Ether	<0.11	100	89	89	70-130	
m-Xylene/p-Xylene	<0.51	100	100	100	70-130	
Naphthalene	<0.22	50	40	80	70-130	
n-Butylbenzene	<0.17	50	51	102	70-130	
n-Propylbenzene	<0.18	50	51	102	70-130	
o-Xylene	<0.20	50	51	102	70-130	
Sec-Butylbenzene	<0.21	50	52	104	70-130	
Styrene	<0.18	50	52	104	70-130	
tert-Butylbenzene	<0.18	50	52	104	70-130	
Tetrachloroethene	<0.16	50	53	106	70-130	
Toluene	<0.14	50	49	98	77-121	
trans-1,2-Dichloroethene	<0.21	50	47	94	70-130	
trans-1,3-Dichloropropene	<0.11	50	47	94	70-130	
Trichloroethene	<0.19	50	50	100	66-119	
Trichlorofluoromethane	<0.53	50	46	92	70-130	
Vinyl acetate	<1.3	50	42	84	70-130	
Vinyl chloride	<0.19	50	46	92	70-130	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA Applicable N = See Narrative, EQL = Estimated Quantitation Limit

	Repo	ort Date:		09/2	1/07 12:53
	Pı	oject ID :		Task C	order 0090
ample: 303761 I	3KS	Matrix: W	/		
atch #: 1	BLANK /	BLANK SPI	KE REC	OVERY ST	UDY
Blank Result [A]	Spike Added IBI	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
[,**]	[22]	[C]	[D]		
<0.24	50	46	92	70-130	
<0.16	50	51	102	70-130	
<0.18	50	41	82	70-130	
<0.25	50	42	84	70-130	
<0.11	50	49	98	70-130	
<0.20	50	51	102	70-130	
<0.10	50	52	104	70-130	
<0.25	50	49	98	70-130	
<0.21	50	41	82	70-130	
<0.17	50	52	104	70-130	i
<0.14	50	51	102	70-130	
<0.19	50	37	74	70-130	
<0.18	50	45	90	70-130	
<0.14	50	49	98	70-130	
<0.18	50	47	94	70-130	
<0.15	50	49	98	70-130	
<0.17	50	51	102	70-130	
<0.17	50	51	102	70-130	
<0.19	50	45	90	70-130	
<0.17	50	51	102	70-130	
<0.21	50	58	116	70-130	
<0.28	100	83	83	70-130	
<0.19	50	49	98	70-130	
<0.32	100	68	68	70-130	Z
<0.13	50	50	100	70-130	
<0.26	100	75	75	70-130	
<0.35	100	92	92	70-130	
<6.6	100	82	82	70-130	
<0.49	100	130	130	70-130	
<0.16	50	51	102	70-130	
<0.21	50	47	94	70-130	
<0.20	50	49	98	70-130	
<0.25	50	49	98	70-130	
<0.17	50	44	88	70-130	
	ample: 303761 H atch #: 1 Blank Result [A] <0.24	Repu Pr ample: 303761 BKS atch #: 1 BLANK / Blank Result [A] Spike Added [B] <0.24	Report Date: Project ID: Matrix: W ample: 303761 BKS Matrix: W atch #: 1 BLANK /BLANK SPI Result [A] Spike Added [B] Blank Result [C] <0.24	Report Date: Project ID: Matrix: W Matrix: W BLANK /BLANK SPIKE REC(Blank Result [A] Blank Spike Result [C] Blank Spike Result Resu	Report Date: 0.9/2 Project ID: Task C ample: 303761 BKS BLANK /BLANK SPIKE RECVERY ST atch #: 1 BLANK /BLANK SPIKE RECVERY ST Result [A] Spike Blank Added [B] Blank Result [C] Blank %R [D] Control %R <0.24

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

		Rep	ort Date:		09/2	1/07 12:53
Work Order #: 12607		P	roject ID :		Task C	0090 Order
Lab Batch #: 37414	Sample: 303761 E	3KS	Matrix: V	V		
Reporting Units: ug/L	Batch #: 1	BLANK	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes				וען		
Bromomethane	<0.25	50	51	102	70-130	
Carbon disulfide	<0.26	50	68	136	70-130	Z
Carbon Tetrachloride	<0.33	50	53	106	70-130	
Chlorobenzene	<0.15	50	49	98	70-130	
Chloroethane	<0.26	50	55	110	70-130	
Chloroform	<0.16	50	48	96	70-130	
Chloromethane	<0.25	50	46	92	70-130	
cis-1,2-Dichloroethene	<0.21	50	49	98	70-130	
cis-1,3-Dichloropropene	<0.10	50	50	100	70-130	
Dibromochloromethane	<0.15	50	46	92	70-130	
Dibromomethane	<0.24	50	47	94	70-130	
Dichlorodifluoromethane	<0.22	50	42	84	70-130	
Ethylbenzene	<0.19	50	50	100	70-130	
Hexachlorobutadiene	<0.13	50	53	106	70-130	
Isopropylbenzene	<0.15	50	51	102	70-130	
Methylene Chloride	<0.42	50	52	104	70-130	
Methyl tert-Butyl Ether	<0.11	100	86	86	70-130	
m-Xylene/p-Xylene	<0.51	100	100	100	70-130	
Naphthalene	<0.22	50	43	86	70-130	_
n-Butylbenzene	<0.17	50	53	106	70-130	
n-Propylbenzene	<0.18	50	50	100	70-130	
o-Xylene	<0.20	50	50	100	70-130	
Sec-Butylbenzene	<0.21	50	51	102	70-130	
Styrene	<0.18	50	52	104	70-130	
tert-Butylbenzene	<0.18	50	54	108	70-130	
Tetrachloroethene	<0.16	50	41	82	70-130	
Toluene	<0.14	50	49	98	77-121	
trans-1,2-Dichloroethene	<0.21	50	50	100	70-130	
trans-1,3-Dichloropropene	<0,11	50	47	94	70-130	
Trichloroethene	<0.19	50	54	108	70-130	
Trichlorofluoromethane	<0.53	50	50	100	70-130	t
Vinyl acetate	<1.3	50	46	92	70-130	[
Vinyl chloride	<0.19	50	50	100	70-130	
· · · · · · · · · · · · · · · · · · ·	I	<u>F</u>	I	I		

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Work Order #: 12607

Form 3 - MS / MSD Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Lab Batch ID: 37410	QC- Sample ID:	12607-	002 MS	Ba	tch #:	l Matri	x: W				
Reporting Units: ug/L			MATRIX SPIK	KE / MAT	RIX SPI	KE DUPLICA'	TE RECO	VERY S	TUDY		
VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	<u>כ</u>	a Rie I	Added	Result [F]	¥5	%	ЖК	%RPD	
1,1,1,2-Tetrachloroethane	<0.24	50	48	96	50	47	94	2	70-130	20	
i, i, l-Trichloroethane	<0.16	50	51	102	50	48	96	6	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	45	06	50	44	88	2	70-130	20	
1,1,2-Trichloroethane	<0.25	50	45	06	50	43	86	5	70-130	20	
1,1-Dichloroethane	<0.11	50	50	001	50	47	94	6	70-130	20	
1,1-Dichloroethene	<0.20	50	50	001	50	48	96	4	70-130	20	
1, t-Dichloropropene	<0.10	50	51	102	50	49	86	4	70-130	20	
1,2,3-Trichtorobenzene	<0.25	50	49	98	50	51	102	4	70-130	20	
1,2,3-Trichloropropane	<0.21	50	45	06	50	45	90	0	70-130	20	
1,2,4-Trichlorobenzene	<0.17	50	51	102	50	52	104	2	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	52	104	50	51	102	2	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	50	43	86	50	41	82	5	70-130	20	
1,2-Dibromoethane	<0.18	50	46	92	50	45	90	2	70-130	20	
1,2-Dichlorobenzene	<0.14	50	51	102	50	50	100	2	20-130	20	
1,2-Dichloroethane	<0.18	50	48	96	50	46	92	4	70-130	20	
1,2-Dichloropropane	<0.15	50	50	100	50	48	96	4	70-130	20	
1.3,5-Trimethylbenzene	<0.17	50	51	102	50	50	100	2	70-130	20	
1,3-Dichlorobenzene	<0.17	50	52	104	50	51	102	2	0€1-02	20	
1,3-Dichloropropane	<0.19	50	47	94	50	46	92	2	70-130	20	
1,4-Dichlorobenzene	<0.17	50	51	102	50	50	100	2	70-130	20	
2,2-Dichloropropane	<0.21	50	54	801	50	50	100	8	70-130	20	
2-Butanone	<0.28	100	84	84	100	84	84	0	70-130	20	
2-Chlorotoluene	<0.19	50	50	100	50	49	98	2	70-130	20	
2-Hexanone	<0.32	100	17	11	100	74	74	4	70-130	20	
Matric Snike Percent Renovery [D] = 100*(C. A)/R	Matrix	Spike Dunl	icate Percent Recov	verv [G]=]	00*(F-A)/E						

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

 $\mathbf{F} = \mathbf{R}\mathbf{P}\mathbf{D}$ exceeded the laboratory control limits

Ē 5 .

0040

Work Order #: 12607 Lab Batch ID: 37410

Form 3 - MS / MSD Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Matrix: W _ Batch #:

QC- Sample ID: 12607-002 MS

Flag

Control Limits %RPD

Control Limits %R

RPD %

Spiked Dup. G %R 70-130 70-130

70-130 20-130

<u>بت</u>

δ

 ~

C1

ŝ

Ś

 Ś

Q

Reporting Units: ug/L						
VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Samp
Analytes	Result [A]	Added [B]	5	8% 10	Added [E]	Result [F]
4-Chlorotoluene	<0.13	50	51	102	50	49
4-Isopropyltoluene	2.9	50	55	104	50	53
4-Methyl-2-pentanone	<0,26	100	86	86	100	85
Acetone	<0.35	100	78	78	100	75
Acrolein	<6.6	100	80	80	100	73
Acrylonitrile	<0.49	100	120	120	100	80
Benzene	9.3	50	60	101	50	58
Bromobenzene	<0.21	50	48	96	50	46
Bromochloromethane	<0.20	50	48	96	50	47
Bromodichloromethane	<0.25	50	50	001	50	49
Вготоform	<0.17	50	47	94	50	46
Bromomethane	<0,25	50	48	96	50	45
Carbon disulfide	<0.26	50	59	811	50	57
Carbon Tetrachloride	<0.33	50	50	001	50	49
Chlorobenzene	<0.15	50	50	001	50	48
Chloroethane	<0.26	50	51	102	50	48
Chioroform	<0.16	50	48	96	50	46
Chloromethane	<0.25	50	44	88	50	42
cis-1,2-Dichloroethene	<0.21	50	47	94	50	47
cis-1, 3-Dichloroptopene	<0.10	50	50	100	50	48

Matrix Spike Percent Recovery [D] = $100^{+}(C-A)/B$ Relative Percent Difference RPD = $200^{+}(D-G)/(D+G)$

 $\mathbf{F} = \mathbf{RPD}$ exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery $[G] = 100^*(F-A)/E$

N

ŝ

<0.15

<0.24

<0.22 <0.19

Dichlorodifluoromethane

Ethylbenzene

Dibromochloromethane Dibromomethane

Work Order #: 12607

Form 3 - MS / MSD Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Matrix: W _ Batch #:

QC- Sample ID: 12607-002 MS

37410	ug/L	VOCs by SW8260B	Analytes
Lab Batch ID:	Reporting Units:		

VOCs by SW8260B	Parent Samole	Snike	piked Sampl- Result	Spiked	Snike	Duplicate biked Sample	Spiked Dup,	RPD	Control Limits	Control	Flag
Analytes	Result [A]	Added [B]	[c]	%R%	Added [E]	Result [F]	161 8	%	%R	%RPD)
Hexachlorobutadiene	<0.13	50	53	106	50	51	102	4	70-130	20	
Isopropylbenzene	<0.15	50	52	104	50	51	102	2	061-02	20	
Methylene Chloride	<0.42	50	51	102	50	50	100	7	20-130	20	
Methyl tert-Butyl Ether	<0,11	100	16	16	001	68	68	2	20-130	20	
m-Xylene/p-Xylene	<0.51	100	100	100	100	100	100	0	70-130	20	
Naphthalene	14	50	64	100	50	67	106	Ŷ	70-130	20	
n-Butylbenzene	<0.17	50	54	108	50	52	104	4	70-130	20	
n-Propylbenzene	<0.18	50	51	102	50	49	86	4	70-130	20	
o-Xylene	<0.20	50	52	104	50	51	102	2	70-130	20	
Sec-Butylbenzene	<0.21	50	52	104	50	51	102	2	70-130	20	
Styrene	<0.18	50	52	104	50	50	001	4	70-130	20	
tert-Butylbenzene	<0.18	50	57	114	50	56	112	2	70-130	20	
Tetrachloroethene	<0.16	50	35	70	50	33	66	6	70-130	20	Z
Toluene	<0,14	50	50	001	50	48	96	4	70-130	20	
trans-1,2-Dichloroethene	<0,21	50	49	98	50	46	92	6	70-130	20	
trans-1,3-Dichloropropene	<0,11	50	48	96	50	46	92	4	70-130	20	
Trichloroethene	<0,19	50	52	104	50	49	98	6	70-130	20	
Trichlorofluoromethane	<0.53	50	49	98	50	46	92	6	70-130	20	
Vinyl acetate	<1.3	50	47	94	50	46	92	2	70-130	20	
Vinvl chloride	¢1.0>	50	47	94	50	44	88	7	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

 $\mathbf{F} = \mathbf{RPD} \mathbf{exceeded}$ the laboratory control limits

Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

J

Work Order #: 12607

Form 3 - MS / MSD Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Matrix: W -Batch #:

Lab Batch ID: 37414	QC- Sample ID	: 12637-1	006 MS	Ba	tch #:	l Matri	x: W				
Reporting Units: ug/L			MATRIX SPIK	E/MAT	RIX SPII	KE DUPLICA'	te recc	VERY S	TUDY		-
VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Ĥlag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added E	Result [F]	8°. 10	%	%К	%RPD	
1,1,1,2-Tetrachloroethane	<0.75	50	46	92	50	45	90	2	70-130	20	
1,1,1-Trichloroethane	<0.71	50	51	102	50	49	98	4	70-130	20	
1,1,2,2-Tetrachloroethane	<2.0	50	41	82	50	43	86	5	70-130	20	
1,1,2-Trichloroethane	<0.88	50	43	86	50	43	86	0	70-130	20	
1, 1-Dichloroethane	<0.74	50	50	100	50	48	96	4	70-130	20	
1,1-Dichloroethene	<0.98	50	52	104	50	50	100	4	0£1-02	20	
1, 1-Dichloropropene	<0.95	50	52	104	50	49	86	6	70-130	20	
1,2,3-Trichlorobenzene	<2.6	50	43	86	50	47	94	9	70-130	20	
1,2,3-Trichloropropane	0.1>	50	41	82	50	41	82	0	70-130	20	
1,2,4-Trichlorobenzene	£.1>	50	46	92	50	50	100	80	70-130	20	
1,2,4-Trimethylbenzene	<0.85	50	49	98	50	49	98	0	70-130	20	
1,2-Dibromo-3-chloropropane	<2.8	50	37	74	50	40	80	œ	70-130	20	
1,2-Dibromoethane	<0.79	50	45	06	50	44	88	2	70-130	20	
1,2-Dichlorobenzene	<0.73	50	48	96	50	49	98	2	70-130	20	
1,2-Dichloroethane	<0.82	50	48	96	50	46	92	4	70-130	20	
1,2-Dichloropropane	<0.81	50	49	98	50	48	96	2	70-130	20	
1,3,5-Trimethylbenzene	<0.71	50	50	001	50	49	98	2	70-130	20	
1,3-Dichlorobenzene	<0.74	50	50	100	50	50	100	0	20-130	20	
1,3-Dichloropropane	<0.79	50	44	88	50	44	88	0	70-130	20	
1,4-Dichlorobenzene	- <0.59	50	49	98	50	50	100	2	70-130	20	
2,2-Dichloropropane	86.0>	50	54	108	50	52	104	4	70-130	20	
2-Butanone	<1.3	100	83	83	100	80	80	4	70-130	20	
2-Chlorotoluene	<0.92	50	48	96	50	47	94	2	70-130	20	
2-Hexanone	<2.5	001	20	04	100	68	68	3	70-130	20	z

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

 $\mathbf{F} = \mathbf{RPD}$ exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Form 3 - MS / MSD Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

Batch #: 1 Matrix: W

Lab Batch ID: 37414 Reporting Units: us/l.

Work Order #: 12607

QC- Sample ID: 12637-006 MS

											ſ
VOCs by SW8260B	Parent Sample	Spike	piked Sample Result	Spiked Sample	Spike	Duplicate piked Sample	Spiked Dup. "."	RPD	Control Limits %D	Control Limits % ppD	Flag
Analytes	A)	Added [B]	<u>כ</u>	¥§ē	Added [E]	Kesuit r]	<u>5</u>	•	10		
4-Chlorotoluene	<0.89	50	48	96	50	48	96	0	0€1-02	20	
4-Methyl-2-pentanone	<2.2	100	80	80	100	61	-19	1	70-130	20	
Acetone	<1.4	100	12	12	100	73	73	3	70-130	20	
Acrolein	<5.9	100	73	73	100	72	72	-	70-130	20	
Acrylonitrile	<1.4	100	<1,4	0	100	130	130	NC	70-130	20	z
Benzene	<0.67	50	51	102	50	50	001	2	70-130	20	
Bromobenzene	<3.4	50	45	66	50	45	90	0	70-130	20	
Bromochloromethane	<0.47	50	50	100	50	48	96	4	70-130	20	
Bromodichloromethane	<0.96	50	49	86	50	48	96	2	70-130	20	
Bromoform	<1,4	50	44	88	50	44	88	0	70-130	20	
Bromomethane	<2.7	50	55	011	50	52	104	6	70-130	20	
Carbon disulfide	<0.73	50	64	128	50	57	114	12	70-130	20	
Carbon Tetrachloride	<0.89	50	52	104	50	50	100	4	70-130	20	
Chlorobenzene	<0.59	50	48	96	50	47	94	2	70-130	20	
Chloroethane	<2.2	50	58	116	50	54	108	7	0£1-02	20	
Chloroform	<1,4	50	52	104	50	49	98	6	70-130	20	
Chloromethane	<1.2	50	51	102	50	48	96	6	70-130	20	
cis-1,2-Dichloroethene	<0.80	50	49	86	50	48	96	2	70-130	20	
cis-1,3-Dichloropropene	<0.76	50	49	86	50	48	96	2	70-130	20	
Dibromochloromethane	<0.79	50	45	96	50	45	60	0	70-130	20	
Dibromomethane	<0.60	50	48	96	50	47	94	2	70-130	20	
Dichlorodifluoromethane	<0.73	50	48	96	50	46	92	4	70-130	20	
Ethylbenzene	<0,66	50	49	98	50	48	96	7	70-130	20	
Hexachlorobutadiene	<1,0	50	49	86	50	49	98	0	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery $[G] = 100^{4}(F-A)/E$

Work Order #: 12607 Lab Batch ID: 37414 Reporting Units: ug/L

Form 3 - MS / MSD Recoveries

Project Name: HAAF Perimeter Hunter Army Airfield

Report Date: 09/21/07 12:53

Project ID: Task Order 0090

QC- Sample ID: 12637-006 MS Batch #:

1 Matrix: W

VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[]	7% 10]	Added [E]	Result [F]	5 1 2 8	*	%R	%RPD	
Isopropylbenzene	<1.0	50	49	98	50	49	86	0	70-130	20	
Methylene Chloride	<0.92	50	54	108	50	52	104	4	061-07	20	
Methyl tert-Butyl Ether	<0.62	001	06	06	100	96	90	0	20-130	20	
m-Xylene/p-Xylene	<1.2	001	100	100	100	66	66	-	0€1-02	20	
Naphthalene	<4.0	50	39	78	50	43	86	10	061-02	20	
n-Butylbenzene	<0.96	50	49	98	50	49	98	0	0€1-02	20	
n-Propylbenzene	<0.73	50	48	96	50	48	96	0	70-130	20	
o-Xylene	<0.57	50	50	100	50	48	96	4	0€1-02	20	
Sec-Butylbenzene	<0.88	50	50	100	50	49	98	2	70-130	20	
Styrene	<0.56	50	50	100	50	49	98	2	70-130	20	
Tetrachloroethene	<1.8	50	34	68	50	33	66	3	70-130	20	z
Toluene	<0.68	50	49	86	50	48	96	2	70-130	20	
trans-1,2-Dichloroethene	<0.73	50	50	100	50	49	98	2	70-130	20	
trans-1, 3-Dichloropropene	<0.84	50	45	06	50	45	06	0	70-130	20	
Trichloroethene	<0.72	50	50	100	50	48	96	4	70-130	20	
Trichlorofluoromethane	<0.85	50	52	104	50	50	100	4	70-130	20	
Vinyl acetate	<1.2	50	<1.2	0	50	<1.2	0	NC	70-130	20	Z
Vinyl chloride	<1.1	50	55	110	50	52	104	9	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

 $\mathbf{F} = \mathbf{RPD}$ exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery $[G] = 100^{\circ}(F-A)/E$

Abbreviations and EPA Qualifier Codes used by AAL

- Rep Limit: This abbreviation on our analytical reports is for: Reporting Limit (RL).
 - BRL: This abbreviation indicates that the analytical results were Below the Reporting Limit (BRL).
 - MDL: The Method Detection Limit (MDL), as defined by 40 CFR Part 136, Appendix B, is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero.
 - U: The compound was analyzed for, but not detected above the specified MDL.
 - J: This indicates an estimated value. The target analyte is *positively identified*, but the reported numerical result (analyte concentration) is an *estimated* value and the direction of the bias is unknown. The result is above the MDL, but below the RL.
 - B: This is used when the analyte is found in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. The flag shall be used for a tentatively identified compound as well as for a positively identified target compound.
 - D: This flag indicates that the identified analyte is reported from the dilution analysis.
 - E: This identifies compounds whose concentrations exceed the upper level of the linear calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of the calibration range, the sample or extract should be diluted and reanalyzed.

Note: For Xylenes, Total, where three isomers are quantified as two peaks, the calibration range of each peak is considered separately.

- F: The Relative Percent Difference (RPD) between recoveries of either analytes or QC spikes were outside the laboratory or method control limits. Supporting QC data was reviewed by the Department Supervisor and/or QA Officer. Results were determined to be valid for reporting.
- X: This qualifier is defined by the laboratory in written case narrative.
- Z: QC Surrogates/ QC Lab Spikes results are outside the laboratory or method quality control limits. Supporting QC data was reviewed by the Department Supervisor and/or QA Officer. Results were determined to be valid for reporting.
- ZZ: QC Surrogates/ QC Lab Spikes results are outside the laboratory or method quality control limits in multiple QC samples. Supporting QC data was reviewed by the Department Supervisor and/or QA Officer. Results were determined to be valid for reporting.
- ***: Surrogate recoveries were diluted out.

Page 1 of 1

October 11, 2007

Mr. Judson Smith Project Chemist, CESAS-EN-GG U.S. Army Corps of Engineers, Savannah District 100 W. Oglethorpe Ave. P. O. Box 889 Savannah, GA 31401-0360 Phone: 912-652-5673 Fax: 912-652-5311

Dear Mr. Smith:

RE: Hunter AAF, Task Order# 0085 W912HN-05-D-0013 AML Work Order Number: 0710034

Attached, please find the hardcopy analytical report (2/2/2 total pages) for environmental samples collected by CESAS for the project described above. Problems encountered in the analysis of these samples are documented in the laboratory case narrative. The electronic data deliverables (EDDs) for this report will be e-mailed within a few days of this report. Please feel free to contact me by phone (913-829-0101-ext. 23), fax (913-829-1181) or email (mharris@amlabinc.com) if you have any questions.

Respectfully Submitted, Analytical Management Laboratories, Inc.

Melania Harris Project Manager

Hunter AAF, Task Order# 0085
W912HN-05-D-0013
AML Work Order Number: 0710034

Project and Sample Information

Technical support for the analysis of samples collected for the referenced project was provided by Xenco/Accura Analytical Laboratory, Inc, 6017 Financial Drive, Norcross, GA 30071. The analytical reports prepared by the subcontract laboratories are attached. Please feel free to contact Mr. David Fuller directly (770-449-8800) for Xenco/Accura data if there are any questions on these reports.

Field Sample Information

(Chain of Custody Record, Sample Receipt Report, Condition Upon Receipt Report)

O710034 (Sample Delivery Group, SDG)

Analytical Management Laboratories - Sample Status and Receipt Report

AML Projec	st Number	0710034		Client AML ID	USACE Savannah	Report Lvl. 3
Work Order	· Due Date	03/01/07		Client Project ID	Hunter AAF, DO# 0085	
AML Sample	Matrix	Client Sample ID	Date Collected	Projected Analytical Due Date	Analysis	Comments
0710034-01	Soit	SS-10	08/10/07 09:55	08/25/07	Solids, Dry Weight	
0710034-01	Soit	SS-10	08/10/07 09:55	08/25/07	VOCs by 8260B	
0710034-02	Soil	6-SS	08/10/07 09:10	08/25/07	Solids, Dry Weight	
0710034-02	Soil	SS	08/10/07 09:10	08/25/07	VOCs by 8260B	
0710034-03	Soil	5S-8	08/10/07 09:30	08/25/07	Solids, Dry Weight	
0710034-03	Soil	5S-8	08/10/07 09:30	08/25/07	VOCs by 8260B	
0710034-04	Soil	2-2S	08/10/07 10:04	08/25/07	VOCs by 8260B	
0710034-04	Soil	SS-7	08/10/07 10:04	08/25/07	Solids, Dry Weight	
0710034-05	Soil	SS-1	08/10/07 10:20	08/25/07	VOCs by 8260B	
0710034-05	Soil	SS-1	08/10/07 10:20	08/25/07	Solids, Dry Weight	
0710034-06	Soil	SS-2	08/10/07 10:35	08/25/07	VOCs by 8260B	
0710034-06	Soil	SS-2	08/10/07 10:35	08/25/07	Solids, Dry Weight	
0710034-07	Soil	SS-୫	08/10/07 11:00	08/25/07	VOCs by 8260B	
0710034-07	Soil	SS-୫	08/10/07 11:00	08/25/07	Solids, Dry Weight	
0710034-08	Soil	SS-3	08/10/07 11:20	08/25/07	VOCs by 8260B	
0710034-08	Soil	SS-3	08/10/07 11:20	08/25/07	Solids, Dry Weight	
0710034-09	Soil	SS-5	08/10/07 11:55	08/25/07	VOCs by 8260B	
0710034-09	Soil	SS-5	08/10/07 11:55	08/25/07	Solids, Dry Weight	
0710034-10	Soil	SS 4	08/10/07 12:20	08/25/07	VOCs by 8260B	
0710034-10	Soil	SS 4	08/10/07 12:20	08/25/07	Solids, Dry Weight	

Subcontracted Report

<u>0710034</u>

(AML Sample Delivery Group, SDG)

<u>Accura Analytical Laboratory, Inc-</u> <u>AAL Work Order No: 12467</u> (Laboratory)

11-OCT-07

Analytical Management Laboratories, Inc. 15130 South Keeler Olathe, KS 66062 Client Contact: Vis Viswanathan

Reference: Accura Analytical Laboratory, Inc. (AAL) Work Order No: 12467 Project Name :Hunter AAF Perimeter Sampling Project Number:

Dear Vis Viswanathan :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Chain of Custody(s) Numbered 183833. All results being reported under this Chain of Custody apply to the samples analyzed and properly identified with an AAL Sample ID number.

All the results for the quality control samples were reviewed. Also, all parameters for data reduction and validation were reviewed. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by AAL. This report will be filed for at least 7 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 183833 will be filed for 90 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Accura Analytical Laboratory Inc. to serve your analytical needs. If you have any questions concerning this report, please feel free to contact me at any time.

Sincerely Hernandez

Project Manager

6017 Financial Drive Norcross, GA 30071 Phone: 770-449-8800 Fax: 770-449-5477

ACCURA ANALYTICAL LABORATORY, INC. (AAL) 6017 Financial Drive, Norcross, GA 30071, Phone: (770) 449-8800 FL Certification #E87429 • NC Certification #483 SC Certification #98015 • Utah Certification #AALI1 USACE Approved • Navy Certification Code NFESC 413 Case Narrative

AAL Work Order # 12467

Client Project: Hunter AAF Perimeter Sampling

Accura Analytical Laboratory Inc. certifies that the results meet all requirements of the NELAC Standards.

The data package includes a 1 page case narrative, 1 Chain of Custody page, 1 page Sample Receipt Checklist, 24 analytical results pages, 5 QC surrogate recovery pages, 1 QC Blank Spike recovery page, 1 QC Matrix Spike / Matrix Spike Duplicate recovery page, 2 QC Sample Duplicate recovery pages, and a list of common EPA qualifier codes and abbreviations used by AAL.

The following items were noted concerning this work order:

VOCs by SW8260B Notations:

- The response of one or more internal standard was outside the method specified limit for the following samples due to possible matrix interference: 12467-001 (SS-10), 12467-009 (SS-5), 12467-010 (SS-4), 12467-004MS and 12467-004MSD (SS-7). Samples were re-analyzed and confirmed the matrix interference.
- 2. The CCV internal standard areas were outside the initial calibration midlevel standard areas. The CCC compounds and SPCC compounds all pass the method required limits.

<u>Mei Liang</u> Senior VOC Analyst <u>August 16, 2007</u> Date

Project Manager's Notations:

1. The soil sample results are reported on a dry weight basis. (Moisture correction applied)

This Case Narrative & Notations have been generated, reviewed, and edited by:

Sherri W. Hernandez

Project Manager

<u>Остобет 11, 2007</u> Date

This report may not be reproduced, except in full, without written approval from Accura Analytical Laboratory, Inc. NELAP Accredited Certificate #-E87429 - Effective 7/01/07, Expires 6/30/08

Page 1 of 1

WO 12467CN

-

0	9
U	0.20
E T	0.00
X	1 o p

11381 Meadowglen, Suite L, Houston TX 77082 281-589-0682
6309 Wurzbach, Suite 104, San Antonio, TX 78238 210-509-3334

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD AND 124(07 5757 N.W. 158th Street, Miami Lakes, FI 33014 305-823-8500

Mpany-city USACE.SAV	(CHUNNY)	strict (913	Phone	23	ہٰ ا	$\overline{\nu}$		AT: Sitypi	th 121 cally 5	-7 Woi	48h rking [3d Jays fr	5d or leve	7d 1(eilian	d 10+	d Sta Workir	ndard 1g day	TAT s for	s proje evet III	ct spec and IV	ific. data.	•	2	·	1
JUNTER AF	usly performed at	I XENCO PER	5W 1		2	N N	34	Ľ.	হ		N N	30	Vi	Proje	St 10	15	Ą	91;	2-6	23-	S S	28	$\hat{\mathbf{O}}$		
y. Manager (PM) MARK HAC	VISON								1.81	JAT£											11		Rema	rks L	
CHesults to DPM or nail to: 25027, E.H.	GNERLAND	PSASA2.USA	Fax No: CE, BU	7 20	オルト				P 09	3PP 2	TOL							· ·····		p	i isəriç	L(/			
olce to Accounting C to:] Inc. Invoice w	th Final Report	nvoice n		weap	0			03108	1 891	sqq I	\$dd						·	÷	109 51	βiH S β	(iqqs lli			
ote No:		P.O No:		L	Call	or a F	0		OR	P TC	101	/Jtain								P2	y/6w	w sət			
g Program: CLP AFCI	EE TRRP DW	UST State Oth	Ľ				T	54	0160	9 10	٧C	478 478								P!	·-···-	jisht	840		
get DLs (DW CRDL	TARP QAPP N	MDLs See Lab PM	Attache	8	-		Ī	9 	18 17	Γ Α Σ	<u>М</u>	ณ เก		·····						5 P	'M	ung)			
RP PCLs: Tier 1 Tier 2	Pesidential	Indust	ial				1	8560 202	991	ICHE	624	sH/s vimi	. مرر							η <u>ς</u> ι	'' ן/ סֿע	siev	hie.		
ST No.:(Required)								3 1	orq	8 8	0	∧ /d ≤								184	J	₩U	AIR	• •	
npler Name RAINAN	/HAVERW	AD Signature	ELA-	13	in		T	208	-74	500 500	928	.besi 928								472		/ pto	edr		
Sample ID	Sampting Date	ມູດເມີ ແນງດອງ ອີຍິ ມີ	xittsh esisoqmo:	containers	szi2 tanistno(Sontainer Type	1028LABING2	BTEX-MTBE by	SOOIXT VA HAT	Metals by 6020	VOCs by 8021	0728 by 82002							······	ASI AB TAT	wodis HA9 :nbbA	H Iscogei DioH			
55-10	8/10/07	0955 2.2.29		3	1.1	U		ļ			>		ļ			ļ		<u> </u>					6	-	
5-9	8/10/07	9910 29.36		7	4.1		10				5		ļ		<u> </u>	ļ				 			B		
55-8	Bindron	89303.0-35	2 5	5	4 1	5	0	<u> </u>			>											******	8	2	1
5-7	8/10/07	6.6-9.1 4001	N N	7	4, V	U	0				>		ļ										g	H	
1-2	8/10/07	102025-32	N N	3	7.7	บ	0				>	 											g		
5-2	8/10/07	1035 3.0-4.0	S V	14	4. 1	v	0	 			>						\square						Я	ى	
5-6	Siplo7	11001.2-1.9	s S	4	41	U	0				>]					8		
5-3	2110/07	11202,4-2.9	s S	4	1/2	V	0				>												9	3	
<i>х</i> -5 ⁻	P110/07	11.581.4-1.9	آ م	2	À.ħ	J	0	-			>							-					8	3	
5-4	10/01/2	122014-19	2	2	4, V	৩	0]	>	-			_			_				2	0	0	- 1
Helinquished by (Initia	als and Sign)	B/IO/07 14 10	32	텔	Shed to		ials ar	d Sign		P I I	8 2	e la	Hust Instr	The Cha	rges a	re Pre	Appr	ved u	e uod	questin	g ther	F			1
													F	KENCO	Stand	ard Tei	ms an	e Con	ditions	Apply.					į I
			i ah.										Con	ttainer	s Rece	ived:			Cocle	r Temp	eratu	ି : ଅ	Ş		

ииww.xenco.com SDBE Committed to Excellence in Service and Quality since 1990

Matrix: Air (A), Product (P), Solid(S), Water (W)

:

0008

Prelogin/Nonconformance Report- Sample Log-In

Client:	USACE SAUF	NNAH OUSTRICT.
Date/ Time:	00/11/07	09:57
Lab ID # :	12467	
Initials:	DL	

Sample Receipt Checklist

#1	Temperature of container/ cooler?	(Yes)	No	N/A	2.0
#2	Shipping container in good condition?	Yes)	No	None	
#3	Samples received on ice?	(cs)	No	N/A	Blue/Water
#4	Custody Seals intact on shipping container/ cooler?	Ctee D	No	N/A	
#5	Custody Seals intact on sample bottles/ container?	Yes	No	NOA)]
#6	Chain of Custody present?	(Yes)	No		
# 7	Sample instructions complete of Chain of Custody?	1 YES	No	·	
#8_	Any missing/extra samples?	Yes	(K)		
#9	Chain of Custody signed when relinquished/ received?	Tes	No]	
#10	Chain of Custody agrees with sample label(s)?	(es)	No	1	
#11	Container label(s) legible and intact?	Fes	No		
<i>#</i> 12	Sample matrix/ properties agree with Chain of Custody?	Yes	No	1	
#13	Samples in proper container/ bottle?	Kes	No	T T	
#14	Samples properly preserved?	Yes	No	N/A	
#15	Sample container intact?	(es)	No		
¥16	Sufficient sample amount for indicated test(s)?	Yes	No		
¥17	All samples received within sufficient hold time?	V es	No	1	
¥18	Subcontract of sample(s)?	Yes	NO	N/A	
¥19	VOC samples have zero headspace?	Yes	No	(N/A)	

Nonconformance Documentation

Contact:		Contacted by:	Date/Time:
Regarding:	ŒX#	-85970515	0550
DEAL	Of (COSTODY, OX 110	07
Corrective Action Take	ר:		
Check all that Apply;		Client understands and would like to	o proceed with analysis
		Cooling process had begun shortly	after sampling event

Cooling process had begun shortly after sampling event

0009

÷

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-10	Matrix: SOIL	% Moisture: 25
Lab Sample Id: 12467-001	Date Collected: Aug-10-07 09:55	Date Received: Aug-11-07 10:00
Sample Depth: 2.2 - 2.9 ft		

Prep Method: SW5035 Analytical Method: VOCs by SW8260B Analyst: MJL01 Date Analyzed: Aug-14-07 14:52 Date Prep: Aug-14-07 09:35 Tech: MJL01 Seq Number: 37048 Dil Parameter Cas Number **Result Rep Limit** MDL Units Flag 0.73 ug/kg U 630-20-6 BRL 7.0 1 1,1,1,2-Tetrachloroethane ug/kg U BRL 7.0 1.0 1 1,1,1-Trichloroethane 71-55-6 7.0 1.7 ug/kg U 1 79-34-5 BRL 1,1,2,2-Tetrachloroethane 7.0 0.93 ug/kg U 1 79-00-5 BRL 1,1,2-Trichloroethane ug/kg 7.0 U 1 1,1-Dichloroethane 75-34-3 BRL 1.1 ug/kg U 75-35-4 BRL 7.0 1.6 1 1,1-Dichloroethene ug/kg U 1,1-Dichloropropene 563-58-6 BRL 7.0 0.75 1 ug/kg U 87-61-6 BRL 7.0 0.801 1,2,3-Trichlorobenzene ug/kg U 96-18-4 BRL 7.0 2.3 1 1,2,3-Trichloropropane BRL 7.0 1.2 ug/kg U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 7.0 2.3 ug/kg U 1 96-12-8 1,2-Dibromo-3-Chloropropane 95-50-1 BRL 7.0 1.8 ug/kg U 1 1,2-Dichlorobenzene 107-06-2 BRL 7.0 0.83 ug/kg U 1 1,2-Dichloroethane ug/kg U 1,2-Dichloropropane 78-87-5 BRL 7.0 1.3 1 BRL 7.0 1.1 ug/kg U 1 1,3,5-trimethylbenzene 108-67-8 ug/kg U BRL 7.0 1.4 1 1,3-Dichlorobenzene 541-73-1 ug/kg U BRL 7.0 0.96 1 1,3-Dichloropropane 142-28-9 0.95 ug/kg U 106-46-7 BRL 7.0 1 1,4-Dichlorobenzene 594-20-7 BRL 7.0 0.84 ug/kg U 1 2,2-Dichloropropane BRL 70 13 ug/kg U 1 2-Butanone 78-93-3 ug/kg 2-Chlorotoluene 95-49-8 BRL 7.0 0.99 U 1 ug/kg 591-78-6 BRL 70 1.6 U 1 2-Hexanone ug/kg U 4-Chlorotoluene 106-43-4 BRL 7.00.771 ug/kg BRL 70 4.5 U 1 4-Methyl-2-Pentanone 108-10-1 ug/kg 67-64-1 58 709.6 J 1 Acetone ug/kg U 107-02-8 BRL 14 6.2 1 Acrolein 7.0 ug/kg U I 107-13-1 BRL 14 Acrylonitrile BRL 7.00.72 ug/kg U 1 Benzene 71-43-2 ug/kg U Bromobenzene 108-86-1 BRL 7.01.2 1 ug/kg U Bromochloromethane 74-97-5 BRL 7.01.4 1 U 0.70 ug/kg Bromodichloromethane 75-27-4 BRL 7.01 ug/kg U 75-25-2 BRL 7.01.3 1 Bromoform 7.0 ug/kg U 1 Bromomethane 74-83-9 BRL 3.4 ug/kg U Carbon Disulfide 75-15-0 BRL 7.02.01 ug/kg U BRL 7.01.0 1 Carbon Tetrachloride 56-23-5 0.81 ug/kg U 108-90-7 BRL 14 1 Chlorobenzene 7.0 ug/kg U 1 Chloroethane 75-00-3 BRL 3.4 ug/kg U Chloroform 67-66-3 BRL 7.0 1.0 i ug/kg U Chloromethane 74-87-3 BRL 7.03.2 1 ug/kg U cis-1,2-Dichloroethene 156-59-2 BRL 7.0 0.921 ug/kg U cis-1,3-Dichloropropene 10061-01-5 BRL 7.0 0.751 ug/kg U 1476-11-5 BRL 7.01.7 1 cis-1,4-Dichloro-2-Butene ug/kg U 124-48-1 BRL 7.0 1.4 1 Dibromochloromethane BRL 7.0 0.85 ug/kg U 1 Dibromomethane 74-95-3 75-71-8 BRL 7.0 1.6 ug/kg U Dichlorodifluoromethane

Page 1 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-10	Matrix: SOIL	% Moisture: 25
Lab Sample Id: 12467-001	Date Collected: Aug-10-07 09:55	Date Received: Aug-11-07 10:00
Sample Depth: 2.2 - 2.9 ft		

Prep Method: SW5035 Analytical Method: VOCs by SW8260B Date Analyzed: Aug-14-07 14:52 Analyst: MJL01 Date Prep: Aug-14-07 09:35 Tech: MJL01 Seq Number: 37048 **Result Rep Limit** MDL Units Flag Dil Parameter **Cas Number** 7.0 0.79 ug/kg U 100-41-4 BRL 1 Ethylbenzene ug/kg U BRL 7.0 1.2 I Hexachlorobutadiene 87-68-3 ug/kg U 74-88-4 BRL 7.0 2.0 1 Iodomethane (Methyl Iodide) ug/kg U **Diisopropyl Ether** 108-20-3 BRL 7.0 1.8 1 ug/kg U Isopropylbenzene 98-82-8 BRL 7.0 1.1 1 ug/kg U Methyl Methacrylate 80-62-6 BRL 7.0 3.3 1 ug/kg 1634-04-4 BRL 7.0 0.97 U 1 Methyl tert-butyl ether ug/kg U Methylene Chloride 75-09-2 BRL 7.0 3.0 1 ug/kg 91-20-3 BRL 7.0 1.8 U 1 Naphthalene BRL 7.0 1.2 ug/kg U 1 n-Butylbenzene 104-51-8 ug/kg U 1 103-65-1 BRL 7.0 1.1 n-Propylbenzene ug/kg U 99-87-6 BRL 7.0 1.1 1 4-Isopropyltoluene 7.0 0.92 ug/kg U 1 135-98-8 BRL Sec-Butylbenzene BRL 7.0 1.0 ug/kg U 1 100-42-5 Styrene ug/kg U BRL 7.0 1.2 1 tert-Butylbenzene 98-06-6 ug/kg U Tetrachloroethylene 127-18-4 BRL 7.0 1.4 1 ug/kg U Toluene 108-88-3 BRL/ 7.0 0.82 1 ug/kg U 156-60-5 BRL 7.0 1.1 1 trans-1,2-dichloroethene ug/kg 10061-02-6 BRL 7.0 0.93 U 1 trans-1,3-dichloropropene ug/kg BRL 7.0 2.3 U 1 trans-1,4-Dichloro-2-Butene 110-57-6 Trichloroethene 0.99 ug/kg U 1 79-01-6 BRL 7.0 ug/kg BRL 7.0 4.9 U 1 Trichlorofluoromethane 75-69-4 ug/kg 108-05-4 BRL 7.0 1.0 U 1 Vinyl Acetate ug/kg U 75-01-4 BRL 7.0 2.8 1 Vinyl Chloride ug/kg 1330-20-7 BRL 2.6 U 1 21 Xylenes, Total

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-9	Matrix: SOIL	% Moisture: 20
Lab Sample Id: 12467-002	Date Collected: Aug-10-07 09:10	Date Received: Aug-11-07 10:00
Sample Depth: 2.9 - 3.6 ft		

Prep Method: SW5035 Analytical Method: VOCs by SW8260B Date Analyzed: Aug-15-07 11:38 Analyst: MJL01 Date Prep: Aug-15-07 08:53 Tech: MJL01 Seq Number: 37052 **Result Rep Limit** MDL Units Flag Dil Parameter **Cas Number** ug/kg U BRL 5.8 0.61 1 1,1,1,2-Tetrachloroethane 630-20-6 ug/kg U 1,1,1-Trichloroethane 71-55-6 BRL 5.8 0.88 1 ug/kg U 1.1.2.2-Tetrachloroethane 79-34-5 BRL 5.8 1.4 1 ug/kg 79-00-5 BRL 5.8 0.78 U 1 1.1.2-Trichloroethane ug/kg 1.1-Dichloroethane 75-34-3 BRL 5.8 0.94 U 1 ug/kg U 1,1-Dichloroethene 75-35-4 BRL 5.81.4 1 ug/kg U 563-58-6 BRL 5.8 0.63 1 1.1-Dichloropropene 0.67 ug/kg U 1,2,3-Trichlorobenzene 87-61-6 BRL 5.8 1 96-18-4 BRL 5.8 1.9 ug/kg U 1 1,2,3-Trichloropropane ug/kg U 1,2,4-Trichlorobenzene 120-82-1 BRL 5.8 1.0 1 ug/kg BRL 5.8 1.9 U 1 1,2-Dibromo-3-Chloropropane 96-12-8 ug/kg 5.8 1.0 U 1 1,2-Dibromoethane (Ethylene Dibromide) 106-93-4 BRL ug/kg U 5.8 1.5 1 1,2-Dichlorobenzene 95-50-1 BRL ug/kg U 0.70 1 107-06-2 BRL 5.8 1,2-Dichloroethane ug/kg U 5.8 1 1.2-Dichloropropane 78-87-5 BRL 1.1 0.95 ug/kg U 1,3,5-Trimethylbenzene 108-67-8 BRL 5.8 1 1.3-Dichlorobenzene 541-73-1 BRL 5.8 1.2 ug/kg U 1 ug/kg 1,3-Dichloropropane 142-28-9 BRL 5.8 0.80 U 1 ug/kg 1,4-Dichlorobenzene 106-46-7 BRL 5.8 0.80 U 1 ug/kg 0.70 U 1 2,2-Dichloropropane 594-20-7 BRL 5.8 ug/kg U 78-93-3 BRL. 58 11 1 2-Butanone ug/kg 95-49-8 BRL. 5.8 0.83 U 1 2-Chlorotoluene 591-78-6 ug/kg BRL 58 U 1 1.3 2-Hexanone ug/kg U 1 106-43-4 BRL 5.8 0.64 4-Chlorotoluene ug/kg 108-10-1 BRL 58 3.8 U 1 4-Methyl-2-Pentanone BRL 58 8.0 ug/kg U 1 Acetone 67-64-1 107-02-8 12 5.2 ug/kg U 1 BRL Acrolein ug/kg U 12 5.8 1 107-13-1 BRL Acrylonitrile ug/kg 5.8 0.60 U 1 BRL Benzene 71-43-2 ug/kg U 1 Bromobenzene 108-86-1 BRL 5.8 1.0 Bromochloromethane 74-97-5 BRL 5.8 1.2 ug/kg U 1 Bromodichloromethane 75-27-4 BRL 5.8 0.58 ug/kg U 1 Bromoform 75-25-2 BRL 5.8 1.1 ug/kg U l Bromomethanc 74-83-9 BRL 5.8 2.9ug/kg U 1 ug/kg U Carbon Disulfide 75-15-0 BRL 5.8 1.7 1 ug/kg 56-23-5 BRL 5.8 0.87 U ļ Carbon Tetrachloride BRL. 12 0.68 ug/kg U 1 108-90-7 Chlorobenzene ug/kg U 1 BRL 5.8 2.9 Chloroethane 75-00-3 ug/kg U 67-66-3 5.8 0.86 1 BRL Chloroform ug/kg U BRL 5.8 2.7 1 Chloromethane 74-87-3 ug/kg 0.77 U cis-1,2-Dichloroethene 156-59-2 BRL 5.8 1 ug/kg U cis-1,3-Dichloropropene 10061-01-5 BRL 5.8 0.63 1 ug/kg U BRL 5.8 1.2 1 Dibromochloromethane 124-48-1 ug/kg 0.71 U Dibromomethane 74-95-3 BRL 5.8 1 Dichlorodifluoromethane 75-71-8 BRL 5.8 1.4 ug/kg U

Page 3 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-9	Matrix: SOIL	% Moisture: 20
Lab Sample Id: 12467-002	Date Collected: Aug-10-07 09:10	Date Received: Aug-11-07 10:00
Sample Depth: 2.9 - 3.6 ft		

Analytical Method: VOCs by SW8260B			Prep Method: SW5035					
Date Analyzed: Aug-15-07 11:38	Analyst: MJL01 Seq Number: 37052	J	Date Prep: A	ng-15-07 08:53	Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Ethylbenzene	100-41-4	BRL	5.8	0.66	ug/kg	U	1	
Hexachlorobutadiene	87-68-3	BRL	5.8	0.99	ug/kg	U	1	
Isopropyl Ether	108-20-3	BRL	5.8	1.5	ug/kg	U	1	
Isopropylbenzene	98-82-8	BRL	5.8	0.88	ug/kg	U	1	
m,p-Xylenes	179601-23-1	BRL	12	1.4	ug/kg	U	1	
Methyl tert-butyl ether	1634-04-4	BRL	5.8	0.81	ug/kg	U	1	
Methylene Chloride	75-09-2	BRL	5.8	2.5	ug/kg	U	1	
Naphthalene	91-20-3	BRL	5.8	1.5	ug/kg	U	1	
n-Butylbenzene	104-51-8	BRL	5.8	1.0	ug/kg	U	1	
n-Propylbenzene	103-65-1	BRL	5.8	0.91	ug/kg	U	1	
o-Xylene	95-47-6	BRL	5.8	0.83	ug/kg	U	1	
p-lsopropyltoluene	99-87-6	BRL	5.8	0.93	ug/kg	U	1	
sec-Butylbenzene	135-98-8	BRL	5.8	0.77	ug/kg	U	1	
Styrene	100-42-5	BRL	5.8	0.87	ug/kg	U	1	
tert-Butylbenzene	98-06-6	BRL	5.8	0.97	ug/kg	U	1	
Tetrachloroethene	127-18-4	BRL	5.8	1.2	ug/kg	U	1	
Toluene	108-88-3	BRL	5.8	0.69	ug/kg	U	1	
trans-1,2-Dichloroethene	156-60-5	BRL	5.8	0.91	ug/kg	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	5.8	0.78	ug/kg	U	1	
Trichloroethene	79-01-6	BRL	5.8	0.82	ug/kg	U	1	
Trichlorofluoromethane	75-69-4	BRL	5.8	4.1	ug/kg	U	1	
Vinyl Acetate	108-05-4	BRL	5.8	0.84	ug/kg	U	1	
Vinyl Chloride	75-01-4	BRL	5.8	2.3	ug/kg	U	1	

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-8	Matri	x: SOIL		% Moistur	re: 17		t ny stanyarawiy
Lab Sample Id: 12467-003	Date Collecte	d: Ang-H	0-07 09:30	Date Receive	d: Aug-11-	07 10:0	0
Cample Danda 2.0, 2.5 6	Date conocto	u	, ., .,			•••	-
Sample Depth: 3.0 - 3.5 It							
Analytical Method: VOCs by SW8260B Prep Metho						/5035	
Date Analyzed: Aug-15-07 13:29 A Sea N	nalyst: MJL01 umber: 37052	Ι	Date Prep: Au	ng-15-07 08:53	Tech:	MJL03	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
	(10) 1 (11) (1) (1) (1) (1) (1) (1) (1) (1)		10p		200/10	17	1
1,1,1,2-Tetrachloroethane	630-20-6	BKL	4.2	0.44	ug/kg	U 11	1
1,1,1-1richloroethane	/1-55-6	BKL	4.Z	0.03	ug/kg	U U	1
1,1,2,2-Tetrachloroethane	79-34-5	BKL	4.2	0.99	<u>ug/кр</u> ug/кр	U	1
1,1,2-Trichloroethane	79-00-5	BKL	4.2	0.56	ug/kg	U	1
1,1-Dichloroethane	75-34-3	BRL	4.2	0.67	ug/kg	U	1
1,1-Dichloroethene	75-35-4	BRL	4.2	0.97	ug/kg	U	1
1,1-Dichloropropene	563-58-6	BRL	4.2	0.45	ug/kg	U	I
1,2,3-Trichlorobenzene	87-61-6	BKL	4.2	0.48	ug/Kg	U	1
1,2,3-Trichloropropane	96-18-4	BRL	4.2	1.4	ug/kg	U	1
1,2,4-Trichlorobenzene	120-82-1	BKL	4.2	0.73	ug/kg	U	1
1,2-Dibromo-3-Chloropropane	96-12-8	BRL	4.2	1.3	ug/kg	U	1
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	BRL	4.2	0.72	ug/kg	U	I
1,2-Dichlorobenzene	95-50-1	BRL	4.2	1.1	ug/kg	U	1
1,2-Dichloroethane	107-06-2	BRL	4.2	0.50	ug/kg	U	1
1,2-Dichloropropane	78-87-5	BRL	4.2	0.77	ug/kg	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	4.2	0.68	ug/kg	U	1
1,3-Dichlorobenzene	541-73-1	BRL	4.2	0.83	ug/kg	U	1
1,3-Dichloropropane	142-28-9	BRL	4.2	0.57	ug/kg	U	1
1,4-Dichlorobenzene	106-46-7	BRL	4.2	0.57	ug/kg	U	1
2,2-Dichloropropane	594-20-7	BRL	4.2	0.50	ug/kg	U	1
2-Butanone	78-93-3	BRL	42	7.6	ug/kg	U	1
2-Chlorotoluene	95-49-8	BRL	4.2	0.59	ug/kg	U	1
2-Hexanone	591-78-6	BRL	42	0.94	ug/kg	U	1
4-Chlorotolucne	106-43-4	BRL	4.2	0.46	ug/kg	U	1
4-Methyl-2-Pentanone	108-10-1	BRL	42	2.7	ug/kg	U	1
Acetone	67-64-1	7.2	42	5.7	ug/kg	ł	1
Acrolein	107-02-8	BRL	8.3	3.7	ug/kg	U	1
Acrylonitrile	107-13-1	BRL	8.3	4.2	ug/kg	U	1
Benzene	71-43-2	BRL	4.2	0.43	ug/kg	U	1
Bromobenzene	108-86-1	BRL	4.2	0.71	ug/kg	U	1
Bromochloromethane	74-97-5	BRL	4.2	0.84	ug/kg	U	1
Bromodichloromethane	75-27-4	BRL	4.2	0.42	ug/kg	U	1
Bromoform	75-25-2	BRL	4,2	0.80	ug/kg	U	1
Bromomethane	74-83-9	BRL	4.2	2.0	ug/kg	U	1
Carbon Disulfide	75-15-0	BRL	4,2	1.2	ug/kg	U	1
Carbon Tetrachloride	56-23-5	BRL	4.2	0.62	ug/kg	U	1
Chlorobenzene	108-90-7	BRL	8.3	0.48	ug/kg	U	1
Chloroethane	75-00-3	BRL	4.2	2.0	ug/kg	U	1
Chloroform	67-66-3	BRL	4.2	0.62	ug/kg	U	1
Chloromethane	74-87-3	BRL	4.2	1.9	ug/kg	U	1
cis-1.2-Dichloroethene	156-59-2	BRL	4.2	0.55	ug/kg	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	4.2	0.45	ug/kg	U	1
Dibromochloromethane	124-48-1	BRL	4.2	0.83	ug/kg	U	1
Dibromomethane	74-95-3	BRL	4.2	0.51	ug/kg	U	1
Dichlorodifluoromethane	75-71-8	BRL	4.2	0.98	ug/kg	Ų	1

Page 5 of 24

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-8	Matrix: SOIL	% Moisture: 17
Lab Sample Id: 12467-003	Date Collected: Aug-10-07 09:30	Date Received: Aug-11-07 10:00
Sample Depth: 3.0 - 3.5 ft		
	(11.00m)	

Analytical Method: VOCs by SW8260B		Prep Method: SW5035					
Date Analyzed: Aug-15-07 13:29	Analyst: MJL01 Seq Number: 37052]	Date Prep: At	ug-15-07 08:53	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Ethylbenzene	100-41-4	BRL	4.2	0.47	ug/kg	U	1
Hexachlorobutadiene	87-68-3	BRL	4.2	0.71	ug/kg	U	1
Isopropyl Ether	108-20-3	BRL	4.2	1.1	ug/kg	U	1
Isopropylbenzene	98-82-8	BRL	4.2	0.63	ug/kg	U	1
m,p-Xylenes	179601-23-1	BRL	8.3	1.0	ug/kg	U	I
Methyl tert-butyl ether	1634-04-4	BRL	4.2	0.58	ug/kg	\mathbf{U}	1
Methylene Chloride	75-09-2	3.1	4.2	1.8	ug/kg	J	1
Naphthalene	91-20-3	BRL	4.2	1,1	ug/kg	U	1
n-Butylbenzene	104-51-8	BRL	4.2	0.73	ug/kg	U	1
n-Propylbenzene	103-65-1	BRL	4.2	0.65	ug/kg	U	1
o-Xylene	95-47-6	BRL	4.2	0.60	ug/kg	U	1
p-Isopropyltoluene	99-87-6	BRL	4.2	0.67	ug/kg	U	1
sec-Butylbenzene	135-98-8	BRL	4.2	0.55	ug/kg	U	1
Styrene	100-42-5	BRL	4.2	0.62	ug/kg	U	1
tert-Butylbenzene	98-06-6	BRL	4.2	0.69	ug/kg	U	1
Tetrachloroethene	127-18-4	BRL	4.2	0.86	ug/kg	U	1
Toluene	108-88-3	0.86	4.2	0.49	ug/kg	J	1
trans-1,2-Dichloroethene	156-60-5	BRL	4.2	0.65	ug/kg	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	4.2	0.56	ug/kg	U	1
Trichloroethene	79-01-6	BRL	4.2	0.59	ug/kg	U	1
Trichlorofluoromethane	75-69-4	BRL	4.2	2.9	ug/kg	U	1
Vinyl Acetate	108-05-4	BRL	4.2	0.60	ug/kg	U	1
Vinyl Chloride	75-01-4	BRL	4.2	1.7	ug/kg	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-7	Matri	x: SOIL		% Moistu	re: 20		1991 Carry Street
Lab Sample Id: 12467-004	Date Collecte	d [.] Aug-1	0-07 10:04	Date Receive	ed: Aug-11-	07 10:0	0
Sample Douth: 16 226							
Sample Deptn: 1.6 - 2.2 It							
Analytical Method: VOCs by SW8260B Prep Metho						/5035	
Date Analyzed: Aug-14-07 13:02	Analyst: MJL01	Ι	Date Prep: Au	ıg-14-07 09:35	Tech:	MJL01	
	Seq Number: 37048						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	6.7	0.70	ug/kg	U	1
1.1.1-Trichloroethane	71-55-6	BRL	6.7	1.0	ug/kg	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	6.7	1.6	ug/kg	U	1
1 1 2-Trichloroethane	79-00-5	BRL	6.7	0.90	ug/kg	U	l
1 1-Dichloroethane	75-34-3	BRL	6.7	1.1	ug/kg	U	1
1,1 Dichloroethene	75-35-4	BRL	67	1.6	ug/kg	U	1
1.1 Dichloropropene	563-58-6	BRL	67	0.72	ug/kg	Ũ	1
1.2.3-Trichlorobenzene	87-61-6	BRL	67	0.77	ug/kg	Ũ	1
1,2,3-Trichloropropage	96-18-4	RRI	67	2.2	ug/kg	$\tilde{\mathbf{U}}$	1
1.2.4 Trichlorohomono	100 82 1		67	12	ug/kg	Ŭ	1
1.2 Dilarana 2 Chlorotronomo	06 12 9	וסמ	67	1.2	ue/ke	ŭ	1
1,2-Dibromo-3-Chioropropane	90-12-0		67	17	110/ko	и П	1
1,2-Dichlorobenzene	95-50-1 107-06-2	DRL	0.7	1.7	ug/ke	U U	1
1,2-Dichloroethane	107-00-2	DKL	0.7	0.60	ug/ke	U U	1
1,2-Dichloropropane	78-87-5	BKL	6.7	1.2	ug/kg	U	1
1,3,5-trimethylbenzene	108-67-8	BKL	6.7	1.1	ug/Kg	U	1
1,3-Dichlorobenzene	541-73-1	BRL	6.7	1.3	ug/kg	U	1
1,3-Dichloropropane	142-28-9	BRL	6.7	0.92	ug/kg	U	l
1,4-Dichlorobenzene	106-46-7	BRL	6.7	0.92	ug/kg	U	1
2,2-Dichloropropane	594-20-7	BRL	6.7	0.80	ug/kg	U	1
2-Butanone	78-93-3	BRL	67	12	ug/kg	U	1
2-Chlorotoluene	95-49-8	BRL	6.7	0.95	ug/kg	U	1
2-Hexanone	591-78-6	BRL	67	1.5	ug/kg	U	1
4-Chlorotoluene	106-43-4	BRL	6.7	0.74	ug/kg	U	1
4-Methyl-2-Pentanone	108-10-1	BRL	67	4.3	ug/kg	U	1
Acetone	67-64-1	19	67	9.2	ug/kg	J	1
Acrolein	107-02-8	BRL	13	5.9	ug/kg	U	1
Acrylonitrile	107-13-1	BRL	13	6.7	ug/kg	U	1
Benzene	71-43-2	BRL	6.7	0.69	ug/kg	U	1
Bromohenzene	108-86-1	BRL	6.7	1.1	ug/kg	U	1
Bromochloromethane	74-97-5	BRL	6.7	1.3	ug/kg	U	1
Bromodichloromethane	75-27-4	BRL	6.7	0.67	ug/kg	\mathbf{U}	1
Bromoform	75-25-2	BRL	6.7	1.3	ug/kg	Ū	1
Bromomethane	74_83_9	BRI	67	33	ug/kg	Ū	1
Corbon Digulfida	75 15 0	BRI	67	19	ug/kg	Ū	1
Carbon Disunde Carbon Totrachlarida	56 23 5	DICL	67	0.99	- <i>2</i> 2 ug/kg	Ŭ	1
Carbon Tetrachionde	102 00 7	DIAL	12	0.79	- <i>32</i> 110/kp	U U	î
Chlorobenzene	108-90-7	DRL	15	0.70	10/kg	U	1
Chloroethane	/J-UU-3	DKL	0.7	<i>5.5</i> 0.00	110/ko	11	1 1
Chlorotorm	67-66-3	BKL	0./	0.99	ч <u>5</u> /ке 110/ka	U 11	1
Chloromethane	74-87-3	BKL	6./	3. 1	и <u>в</u> /ке 110/ке	U 17	1
cis-1,2-Dichloroethene	156-59-2	BRL	6.7	0.89	ug/kg	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	6.7	0.72	иу/ке	U	1
cis-1,4-Dichloro-2-Butene	1476-11-5	BRL	6.7	1.6	ug/kg	U	1
Dibromochloromethane	124-48-1	BRL	6.7	1.3	ug/kg	Ų	1
Dibromomethane	74-95-3	BRL	6.7	0.82	ug/kg	U	1
Dichlorodifluoromethane	75-71-8	BRL	6.7	1.6	ug/kg	U	1

Page 7 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-7 Lab Sample Id: 12467-004 Sample Depth: 1.6 - 2.2 ft	Matrix: SOIL Date Collected: Aug-10-07 10:	% Moisture: 20 04 Date Received: Aug-11-07 10:00	þ
Analytical Method: VOCs by SW8260	B	Prep Method: SW5035	
Date Analyzed: Aug-14-07 13:02 A	nalyst: MJL01 Date Prep	p: Aug-14-07 09:35 Tech: MJL01	

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Ethylbenzene	100-41-4	BRL	6.7	0.76	ug/kg	U	1
Hexachlorobutadiene	87-68-3	BRL	6.7	1.1	ug/kg	U	1
Iodomethane (Methyl Iodide)	74-88-4	BRL	6.7	2.0	ug/kg	U	1
Diisopropyl Ether	108-20-3	BRL	6.7	1.7	ug/kg	U	1
Isopropylbenzene	98-82-8	BRL	6.7	1.0	ug/kg	U	1
Methyl Methacrylate	80-62-6	BRL	6.7	3.2	ug/kg	U	1
Methyl tert-butyl ether	1634-04-4	BRL	6.7	0.93	ug/kg	U	1
Methylene Chloride	75-09-2	4.2	6.7	2.9	ug/kg	J	1
Naphthalene	91-20-3	BRL	6.7	1.7	ug/kg	U	1
n-Butylbenzene	104-51-8	BRL	6.7	1.2	ug/kg	U	1
n-Propylbenzene	103-65-1	BRL	6.7	1.0	ug/kg	\mathbf{U}	1
4-Isopropyltoluene	99-87-6	BRL	6.7	1.1	ug/kg	U	1
Sec-Butylbenzene	135-98-8	BRL	6.7	0.88	ug/kg	U	1
Styrene	100-42-5	BRL	6.7	0.99	ug/kg	U	1
tert-Butylbenzene	98-06-6	BRL	6.7	1.1	ug/kg	U	1
Tetrachloroethylene	127-18-4	BRL	6.7	1.4	ug/kg	U	1
Toluene	108-88-3	BRL	6.7	0.79	ug/kg	U	1
trans-1,2-dichloroethene	156-60-5	BRL	6.7	1.0	ug/kg	U	1
trans-1,3-dichloropropene	10061-02-6	BRL	6.7	0.90	ug/kg	U	1
trans-1,4-Dichloro-2-Butene	110-57-6	BRL	6.7	2.2	ug/kg	U	1
Trichloroethene	79-01-6	BRL	6.7	0.95	ug/kg	U	1
Trichlorofluoromethane	75-69-4	BRL	6.7	4.7	ug/kg	U	1
Vinyl Acetate	108-05-4	BRL	6.7	0.97	ug/kg	U	1
Vinyl Chloride	75-01-4	BRL	6.7	2.7	ug/kg	U	1
Xylenes, Total	1330-20-7	BRL	20	2.5	ug/kg	U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-1	Matrix: SOIL	% Moisture: 12
Lab Sample Id: 12467-005	Date Collected: Aug-10-07 10:20	Date Received: Aug-11-07 10:00
Sample Depth: 2.5 - 3.2 ft		
	······································	

Prep Method: SW5035 Analytical Method: VOCs by SW8260B Analyst: MJL01 Date Prep: Aug-15-07 08:53 Date Analyzed: Aug-15-07 13:56 Tech: MJL01 Seq Number: 37052 Flag Dil **Result Rep Limit** MDL Units Parameter Cas Number BRL 6.0 0.63 ug/kg U 1 1,1,1,2-Tetrachloroethane 630-20-6 6.0 0.90 ug/kg U 1 1.1.1-Trichloroethane 71-55-6 BRL ug/kg U 79-34-5 BRL 6.0 1.4 1 1,1,2,2-Tetrachloroethane ug/kg 79-00-5 BRL 6.0 0.80 U 1 1.1.2-Trichloroethane ug/kg 1,1-Dichloroethane 75-34-3 BRL 6.0 0.96 U 1 ug/kg 75-35-4 BRL 6.0 1.4 υ 1 1,1-Dichloroethene 0.64 ug/kg U 563-58-6 BRL 6.0 ł 1,1-Dichloropropene ug/kg 87-61-6 BRL 6.0 0.69 U 1 1,2,3-Trichlorobenzene 2.0 ug/kg U 1,2,3-Trichloropropane 96-18-4 BRL 6.0 1 ug/kg U BRL. 6.0 1.0 1 1,2,4-Trichlorobenzene 120-82-1 ug/kg 1.9 U 1 BRL 6.0 1,2-Dibromo-3-Chloropropane 96-12-8 1.0 ug/kg U 6.0 1 1.2-Dibromoethane (Ethylene Dibromide) 106-93-4 BRL ug/ke U 1.5 1 6.0 1.2-Dichlorobenzene 95-50-1 BRL 0.71 ug/kg U 1 1.2-Dichloroethane 107-06-2 BRL 6.0 ug/kg U 78-87-5 BRL 6.0 1.1 1 1.2-Dichloropropane ug/kg 108-67-8 BRL 6.0 0.97 U 1 1,3,5-Trimethylbenzene ug/kg 1,3-Dichlorobenzene 541-73-1 BRL 6.0 1.2 U 1 0.82 ug/kg U 1 1,3-Dichloropropane 142-28-9 BRL 6.0 0.82 ug/kg U 1 106-46-7 BRL 6.0 1,4-Dichlorobenzene ug/kg U BRL 6.0 0.72 1 594-20-7 2,2-Dichloropropane ug/kg U 1 78-93-3 BRL 60 11 2-Butanone 0.85 ug/kg U 1 6.0 95-49-8 BRL 2-Chlorotoluene ug/kg U 1 1.3 2-Hexanone 591-78-6 BRL 60 ug/kg 0.66 U l 106-43-4 BRL 6.0 4-Chlorotoluene ug/kg U 3.9 1 4-Methyl-2-Pentanone 108-10-1 BRL 60 ug/kg U 8.2 1 60 Acetone 67-64-1 BRL ug/kg U 1 107-02-8 BRL 12 5.3 Acrolein ug/kg U 1 107-13-1 BRL 12 6.0 Acrylonitrile ug/kg U 71-43-2 BRL 6.0 0.61 1 Benzene BRL 6.0 1.0 ug/kg U 1 108-86-1 Bromobenzene 74-97-5 BRL 6.0 1.2 ug/kg υ 1 Bromochloromethane ug/kg U 75-27-4 BRL 6.0 0.601 Bromodichloromethane U 6.0 1.1 ug/kg 1 75-25-2 BRL Bromoform 2.9 ug/kg U 1 6.0 Bromomethane 74-83-9 BRL ug/kg U 1.7 1 BRL 6.0 Carbon Disulfide 75-15-0 ug/kg U 0.89 1 Carbon Tetrachloride 56-23-5 BRL 6.0 ug/kg U 108-90-7 BRL 12 0.69 1 Chlorobenzene ug/kg 75-00-3 BRL 6.0 2.9 U 1 Chloroethane BRL 6.0 0.88 ug/kg U 1 Chloroform 67-66-3 74-87-3 BRL 6.0 2.8 ug/kg U 1 Chloromethane ug/kg U cis-1,2-Dichloroethene 156-59-2 BRL. 6.0 0.79 ł 10061-01-5 BRL 6.0 0.64 ug/kg U 1 cis-1,3-Dichloropropene 124-48-1 BRL 6.0 1.2 ug/kg U 1 Dibromochloromethane ug/kg 74-95-3 BRL 6.0 0.73 U 1 Dibromomethane BRL 6.0 1.4 ug/kg U 1 Dichlorodifluoromethane 75-71-8

Page 9 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-1	Matrix: SOIL	% Moisture: 12
Lab Sample Id: 12467-005	Date Collected: Aug-10-07 10:20	Date Received: Aug-11-07 10:00
Sample Depth: 2.5 - 3.2 ft		

Analytical Method: VOCs by SW8260B			Prep Method: SW5035					
Date Analyzed: Aug-15-07 13:5	6 Analyst: MJL01 Seq Number: 37052]	Date Prep: Au	1g-15-07 08:53	Tech:	МЛ О1		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Ethylbenzene	100-41-4	BRL	6.0	0.67	ug/kg	U	1	
Hexachlorobutadiene	87-68-3	BRL	6.0	1.0	ug/kg	U	1	
Isopropyl Ether	108-20-3	BRL	6.0	1.5	ug/kg	U	ł	
Isopropylbenzene	98-82-8	BRL	6.0	0.91	ug/kg	U	1	
m,p-Xylenes	179601-23-1	BRL	12	1.4	ug/kg	U	1	
Methyl tert-butyl ether	1634-04-4	BRL	6.0	0.83	ug/kg	U	1	
Methylene Chloride	75-09-2	BRL	6.0	2.6	ug/kg	U	1	
Naphthalene	91-20-3	BRL	6.0	1.6	ug/kg	U	1	
n-Butylbenzene	104-51-8	BRL	6.0	1.1	ug/kg	U	1	
n-Propylbenzene	103-65-1	BRL	6.0	0.93	ug/kg	U	1	
o-Xylene	95-47-6	BRL	6.0	0.86	ug/kg	U	1	
p-Isopropyltoluene	99-87-6	BRL	6.0	0.96	ug/kg	U	1	
sec-Butylbenzene	135-98-8	BRL	6.0	0.78	ug/kg	ប	1	
Styrene	100-42-5	BRL	6.0	0.89	ug/kg	U	1	
tert-Butylbenzene	98-06-6	BRL	6.0	1.0	ug/kg	U	1	
Tetrachloroethene	127-18-4	BRL	6.0	1.2	ug/kg	U	1	
Toluene	108-88-3	BRL	6.0	0.70	ug/kg	U	1	
trans-1,2-Dichloroethene	156-60-5	BRL	6.0	0.93	ug/kg	U	1	
trans-1,3-Dichloropropene	10061-02-6	BRL	6.0	0.80	ug/kg	U	1	
Trichloroethene	79-01-6	BRL	6.0	0.84	ug/kg	U	1	
Trichlorofluoromethane	75-69-4	BRL	6.0	4.2	ug/kg	U	1	
Vinyl Acetate	108-05-4	BRL	6.0	0.86	ug/kg	U	1	
Vinyl Chloride	75-01-4	BRL	6.0	2.4	ug/kg	U	1	

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-2	Matri	x: SOIL	<u>. y yr ardydd</u> a	% Moisture: 22			
Lab Sample Id: 12467-006	Date Collecte	d: Aug-10-	07 10:35	Date Receive	d: Aug-11-	07 10:0	0
Sample Denth: 10 40ft	240 00000						
Sample Deptil. 5.0 - 4.0 R							
Analytical Method: VOCs by SW82601	3			Prep I	Method: SW	/5035	
Date Analyzed: Aug-15-07 14:24 Au Seg Nu	nalyst: MJL01 umber: 37052	Da	ite Prep: Ai	1g-15 -07 08 :53	Tech:	MJL01	
Parameter	Cas Number	Result R	Rep Limit	MDL	Units	Flag	Dil
	(20.20.6	DDT	 د د	0.59	ug/ko	п	1
1,1,1,2-1 etrachioroethane	030-20-0	DKL	5.5 5 5	0.20	<i>∽6/ ∿€</i> 119/ke	и П	1 1
1,1,1-1 richioroethane	71-33-0	סאב נפנו	5.5	12	~5⁄∿£ 110/kp	и П	1
1,1,2,2-1 etrachioroethane	79-34-3 70.00 f).) 5 5	1.5	ug/ko	U	1
1,1,2-Trichloroethane	/9-00-3 75 24 2	DKL	5.5 5 5	0.74	us/ko	U U	נ 1
I, i-Dichloroethane	13-34-3	DDI	5.5	U.88 1.2	no/ka	U U	1 1
1,1-Dichloroethene	13-33-4	DKL).) 6 e	1.5	100/ko	11	1
1,1-Dichloropropene	203-28-0	DKL. DDI	5.5 5.5	0.59	nø/ko	U U	1
1,2,3-Trichlenergene	0/-01-0	DKL. DDI).) 5 5	1.05	110/ko	н П	1
1,2,3-1richloropropane	70-10-4 100 00 1	DKL).) 5 5	1.0	us/re no/re	U	1
1,2,4- Inchlorobenzene	120-82-1	DKL	3.3 5 5	0.90	ug/ng uo/ko	о П	1 1
1,2-Dibromo-3-Chloropropane	90-12-8 106.02.4		3.3 5 5	1.0	ug/ng no/ko	บ บ	1 1
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	BKL	3.3	0.95	ug/kg	U	1
1,2-Dichlorobenzene	95-50-1	BKL	J.J 5 5	1.4	ug/kg	U	1
1,2-Dichloroethane	107-06-2	BKL	3.3	0.00	ug/Kg ug/Kg	U	1
1,2-Dichloropropane	78-87-5	BKL	3.3	0.1	ug/Kg	U	1
1,3,5-Trimethylbenzene	108-67-8	BKL	5.5	0.90	ug/kg	U	l t
1,3-Dichlorobenzene	541-73-1	BKL	5.5	1.1	ug/kg	U	1 1
1,3-Dichloropropane	142-28-9	BKL	5.5	U./6	ug/Kg	U	1
1,4-Dichlorobenzene	106-46-7	BRL	5.5	0.75	ug/Kg	U	1
2,2-Dichloropropane	594-20-7	BRL	5.5	0.66	ug/kg	U	t r
2-Butanone	78-93-3	BRL	55	10	ug/rg	U	t 1
2-Chlorotoluene	95-49-8	BRL	5.5	0.78	ug/kg	U	,
2-Hexanone	591-78 - 6	BRL	55	1.2	ug/Kg	U	1
4-Chlorotoluene	106-43-4	BRL	5.5	0.61	ug/Kg	U	l 1
4-Methyl-2-Pentanone	108-10-1	BRL	55	3.6	ug/kg	U	1
Acetone	67-64-1	25	55	7.6	ug/kg	J	1
Acrolein	107-02-8	BRL	11	4.9	ug/kg	U	1
Acrylonitrile	107-13-1	BRL	11	5.5	ug/kg	U	1
Benzene	71-43-2	BRL	5.5	0.57	ug/kg	U	1
Bromobenzene	108-86-1	BRL	5.5	0.94	ug/kg	U	1
Bromochloromethane	74-97-5	BRL	5.5	1.1	ug/kg	U	1
Bromodichloromethane	75-27-4	BRL	5.5	0.55	ug/kg	U	1
Bromoform	75-25-2	BRL	5.5	1.1	ug/kg	0	1
Bromomethane	74-83-9	BRL	5.5	2.7	ug/kg	U	1
Carbon Disulfide	75-15-0	BRL	5.5	1.6	ug/kg	U	1
Carbon Tetrachloride	56-23-5	BRL	5.5	0.82	ug/ke	U	1
Chlorobenzene	108 - 90-7	BRL	11	0.64	ug/kg	U	1
Chloroethanc	75-00-3	BRL	5.5	2.7	ug/kg	U	I
Chloroform	67-66-3	BRL	5.5	0.82	ug/kg	U	1
Chloromethane	74-87-3	BRL	5.5	2.5	ug/kg	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	5.5	0.73	ug/kg	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	5.5	0.59	ug/kg	U	1
Dibromochloromethane	124-48-1	BRL	5.5	1.1	ug/kg	U	1
Dibromomethane	74-95-3	BRL	5.5	0.68	ug/kg	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.5	1.3	ug/kg	U	1

*

Page 11 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-2 Lab Sample Id: 12467-006 Sample Depth: 3.0 - 4.0 ft	Matrix: SOIL Date Collected: Aug-10-07 10:35	% Moisture: 22 Date Received: Aug-11-07 10:00

Analytical Method: VOCs by SW8260B Date Analyzed: Aug-15-07 14:24 Analyst: MJL01 Date Prep: Aug-15-07 08:53 Tech: MJL01 Seq Number: 37052 Dil Units Flag Cas Number **Result Rep Limit** MDL Parameter ug/kg U 100-41-4 BRL 5.5 0.62 1 Ethylbenzene ug/kg U 87-68-3 BRL 5.5 0.94 1 Hexachlorobutadiene ug/kg U BRL 5.5 1.4 1 108-20-3 Isopropyl Ether 0.84 ug/kg U 1 98-82-8 BRL 5.5 Isopropylbenzene ug/kg 11 1.3 U 1 179601-23-1 BRL m,p-Xylenes 5.5 0.76 ug/kg U 1 1634-04-4 BRL Methyl tert-butyl ether ug/kg 5.5 2.4 U 1 75-09-2 BRL Methylene Chloride BRL 5.5 1.4 ug/kg U 1 91-20-3 Naphthalene ug/kg U 104-51-8 BRL 5.5 0.97 1 n-Butylbenzene ug/kg U 1 n-Propylbenzene 103-65-1 BRL 5.5 0.86 ug/kg U 0.79 1 o-Xylene 95-47-6 BRL 5.5 ug/kg U 1 99-87-6 BRL 5.5 0.88 p-Isopropyltoluene ug/kg U sec-Butylbenzene 135-98-8 BRL 5.5 0.72 1 ug/kg U BRL 5.5 0.82 1 100-42-5 Styrene ug/kg BRL 5.5 0.92 U 1 tert-Butylbenzene 98-06-6 5.5 1.1 ug/kg U 1 127-18-4 BRL Tetrachloroethene BRL 5.5 0.65 ug/kg U 1 108-88-3 Toluene ug/kg U 1 BRL 5.5 0.86 trans-1,2-Dichloroethene 156-60-5 ug/kg U 5.5 0.74 1 trans-1,3-Dichloropropene 10061-02-6 BRL ug/kg 0.78 U 1 5.5 Trichloroethene 79-01-6 BRL ug/kg U 1 3.9 5.5 Trichlorofluoromethane 75-69-4 BRL ug/kg Ŭ 0.79 1 108-05-4 BRL 5.5 Vinyl Acetate ug/kg U 75-01-4 2.2 1 BRL 5.5 Vinyl Chloride

Prep Method: SW5035

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

			F			NGES	
Sample Id: SS-6 Lab Sample Id: 12467-007 Sample Depth: 1.2 - 1.8 ft	Matrix: Date Collected:		0-07 11:00	% Moisture: 10 Date Received: Aug-11-07 10:0			0
Analytical Method: VOCs by SW8260	B			Prep I	Method: SW	/5035	
Date Analyzed: Aug-15-07 14:51 As	nalyst: MJL01 umber: 37052]	Date Prep: A	ug-15-07 08:53	Tech:	МЛ.01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2.Tetrachloroethane	630-20-6	BRI	5.8	0.61	ug/kg	U	1
1,1,1,2-Tetraemoroethane	71-55-6	BRI	5.8	0.88	ug/kg	Ū	ī
1.1.2.2-Tetrachloroethane	79_34_5	BRI	5.8	14	ug/kg	Ū	1
1,1,2,2-1 culaemoroculate 1,1,2,Trichloroethane	79-00-5	BRI	5.8	0.78	ug/kg	ū	1
1,1,2-Themoroethane	75-34-3	BRI	5.8	0.94	ug/kg	Ū	1
1,1-Dichloroethene	75-35-4	BBI	5.0	14	ug/kg	Ū	í
1,1-Dichloropropene	563-58-6	BRI	5.8	0.63	ug/kg	п П	1
1,1-Dichlorophopene	87-61-6	BRI	5.8	0.67	ug/kg	Ŭ	i
1.2.3 Trichloropropage	96-18-4	BRI	5.8	19	ug/kg	Ũ	1
1.2.4 Triablorobangane	120-82-1	BRI	5.8	1.0	ug/kg	Ŭ	1
1.2 Dibromo 2 Chloronronane	06-12-8	BRI	5.8	1.0	ug/kg	Ŭ	1
1,2-Dibromosthana (Ethulana Dibromida)	106-03-4	BRI	5.8	10	ug/kg	U	î
1.2 Disblorohonzono	05-50-1	BRI	5.8	1.5	ug/kg	Ŭ	î
1,2-Dichloroothana	107-06-2	BRI	5.8	0.70	ug/kg	Ŭ	i
1,2 Dichlererrerer	79.97.5	BDI	5.8	11	ue/ke	ũ	1
1,2-Dichoropropane	109 67 9	DIGE	5.8	0.95	ug/kg	ŭ	1
1,3,3-1 miletayloenzene	541 72 1	BDI	5.8	12	ug/kg	й И	1
1,3-Dichlorobenzene	142 28 0	DAL	5.0	0.80	ug/kg	п П	1
1,3-Dichloropropane	142-20-9		5.8	0.80	ng/ke	т П	1
1,4-Dichlorobenzene	100-40-7		5.0	0.00	ug/ke	и П	1
2,2-Dichloropropane	394-20-7 79.03.2	DNL	5.0	0.70	ug/kg	U U	1
2-Butanone	/8-93-3 05 40 P			0.83	ug/kg	U U	1
2-Chlorotoluene	95-49-8	BKL	2.0 20	0.83	110/ko	17	1
2-Hexanone	591-78-0	BKL		1.5	119/kp	U 11	1
4-Chlorotoluene	106-43-4	BRL	5.8 50	0.05	11g/kg	U	1
4-Methyl-2-Pentanone	108-10-1	BRL		2.0	ug/kg	U	1
Acetone	07-04-1	ס/ נתת		0.U 5 0	ug/ka	TT	1
Acrolem	107-02-8	BKL.	12).4 5 0	ug/ng ug/ko	U 11	1
Acrylomitile	107-13-1	BKL	1Z ਵ 0	2.0 0.60	ug/Ng ug/Ng	U T	1
Benzene	/1-45-2	BKL	J.8 2.0	0.00	ug/kg		1
Bromobenzene	108-86-1	BKL	5.8	1.0	ug/Kg	U	1
Bromochloromethane	74-97-5	BRL	5.8	1.2	ug/Kg	U	1
Bromodichloromethane	75-27-4	BRL	5.8	0.59	ug/кр	U	1
Bromoform	75-25-2	BRL	5.8	1.1	ug/Kg	U	1
Bromomethane	74-83-9	BRL	5.8	2.9	ug/kg	U	1

5,8

5.8

12

5.8

5.8

5.8

5.8

5.8

5.8

5.8

5.8

BRL

75-15-0

56-23-5

108-90-7

75-00-3

67-66-3

74-87-3

156-59-2

124-48-1

74-95-3

75-71-8

10061-01-5

1.7

0.87

0.68

2.9

0.87

2.7

0.77

0.63

1.2

0.72

<u>1.</u>4

Carbon Disulfide

Chlorobenzene

Chloromethane

Dibromomethane

Chloroethane

Chloroform

Carbon Tetrachloride

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Page 13 of 24

U

U

U

U

U

U

U

U

U

U

U

1

1

1

1

1

1

1

1

1

1

1

ug/kg

ſ

Certificate of Analytical Results 12467

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-6	Matrix: SOIL	% Moisture: 10		
Lab Sample Id: 12467-007	Date Collected: Aug-10-07 11:00	Date Received: Aug-11-07 10:00		
Sample Depth: 1.2 - 1.8 ft				

Analytical Method: VOCs by SW8260B		Prep Method: SW5035					
Date Analyzed: Aug-15-07 14:51	Analyst: MJL01 Seq Number: 37052]	Date Prep: A	ug-15-07 08:53	Tech:	млоі	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Ethylbenzene	100-41-4	BRL	5.8	0.66	ug/kg	U	1
Hexachlorobutadiene	87-68-3	BRL	5.8	1.0	ug/kg	U	1
Isopropyl Ether	108-20-3	BRL	5.8	1.5	ug/kg	U	1
Isopropylbenzene	98-82-8	BRL	5.8	0.89	ug/kg	U	1
m,p-Xylenes	179601-23-1	BRL	12	1.4	ug/kg	U	1
Methyl tert-butyl ether	1634-04-4	BRL	5.8	0.81	ug/kg	U	1
Methylene Chloride	75-09-2	BRL	5.8	2.5	ug/kg	U	1
Naphthalene	91-20-3	BRL	5.8	1.5	ug/kg	U	1
n-Butylbenzene	104-51-8	BRL	5.8	1.0	ug/kg	U	1
n-Propylbenzene	103-65-1	BRL	5.8	0.91	ug/kg	U	1
o-Xylene	95-47-6	BRL	5.8	0.84	ug/kg	U	1
p-Isopropyltoluene	99-87-6	2.1	5.8	0.94	ug/kg	J	1
sec-Butylbenzene	135-98-8	BRL	5.8	0.77	ug/kg	U	1
Styrene	100-42-5	BRL	5.8	0.87	ug/kg	U	1
tert-Butylbenzene	98-06-6	BRL	5.8	0.98	ug/kg	U	1
Tetrachloroethene	127-18-4	BRL	5.8	1.2	ug/kg	U	1
Toluene	108-88-3	1.2	5.8	0.69	ug/kg	J	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.8	0.91	ug/kg	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.8	0.78	ug/kg	U	1
Trichloroethene	79-01-6	BRL	5.8	0.83	ug/kg	υ	1
Trichlorofluoromethane	75-69-4	BRL	5.8	4.1	ug/kg	U	1
Vinyl Acetate	108-05-4	BRL	5.8	0.84	ug/kg	U	1
Vinyl Chloride	75-01-4	BRL	5.8	2.4	ug/kg	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id:	SS-3
Lab Sample Id:	12467-008

Matrix: SOIL

% Moisture: 22

Date Received: Aug-11-07 10:00

Sample Depth: 2.4 - 2.9 ft

Date Collected: Aug-10-07 11:20

Analytical Method: VOCs by SW8260B

Analytical Method: VOCs by SW8260B			Prep Method: SW5035					
Date Analyzed: Aug-15-07 15:19 Ar Seq Nu	nalyst: MJL01 umber: 37052]	Date Prep: A	ug-15-07 08:53	Tech:	МЛ.01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	6.9	0.72	ug/kg	U	1	
1,1,1-Trichloroethane	71-55-6	BRL	6.9	1.0	ug/kg	U	1	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	6.9	1,6	ug/kg	U	1	
1,1,2-Trichloroethane	79-00-5	BRL	6.9	0.92	ug/kg	U	1	
1.1-Dichloroethane	75-34-3	BRL	6.9	3.1	ug/kg	U	1	
1,1-Dichloroethene	75-35-4	BRL	6.9	1.6	ug/kg	U	1	
1,1-Dichloropropene	563-58-6	BRL	6,9	0.74	ug/kg	Ū	1	
1,2,3-Trichlorobenzene	87-61-6	BRL	6.9	0.79	ug/kg	Ū	1	
1,2,3-Trichloropropane	96-18-4	BRL	6.9	2.3	ug/kg	U	1	
1,2,4-Trichlorobenzene	120-82-1	BRL	6.9	1.2	ug/kg	U	1	
1.2-Dibromo-3-Chloropropane	96-12-8	BRL	6.9	2.2	ug/kg	U	1	
1.2-Dibromoethane (Ethylene Dibromide)	106-93-4	BRL	6.9	1.2	ug/kg	Ū	1	
1.2-Dichlorobenzene	95-50-1	BRL	6.9	1.8	ug/kg	Ū	1	
1.2-Dichloroethane	107-06-2	BRL	6.9	0.82	ug/kg	Ū	ī	
1.2-Dichloropropane	78-87-5	BRL	6.9	1.3	ug/kg	Ŭ	1	
1.3.5-Trimethylbenzene	108-67-8	BRL	6.9	11	ug/kg	Ŭ	1	
1 3-Dichlorobenzene	541-73-1	BRL	69	14	ue/ke	Ŭ	i	
1.3-Dichloropropage	142-28-9	BRL	69	0.94	ue/ke	U	1	
1 4-Dichlorobenzene	106-46-7	BRI	69	0.94	ug/kg	U U	1	
2 2-Dichloropropage	594-20-7	BRI	69	0.87	ue/ke	ц Ц	1	
2.Butanone	78-03-3	BBI	60	13	ug/kg	т П	1	
2-Chlorotoluere	05-40-8	BRI	60	007	ue/ke	п П	1	
2-Hevanone	501-78-6	BRI	60	1.5	ue/ke	11	1	
A-Chlorotoluene	106.43.4	BRI	60	0.76	ug/kg	т т	3	
4-Methyla?-Pentanone	108_10_1	BRI	60	4.4	-32 ug/kg	U U	1	
Acetone	67-64-1	56	69	9.4	-2/-2 ug/kg	Ť	1	
Acrolein	107-02-8	BRI	14	61	-g/-g ug/kg	л Т	1	
Actulonitrile	107-02-0	BRI	14	60	ug/ke	1	1	
Renzene	71 /3 2	DICL	60	0.70	11g/kp	U	1	
Bromohenzene	108 86 1	BDI	69	1.2	110/kp	U U	1	
Bromochloromathane	74-07-5	DKL	60	1.2	110/100	U U	1	
Bromodichloromethane	75-27-4	BDI	60	0.60	119/ke	U U	1	
Bromoform	75 25 2	DICL	60	1.3	110/100	U U	1	
Bromomethane	74 83 0	DRL	60	3.4	ue/ke	U U	1	
Carbon Disulfida	75 15 0	DKL RDI	69	2.0	ug/ke	U U	1	
Carbon Disumac	56 32 5	DKL	6.9	2.0	ug/ke	n	1	
Chlorobenzene	102 00 7	DAL	0.9	0.70	ug/ke	U U	1	
Chloroethane	75 00 2	DDI	14	21	110/ko	U U	1	
Chloroform	67 66 2	DAL	U.7 40	J.4 1 A	uø/ko	U U	1	
Chloromethane	71 87 2	DRL	0.9	1.0	110/ko	U	1	
cinoromemane sis 1.2 Disblorosthone	14-01-3	DKL	0.7 20	3.2 0.01	"8"~E 110/ko	U U	1	
cis-1,2-Dichloronronene	100-39-2	DKL	0,9 40	0.91	10/ko	U	1	
Dibromochloromethere	10001-01-0	DAL	U.7 40	1.74	ue/se	U U	1	
Dibromomethane	74 05 2		U.9 4 0	0.94	ug/ko	U	1	
Dichlorodifluoromethene	75 71 9	DRL	0.9	U.04 1.4	ug/ko	U	1	
Dicmorounuoromemane	/ 3- / 1-8	DKL	0.9	0,1	ug/ng	U	1	

Page 15 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-3	Matrix: SOIL	% Moisture: 22
Lab Sample Id: 12467-008	Date Collected: Aug-10-07 11:20	Date Received: Aug-11-07 10:00
Sample Depth: 2.4 - 2.9 ft		

Prep Method: SW5035 Analytical Method: VOCs by SW8260B Analyst: MJL01 Date Prep: Aug-15-07 08:53 Date Analyzed: Aug-15-07 15:19 Tech: MJL01 Seq Number: 37052 Flag Dil **Result Rep Limit** MDL Units Parameter Cas Number 6.9 0.78 ug/kg U 1 Ethylbenzene 100-41-4 BRL 1.2 ug/kg U Hexachlorobutadiene 87-68-3 BRL 6.9 1 1.7 ug/kg U 108-20-3 BRL 6.9 1 Isopropyl Ether ug/kg 98-82-8 BRL 6.9 1.0 U 1 Isopropylbenzene ug/kg 179601-23-1 BRL 14 1.7 U 1 m,p-Xylenes ug/kg 1634-04-4 BRL 6.9 0.95 U 1 Methyl tert-butyl ether 3.0 ug/kg U Methylene Chloride 75-09-2 BRL 6.9 1 91-20-3 BRL 6.9 1.8 ug/kg U 1 Naphthalene ug/kg U n-Butylbenzene 104-51-8 BRL 6.9 1.2 1 ug/kg U 6.9 1.1 1 n-Propylbenzene 103-65-1 BRL ug/kg U 0.98 1 BRL 6.9 o-Xylene 95-47-6 ug/kg U 6.9 1.1 1 p-Isopropyltoluene 99-87-6 BRL ug/kg U 1 BRL 6.9 0.90 sec-Butylbenzene 135-98-8 ug/kg U 1 100-42-5 BRL 6.9 1.0 Styrene tert-Butylbenzene ug/kg U 98-06-6 BRL 6.9 1.1 1 ug/kg 127-18-4 BRL 6.9 1.4 U 1 Tetrachloroethene ug/kg 108-88-3 BRL 6.9 0.81 U 1 Toluene ug/kg 6.9 U 1 trans-1,2-Dichloroethene 156-60-5 BRL 1.1 0.92 ug/kg U l 10061-02-6 BRL 6.9 trans-1,3-Dichloropropene ug/kg U BRL 6.9 0.971 79-01-6 Trichloroethene ug/kg U 1 BRL 6.9 4.8 75-69-4 Trichlorofluoromethane 0.99 ug/kg U 1 108-05-4 BRL 6.9 Vinyl Acetate ug/kg U 1 BRL 6.9 2.8 Vinyl Chloride 75-01-4

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-5	Matrix: SOIL	% Moisture: 17
Lab Sample Id: 12467-009	Date Collected: Aug-10-07 11:55	Date Received: Aug-11-07 10:00
Sample Depth: 1.4 - 1.9 ft		

Prep Method: SW5035 Analytical Method: VOCs by SW8260B Date Analyzed: Aug-14-07 18:40 Analyst: MJL01 Date Prep: Aug-14-07 09:35 Tech: MJL01 Seq Number: 37048 **Result Rep Limit** MDL Units Flag Dil Parameter **Cas Number** 0.70 ug/kg U 1,1,1,2-Tetrachloroethane 630-20-6 BRL 6.6 1 ug/kg U 1.1.1-Trichloroethane 71-55-6 BRL 6.6 1.0 1 ug/kg 79-34-5 BRL 6.6 1.6 U 1 1.1.2.2-Tetrachloroethane 79-00-5 BRL 0.89 ug/kg U 1 1.1.2-Trichloroethane 6.6 ug/kg 1,1-Dichloroethane 75-34-3 BRL 6.6 1.1 U 1 75-35-4 BRL 6.6 1.5 ug/kg U 1 1,1-Dichloroethene ug/kg 563-58-6 8.7 6.6 0.71 1 1,1-Dichloropropene 1,2,3-Trichlorobenzene 87-61-6 BRL 6.6 0.76 ug/kg U 1 ug/kg 1,2,3-Trichloropropane 96-18-4 30 6.6 2.2 1 ug/kg 1.2 U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 6.6 ug/kg U BRL 2.11 1,2-Dibromo-3-Chloropropane 96-12-8 6.6 ug/kg U 1,2-Dichlorobenzene 95-50-1 BRL 6.6 1.7 1 ug/kg U 0.79 1 1,2-Dichloroethane 107-06-2 BRL 6.6 ug/kg U 1.2-Dichloropropane 78-87-5 BRL 6.6 1.2 1 ug/kg 1,3,5-trimethylbenzene 108-67-8 BRL 1.1 U 1 6.6 541-73-1 BRL 1.3 ug/kg U 1 1,3-Dichlorobenzene 6.6 1,3-Dichloropropane 142-28-9 BRL 6.6 0.91 ug/kg U 1 ug/kg U 1,4-Dichlorobenzene 106-46-7 BRI. 6.6 0.911 ug/kg 594-20-7 BRL 0.79U 1 2,2-Dichloropropane 6.6 ug/kg U 1 78-93-3 BRL 12 2-Butanone 66 ug/kg 0.94 U 1 95-49-8 BRL 6.6 2-Chlorotoluene ug/kg J 1 591-78-6 1.5 2-Hexanone 9.6 66 ug/kg U BRL 0.73 1 4-Chlorotoluene 106-43-4 6.6 ug/kg U 1 4-Methyl-2-Pentanone 108-10-1 BRL 66 4.3 9.1 ug/kg Acetone 67-64-1 78 66 I BRL 13 5.9 ug/kg U 1 Acrolein 107-02-8 ug/kg Acrylonitrile 107-13-1 BRL 13 6.6 U I 71-43-2 BRL 6.6 0.68 ug/kg U 1 Benzene BRL 6.6 1.1 ug/kg U 1 Bromobenzene 108-86-1 ug/kg U Bromochloromethane 74-97-5 BRL 6.6 1.3 1 75-27-4 BRL 6.6 0.66 ug/kg U 1 Bromodichloromethane 75-25-2 BRL 6.6 1.3 ug/kg U 1 Bromoform ug/kg U Bromomethane 74-83-9 BRL 6.6 3.3 1 ug/kg 1.9 U Carbon Disulfide 75-15-0 BRL 6.6 1 ug/kg 0.98 U Carbon Tetrachloride 56-23-5 BRL 6.6 1 ug/kg U Chlorobenzene 108-90-7 BRL 13 0.77I ug/kg 75-00-3 BRL 6.6 3.2 U 1 Chloroethane ug/kg BRL 0.98 U 1 Chloroform 67-66-3 6.6 ug/kg U Chloromethane 74-87-3 BRL 6.6 3.1 1 BRL 6.6 0.88 ug/kg U 1 cis-1,2-Dichloroethene 156-59-2 ug/kg cis-1,3-Dichloropropene 10061-01-5 BRL 6.6 0.71 U 1 cis-1,4-Dichloro-2-Butene 1476-11-5 BRL 6.6 1.6 ug/kg U 1 BRL 6.6 1.3 ug/kg U 1 Dibromochloromethane 124-48-1 74-95-3 BRL 6.6 0.81 ug/kg U 1 Dibromomethane BRL ug/kg U Dichlorodifluoromethane 75-71-8 6.6 1.6 1

Page 17 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id:	SS-5
Lab Sample Id:	12467-009
Sample Depth:	1.4 - 1.9 ft

Analytical Method: VOCs by SW8260B

Matrix: SOIL

% Moisture: 17 Received: Aug-11-07 10:00

1.7 11

	, -
Date Collected: Aug-10-07 11:55	Date

Prep Method: SW5035

Date Analyzed: Aug-14-07 18:40	Analyst: MJL01 Seq Number: 37048	1	Date Prep: A	ug-14-07 09:35	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Ethylbenzene	100-41-4	BRL	6.6	0.75	ug/kg	U	1
Hexachlorobutadiene	87-68-3	BRL	6.6	1.1	ug/kg	U	1
Iodomethane (Methyl Iodide)	74-88-4	BRL	6.6	1.9	ug/kg	U	1
Diisopropyl Ether	108-20-3	BRL	6.6	1.7	ug/kg	U	1
Isopropylbenzene	98-82-8	BRL	6.6	1.0	ug/kg	U	1
Methyl Methacrylate	80-62-6	BRL	6.6	3.1	ug/kg	U	1
Methyl tert-butyl ether	1634-04-4	BRL	6.6	0.92	ug/kg	U	1
Methylene Chloride	75-09-2	BRL	6.6	2.9	ug/kg	U	1
Naphthalene	91-20-3	BRL	6.6	1.7	ug/kg	U	1
n-Butylbenzene	104-51-8	BRL	6.6	1.2	ug/kg	U	1
n-Propylbenzene	103-65-1	BRL	6.6	1.0	ug/kg	U	1
4-Isopropyltoluene	99-87-6	BRL	6.6	1.1	ug/kg	U	1
Sec-Butylbenzene	135-98-8	BRL	6.6	0.87	ug/kg	U	1
Styrene	100-42-5	BRL	6.6	0.98	ug/kg	U	1
tert-Butylbenzene	98-06-6	BRL	6.6	1.1	ug/kg	U	1
Tetrachloroethylene	127-18-4	BRL	6.6	1.4	ug/kg	U	1
Toluene	108-88-3	BRL	6.6	0.78	ug/kg	U	1
trans-1,2-dichloroethene	156-60-5	BRL	6.6	1.0	ug/kg	U	1
trans-1,3-dichloropropene	10061-02-6	BRL	6.6	0.89	ug/kg	U	1
trans-1,4-Dichloro-2-Butene	110-57-6	BRL	6.6	2.2	ug/kg	\mathbf{U}	1
Trichloroethene	79-01-6	BRL	6.6	0.94	ug/kg	U	1
Trichlorofluoromethane	75-69-4	BRL	6.6	4.7	ug/kg	U	1
Vinyl Acetate	108-05-4	BRL	6.6	0.96	ug/kg	U	1
Vinyl Chloride	75-01-4	BRL	6.6	2.7	ug/kg	U	1
Xylenes, Total	1330-20-7	BRL	20	2.5	ug/kg	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id:	SS-4
Lab Sample Id:	12467-010
Sample Depthy	14-19#

Matrix: SOIL

% Moisture: 12

Date Collected: Aug-10-07 12:20

Date Received: Aug-11-07 10:00

Sample Depth: 1.4 - 1.9 ft

Analytical Method: VOCs by SW8260B			Prep Method: SW50					
Date Analyzed: Aug-14-07 19:08	Analyst: MJL01 Seq Number: 37048	I	Date Prep: Aug-14-07 09:35			MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Di	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	6.5	0.68	ug/kg	U	1	
1,1,1-Trichloroethane	71-55-6	BRL	6.5	0.97	ug/kg	U	1	
1,1,2,2-Tetrachloroethane	79-34-5	BRL	6.5	1.5	ug/kg	U	1	
1,1,2-Trichloroethane	79-00-5	BRL	6.5	0.86	ug/kg	U	1	
1,1-Dichloroethane	75-34-3	BRL	6.5	1.0	ug/kg	U	1	
1,1-Dichloroethene	75-35-4	BRL	6.5	1.5	ug/kg	U	1	
1,1-Dichloropropene	563-58-6	9.4	6.5	0.70	ug/kg		1	
1,2,3-Trichlorobenzene	87-61-6	BRL	6.5	0.74	ug/kg	U	1	
1,2,3-Trichloropropane	96-18-4	29	6.5	2.1	ug/kg		1	
1.2.4-Trichlorobenzene	120-82-1	BRL	6.5	1.1	ug/kg	U	1	
1.2-Dibromo-3-Chloropropane	96-12-8	BRL	6.5	2.1	ug/kg	U	1	
1.2-Dichlorobenzene	95-50-1	BRL	6.5	1.7	ug/kg	U	1	
1.2-Dichloroethane	107-06-2	BRL	6.5	0.77	ug/kg	U	1	
1.2-Dichloropropane	78-87-5	BRL	6.5	1.2	ug/kg	U	1	
1.3.5-trimethylbenzene	108-67-8	BRL	6.5	1.1	ug/kg	U	1	
1.3-Dichlorobenzene	541-73-1	BRL	6.5	1.3	ug/kg	U	1	
3-Dichloropropane	142-28-9	BRL	6.5	0.89	ug/kg	Ŭ	1	
4-Dichlorobenzene	106-46-7	BRL	65	0.88	ug/kg	Ū	1	
2 2-Dichloropropage	594-20-7	BRL	6.5	0.77	ug/kg	Ū	1	
2. Butanone	78-93-3	BRL	65	12	ug/kg	Ŭ	1	
2-Dutanone 2.Chlorataluene	95-49-8	BRI	65	0.91	ug/kg	Ŭ	1	
2-Cinterotonuche 2-Hexanone	591-78-6	BRI	65	15	ug/kg	Ŭ.	1	
4 Chloratoluene	106_43_4	BRI	65	0.71	ug/ke	U U	1	
4 Mathul 2 Bantanana	108 10 1		65	4.2	ug/ke	τ	1	
A catona	67-64-1	63	65	89	ue/ke	ī	1	
Acrolain	107-02-8	BRI	13	57	ue/ke	Ŭ.	ī	
A crulonitrile	107-02-0	BRL	13	64		ц Ц	1	
Dengena	71 42 0		65	0.4	119/140	U U	1	
Denzene	108 96 1	DRL	6.5	1.1	11g/kp	U U	1	
Bromobenzene Drem and language than a	74.07.5	DKL	0.5	1.1	ug/kp	U	1	
Bromocnioromethane	74-97-3	DRL	0.5	0.65	ug/ko	U	1	
Bromodicnioromethane	75-27-4	DKL	0.5	0.05	ug/ke	U 11	1	
Bromotorm	75-25-2	BKL	6.5	1.2	ug/kg	U 11	1	
Bromomethane	74-83-9	BKL	6.5	3.2	ug/kg	U 11	1	
Carbon Disulfide	/5-15-0	BKL	0.5	1.9	ug/kg	U 17	1	
Carbon Tetrachloride	56-23-5	BKL	0.5	0.96	ug/Kg	U	1	
Chlorobenzene	108-90-7	BKL	13	0.75	ug/Kg	U	1	
Uhloroethane	/5-00-3	BRL	6.5	3.2	ug/Kg	U	1	
Uhloroform	67-66-3	BRL	6.5	0.96	ug/Kg	U	1	
Chloromethane	74-87-3	BRL	6.5	3.0	ug/Kg	U	1	
cis-1,2-Dichloroethene	156-59-2	BRL	6.5	0.85	ug/Kg	U	1	
cis-1,3-Dichloropropene	10061-01-5	BRL	6.5	0.70	ug/kg	U	1	
cis-1,4-Dichloro-2-Butene	1476-11-5	BRL	6.5	1.5	ug/kg	U	1	
Dibromochloromethane	124-48-1	BRL	6.5	1.3	ug/kg	U]	

74-95-3

75-71-8

Page 19 of 24

U

U

1

1

ug/kg

ug/kg

6.5

6.5

BRL

BRL

0.79

1.5

*

Dibromomethane

Dichlorodifluoromethane

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: SS-4	Matrix: SOIL	% Moisture: 12
Lab Sample Id: 12467-010	Date Collected: Aug-10-07 12:20	Date Received: Aug-11-07 10:00
Sample Depth: 1.4 - 1.9 ft		

Analytical Method: VOCs by SW8260B			Prep Method: SW5035							
Date Analyzed: Aug-14-07 19:08	Analyst: MJL01 Seq Number: 37048	Date Prep: Aug-14-07 09:35			Tech:	млоі				
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil			
Ethylbenzene	100-41-4	BRL	6.5	0.73	ug/kg	U	1			
Hexachlorobutadiene	87-68-3	BRL	6.5	1.1	ug/kg	U	1			
Iodomethane (Methyl Iodide)	74-88-4	BRL	6.5	1.9	ug/kg	U	1			
Diisopropyl Ether	108-20-3	BRL	6.5	1.6	ug/kg	U	1			
Isopropylbenzene	98-82-8	BRL	6.5	0.98	ug/kg	U	1			
Methyl Methacrylate	80-62-6	BRL	6.5	3.0	ug/kg	U	1			
Methyl tert-butyl ether	1634-04-4	BRL	6.5	0.89	ug/kg	U	1			
Methylene Chloride	75-09-2	4.1	6.5	2.8	ug/kg	J	1			
Naphthalene	91-20-3	BRL	6.5	1.7	ug/kg	U	1			
n-Butylbenzene	104-51-8	BRL	6.5	1.1	ug/kg	U	1			
n-Propylbenzene	103-65-1	BRL	6.5	1.0	ug/kg	U	1			
4-Isopropyltoluene	99-87-6	BRL	6.5	1.0	ug/kg	U	1			
Sec-Butylbenzene	135-98-8	BRL	6.5	0.85	ug/kg	U	1			
Styrene	100-42-5	BRL	6.5	0.96	ug/kg	U	1			
tert-Butylbenzene	98-06-6	BRL	6.5	1.1	ug/kg	U	1			
Tetrachloroethylene	127-18-4	BRL	6.5	1.3	ug/kg	U	1			
Toluene	108-88-3	BRL	6.5	0.76	ug/kg	U	1			
trans-1,2-dichloroethene	156-60-5	BRL	6.5	1.0	ug/kg	U	1			
trans-1,3-dichloropropene	10061-02-6	BRL	6,5	0.86	ug/kg	U	1			
trans-1,4-Dichloro-2-Butene	110-57-6	BRL	6.5	2.1	ug/kg	U	1			
Trichloroethene	79-01-6	BRL	6.5	0.91	ug/kg	U	1			
Trichlorofluoromethane	75-69-4	BRL	6.5	4.5	ug/kg	U	1			
Vinyl Acetate	108-05-4	BRL	6.5	0.93	ug/kg	U]			
Vinyl Chloride	75-01-4	BRL	6.5	2.6	ug/kg	U	1			
Xylenes, Total	1330-20-7	BRL	19	2.4	ug/kg	U	1			

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: 303496 BLK	BLK Matrix		ix: SOIL % Moisture			ire:			
Lab Sample Id: 303496 BLK	Date Collecte	d:		d:					
Sample Denth:									
Sample Deptil.									
Analytical Method: VOCs by SW8260	B			Prep l	Method: SW	/5035			
Date Analyzed: $\Delta u = 14.07.11.39$ Δu	aalwet: MB (1)	1	Data Dran: A.	-	T1				
Datt Analyzed, Aug-14-07 11.57 Al	101351. 10101.01	1	Date Flep. A	ug-14-07 09.33	rech:	NULUI			
Sey In	amoer: 57048								
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil		
1,1,1,2-Tetrachloroethane	630-20-6	BRL	5.0	0.53	ug/kg	U	1		
1,1,1-Trichloroethane	71-55-6	BRL	5.0	0.75	ug/kg	U	1		
1,1,2,2-Tetrachloroethane	7 9 -34-5	BRL	5.0	1.2	ug/kg	U	1		
1,1,2-Trichloroethane	79-00-5	BRL	5.0	0.67	ug/kg	U	1		
1,1-Dichloroethane	75-34-3	BRL	5.0	0.80	ug/kg	U	1		
1.1-Dichloroethene	75-35-4	BRL	5.0	1.2	ug/kg	U	1		
1.1-Dichloropropene	563-58-6	BRL	5.0	0.54	ug/kg	U	1		
1.2.3-Trichlorobenzene	87-61-6	BRL	5.0	0.57	ug/kg	U	1		
1.2.3-Trichloropropane	96-18-4	BRL	5.0	1.6	ug/kg	U	1		
1.2.4-Trichlorobenzene	120-82-1	BRL	5.0	0.87	ug/kg	U	1		
1.2.4-Trimethylbenzene	95-63-6	BRL	5.0	0.72	ug/kg	Ū	1		
1.2-Dibromo-3-Chloropropane	96-12-8	BRL	5.0	1.6	ug/kg	Ŭ	1		
1.2-Dibromoethane (Ethylene Dibromide)	106-93-4	BRL	5.0	0.86	ug/kg	Ŭ	1		
1.2-Dichlorobenzene	95-50-1	BRL	5.0	1.3	ug/kg	Ū	1		
1.2-Dichloroethane	107-06-2	BRL	5.0	0.60	ug/kg	Ū	1		
1 2-Dichloropropage	78-87-5	BRL	5.0	0.93	ug/kg	ũ	1		
1.3.5-trimethylbenzene	108-67-8	BRL	5.0	0.81	ug/kg	Ŭ	1		
1 3-Dichlorobenzene	541-73-1	BRL	50	1.0	ug/kg	Ŭ	1		
1.3-Dichloropropage	142-28-9	BRL	50	0.69	ug/kg	Ŭ	1		
4-Dichlorobenzene	106-46-7	BRL	50	0.68	ug/kg	Ŭ	1		
2 2-Dichloropropage	594-20-7	BRI	50	0.60	ug/kg	Ŭ	1		
2.2 Dichloropropane 2.Butanone	78-93-3	BRI	50	91	ug/kg	Ŭ	1		
2-Chlorotoluene	95-49-8	BRI	50	0.71	ug/kg	Ŭ	1		
2-Hevanone	591.78.6	BRI	50	11	ue/ke	U	1		
A-Chlorotoluene	106-43-4	BRI	50	0.55	ug/kg	ŭ	1		
4-Methyl-2-Pentanone	108-10-1	BRI	50	3.2	ug/kg	Ŭ	1		
A cetone	67-64-1	BRI	50	69	ug/kg	U U	î		
Acrolein	107-02-8	BRI	10	4.4	ug/kg	U U	î		
Acrulonitrile	107-13-1	BRI	10	5.0	ug/kg	U U	1		
Renzene	71 /3 2	BDI	50	0.51	ug/ke	U	1		
Bramahanzana	108 86 1	DICL	5.0	0.51	ug/ka	U U	1		
Bromochleromethane	74.07.5		5.0	0.85	ug/ka	U U	1		
Bromodiabloromethers	75 77 1		5.0	1.0	ng/ko	U U	i t		
Bromoform	/J-ム/-4 75 うち う		5.0	0.20	ug/kg	U 11	1		
Bromomothano	13-23-2	DKL 1001	5.0	0.90 3 s	ug/kg	U İU	1		
Corbon Disulfide	/4-0.)-7 75 15 0	DNL	5.0	2.3	ug/kg	U 11	1		
Carbon Disumde	/3-13-U	BKL	5.0	1.5	ug/кр		1		
Chloreberger	JO-2J-J 109 00 7	BKL	5.0	0.74	ug/Kg	U 11	1		
Chlore Aleres	108-90-7	BKL	10	0.58	ug/kg	U	1		
Chloroethane	/5-00-3	BKL	5.0	2.4	ug/Kg	U	1		
Chlorotorm	07-00-3	BKL	5.0	0.74	ug/kg	U	1		
Chioromethane	14-87-3	BKL	5.0	2.3	ug/kg	U	1		
cis-1,2-Dichlore	100-39-2	BKL	5.0	0.66	ug/кg	U	1		
Cis-1,5-Dicnioropropene	10003-01-5	BKL	5.0	0.54	ug/кg		1		
Dibromocnioromeinane	124-48-1	BKL	5.0	0.99	ug/Kg	U	1		
Dibromomethane	74-95-3	BRL	5.0	0.61	ug/kg	U	<u> </u>		

*

Page 21 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: 303496 BLK Lab Sample Id: 303496 BLK Sample Depth:	Matrix: SOIL Date Collected:			% Moistum Date Received	e: d:			
Analytical Method: VOCs by SW8260B				Prep N	Aethod: SW	'5035		
Date Analyzed: Aug-14-07 11:39	Analyst: MJL01 Seq Number: 37048]	Date Prep: Aug-14-07 09:35			09:35 Tech: MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
Dichlorodifluoromethane	75-71-8	BRL	5.0	1.2	ug/kg	U	1	
Ethylbenzene	100-41-4	BRL	5.0	0.57	ug/kg	U	1	
Hexachlorobutadiene	87-68-3	BRL	5.0	0.85	ug/kg	U	1	
Diisopropyl Ether	108-20-3	BRL	5.0	1.3	ug/kg	U	1	
Isopropylbenzene	98-82-8	BRL	5.0	0.76	ug/kg	U	1	
m,p-Xylene	179601-23-1	BRL	10	1.2	ug/kg	U	1	
Methyl Methacrylate	80-62-6	BRL	5.0	2.4	ug/kg	U	1	
Methyl tert-butyl ether	1634-04-4	BRL	5.0	0.69	ug/kg	U	1	
Naphthalene	91-20-3	BRL	5.0	1.3	ug/kg	U	1	
n-Butylbenzene	104-51-8	BRL	5.0	0.88	ug/kg	U	1	
n-Propylbenzene	103-65-1	BRL	5.0	0.78	ug/kg	U	1	
o-Xylene	95-47-6	BRL	5.0	0.72	ug/kg	U	1	
4-Isopropyltoluene	99-87-6	BRL	5.0	0.80	ug/kg	U	1	
Sec-Butylbenzene	135-98-8	BRL	5.0	0.66	ug/kg	U	1	
Styrene	100-42-5	BRL	5.0	0.74	ug/kg	U	1	
tert-Butylbenzene	98-06-6	BRL	5.0	0.83	ug/kg	U	1	
Tetrachloroethylene	127-18-4	BRL	5.0	1.0	ug/kg	U	1	
Toluene	108-88-3	BRL	5.0	0.59	ug/kg	U	1	
trans-1,2-dichloroethene	156-60-5	BRL	5.0	0.78	ug/kg	U	1	
trans-1,3-dichloropropene	10061-02-6	BRL	5.0	0.67	ug/kg	U	1	
Trichloroethene	79-01-6	BRL	5.0	0.71	ug/kg	U	1	
Trichlorofluoromethane	75-69-4	BRL	5.0	3.5	ug/kg	U	1	
Vinyl Acetate	108-05-4	BRL	5.0	0.72	ug/kg	U	1	
Vinyl Chloride	75-01-4	BRL	5.0	2.0	ug/kg	U	1	

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: 303497 BLK	Matrix: S Date Collected:			% Moistur	% Moisture:			
Lab Sample Id: 303497 BLK			: Date Receiv			ived:		
Sample Depth:								
Analytical Method: VOCs by SW826	0B			Prep I	Method: SV	V5035		
Date Analyzed: Aug-15-07 10:43	Analyst: MJL01	Γ	Date Prep: Au	ug-15-07 08:53	Tech:	MJL01		
Seq	Number: 37052							
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil	
1,1,1,2-Tetrachloroethane	630-20-6	BRL	5.0	0.53	ug/kg	U	1	
1,1,1-Trichloroethane	71-55-6	BRL	5.0	0.75	ug/kg	Ū	1	
1.1.2.2-Tetrachloroethane	79-34-5	BRL	5.0	1.2	ug/kg	Ū	1	
1,1,2-Trichloroethane	79-00-5	BRL	5.0	0.67	ug/kg	Ū	1	
1.1-Dichloroethane	75-34-3	BRL	5.0	0.80	ug/kg	Ū	ĺ	
1.1-Dichloroethene	75-35-4	BRL	5.0	1.2	ug/kg	Ŭ	1	
1.1-Dichloropropene	563-58-6	BRL	5.0	0.54	ug/kg	Ŭ	i	
1,2,3-Trichlorobenzene	87-61-6	BRL	5.0	0.57	ug/kg	Ŭ	i	
1.2.3-Trichloropropane	96-18-4	BRI	5.0	1.6	ug/kg	Ũ	1	
1.2.4-Trichlorobenzene	120-82-1	BRI	5.0	0.87	ug/ke	Ŭ	1	
1.2.4-Trimethylbenzene	95-63-6	BRI	50	0.72	ug/ke	Ŭ	1	
1.2-Dibromo-3-Chloropropane	96-12-8	BRI	5.0	1.6	ug/kg	Ū	1	
1.2-Dibromoethane (Ethylene Dibromide)	106-93-4	BRI	5.0	0.86	ug/kg	U U	i	
1.2-Dichlorohenzene	95-50-1	BRI	5.0	13	ug/kg	U U	i	
1,2-Dichloroethane	107-06-2	BRI	5.0	0.60	ug/kp	U U	1	
1.2-Dichloropropage	78_87_5	BRI	5.0	0.00	11 0/k p	U	1	
1.3.5-Trimethylbenzene	108_67_8	DICL	5.0	0.22	110/ko	U	1	
1.3-Dichlorobenzene	541-73-1	DRL/	5.0	1.0	110/kp	U	1	
1.3-Dichloropropage	142 28 0		5.0	0.60	ug/kg	U	1	
1.4 Dichlorohenzene	142-20-3	DIVL	5.0	0.09	ug/ke	U	1	
2.2 Dichloronronana	504 20 7	DRL	5.0	0.06	ug/ke	U 11	1	
2 Dutanono	394-20-7 78 07 7	DRL	5.0	0.00	ng/ko	U U	1	
2-Dulatione 2 Chloroothyl Vinyl Ethor	110 75 9	BKL	50	9.1	ug/ko	U	1	
2 Chlorotolican	110-75-8	BKL	10	0.75	ug/kg	U	1	
2-Uniorotoluene	95-49-8	BKL	5.0	0.71	ug/kg	U	1	
2-riexanone	391-78-0 106-43-4	BKL	50	1.1	ug/kg		1	
4 Mathed 2 Danten and	100-43-4	BKL	5.0	0.55	ug/kg	U	1	
4-Methyl-2-Pentanone	108-10-1	BKL	50	3.2	ug/kg	U	1	
Acetone	07-04-1	BKL	50	6.9	ug/kg	U	1	
Acrolein	107-02-8	BRL	10	4.4	ug/кр	U	1	
Acrylonitrile	107-13-1	BRL	10	5.0	ug/kg	U	1	
Benzene	71-43-2	BRL	5.0	0.51	ug/kg	U	1	
Bromobenzene	108-86-1	BRL	5.0	0.85	ug/kg	U	1	
Bromochloromethane	74-97-5	BRL	5.0	1.0	ug/kg	U	1	
Bromodichloromethane	75-27-4	BRL	5.0	0.50	ug/kg	U	1	
Bromoform	75-25-2	BRL	5.0	0.96	ug/kg	U	1	
Bromomethane	74-83-9	BRL	5.0	2.5	ug/kg	U	1	
Carbon Disulfide	75-15-0	BRL	5.0	1.5	ug/kg	U	1	
Carbon Tetrachloride	56-23-5	BRL	5.0	0.74	ug/ke	U	1	
Chlorobenzene	108-90-7	BRL	10	0.58	ug/kg	υ	1	
Chloroethane	75-00-3	BRL	5.0	2.4	ug/kg	U	1	
Chloroform	67-66-3	BRL	5.0	0.74	ug/kg	U	1	
Chloromethane	74-87-3	BRL	5.0	2.3	ug/kg	U	1	
cis-1,2-Dichloroethene	156-59-2	BRL	5.0	0.66	ug/kg	U	1	
cis-1,3-Dichloropropene	10061-01-5	BRL	5.0	0.54	ug/kg	U	1	
Dibromochloromethane	124-48-1	BRL	5.0	0.99	ug/kg	U	1	

*

Page 23 of 24

Analytical Management Laboratories, Inc., Olathe, KS

Hunter AAF Perimeter Sampling

Sample Id: 303497 BLK Lab Sample Id: 303497 BLK Sample Depth:	Matrix: SOIL Date Collected:			% Moistur Date Receive	re: ed:		-
Analytical Method: VOCs by SW8260B				Prep	Method: SW	75035	
Date Analyzed: Aug-15-07 10:43	Analyst: MJL01 Date Prep: Aug-15-07 08:53 Seq Number: 37052			Date Prep: Aug-15-07 08:53			
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	5.0	0,61	ug/kg	U	1
Dichlorodifluoromethane	75-71-8	BRL	5.0	1.2	ug/kg	U	1
Ethylbenzene	100-41-4	BRL	5.0	0.57	ug/kg	U	1
Hexachlorobutadiene	87-68-3	BRL	5.0	0.85	ug/kg	U	1
Isopropyl Ether	108-20-3	BRL	5.0	1.3	ug/kg	U	1
Isopropylbenzene	98-82-8	BRL	5.0	0.76	ug/kg	U	1
m,p-Xylenes	179601-23-1	BRL	10	1.2	ug/kg	U	1
Methyl tert-butyl ether	1634-04-4	BRL	5.0	0.69	ug/kg	U	1
Methylene Chloride	75-09-2	BRL	5.0	2.2	ug/kg	U	1
Naphthalene	91-20-3	BRL	5.0.	1.3	ug/kg	U	1
n-Butylbenzene	104-51-8	BRL	5.0	0.88	ug/kg	U	1
n-Propylbenzene	103-65-1	BRL	5.0	0.78	ug/kg	U	1
o-Xylene	95-47-6	BRL	5.0	0.72	ug/kg	U	1
p-Isopropyltoluene	99-87-6	BRL	5.0	0.80	ug/kg	U	1
sec-Butylbenzene	135-98-8	BRL	5.0	0.66	ug/kg	U	1
Styrene	100-42-5	BRL	5.0	0.74	ug/kg	U	1
tert-Butylbenzene	98-06-6	BRL	5.0	0.83	ug/kg	U	1
Tetrachloroethene	127-18-4	BRL	5.0	1.0	ug/kg	U	1
Toluene	108-88-3	BRL	5.0	0.59	ug/kg	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	5.0	0.78	ug/kg	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	5.0	0.67	ug/kg	U	1
Trichloroethene	79-01-6	BRL	5.0	0.71	ug/kg	U	1
Trichlorofluoromethane	75-69-4	BRL	5.0	3.5	ug/kg	U	1
Vinyl Acetate	108-05-4	BRL	5.0	0.72	ug/kg	U	1
Vinyl Chloride	75-01-4	BRL	5.0	2.0	ug/kg	U	1

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:42 Project ID: Task Order 0065 Work Order #: 12467 Sample: 12451-001 MD / MD 1 Matrix: S Lab Batch #: 37048 Batch: Units: ug/kg SURROGATE RECOVERY STUDY Тгие Control Amount VOCs by SW8260B Found Amount Recovery Limits Flags %R %R **[B]** [A] [D] Analytes 47.98 50.00 96 53-135 1,2-Dichloroethane-d4 4-Bromofluorobenzene 50.00 94 53-175 46.77 50.00 98 56-126 48.76 Toluene-d8 Sample: 12467-001 / SMP Matrix: S 1 Lab Batch #: 37048 **Batch**: SURROGATE RECOVERY STUDY Units: ug/kg Control Amount Trne VOCs by SW8260B Flags Found Amount Recovery Limits [B] %R %R [A] [D] Analytes 90 53-135 1,2-Dichloroethane-d4 45.23 50.00 96 53-175 4-Bromofluorobenzene 48.23 50.00 103 56-126 Toluene-d8 51.30 50.00 Sample: 12467-004 / SMP Matrix: S Lab Batch #: 37048 Batch: l SURROGATE RECOVERY STUDY Units: ug/kg True Control Amount VOCs by SW8260B Recovery Limits Flags Found Amount %R %R **[B]** [A] [D] Analytes 1,2-Dichloroethane-d4 48.06 50.00 96 53-135 4-Bromofluorobenzene 44.92 50.00 90 53-175 56-126 Toluene-d8 49.34 50.00 99 Matrix: S Lab Batch #: 37048 Sample: 12467-004 MS / MS **Batch:** 1 SURROGATE RECOVERY STUDY Units: ug/kg Control Amount Ттие VOCs by SW8260B Limits Flags Found Amount Recovery [B] %R %R [A] [D]Analytes 40.77 82 53-135 1,2-Dichloroethane-d4 50.00 41.91 50.00 84 53-175 4-Bromofluorobenzene 56-126 Toluene-d8 52.25 50.00 6

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:42

Project ID: Task Order 0065 Work Order #: 12467 Lab Batch #: 37048 Sample: 12467-004 MSD / MSD Matrix: S Batch: 1 SURROGATE RECOVERY STUDY Units: ug/kg Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags [A] [B] %R %R D Analytes 1,2-Dichloroethane-d4 50.68 50.00 5 53-135 4-Bromofluorobenzene 40.88 50.00 82 53-175 Toluene-d8 51.61 50.00 5 56-126 Lab Batch #: 37048 Sample: 12467-009 / SMP 1 Matrix: S **Batch**: Units: ug/kg SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags [A] [B] %R %R D Analytes 1,2-Dichloroethane-d4 101 50.68 50.00 53-135 4-Bromofluorobenzene 53-175 55.94 50.00 112 Toluene-d8 50.00 118 59.01 56-126 Lab Batch #: 37048 Sample: 12467-010 / SMP Matrix: S Batch: 1 Units: ug/kg SURROGATE RECOVERY STUDY True Control VOCs by SW8260B Amount Found Amount Recovery Limits Flags [A] %R %R **[B]** [D] Analytes 1.2-Dichloroethane-d4 92 46.21 50.00 53-135 4-Bromofluorobenzene 51,55 103 53-175 50,00 Toluene-d8 54.98 50.00 110 56-126 Lab Batch #: 37048 Sample: 303496 BKS / BKS Matrix: S Batch: 1 Units: ug/kg SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Amount Limits Flags Found Recovery [A] [B] %R %R [D] Analytes 1,2-Dichloroethane-d4 42.26 50.00 85 58-128 4-Bromofluorobenzene 48.63 50.00 S 47-166 Toluene-d8 49.98 50.00 100 68-120

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:42

Project ID	:	Task	Order	0065
------------	---	------	-------	------

Vork Order #: 12467		Project ID	1: Task Order	0065	
Lab Batch #: 37048 Sample: 303	3496 BLK / BLK Bat	ch: ¹ Mati	·ix: S		
Units: ug/kg	SI	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	44.35	50.00	89	58-128	
4-Bromofluorobenzene	46.22	50.00	92	47-166	
Toluene-d8	49.76	50.00	100	68-120	
Lab Batch #: 37052 Sample: 12	467-002 / SMP Bat	ch: ¹ Mat	rix: S		
Units: ug/kg	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes	40.24	50.00	25	53 135	
4 Promofluorohanzene	42.34	50.00	84	53-175	
Toluene-d8	\$0.78	50.00	102	56-126	
	4(7.002 MS (MS	Mat		1	
Lab Batch #: 37032 Sample: 12		URROGATE R	FCOVERY S		
VOCs by SW8260B	Amount Found [A]	True Amount B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,2-Dichloroethane-d4	38.17	50.00	76	53-135	
4-Bromofluorobenzene	43.33	50.00	2	53-175	
Toluene-d8	51.36	50.00	1	56-126	_
Lab Batch #: 37052 Sample: 12	467-002 MSD / MSD Bat	tch: 1 Mat	rix: S		
Units: ug/kg	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[12]		
1,2-Dichloroethane-d4	35.31	50.00	71	53-135	
4-Bromotiuorobenzene	42.13	50.00	84	56.126	
i oluene-as	52.20	50.00	3	20-120	

- * Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.
- Z = Surrogate Recovery exceeded the Labortatory QC limits

Report Date: 10/11/07 14:42

Project ID: Task Order 0065

Work Order #: 12467		Project ID	: Task Order	0065	
Lab Batch #: 37052 Sample: 12467-003 / SN	AP Bat	ch: 1 Matr	ix: S		
Units: ug/kg	S	URROGATE RI	ECOVERY ST	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	44.93	50.00	90	53-135	
4-Bromofluorobenzene	44.23	50.00	88	53-175	
Toluene-d8	48.42	50.00	97	56-126	
Lab Batch #: 37052 Sample: 12467-005 / SN	dP Bat	tch: ¹ Matr	ix: S		
Units: ug/kg	S	URROGATE RI	ECOVERY S	FUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			נען		
1,2-Dichloroethane-d4	52.66	50.00	105	53-135	
4-Bromofluorobenzene	42.53	50.00	85	53-175	
Toluene-d8	48.13	50,00	96	56-126	
Lab Batch #: 37052 Sample: 12467-006 / St	MP Ba	tch: 1 Matu	·ix: S		
Units: ug/kg	S	URROGATE RI	ECOVERY S	TUDY	
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,2-Dichloroethane-d4	45.65	50.00	91	53-135	
4-Bromofluorobenzene	44.68	50.00	89	53-175	
Toluene-d8	48.59	50.00	97	56-126	
Lab Batch #: 37052 Sample: 12467-007 / Sl	MP Ba	tch: 1 Mata	rix: S		
Units: ug/kg	S	URROGATE R	ECOVERY S	TUDY	
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4	47.65	50.00	95	53-135	
4-Bromofluorobenzene	48.14	50.00	96	53-175	
Toluene-d8	47.65	50.00	95	56-126	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:42

Project ID: Task Order 0065 Work Order #: 12467 Lab Batch #: 37052 Sample: 12467-008 / SMP Batch: 1 Matrix: S Units: ug/kg SURROGATE RECOVERY STUDY Тгие Control Amount VOCs by SW8260B Flags Limits Found Amount Recovery **[B]** %R %R [A] [D] Analytes 1,2-Dichloroethane-d4 47.66 50.00 95 53-135 4-Bromofluorobenzene 48.12 50.00 96 53-175 Toluene-d8 48,88 50.00 98 56-126 Sample: 303497 BKS / BKS Lab Batch #: 37052 1 Matrix: S **Batch:** SURROGATE RECOVERY STUDY Units: ug/kg Amount True Control VOCs by SW8260B Flags Recovery Limits Found Amount %R [A] [**B**] %R D Analytes 1.2-Dichloroethane-d4 43.86 50.00 88 58-128 4-Bromofluorobenzene 43.95 50.00 88 47-166 Toluene-d8 51.16 50.00 4 68-120 Matrix: S Sample: 303497 BLK / BLK **Batch:** 1 Lab Batch #: 37052 Units: ug/kg SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags **[B]** %R %R [A] [D] Analytes 1,2-Dichloroethane-d4 89 58-128 44.26 50.00 4-Bromofluorobenzene 43.92 50.00 88 47-166 99 49.37 50.00 68-120 Toluene-d8

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter AAF Perimeter Sampling

		Re	port Date :		10/1	1/07 14:21
Work Order #: 12467]	Project ID :		Task C)rder 0065
Lab Batch #: 37048	Sample: 3034961	BKS	Matrix: S			
Reporting Units: ug/kg	Batch #: 1	BLANK	/BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes				լոյ		
1,1-Dichloroethene	<1.2	50	46	92	47-166	
Benzene	<0.51	50	47	94	56-155	
Chlorobenzene	<0.58	50	46	92	36-184	
Toluene	<0.59	50	47	94	43-177	
Trichloroethene	<0.71	50	49	98	44-168	
Lab Batch #: 37052	Sample: 303497	BKS	Matrix: S	5		
Reporting Units: ug/kg	Batch #: 1	BLANK	/BLANK SPI	KE REC	OVERY ST	TUDY
VOCs by SW8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
1,1-Dichloroethene	<1.2	50	50	100	47-166	
Benzene	<0.51	50	53	106	56-155	
Chlorobenzene	<0.58	50	52	104	36-184	
Toluene	<0.59	50	54	108	43-177	
Trichloroethene	<0.71	50	53	106	44-168	

Work Order #: 12467 Lab Batch ID: 37048

Form 3 - MS / MSD Recoveries

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:21

Project ID: Task Order 0065

Matrix: S

QC- Sample ID: 12467-004 MS Batch #:

Reporting Units: ug/kg		F .4	MATRIX SPIK	<u>(E / MAT</u> I	RIX SPI	KE DUPLICA'	TE RECO	VERY S	TUDY		
VOCs by SW8260B Analytes	Parent Sample Result [A]	Spike Added [B]	ipiked Sample Result [C]	Spiked Sample %R [D]	Spike Added E	Duplicate piked Sampl Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
1,1-Dichloroethene	<1.6	19	55	06	57	61	107	17	35-170	20	
Benzene	<0.69	61	60	98	57	57	100	5	38-158	20	
Chlorobenzene	<0.78	61	57	93	57	48	84	01	47-153	20	
Toluene	<0.79	61	60	86	57	51	68	01	32-170	20	
Trichloroethene	<0.95	61	56	92	57	54	95	£	50-148	20	
Lab Batch ID: 37052)C- Sample ID:	12467-(002 MS	Bat	ch #:	l Matri)	x: S				
Reporting Units: ug/kg			MATRIX SPIK	(E/MAT	RIX SPI	KE DUPLICA	TE RECO	IVERY S	TUDY		
VOCs by SW8260B	Parent Sample	Snike	piked Sample Result	Spiked Samule	Snike	Duplicate niked Sampl	Spiked Dun.	RPD	Control Limits	Control Limits	Flag

AUCs hy SW8760R	Parent		piked Sampl	Spiked		Duplicate	Spiked		Control	Control	
	Sample Result	Spike Addad	Result	Sample %R	Spike :	piked Sampl Result (F)	Dup. %R	RPD %	Limits %R	Limits %RPD	Flag
Analytes	[A]	[B]	2		E		[0]	2			
1,1-Dichloroethene	<1,4	65	59	91	64	59	92	1	35-170	20	
Benzene	<0.60	65	62	95	64	64	100	5	38-158	20	
Chlorobenzene	<0.68	65	60	92	64	59	92	0	47-153	20	
Toluene	<0.69	65	63	97	64	65	102	5	32-170	20	
Trichloroethene	<0.82	65	61	94	64	62	97	3	50-148	20	
									-		

Matrix Spike Percent Recovery [D] = $100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}(D-G)/(D+G)$ F = RPD exceeded the laboratory control limits

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:21

Work Order #: 12467			xeport Da	ite: 10/11/07	14,21
Lab Batch #: 37048			Project	ID: Task Or	der 0065
QC- Sample ID: 12451-001 MD	Batch #:	1	Matri	ix: S	
Reporting Units: ug/kg	SAMPLE	E / SAMPLE	DUPLIC	ATE RECO	VERY
VOCs by SW8260B	Parent Sampl Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
	<0.38	<0.36	NC	70	
1,1,1,2-Tetrachioroethane	<0.55	<0.50	NC	20	
1,1,2,2-Tetrachloroathane	<0,35	<0.52	NC	20	
1,1,2,2-1 effactionore than a	<0.67	<0.82	NC	20	
1,1,2-1 Hemoroethane	<0.49	<0.47	NC	20	
	<0.39	<0.50	NC	20	
	<0.83	<0.01	NC	20	
1,1-Dichloropropene	<0.39	<0.37	NC	20	
1,2,3-1 Fichlossen	<0.42	<0.40 <1.1	NC	20	
	<1.2	<1.1	NC	20	
	<0.64	<0.61	NC	20	
1,2,4-1 fimethyldenzene	<0.53	<0.50	NC	20	
1,2-Dibromo-3-Chloropropane	<1.2	<1.1	NC	20	
1,2-Dibromoetnane (Ethylene Dibromide)	<0.03	<0.00	NC	20	
1,2-Dichlorobenzene	<0.94	<0.90	NC	20	
1,2-Dichloroethane	<0.44	<0.41	NC	20	
1,2-Dichloropropane	<0.68	<0.65	NC	20	
1,3,5-trimethylbenzene	<0.60	<0.57	NC	20	
1,3-Dichlorobenzene	<0.73	<0.69	NC	20	
1,3-Dichloropropane	<0.50	<0.48	NC	20	
1,4-Dichlorobenzene	<0.50	<0.48	NC	20	
2,2-Dichloropropane	<0.44	<0.42	NC	20	
2-Butanone	<6.7	<6.3	NC	20	
2-Chlorotoluene	<0.52	<0.49	NC	20	
2-Hexanone	<0.83	<0.78	NC	20	
4-Chlorotoluene	<0.40	<0.38	NC	20	
4-Methyl-2-Pentanone	<2.4	<2.2	NC	20	
Acetone	87	77	12	20	
Acrolein	<3.2	<3.1	NC	20	
Acrylonitrile	<3.7	<3.5	NC	20	
Benzene	< 0.38	<0.36	NC	20	
Bromobenzene	<0.62	<0.59	NC	~ 20	
Bromochloromethane	<0.74	<0.70	NC	20	
Bromodichloromethane	<0.37	<0.35	NC	20	
Bromoform	<0.70	<0.67	NC	20	
Bromomethane	<1.8	<1.7	NC	20	

Spike Relative Difference RPD 200 * [(B-A)/(B+A)]

All Results are based on MDL and validated for QC purposes.

F = RPD exceeded the laboratory control limits

Page 1 of 2

Sample Duplicate Recovery

Project Name: Hunter AAF Perimeter Sampling

Report Date: 10/11/07 14:21

Work Order #: 12467 Lab Batch #: 37048

Project ID: Task Order 0065

QC- Sample ID: 12451-001 MD	Batch #:	1	Matri	x: S	
Reporting Units: ug/kg	SAMPLE/SAMPLE DUPLICATE RECOVERY				
VOCs by SW8260B Analyte		Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Carbon Disulfide	<1.1	<1.0	NC	20	
Carbon Tetrachloride	<0.54	<0.52	NC	20	
Chlorobenzene	<0.42	<0.40	NC	20	
Chloroethane	<1.8	<1.7	NC	20	
Chloroform	<0.54	<0.51	NC	20	
Chloromethane	<1.7	<1.6	NC	20	
cis-1,2-Dichloroethene	<0.48	<0.46	NC	20	
cis-1,3-Dichloropropene	<0.39	<0.37	NC	20	
Dibromochloromethane	<0.73	<0.69	NC	20	
Dibromomethane	<0.45	<0.43	NC	20	
Dichlorodifluoromethane	<0.86	<0.82	NC	20	
Ethylbenzene	<0.41	<0.39	NC	20	
Hexachlorobutadiene	<0.62	<0.59	NC	20	
Diisopropyl Ether	<0.93	<0.88	NC	20	
Isopropylbenzene	<0.56	<0.53	NC	20	
m,p-Xylene	<0.88	<0.84	NC	20	
Methyl Methacrylate	<1.7	<1.6	NC	20	
Methyl tert-butyl ether	<0.51	<0.48	NC	20	
Naphthalene	<0.95	<0.90	NC	20	
n-Butylbenzene	<0.65	<0.61	NC	20	
n-Propylbenzene	<0.57	<0.54	NC	20	
o-Xylene	<0.52	<0.50	NC	20	
4-Isopropyltoluene	<0.59	<0.56	NC	20	
Sec-Butylbenzene	<0.48	<0.46	NC	20	
Styrene	<0.54	<0.52	NC	20	
tert-Butylbenzene	<0.61	<0.58	NC	20	
Tetrachloroethylene	<0.76	<0.72	NC	20	
Toluene	2.2	1.9	15	20	
trans-1,2-dichloroethene	<0.57	<0.54	NC	20	
trans-1,3-dichloropropene	<0.49	<0.47	NC	20	
Trichloroethene	<0.52	<0.49	NC	20	
Trichlorofluoromethane	<2.6	<2.4	NC	20	
Vinyl Acetate	<0.53	<0.50	NC	20	
Vinyl Chloride	<1.5	<1.4	NC	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. F = RPD exceeded the laboratory control limits

Page 2 of 2

Abbreviations and EPA Qualifier Codes used by AAL

Rep Limit: This abbreviation on our analytical reports is for: Reporting Limit (RL).

- BRL: This abbreviation indicates that the analytical results were Below the Reporting Limit (BRL).
- MDL: The Method Detection Limit (MDL), as defined by 40 CFR Part 136, Appendix B, is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero.
- U: The compound was analyzed for, but not detected above the specified MDL.
- J: This indicates an estimated value. The target analyte is *positively identified*, but the reported numerical result (analyte concentration) is an *estimated* value and the direction of the bias is unknown. The result is above the MDL, but below the RL.
- B: This is used when the analyte is found in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. The flag shall be used for a tentatively identified compound as well as for a positively identified target compound.
- D: This flag indicates that the identified analyte is reported from the dilution analysis.
- E: This identifies compounds whose concentrations exceed the upper level of the linear calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of the calibration range, the sample or extract should be diluted and reanalyzed.

Note: For Xylenes, Total, where three isomers are quantified as two peaks, the calibration range of each peak is considered separately.

- F: The Relative Percent Difference (RPD) between recoveries of either analytes or QC spikes were outside the laboratory or method control limits. Supporting QC data was reviewed by the Department Supervisor and/or QA Officer. Results were determined to be valid for reporting.
- X: This qualifier is defined by the laboratory in written case narrative.
- Z: QC Surrogates/ QC Lab Spikes results are outside the laboratory or method quality control limits. Supporting QC data was reviewed by the Department Supervisor and/or QA Officer. Results were determined to be valid for reporting.
- ZZ: QC Surrogates/ QC Lab Spikes results are outside the laboratory or method quality control limits in multiple QC samples. Supporting QC data was reviewed by the Department Supervisor and/or QA Officer. Results were determined to be valid for reporting.
- ***: Surrogate recoveries were diluted out.

Page 1 of 1

15130 South Keeler, Olathe, Kansas 66062 Phone: (913) 829-0101 • Fax: (913) 829-1181

June 19, 2007

Mr. Mark S. Harvison Project Chemist, CESAS-EN-GG U.S. Army Corps of Engineers, Savannah District 100 W. Oglethorpe Ave. P. O. Box 889 Savannah, GA 31402 Phone: 912-652-5151 Fax: 912-652-5311

Dear Mr. Harvison:

RE: Hunter Perimeter Sampling, Task Order 0085 W912HN-05-D-0013 AML Work Order Number: AAL12059

Attached, please find the hardcopy analytical report (<u>65</u> total pages) for environmental samples collected by CESAS for the project described above. Problems encountered in the analysis of these samples are documented in the laboratory case narrative. The electronic data deliverables (EDDs) for this report will be e-mailed within a few days of this report. Please feel free to contact me by phone (913-829-0101-ext. 23), fax (913-829-1181) or email (mharris@amlabinc.com) if you have any questions.

Respectfully Submitted, Analytical Management Laboratories, Inc.

Melania Harris Project Manager

AML Case Narrative

Project:	Hunter Perimeter Sampling, Task Order 0085
Your Reference:	W912HN-05-D-0013
Our Reference:	AML Work Order Number: AAL12059

Project and Sample Information

Technical support for the analysis of samples collected for the referenced project was provided by Accura Analytical Laboratory, Inc, 6017 Financial Drive, Norcross, GA 30071. The analytical report prepared by the subcontract laboratory (certified by the State of South Carolina) is attached. Please feel free to contact Mr. David Fuller directly (770-449-8800) if there are any questions on this report.

15-JUN-07

Analytical Management Laboratories, Inc. 15130 South Keeler Olathe, KS 66062 Client Contact: Vis Viswanathan

Reference: Accura Analytical Laboratory, Inc. (AAL) Work Order No: 12059 Project Name :Hunter Perimeter Sampling Project Number: AML TO# 0085

Dear Vis Viswanathan :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Chain of Custody(s) Numbered 47461 47460 46492. All results being reported under this Chain of Custody apply to the samples analyzed and properly identified with an AAL Sample ID number.

All the results for the quality control samples were reviewed. Also, all parameters for data reduction and validation were reviewed. In view of this, we are able to release the analytical data for this report within acceptance criteria for accuracy, precision, completeness or properly flagged.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by AAL. This report will be filed for at least 7 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in COC No. 47461 47460 46492 will be filed for 90 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Accura Analytical Laboratory Inc. to serve your analytical needs. If you have any questions concerning this report, please feel free to contact me at any time.

Sincerely,

"All

David Fuller Project Manager

6017 Financial Drive Norcross, GA 30071 Phone: 770-449-8800 Fax: 770-449-5477

AAL Work Order # 12059

Client Project: Hunter Perimeter Sampling / AML TO# 0085

Accura Analytical Laboratory Inc. certifies that the results meet all requirements of the NELAC Standards.

The data package includes a 2 page case narrative, 3 Chain of Custody pages, a 2 page Sample Receipt Checklist, 50 analytical results pages, 9 QC surrogate recovery pages, 6 QC Blank Spike / Blank Spike Duplicate recovery pages, 9 QC Matrix Spike / Matrix Spike Duplicate recovery pages, and a list of common EPA qualifier codes and abbreviations used by AAL.

The following items were noted concerning this work order:

Receiving Notations:

1. Upon receipt, air bubbles greater than ¹/₄ inch were noted in all vials submitted for the following samples: PR-DPT-15D, PR-DPT-24-S, PR-DPT-21-D.

<u>Michael F. Broome</u>	<u>May 25, 2007</u>
Receiving	Date

VOCs by SW8260B Notations:

- 1. The pH of the water samples was >2.0 prior to the VOC analysis.
- The following analyte recoveries were outside laboratory control limits for the MS and/or MSD: Acetone: 12059-018MSD; Methylene Choride: 12058-018MS; Trans -1,2-Dichloroethene: 12058-018MSD. The Laboratory Blank Spike recoveries for Acetone and trans-1,2-Dichloroethene were within the acceptable limits
- 3. The RPD for the following analytes were outside laboratory control limits for the MS and MSD: Methylene Choride, Trans-1,2-Dichloroethene. The recovery for Methylene Choride was outside the laboratory control limits for the Laboratory Blank Spike due to possible laboratory contamination.
- 4. The following sample had a reportable concentration of Methylene Chloride due to possible laboratory contamination: 12059-020 (PR-DPT-22-S) The sample was reanalyzed, however Methylene Chloride was still detected. No other samples were affected.
- 5. Methylene Chloride was outside laboratory control limits (bias high) for the Laboratory Blank Spike due to possible laboratory contamination. The recoveries for the MS and MSD were within the acceptable limits and Methylene Chloride was not detected in any of the samples in Batch #36193.

ACCURA ANALYTICAL LABORATORY, INC. (AAL) 6017 Financial Drive, Norcross, GA 30071, Phone: (770) 449-8800 FL Certification #E87429 • NC Certification #483 SC Certification #98015 • Utah Certification #AALII USACE Approved • Navy Certification Code NFESC 413 Case Narrative

- 6. The recoveries for Acetone and Acrolein for the Matrix Spike and Matrix Spike Duplicate were outside laboratory control limits. The Laboratory Blank Spike recoveries were within the acceptable limits, therefore the data satisfies the method requirements. (Batch#36193)
- 7. The recovery for Methylene Chloride was outside laboratory control limits (bias high) for the Laboratory Blank Spike due to possible laboratory contamination. (Batch#36214)
- 8. The recovery for Methylene Chloride was outside laboratory control limits (bias high) for the Matrix Spike due to possible laboratory contamination.
- 9. Methylene Chloride was detected in the Trip Blank due to possible laboratory contamination. (No other samples had any reportable concentrations of Methylene Chloride.)
- The RPD for the following analytes was outside laboratory control limits for the MS and MSD (Batch#36214):Methylene Choride, Trans-1,2-Dichloroethene, 1,2,3-Trichloropropane (Batch#36191)

<u>Dawn Sengsourichanh</u> VOC Analyst <u>June 13, 2007</u> Date

This Case Narrative & Notations have been generated, reviewed, and edited by:

David C. Fuller Project Manager

<u>June 15, 2007</u> Date

0005

|--|

ACCURA ANALYTICAL LABORATORY, INC.

Environmental Analytical Services

 $\frac{47461}{\text{Page}} \frac{47461}{\text{of}} \frac{5017}{\text{S017}}$

Phone # (770) 449-8800 Fax # (770) 449-5477	<i>M</i>		AALLIMS System ID: 705	Receiver's Initials/Temp. 20	AAL Work Order # 12 OS		Field Comments:			AALLab			AN Mercandre and	2(1)- //		//022	<u>9</u> @- /	400- V	-008	11		Delivered by: (Circle One) Fed Ex / UPS / DHL / AAL Pickup / Hand / Other	Turnaround Time Requested:	vir) (C=Air Cartridge)
	illing address:	O.# (if required):	or Laboratory Use Only:	9C Level: 1 2 3 4 CLP-Like	ustody Seal(s)Y N' Tape	Analysis Requested					220											Date / Time	S/)F/() Q' 20 God	=Soil) (SD=Solid) (SL=Sludge) (A=A
CHAIN OF CUSTODY	B	CC Savana S. P.			# *	Saturaditor 5	Preservation Code: (See below)	pler(s): (printed)	Though Thursan		Sample Location Containers		3	~	8	~		6	~	3	5	2) Received By: 52, 10, 2001	A Received BY: Dr. Ann	<u>W</u>
	Aimy Carps of E	west oclethor pe h	Brile		77-6077 Pax	KV Perimeter	Do #CCSC	Sam	- Jan	931	Sample Date / Time Grab Matri Grab		1070810 × 64	167 0820 a, 6L	167 0910 a 64	1/2 00 x (11)	167 0940 a 6w	1/0/ 00 0 (V)	467 1010 X 64	167 1020 A GU	they rest a bu	Date / Time	Date / Time	king Water) (GW=Groundwater) (SV
Ć	Company Name: $\frac{US}{V}$	Address: /OC 4	Results Sent to: (Client Contact)	Email address:	Contact Phone #. 9/2-6	Project (Site) Name: $H_{\eta,\eta}$	Project Number:	Sampler(s): (signature)	- CON		Line No Sample D#	1 TipBlack	2 PR-007-16-5 5/24	3 PR-DOT-16-0 524	4 PR-DPT-18.5 8124	5 P.K. OPT-18-1 424	6 PR-DPT-20-5 521	7 pr-py-20-b 5/19	8 PR-DOY-19.5 5/2	9 pr-007-14-20 5/2	10 PR-DPT-15-5 5/2	1) Relinquished By:	3) Relignished By:	Matrix Guide: (W=Water) (DW=Drinh

Preservation Codes: 1=HCL / 2=HNO₃ / 3=H₃SO₄ / 4=NaOH+NaAsO₂ / 5=NaOH+ZnAc / 6=Na₂S₁O₃ / 7=NaHSO₄ / 8=MeOH

ACCURA ANALYTICAL LABORATORY, INC.

Environmental Analytical Services

 $\frac{47460}{1000}$ Page $\frac{47460}{1000}$ of $\frac{1000}{1000}$ of $\frac{1000}{1000}$ Phone # (770) 449-5477

(770) 449-5477			4002	0.90	12030					AALLab) } } ; ; ; ; ; ;		22					2012	<u>-</u> 00			/ Other	ed:	
)) 449-8800 Fax #			AL LIMS System ID:	eiver's Initials/Temp	AAL Work Order #		Freid Comment	-					l'	1/			//	: 2	//	//	13	Circle One)	HL / AAL Pickup / Hand	naround Time Request	(midae)
Phone # (770	ng (Rec	Įpe	led																Delivered by: (6	Fed Ex / UPS / D	μΓ	A-Air) (C-Air Cor
	, Ø	:(p:	Y Use Only:	3 4 CLP-Like	X N Ta	Analysis Request																Date / Time	~	Date / Time	(oppuls IS) (billing) (7
7	Billing address:	P.O.# (if require	For Laborator	QC Levelt, 1, 2	Custody Seal(s		()			С- Т	200	8	×	8		6	- X		2	8			1	באשרא	D (S=Soil) (SD=So
CUSTODY							tion Code: (See belov))	No. of Container	~			50			~	c	~	~		oeog	Ridan	L=[ionid) (0=0i
CHAIN OF	5	le le			(#	malks	Preserval	upler(s): (printed)	allow Per		Sample Location											2) Received By:	2×7	4)Repeived By:	W=Surface Water) (
	fos of En	Have per Di			Fax	metter Sa		San	<i>¥</i>	9jite [X (W0	Compos Grab Matri Matri Matri	a 64	x 64	200	A Gu	a Gy	2 Cu	A R	XGU	~ (ch)	0 Cu	Date / Time	2021 /200	Date / Time	=Groundwater) (SV
	S BURY CC	werd' Osla	ici): An		827.6027	del Per	dicurs?				Sample Date / Time	5 yes 1050	ST2 467 INS	2407 1130	2467 130C	2467 131c	12467 1325	2167 133C	SIPI 19/5	24/07 1420	24/07 pyse	r (//	Nev-		inking Water) (GW
*	pany Name:	ess: /0C /	tts Sent to: (Client Conta	l address:	tet Phone # 9/2 - 6	ct (Site) Name: 44	ct Number: DC 1	ler(s): (signature)	100		Sample ID #	5 Q-51-20	-DPT-14-5 5	2 Orh-Ida	PPT-25-5 8	\$ 0.52-200:	-007.24.5 E	15 a.42-400-	-DN-21-5 St	-15 a-12-100-	PPT. 22-5 8	shed By:		shed by:	e: (W=Water) (DW=Dri
	Com	Addr	Resul	Emai	Conta	Proje	Projec	Samp	V	-0	Line N	1 pr.	2	3 PR	4 <i>M</i>	5 1	6 <i>P</i> R	7 <i>P</i> R	8 PK	9 <i>R</i> .	t0 /K	1) Relinqui	V	3) Religui	Aatrix Guid

Preservation Codes: 1=HCL / 2=HNO₃ / 3=H₂SO₄ / 4=NaOH+NaAsO₂ / 5=NaOH+ZnAc / 6=Na₂S₂O₃ / 7=NaHSO₄ / 8=MeOH

ACCURA ANALYTICAL LABORATORY, INC.

Environmental Analytical Services

CHAIN OF CUSTODY

Preservation Codes: 1=HCL / 2=HNO₃ / 3=H₂SO₄ / 4=NaOH+NaAsO₂ / 5=NaOH+ZnAc / 6=Na₅S₃O₃ / 7=NaHSO₄ / 8=MeOH

. .

	e e a company and a company and a company and a company and a company and a company and a company and a company			
SAM	PLE RECEIPT CHECKLIST VERSION 6 Client Code: 0153 AAL Proj	ect Mgr	: DC	E
Client)	Project Name: HUMEPPOINPTON SCIMPLING ACCURA WO	rk Order#	<u>; 1205</u>	$\sum_{i=1}^{i}$
Are th If YES, Prelimi	nere EnCores , tests with 48Hr hold times , or RUSH FATS requested? you must communicate RUSH analyses to the appropriate analyst(s) immediately!!! / or preserv mary Examination: Initials: Date received:5Date cooler w	YES ve EnCores vas opened	(NO) (see #16 be 1:_5[25	elow)!!!
1.	Did cooler/package come with a shipping slip (airbill, Etc.)? If YES, enter carrier name and airbill number here: <u>FEDEX AI(bill 85970</u>	(MES) 515C	A54	NO
	Describe type of packing in cooler:			
2.	****If cooler was hand delivered, <u>CIRCLE HERE</u> skip to item #5**** Were custody seals on outside of cooler? If YES, how many:seal dated:seal name:	YES		NO
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES	N/A	NO
4.	Were custody papers sealed in a plastic bag to prevent damage to chain of custody?	YES	•	NO
5.	If required, was enough ice used? (Internal cooler temperature, 20)	YES	N/A	NO
6.	Did you sign custody papers in the appropriate place?	(TES)	*	NO
7.	Was project identifiable from custody papers?	YES		NO
*******	If YES, enter project name at the top.	******	*****	*******
Compi Receip	ete project file with green sheet, proper file tag, and shipping documentation. Line up samples followir t Verification form (include extra containers for dissolved metals filtrates). Complete login in XENCO	ng chain. C and genera	omplete Con te AAL ID I	ntain er Labels,
8.	Did all containers arrive unbroken and were labels in good condition?	YES	-	NO
9.	Were custody papers filled out properly and did all labels agree with custody papers?	YES		NO
10.	Were correct containers and sufficient amount of sample sent for the test indicated?	(YES)		NO
11.	All samples collected within three days of date received for these analyses (Reactive Cn & S, Solids in H2O, Sulfide, Sulfite, !ALL! Extractable Organic Waters)? If NO, coordinate with the project manager to ensure that no samples go out of hold!!!	YES	N/A	NO
12.	No residual chlorine found in waters for these analyses:	VEC	NT / A	
	(Cyanide, rAn, SVOC, resultions, rCb's, neroicides): Checked by:	1E5 (Ini	N/A tials)	NU
13.	Were samples properly chemically preserved, if required, upon receipt? (For example: pH checked for waters for all Metals, Wet Chemistry, Pesticides, PCR's, Herbici,	YES des and	N/A	NO
	VOC/BTEX samples submitted with HCL for waters and in either Encore samplers or NaHSO	4 labeled v	ials for soil	ls)
	Preservation checked by:	(lni	tials)	
14.	If NO, list ID # on back and label vials with "Do Not Use Unit Notified By Management":	YES	N/A	(NO)
15.	If there are samples for dissolved metals, were they field filtered? If NO, list date and time samples were filtered and preserved in lab:	YES	(N/A)	NO
16.	Were Encore samplers included?	YES	*****	
	If YES, date and time preserved with NaHSO4:By whom:		,	X
17.	Does this submittal contain soil NaHSO4 vials for BTEX/GRO/VOC'S? If YES, vials weighed by and entered into vial database by:	YES	\ \	NO
18.	Initials of laboratory personnel responsible for labeling laboratory I.D. numbers on cont	ainers: 🕼	<u>}</u>	****
Keep s ti	amples and chain out. Before moving samples to their appropriate location, another person must revie that information on the AAL ID Barcode label matches the container label, and that all information is co Final check and samples logged to locations by:	w the entire onsistent wi (Ini	e project ens th the chain tials)	sering
19.	Was it necessary to call the assigned project manager in order to proceed with login? If YES, give details on the back of this form.	YES	•	NO
20.	Who was called? By whom? Date/Time:	·		
Project	Mgr. Review: <u>(Initials) 3/29/07</u> (Date)		Page ดดดจ	el of 2

	SAMITLE RECE	IPT VARIANG	.E FORM		
Discrepancies N	loted:	~ -	ाय	-5	<u></u>
Jample 1	D'SH DPT-	18-D PR	-0PT-15	+D@sizi	PR-DPT-
PR-DPT-2	25-5, PR-DP	7-25DP	<u>R-DPT-2</u>	M-D.al	1 had
1 vail.	W 714"C	<u>licspace</u>			
Frimple	10'5 PR -1	DPT-15-1	D, PR.	-DPT - 2'	1-5 QM
DR -DPT	-210, all	Mail r	MIR	> "14" ()	(SM)CF
					- Andrew and a second
			·		
<u></u>		<u></u>	· · · · · · · · · · · · · · · · · · ·		
		•			
			······································	· · · · · · · · · · · · · · · · · · ·	•
		······	<u></u>		,
<u>.</u>					
				·····	
•					
Actions Taken: AML 4	o Use ren	winihe 1	nols for	- Je stine	
Actions Taken: AML t Notfier proceed normative	to use ren f client v V/ tosting · DCJ 5/2	roining n ic enail . and no 	nols for on 5/2 k vario	- testing 9/07. Per Lees on	- client, rase
Actions Taken: AML t Notfier proceed normative	to use ren f client v v/ tosting DCJ 5/2	roining n ic enail . and no. 9/07	nols for on 5/2 k vario	- testing 9/07. Per Les on	- client, rase
Actions Taken: AML t Notfier proceed nometive	o use ren A client v V/ tosting WCZ 5/2	roining r ic enail and no glog	nols for on s/2 k vario	- lesting 9/07. <i>Per</i> -ces on	client, rase
Actions Taken: AML + Notfier proceed nometive	to use ren f client v v/ testing DCJ 5/2	roining r ic enail and no gloz	nols for on s/2 k vario	- l esting 9/07. Per -ees on	- client, rase
Actions Taken: AML + Notfier proceed normative	to use rev client v v/ tosting · DCZ 5/2	roining r ic enail and no gloz	nds for on 5/2 k vario	- testing 9/07. Per ees on	- client, rase
Actions Taken: AML + Notfier proceed normative	to use ren 1 client v 1 tosting DCJ 5/2	roining ic enail . and no. 9/07	nds for m 5/2 k Nario	- testing 9/07. Per res an	client, rase
Actions Taken: AML + Notfree proceed normative	to use ren f client v v/ tosting DCJ 5/2	roining ic enail and no gloz	nols for on s/2 k vario	- testing glot. Per rees on	- client, rase
Actions Taken: AML + Notfier Proceed nonnative	to use ren f client v v/ tosting DCJ 5/2	roining ic enail and no 9/07	nols for on s/2 k vario	- testing 9/07. Per -ees on	- client, rase
Actions Taken: AML + Notfier proceed normative	to use rev client v v tosting DCJ 5/2	roining ic enail and no gloz	nds for on s/2 k vario	- testing 9/07. Per res on	- client, rase
Actions Taken: AML + Notfier proceed normative	o use ren 1 client v 1 tosting DCJ 5/2	roining ic enail . and no	nds for on 5/2 k vario	- testing 9/07. Per res on	- client, rase
Actions Taken: AML + Notfier proceed normative	o use ren 1 client v 1 tosting DCJ 5/2	roining ic enail and no gloz	nols for on s/2 k vario	- testing glot. Per rees on	- client, rase
Actions Taken: <u>AML</u> + <u>Notfied</u> <u>Proceed</u> <u>normative</u>	o use rev 1 client v 1 tosting DCJ 5/2	roining r ic enail and no 9/07	nols for m s/2 k vario	- testing	- client, rase

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: Trip Blank	Matri	x: WATE	R	% Moistur	e:	açtaso: Alett	ji jananan
Lab Sample Id: 12059-001	Date Collecte	d Mav-2	4-07 00:00	Date Receive	d May-25-	.07 09:3	9
Sample Depth	Duce concere	u, ning 2		Date Recente		0, 0, IO	,
Sample Depth.							
Analytical Method: USACE V	OCs by SW8260B			Prep	Method: SW	/5030B	
Date Analyzed: May-30-07 19:17	Analyst: MJL01]	Date Prep: M	ay-30-07 08:03	Tech:	мл.01	
	Seq Number: 36214		•	-			
Payamatar	Cas Number	Doguit	Don Limit	MDI	Tinite	Flag	Dil
rarameter	Cas Ivuindei	ксзин	Kep Linn	IVIL/L	Units	rug	DI
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L.	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL.	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: Trip Blank	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-001	Date Collected: May-24-07 00:00	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VC	Cs by SW8260B	Prep Method: SW5030B								
Date Analyzed: May-30-07 19:17	Analyst: MJL01 Seq Number: 36214]	Date Prep: M	ay-30-07 08:03	Tech:	МЛL0 1				
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil			
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1			
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1			
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1			
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1			
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1			
Methylene Chloride	75-09-2	1.3	1.0	0.42	ug/L		1			
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1			
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1			
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1			
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1			
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1			
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1			
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1			
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1			
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1			
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1			
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1			
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1			
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1			
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1			
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug /L	U	1			
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1			
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1			

ŵ

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-16-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-002	Date Collected: May-24-07 08:10	Date Received: May-25-07 09:39
Sample Depth:		

USACE VOCs by SW8260B Prep Method: SW5030B Analytical Method: Analyst: MJL01 Date Analyzed: May-29-07 16:45 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Parameter Cas Number **Result Rep Limit** MDL Units Flag Dil ug/L 1.1.1.2-Tetrachloroethane 630-20-6 BRL 1.0 0.24 U 1 1.1.1-Trichloroethane 71-55-6 BRL 1.0 0.16 ug/L U 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 U 1 ug/L 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 U 1 ug/L 1,1-Dichloroethane 75-34-3 BRL 1.0 U 1 0.11 ug/L 1,1-Dichloroethene 75-35-4 BRL 1.0 0.20 U 1 ug/L 1,1-Dichloropropene 563-58-6 BRL 1.0 0.10 U 1 ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.25 1 ug/L 1.2.3-Trichloropropane 96-18-4 BRL 1.0 0.21 U 1 ug/L BRL U 1,2,4-Trichlorobenzene 120-82-1 1.0 0.17 1 ug/L BRL U 1 1,2,4-Trimethylbenzene 95-63-6 1.0 0.14 ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 1 ug/L U 1.2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 ug/L U 1.2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L U 1.2-Dichloroethane 107-06-2 BRL 1.0 0.18 1 ug/L U 1.2-Dichloropropane 78-87-5 BRL 1.0 0.15 1 ug/L 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 U 1 ug/L 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 U 1 ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 U 1 ug/L 1,4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 U 1 ug/L 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 U 1 ug/L 2-Butanone 78-93-3 BRL 5.0 0.28 U 1 ug/L U 2-Chlorotoluene 95-49-8 BRL 1.0 0.19 1 ug/L 2-Hexanone 591-78-6 BRL 5.0 0.32 U 1 ug/L 106-43-4 BRL U 4-Chlorotoluene 1.0 0.13 1 ug/L 99-87-6 BRL 1.0 0.13 U 1 4-Isopropyltoluene ug/L υ 4-Methyl-2-pentanone BRL 1 108-10-1 5.0 0.26 ug/L Acetone 67-64-1 7.2 5.0 0.35 1 20 ug/L U Acrolein 107-02-8 BRL 6.6 1 0.49 BRL 2.0 ug/L U Acrylonitrile 107-13-1 1 ug/L U Benzene 71-43-2 BRL 1.0 0.16 1 ug/L Bromobenzene 108-86-1 BRL 1.0 0.21 U 1 ug/L Bromochloromethane 74-97-5 BRL 1.0 0.20 U 1 ug/L U Bromodichloromethane 75-27-4 BRL 1.0 0.25 1 ug/L U Bromoform 75-25-2 BRL 1.0 0.17 1 ug/L 74-83-9 BRL U 1 Bromomethane 1.0 0.25 ug/L BRL U 1 Carbon disulfide 75-15-0 1.0 0.26 ug/L U Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 1 ug/L Chlorobenzene 108-90-7 BRL 1.0 0.15 U 1 ug/L U Chloroethane 75-00-3 BRL 1.0 0.26 1 ug/L U Chloroform 67-66-3 BRL 1.0 0.16 1 ug/L U BRL 0.25 Chloromethane 74-87-3 1.0 1 ug/L U cis-1,2-Dichloroethene 156-59-2 BRL 1.0 0.21 1

10061-01-5

124-48-1

BRL

BRL

1.0

1.0

0.10

0.15

U

U

1

ł

ug/L

ug/L

cis-1,3-Dichloropropene

Dibromochloromethane

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-16-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-002	Date Collected: May-24-07 08:10	Date Received: May-25-07 09:39

Sample Depth:

Analytical Method: USACE VOCs by SW8260B

Date Analyzed: May-29-07 16:45	Analyst: MJL01	Date Prep: May-29-07 07:50			Tech:	MJL01	
	Seq Number: 36193						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

*

Prep Method: SW5030B

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-16-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-003	Date Collected: May-24-07 08:20	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Analyst: MJL01 Date Analyzed: May-29-07 17:13 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 **Result Rep Limit** Units Flag Dil Cas Number MDL Parameter ug/L U 1.1.1.2-Tetrachloroethane 630-20-6 BRL 1.0 0.24 1 ug/L 1.1.1-Trichloroethane 71-55-6 BRL 1.0 0.16 U 1 ug/L 79-34-5 BRL 1.0 0.18 U 1 1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 U 1 ug/L 1.1-Dichloroethane 75-34-3 BRL 1.0 0.11 U 1 ug/L 1.1-Dichloroethene 75-35-4 BRL 1.0 0.20 U 1 ug/L 563-58-6 **BRL** 1.0 0.10 U 1 1,1-Dichloropropene 1.0 ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL 0.25 1 ug/L U 1.2.3-Trichloropropane 96-18-4 BRL. 1.0 0.21 1 ug/L 1,2,4-Trichlorobenzene 120-82-1 BRI. 1.0 0.17 U 1 цg/L U 1,2,4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 1 ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 1 1.2-Dibromoethane 106-93-4 BRL 1.0 0.18 ug/L U 1 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 ug/L U 1 ug/L 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 U 1 ug/L 1,2-Dichloropropane 78-87-5 BRL 1.0 0.15 U 1 ug/L U 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L U 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 ł ug/L U 142-28-9 BRL 1.0 0.19 1 1,3-Dichloropropane ug/L U 1,4-Dichlorobenzene 106-46-7 BRL 1.0 0.17 1 ug/L 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 U 1 ug/L U 78-93-3 BRL 5.0 0.28 1 2-Butanone ug/L U 95-49-8 BRL 1 2-Chlorotoluene 1.0 0.19 ug/L 591-78-6 BRL 5.0 0.32 U 1 2-Hexanone ug/L U 4-Chlorotoluene 106-43-4 BRL 1.00.13 1 ug/L U 4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 1 5.0 ug/L U 4-Methyl-2-pentanone 108-10-1 BRL 0.26 1 ug/L U Acetone 67-64-1 BRL 5.0 0.35 1 ug/L Acrolein 107-02-8 BRL 20 6.6 U 1 ug/L Acrylonitrile 107-13-1 BRL 2.00.49 U 1 ug/L U Benzene 71-43-2 BRL 1.0 0.16 1 ug/L Bromobenzene 108-86-1 BRL 1.0 0.21 U 1 Bromochloromethane 74-97-5 BRL 1.0 0.20 ug/L U 1 ug/L U Bromodichloromethane 75-27-4 BRL 1.0 0.25 1

75-25-2

74-83-9

75-15-0

56-23-5

108-90-7

75-00-3

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

BRL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.17

0.25

0.26

0.33

0.15

0.26

0.16

0.25

0.21

0.10

0.15

ug/L

U

U

U

U

U

U

U

U

U

U

U

1

1

1

1

1

1

1

1

1

1

1

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon disulfide

Carbon Tetrachloride

cis-1.2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-16-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-003	Date Collected: May-24-07 08:20	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-29-07 17:13 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Dil **Result Rep Limit** MDL Units Flag Parameter Cas Number ug/L U 74-95-3 BRL 1.0 0.24 1 Dibromomethane ug/L U BRL 1.0 0.22 1 Dichlorodifluoromethane 75-71-8 ug/L U 100-41-4 BRL 1.0 0.19 1 Ethylbenzene ug/L U 1 87-68-3 BRL 1.00.13 Hexachlorobutadiene ug/L U 1 1.0 0.15 Isopropylbenzene 98-82-8 BRL ug/L U 1 Methylene Chloride 75-09-2 BRL 1.0 0.42 ug/L 1634-04-4 BRL U 1 Methyl tert-Butyl Ether 1.0 0.11 ug/L U 1 m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 ug/L 1.0 0.22 1 91-20-3 5.0 Naphthalene ug/L U 1 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L U 1 n-Propylbenzene 103-65-1 BRL 1.0 0.18 95-47-6 BRL 1.00.20 ug/L U 1 o-Xylene ug/L U 1 135-98-8 BRL 1.0 0.21 Sec-Butylbenzene ug/L U 0.18 1 100-42-5 BRL 1.0 Styrene ug/L 98-06-6 BRL 1.0 0.18 U 1 tert-Butylbenzene ug/L U BRL 1.0 0.16 1 127-18-4 Tetrachloroethene ug/L U 1 108-88-3 BRL 1.0 0.14 Toluene ug/L U 156-60-5 BRL 1.0 0.21 1 trans-1,2-Dichloroethene ug/L U 10061-02-6 BRL 1.0 0.11 1 trans-1,3-Dichloropropene ug/L U BRL 1.0 0.19 1 Trichloroethene 79-01-6 ug/L U 75-69-4 BRL 0.53 1 Trichlorofluoromethane 1.0 ug/L U 108-05-4 BRL 5.0 1.3 1 Vinyl acetate ug/L U 1 75-01-4 BRL 1.0 0.19 Vinyl chloride

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-18-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-004	Date Collected: May-24-07 09:10	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE V	OCs by SW8260B		Analytical Method: USACE VOCs by SW8260B Prep		Method: SW	/5030B	
Date Analyzed: May-29-07 17:41	Analyst: MJL01 Seq Number: 36193	Date Prep: May-29-07 07:50		Tech:	MJL01		
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-18-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-004	Date Collected: May-24-07 09:10	Date Received: May-25-07 09:39
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-29-07 17:41 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Dil Cas Number **Result Rep Limit** MDL Units Flag Parameter ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L BRL 1.0 0.19 U 1 Ethylbenzene 100-41-4 ug/L BRL 0.13 U 1 Hexachlorobutadiene 87-68-3 1.0 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 1 ug/L U 1 BRL 1.0 0.22 Naphthalene 91-20-3 ug/L U 1 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L U 95-47-6 BRL 1.0 0.20 1 o-Xylene ug/L U BRL 1 Sec-Butylbenzene 135-98-8 1.0 0.21 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 156-60-5 BRL 1.0 0.21 ug/L U 1 trans-1,2-Dichloroethene trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 ug/L U 1 ug/L U BRL 1.0 0.19 Trichloroethene 79-01-6 1 ug/L BRL U Trichlorofluoromethane 75-69-4 1.0 0.53 1 ug/L 108-05-4 BRL 5.0 1.3 U Vinyl acetate 1 ug/L BRL 1.0 0.19 U 1 Vinyl chloride 75-01-4

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-18-D	Matrix: WATER	% Moisture:	<u>unn</u> .
Lab Sample Id: 12059-005	Date Collected: May-24-07 09:20	Date Received: May-25-07 09:39	
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-29-07 18:08 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Parameter **Cas Number Result Rep Limit** MDL Units Flag Dil ug/L U 1,1,1,2-Tetrachloroethane 630-20-6 BRL 1.0 0.24 1 1.1.1-Trichloroethane 71-55-6 BRL 1.0 0.16 ug/L U 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 U 1 ug/L U 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 1 ug/L 1.1-Dichloroethane 75-34-3 BRL 1.0 0.11 U 1 ug/L 1.1-Dichloroethene 75-35-4 BRL 1.0 0.20 U 1 ug/L 1,1-Dichloropropene 563-58-6 BRL 1.0 0.10 U 1 1,2,3-Trichlorobenzene ug/L U 87-61-6 BRL 1.0 0.25 1 ug/L 1,2,3-Trichloropropane 96-18-4 BRL 1.0 0.21 U 1 ug/L 120-82-1 BRL U 1,2,4-Trichlorobenzene 1.0 0.17 1 95-63-6 BRL 1.0 0.14 ug/L U 1 1,2,4-Trimethylbenzene ug/L Ŭ BRL 0.19 1 1,2-Dibromo-3-chloropropane 96-12-8 1.0 ug/L U 1,2-Dibromoethane 106-93-4 BRL 1.0 0.18 1 95-50-1 ug/L U 1,2-Dichlorobenzene BRL 1.0 0.14 1 ug/L U 1,2-Dichloroethane 107-06-2 BRL 1.0 0.18 1 ug/L U 1,2-Dichloropropane 78-87-5 BRL 1.0 0.15 1 ug/L 1.3.5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 U 1 ug/L 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 U ĩ ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 U 1 ug/L U 1.4-Dichlorobenzene 106-46-7 BRL 1.0 0.171 ug/L 2,2-Dichloropropane 594-20-7 BRL 1.0 0.21 U 1 ug/L 2-Butanone 78-93-3 BRL 5.0 0.28 U 1 ug/L 95-49-8 U 2-Chlorotoluene BRL 1.0 0.19 1 ug/L 2-Hexanone 591-78-6 BRL 5.0 0.32 U 1 ug/L 106-43-4 BRL 1.0 0.13 U 4-Chlorotoluene 1 ug/L U 4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 1 ug/L U 4-Methyl-2-pentanone 108-10-1 BRL 5.0 0.26 1 ug/L U Acetone 67-64-1 BRL 5.00.35 1 107-02-8 BRL 20 ug/L U Acrolein 6.6 1 107-13-1 2.0 0.49 ug/L U Acrylonitrile BRL ł ug/L U Benzene 71-43-2 BRL 1.0 0.16 1 ug/L Bromobenzene 108-86-1 BRL 1.0 0.21 U 1 ug/L U Bromochloromethane 74-97-5 BRL 1.0 0.20 1 ug/L U Bromodichloromethane 75-27-4 BRL 1.0 0.25 1 ug/L 75-25-2 U Bromoform BRL 1.0 0.17 1 74-83-9 BRL ug/L U 1 Bromomethane 1.0 0.25 ug/L 75-15-0 BRL 1.0 U 1 Carbon disulfide 0.26 ug/L U Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 1 ug/L U Chlorobenzene 108-90-7 BRL 1.0 0.15 1 ug/L 75-00-3 U Chloroethane BRL 1.0 0.26 1 ug/L BRL U Chloroform 67-66-3 1.0 0.16 1 ug/L U 74-87-3 BRL 1.0 0.25 1 Chloromethane ug/L U BRL 0.21 cis-1,2-Dichloroethene 156-59-2 1.0 1 ug/L cis-1,3-Dichloropropene 10061-01-5 BRL 1.0 0.10 U 1

124-48-1

BRL

1.0

0.15

Dibromochloromethane

U

1

ug/L

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-18-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-005	Date Collected: May-24-07 09:20	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-29-07 18:08 Analyst: MJL01 Date Prep: May-29-07 07:50 Tech: MJL01 Seq Number: 36193 Flag **Result Rep Limit** MDL Dil Parameter **Cas Number** Units ug/L Dibromomethane 74-95-3 BRL 1.0 0.24 U 1 ug/L BRL U Dichlorodifluoromethane 75-71-8 1.0 0.22 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 ł ug/L BRL U Hexachlorobutadiene 87-68-3 1.0 0.13 1 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 1 0.15 ug/L U Methylene Chloride BRL 75-09-2 1.0 0.42 1 ug/L Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 U 1 0.11 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 U 0.51 1 ug/L Naphthalene 91-20-3 BRL 0.22 U 1 1.0 ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 o-Xylene 95-47-6 BRL 1.0 0.20 ug/L U 1 135-98-8 ug/L U Sec-Butylbenzene BRL 1.0 0.21 1 ug/L U Styrene 100-42-5 BRL 1.0 0.18 ł ug/L tert-Butylbenzene 98-06-6 BRL 1.0 0.18 U 1 ug/L Tetrachloroethene 127-18-4 BRL 1.0 0.16 U 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L U trans-1.2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 trans-1,3-Dichloropropene BRL ug/L U 10061-02-6 1.0 0.11 1

BRL

BRL

BRL

BRL

1.0

1.0

5.0

1.0

0.19

0.53

1.3

0.19

79-01-6

75-69-4

75-01-4

108-05-4

Trichloroethene

Vinyl acetate

Vinyl chloride

Trichlorofluoromethane

ug/L

ug/L

ug/L

ug/L

U

U

U

U

1

1

1

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-20-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-006	Date Collected: May-24-07 09:40	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-30-07 11:55 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 **Result Rep Limit** MDL Flag Dil Parameter **Cas Number** Units ug/L U 630-20-6 BRL 1.0 0.24 1,1,1,2-Tetrachloroethane 1 ug/L U BRL 1.0 0.16 1 1,1,1-Trichloroethane 71-55-6 ug/L U 79-34-5 BRL 1.0 0.18 I 1.1.2.2-Tetrachloroethane ug/L 1,1,2-Trichloroethane U 79-00-5 BRL 1.0 0.25 1 ug/L U 75-34-3 BRL 1.0 0.11 1 1,1-Dichloroethane ug/L U 1 1.1-Dichloroethene 75-35-4 BRL 1.0 0.20ug/L BRL 0.10 U 1 1.1-Dichloropropene 563-58-6 1.0 ug/L U 1,2,3-Trichlorobenzene 87-61-6 BRL 1.0 0.25 1 ug/L U BRL 0.21 1 1,2,3-Trichloropropane 96-18-4 1.0 ug/L U 1 1,2,4-Trichlorobenzene 120-82-1 BRL 1.0 0.17 ug/L U 1,2,4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 1 ug/L 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 U 1 ug/L U 106-93-4 BRL 1.0 0.18 1 1,2-Dibromoethane ug/L U 1,2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 1 ug/L BRL 1.0 U 1 1,2-Dichloroethane 107-06-2 0.18 ug/L U 78-87-5 BRL 1.0 0.15 1 1,2-Dichloropropane ug/L U 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L U 1,3-Dichlorobenzene 541-73-1 BRL 1.0 0.17 1 ug/L U 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 1 ug/L U 1 106-46-7 BRL 1.0 0.17 1,4-Dichlorobenzene ug/L U 594-20-7 1 2,2-Dichloropropane BRL 1.00.21ug/L 78-93-3 BRL 5.0 0.28 U 1 2-Butanone ug/L 2-Chlorotoluene 95-49-8 BRL 1.0 0.19 U 1 ug/L 591-78-6 BRL 5.0 0.32 U 1 2-Hexanone ug/L 106-43-4 BRL 1.0 0.13 U 1 4-Chlorotoluene ug/L U 4-Isopropyltoluene 99-87-6 BRL 1.0 0.13 1 BRL 5.0 ug/L U 4-Methyl-2-pentanone 108-10-1 0.26 1 ug/L BRL 5.0 0.35 U 1 67-64-1 Acetone ug/L U 107-02-8 BRL 20 1 Acrolein 6.6 ug/L 107-13-1 BRL 2.00.49 U 1 Acrylonitrile ug/L U Benzene 71-43-2 BRL 1.0 0.16 1 ug/L U 1.0 0.21 1 Bromobenzene 108-86-1 BRL ug/L U Bromochloromethane 74-97-5 BRL 1.0 0.20 1 ug/L U Bromodichloromethane 75-27-4 BRL 1.0 0.25 1 ug/L 1.0 U 1 Bromoform 75-25-2 BRL 0.17 ug/L U Bromomethane 74-83-9 BRL 1.0 0.25 1 75-15-0 BRL 1.0 0.26 ug/L U 1 Carbon disulfide ug/L Carbon Tetrachloride 56-23-5 BRL 1.0 0.33 Ű 1 ug/L U 108-90-7 1 Chlorobenzene BRL 1.0 0.15 ug/L U 1 Chloroethane 75-00-3 BRL 1.0 0.26 ug/I. BRL U 1 Chloroform 67-66-3 1.0 0.16 ug/L 74-87-3 BRL U Chloromethane 1.0 0.25 1 ug/L 156-59-2 BRL 1.0 0.21 U 1 cis-1,2-Dichloroethene ug/L U 10061-01-5 BRL 1.0 1 cis-1,3-Dichloropropene 0.10 ug/L Dibromochloromethane 124-48-1 BRL 1.0 0.15 U 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-20-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-006	Date Collected: May-24-07 09:40	Date Received: May-25-07 09:39
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-30-07 11:55 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 MDL Units Flag Dil Cas Number Result Rep Limit Parameter Dibromomethane 7/ 05 3 BDI 1.0 0.24 ug/L П

Dibromomeinane	74-93-3	DKL	1.0	0.24	ugit	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	\mathbf{U}	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23 -1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-20-D	Matri	x: WATI	C R	% Moistur	e:		<u> </u>
Lab Sample Id: 12059-007	Date Collecte	Date Collected: May-24-07 09:50		Date Received: May-25-07 09:39			
Sample Depth:					•		
Analytical Method: USACE V	OCs by SW8260B			Prep I	Method: SW	/5030B	
Date Analyzed: May-30-07 12:22	Analyst: MJL01 Seq Number: 36214	1	Date Prep: M	ay-30-07 08:03	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1 1 1-Trichloroethane	71-55-6	BRL	10	0.16	ug/L	Ū	1
1 1 2 2-Tetrachloroethane	79-34-5	BRI	1.0	0.18	ug/L	Ŭ	í
1 1 2-Trichloroethane	79-00-5	BRL	10	0.10	ug/L	Ŭ	1
1 1-Dichloroethane	75-34-3	BRI	1.0	0.11	ug/L	ŭ	1
1 1 Dichloroethene	75_35_4	BRI	1.0	0.20	ue/L	т П	1
1.1 Dichloropropana	563 58 6	BRI	1.0	0.20	ue/L	й	1
1,2,3 Trichlorobenzene	87-61-6	BRI	1.0	0.10	ug/L	Ц Ц	1
1.2.3-Trichloropropage	06-18-A	RDI	10	0.25	ц <u>е</u> /Т.	ŭ	1
1.2.4 Trichlorohenzone	120.82.1	זעם	1.0	0.17	-g.≃ ug/L	й П	1
1,2,4-Themotobelizene	120-82-1		1.0	0.17	ug/L	U U	1
1,2,4-Thileuryidenzene	06 12 8	DAL	1.0	0.14	ug/L	U U	1
1.2 Dibromo-3-chloropropane	106 02 4		1.0	0.19	ug/I	U U	1
1,2-Dioromoeunane	100-93-4		1.0	0.16	ug/L	U U	1
1,2-Dichlorobenzene	95-50-1	DRL	1.0	0.14	ug/L		1
1,2-Dichloroethane	107-00-2	BKL	1.0	0.18	ug/L	U 11	1
1,2-Dichloropropane	/8-8/-3	BRL	1.0	0.15	ug/L		1
1,3,5-1 rimethylbenzene	108-67-8	BKL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BKL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BKL	1.0	0.19	ug/1.	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	I
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL.	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL.	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ū	l
Carbon disulfide	75-15-0	BRI	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRI	1.0	015	ug/L	ũ	î
Chloroethane	75_00_3	BRI	1.0	0.26	ug/L	ũ	1
Chloroform	67_66_3	RRI	1.0	0.16	ug/L	ŭ	1
Chloromethane	74_87_3	RRI	1.0	0.25	ue/L	U U	1
cis_1 2-Dichloroethene	156_50_7	RRI	1.0	0.21	<i></i> ug/L	Ŭ	1
cis 1 3 Dichloropropene	10061_01_5	DICL	1.0	0.21	ug/L	л П	1
ois-1,5-Diomotopiopene	10001-01-0	DILL	1.0	0.10	- 6	0	1

124-48-1

BRL

1.0

Dibromochloromethane

U

1

ug/L

0.15

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-20-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-007	Date Collected: May-24-07 09:50	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-30-07 12:22 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 **Result Rep Limit** MDL Flag Dil Parameter Cas Number Units ug/L U Dibromomethane 74-95-3 BRL 1.0 0.24 1 ug/L Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 U 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 1 ug/L U 98-82-8 BRL 1.0 0.15 1 Isopropylbenzene ug/L U BRL 1.0 1 Methylene Chloride 75-09-2 0.42 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 U 1 0.51 ug/L U 91-20-3 BRL 1.0 0.22 1 Naphthalene ug/L U 1 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L 95-47-6 BRL 1.0 0.20 U 1 o-Xylene ug/L 135-98-8 BRL 1.0 0.21 U 1

BRL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5.0

1.0

0.18

0.18

0.16

0.14

0.21

0.11

0.19

0.53

1.3

0.19

100-42-5

127-18-4

108-88-3

156-60-5

79-01-6

75-69-4

75-01-4

108-05-4

10061-02-6

98-06-6

Sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl acetate

Vinyl chloride

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Styrene

Toluene

ug/L

U

U

U

U

U

U

U

U

U

U

1

1

1

1

1

1

1

1

l

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-19-S Lab Sample Id: 12059-008 Sample Depth:	Matri Date Collecte	x: WATE d: May-2	CR 4-07 10:10	% Moistur Date Receive	e: d: May-25-	-07 09:3	9
Analytical Method: USACE VO	Cs by SW8260B	8260B		Prep l	Prep Method: SW5030B		
Date Analyzed: May-30-07 12:49	d: May-30-07 12:49 Analyst: MJL01 Date Prep: May-30-07 08:03 Seq Number: 36214		Tech: MJL01				
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	Ũ	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	Ū	1
1 1-Dichloroethene	75-35-4	BRL	10	0.20	ug/L	Ū	1
1 1-Dichloropropene	563-58-6	BRI	10	0.10	ug/L	Ū	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ū	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	Ū	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	Ū	1
1 2 4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	Ŭ	1
1.2-Dibromo-3-chloropropane	96-12-8	BRI	1.0	0.19	ug/L	Ū	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	Ū	1
1 2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	Ŭ	Î
1 2-Dichloroethane	107-06-2	BRL	10	0.18	ug/L	Ŭ	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	Ū	1
1.3 5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	Ũ	Î
1 3-Dichlorobenzene	541-73-1	BRL	10	017	ug/L	Ũ	1
1 3-Dichloropropane	142-28-9	BRI	10	0.19	ug/L	Ŭ	î
1 4-Dichlorobenzene	106-46-7	BRI	1.0	0.17	ug/L	Ŭ	i
2 2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	Ũ	1
2.2 Dienoropropune 2-Butanone	78-93-3	BRI	5.0	0.28	ug/L	Ŭ	1
2-Chlorotoluene	95-49-8	RRI	10	0.19	ug/L	ŭ	1
2-Hexanone	591-78-6	BRI	50	0.32	ug/L	ŭ	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	ŭ	1
4-Isopropyltoluene	99-87-6	BRI	10	013	ug/L	Ŭ	1
4-Methyl-2-pentanone	108-10-1	BRI	50	0.26	ug/L	ŭ	1
Acetone	67-64-1	RRI	5.0	0.35	ug/L	ŭ	1
Acrolein	107-02-8	BRI	20	66	ug/L	й	1
Acrylonitrile	107-13-1	BRI	20	0.0	<i>a</i>	й	1

71-43-2

108-86-1

74-97-5

75-27-4

75-25-2

74-83-9

75-15-0

56-23-5

75-00-3

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

108-90-7

BRL

BRI.

BRL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.16

0.21

0.20

0.25

0.17

0.25

0.26

0.33

0.15

0.26

0.16

0.25

0.21

0.10

0.15

Benzene

Bromoform

Bromobenzene

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon disulfide

Carbon Tetrachloride

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Bromochloromethane

Bromodichloromethane

ug/L

U

U

U

U

U

U

 \mathbf{U}

U

U

U

U

U

U

U

U

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-19-S	Matrix: WATER	% Moisture:		
Lab Sample Id: 12059-008	Date Collected: May-24-07 10:10	Date Received: May-25-07 09:39		
Sample Depth:				

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-30-07 12:49 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 **Result Rep Limit** MDL Flag Dil Parameter **Cas Number** Units BRL ug/L U Dibromomethane 74-95-3 1.0 0.24 1 ug/L Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 U 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 1 BRL ug/L U Isopropylbenzene 98-82-8 1.0 0.15 1 ug/L U Methylene Chloride BRL 75-09-2 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 U 1 0.51 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L U n-Butylbenzene 1 104-51-8 BRL 1.0 0.17 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L 95-47-6 BRL 1.0 0.20 U 1 o-Xylene ug/L 135-98-8 BRL 0.21 U 1 Sec-Butylbenzene 1.0 ug/L U 1 Styrene 100-42-5 BRL 1.0 0.18 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 trans-1,3-Dichloropropene ug/L 10061-02-6 BRL 1.0 0.11 U 1 Trichloroethene 79-01-6 BRL 1.0 0.19 ug/L U 1 ug/L U 1 Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 ug/L U Vinyl acetate 108-05-4 BRL 5.0 1.3 1 ug/L 0.19 U 1 Vinyl chloride 75-01-4 BRL 1.0

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-19-D	но и конструкции и конструкции и конструкции и конструкции и конструкции и конструкции и конструкции и констру Мати	x: WATI	desettionengipet CR	% Moistu	е: ге:		
Lab Sample Id [.] 12059-009	Date Collecte	d [.] Mav-2	24-07 10:20	Date Receive	d May-25	-07 09:3	9
Sample Donth:	Date content	u,, . , .		Date Receive		01 0710	
Sample Deptil.							
Analytical Method: USACE VO	OCs by SW8260B			Prep	Method: SW	/5030B	<u> </u>
Date Analyzed: May-30-07 13:17	Analyst: MJL01	-	Date Prep: M	av-30-07 08:03	Tech	MT 01	
	Seq Number: 36214		1	5			
Dong-motor	Cas Norther	Danult	Den Linit	MDI	TI-ita	Flag	D:
Parameter	Cas Number	Kesult	кер ілти	MUL	Units	Flag	DI
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	I
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	\mathbf{U}	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	u g /L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL.	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-19-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-009	Date Collected: May-24-07 10:20	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-30-07 13:17 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 Flag Dil Parameter Cas Number **Result Rep Limit** MDL Units ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L BRL 1.0 0.22 U 1 Dichlorodifluoromethane 75-71-8 ug/L U 100-41-4 BRL 1.0 0.19 1 Ethylbenzene ug/L U 87-68-3 BRL 1.0 0.13 1 Hexachlorobutadiene ug/L U 98-82-8 BRL 1.0 1 Isopropylbenzene 0.15 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L 1634-04-4 BRL U 1 Methyl tert-Butyl Ether 1.0 0.11 ug/L U 1 m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 ug/L BRL 1.0 0.22 U 1 Naphthalene 91-20-3 ug/L U 104-51-8 BRL 0.17 1 n-Butylbenzene 1.0 ug/L n-Propylbenzene U 103-65-1 BRL 1.0 0.18 1 ug/L U o-Xylene 95-47-6 BRL 1.0 0.20 1 0.21 ug/L U 135-98-8 BRL 1.0 1 Sec-Butylbenzene ug/L U BRL Styrene 100-42-5 1.0 0.18 1 ug/L 98-06-6 BRI. 1.0 0.18 U 1 tert-Butylbenzene ug/L U BRL 1.0 0.16 1 Tetrachloroethene 127-18-4 ug/L U 108-88-3 BRL 1.0 0.14 1 Toluene ug/L trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 U 1 trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 ug/L U 1 ug/L 0.19 U 1 Trichloroethene BRL 1.0 79-01-6 ug/L U BRL 0.53 Trichlorofluoromethane 75-69-4 1.0 1 ug/L U 108-05-4 BRL 5.0 1.3 1 Vinyl acetate ug/L U 75-01-4 BRL 1.0 0.19 1 Vinyl chloride

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-15-S	Matrix: WATER	% Moisture:
Lab Comple Id. 12050 010	Data Collected: May 74 07 10.40	Data Received: May 25.07 00.20

Lab Sample Id: 12059-010

Date Collected: May-24-07 10:40

Date Received: May-25-07 09:39

Sample Depth:

Analytical Method: USACE V	OCs by SW8260B			Prep N	Aethod: SV	V5030B	
Date Analyzed: May-31-07 12:10	Analyst: MJL01 Seq Number: 36191]	Date Prep: M	ay-31-07 08:16	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
, 1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	\mathbf{U}	1
.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1

74-97-5

75-27-4

75-25-2

74-83-9

75-15-0

56-23-5

75-00-3

67-66-3

74-87-3

156-59-2 10061-01-5

124-48-1

108-90-7

BRL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.20

0.25

0.17

0.25

0.26

0.33

0.15

0.26

0.16

0.25

0.21

0.10

0.15

ug/L

U

U

U

U

U

U

U

U

U

U

υ

U

U

1

1

1

1

1

1

1

1

1

1

1

1

1

Bromochloromethane

Carbon Tetrachloride

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Carbon disulfide

Bromodichloromethane

Naphthalene

o-Xylenc

Styrene

Toluene

n-Butylbenzene

n-Propylbenzene

Sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl acetate

Vinyl chloride

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Certificate of Analytical Results 12059

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-15-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-010	Date Collected: May-24-07 10:40	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 12:10 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Cas Number **Result Rep Limit** MDL Units Flag Dil Parameter 74-95-3 BRL ug/L U 1.0 0.24 1 Dibromomethane ug/L BRL 1.0 0.22 U Dichlorodifluoromethane 75-71-8 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L BRL U Hexachlorobutadiene 87-68-3 1.0 0.13 1 ug/L U 98-82-8 BRL 1.0 0.15 1 Isopropylbenzene ug/L U BRL 1.0 1 Methylene Chloride 75-09-2 0.42 ug/L Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 U 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 U 1

BRL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5.0

1.0

0.22

0.17

0.18

0.20

0.21

0.18

0.18

0.16

0.14

0.21

0.11

0.19

0.53

1.3

0.19

91-20-3

104-51-8

103-65-1

95-47-6

135-98-8

100-42-5

127-18-4

108-88-3

156-60-5

79-01-6

75-69-4

75-01-4

108-05-4

10061-02-6

98-06-6

ug/L

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

ł

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-15-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-011	Date Collected: May-24-07 10:50	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 12:37 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 36191 Units Flag

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	I
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	u g/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-15-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-011	Date Collected: May-24-07 10:50	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 12:37 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 **Result Rep Limit** MDL Flag Dil Parameter Cas Number Units BRL ug/L U Dibromomethane 74-95-3 1.0 0.24 1 ug/L Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 U ł ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 1 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L U Methylene Chloride BRL 75-09-2 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 U 1 0.51 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L U 1 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L 95-47-6 BRL 0.20 U 1 o-Xylene 1.0 ug/L Sec-Butylbenzene 135-98-8 BRL 0.21 U ł 1.0 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L tert-Butylbenzene 98-06-6 BRL 1.0 0.18 U 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 U 1 ug/L trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 U 1 Trichloroethene 79-01-6 BRL 1.0 0.19 ug/L U 1 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L U Vinyl acetate 108-05-4 BRL 5.0 1.3 1 ug/L 0.19 U Vinyl chloride 75-01-4 BRL 1.0 1

,

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-14-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-012	Date Collected: May-24-07 11:15	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method:USACE VOCs by SW8260BPrep Method:SW5030BDate Analyzed:May-30-07 09:40Analyst:MJL01Date Prep:May-30-07 08:03Tech:MJL01Seq Number:36214

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	υ	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	Ū	1
1 1-Dichloropropene	563-58-6	BRL	1.0	0.10	u g/L	Ū	1
1.2.3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	Ū	1
1.2.3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1.2.4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1.2.4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1.2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	Ū	1
1.2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1.2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	Ū	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	Ū	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	Ū	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	Ū	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	Ū	1
1 3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ũ	1
1 4-Dichlorobenzene	106-46-7	BRL	10	0.17	ug/L	Ū	1
2 2-Dichloropropane	594-20-7	BRL	10	0.21	ug/L	Ũ	Î
2-Butanone	78-93-3	BRL	50	0.28	ug/L	Ŭ	1
2-Chlorotoluene	95-49-8	BRL	10	0.19	ug/L	ŭ	1
2-Hexanone	591-78-6	BRL	50	0.32	ug/L	Ŭ	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ŭ	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	Ū	1
4-Methyl-2-pentanone	108-10-1	BRL.	5.0	0.26	ug/L	Ũ	ĩ
Acetone	67-64-1	BRL	5.0	0.35	ug/L	Ū	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	Ū	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ũ	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ū	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ũ	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ū	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ū	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ũ	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	Ũ	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	Ũ	ĩ
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	Ū	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ŭ	1
cis-1.2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	Ū	1
cis-1.3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	Ū	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	Ū	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-14-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-012	Date Collected: May-24-07 11:15	Date Received: May-25-07 09:39
Sample Depth		

Sample Depth: Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-30-07 09:40 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 Dil Parameter **Result Rep Limit** MDL Units Flag Cas Number ug/L U 74-95-3 BRL 1.0 0.24 1 Dibromomethane ug/L U BRL 0.22 1 Dichlorodifluoromethane 75-71-8 1.0 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L 87-68-3 BRL U Hexachlorobutadiene 1.0 0.13 1 ug/L U 1 98-82-8 BRL 1.0 0.15 Isopropylbenzene ug/L U Methylene Chloride BRL 1 75-09-2 1.0 0.42 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 U 1 ug/L 91-20-3 14 1.0 0.22 ł Naphthalene ug/L U BRL 1 n-Butylbenzene 104-51-8 1.0 0.17 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L o-Xylene 95-47-6 BRL 1.0 0.20 U 1 135-98-8 BRL 0.21 ug/L U 1 Sec-Butylbenzene 1.0 ug/L U 100-42-5 BRL 1.0 1 Styrene 0.18 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U BRL 1.0 0.14 1 Toluene 108-88-3 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 ug/L BRL 1.0 0.11 U trans-1,3-Dichloropropene 10061-02-6 1 ug/L U Trichloroethene BRL 1.0 0.19 1 79-01-6 ug/L U 0.53 Trichlorofluoromethane 75-69-4 BRL 1.0 1 ug/L U Vinyl acetate 108-05-4 BRL 5.0 1.3 1 ug/L 0.19 U 1 Vinyl chloride 75-01-4 BRL 1.0

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-14-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-013	Date Collected: May-24-07 11:30	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 13:05 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Flag Dil Result Rep Limit MDL Units Parameter Cas Number BRL ug/L U 1,1,1,2-Tetrachloroethane 630-20-6 1.0 0.24 1 ug/L U BRL 1.0 0.16 1 1,1,1-Trichloroethane 71-55-6 ug/L U 1,1,2,2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 1 79-00-5 BRL 0.25 ug/L U 1,1,2-Trichloroethane 1.0 1 ug/L U 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 1 1.1-Dichloroethene ug/L U 75-35-4 BRL 1.0 0.20 1

1,1 Diemotoculene	10 00 1	DICE	1.0	0.20	-	•	- I
1,1-Dichloropropene	563 - 58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	12	5.0	0.35	ug/L		1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-14-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-013	Date Collected: May-24-07 11:30	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 13:05 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Flag Dil Parameter Cas Number **Result Rep Limit** MDL Units ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L U BRL 1.0 0.22 Dichlorodifluoromethane 75-71-8 1 ug/L 100-41-4 BRL 1.0 0.19 U 1 Ethylbenzene ug/L U 87-68-3 BRL 1.0 0.13 Hexachlorobutadiene 1 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L Methyl tert-Butyl Ether 1634-04-4 BRL U 1.0 0.11 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 1 ug/L U 91-20-3 BRL 1.0 0.22 1 Naphthalene ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 o-Xylene 95-47-6 BRL 1.0 0.20 ug/L U 1 ug/L U 135-98-8 BRL 1.0 1 Sec-Butylbenzene 0.21 ug/L BRL U Styrene 100-42-5 1.0 0.18 1 98-06-6 BRL 1.0 0.18 ug/L U tert-Butylbenzene 1 ug/L BRL 1.0 0.16 U 1 Tetrachloroethene 127-18-4 ug/L U 108-88-3 BRL 1.0 0.14 1 Toluene ug/L U 156-60-5 BRL 1.0 0.21 ì trans-1,2-Dichloroethene ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 BRL ug/L U 1.0 0.19 1 Trichloroethene 79-01-6 ug/L U BRL Trichlorofluoromethane 75-69-4 1.0 0.53 1 ug/L 108-05-4 BRL 5.0 1.3 U 1 Vinyl acetate

BRL

1.0

0.19

75-01-4

Vinyl chloride

ug/L

U

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-25-S	Matrix: WATER	% Moisture:	
Lab Sample Id: 12059-014Date Collected: May-24-07 13:00		Date Received: May-25-07 09:39	
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 13:32 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 36191 Date Prep: MDL Units Flag Dil Number: Cas Number Result Rep Limit MDL Units Flag Dil

1.1.1.2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	Ũ	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	Ū	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	I
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	<u>U</u>	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-25-S	Matrix: WATER	% Moisture:
ab Sample Id: 12059-014Date Collected: May-24-07 13:00		Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 13:32 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Result Rep Limit Units Flag Dil Parameter Cas Number MDL BRL ug/L U 74-95-3 1.0 0.24 1 Dibromomethane ug/L U BRL 75-71-8 1.0 0.22 1 Dichlorodifluoromethane ug/L U 100-41-4 BRL 1.0 0.19 1 Ethylbenzene ug/L BRL U Hexachlorobutadiene 87-68-3 1.0 0.13 1 ug/L U 1 BRL 1.0 Isopropylbenzene 98-82-8 0.15

1 17							
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1
-							

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-25-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-015	Date Collected: May-24-07 13:10	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B

Date Analyzed: May-30-07 15:34	Analyst: MJL01 Seq Number: 36214]	Date Prep: M	ay-30-07 08:03	Tech:	MЛL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL.	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1.3.5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ū	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ū	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ŭ	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ŭ	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ŭ	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	Ū	ĩ
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	Ũ	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ũ	1
cis-1.2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	Ū	1
cis-1.3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/I.	Ū	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-25-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-015 Date Collected: May-24-07 13:10		Date Received: May-25-07 09:39
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-30-07 15:34 Analyst: MJL01 Date Prep: May-30-07 08:03 Tech: MJL01 Seq Number: 36214 Cas Number **Result Rep Limit** MDL Units Flag Dil Parameter ug/L 74-95-3 BRL 1.0 0.24 U Dibromomethane 1 ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L U Ethylbenzene 100-41-4 BRL 1.0 0.19 1 ug/L U J Hexachlorobutadiene 87-68-3 BRL 1.0 0.13 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L Methylene Chloride U 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L U 179601-23-1 2.0 1 m-Xylene/p-Xylene BRL 0.51 ug/L U 1 Naphthalene 91-20-3 BRL 1.0 0.22 ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L U 1 n-Propylbenzene 103-65-1 BRL 1.0 0.18 ug/L U 0.20 1 o-Xylene 95-47-6 BRL 1.0 ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 1 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 0.21 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 1 ug/L U 1 trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 ug/L U 1 Trichloroethene 79-01-6 BRL 1.0 0.19 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L U 1 Vinyl acetate 108-05-4 BRL 5.0 1.3 ug/L U 1 Vinyl chloride 75-01-4 BRL 1.0 0.19

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-24-S	Matrix: WATER	% Moisture:	
Lab Sample Id: 12059-016	Cample Id: 12059-016 Date Collected: May-24-07 13:25		
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B

Prep Method: SW5030B

Date Analyzed: May-31-07 14:00	Analyst: MJL01	j	Date Prep: M	ay-31-07 08:16	Tech:	MJL01	
	Seq Number: 36191						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	ł
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRI	1.0	0.26	ug/L	Ū	1
Chloroform	67-66-3	BRI	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ū	1
cis-1 2-Dichloroethene	156-59-2	BRI	1.0	0.21	ug/L	Ū	1
cis-1 3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	Ū	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-24-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-016	Sample Id: 12059-016 Date Collected: May-24-07 13:25	
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 14:00 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Flag Dil Cas Number **Result Rep Limit** MDL Units Parameter ug/L 74-95-3 BRL 1.0 0.24 U I Dibromomethane BRL 0.22 ug/L U Dichlorodifluoromethane 75-71-8 1.0 1 ug/L BRL 1.0 0.19 U 1 Ethylbenzene 100-41-4 ug/L U BRL 1.0 0.13 1 Hexachlorobutadiene 87-68-3 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L BRL U Methyl tert-Butyl Ether 1634-04-4 1.0 0.11 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 1 ug/L U 1 BRL 1.0 0.22 Naphthalene 91-20-3 ug/L U 1 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L U n-Propylbenzene BRL 1.0 0.18 1 103-65-1 ug/L U 95-47-6 BRL 1.0 0.20 1 o-Xylene ug/L U 1 Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U 0.14 Toluene 108-88-3 BRL 1.01 ug/L 156-60-5 BRL 1.0 0.21 U 1 trans-1,2-Dichloroethene trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 ug/L U 1 ug/L U BRL 0.19 1 Trichloroethene 79-01-6 1.0 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L 108-05-4 BRL 5.0 1.3 U 1 Vinyl acetate ug/L 75-01-4 BRL 1.0 0.19 U 1 Vinyl chloride

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-24-D	Matri	x: WATER		% Moisture	2:	<u>n an a state de la configie constance</u>	
Lab Sample Id: 12059-017	Date Collecte	d: May-24-	07 13:30	Date Received	i: May-25	-07 09:3	9
Sample Depth:							
Analytical Method: USACE V	OCs by SW8260B			Prep N	Aethod: SW	/5030B	
Date Analyzed: May-31-07 14:27	Analyst: MЛ01 Sea Number: 36191	Da	te Prep: M	ay-31-07 08:16	Tech:	MJL01	
Parameter	Cas Number	Result R	ep Limit	MDL	Units	Flag	Di
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1.1.1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1.1.2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1 1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	Ū	1
1 1-Dichloroethene	75-35-4	BRI	10	0.20	ug/L	ŭ	1
1.1 Dichloronronere	562 58 6	DICL	1.0	0.10	u 2/l .	Ŭ	1
1,1-Littinoi opi opene	87_61_6	BBI	1.0	0.10	ч е — це/Г	U	1
1 7 3 Trichloropropage	07-01-0 06 19 A	BDI	1.0	0.25	ч е /	U U	1
1,2,3- Inchioropropane	70-10-4 100 00 1	דעם ניםם	1.0	0.21	ч <i>ву</i> 110/Т	U U	
1,2,4-Tricmorobenzene	120-02-1	DRL	1.0	0.17	ug/1	U U	
1,2,4-1 metnyibenzene	93-03-0	DRL	1.0	0.14	ug/L	U	
1,2-Dibromo-3-chloropropane	90-12-8	BKL	1.0	0.19	ug/L	U	
,2-Dibromoethane	106-93-4	BKL	1.0	0.18	ug/L	U	
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	u <u>g</u> /L.	U	
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	
Acetone	67-64-1	BRL	5.0	0.35	ug/L	Ū	
Acrolein	107-02-8	BRL	20	6.6	ug/L	Ū	
Acrylonitrile	107-13-1	BRI	20	0.49	ug/L	Ŭ	
Benzene	71_43_2	BRI	1.0	0.16	ug/].	Ŭ	
Bromohenzene	108 86 1	BDI	1.0	0.10	uø/L	ŭ	
Dromoshlaromethene	74 07 5	DIC	1.0	0.20	- <u>0</u> /L no/l	U U	
Dromodiahlaramethana	ן-וע-די קר אר	DIVL	1.0	0.20	ч ь . 110/Л	U U	
Bromodicinoromethane	13-21-4	DKL	1.0	0.23	ч <u>к</u> у с 	U T	
Broinolom	13-23-2	DKL	1.0	0.17	ug/L	U	
Bromometnane	/4-83-9	BKL	1.0	0.25	ug/L	U	
Carbon disulfide	75-15-0	BKL	1.0	0.26	ug/L	U	
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

1.0

1.0

1.0

1.0

1.0

0.16

0.25

0.21

0.10

0.15

BRL

BRL

BRL

BRL

BRL

Chloroethane

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Chloroform

U

U

U

U

U

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-24-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-017	Date Collected: May-24-07 13:30	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 14:27 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Dil Parameter Cas Number **Result Rep Limit** MDL Units Flag 74-95-3 BRL ug/L U Dibromomethane 1.0 0.24 1 ug/L Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 U 1 ug/L U Ethvlbenzene 100-41-4 BRL 1.0 0.19 1 ug/L 87-68-3 BRL 1.0 0.13 U Hexachlorobutadiene 1 ug/L 98-82-8 BRL 1.0 0.15 U Isopropylbenzene 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 U 1 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L U n-Butylbenzene 104-51-8 BRL 0.17 1.0 1 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L o-Xylene 95-47-6 BRL 1.0 0.20 U 1 ug/L Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 U 1 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 Tetrachloroethene ug/L U 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 ug/L U trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 1 ug/L trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 U 1 Trichloroethene 79-01-6 BRL 1.0 0.19 ug/I. U 1 ug/L 75-69-4 BRL 1.0 0.53 U Trichlorofluoromethane 1

BRL

BRL

5.0

1.0

1.3

0.19

108-05-4

75-01-4

Vinyl acetate

Vinyl chloride

ug/L

ug/L

U

U

1

1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DP1-21-S	Matrix: WATER	% Moisture:	
Lab Sample Id: 12059-018	Date Collected: May-24-07 14:15	Date Received: May-25-07 09:39	
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 16:19 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 **Result Rep Limit** MDL Flag Dil Parameter **Cas Number** Units 630-20-6 ug/L 1,1,1,2-Tetrachloroethane BRL 1.0 0.24 U 1 ug/L BRL 1.0 0.16 U 1 1,1,1-Trichloroethane 71-55-6 ug/L U 1.1.2.2-Tetrachloroethane 79-34-5 BRL 1.0 0.18 1 ug/L U 1,1,2-Trichloroethane 79-00-5 BRL 1.0 0.25 1 ug/L U 1,1-Dichloroethane 75-34-3 BRL 1.0 0.11 1 ug/L U 1,1-Dichloroethene 75-35-4 BRL 1.0 0.20 1 ug/L U 563-58-6 BRL 0.10 1 1,1-Dichloropropene 1.0 ug/L 1,2,3-Trichlorobenzene BRL U 87-61-6 1.0 0.25 1 ug/L U BRL 1.0 0.21 1 1,2,3-Trichloropropane 96-18-4 ug/L U 1 120-82-1 BRL 1.0 0.17 1.2.4-Trichlorobenzene ug/L U 1.2.4-Trimethylbenzene 95-63-6 BRL 1.0 0.14 1 ug/L U 1,2-Dibromo-3-chloropropane 96-12-8 BRL 1.0 0.19 1 106-93-4 BRL ug/L U 1 1.2-Dibromoethane 1.0 0.18 ug/L U 1 1.2-Dichlorobenzene 95-50-1 BRL 1.0 0.14 ug/L U 107-06-2 BRL 1.0 0.18 1 1,2-Dichloroethane ug/L U 78-87-5 BRL 1.0 0.15 1 1,2-Dichloropropane ug/L U 1,3,5-Trimethylbenzene 108-67-8 BRL 1.0 0.17 1 ug/L 1.3-Dichlorobenzene 541-73-1 BRL 1.0 0.17U 1 ug/L 1,3-Dichloropropane 142-28-9 BRL 1.0 0.19 U 1 1.0 0.17 ug/L U 1

BRL

1.0

5.0

1.0

5.0

1.0

1.0

5.0

5.0

20

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.21

0.28

0.19

0.32

0.13

0.13

0.26

0.35

6.6

0.49

0.16

0.21

0.20

0.25

0.17

0.25

0.26

0.33

0.15

0.26

0.16

0.25

0.21

0.10

0.15

106-46-7

594-20-7

78-93-3

95-49-8

591-78-6

106-43-4

99-87-6

108-10-1

67-64-1

107-02-8

107-13-1

71-43-2

108-86-1

74-97-5

75-27-4

75-25-2

74-83-9

75-15-0

56-23-5

108-90-7

75-00-3

67-66-3

74-87-3

156-59-2

124-48-1

10061-01-5

CHIOIOINI
Chloromethane
cis-1,2-Dichloroethene
cis-1,3-Dichloropropene
Dibromochloromethane

ug/L

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1,4-Dichlorobenzene

2,2-Dichloropropane

2-Butanone

2-Hexanone

Acetone

Acrolein

Benzene

Acrylonitrile

Bromobenzene

Bromomethane

Chlorobenzene

Chloroethane

Chloroform

Carbon disulfide

Bromoform

Bromochloromethane

Carbon Tetrachloride

Bromodichloromethane

2-Chlorotoluene

4-Chlorotoluene

4-Isopropyltoluene

4-Methyl-2-pentanone

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-21-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-018	Date Collected: May-24-07 14:15	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 16:19 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Dil Cas Number Result Rep Limit MDL Units Flag Parameter ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L BRL 1.0 U 1 Ethylbenzene 100-41-4 0.19 ug/L U 1 Hexachlorobutadiene 87-68-3 BRL 1.00.13 ug/L Isopropylbenzene U 98-82-8 BRL 1.0 0.15 1 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 J ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 1 ug/L U 1 BRL 0.22 Naphthalene 91-20-3 1.0 ug/L U 1 n-Butylbenzene 104-51-8 BRL 1.0 0.17 ug/L BRL U 1 n-Propylbenzene 103-65-1 1.0 0.18 ug/L U 95-47-6 BRL 1.0 0.20 1 o-Xylene ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 1 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U Tetrachloroethene 127-18-4 BRL 1.0 0.16 1 ug/L U Toluene 108-88-3 BRL 1.0 0.14 1 156-60-5 BRL 1.0 0.21 ug/L U trans-1,2-Dichloroethene 1 BRL 1.0 0.11 ug/L U 1 trans-1,3-Dichloropropene 10061-02-6 ug/L U BRL Trichloroethene 79-01-6 1.0 0.19 1 ug/L U Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L 108-05-4 BRL 1.3 U Vinyl acetate 5.0 1 ug/L BRL 0.19 U 1 Vinyl chloride 75-01-4 1.0

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-21-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-019	Date Collected: May-24-07 14:20	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method:USACE VOCs by SW8260BPrep Method: SW5030BDate Analyzed: May-30-07 17:25Analyst: MJL01Date Prep: May-30-07 08:03Tech: MJL01Seq Number:362143621436214

Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1.1.2.2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	\mathbf{U}	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-21-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-019	Date Collected: May-24-07 14:20	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Prep: May-30-07 08:03 Date Analyzed: May-30-07 17:25 Analyst: MJL01 Tech: MJL01 Seq Number: 36214 Flag Dil Cas Number **Result Rep Limit** MDL Units Parameter ug/L 74-95-3 BRL 1.0 0.24 U 1 Dibromomethane ug/L BRL 0.22 U Dichlorodifluoromethane 75-71-8 1.0 J. ug/L 100-41-4 BRL 1.0 0.19 U 1 Ethylbenzene ug/L U 87-68-3 BRL 1.0 0.13 1 Hexachlorobutadiene ug/L U 1 Isopropylbenzene 98-82-8 BRL 1.0 0.15 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L BRL 1634-04-4 U 1 Methyl tert-Butyl Ether 1.0 0.11 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.0 0.51 1 ug/L U 0.22 1 91-20-3 BRL 1.0 Naphthalene ug/L U 0.17 1 n-Butylbenzene 104-51-8 BRL 1.0 ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 o-Xylene ug/L U 95-47-6 BRL 1.0 0.20 1 ug/L U 135-98-8 BRL 0.21 1 Sec-Butylbenzene 1.0 ug/L U Styrene 100-42-5 BRL 1.0 0.18 1 ug/L BRL 1.0 0.18 Ŭ 1 tert-Butylbenzene 98-06-6 ug/L U 1 Tetrachloroethene 127-18-4 BRL 1.0 0.16 ug/L 1.0 0.14 U 1 Toluene 108-88-3 BRL ug/L trans-1,2-Dichloroethene 156-60-5 BRL 1.0 0.21 U 1 ug/L trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 U 1 ug/L U Trichloroethene BRL 1.0 0.19 1 79-01-6 ug/L U BRL Trichlorofluoromethane 75-69-4 1.0 0.53 1 ug/L U 108-05-4 BRL 5.0 1.3 1 Vinyl acetate ug/L U 75-01-4 BRL 1.0 0.19 1 Vinyl chloride

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

an an an an an an an an an an an an an a		e de la companya de la concencia concencia de la SUS de SUS	
Sample Id: PR-DPT-22-S	Matrix: WATER	% Moisture:	
Lab Sample Id: 12059-020	Date Collected: May-24-07 14:50	Date Received: May-25-07 09:3	39
Sample Depth:			

Analytical Method:USACE VOCs by SW8260BPrep Method: SW5030B

Date Analyzed: May-31-07 14:55	Analyst: MJL01 Sea Number: 26101]	Date Prep: M	ay-31-07 08:16	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	u g /L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	Ů	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ŭ	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ú	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	Ŭ	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ū	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ū	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Bromochloromethane	74-97-5	BRI	1.0	0.20	ug/L	Ū	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ū	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRI	1.0	0.26	ug/L	Ũ	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ū	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	Ū	ī
Chloroethane	75-00-3	BRI	1.0	0.26	ug/L	Ū	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	Ŭ	ī
cis-1.2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	Ū	1
cis-1.3-Dichloropropene	10061-01-5	BRI	1.0	0.10	ug/L	Ū	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	Ū	1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-22-S	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-020	Date Collected: May-24-07 14:50	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 14:55 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Dil Parameter Cas Number Result Rep Limit MDL Units Flag ug/L 74-95-3 U BRL 1.0 0.24 1 Dibromomethane ug/L U Dichlorodifluoromethane 75-71-8 BRL 1.0 0.22 1 ug/L BRL 1.0 U Ethylbenzene 100-41-4 0.19 1 ug/L U BRL Hexachlorobutadiene 87-68-3 1.0 0.13 1 ug/L U Isopropylbenzene 98-82-8 BRL 1.0 0.15 1 ug/L Methylene Chloride 75-09-2 2.6 1.0 0.42 1 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 1 ug/L U 1 Naphthalene 91-20-3 BRL 1.0 0.22 ug/L n-Butylbenzene 104-51-8 BRL 1.0 0.17 U 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 95-47-6 BRL 1.0 0.20 ug/L U 1 o-Xylene ug/L U Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 1 ug/L U 100-42-5 BRL 1.0 0.18 1 Styrene ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 1 ug/L U 1 BRL 1.0 0.16 Tetrachloroethene 127-18-4 ug/L U Toluene 108-88-3 BRL 1.0 0.14 l ug/L U BRL 1.0 0.21 1 trans-1,2-Dichloroethene 156-60-5 ug/L U BRL 1.0 0.11 1 trans-1,3-Dichloropropene 10061-02-6 ug/L U 0.19 l Trichloroethene 79-01-6 BRL 1.0 ug/L υ Trichlorofluoromethane 75-69-4 BRL 1.0 0.53 1 ug/L U Vinyl acetate 108-05-4 BRL 5.0 1.3 1 ug/L 75-01-4 BRL 1.0 0.19 U 1 Vinyl chloride

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-22-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-021	Date Collected: May-24-07 15:00	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B

Date Analyzed: May-31-07 15:22	Analyst: MJL01 Seq Number: 36191]	Date Prep: M	ay-31-07 08:16	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	\mathbf{U}	I
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	υ	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1.2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1.2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1.3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2.2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	Ū	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ü	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	34	5.0	0.35	ug/L		1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ũ	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ū	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ũ	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ū	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	Ū	1
Carbon disulfide	75-15-0	BRL	10	0.26	ug/L	$\tilde{\mathbf{U}}$	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	ū	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	Ŭ	i
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	Ŭ	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	Ū	1
Chloromethane	74-87-3	BRI.	1.0	0.25	ug/L	Ũ	ī
cis-1.2-Dichloroethene	156-59-2	BRI	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1

BRL

1.0

124-48-1

Dibromochloromethane

U

1

ug/L

0.15

Prep Method: SW5030B

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-22-D	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-021	Date Collected: May-24-07 15:00	Date Received: May-25-07 09:39
Sample Depth:		

Analytical Method: USACE VOCs by SW8260B Prep Method: SW5030B Date Analyzed: May-31-07 15:22 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Flag **Result Rep Limit** Dil Parameter Cas Number MDL Units ug/L 74-95-3 BRL 0.24 U 1 1.0 Dibromomethane ug/L U BRL 1.0 0.22 1 Dichlorodifluoromethane 75-71-8 ug/L U 100-41-4 BRL 1.0 0.19 1 Ethylbenzene ug/L U 87-68-3 BRL 1.0 0.13 1 Hexachlorobutadiene ug/L U 1 Isopropylbenzene 98-82-8 BRL 1.0 0.15 ug/L U Methylene Chloride 75-09-2 BRL 1.0 0.42 1 ug/L Methyl tert-Butyl Ether 1634-04-4 U BRL 1.0 0.11 1 ug/L U m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 1 ug/L U 1 91-20-3 BRL 1.0 0.22 Naphthalene ug/L U n-Butylbenzene 104-51-8 BRL 1.0 0.17 1 ug/L n-Propylbenzene 103-65-1 BRL 1.0 0.18 U 1 o-Xylene 95-47-6 BRL 1.0 0.20 ug/L U 1 ug/L ٠U 135-98-8 BRL 1 Sec-Butylbenzene 1.0 0.21 ug/L Styrene U 100-42-5 BRL 1.0 0.18 1 ug/L BRL 1.0 0.18 U tert-Butylbenzene 98-06-6 1 ug/L BRL 1.0 0.16 U 1 Tetrachloroethene 127-18-4 ug/L U BRL 1.0 0.14 1 Toluene 108-88-3 trans-1,2-Dichloroethene ug/L U 156-60-5 BRL 1.0 0.21 1 ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 ug/L U BRL 1.0 0.19 1 Trichloroethene 79-01-6 ug/L U BRL Trichlorofluoromethane 75-69-4 1.0 0.53 1 ug/L 108-05-4 BRL 5.0 U 1 Vinyl acetate 1.3 ug/L Vinyl chloride 75-01-4 BRL 1.0 0.19 U 1

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

	Sample Id: PR-DPT-BLK-1	Matrix: WATER	% Moisture:	
3000	 Reserve and a state of the second s second second se second second s second second se		s cale a substance and a set of the second	

Lab Sample Id: 12059-022

Date Received: May-25-07 09:39

Sample Depth:

Date Collected: May-24-07 16:00

Analytical Method: USACE VOCs by SW8260B

Prep	Method:	SW5030B
A A A A	mou.	011 20202

Date Analyzed: May-31-07 15:50	Analyst: MJL01]	Date Prep: M	ay-31-07 08:16	Tech:	MJL01	
	Seq Number: 36191						
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50- 1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1.3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1.4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1
Acetone	67-64-1	BRL	5.0	0.35	ug/L	U	1
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	U	1
Benzene	71-43-2	BRL	1.0	0.16	ug/L	U	1
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	U	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	цg/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	Ú	1
Chloroform	67-66-3	2.2	1.0	0.16	ug/L	-	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1

BRL

124-48-1

1.0

0.15

Dibromochloromethane

υ

1

ug/L

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: PR-DPT-BLK-1	Matrix: WATER	% Moisture:
Lab Sample Id: 12059-022	Date Collected: May-24-07 16:00	Date Received: May-25-07 09:39
Sample Depth:		

Prep Method: SW5030B Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-31-07 15:50 Analyst: MJL01 Date Prep: May-31-07 08:16 Tech: MJL01 Seq Number: 36191 Flag Dil Parameter **Result Rep Limit** MDL Units **Cas Number** 74-95-3 BRL 0.24 ug/L U Dibromomethane 1.0 1 ug/L BRL 1.0 U 0.22 1 Dichlorodifluoromethane 75-71-8 ug/L 1.0 U Ethylbenzene 100-41-4 BRL 0.19 1 ug/L 87-68-3 BRL 1.0 0.13 U Hexachlorobutadiene 1 ug/L U 98-82-8 BRL 1.0 0.15 1 Isopropylbenzene ug/L U 1 Methylene Chloride 75-09-2 BRL 1.0 0.42 ug/L U Methyl tert-Butyl Ether 1634-04-4 BRL 1.0 0.11 1 ug/L m-Xylene/p-Xylene 179601-23-1 BRL 2.00.51 U 1 ug/L U Naphthalene 91-20-3 BRL 1.0 0.22 1 ug/L U 104-51-8 BRL 1.0 0.17 1 n-Butylbenzene ug/L U n-Propylbenzene 103-65-1 BRL 1.0 0.18 1 ug/L o-Xylene 95-47-6 BRL 1.0 0.20 U 1 Sec-Butylbenzene 135-98-8 BRL 1.0 0.21 ug/L U 1 BRL ug/L U 1 100-42-5 1.0 0.18 Styrene ug/L U tert-Butylbenzene 98-06-6 BRL 1.0 0.18 I BRL 1.0 0.16 ug/L U Tetrachloroethene 127-18-4 1 ug/L 1.0 0.14 U 1 108-88-3 BRL Toluene ug/L U 1.0 1 trans-1.2-Dichloroethene 156-60-5 BRL 0.21 ug/L U trans-1,3-Dichloropropene 10061-02-6 BRL 1.0 0.11 1 ug/L U Trichloroethene 79-01-6 BRL 1.0 0.19 1 ug/L U BRL 0.53 1 Trichlorofluoromethane 75-69-4 1.0 ug/L U Vinyl acetate 108-05-4 BRL 5.0 1.3 1 ug/L BRL 1.0 0.19 U 1 Vinyl chloride 75-01-4

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302815 BLK	Matri	x: WATE	<u>R</u>	% Moistur	e:	80.6871148.004	1
Lab Sample Id: 302815 BLK	Date Collecte	d٠		Date Receiver	d.		
Sample Id. 502015 DER	Duc concere	ч.		Dute Receives	u.		
Sample Depin:							
Analytical Method: USACE V	OCs by SW8260B			Prep M	Method: SW	/5030B	
Date Analyzed: May-31-07 09:28	Analyst: MJL01 Sea Number: 36191	E	Date Prep: M	ay-31-07 08:16	Tech:	МЛ.01	
Parameter	Cas Number	Result	Ren Limit	MDL	Units	Flag	Dil
1 1 1 2 Townshipsonshipsons	620.20.6	זמס	10	0.24	/I	8	1
1,1,1,2-1 etrachioroethane	050-20-0	DRL	1.0	0.24	ug/L	U U	1
1,1,1-1 nonloroetnane	/1-55-6	BKL	1.0	0.10	ug/L	U	1
1,1,2,2-1 etrachioroethane	79-34-3	BKL	1.0	0.18	ug/L ug/L	U	1
1,1,2-1 richloroethane	/9-00-5	BKL	1.0	0.25	ug/L	U	1
1,1-Dichloroethane	/5-34-3	BKL	1.0	0.11	ug/L	U	1
1,1-Dichloroethene	75-35-4	BKL	1.0	0.20	ப்தாட	U	I
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U]
1,2,3-Trichlorobenzene	87-61-6	BKL	1.0	0.25	ug/L	U	I
1,2,3-Trichloropropane	96-18-4	BKL	1.0	0.21	ug/L	U	1
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRL.	5.0	0.26	ug/L	Ū	1
Acetone	67-64-1	BRL	50	0.35	ug/L	ũ	1
Acrolein	107-02-8	BRL	20	66	ug/L	Ū	1
Acrylonitrile	107-13-1	BRL	20	0.49	ue/L	Ŭ	1
Renzene	71_43_2	BRI	1.0	0.15	ug/L	ŭ	í
Bromohenzene	108-86-1	BRI	1.0	0.21	ug/L	Ŭ	1
Bromochloromethane	7/ 07 5	BDI	1.0	0.21	це/I.	U U	1
Bromodichloromethana	75 77 A		1.0	0.20	ч <i>у 1</i> 110/Л	U U	1
Dromotorm	13-21-4 75 75 3	DNL	1.0	0.25	ng/I	U IT	1
Bromomothano	13-23-2 71 03 0	DKL	1.0	0.17	ug/L ug/L	U U	1
Greber disulfide	/ 4- 83-9 75-15-0	DRL	1.0	0.20	ug/L	U U	1
Carbon disulfide	/3-13-U	DRL	1.0	0.20	ս <u>բ</u> յե ոտ/I		1
Carbon Tetrachioride	56-23-5 100-00-7	BKL	1.0	0.33	ug/L	U	1
Uniorobenzene	108-90-7	BKL	1.0	0.15	ug/L	U	l
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRL	1.0	0.16	ug/L	U	1
Chloromethane	74-87-3	BRL	1.0	0.25	ug/L	U	1
cis-1,2-Dichloroethene	156-59-2	BRL	1.0	0.21	ug/L	U	1
cis-1,3-Dichloropropene	10061-01-5	BRL	1.0	0.10	ug/L	U	1
Dibromochloromethane	124-48-1	BRL	1.0	0.15	ug/L	U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302815 BLK Lab Sample Id: 302815 BLK Sample Depth:	Matri Date Collecte	x: WATH d:	ER	% Moistur Date Receive	e: d:		
Analytical Method: USACE V	OCs by SW8260B			Prep I	Method: SW	/5030B	
Date Analyzed: May-31-07 09:28	Analyst: MJL01 Seq Number: 36191	:	Date Prep: M	ay-31-07 08:16	Tech:	MJL01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	BRL BRL	1.0 1.0	0.24 0.22	ug/L ug/L ug/l	U U	1
Ethylbenzene Hexachlorobutadiene	108-20-3 100-41-4 87-68-3	BRL BRL BRL	1.0 1.0 1.0	0.19 0.13	ug/L ug/L ug/L	U U U	1 1
Isopropylbenzene Methylene Chloride Methyl tert-Butyl Ether	98-82-8 75-09-2 1634-04-4	BRL BRL BRL	1.0 1.0 1.0	0.15 0.42 0.11	ug/L ug/L ug/L	บ บ บ	1 1 1
m-Xylene/p-Xylene Naphthalene	179601-23-1 91-20-3 104 51 8	BRL BRL	2.0 1.0	0.51 0.22 0.17	ug/L ug/L ug/I	U U U	1
n-Propylbenzene o-Xylene	104-51-8 103-65-1 95-47-6	BRL BRL	1.0 1.0 1.0	0.17 0.18 0.20	ug/L ug/L	U U	1 1 1
Sec-Butylbenzene Styrene tert-Butylbenzene	135-98-8 100-42-5 98-06-6	BRL BRL BRL	1.0 1.0 1.0	0.21 0.18 0.18	ug/L ug/L ug/L	U U U	1 1 1
Tetrachloroethene Toluene	127-18-4 108-88-3	BRL BRL	1.0 1.0	0.16 0.14	ug/L ug/L	Ū U	1
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	156-60-5 10061-02-6 79-01-6	BRL BRL	1.0 1.0	0.21 0.11 0.19	ug/L ug/L ug/I.	U U U	1 1 1
Trichlorofluoromethane Vinyl acetate	75-69-4 108-05-4	BRL BRL	1.0 1.0 5.0	0.19 0.53 1.3	ug/L ug/L	U U U	1
Vinvl chloride	75-01-4	BRL	1.0	0.19	ug/L	Ū	1

Analytical Management Laboratories, Inc., Olathe, KS

	and the second second second second second second second second second second second second second second secon		
Sample Id: 302818 BLK	Matrix: WATER	% Moisture:	
Lab Sample Id: 302818 BLK	Date Collected:	Date Received:	
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B			Prep Method: SW8260LL5						
Date Analyzed: May-29-07 09:03	Analyst: MJL01 Seq Number: 36193	J	Date Prep: M	ay-29-07 07:50	Tech:	МЛL01			
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil		
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1		
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1		
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1		
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1		
1,1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1		
1,1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1		
1,1-Dichloropropene	563-58-6	BRL	1.0	0.10	ug/L	U	1		
1,2,3-Trichlorobenzene	87-61-6	BRL	1.0	0.25	ug/L	U	1		
1,2,3-Trichloropropane	96-18-4	BRL	1.0	0.21	ug/L	U	1		
1,2,4-Trichlorobenzene	120-82-1	BRL	1.0	0.17	ug/L	U	1		
1,2,4-Trimethylbenzene	95-63-6	BRL	1.0	0.14	ug/L	U	1		
1,2-Dibromo-3-chloropropane	96-12-8	BRL	1.0	0.19	ug/L	U	1		
1,2-Dibromoethane	106-93-4	BRL	1.0	0.18	ug/L	U	1		
1,2-Dichlorobenzene	95-50-1	BRL	1.0	0.14	ug/L	U	1		
1,2-Dichloroethane	107-06-2	BRL	1.0	0.18	ug/L	U	1		
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	1		
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1		
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1		
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1		
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1		
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1		
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1		
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1		
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	Ū	1		
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	Ū	1		
4-Isopropyltoluene	99-87-6	BRL	1.0	0.13	ug/L	U	1		
4-Methyl-2-pentanone	108-10-1	BRL	5.0	0.26	ug/L	U	1		
Acetone	67-64-1	BRL	5.0	0.35	ug/L	Ū	1		
Acrolein	107-02-8	BRL	20	6.6	ug/L	U	1		
Acrylonitrile	107-13-1	BRL	2.0	0.49	ug/L	Ū	1		
Benzene	71-43-2	BRL	1.0	0.16	ug/L	Ū	1		
Bromobenzene	108-86-1	BRL	1.0	0.21	ug/L	Ū	1		
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ū	1		
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	Ũ	i		
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	Ŭ	Ŧ		
Bromomethane	74-83-9	BRL	10	0.25	ug/L	Ŭ	1		
Carbon disulfide	75-15-0	BRL	10	0.26	ug/L	Ŭ	1		
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	Ŭ	ī		
Chlorobenzene	108-90-7	BRL	1.0	0.55	ug/L	ŭ	1		
Chloroethane	75-00-3	BRI	1.0	0.15	ug/L	ŭ	1		
Chloroform	67_66_3	BBI	1.0	0.16	ug/L	U U	1		
Chloromethane	74-87-3	BRI	10	0.25	ug/L	ŭ	t		
cis-1.2-Dichloroethene	156-59-2	BRI	10	0.20	ue/L	Ŭ	1		
cis-1,3-Dichloropropene	10061-01-5	BRI	10	0.10	- <i>2</i>	ŭ	1		
Dibromochloromethane	124-48-1	BRI	1.0	0.15	ug/L.	Ŭ	1		

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: 302818 BLK	Matrix: WATER	% Moisture:	
Lab Sample Id: 302818 BLK	Date Collected:	Date Received:	
Sample Depth:			

Analytical Method: USACE VOCs by SW8260B			Prep Method: SW8260LL5				
Date Analyzed: May-29-07 09:03	Analyst: MJL01 Seq Number: 36193]	Date Prep: M	ay-29-07 07:50	Tech:	МЛ.01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	1
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/I.	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	U	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	\mathbf{U}	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	u g/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	υ	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	υ	1

*

Analytical Management Laboratories, Inc., Olathe, KS

Hunter Perimeter Sampling

Sample Id: 302830 BLK	Matri	x. WATE	R	% Moistur	e:		
Lab Sample Id: 302830 BLK	Date Collecte	d٠		Date Receive	1:		
Sample Denth:	Duit Contoite			Dute Record			
Sample Depth.				<u></u>			
Analytical Method: USACE V	OCs by SW8260B		· · · · · · · · ·	Prep N	Aethod: SV	V5030B	
Date Analyzed: May-30-07 09:14	Analyst: MIL01	1	Date Prep [.] M	av-30-07 08.03	Tech	мпоі	
,,	Seq Number: 36214	-		.,	Teen.	IVIJLJ01	
Parameter	Cas Number	Result	Rep Limit	MDL	Units	Flag	Dil
1,1,1,2-Tetrachloroethane	630-20-6	BRL	1.0	0.24	ug/L	U	1
1,1,1-Trichloroethane	71-55-6	BRL	1.0	0.16	ug/L	U	1
1,1,2,2-Tetrachloroethane	79-34-5	BRL	1.0	0.18	ug/L	U	1
1,1,2-Trichloroethane	79-00-5	BRL	1.0	0.25	ug/L	U	1
1.1-Dichloroethane	75-34-3	BRL	1.0	0.11	ug/L	U	1
1.1-Dichloroethene	75-35-4	BRL	1.0	0.20	ug/L	U	1
1.1-Dichloropropene	563-58-6	BRI	10	0.10	ug/L	ū	1
1.2.3-Trichlorobenzene	87-61-6	BRI	1.0	0.25	ug/L	Ū	1
1.2.3-Trichloropropane	96-18-4	BRI	1.0	0.21	ug/L	Ū	1
1.2.4-Trichlorobenzene	120-82-1	BRI	1.0	0.17	ug/L	ŭ	î
1.2.4.Trimethylbenzene	05_63_6	RRI	1.0	0.14	ug/L	й П	1
1.2 Dibromo 3 chloropropane	96 12 8	BDICL	1.0	0.14	ng/I.	ц Ц	1
1.2 Dibromoothane	106 02 4		1.0	0.19	110/I	U U	1
1,2-Diotomoethane	100-93-4	DAL	1.0	0.16	ug/L na/L	1	1
1,2-Dichlorobenzene	95-50-1	BKL	1.0	0.14	ugл	U	1
1,2-Dichloroethane	107-06-2	BKL	1.0	0.18	ug/L	U	1
1,2-Dichloropropane	78-87-5	BRL	1.0	0.15	ug/L	U	I
1,3,5-Trimethylbenzene	108-67-8	BRL	1.0	0.17	ug/L	U	1
1,3-Dichlorobenzene	541-73-1	BRL	1.0	0.17	ug/L	U	1
1,3-Dichloropropane	142-28-9	BRL	1.0	0.19	ug/L	U	1
1,4-Dichlorobenzene	106-46-7	BRL	1.0	0.17	ug/L	U	1
2,2-Dichloropropane	594-20-7	BRL	1.0	0.21	ug/L	U	1
2-Butanone	78-93-3	BRL	5.0	0.28	ug/L	U	1
2-Chlorotoluene	95-49-8	BRL	1.0	0.19	ug/L	U	1
2-Hexanone	591-78-6	BRL	5.0	0.32	ug/L	U	1
4-Chlorotoluene	106-43-4	BRL	1.0	0.13	ug/L	U	1
4-Isopropyltoluene	99-87-6	BRI.	1.0	0.13	ug/L	U	1
4-Methyl-2-pentanone	108-10-1	BRI	50	0.26	ug/L	Ũ	1
A cetone	67_64_1	RRI	5.0	0.35	цеЛ.	Ŭ	1
Acrolein	107.02 8		2.0	66	цо/I	1	1
Acadoniteile	107-02-0		20	0.0	ுது <u>க</u> பரு/]	U	1
Demons	107-13-1	DKL	2.0	0.49	ug/L ug/L	U U	1
Denzene	/1-43-2	BKL	1.0	0.10	ug/L	0	1
Bromobenzene	108-86-1	BKL	1.0	0.21	ug/L	U	1
Bromochloromethane	74-97-5	BRL	1.0	0.20	ug/L	Ű	1
Bromodichloromethane	75-27-4	BRL	1.0	0.25	ug/L	U	1
Bromoform	75-25-2	BRL	1.0	0.17	ug/L	U	1
Bromomethane	74-83-9	BRL	1.0	0.25	ug/L	U	1
Carbon disulfide	75-15-0	BRL	1.0	0.26	ug/L	U	1
Carbon Tetrachloride	56-23-5	BRL	1.0	0.33	ug/L	U	1
Chlorobenzene	108-90-7	BRL	1.0	0.15	ug/L	U	1
Chloroethane	75-00-3	BRL	1.0	0.26	ug/L	U	1
Chloroform	67-66-3	BRI	1.0	0.16	ug/L	Ū	1
Chloromethane	74_87_3	BRI	1.0	0.25	ug/L	Ŭ	1
cis-1 2-Dichloroethene	156-50-2	BRI	10	0.20	ue/L	ũ	1
ais 1.3 Diabloropropaga	10061 01 5	DICL	1.0	0.21	ч <i>д Ц</i> 11 0/ І	U U	1
Dibromachlaramethana	10/01-01-3	זממ	1.0	0.10	ч <u>е</u> / L	U U	1

Analytical Management Laboratories, Inc., Olathe, KS

Sample Id: 302830 BLK Matrix: WA Lab Sample Id: 302830 BLK Date Collected: Sample Depth: Analytical Method: USACE VOCs by SW8260B Date Analyzed: May-30-07 09:14 Analyst: MJL01		ATER % Moisture: Date Received:				
Analytical Method: USACE VO	Cs by SW8260B	Ргер	p Method: SW5030B			
Date Analyzed: May-30-07 09:14	Analyst: MJL01 Seq Number: 36214	Date Prep: May-30-07 08:03	Tech: MJL01			
Parameter	Cas Number Res	sult Rep Limit MDL	Units Flag Dil			

		Account	hep binne		Q III O		
Dibromomethane	74-95-3	BRL	1.0	0.24	ug/L	U	ł
Dichlorodifluoromethane	75-71-8	BRL	1.0	0.22	ug/L	U	1
Diisopropyl Ether	108-20-3	BRL	1.0	0.080	ug/L	U	1
Ethylbenzene	100-41-4	BRL	1.0	0.19	ug/L	U	1
Hexachlorobutadiene	87-68-3	BRL	1.0	0.13	ug/L	U	1
Isopropylbenzene	98-82-8	BRL	1.0	0.15	ug/L	U	1
Methylene Chloride	75-09-2	BRL	1.0	0.42	ug/L	U	1
Methyl tert-Butyl Ether	1634-04-4	BRL	1.0	0.11	ug/L	U	1
m-Xylene/p-Xylene	179601-23-1	BRL	2.0	0.51	ug/L	\mathbf{U}	1
Naphthalene	91-20-3	BRL	1.0	0.22	ug/L	U	1
n-Butylbenzene	104-51-8	BRL	1.0	0.17	ug/L	U	1
n-Propylbenzene	103-65-1	BRL	1.0	0.18	ug/L	U	1
o-Xylene	95-47-6	BRL	1.0	0.20	ug/L	U	1
Sec-Butylbenzene	135-98-8	BRL	1.0	0.21	ug/L	U	1
Styrene	100-42-5	BRL	1.0	0.18	ug/L	U	1
tert-Butylbenzene	98-06-6	BRL	1.0	0.18	ug/L	U	1
Tetrachloroethene	127-18-4	BRL	1.0	0.16	ug/L	U	1
Toluene	108-88-3	BRL	1.0	0.14	ug/L	U	1
trans-1,2-Dichloroethene	156-60-5	BRL	1.0	0.21	ug/L	U	1
trans-1,3-Dichloropropene	10061-02-6	BRL	1.0	0.11	ug/L	U	1
Trichloroethene	79-01-6	BRL	1.0	0.19	ug/L	U	1
Trichlorofluoromethane	75-69-4	BRL	1.0	0.53	ug/L	U	1
Vinyl acetate	108-05-4	BRL	5.0	1.3	ug/L	U	1
Vinyl chloride	75-01-4	BRL	1.0	0.19	ug/L	U	1

Form 2 - Surrogate Recoveries

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

			r				
/ork Order #: 12059			Project ID	: AML TO#	0085		
Lab Batch #: 36191	Sample: 12059-010 / SMP	Bat	ch: 1 Matr	ix: W			
Units: ug/L	Г	SURROGATE RECOVERY STUDY					
VOCs by	y SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1 2-Dichloroethane-d4		62.8	50.0	126	53-159		
Bromofluorobenzene		57.1	50.0	114	30-186		
Toluene-D8		54.5	50.0	109	83-136		
Lab Batch #: 36191	Sample: 12059-011 / SMP	Bat	ch: ¹ Matr	·ix: W	<u> </u>		
Units: ug/L	Γ	S	URROGATE R	ECOVERY S	TUDY		
VOCs by An	7 SW8260B alytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags	
1,2-Dichloroethane-d4		64.0	50.0	128	53-159		
Bromofluorobenzene		56.0	50.0	112	30-186	· · ·	
Toluene-D8		54.6	50.0	109	83-136		
Lab Batch #: 36191	Sample: 12059-013 / SMP	Bat	tch: 1 Mati	rix: W	·		
Units: ug/L		s	URROGATE R	ECOVERY S	TUDY		
VOCs by An	y SW8260B alvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,2-Dichloroethane-d4		64.3	50.0	129	53-159		
Bromofluorobenzene		55.0	50.0	110	30-186		
Toluene-D8		55.1	50.0	110	83-136		
Lab Batch #: 36191	Sample: 12059-014 / SMP	Bai	tch: 1 Mati	rix: W			
Units: ug/L	Γ	SURROGATE RECOVERY STUDY					
VOCs by	y SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1.2-Dichloroethane-d4		64.4	50.0	120	53-150		
Bromofluorobenzene		54.7	50.0	109	30-186		
Toluene-D8		55.4	50.0		83-136		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Z = Surrogate Recovery exceeded the Labortatory QC limits

Form 2 - Surrogate Recoveries

Project Name	Hunter P	erimeter	Sampling	
---------------------	----------	----------	----------	--

Report Date: 06/15/07 15:26

		Project ID	: AML TO#	0085		
Sample: 12059-016 / SMP	Bat	ch: 1 Matr	ix: W			
Γ	SURROGATE RECOVERY STUDY					
SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
	65.6	50.0	131	53-159		
	55.6	50.0	111	30-186		
	54.8	50.0	110	83-136	-	
Sample: 12059-017 / SMP	Bat	ch: 1 Matr	ix: W	,,		
	S	URROGATE R	ECOVERY S	TUDY		
7 SW8260B alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
	66.8	50.0	134	53-159		
	54.9	50.0	110	30-186		
	54.0	50.0	108	83-136		
Sample: 12059-018 / SMP	Bat	tch: 1 Mati	rix: W			
Г	SURROGATE RECOVERY STUDY					
y SW8260B alvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
·	63.0	50.0	126	53-159		
	56.4	50.0	113	30-186		
	55.9	50.0	112	83-136		
Sample: 12059-018 MS / M	IS Bat	tch: 1 Mat	rix: W			
Units: ug/L			ECOVERY S	TUDY		
y SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
	617	50.0	173	53_150		
	57.2	50.0	114	30-186		
	55.9	50.0	112	83-136		
	Sample: 12059-016 / SMP SW8260B alytes Sample: 12059-017 / SMP SW8260B alytes Sample: 12059-018 / SMP Sample: 12059-018 / SMP Sample: 12059-018 MS / M Sample: 12059-018 MS / M Sample: 12059-018 MS / M	Sample: 12059-016 / SMP Bat SW8260B Amount Found [A] S alytes 65.6 55.6 55.6 54.8 Sample: 12059-017 / SMP Bat SW8260B Amount Found [A] S 7 SW8260B Amount Found [A] S alytes 66.8 54.9 54.0 54.9 54.0 Sample: 12059-018 / SMP Bat SW8260B Amount Found [A] S y SW8260B Amount Found [A] S y SW8260B 63.0 56.4 55.9 Sample: 12059-018 MS / MS y SW8260B Amount Found [A] S y SW8260B Amount Found [A] S y SW8260B Amount Found [A] S y SW8260B Amount Found [A] S alytes 61.7 57.2 55.9 55.9 55.9	Sample: 12059-016 / SMP Batch: 1 Matr SW8260B Amount [A] True Amount [A] Amount [B] True Amount [B] ilytes 65.6 50.0 55.6 50.0 Sample: 12059-017 / SMP Batch: 1 Matr SW8260B Amount [A] True Amount [B] Matr Sample: 12059-017 / SMP Batch: 1 Matr SW8260B Amount [A] True Amount [A] True Amount [B] True Amount [B] True Amount [B] sw8260B Amount Found [A] True Amount [B] True Amount [B] True Amount [B] 1 Matr Sw8260B Amount [A] SURROGATE R 50.0 56.4 50.0 Sample: 12059-018 / SMP Batch: 1 Matr SW8260B Amount [A] Batch: 1 Matr sw8260B Amount [A] [B] I Matr sw8260B Amount [A] [B] I Matr sw8260B Amount [A] </td <td>Sample: 12059-016 / SMP Batch: 1 Matrix: W SW8260B Amount [A] True Amount [B] Recovery %R [D] alytes 65.6 50.0 131 55.6 50.0 111 54.8 50.0 110 Sample: 12059-017 / SMP Batch: 1 Matrix: W SW8260B Amount Found [A] True Found [A] Recovery %R [D] %R (D) alytes 66.8 50.0 110 Sample: 12059-017 / SMP Batch: 1 Matrix: W SurROGATE Recovery %R [D] %R [D] 10 sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE RECOVERY S %R [D] 10 Sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE RECOVERY S %R [D] 10 10 Sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE Surecovery %R [D]</td> <td>Project ID: AML TO# 0085 Sample: 12059-016 / SMP Batch: 1 Matrix: W SURROGATE RECOVERY STUDY SW8260B Amount Found [A] True (B) Recovery %R Control Limits %R alytes 65.6 50.0 131 53-159 55.6 50.0 111 30-186 54.8 50.0 110 83-136 Sample: 12059-017 / SMP Batch: 1 Matrix: W SURROGATE RECOVERY STUDY SW8260B Amount Found [A] True (A) Recovery %R Control Limits %K alytes 66.8 50.0 134 53-159 54.9 50.0 110 30-186 54.9 50.0 108 83-136 Sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE Recovery Control Limits Control %R Joints alytes 63.0 50.0 112 83-136 Sample: 12059-018 / SMP</td>	Sample: 12059-016 / SMP Batch: 1 Matrix: W SW8260B Amount [A] True Amount [B] Recovery %R [D] alytes 65.6 50.0 131 55.6 50.0 111 54.8 50.0 110 Sample: 12059-017 / SMP Batch: 1 Matrix: W SW8260B Amount Found [A] True Found [A] Recovery %R [D] %R (D) alytes 66.8 50.0 110 Sample: 12059-017 / SMP Batch: 1 Matrix: W SurROGATE Recovery %R [D] %R [D] 10 sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE RECOVERY S %R [D] 10 Sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE RECOVERY S %R [D] 10 10 Sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE Surecovery %R [D]	Project ID: AML TO# 0085 Sample: 12059-016 / SMP Batch: 1 Matrix: W SURROGATE RECOVERY STUDY SW8260B Amount Found [A] True (B) Recovery %R Control Limits %R alytes 65.6 50.0 131 53-159 55.6 50.0 111 30-186 54.8 50.0 110 83-136 Sample: 12059-017 / SMP Batch: 1 Matrix: W SURROGATE RECOVERY STUDY SW8260B Amount Found [A] True (A) Recovery %R Control Limits %K alytes 66.8 50.0 134 53-159 54.9 50.0 110 30-186 54.9 50.0 108 83-136 Sample: 12059-018 / SMP Batch: 1 Matrix: W SurROGATE Recovery Control Limits Control %R Joints alytes 63.0 50.0 112 83-136 Sample: 12059-018 / SMP	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B
- All results are based on MDL and validated for QC purposes.
- Z = Surrogate Recovery exceeded the Labortatory QC limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085 Work Order #: 12059 Sample: 12059-018 MSD / MSD Lab Batch #: 36191 1 Matrix: W **Batch**: Units: ug/L SURROGATE RECOVERY STUDY Control Amount True VOCs by SW8260B Found Amount Recovery Limits Flags **[B]** %R %R [A] [D] Analytes 1,2-Dichloroethane-d4 62.5 50.0 125 53-159 Bromofluorobenzene 55.4 50.0 111 30-186 Toluene-D8 55.2 50.0 110 83-136 Sample: 12059-020 / SMP 1 Matrix: W Lab Batch #: 36191 Batch: Units: ug/L SURROGATE RECOVERY STUDY Control Amount True VOCs by SW8260B Limits Found Amount Recovery Flags %R [A] [B] %R **[D**] Analytes 1.2-Dichloroethane-d4 67.9 50.0 136 53-159 Bromofluorobenzene 55.7 111 30-186 50.0 Toluene-D8 54.7 50.0 109 83-136 Lab Batch #: 36191 Sample: 12059-021 / SMP 1 Matrix: W Batch: SURROGATE RECOVERY STUDY Units: ug/L Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags %R **[A] [B]** %R $[\mathbf{D}]$ Analytes 1,2-Dichloroethane-d4 125 53-159 62.6 50.0 Bromofluorobenzene 56.0 50.0 112 30-186 Toluene-D8 56.5 50.0 113 83-136 Matrix: W Lab Batch #: 36191 Sample: 12059-022 / SMP Batch: 1 SURROGATE RECOVERY STUDY Units: ug/L Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags [B] %R %R [A] **[D]** Analytes 1,2-Dichloroethane-d4 135 67.3 50.0 53-159 Bromofluorobenzene 107 53.7 50.0 30-186 Toluene-D8 55.3 50.0 111 83-136

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Vork Order #: 12059			Project II	AML TO#	0085	
Lab Batch #: 36191	Sample: 302815 BK	S/BKS Bate	∙h• l Mati	rix: W		
Unite 119/1.	Sample					
VOCs by SW8	8260B	Amount	True	Bacaucan	Control	Floor
		[A]	(B)	%R	%R	riags
Analytes	3	(1	4- 3	[D]		
1,2-Dichloroethane-d4		62.6	50.0	125	64-136	
Bromofluorobenzene		54.7	50.0	109	66-148	
Toluene-D8		56.6	50.0	113	86-127	
Lab Batch #: 36191	Sample: 302815 BL	K/BLK Bate	ch: 1 Mati	rix: W	·•	
Units: ug/L	-	SU	JRROGATE R	ECOVERY S	TUDY	
VOCs by SW	8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	,	(1.2	60.0		(4.12)	
T,2-Dicmoroetnane-u4		61.2	50.0	122	04-130	
		58.0	50.0	110	06-148	
10luene-D8		54.9	50.0	110	86-127	
Lab Batch #: 36193	Sample: 12050-025	MS/MS Bat	ch: 1 Mat	rix: W		
Units: ug/L		SI	URROGATE R	ECOVERY S	TUDY	
VOCs by SW	8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	š					
1,2-Dichloroethane-d4	• ··· •· •··	62.8	50.0	126	53-159	
Bromofluorobenzene		54.6	50.0	109	30-186	
Toluene-D8		54.4	50.0	109	83-136	
Lab Batch #: 36193	Sample: 12050-025	MSD / MSD Bat	ch: 1 Mat	rix: W		
Units: ug/L		SURROGATE RECOVERY STUDY				
VOCs by SW	8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	s					
1,2-Dichloroethane-d4		59.0	50.0	118	53-159	
Bromofluorobenzene		53.7	50.0	107	30-186	
Toluene-D8		54.9	50.0	110	83-136	

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085 Work Order #: 12059 Sample: 12059-002 / SMP Lab Batch #: 36193 Matrix: W 1 Batch: Units: ug/L SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Flags Amount Found Recovery Limits **[A**] **[B]** %R %R [D] Analytes 1,2-Dichloroethane-d4 112 56.0 50.0 53-159 Bromofluorobenzene 50.0 101 50.4 30-186 Toluene-D8 51.4 50.0 103 83-136 Sample: 12059-003 / SMP Lab Batch #: 36193 1 Matrix: W Batch: Units: ug/L SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags **[B**] %R %R [A] [D] Analytes 1,2-Dichloroethane-d4 54.6 50.0 109 53-159 Bromofluorobenzene 50.1 100 30-186 50.0 Toluene-D8 51.5 50.0 103 83-136 Sample: 12059-004 / SMP Lab Batch #: 36193 1 Matrix: W **Batch:** Units: ug/L SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Found Limits Amount Recovery Flags [A] **[B]** %R %R [D] Analytes 1.2-Dichloroethane-d4 54.1 50.0 108 53-159 Bromofluorobenzene 50.8 50.0 102 30-186 Toluene-D8 51.5 50.0 103 83-136 Lab Batch #: 36193 Sample: 12059-005 / SMP 1 Matrix: W **Batch:** SURROGATE RECOVERY STUDY Units: ug/L Amount True Control VOCs by SW8260B Found Amount Recovery Limits Flags [A] [**B**] %R %R [D] Analytes 1,2-Dichloroethane-d4 110 54.9 53-159 50.0 Bromofluorobenzene 50.7 50.0 101 30-186 Toluene-D8 52.6 50.0 105 83-136

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Vark Order #• 12059			Project ID	: AML TO#	0085	
Lab Batch #: 36193	Sample: 302818 BKS / BKS	Bat	tch: ¹ Matr	ix: W		
Units: ug/L	F		URROGATE RI	ECOVERY S	FUDY	
VOCs by Ana	SW8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.2-Dichloroethane-d4	.,	61.5	50.0	123	65-125	
Bromofluorobenzene		53.6	50.0	107	66-148	
Toluene-D8		54.4	50.0	109	86-127	
Lab Batch #: 36193	Sample: 302818 BLK / BLK	Bat	tch: ¹ Matr	ix: W	<u> </u>	
Units: ug/L		S	URROGATE RI	ECOVERY S	TUDY	
VOCs by Ana	SW8260B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4		58.9	50.0	118	65-125	
Bromofluorobenzene		56.6	50.0	113	66-148	
Toluene-D8		53.1	50.0	106	86-127	
Lab Batch #: 36214	Sample: 12059-001 / SMP	Ba	tch: 1 Matr	ix: W	·	
Units: ug/L		S	URROGATE RI	ECOVERY S	TUDY	
VOCs by	SW8260B	Amount Found [A]	True Amount [B]	Recovery %R (D)	Control Limits %R	Flags
Alla 1.2 Disbloroothone d4	19165	(4.1	50.0	1-1	62.160	
Bromofluorobenzene		56.7	50.0	128	20 196	
Toluene-D8		56.4	50.0	113	30-186 83-136	
Lab Batch #: 36214	Sample: 12059-006 / SMP	Ba	tch: 1 Matr	ix: W	<u></u>	
Units: ug/L	Γ	SURROGATE RECOVERY STUDY				
VOCs by Ana	SW8260B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,2-Dichloroethane-d4		56.7	50.0	113	53-159	
Bromofluorobenzene		53.4	50.0	107	30-186	
Toluene-D8		54.2	50.0	108	83-136	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085 Work Order #: 12059 Lab Batch #: 36214 Sample: 12059-007 / SMP Matrix: W 1 Batch: Units: ug/L SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Flags Recovery Found Amount Limits **[A]** [**B**] %R %R [D] Analytes 1,2-Dichloroethane-d4 50.0 112 56.2 53-159 Bromofluorobenzene 54.5 50.0 109 30-186 Toluene-D8 53.7 50.0 107 83-136 Sample: 12059-008 / SMP Matrix: W Lab Batch #: 36214 **Batch**: 1 Units: ug/L SURROGATE RECOVERY STUDY Amount Тгие Control VOCs by SW8260B Found Amount Recovery Limits Flags **[B]** %R %R [A] [**D**] Analytes 1,2-Dichloroethane-d4 58.9 50.0 118 53-159 Bromofluorobenzene 53.5 50.0 107 30-186 Toluene-D8 53.6 50.0 107 83-136 Sample: 12059-009 / SMP Lab Batch #: 36214 **Batch**: 1 Matrix: W Units: ug/L SURROGATE RECOVERY STUDY Amount True Control VOCs by SW8260B Flags Found Amount Limits Recovery %R [A] **[B]** %R D Analytes 1,2-Dichloroethane-d4 118 58.8 50.0 53-159 Bromofluorobenzene 110 55.0 50.0 30-186 Toluene-D8 53.5 50.0 107 83-136 Lab Batch #: 36214 Sample: 12059-012 / SMP l Matrix: W **Batch:** Units: ug/L SURROGATE RECOVERY STUDY Amount Тгие Control VOCs by SW8260B Found Limits Amount Recovery Flags **[B]** %R %R [A] [D] Analytes 1.2-Dichloroethane-d4 54.9 50.0 110 53-159 Bromofluorobenzene 53.6 107 50.0 30-186 Toluene-D8 53.6 50.0 107 83-136

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

i rejectiones munici i cimetti samping		Sampling	Perimeter	•]	Hunter	Name:	roject	Р
--	--	----------	-----------	----	--------	-------	--------	---

Report Date: 06/15/07 15:26

Project ID.	ΔМΙ	TO# 0085	
r foiett ID.	AND	10#0000	

Vork Order #: 12059		Project II): AML TO#	0085					
Lab Batch #: 36214 Sample: 120	59-012 MS / MS Bat	12 MS / MS Batch: 1 Matrix: W							
Units: ug/L	S	SURROGATE RECOVERY STUDY							
VOCs by SW8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,2-Dichloroethane-d4	53.9	50.0	108	53-159					
Bromofluorobenzene	54.2	50.0	108	30-186					
Toluene-D8	54.6	50.0	109	83-136					
Lab Batch #: 36214 Sample: ¹²⁰	59-012 MSD / MSD Bat	tch: 1 Mat	rix: W						
Units: ug/L	S	URROGATE R	ECOVERY S	TUDY					
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes									
1,2-Dichloroethane-d4	57.3	50.0	115	53-159					
Bromofluorobenzene	53.4	50.0	107	30-186					
Toluene-D8	53.8	50.0	108	83-136					
Lab Batch #: 36214 Sample: 120	59-015 / SMP Bat	tch: 1 Mat	rix: W						
Units: ug/L	S	URROGATE R	ECOVERY S	STUDY					
VOCs by SW8260B	Amount Found A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes									
1,2-Dichloroethane-d4	66.6	50.0	133	53-159					
Bromofluorobenzene	56.2	50.0	112	30-186					
Toluene-D8	54.9	50.0	110	83-136					
Lab Batch #: 36214Sample: 120	59-019 / SMP Bat	tch: 1 Mat	rix: W						
Units: ug/L	S	SURROGATE RECOVERY STUDY							
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R (D)	Control Limits %R	Flags				
Analytes	(5.0	50.0	122	52 160					
Bromofluorohenzene	03.9 56.0	50.0	132	30,194					
Toluene-D8	50.0 55 2	50.0	112	83_136					
	· · · ·	20.0	1 111	00-100	1				

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Work Order #: 12059

Form 2 - Surrogate Recoveries

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085

Lab Batch #: 36214 Sample: 302830 B	KS/BKS Bat	ch: 1 Mat	rix: W				
Units: ug/L	SI	SURROGATE RECOVERY STUDY					
VOCs by SW8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Anarytes		50.0	(~)	(5.105			
	54.3	50.0	109	65-125			
Bromofluorobenzene	53.6	50.0	107	66-148			
Toluene-D8	55.1	50.0	110	86-127			
	0.511	2010	1.10	00 147			
Lab Batch #: 36214 Sample: 302830 Bl	LK/BLK Bat	ch: Mat	rix: W				
Lab Batch #: 36214 Sample: 302830 Bl Units: ug/L	LK / BLK Bat	ch: 1 Mat	rix: W ECOVERY S'	TUDY			
Lab Batch #: 36214 Sample: 302830 Bl Units: ug/L VOCs by SW8260B	LK / BLK Bat S Amount Found [A]	ch: Mat URROGATE R True Amount [B]	rix: W ECOVERY S Recovery %R	TUDY Control Limits %R	Flags		
Lab Batch #: 36214 Sample: 302830 Bl Units: ug/L VOCs by SW8260B Analytes	LK / BLK Bat	ch: Mat URROGATE R True Amount [B]	rix: W ECOVERY S' Recovery %R [D]	FUDY Control Limits %R	Flags		
Lab Batch #: 36214 Sample: 302830 Bl Units: ug/L VOCs by SW8260B Analytes 1,2-Dichloroethane-d4	LK / BLK Bat Stand Found [A] 54.2	ch: I Mat URROGATE R True Amount [B] 50.0	rix: W ECOVERY S Recovery %R [D] 108	TUDY Control Limits %R 65-125	Flags		
Lab Batch #: 36214 Sample: 302830 Bl Units: ug/L VOCs by SW8260B Analytes 1,2-Dichloroethane-d4 Bromofluorobenzene	LK / BLK Bat Amount Found [A] 54.2 53.5	ch: Mat URROGATE R True Amount [B] 50.0 50.0	rix: W ECOVERY S' Recovery %R [D] 108 107	FUDY Control Limits %R 65-125 66-148	Flags		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

		Ren	ort Date:		06/1	5/07 15:26
Work Order #: 12059		P	roiect ID:		AML	TO# 0085
Lab Batch #: 36191 Sa	mple: 302815]	BKS	Matrix: W	/		
Reporting Units: ug/L Ba	tch #: 1	BLANK/	BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result (C)	Blank Spike %R ID1	Control Limits %R	Flags
	-0.04	50	[~]	10.4	70.120	
1,1,1,2-Tetrachloroethane	<0.24	50	52	104	70-130	
1,1,1-Trichloroethane	<0.16	50	57	114	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	47	94	70-130	
1,1,2-Trichloroethane	<0.25	50	49	98	70-130	
1,1-Dichloroethane	<0.11	50	51	102	70-130	
1,1-Dichloroethene	<0.20	50	50	100	74-127	
1,1-Dichloropropene	<0,10	50	55	110	70-130	
1,2,3-Trichlorobenzene	<0.25	50	52	104	70-130	
1,2,3-Trichloropropane	<0.21	50	50	100	70-130	
1,2,4-Trichlorobenzene	<0.17	50	53	106	70-130	
1,2,4-Trimethylbenzene	<0.14	50	54	108	70-130	
1,2-Dibromo-3-chloropropane	<0.19	50	50	100	70-130	
1,2-Dibromoethane	<0.18	50	49	98	70-130	
1,2-Dichlorobenzene	<0.14	50	51	102	70-130	
1,2-Dichloroethane	<0.18	50	56	112	70-130	
1,2-Dichloropropane	<0.15	50	49	98	70-130	
1,3,5-Trimethylbenzene	<0.17	50	55	110	70-130	
1,3-Dichlorobenzene	<0.17	50	51	102	70-130	
1,3-Dichloropropane	<0.19	50	51	102	70-130	
1,4-Dichlorobenzene	<0.17	50	51	102	70-130	
2,2-Dichloropropane	<0.21	50	58	116	70-130	
2-Butanone	<0.28	100	88	88	70-130	
2-Chlorotoluene	<0.19	50	52	104	70-130	
2-Hexanone	<0.32	100	90	90	70-130	
4-Chlorotoluene	<0.13	50	52	104	70-130	
4-Methyl-2-pentanone	<0.26	100	96	96	70-130	
Acetone	<0.35	100	110	110	70-130	
Acrolein	<6.6	100	110	110	70-130	
Acrylonitrile	<0.49	100	91	91	70-130	
Benzene	<0.16	50	50	100	72-122	
Bromobenzene	<0.21	50	50	100	70-130	
Bromochloromethane	<0.20	50	48	96	70-130	
Bromodichloromethane	<0.25	50	53	106	70-130	
Bromoform	<0.17	50	46	92	70-130	

		Rer	ort Date:		06/1	5/07 15:26
Work Order #: 12059		P	roject ID:		AML	TO# 0085
Lab Batch #: 36191	Sample: 3028151	BKS	Matrix: V	V		
Reporting Units: ug/L	Batch #: 1	BLANK	/BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Bromomethane	<0.25	50	48	96	70-130	
Carbon disulfide	<0.26	50	52	104	70-130	
Carbon Tetrachloride	<0.33	50	56	112	70-130	
Chlorobenzene	<0.15	50	52	104	74-122	
Chloroethane	<0.26	50	52	104	70-130	
Chloroform	<0.16	50	53	106	70-130	
Chloromethane	<0.25	50	43	86	70-130	
cis-1,2-Dichloroethene	<0.21	50	47	94	70-130	
cis-1,3-Dichloropropene	<0.10	50	47	94	70-130	
Dibromochloromethane	<0.15	50	54	108	70-130	
Dibromomethane	<0.24	50	53	106	70-130	
Dichlorodifluoromethane	<0.22	50	45	90	70-130	
Ethylbenzene	<0.19	50	55	110	70-130	
Hexachlorobutadiene	<0.13	50	55	110	70-130	
Isopropylbenzene	<0.15	50	48	96	70-130	
Methylene Chloride	<0.42	50	110	220	70-130	Ζ.
Methyl tert-Butyl Ether	<0.11	100	97	97	70-130	
m-Xylene/p-Xylene	<0.51	100	110	110	70-130	
Naphthalene	<0.22	50	48	96	70-130	
n-Butylbenzene	<0.17	50	54	108	70-130	
n-Propylbenzene	<0.18	50	53	106	70-130	
o-Xylene	<0.20	50	56	112	70-130	
Sec-Butylbenzene	<0.21	50	53	106	70-130	
Styrene	<0.18	50	56	112	70-130	
tert-Butylbenzene	<0.18	50	49	98	70-130	
Tetrachloroethene	<0.16	50	54	108	70-130	
Toluene	<0.14	50	53	106	77-121	
trans-1,2-Dichloroethene	<0.21	50	53	106	70-130	
trans-1,3-Dichloropropene	<0.11	50	53	106	70-130	
Trichloroethene	<0.19	50	52	104	66-119	
Trichlorofluoromethane	<0.53	50	56	112	70-130	
Vinyl acetate	<1.3	50	45	90	70-130	
Vinyl chloride	<0.19	50	48	96	70-130	

		Re	port Date:		06/1	5/07 15:26
Work Order #: 12059		I	Project ID:		AML	TO# 0085
Lab Batch #: 36193	Sample: 302818	BKS	Matrix: V	V		
Reporting Units: ug/L	Batch #: 1	BLANK /BLANK SPIKE RECOVERY				UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes			[C]	נמן		
1,1,1,2-Tetrachloroethane	<0.24	50	49	98	70-130	
1,1,1-Trichloroethane	<0.16	50	54	108	70-130	
1,1,2,2-Tetrachloroethane	<0.18	50	44	88	70-130	
1,1,2-Trichloroethane	<0.25	50	46	92	70-130	
1,1-Dichloroethane	<0.11	50	49	98	70-130	
1,1-Dichloroethene	<0.20	50	48	96	74-127	
1,1-Dichloropropene	<0.10	50	51	102	70-130	
1,2,3-Trichlorobenzene	<0.25	50	50	100	70-130	
1,2,3-Trichloropropane	<0.21	50	37	74	70-130	
1,2,4-Trichlorobenzene	<0.17	50	51	102	70-130	
1,2,4-Trimethylbenzene	<0.14	50	50	100	70-130	
1,2-Dibromo-3-chloropropane	<0.19	50	48	96	70-130	
1,2-Dibromoethane	<0.18	50	47	94	70-130	
1,2-Dichlorobenzene	<0.14	50	48	96	70-130	
1,2-Dichloroethane	<0.18	50	56	112	70-130	
1,2-Dichloropropane	<0.15	50	48	96	70-130	
1,3,5-Trimethylbenzene	<0.17	50	51	102	70-130	
1,3-Dichlorobenzene	<0.17	50	48	96	70-130	
1,3-Dichloropropane	<0.19	50	48	96	70-130	
1,4-Dichlorobenzene	<0.17	50	48	96	70-130	
2,2-Dichloropropane	<0.21	50	57	114	70-130	
2-Butanone	<0.28	100	81	81	70-130	
2-Chlorotoluene	<0.19	50	48	96	70-130	
2-Нехапопе	<0.32	100	84	84	70-130	
4-Chlorotoluene	<0.13	50	49	98	70-130	
4-Isopropyltoluene	<0.13	50	50	100	70-130	
4-Methyl-2-pentanone	<0.26	100	92	92	70-130	
Acetone	<0.35	100	100	100	70-130	
Acrolein	<6.6	100	120	120	70-130	
Acrylonitrile	<0.49	100	92	92	70-130	
Benzene	<0.16	50	49	98	72-122	
Bromobenzene	<0.21	50	46	92	70-130	
Bromochloromethane	<0.20	50	48	96	70-130	
Bromodichloromethane	<0.25	50	51	102	70-130	

Project Name: Hunter Perimeter Sampling

		Rep	ort Date:		06/1	5/07 15:26
Work Order #: 12059		Pi	roject ID:		AML	TO# 0085
Lab Batch #: 36193 Sa	mple: 3028181	BKS	Matrix: V	V		
Reporting Units: ug/L Ba	tch #: 1 BLANK /BLANK SPIKE RECOVERY STU				UDY	
VOCs by SW8260B	Blank Result	Spike Added	Blank Spike Bogult	Blank Spike	Control Limits	Flags
Analytes		[6]	[C]	%к [D]	70 K	
Bromoform	<0.17	50	43	86	70-130	
Bromomethane	<0.25	50	49	98	70-130	
Carbon disulfide	<0.26	50	49	98	70-130	
Carbon Tetrachloride	<0.33	50	53	106	70-130	
Chlorobenzene	<0.15	50	49	98	74-122	
Chloroethane	<0.26	50	50	100	70-130	
Chloroform	<0.16	50	51	102	70-130	
Chloromethane	<0.25	50	43	86	70-130	
cis-1,2-Dichloroethene	<0.21	50	44	88	70-130	
cis-1,3-Dichloropropene	<0.10	50	47	94	70-130	
Dibromochloromethane	<0.15	50	51	102	70-130	
Dibromomethane	<0.24	50	50	100	70-130	
Dichlorodifluoromethane	<0.22	50	49	98	70-130	
Ethylbenzene	<0.19	50	51	102	70-130	
Hexachlorobutadiene	<0.13	50	52	104	70-130	
Isopropylbenzene	<0.15	50	45	90	70-130	
Methylene Chloride	<0.42	50	95	190	70-130	Z
Methyl tert-Butyl Ether	<0.11	100	95	95	70-130	
m-Xylene/p-Xylene	<0.51	100	100	100	70-130	
Naphthalene	<0.22	50	46	92	70-130	
n-Butylbenzene	<0.17	50	50	100	70-130	
n-Propylbenzene	<0.18	50	49	98	70-130	
o-Xylene	<0.20	50	52	104	70-130	
Sec-Butylbenzene	<0.21	50	50	100	70-130	
Styrene	<0.18	50	53	106	70-130	
tert-Butylbenzene	<0.18	50	45	90	70-130	
Tetrachloroethene	<0.16	50	50	100	70-130	
Toluene	<0.14	50	49	98	77-121	
trans-1,2-Dichloroethene	<0.21	50	49	98	70-130	
trans-1,3-Dichloropropene	<0.11	50	50	100	70-130	
Trichloroethene	<0.19	50	49	98	66-119	
Trichlorofluoromethane	<0.53	50	54	108	70-130	
Vinyl acetate	<1.3	50	44	88	70-130	
Vinyl chloride	<0.19	50	47	94	70-130	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Work Order #: 12059 Lab Batch #: 36214 Project ID: Sample: 302830 BKS Project ID: Matrix: W AML TO# 0085 Reporting Units: ug/L Batch #: 1 BLANK/BLANK SPIKE RECOVERY STUDY Image: Spike Added IBI Blank Added IBI Spike Added IBI Spike Added IBI Blank Spike Result ICI Image: Spike Added IBI Blank Spike Result ICI Flags Flags 1,1,1,2-Tetrachloroethane <0.24 50 46 92 70-130 Image: Spike Result ICI Spike Res
Lab Batch #: 36214 Sample: 302830 BKS Matrix: W Reporting Units: ug/L Batch #: 1 BLANK/BLANK SPIKE RECOVERY STUDY VOCs by SW8260B Blank (Analytes Spike (A) Blank Result (A) Spike (B) Blank Spike (B) Blank Spike Result (C) Blank Spike (D) Control Spike %R Flags 1,1,1-Trichloroethane <0.24 50 46 92 70-130 1 1,1,2-Tetrachloroethane <0.16 50 48 96 70-130 1 1,1,2-Trichloroethane <0.18 50 40 80 70-130 1 1,1-Dichloroethane <0.25 50 42 84 70-130 1 1,1-Dichloroethane <0.11 50 46 92 70-130 1 1,1-Dichloroethane <0.25 50 42 84 70-130 1,1-Dichloroethane <0.20 50 44 88 74-127 1,1-Dichloropropene <0.25 50 49 98 70-130 1,2,3-Trichlorophonzene
Reporting Units: ug/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY VOCs by SW8260B Blank Result [A] Spike Added [B] Blank Spike Result [C] Blank Spike (D] Blank Spike Spike Spike (D] Blank Spike
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Interference Control Contro Control <thcontrol< th=""></thcontrol<>
1,1,2-Tetrachloroethane <0.24 50 46 92 $70-130$ $1,1,1$ -Trichloroethane <0.16 50 48 96 $70-130$ $1,1,2,2$ -Tetrachloroethane <0.18 50 40 80 $70-130$ $1,1,2$ -Trichloroethane <0.25 50 42 84 $70-130$ $1,1$ -Dichloroethane <0.25 50 42 84 $70-130$ $1,1$ -Dichloroethane <0.20 50 44 88 $74-127$ $1,1$ -Dichloroethene <0.20 50 44 88 $74-127$ $1,1$ -Dichloropropene <0.10 50 47 94 $70-130$ $1,2,3$ -Trichlorobenzene <0.25 50 49 98 $70-130$ $1,2,3$ -Trichlorobenzene <0.21 50 44 88 $70-130$ $1,2,4$ -Trichlorobenzene <0.17 50 49 98 $70-130$ $1,2,4$ -Trinethylbenzene <0.14 50 49 98 $70-130$ $1,2$ -Dibromo-3-chloropropane <0.19 50 44 88 $70-130$
1,1,1-Trichloroethane<0.1650489670-130 $1,1,2,2$ -Tetrachloroethane<0.18
1,1,2,2-Tetrachloroethane<0.1850408070-130 $1,1,2$ -Trichloroethane<0.25
1,1,2-Trichloroethane<0.2550428470-130 $1,1$ -Dichloroethane<0.11
1,1-Dichloroethane<0.1150469270-1301,1-Dichloroethene<0.20
1,1-Dichloroethene<0.2050448874-1271,1-Dichloropropene<0.10
1,1-Dichloropropene <0.10
1,2,3-Trichlorobenzene <0.25
1,2,3-Trichloropropane <0.21
1,2,4-Trichlorobenzene <0.17
1,2,4-Trimethylbenzene <0.14
1,2-Dibromo-3-chloropropane <0.19 50 44 88 70-130 1,2 Dibromo-there <0.18
1,2-1710TOTOTOTOTABLE -0.18 20 43 80 70-130
1,2-Dichlorobenzene <0.14 50 46 92 70-130
1,2-Dichloroethane <0.18 50 46 92 70-130
1,2-Dichloropropane <0.15 50 44 88 70-130
1,3,5-Trimethylbenzene <0.17 50 49 98 70-130
1,3-Dichlorobenzene <0.17 50 48 96 70-130
1,3-Dichloropropane <0.19 50 44 88 70-130
1,4-Dichlorobenzene <0.17 50 47 94 70-130
2,2-Dichloropropane <0.21 50 51 102 70-130
2-Butanone <0.28 100 73 73 70-130
2-Chlorotoluene <0.19 50 48 96 70-130
2-Hexanone <0.32 100 74 74 70-130
4-Chlorotoluene <0.13 50 43 86 70-130
4-Methyl-2-pentanone <0.26 100 77 77 70-130
Acetone <0.35 100 89 89 70-130
Acrolein <6.6 100 91 91 70-130
Acrylonitrile <0.49 100 84 84 70-130
Benzene <0.16 50 46 92 72-122
Bromobenzene <0.21 50 45 90 70-130
Bromochloromethane <0.20 50 44 88 70-130
Bromodichloromethane <0.25 50 45 90 70-130
Bromoform <0.17 50 41 82 70-130

		Re	port Date:		06/1	5/07 15:26
Work Order #: 12059		I	Project ID:		AML	TO# 0085
Lab Batch #: 36214	Sample: 302830	BKS	Matrix: V	V		
Reporting Units: ug/L	Batch #: 1	BLANK	/BLANK SPI	KE REC	OVERY ST	UDY
VOCs by SW8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes			[C]	[D]		
Втототеthane	<0.25	50	43	86	70-130	
Carbon disulfide	<0.26	50	45	90	70-130	
Carbon Tetrachloride	<0.33	50	48	96	70-130	
Chlorobenzene	<0.15	50	47	94	74-122	
Chloroethane	<0.26	50	46	92	70-130	
Chloroform	<0.16	50	46	92	70-130	
Chloromethane	<0.25	50	40	80	70-130	
cis-1,2-Dichloroethene	<0.21	50	43	86	70-130	
cis-1,3-Dichloropropene	<0.10	50	43	86	70-130	
Dibromochloromethane	<0.15	50	47	94	70-130	
Dibromomethane	<0.24	50	45	90	70-130	
Dichlorodifluoromethane	<0.22	50	41	82	70-130	
Ethylbenzene	<0.19	50	49	98	70-130	
Hexachlorobutadiene	<0.13	50	52	104	70-130	
Isopropylbenzene	<0.15	50	45	90	70-130	
Methylene Chloride	<0.42	50	88	176	70-130	Z
Methyl tert-Butyl Ether	<0.11	100	86	86	70-130	
m-Xylene/p-Xylene	<0.51	100	96	96	70-130	
Naphthalene	<0.22	50	45	90	70-130	
n-Butylbenzene	<0.17	50	48	96	70-130	
n-Propylbenzene	<0.18	50	48	96	70-130	
o-Xylene	<0.20	50	50	100	70-130	
Sec-Butylbenzene	<0.21	50	48	96	70-130	
Styrene	<0.18	50	50	100	70-130	
tert-Butylbenzene	<0.18	50	45	90	70-130	
Tetrachloroethene	<0.16	50	50	100	70-130	
Toluene	<0.14	50	47	94	77-121	
trans-1,2-Dichloroethene	<0.21	50	49	98	70-130	
trans-1,3-Dichloropropene	<0.11	50	47	94	70-130	
Trichloroethene	<0.19	50	46	92	66-119	
Trichlorofluoromethane	<0.53	50	45	90	70-130	
Vinyl acetate	<1.3	50	38	76	70-130	
Vinyl chloride	<0.19	50	43	86	70-130	
		-			-	

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26 Project ID: AML TO# 0085

Work Order #: 12059

Lab Batch ID: 36191 Reporting Units: ug/L

Batch #: 1 Matrix: W

QC- Sample ID: 12059-018 MS

Reporting Units: ug/L			MATRIX SPIK	E/MAT	RIX SP()	KE DUPLICA	TE RECC	VERV S	TUDY		
VOCs by SW8260B	Parent	- 2	piked Sampl	Spiked		Duplicate	Spiked	-	Control Limito	Control	200
Analytes	Result [A]	spike Added [B]		Sample %R [D]	spike Added [E]	pikeu sampi Result [F]		4 %	%R	%RPD	
1,1,1,2-Tetrachloroethane	<0.24	50	49	98	50	50	001	7	70-130	20	
1,1,1-Trichloroethane	<0.16	50	51	102	50	53	106	4	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	48	96	50	50	001	4	70-130	20	
1,1,2-Trichloroethane	<0.25	50	47	94	50	49	86	4	70-130	20	
1,1-Dichloroethane	<0.11	50	48	96	50	50	001	4	70-130	20	
1,1-Dichloroethene	<0.20	50	46	92	50	49	98	6	70-135	20	
1,1-Dichloropropene	<0.10	50	48	96	50	53	901	10	70-130	20	
1,2,3-Trichlorobenzene	<0.25	50	56	112	50	56	112	0	70-130	20	
1,2,3-Trichloropropane	<0.21	50	52	104	50	41	82	24	70-130	20	F
1,2,4-Trichlorobenzene	<0,17	50	55	110	50	54	108	2	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	49	98	50	53	901	8	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	50	57	114	50	56	112	2	70-130	20	
1,2-Dibromoethane	<0.18	50	48	96	50	52	104	20	70-130	20	
1,2-Dichlorobenzene	<0.14	50	49	86	50	50	100	2	70-130	20	
1,2-Dichloroethane	<0.18	50	52	104	50	57	114	6	70-130	20	
1,2-Dichloropropane	<0.15	50	47	94	50	48	96	2	10-130	20	
1,3,5-Trimethylbenzene	<0.17	50	49	86	50	52	104	6	70-130	20	
1,3-Dichlorobenzene	<0.17	50	49	86	50	51	201	4	70-130	20	
1,3-Dichloropropane	<0.19	50	48	96	50	52	104	80	70-130	20	
1,4-Dichlorobenzene	<0.17	50	48	96	50	51	102	6	70-130	20	
2,2-Dichloropropane	<0.21	50	54	108	50	55	011	2	70-130	20	
2-Butanone	<0.28	100	88	88	100	100	001	13	70-130	20	
2-Chlorotoluene	<0.19	50	49	98	50	50	100	2	70-130	20	
© 2-Hexanone	<0.32	100	93	£6	100	110	110	17	70-130	20	
6											

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26 Project ID: AML TO# 0085

Work Order #: 12059

Lab Batch ID: 36191 Reporting Units: ug/L

QC- Sample ID: 12059-018 MS Batch #:

l Matrix: W

VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	8% [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	D
4-Chlorotoluene	<0.13	50	48	96	50	45	90	9	70-130	20	
4-IsopropyItoluene	<0.13	50	49	86	50	52	104	6	70-130	20	
4-Methyl-2-pentanone	<0.26	100	93	93	100	110	011	17	70-130	20	
Acetone	<0.35	100	120	120	100	140	140	15	70-130	20	2
Acrolein	<6.6	001	100	100	100	110	110	10	70-130	20	
Acrylonitrile	<0.49	100	16	16	100	100	100	6	70-130	20	
Benzene	<0.16	50	47	94	50	50	100	e	72-128	20	
Bromobenzene	<0.21	50	49	98	50	50	100	5	70-130	20	
Bromochloromethane	<0.20	50	45	96	50	49	86	6	70-130	20	
Bromodichloromethane	<0.25	50	49	86	50	15	102	4	70-130	20	
Вгетоботт	<0.17	50	48	96	50	51	102	9	70-130	20	
Bromomethane	<0.25	50	44	88	50	42	84	5	20-130	20	
Carbon disulfide	<0.26	50	45	06	50	47	94	4	20-130	20	
Carbon Tetrachloride	<0.33	50	50	100	50	53	106	6	70-130	20	
Chlorobenzene	<0.15	50	47	94	50	50	100	9	77-121	20	
Chloroethane	<0.26	50	47	94	50	49	86	4	70-130	20	
Chloroform	<0.16	50	47	94	50	49	86	4	70-130	20	
Chloromethane	<0.25	50	41	82	50	41	82	0	70-130	20	
cis-1,2-Dichloroethene	<0.21	50	44	88	50	46	92	4	70-130	20	
cis-1,3-Dichloropropene	<0.10	50	45	06	50	46	92	2	70-130	20	
Dibromochloromethane	<0.15	50	51	102	50	54	108	6	70-130	20	
Dibromomethane	<0.24	50	50	100	50	52	104	4	70-130	20	
Dichlorodifluoromethane	<0.22	50	39	78	50	40	80	3	70-130	20	
² Ethylbenzene	<0.19	50	46	86	50	52	104	6	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G) F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Project ID: AML TO# 0085 Report Date: 06/15/07 15:26

Work Order #: 12059

Lab Batch ID: 36191 Reporting Units: ug/L

Batch #: QC-Sample ID: 12059-018 MS

Matrix: W _

VOCs by SW8260B	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		*R* [D]	Added [E]	Result [F]	%R [G]	%	%В	%RPD	1
Hexachlorobutadiene	<0.13	50	56	112	50	55	110	7	70-130	20	
Isopropylbenzene	<0.15	50	46	92	50	47	94	2	70-130	20	
Methylene Chloride	<0.42	50	100	200	50	55	110	58	70-130	20	ZF
Methyl tert-Butyl Ether	<0,11	100	67	67	100	89	89	6	70-130	20	
m-Xylenc/p-Xylenc	<0.51	100	93	63	100	001	100	7	70-130	20	
Naphthalene	<0.22	50	53	106	50	56	112	9	70-130	20	
n-Butylbenzene	<0.17	50	48	96	50	52	104	00	70-130	20	
n-Propylbenzene	<0.18	50	48	96	50	51	102	6	20-130	20	
o-Xylene	<0.20	50	48	96	50	54	108	12	70-130	20	
Sec-Butylbenzene	<0.21	50	48	96	50	51	102	6	70-130	20	
Styrene	<0.18	50	50	100	50	55	110	10	70-130	20	
tert-Butyłbenzene	<0.18	50	46	92	50	48	96	4	70-130	20	
Tetrachloroethene	<0.16	50	48	96	50	52	104	8	70-130	20	
Toluene	<0.14	50	48	96	50	51	102	6	76-124	20	
trans-1,2-Dichloroethene	<0.21	50	46	92	50	34	68	30	70-130	20	ZF
trans-1,3-Dichloropropene	<0.11	50	50	100	50	55	110	10	70-130	20	
Trichloroethene	<0.19	50	47	94	50	50	100	6	68-125	20	
Trichlorofluoromethane	<0.53	50	49	98	50	50	100	2	70-130	50	
Vinyl acetate	<1.3	50	42	84	50	48	96	13	70-130	20	
Vinyl chloride	<0.19	50	44	88	50	45	06	2	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Work Order #: 12059 Lab Batch ID: 36193

Form 3 - MS / MSD Recoveries

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085

QC- Sample ID: 12050-025 MS

MATDIV SDIVE DUDI ICATE BECOVERV STUDY Matrix: W Batch #:

_

Reporting Units: ugL			MATRIX SPII	KE / MAT	RIX SPI	KE DUPLICA'	TE RECC	VERY S	TUDY		
VOCs by SW8260B	Parent Sample Result	Spike	piked Sampl Result	Spiked Sample %R	Spike Added	Duplicate piked Sample Result (F)	Spiked Dup. %R	U4X M	Control Limits %R	Control Limits %RPD	F B G
Analytes	A	[8]	5	[0	E		[0]	2			
1,1,1,2-Tetrachloroethane	<0.24	50	48	96	50	52	104	8	70-130	20	
1,1,1-Trichloroethane	<0.16	50	52	104	50	57	114	6	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	48	96	50	51	102	9	70-130	20	
1,1,2-Trichloroethane	<0.25	50	49	98	50	50	100	2	70-130	20	
1,1-Dichloroethane	<0,11	50	48	96	50	51	102	9	70-130	20	
1,1-Dichloroethene	<0.20	50	48	96	50	49	98	2	70-135	20	
1,1-Dichloropropene	<0.10	50	52	104	50	55	110	9	70-130	20	
1,2,3-Trichlorobenzene	<0.25	50	52	104	50	55	110	9	70-130	20	
1,2,3-Trichloropropane	<0.21	50	53	106	50	56	112	6	70-130	20	
1,2,4-Trichlorobenzene	<0,17	50	51	102	50	55	110	8	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	49	98	50	54	108	10	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	50	52	104	50	59	118	13	70-130	20	
1,2-Dibromoethane	<0.18	50	51	102	50	54	108	6	70-130	20	
1,2-Dichtorobenzene	<0.14	50	48	96	50	51	102	6	70-130	20	
1,2-Dichloroethane	<0.18	50	55	110	50	57	114	4	70-130	20	
1,2-Dichloropropane	<0.15	50	46	92	50	49	98	6	70-130	20	
1,3,5-Trimethylbenzene	<0.17	50	50	100	50	54	108	8	70-130	20	
1,3-Dichtorobenzene	<0.17	50	48	96	50	51	102	6	70-130	20	
1,3-Dichloropropane	<0.19	50	50	100	50	53	106	6	70-130	20	
1,4-Dichlorobenzene	<0.17	50	48	96	50	51	102	9	70-130	20	
2,2-Dichloropropane	<0.21	50	54	108	50	57	114	5	70-130	20	
2-Butanone	<0.28	100	100	100	100	001	100	0	70-130	20	
2-Chlorotoluene	<0.19	50	48	96	50	52	104	8	70-130	20	
D 2-Hexanone	<0.32	100	001	100	100	110	110	10	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Work Order # : 12059

Lab Batch ID: 36193

QC- Sample ID: 12050-025 MS

l Matrix: W

Batch #:

Report Date: 06/15/07 15:26 Project ID: AML TO# 0085

Form 3 - MS / MSD Recoveries

Project Name: Hunter Perimeter Sampling

A UCS DY 3 W 0200D	Parent Sample	Spike	piked Sampl Result	Spiked Sample	Spike	Duplicate piked Sampl	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		Added [B]	<u>5</u>	1 <u>0</u>]	Added E	Kesult [F]	¥%	%	¥%	%KPU	
4-Chlorotoluene	<0.13	50	48	96	50	- 52	104	∞	70-130	20	
4-Isopropyltoluene	<0.13	50	50	100	50	54	801	œ	70-130	20	
4-Methyl-2-pentanone	<0.26	100	100	100	100	110	110	01	70-130	20	
Acetone	<0.35	100	140	140	100	150	150	٢	70-130	20	Z
Acrolein	<6.6	100	42	42	100	35	35	18	70-130	20	Z
Acrylonitrile	<0.49	100	100	100	100	110	011	10	70-130	20	
Benzene	<0.16	50	48	96	50	51	102	6	72-128	50	
Bromobenzene	<0.21	50	47	94	50	50	100	6	70-130	20	
Bromochloromethane	<0.20	50	46	92	50	50	001	8	70-130	20	
Bromodichloromethane	<0.25	50	50	100	50	52	104	4	70-130	20	
Bromoform	<0.17	50	47	94	50	51	102	8	70-130	20	
Bromomethane	<0.25	50	42	84	50	46	92	6	70-130	20	
Carbon disulfide	<0.26	50	48	96	50	51	102	6	70-130	20	
Carbon Tetrachloride	<0.33	50	52	104	50	55	011	6	70-130	20	
Chlorobenzene	<0.15	50	47	94	50	51	102	8	77-121	20	
Chloroethane	<0.26	50	48	96	50	51	102	6	70-130	20	
Chloroform	<0.16	50	48	96	50	51	102	6	70-130	20	
Chloromethane	<0.25	50	42	84	50	45	06	7	70-130	20	
cis-1,2-Dichloroethene	<0.21	50	44	88	50	48	96	6	70-130	20	
cis-1,3-Dichloropropene	<0.10	50	47	94	50	49	98	4	70-130	20	
Dibromochloromethane	<0.15	50	52	104	50	55	110	Ŷ	70-130	20	
Dibromomethane	<0.24	50	53	106	50	56	112	6	10-130	20	
Dichlorodifluoromethane	<0.22	50	46	92	50	49	98	6	70-130	20	
© Ethylbenzene	<0.19	50	50	001	50	54	801	8	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

-G)/(D+G)

 $\mathbf{F} = \mathbf{RPD}$ exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085

Work Order #: 12059

Lab Batch ID: 36193 Reporting Units: ug/L

QC- Sample ID: 12050-025 MS

Batch #:

l Matrix: W

VOCs by SW8260B	Parent	Suite	piked Sampl	Spiked	Sniko	Duplicate niked Semul	Spiked	uaa	Control Limite	Control	E lao
Analytes	Result [A]	added B	[C]	%R %R [D]	Added [E]	Result [F]	%R 6	%	%R	%RPD	4
Hexachlorobutadiene	<0.13	50	50	100	50	55	110	0	70-130	20	
Isopropylbenzene	<0.15	50	45	06	50	49	86	6	70-130	20	
Methylene Chloride	<0.42	50	48	96	50	53	106	10	70-130	20	
Methyl tert-Butyl Ether	<0.11	100	100	100	100	110	011	10	70-130	20	
m-Xylene/p-Xylene	<0.51	100	67	76	100	011	011	13	70-130	20	
Naphthalene	<0.22	50	52	104	50	55	110	6	70-130	20	
n-Butylbenzene	<0.17	50	49	98	50	54	108	10	70-130	20	
n-Propylbenzene	<0.18	50	49	86	50	53	106	œ	70-130	20	
o-Xylene	<0.20	50	51	102	50	56	112	6	70-130	20	
Sec-Butylbenzene	<0.21	50	49	96	50	53	901	80	70-130	20	
Styrene	<0,18	50	51	102	50	56	211	6	20-130	20	
tert-Butylbenzene	<0.18	50	45	06	50	49	86	6	70-130	20	
Tetrachloroethene	<0.16	50	53	106	50	57	114	2	70-130	20	
Toluene	<0.14	50	48	96	50	53	106	10	76-124	20	
trans-1,2-Dichloroethene	<0.21	50	48	96	50	52	104	œ	70-130	20	
trans-1,3-Dichloropropené	<0.11	50	50	100	50	55	011	01	70-130	20	
Trichloroethene	<0.19	50	48	96	50	52	104	8	68-125	20	
Trichlorofluoromethane	<0.53	50	50	100	50	52	104	4	70-130	20	
Vinyl acetate	<1.3	50	45	06	50	46	92	2	70-130	20	
Vinyl chloride	<0.19	50	45	06	50	48	96	9	70-130	20	

981

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}(D-G)/(D+G)$ F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085

Work Order #: 12059

Lab Batch ID: 36214 Reporting Units: ug/L

QC- Sample ID: 12059-012 MS Batch #: 1 Matrix: W

		<	AA LKIA SPIK	LE / MAI		NE DUPLICA	LE RECO	VENTO			
VOCs by SW8260B Analytes	Parent Sample Result A	Spike Added [B]	piked Sampl Result [C]	Spiked Sample %R {D}	Spike Added [E]	Duplicate ipiked Sampl Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	मिवदु
1,1,1,2-Tetrachloroethane	<0.24	50	49	86	50	48	96	2	70-130	20	
1,1,1-Trichloroethane	<0.16	50	48	96	50	49	86	7	70-130	20	
1,1,2,2-Tetrachloroethane	<0.18	50	43	86	50	47	94	6	70-130	20	
1,1,2-Trichloroethane	<0.25	50	44	88	50	47	94	2	70-130	20	
1,1-Dichloroethane	<0.11	50	46	92	50	47	94	5	70-130	20	
I,l-Dichloroethene	<0.20	50	44	88	50	44	88	0	70-135	20	
1,1-Dichloropropene	<0.10	50	49	86	50	51	102	4	70-130	20	
1,2,3-Trichlorobenzene	<0.25	50	54	801	50	54	108	0	70-130	20	
1,2,3-Trichloropropane	<0.21	50	47	94	50	51	102	∞	70-130	20	
1,2,4-Trichlorobenzene	<0.17	50	53	106	50	54	108	2	70-130	20	
1,2,4-Trimethylbenzene	<0.14	50	50	001	50	50	100	0	70-130	20	
1,2-Dibromo-3-chloropropane	<0.19	50	47	94	50	52	104	10	70-130	20	
1,2-Dibromoethane	<0.18	50	46	92	50	50	100	8	70-130	20	
1,2-Dichlorobenzene	<0.14	50	49	98	50	50	100	7	70-130	20	
1,2-Dichloroethane	<0.18	50	48	96	50	52	104	8	70-130	20	
1,2-Dichloropropane	<0.15	50	45	06	50	47	64	4	70-130	20	
1,3,5-Trimethylbenzene	<0.17	50	50	100	50	50	100	0	70-130	20	
1,3-Dichlorobenzene	<0.17	50	50	100	50	50	100	0	70-130	20	
1,3-Dichloropropane	<0.19	50	47	94	50	48	96	2	70-130	20	
I,4-Dichlorobenzene	<0.17	50	49	98	50	50	100	2	70-130	20	
2,2-Dichloropropane	<0.21	50	52	104	50	51	102	2	70-130	20	
2-Butanone	<0.28	100	83	83	100	86	98	17	70-130	20	
2-Chlorotoluene	<0.19	50	48	96	50	47	94	2	70-130	20	
⊠ 2-Hexanone m	<0.32	001	83	83	100	95	95	13	70-130	20	
2											

-Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085

Work Order #: 12059

Lab Batch ID: 36214 Reporting Units: ug/L

QC- Sample ID: 12059-012 MS Batch #:

l Matrix: W

VOC. h. CW9760B	Parent		piked Sampl	Spiked		Duplicate	Spiked		Control	Control	
	Sample Result	Spike Added	Result	Sample %R	Spike	piked Sampl Result [F]	Dup. %R	RPD %	Limits %R	Limits %RPD	Flag
Analytes	[A]	[B]	2		E		<u></u>	2			
4-Chlorotoluene	<0.13	50	48	96	50	43	86	=	70-130	20	
4-Isopropyltoluene	<0.13	50	50	100	50	50	100	0	20-130	20	
4-Methyl-2-pentanone	<0.26	100	87	87	100	100	100	14	70-130	20	
Acetone	<0.35	100	100	100	100	120	120	18	20-130	20	
Acrolein	<6,6	100	86	98	100	110	110	12	70-130	20	
Acrylonitrile	<0.49	100	87	87	100	66	66	13	061-07	20	
Benzene	<0.16	50	46	92	50	49	86	9	72-128	20	
Bromobenzene	<0.21	50	47	94	50	48	96	2	0£1-02	20	
Bromochloromethane	<0.20	50	46	92	50	47	94	2	70-130	20	
Bromodichloromethane	<0,25	50	46	92	50	49	98	6	70-130	20	
Bromoform	<0.17	50	46	92	50	50	100	0 0	70-130	20	
Bromomethane	<0.25	50	42	84	50	38	76	10	70-130	20	
Carbon disulfide	<0.26	50	44	88	50	44	88	0	70-130	20	
Carbon Tetrachloride	<0.33	50	48	96	50	48	96	0	70-130	20	
Chlorobenzene	<0.15	50	48	96	50	48	96	0	77-121	20	
Chloroethane	<0.26	50	47	94	50	45	60	4	70-130	20	
Chloroform	<0.16	50	45	06	50	46	92	2	70-130	20	
Chloromethane	<0.25	50	41	82	50	41	82	0	70-130	20	
cis-1,2-Dichloroethene	<0.21	50	44	88	50	46	92	4	70-130	20	
cis-1,3-Dichloropropene	<0.10	50	45	06	50	45	06	0	20-130	20	
Dibromochloromethane	<0.15	50	49	86	50	52	104	6	70-130	20	
Dibromomethane	<0.24	50	47	94	50	52	104	10	20-130	20	
🖸 Dichlorodifluoromethane	<0.22	50	42	84	50	39	78	7	70-130	20	
© Ethylbenzene	<0,19	50	49	98	50	49	98	0	70-130	20	
3											

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

F = RPD exceeded the laboratory control limits

Project Name: Hunter Perimeter Sampling

Report Date: 06/15/07 15:26

Project ID: AML TO# 0085

Matrix: W

Batch #:

Work Order #: 12059

Lab Batch ID: 36214 Reporting Units: ug/L

QC- Sample ID: 12059-012 MS

Flag

ΖF

íц

70-130

4 4 0 4 0

102

50

86

49

trans-1,3-Dichloropropene

Trichlorofluoromethane

Vinyl acetate Vinyl chloride

Trichloroethene

trans-1,2-Dichloroethene

Tetrachloroethene

Toluene

tert-Butylbenzene

Styrene

Sec-Butylbenzene

n-Propylbenzene

o-Xylene

n-Butylbenzene

Naphthalene

96

84

5 5 5 5

64

47

60

45

50

6

50 50

<0.19

88

94 86 86 86 86 86

68-125

70-130

26

76-124

102

2 8

92

8 8 8 8

92

46

<0.16 <0.16

102

5

96

48

<0.14</pre><0.14</pre><0.14</pre><0.19</pre><0.53</pre><1.3</pre>

70-130 70-130 20

70-130

2 2 2 2 2 2 2 2 2 2

70-130 70-130 70-130

000

106

 4
 5
 3
 4
 5
 5

 4
 4
 5
 3
 4
 5
 5

50

104

55

S S S S S S S S

<0.18

Limits %RPD Control 20 30 20 20 50 20 20 50 20 20 Control Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 %R RPD % 2 66 2 0 2 0 0 0 Spiked 0m 88 6 110 104 102 00 $\mathbf{06}$ 93 98 98 8 97 piked Sampl Duplicate Result [F] 52 , 45 93 97 69 50 49 5 49 Added Sample Spike 100 100 50 50 50 50 50 50 Э 50 50 Spiked ¥€⊡ 106 178 100 102 8 98 98 92 98 86 piked Sampl Result $\overline{\mathbf{O}}$ 49 45 23 68 52 98 64 49 49 5 Added [B] Spike 100 0 50 50 50 50 50 50 50 50 Sample Result Parent <0.13 <0.15 <0.42 <0.18 <0.20 K <0,11 <0.51 <0.17 <0.21 4 VOCs by SW8260B Analytes

Methyl tert-Butyl Ether

Methylene Chloride

Isopropylbenzene

m-Xylene/p-Xylene

Hexachlorobutadiene

. Matrix Spike Percent R

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G) F = RPD exceeded the laboratory control limits

Abbreviations and EPA Qualifier Codes used by AAL

- Rep Limit: This abbreviation on our analytical reports is for: Reporting Limit (RL).
 - BRL: This abbreviation indicates that the analytical results were Below the Reporting Limit (BRL).
 - MDL: The Method Detection Limit (MDL), as defined by 40 CFR Part 136, Appendix B, is the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero.
 - U: The compound was analyzed for, but not detected above the specified MDL.
 - J: This indicates an estimated value. The target analyte is *positively identified*, but the reported numerical result (analyte concentration) is an *estimated* value and the direction of the bias is unknown. The result is above the MDL, but below the RL.
 - B: This is used when the analyte is found in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. The flag shall be used for a tentatively identified compound as well as for a positively identified target compound.
 - D: This flag indicates that the identified analyte is reported from the dilution analysis.
 - E: This identifies compounds whose concentrations exceed the upper level of the linear calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than the upper level of the calibration range, the sample or extract should be diluted and re-analyzed.

Note: For Xylenes, Total, where three isomers are quantified as two peaks, the calibration range of each peak is considered separately.

- X: This qualifier is defined by the laboratory in written case narrative.
- Z: Surrogates/Spikes results are outside the laboratory or method quality control limits.
- ZZ: Surrogates/Spikes results are outside the laboratory or method quality control limits in multiple QC samples.
- ***: Surrogate recoveries were diluted out.
- M: Manual integrations were necessary and an "m" qualifying code is present on the quantitation report next to the analyte.
- N: Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds. (TICs), where the identification is based on a mass spectral library search. For generic characterization of a TIC, such as chlorinated hydrocarbon, the "N" flag is not used.