

CORRECTIVE ACTION PLAN

Part A

3d Inf Div (Mech)

Former Heating Oil Tanks (HOTs) A & B Building 850 Hunter Army Airfield, Georgia

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-95-D-0022 Delivery Order 0019

DOCUMENT 17.1

FINAL

CORRECTIVE ACTION PLAN - PART A REPORT FOR FORMER HEATING OIL TANKS (HOTs) A & B BUILDING 850 HUNTER ARMY AIRFIELD, GEORGIA

Prepared for:

U.S. Army Corps of Engineers - Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0019

Prepared by:

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37831

February 1999

TABLE OF CONTENTS

Page

LIS	TO	F ABBREVIATIONS AND ACRONYMS	v
Ĭ.	PL	AN CERTIFICATION	1
		UST Owner/Operator Certification	
		Registered Professional Engineer or Professional Geologist Certification	
П.	IN	TIAL RESPONSE REPORT	2
	A.	Initial Abatement	
	B.	Free Product Removal	
	C.	Tank History	
	D.	Initial Site Characterization	
		1. Regulated Substance Released	
		2. Source(s) of Contamination	
		3. Local Water Resources	
		a. Groundwater Pollution Susceptibility Area	
		b. Public and Non-Public Water Supplies	
		c. Surface Water Supplies and Sewers	
		4. Impacted Environmental Media	
		a. Soil Impacted	
		b. Groundwater Impacted	
		c. Surface Water Impacted	
		d. Point of Withdrawal Impacted	
		5. Other Geologic/Hydrogeologic Data	
		a. Depth to Groundwater	
		b. Groundwater Flow Direction	6
		c. Hydraulic Gradient	
		d. Geophysical Province	
		e. Unique Geologic/Hydrogeological Conditions	
		 Corrective Action Completed or In-Progress	
		a. Underground Storage Tank System Closure	
		b. Excavation and Treatment/Disposal of Backfill Materials and Native Soils	
		7. Site Ranking	
		8. Conclusions and Recommendations	
		a. No Further Action Required	
		b. Monitoring Only	
		c. CAP-B	
		с. САР-В	/
Ш.		NITORING ONLY PLAN	
		Monitoring Points	
	В.	Period/Frequency of Monitoring and Reporting	
		Monitoring Parameters	
	D.	Milestone Schedule	
	E.	Scenarios for Site Closure or CAP-Part B	3

ť,

IV.	SI	TE INVESTIGATION PLAN	8
		Proposed Investigation of Horizontal and Vertical Extent of Contamination	
		1. Soil	
		2. Groundwater	
		a. Free Product	9
		b. Dissolved Phase	
		3. Surface Water	9
	B. Proposed Investigation of Vadose Zone and Aquifer Characteristics		9
v.	PU	JBLIC NOTICE	10
VI.	CL	AIM FOR REIMBURSEMENT	10

List of Appendices

APPENDI	X I: REPORT FIGURES I-1		
Figure 1.	Location Map of Hunter Army Airfield, Chatham County, Georgia I-3		
Figure 2.	Site Plan for the Former HOTs A & B, Building 850 Site Investigation I-4		
Figure 3a.	Topographic Quadrangle Map of Hunter Army Airfield and Surrounding Area I-5		
Figure 3b.	Detailed Map Showing Public and Private Drinking Water Sources and Surface		
	Water Bodies at Hunter Army Airfield I-6		
Figure 3c.	Detailed Map Showing Public and Private Drinking Water Sources in Areas		
	Adjacent to Hunter Army Airfield I-7		
Figure 4.	Soil Quality Map of the Former HOTs A & B, Building 850 Site		
Figure 5.	Groundwater Quality Map of the Former HOTs A & B, Building 850 Site I-10		
Figure 6.	Potentiometric Surface Map of the Former HOTs A & B, Building 850 Site I-11		
Figure 7.	HOT System Closure Sampling Locations at the Former HOTs A & B,		
	Building 850 SiteI-12		
Figure 8.	Proposed Additional Boring/Monitoring Well Locations		
Figure 9. Tax Map of Hunter Army Airfield and Vicinity, Chatham County, Georgia			
	X II: REPORT TABLESII-1		
Table 1.	Free Product Removal		
Table 2a.	Soil Analytical Results (Volatile Organic Compounds)II-4		
Table 2b.	Soil Analytical Results (Polynuclear Aromatic Hydrocarbons) II-5		
Table 3a.	Groundwater Analytical Results (Volatile Organic Compounds)II-6		
Table 3b.	Groundwater Analytical Results (Polynuclear Aromatic Hydrocarbons)		
Table 4.	Groundwater Elevations		
Table 5a.	HOT System Closure - Soil Analytical Results (Volatile Organic		
	Compounds)II-8		
Table 5b.	HOT System Closure - Soil Analytical Results (Polynuclear Aromatic		
	Hydrocarbons)		
Table 6a.	HOT System Closure - Groundwater Analytical Results (Volatile		
	Organic Compounds)II-10		
Table 6b.	HOT System Closure - Groundwater Analytical Results (Polynuclear		
	Aromatic Hydrocarbons)II-10		

APPENDIX III:	WATER RESOURCES SURVEY DOCUMENTATION
APPENDIX IV:	SOIL BORING LOGS IV-1
APPENDIX V:	SOIL LABORATORY RESULTSV-1
APPENDIX VI:	ALTERNATE THRESHOLD LEVEL (ATL) CALCULATIONS
APPENDIX VII:	MONITORING WELL DETAILS
APPENDIX VIII:	GROUNDWATER LABORATORY RESULTS
APPENDIX IX:	CONTAMINATED SOIL DISPOSAL MANIFESTS IX-1
APPENDIX X:	SITE RANKING FORM X-1
APPENDIX XI:	COPIES OF PUBLIC NOTIFICATION LETTERS AND CERTIFIED RECEIPTS OR NEWSPAPAPER NOTICE
APPENDIX XII:	GUST TRUST FUND REIMBURSEMENT APPLICATION AND CLAIM FOR REIMBURSEMENT

Attachments

A	TECHNICAL APPROACH	 .A-1
В	REFERENCES	.B-1

List of Abbreviations and Acronyms

ACE	Anderson Columbia Environmental, Inc.
ASTM	American Society for Testing and Materials
ATL	alternate threshold level
BDL	below detection limit
BGS	below ground surface
BLS	below land surface
BTEX	benzene, toluene, ethylbenzene, and xylene
BTL	below threshold level
CAP	Corrective Action Plan
CL	clay
COE	(U.S. Army) Corps of Engineers
CX	Center of Excellence
DOT	U.S. Department of Transportation
DPW	Directorate of Public Works
DQA	data quality assessment
DQCR	Daily Quality Control Report
DQO	date quality objective
DRO	diesel-range organics

EPA	U.S. Environmental Protection Agency
EPD	Environmental Protection Division
FS	Fort Stewart
GA DNR	Georgia Department of Natural Resources
GEL	General Engineering Laboratories
gpm	gallons per minute
GRO	gasoline-range organics
GUST	Georgia Underground Storage Tank
HAAF	Hunter Army Airfield
HOT	Heating Oil Tank
ID	inside diameter
IDW	investigation-derived waste
IWTP	Industrial Waste Treatment Plant
LCS	laboratory control sample
MCL	maximum contaminant level
µg/kg	micrograms per kilogram
µg/L	micrograms per liter
mg/kg	milligrams per kilogram
MPR	Monthly Progress Report
MS	matrix spike
MSL	mean sea level
N/A	not applicable
NCO	noncommissioned officer
NRC	no regulatory criteria
OVM	organic vapor meter
PAHs	polynuclear aromatic hydrocarbons
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
QA	quality assurance
QA/QC	quality assessment/quality control
QAPjP	Quality Assurance Project Plan
QC	quality control
QCSR	Quality Control Summary Report
RCRA	Resource Conservation and Recovery Act
RPD	relative percent difference
SAIC	Science Applications International Corporation
SAS	South Atlantic Savannah (Division)
SC	clayey sand
SC-SM	clayey, silty sand
SM	silty sand
SP-SC	poorly graded, clayey sand
SW	sand
TBD	to be determined
TCLP	Toxicity Characteristic Leaching Procedure
TOC	total organic carbon
TPH	total petroleum hydrocarbon
UNK .	
	unknown

USGS	U.S. Geological Survey
UST	underground storage tank
USTMP	Underground Storage Tank Management Program
VOC	volatile organic compound

CORRECTIVE ACTION PLAN PART A

 Former Heating Oil Tanks A & B,

 Facility Name: Building 850

 Street Address: Strachen Drive, HAAF

 Facility ID: N/A
 City: Savannah

 County: Chatham
 Zip Code: 31406

 Latitude: 32°01'21" N
 Longitude: 81°08'03" W

Submitted by UST Owner/Operator:Name:Thomas C. Fry/Environmental BranchCompany:U.S. Army/HQ 3d, Inf. Div. (Mech)Address:DPW ERD ENV. Br. (Fry)1557 Frank Cochran DriveCity:Fort StewartState:GeorgiaZip Code:31314-4928Telephone:(912) 767-1078

 Prepared by Consultant/Contractor:

 Name:
 C. Allison Bailey

 Company:
 SAIC

 Address:
 P.O. Box 2502

 City:
 Oak Ridge
 State:

 Zip Code:
 37831

 Telephone:
 (423) 481-8719

I. PLAN CERTIFICATION:

A. UST Owner/Operator Certification

I hereby certify that the information contained in this plan and in all the attachments is true, accurate, and the plan satisfies all criteria and requirements of rule 391-3-15-09 of the Georgia Rules for Underground Storage Tank Management.

Name: Thomas C. Fry		
Signature: Ahomas	C. fry	Date: <u>03 /05 /99</u>

B. Registered Professional Engineer or Professional Geologist Certification

I hereby certify that I have directed and supervised the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

1

Name: John B. Reeves, P.E. ecus Signature: Date:

CAPA.FORM 98-216P(doc4si)/012099

YES

NO

NO X

YES

X

General: READ THE GUIDANCE DOCUMENT FOR CAP PART-A BEFORE COMPLETING THIS FORM. FAILURE TO READ THE GUIDANCE DOCUMENT WILL MOST LIKELY RESULT IN PREPARATION OF AN UNACCEPTABLE REPORT. All text, figures, and tables requested in their respective sections should be prepared strictly in accordance with the Georgia EPD CAP-A guidance document. Please fill out this form as provided. Do not change the size of the fields or alter the placement of each section on each page.

(Appendix I: All Report Figures) (Appendix II: All Report Tables)

II. INITIAL RESPONSE REPORT

A. Initial Abatement

Were initial abatement actions initiated? If Yes, please summarize. If No, please explain why not.

Actions were not required to abate imminent hazards and/or emergency conditions at the Former Heating Oil Tanks (HOTs) A & B, Building 850 site. Therefore, contaminant migration and release prevention, fire and vapor mitigation, or emergency free product removal were not performed prior to, or during, the removal of the Former HOTs.

B. Free Product Removal

(Table 1: Summary of Free Product Removal – must include Free Product thickness in each well in which it was detected, and volume of product removed)

Free Product Detected?

If Yes, please summarize free product recovery efforts.

Continuing free product recovery proposed? YES ____ NO _X If yes, please indicate the method and frequency of removal.

5/98

C. Tank History

List current and former UST's operated at site based on owner/operator knowledge consistent with EPA 7530-1 Form). Systems must be illustrated on Figure 2 (Site Plan), as described in section D below.

CURRENT UST SYSTEMS (if applicable)

Tank ID Number	Capacity (gal)	Substance Stored	Age (yrs)	Meets 1998 Upgrade
N/A	N/A	N/A	N/A	<u>Standards (Yes/No)</u> N/A
10/1	10/11	14/21	14/11	14/11

FORMER UST SYSTEMS (if applicable)

Tank ID Number	Capacity (gal)	Substance Stored	Date Removed
Former HOT A	20,000	heating oil	October 31, 1996
Former HOT B	20,000	heating oil	October 31, 1996

D. Initial Site Characterization (Figure 1: Vicinity/Location Map)

(Figure 2: Site Plan)

1. Regulated Substance Released (gasoline, diesel, used oil, etc.): <u>heating oil</u> Discuss how this determination was made and circumstances of discovery.

Characterization of petroleum-related contamination at the site was initiated during system closure activities on October 31, 1996, by Anderson Columbia Environmental, Inc. (ACE). After removal of the Former HOTs A & B and ancillary piping, five soil samples were collected from the tank pit (Figure 7). Three soil samples (8102-B850-TKA-N, TKA-S, and TKA-C) were collected from native soil at the Former HOT A excavation base and two soil samples (8102-B850-TKB-N and TKB-S) were collected from native soil at the Former HOT B excavation base. However, the soil samples collected did not contain contaminant concentrations that exceeded Georgia Environmental Protection Division applicable soil threshold levels (i.e., Table A, column 2). However, elevated concentrations of total petroleum hydrocarbon-diesel-range organics (TPH-DRO) and polynuclear aromatic hydrocarbons (PAHs) were present in the soil at the site (Tables 5a and b) (ACE 1997). Groundwater was not sampled as part of closure activities.

2. <u>Source(s) of Contamination: Unknown; piping leakage or tank overflow suspected</u> Discuss how this determination was made.

A detailed schematic diagram illustrating Former HOTs A & B and ancillary piping as configured during operation is not available. However, during removal activities by ACE, no holes in either tank were reported. Therefore, the major source of contamination is believed to have been piping leakage or tank overflow.

3. Local Water Resources

(Figure 3: Quadrangle Map - Public and Private drinking water and surface water) (Appendix III: Water resources survey documentation, including, but not limited to: USGS database search, interview forms, and documentation of field survey)

- a. Site located in high/average X OR low groundwater pollution susceptibility area?
- b. Water Supplies within applicable radii? YES X NO _________ If yes,
 - i. Nearest public water supply located within: 1,440 feet

ii. Nearest down-gradient public water supply located within: 1,440 feet

iii. Nearest non-public water supply located within: 12,480 feet

iv. Nearest down-gradient non-public water supply located within: _______ / feet

c. Surface Water Bodies and sewers:

ii. Nearest down-gradient surface water located within: 4,560 feet

iii. Nearest storm or sanitary sewer located within: 80 feet

iv. Depth to bottom of sewer at a point nearest the plume: 5.09 feet

4. Impacted Environmental Media

a. Soil Impacted (Table 2: Soil Analysis Results) (Figure 4: Soil Quality Map) (Appendix IV: Soil Boring Logs) (Appendix V: Soil Laboratory Reports) (Appendix VI: ATL Calculations, if applicable)

Provide a brief discussion of soil sampling.

Continuous direct-push soil cores were collected at 2.0-foot intervals during the installation of four boreholes (N1 through N4). Field headspace gas analyses were performed on each sample to determine organic vapor concentration. Two soil samples were selected from each borehole for laboratory chemical analysis of benzene, toluene, ethylbenzene, and xylene (BTEX); TPH gasoline-range organics (GROs)/DROs; and PAHs. In boreholes where organic vapors were detected, one sample was collected from the 2.0-foot interval where the highest vapor concentration was recorded, and the other from the 2.0-foot interval located immediately above the saturated zone. If organic vapors were not detected, one sample was collected from the 2.0-foot interval located immediately above the saturated zone. Refer to Attachment A for complete documentation of the technical approach implemented during this investigation.

i. Soil contamination above applicable threshold levels?

YES NO X

If yes, indicate highest concentrations in soil along with locations and depths detected.

ii. ATLs calculated? If yes, present ATLs. YES NO X

iii. If ATL's calculated, is soil contamination above ATL's? YES ____ NO ____ N/A __X__

b. Groundwater Impacted (Table 3: Groundwater Analysis Results) (Figure 5: Groundwater Quality Map) (Appendix VII: Monitoring Well Details) (Appendix VIII: Groundwater Laboratory Results)

Provide a brief discussion of groundwater sampling.

At each borehole location (N1 through N4), one groundwater sample was collected from a depth interval of approximately 1.0 to 5.0 feet below the saturated zone using a direct-push sampling device. Chemical parameters for groundwater samples submitted for laboratory analysis included BTEX and PAHs. Refer to Attachment A for complete documentation of the technical approach implemented during this investigation.

i. Groundwater contamination above MCLs? YES X NO ii. Groundwater contamination above In-Stream Water Quality Standards? YES NO X If yes, indicate highest concentrations in groundwater along with the locations.

Benzene was detected in the groundwater sample collected from direct-push location N-3 at a concentration of 5.7 μ g/L (Figure 5). This concentration exceeds the U.S. Environmental Protection Agency maximum contaminant level of 5.0 μ g/L (Table 3).

c. Surface Water Impacted? YES NO X If Yes, indicate concentration(s) of surface water sample(s) taken from the surface water body/bodies impacted.

d. Point of Withdrawal Impacted? YES NO N/A X If Yes, indicate concentration(s) of water sample(s) taken from withdrawal point(s).

5. Other Geologic/Hydrogeologic Data

- a. Depth to Groundwater: 9.27 to 9.96 feet BGS (Table 4: Groundwater Elevations)
- b. Groundwater Flow Direction: southeast (Figure 6: Potentiometric Surface Map)
- c. Hydraulic Gradient: 0.003 feet/feet
- d. Geophysical Province: Coastal Plain
- e. Unique geologic/hydrogeological conditions: <u>A localized groundwater depression exists</u> in the vicinity of the former excavation area at this site (see Appendix X, Section 1.4).
- 6. <u>Corrective Action Completed or In-Progress</u> (if applicable) (Table 5: UST System Closure Sampling) (Figure 7: UST System Closure Sampling) (Appendix IX: Contaminated Soil Disposal Manifests)

a. Underground Storage Tank (UST) System Closure: N/A If applicable, summarize UST system closure activities conducted.

ACE removed the Former HOTs on October 31, 1996. The piping was drained into the tank, and all remaining contents were subsequently removed using a vacuum truck and/or compressor-driven barrel vacuum device. The piping was then closed in place by filling with grout. A backhoe was used to excavate down to the top of the tanks. After the atmosphere in each tank was tested with a combustible gas indicator, all accessible tank openings were capped and the tanks were lifted from the excavation pit.

Х

N/A

b. Excavation and Treatment/Disposal of Backfill Materials and Native Soils Check one: No UST removal performed

Returned to UST excavation

Excavated soils treated or disposed off site

If soils were excavated, summarize excavation and treatment/disposal activities:

Approximately 250 cubic yards of soil were removed from the Building 850 site and stockpiled at the ACE temporary soil containment area located at Hunter Army Airfield (HAAF) where it was tested in accordance with the disposal facility requirements. The soil was transported to Kedesh, Inc., Highway 84, Ludowici, GA 31316. The Installation has records of all manifests and weight tickets for the total project. However, site-specific information is not available.

7. Site Ranking:

Environmental Site Sensitivity Score: 500 (Appendix X: Site Ranking Form)

- 8. <u>Conclusions and Recommendations</u> Complete applicable section below, one section only
 - a. No Further Action Required (if applicable) (provide justification)

The groundwater and soil analytical data collected during the Corrective Action Plan (CAP)-Part A investigation are sufficient to define the nature and extent of petroleum-related contamination at this site. The results of the investigation indicate that the site conditions do not exceed the applicable Georgia Environmental Protection Division soil threshold levels as defined in Table A, column 2. However, benzene was detected in the groundwater at a concentration of 5.7 μ g/L. Although the results of the investigation indicate groundwater contamination is present at the site, fate and transport modeling of the benzene concentrations indicates that benzene will never reach the nearest receptor, which is located 1,440 feet downgradient from the site. A detailed description of the fate and transport model is presented in Appendix VI.

Because no soil contamination was found at the site and the results of the fate and transport model indicate no risk to the receptor, further investigation of the Former HOTs A & B, Building 850 site is not required.

b. Monitoring Only (if applicable) N/A X (provide justification)
c. CAP-B (if applicable (provide justification))
N/A X (provide justification)

III. MONITORING ONLY PLAN (if applicable):

N/A X

A. Monitoring points

- B. Period/Frequency of monitoring and reporting
- C. Monitoring Parameters

D. Milestone Schedule

E. Scenarios for site closure or CAP-Part B

- IV.
 SITE INVESTIGATION PLAN (if applicable):
 N/A
 X

 (Figure 8: Proposed additional boring/monitoring well location)
 N/A
 X
- A. Proposed Investigation of Horizontal and Vertical Extent of Contamination In:
 - 1. Soil

N/A X

2. Groundwater

a. Free Product

N/A X

b. Dissolved phase

NA<u>X</u>

N/A X

3. Surface Water

B. Proposed Investigation of Vadose Zone And Aquifer Characteristics:

V. PUBLIC NOTICE

(Figure 9. Tax Map) (Appendix XI: Copies of public notification letters & certified return receipts or newspaper notice if approved)

Public notification letters are not required for the Former HOTs A & B, Building 850 site because heating oil tanks are not regulated as defined by Georgia Department of Natural Resources (GA DNR) guidance.

VI. CLAIM FOR REIMBURSEMENT (for GUST Trust Fund sites only): N/A X (Appendix XII: GUST Trust Fund Reimbursement Application and Claim for reimbursement)

The HAAF is a federally owned facility and has funded the investigation for the Former HOTs A & B, Building 850 site, which is unregulated as defined by GA DNR guidance and has no Facility Identification Number, using Environmental Restoration Account funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

APPENDIX I

REPORT FIGURES

.

Figure 1. Location Map of Hunter Army Airfield, Chatham County, Georgia

Figure 2. Site Plan for the Former HOTs A & B, Building 850 Site Investigation

Figure 3a. Topographic Quadrangle Map of Hunter Army Airfield and Surrounding Area

Hunter Army Airfield CAP-Part A Report Former Heating Oil Tanks A & B, Building 850

QU

Figure 3c. Detailed Map Showing Public and Private Drinking Water Sources in Areas Adjacent to Hunter Army Airfield

1

. .

(

Figure 4. Soil Quality Map of the Former HOTs A & B, Building 850 Site

Figure 5. Groundwater Quality Map of the Former HOTs A & B, Building 850 Site

Figure 6. Potentiometric Surface Map of the Former HOTs A & B, Building 850 Site

Figure 7. HOT System Closure Sampling Locations at the Former HOTs A & B, Building 850 Site

NOT APPLICABLE FOR THE FORMER HOTS A & B BUILDING 850 SITE INVESTIGATION

Figure 8. Proposed Additional Boring/Monitoring Well Locations

(

APPENDIX II

REPORT TABLES

.
Former HOTs A & B, Building 850 Hunter Army Airfield Chatham County, Facility ID #: N/A

TABLE 1: FREE PRODUCT REMOVAL

		Monitoring Well Nur		
Date of Measurement	Groundwater Elev. (ft MSL)	Product Thickness (ft)	Corrected Water Elev. (ft MSL)	Product Removed (gal)
			TOTAL	NONE ¹

and the second		Monitoring Well Nur	mber: N/A	
Date of Measurement	Groundwater Elev. (ft MSL)	Product Thickness (ft)	Corrected Water Elev. (ft MSL)	Product Removed (gal)
			TOTAL	NONE

NOTE: ¹Free product was not found. MSL - mean sea level.

50		I/A
ing 8		1:#
Build	Hunter Army Airfield	ty ID
B, H	y Ai	acili
A&	Arm	ty, F
OTs	nter	Coun
ler H	Hu	am (
Former HOTs A & B, Building 850		Chatham County, Facility ID #: N/A

TABLE 2a: SOIL ANALYTICAL RESULTS³

(SO	-
Z	
POL	
MO	
Ŭ D	
N	
202	
OH	
E	
LA.	
(VOLATILE ORGANIC COMPOUNDS)	
-	

		e A column 2)	evels (i e Tahl	tural Resources (GA DNR) Applicable Soil Threshold Levels (i.e. Table A. column 2)	() Applicable	ces (GA DNF	atural Resour	Georgia Department of Nat	¹ Georgia De	NOTE:
NRC	NRC	NRC	700	10	6.000	0.008		Annlicable Standards ¹	Annlicable	
0.538 U	3.2 =	BDL	0.0064 U	0.0022 U	0.0022 U 0.0022 U	0.0022 U	04/03/98	8.0 to 9.3	HN4105	4-V
0.543 U	9.6 =	BDL	0.0065 U	0.0022 U	0.0022 U 0.0022 U	0.0022 U	04/03/98	0.0 to 2.0	HN4101	4-Z
0.556 U	2.6 U	BDL	0.0067 U	0.0022 U	0.0022 U	0.0022 U 0.0022 U	04/03/98	8.0 to 9.4	HN3110 ⁺	N-3
0.549 U	3.5 =	0.0043	0.0066 U	0.0022 U	0.0022 U 0.0043 =	0.0022 U	04/03/98	8.0 to 9.4	HN3105	N-3
0.538 U	9.3 =	BDL	0.0064 UJ	0.0022 UJ	0.0022 UJ 0.0022 UJ	0.0022 UJ	04/03/98	0.0 to 2.0	HN3101	N-3
0.532 UJ	0.77 U	0.0083	0.0046 J	0.0021 U	0.0037 =	0.0021 UJ 0.0037 =	04/06/98	8.0 to 9.9	HN2105	N-2
0.521 U	0.58 U	0.0251	0.0251 =	0.0021 U	0.0021 U	0.0021 UJ 0.0021 U	04/06/98	0.0 to 2.0	HN2101	N-2
0.532 UJ	4.2 =	0.0157	0.0064 U	0.0021 U	0.0157 =	0.0021 UJ 0.0157 =	04/06/98	8.0 to 9.1	HN1105	N-1
0.53811	4950 =	0.0476	0.0012 J	0.0022 U	0.0464 J	0.0022 UJ 0.0464 J	04/06/98	0.0 to 2.0	HN1101	1-N
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Sampled	(ft BGS)	A	Location
TPH-GRO	TPH-DRO	Total BTEX ²	Xylenes	Ethylbenzene	Toluene	Benzene	Date	Depth	Sample	Sample

Georgia Department of Natural Resources (GA DNR) Applicable Soil Threshold Levels (i.e., Table A, column 2).

The total value reported represents the sum of all detected compounds. A total is not reported if all the compounds are below the laboratory detection limits.

All field work and analytical sampling were performed prior to the release of the new GA DNR Corrective Action Plan (CAP)-Part A Guidance (i.e., May 1998); therefore, the new analytical methods specified were not used.

Duplicate sample for sample collected from location N-3 at a depth of 8.0 to 9.4 ft BGS.

BDL - Below detection limit

BGS - Below ground surface.

BTEX - Benzene, toluene, ethylbenzene, and xylene.

NRC - No regulatory criteria.

TPH-DRO - Total petroleum hydrocarbon-diesel-range organics.

TPH-GRO - Total petroleum hydrocarbon-gasoline-range organics.

Laboratory Qualifiers

U - Indicates the compound was not detected at the concentration reported.

1 - Indicates the value for the compound is an estimated value.

UJ - Indicates the compound was not detected at the reported concentration and the concentration was estimated.

Indicates the compound was detected at the concentration reported.

Former HOTs A & B, Building 850	Hunter Army Airfield	Chatham County, Facility ID #: N/A	for more at press to the store and the store

TABLE 2b: SOIL ANALYTICAL RESULTS³ POLYNUCLEAR AROMATIC HYDROCARBONS)

	í					A	Detected PAH Compounds (mg/kg)	Compounds	s (mg/kg)					
Depth (ft BGS)		Date Sampled	Benzo(a)- anthacene	Benzo(a)- pyrene	enzo(a)- Benzo(b)- fluoranthene	Benzo(g,h,i)- perylene	Benzo(k)- fluoranthene Chrysene	Chrysene	Dibenzo(a,h)- anthracene	Fluor- anthene	Indeno- (1,2,3-cd)- Phenan- nvrene threne	Phenan-	Purene	Total PAHs
0.0 to	2.0	0.0 to 2.0 04/06/98	3.47 =	3.96 =	5.00=	2.25=	2.55=	3.94=		3.31 =	2.44 =	1.42.11	3 30 =	31 120
.0 to	8.0 to 9.1	04/06/98	1.62 =	1.78 =	2.46=	1.05 J	1.03 J	1.69=	1.41 U	1.97 =	1.11.1	U 16.1	1.76 =	14.47
0	to 2.0	0.0 to 2.0 04/06/98	0.346 U	0.346 U	0.346 U	0.346 U	0.346 U	0.346 U	0.346 U	0.346 U	0.346 U	0.346 U	0.346 []	BDL
0	to 9.9	8.0 to 9.9 04/06/98	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	0.352 U	BDI.
21	0.0 to 2.0	04/03/98	0.714 U	1.32=	0.714 U	0.714 U	0.714 U	0.714 U	0.714 U	1.25=	0.714 U	0.714 U	0.994 =	3.564
21) to 9.4	8.0 to 9.4 04/03/98	0.730 U	0.522 J	0.730 U	0.730 U	0.730 U	0.730 U	0.730 U	0.730 U	0.730 U	0.730 U	0.730 11	0 522
	0 to 9.4	8.0 to 9.4 04/03/98	0.557 J	1.20 =	0.738 U	0.738 U	0.738 U	0.738 U	0.738 U	1.12=	0.738 U 0.738 U	1	1.18=	4.057
-	0.0 to 2.0	04/03/98	0.0757 J	0.089 J	0.141 J	0.056 J	0.082 J	0.106 J	0.362 U	0.103 J	0.067 J	0.0367 J	0.112.1	0.8696
121	HN4105 8.0 to 9.3	04/03/98	0.198 J	0.172 J	0.232 J	0.105 J	0.119 J	0.313 J	0.358 U	0.228 J	0.111 J	0.0824 J	0.328 J	1.888
291	Applicable Standards ¹		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NRC

¹Georgia Department of Natural Resources (GA DNR) Applicable Soil Threshold Levels (i.e., Table A, column 2). ²BDL - Below detection limit; PAH compounds were not detected above the laboratory detection limit. Refer to Appendix V, Table V-A, for a complete list of NOTE:

³All field work and analytical sampling were performed prior to the release of the new GA DNR Corrective Action Plan (CAP)-Part A Guidance PAH results.

⁴Duplicate sample for sample collected from location N-3 at a depth of 8.0 to 9.4 ft BGS. (i.e., May 1998); therefore, the new analytical methods specified were not used.

BGS - Below ground surface.

N/A - Not applicable, the health-based threshold level exceeds the expected soil concentration under free production conditions. PAHs - Polynuclear aromatic hydrocarbons.

Laboratory Qualifiers

U - Indicates the compound was not detected at the concentration reported.

J - Indicates the value for the compound is an estimated value.

UJ - Indicates the compound was not detected at the reported concentration and the concentration was estimated.

Indicates the compound was detected at the concentration reported.

Former HOTs A & B, Building 850 Hunter Army Airfield Chatham County, Facility ID #: N/A

TABLE 3a: GROUNDWATER ANALYTICAL RESULTS⁴ (VOLATILE ORGANIC COMPOUNDS)

Sample Location	Sample ID	Depth (ft BGS)	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Xylenes (µg/L)	Total BTEX ³ (µg/L)
N-1	HN1200	10.0 to 14.0	04/06/98	2 U	2 U	2 U	6 U	BDL ²
N-2	HN2200	11.0 to 15.0	04/06/98	2 UJ	2.2 J	24.4 J	21.3 J	BDL ²
N-3	HN3200	10.5 to 14.5	04/03/98	5.7 =	2 U	8.7 =	5.9 J	BDL ²
N-4	HN4200	10.5 to 14.5	04/03/98	2 U	2 U	2 U	6 U	BDL ²
T	Applicab	le Standards ¹		5	1,000	700	10,000	NRC

TABLE 3b: GROUNDWATER ANALYTICAL RESULTS⁴ (POLYNUCLEAR AROMATIC HYDROCARBONS)

			1000	Detec	ted PAH C	ompounds	(µg/L)	1.
Sample Location		Depth (ft BGS)	Date Sampled	Acenaph- thalene	Fluorene	Naptha- lene	Phenan- threne	Total PAHs ³ (μg/L)
N-1	HN1200	10.0 to 14.0	04/06/98	9.9 UJ	9.9 UJ	9.4 UJ	9.9 UJ	BDL ²
N-2	HN2200	11.0 to 15.0	04/06/98	25.1 J	11.6 J	37.6 J	7.6 J	81.9
N-3	HN3200	10.5 to 14.5	04/03/98	10.5 UJ	10.5 UJ	10.5 UJ	10.5 UJ	BDL ²
N-4	HN4200	10.5 to 14.5	04/03/98	10.3 UJ	10.3 UJ	10.6 J	10.3 UJ	10.6
	Applical	ble Standards ¹		NRC	NRC	NRC	NRC	NRC

NOTE: ¹U.S. Environmental Protection Agency maximum contaminant level.

²BDL - Below detection limit; PAH/BTEX compounds were not detected above the laboratory detection limit. Refer to Appendix VIII, Table VIII-A, for complete list of PAH and BTEX results.

³The total value reported represents the sum of all detected compounds. A total is not reported if all the compounds are below the laboratory detection limits.

⁴All field work and analytical sampling were performed prior to the release of the new Georgia Department of Natural Resources (GA DNR) Corrective Action Plan (CAP)-Part A Guidance (i.e., May 1998); therefore, the new analytical methods specified were not used.

BGS - Below ground surface.

BTEX - Benzene, toluene, ethylbenzene, and xylene.

NRC - No regulatory criteria.

PAHs - Polynuclear aromatic hydrocarbons.

Laboratory Qualifiers

U - Indicates the compound was not detected at the concentration reported.

J - Indicates the value for the compound is an estimated value.

UJ - Indicates the compound was not detected at the reported concentration and the concentration was estimated.

= Indicates the compound was detected at the concentration reported.

Former HOTs A & B, Building 850 Hunter Army Airfield Chatham County, Facility ID #: N/A

TABLE 4: GROUNDWATER ELEVATIONS

Well Number	Date Measured	Ground Surface Elev. (ft MSL)	Top of Casing Elev. (ft MSL)	Depth of Screened Interval (ft BGS)	Depth of Free Product (ft BTOC)	Water Depth (ft BTOC)	Product Thickness (ft)	Specific Gravity Adjustment	Corrected Groundwater Elev. (ft MSL)
N-1	04/08/98	38.79	39.88	9.0 to 14.0	N/A	10.36	N/A	N/A	29.52
N-2	04/08/98	38.99	40.94	10.0 to 15.0	N/A	11.91	N/A	N/A	29.03
N-3	04/08/98	38.96	41.55	9.5 to 14.5	N/A	12.17	N/A	N/A	29.38
N-4	04/08/98	38.89	40.83	9.5 to 14.5	N/A	11.45	N/A	N/A	29.38

NOTE: MSL - Mean sea level.

BGS - Below ground surface. BTOC - Below top of casing. N/A - Not applicable.

Former HOTs A & B, Building 850 Hunter Army Airfield Chatham County, Facility ID#: N/A

TABLE 5a: HOT SYSTEM CLOSURE¹ - SOIL ANALYTICAL RESULTS (VOLATILE ORGANIC COMPOUNDS)

Sample Location	Depth (ft BGS) ³	Date Sampled	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH-DRO (mg/kg)
8102-B850-TKA-N		10/31/96	BDL	BDL	BDL	BDL	BDL	750.6
8102-B850-TKA-S		10/31/96	BDL	BDL	BDL	BDL	BDL	4,400
8102-B850-TKA-C		10/31/96	BDL	BDL	BDL	BDL	BDL	690
8102-B850-TKB-N		10/31/96	BDL	BDL	BDL	BDL	BDL	7,030.3
8102-B850-TKB-S		10/31/96	BDL	BDL	BDL	BDL	BDL	141,100
Applicable	Standards	2	0.008	6	10	700	NRC	NRC

NOTE: ¹Heating Oil Tank system closure performed by Anderson Columbia Environmental Services, Inc. (1997).

²Georgia Department of Natural Resources Applicable Soil Threshold Levels (i.e., Table A, column 2).
³Depth of system closure sample not reported. Samples were reported to have been collected in the bottom center portion of the tank excavation pit.

BDL - Below detection limit. Analytical result/detection limit not provided.

BGS - Below ground surface.

BTEX - Benzene, toluene, ethylbenzene, and xylene.

NRC - No regulatory criteria.

TPH-DRO - Total petroleum hydrocarbon-diesel-range organics.

II-8

Chatham County, Facility ID #: N/A Former HOTs A & B, Building 850 Hunter Army Airfield

TABLE 5b: HOT SYSTEM CLOSURE¹ - SOIL ANALYTICAL RESULTS (POLYNUCLEAR AROMATIC HYDROCARBONS)

							Detected	PAH CC	Detected PAH Compounds (mg/kg)	(mg/kg)						
	Danth	Doto		-	Benzo(b)-	r r	4	1		2	Indeno-	2-Methyl-				Total
Sample Location	(ft BGS) ⁴	ŝ	thene cene	- Anunra-	anthene	Benzo(a)-	Benzo(g,h,1)- pervlene	Chry- sene	Fluor- anthene Fluorene		(1,2,3-cd)-	Naph-	Naph-	Naph- Phen-	0	PAHs
A VILL DOCO LUIS	-	101101						٦٢		ALLA LOTT	PJ14114	mainin	Intatchtc .	annianna	ryiene	(mg/kg)
N-WI-000-7010	7	10/31/90	BUL	BDL	BDL	BDL	BDL	BDL	1.160	BDL	BDL	BDL	BDI.	1 770	1 130	4.06
8102-B850-TKA-S		10/31/96	3.10	2.7	BDL	BDL	BDL	BDL	7.30	4.00	BDL	12.90	01.0	12.2	000	013
A VIT DOCT COTO	T	1011101		100	144		1						11.4	1.1.1	0.20	24.7
J-WI-0002-2010	7	10/31/96	BUL	BUL	BDL	BDL	BDL	BDL	6.00	BDL	BDL	BDL	RDI	640	\$ 10	12.0
8102-B850-TKB-N	4	10/31/96	BDL	BDL	BDL	BDL	BDL	BDL	3.10	BDI	BDI.	BDI.	IUI	2 20	01.0	0.00
8107-R850-TKR-S		10/21/06	3 60	3.20	1 60	OVE	000	100					7777	07.0	04.7	7.20
		DEITCIDT		07.0	100.4	04.0	07-7	4.90	11.60	3.80	2.40	13.1	2.80	17.4	16.7	2.68
Applicabl.	Applicable Standards ²	24	N/A ³	N/A ³	N/A ³	N/A ³	N/A3	N/A3	NI/A3	N1/A3	EALIN	CON.				
								44.1.7	ATINT	TIMT	CAN	WINT	N'H	NA	AN	XX

¹Heating Oil Tank system closure performed by Anderson Columbia Environmental, Inc. (1997). NOTE:

²Georgia Department of Natural Resources Applicable Soil Threshold Levels (i.e., Table A, column 2).

³Not applicable; the health-based threshold level exceeds the expected soil concentration under free-product conditions.

¹Depth of system closure sample not reported. Samples were reported to have been collected from the bottom center portion of the tank excavation pit. BDL - Below detection limit.

BGS - Below ground surface. NRC - No regulatory criteria. PAHs - Polynuclear aromatic hydrocarbons.

Former HOTs A & B, Building 850 Hunter Army Airfield Chatham County, Facility ID #: N/A

TABLE 6a: HOT SYSTEM CLOSURE¹ - GROUNDWATER ANALYTICAL RESULTS

(VOLATILE ORGANIC COMPOUNDS)

Sample Location	Depth (ft BGS)	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethyl - benzene (μg/L)	Xylenes (µg/L)	Total BTEX (µg/L)
N/A ²							
A	oplicable Standard	s ³	5	1,000	700	10,000	NRC

TABLE 6b: HOT SYSTEM CLOSURE¹ - GROUNDWATER ANALYTICAL RESULTS (POLYNUCLEAR AROMATIC HYDROCARBONS)

Sample Location Depth (ft BGS)			Detected PAH Compounds (µg/L)	
	Date Sampled		Total PAHs (µg/L)	
N/A ²				
				-
A	pplicable Standard	is ³		NRC

NOTE: ¹Heating Oil Tank system closure performed by Anderson Columbia Environmental, Inc.

(1997). ²Not applicable; groundwater samples were not collected.

³U.S. Environmental Protection Agency maximum contaminant levels.

BGS - Below ground surface.

NRC - No regulatory criteria.

APPENDIX III

WATER RESOURCES SURVEY DOCUMENTATION

WATER RESOURCES SURVEY DOCUMENTATION

1.0 LOCAL WATER RESOURCES

As required by the Georgia Department of Natural Resources (GA DNR) Underground Storage Tank (UST) Corrective Action Plan (CAP)-Part A Guidance (GA DNR 1998b), a water resource survey documenting information for public and non-public water supply wells, surface water bodies, underground utilities, and potential receptors was conducted for all the Hunter Army Airfield (HAAF) UST investigation sites in April, May, and June 1998. The information presented in this section provides the supporting documentation for Section II.D.3 of the CAP-Part A form.

1.1 WATER SUPPLY WELL SURVEY

The water supply well survey was conducted using the following GA DNR guidelines/requirements:

- HAAF is located in an area of average or higher groundwater pollution susceptibility (GA DNR 1976).
- Locate all public supply wells, as defined by the GA DNR, that exist within 2 miles of the investigation sites.
- Locate all non-public supply wells that exist within 0.5 miles of the investigation sites.
- Locate all supply wells nearest the investigation sites.
- Locate all wells downgradient of the investigation sites.

The required survey was accomplished by obtaining information from the Fort Stewart Directorate of Public Works (FS DPW) and the City of Savannah Bureau of Water Operations, performing a field survey, and conducting a U.S. Geological Survey (USGS) database search. A summary of the information obtained from the survey is provided in the following sections.

1.1.1 Fort Stewart Directorate of Public Works Survey Summary

According to the FS DPW, nine water supply wells are located within the confines of the HAAF area (Figures 3a and 3b, Appendix I). These wells have the potential to provide up to 3,890 gallons per minute (gpm) of water to occupants of the HAAF installation. The FS DPW was unable to provide documentation listing the companies responsible for well installation and drillers' logs showing as-built information and subsurface geologic data. Information concerning such documentation was requested from several water well drilling companies in the Chatham County area; however, data were procured with very limited success. The FS DPW provided well locations, pump rates, treatment methods, casing depths, and total depths for eight of the nine wells located at HAAF (Table III-A). However, documentation of subsurface geology based on HAAF drill logs remains extremely limited. Therefore, other references containing deep-well

information were used to document the subsurface geology and aquifer characteristics beneath the HAAF area. Refer to Appendix X, Section 1.0, for further geologic discussion.

Wells 1 and 2, both public water supply wells located in the cantonment area of HAAF, constitute the main water supply system at the HAAF installation. Well 1, located at Building 711 on the corner of Moore Road and Douglas Street, is a 12-inch-diameter well with a 100-hp turbine pump serving a 100,000-gallon elevated storage tank (Tank 1) through 10-inch lines. Water from Well 1 is injected with hydrofluosilic acid and chlorine gas solution at the well house. Well 2, located at Building 1205 on the corner of Neal Street and Strachan Road, is a 12-inch-diameter well with a 100-hp turbine pump serving a 200,000-gallon elevated tank (Tank 2) through 10-inch lines. Water from Well 2 is also injected with hydrofluosilic acid and chlorine gas solution at the well house. Wells 1 and 2 provide water to a 500,000-gallon elevated storage tank (Tank 3) located on Middleground Road behind noncommissioned officer (NCO) family housing. This tank provides potable water to 694 service connections, which are used by an average of at least 5,000 individuals year-round.

Wells 3, 4A, and 7 are public supply wells located outside the cantonment area of HAAF. Well 3, located at Building 8455, is a 4.0-inch-diameter well with a 1.0-hp electric submersible pump serving a 1,000-gallon hydropneumatic storage tank through 1.5-inch galvanized steel lines. Water from Well 3 is treated with calcium hypochlorite solution and is consumed by approximately 25 people during daytime hours, year-round. Well 4A, located at Building 8581 at the 117th Air National Guard Facility, is a 4.0-inch-diameter well. Pumpage is accomplished with a 0.75-hp turbine pump with 80 gpm capacity. Well 4A provides water for approximately 50 people per day year-round. Well 7 is located at Building 8703 on the Forest River, west of Rio Road. Well 7 is a 4.0-inch well with a 3.0-hp submersible pump serving a 5,000-gallon hydropneumatic tank through 2.0-inch galvanized steel lines. Well 7 serves approximately 500 people on a part-time basis. Sanitary protection for Wells 3, 4A, and 7 is provided by a pump motor block, concrete slab, sealed well head, and screened casing vent.

Based on the GA DNR criteria of serving potable water to less than 25 occupants per day and having less than 15 service connections, wells 5, 8, and 9 are classified as non-public supply wells (Figure 3b, Appendix I). Pump rates, casing depths, bore depths, treatment methods, and storage tank information are provided in Table III-A.

Well 10 is a non-potable water source (Figure 3b, Appendix I). Water from Well 10 is used for the cleaning of military equipment at a wash-rack facility. Additional information, including capacity, borehole depth, and casing depth, is not available.

1.1.2 City of Savannah Bureau of Water Operations Survey Summary

The locations of supply wells found outside the boundary of HAAF that are within 2 miles of one or more of the CAP-Part A investigation sites are shown on Figures 3a and 3c, Appendix I. These wells include 25, 15, 27, 14, 23, 6, and 9. Data concerning casing depths, borehole depths, casing sizes, and capacities are listed in Table III-B. The City of Savannah Bureau of Water Operations was unable to provide drill logs or as-built well information

1.1.3 U.S. Geological Survey Summary

Chatham County encompasses three watersheds: Lower Savannah, Lower Ogeechee, and Ogeechee Coastal (EPA 1998). The HAAF installation is located within the Ogeechee Coastal watershed which covers 1,477 square miles; includes 18 rivers and streams, including the Little Ogeechee River which borders the south western portion of HAAF; and contains land usage areas

classified as 2 percent urban, 67 percent forest, and 24 percent agricultural. Water use survey data for the watershed estimate that the area has a total population of 200,000 with domestic, industrial, and commercial water supplies mainly derived from groundwater sources (USGS 1990). Domestic water supply data show that a population of 144,000 receives public-supplied water from groundwater sources, 48,000 receive water from self-supplied groundwater sources, and 8,000 from public-supplied surface water sources. The water use survey also reports that two industrial facilities within the watershed are self-supplied with water obtained from groundwater sources. The survey also notes that a total of five wastewater facilities are located in the area with three reported as public wastewater treatment facilities.

1.2 SURFACE WATER BODIES

Surface water(s) in the State of Georgia, as defined by *Rules and Regulations for Water Quality Control, Chapter 391-3-6* (GA DNR 1998a), shall mean any and all rivers, streams, creeks, branches, lakes, reservoirs, ponds, drainage systems, springs producing 100,000 gallons per day, and all other bodies of surface water, natural or artificial, lying within or forming a part of the boundaries of the State which are not entirely confined and retained completely upon the property of a single individual, partnership, or corporation. The surface water body survey was conducted using the following GA DNR guidelines/requirements:

- surface water bodies that exist within 1 mile of the investigation sites,
- all surface water bodies nearest the investigation sites if these bodies lie outside the 1-mile radius of concern,
- all surface water bodies downgradient of the investigation sites, and
- the storm and sanitary sewers adjacent to investigation sites.

The locations of surface water bodies at HAAF were obtained from USGS aerial photographs, USGS topographic maps, and from maps provided by the FS DPW. Storm and sanitary sewer location maps, storm sewer invert elevations, and storm sewer and culvert construction details were provided by the FS DPW and the City of Savannah Bureau of Water and Sewer Planning (1998).

Surface water bodies at HAAF include Hallstrom Lake, Lamar Canal, Buckhalter Canal, Springfield Canal, Pond 29 located northwest of Buildings 336 and 232, and an unnamed pond located along the southeast boundary of the HAAF installation (Figure 3b, Appendix I). Several unnamed drainage canals exist throughout HAAF. Most of these canals drain southwest into the Little Ogeechee River, which is part of the Lower Ogeechee watershed. The remaining drainage canals located on the east side of the HAAF installation flow east and eventually drain into the Vernon River, which is located southeast of the HAAF installation.

Surface water bodies at HAAF and adjacent areas are not used as public water supplies. The ponds and lakes are perennial, whereas most of the drainage canals and ditches are intermittent. Most of the drainage canals are at least partially enclosed in culverts.

1.3 POTENTIAL RECEPTOR SURVEY SUMMARY OF THE FORMER HOTS A & B, BUILDING 850 SITE

A field potential receptor survey was conducted for the Former HOTs A & B, Building 850 site on April 30, 1998. The site and adjacent areas were surveyed for locations of surface water bodies, utility lines, and basements. Basements do not exist in the buildings adjacent to the site. Additional information, provided by the FS DPW, was used to determine the location of the nearest public and non-public water supply wells and downgradient surface water bodies not located during the field survey.

1.3.1 Water Supply Wells Near the Former HOTs A & B, Building 850 Site

The Former HOTs A & B, Building 850 site is located approximately 1,440 feet northwest (upgradient) of Well 2. Well 2 is located at Building 1205, Strachen Drive, HAAF (Figure 3b, Appendix I). Therefore, the site is classified as being located greater than 500 feet to a withdrawal point. Well 2 is a public well that supplies water to 7,500 persons through 525 service connections.

Based on the estimated nature and extent of petroleum-related groundwater contamination at the site, there is no indication that Well 2 has been impacted (Figure 3b, Appendix I). Therefore, collection and analysis of groundwater samples from Well 2 is not recommended.

1.3.2 Surface Water Bodies Near the Former HOTs A & B, Building 850 Site

Pond 29 is located approximately 1,920 feet northwest (upgradient) of the site (Figures 3a and 3b). As shown on Figure 3b, the nearest downgradient surface water body is a drainage ditch that lies approximately 4,560 feet southeast of the Former HOTs A & B, Building 850 site. Based on the distances between the site and the nearest surface water bodies, the site is classified as being located greater than 500 feet to a downgradient surface water body.

Based on the estimated nature and extent of petroleum-related groundwater contamination at the site, there is no indication that surface water bodies (Figure 3b, Appendix I) have been impacted or that sewer lines, culverts, or any other utility lines could serve as preferential pathways for contaminants to surrounding surface water bodies or water supply wells. Therefore, collection and analyses of surface water samples were not conducted as part of the site investigation.

TABLES

CAP-Part A UST Investigation Sites Hunter Army Airfield, Chatham County

TABLE III-A. WATER SUPPLY WELL INFORMATION PROVIDED BY THE FORT STEWART DPW

Building	Well ID			Casing Depth	Pump Rate (gpm)	Number of Service Connections	Population	Public or Non- Public Supply
711	1	1941	550	250	1,300	525	7,500	Public
1205	2	1941	600	250	1,300	525	7,500	Public
8455	3	1951	360	40	30	2	25	Public
8581	4A	Unk	300	92	80	10	50	Public
8641	5	1955	380	85	30	Unk	Unk	Non-public
8703	7	1980	450	330	70	8	500	Public
8632	8	1956	370	255	80	5	Unk	Non-public
8654	9	Unk	600	255	1,000	Unk	Unk	Non-public
8464	10	Unk	Unk	Unk	Unk	N/A	N/A	Non-public

NOTE: DPW - Directorate of Public Works.

gpm - Gallons per minute. N/A - Not applicable.

Unk - Unknown.

CAP-Part A UST Investigation Sites Hunter Army Airfield, Chatham County

TABLE III-B. WATER SUPPLY WELL INFORMATION PROVIDED BY THE CITY OF SAVANNAH BUREAU OF WATER OPERATIONS

Well ID					Casing Depth	Pump Rate (gpm)	Number of Service Connections	Population ¹	Public or Non- Public Supply
1	Unk	1,006	300	1,362	Unk	Unk	Public		
6	Unk	750	240	1,500			Public		
9	Unk	710	267	267 2,700 Unk		Unk	Public		
13	Unk	1,000	270	2,200	Unk	Unk	Public		
14	Unk	800	338	571	Unk	Unk	Public		
15	Unk	414	252	1,000	Unk	Unk	Public		
23	Unk	639	320	1,056	Unk	Unk	Public		
25	5 Unk 540 287		287	1,120	Unk	Unk	Public		
27	Unk	550	321	1,468	Unk	Unk	Public		
47	Unk	550	260	2,100	Unk	Unk	Public		

NOTE: gpm - Gallons per minute. TBD - To be determined.

Unk - Unknown

¹All wells are part of the same public water supply system serving the population of the City of Savannah.

÷

APPENDIX IV

SOIL BORING LOGS

÷

	00	DISTRICT		Former Heating	my Airfield Oil Tanks A	& B, Bu	ilding 850					
HTRW DRILLING L	06		JSACE Savannah NI									
SAIC		2 DRILL SUBCO	UNITRACTOR SHEET SHEET									
HAAP CAPF	PartA UST	Sites	HUNTER AAF BIDG. 850 Tanks AtB									
NAME OF DRELLER JOHN +	tasselhoff		6. MANUFACTURE	RS DESIGNATION OF DRILL		KA .						
SIZES AND TYPES OF DRILLING 21	the macrocco	re Tength	Recorabe Satiwa, KA									
sheet drive cap	= 4.6 Teneth	r - r	9. SURFACE ELEVATION									
push roads -	3' + 4' 1 km	spas	TBD 10. DATE STARTED 11. DATE COMPLETED									
2. OVERBURDEN THICKNESS				5-98 DWATER ENCOUNTERED	4-	6-98						
N. DEPTH DRILLED INTO ROCK		_	1.4	C	7.1' BL	S						
NA				ER AND ELAPSED TIME AF	EVEL	PLETED						
I. TOTAL DEPTH OF HOLE AND	14.0'		17. OTHER WATER I	LEVEL MEASUREMENTS (ST	ECOFY)	100						
S. GEOTECHNICAL SAMPLES	DISTURBED	UNDISTU		TAL NUMBER OF CORE BO	Verel XES	log						
SAMPLES FOR CHEMICAL ANALYSIS	Brex VOC P	A MOTIVILS	OTHER (SPECIFY)	OTHER (SPECTFY)	NA OTHER (SPE		TOTAL CORE					
DISPOSITION OF HOLE	BACKFILLED MO	2 1 1	OTHER (SPECIFY)	CRC 2/0 23. SIGNATURE OF INS	PECTOR)	RE	ECOVER 9 %					
pie zometer		NA	NA	this !	Reel	Ĩ						
OCATION SKETCH/COMMENT	S		12	SCALE	"Not t	o sca	-					
		TIT										
				+								
	500	0.00	111									
	See	page	34									
	See Log (Dage Xek C	34									
	See Log (Page Sock 9	34									
	See Loy (page Xek/K g	34									
	loy l	Dage Xerk C	34									
	Se e (og (Dage	34									
		Dage Xekk 98	34									
		Page Selik 98	34									
	See Log (Dage Strik	34									
		Dage Strik	34									
			34									
	Log (Dage XKK 9	34									
		Page	34									
			34									
			34									
	P Part A				HOLE NO.							

IV-3

Hunter Army Airfield CAP-Part A Report 111 ALD SCREEMONG CENTECH SANDLE OR CORE BOX NO (E) Former Heating Oil Tanks A & B, Building 850 \$to \$.8 0 1021 1235 Began 544/1 HNIIØI End 1240 Head Space OL/OH Sandy almahadaalaalaa d'to 2' D to 3.4 well gradet < 2 \$ \$ \$.8 to 2.2'9BR 1.0' to 1.9' 4-6-98 SM Silty Sand head space 545/3 2'+04' laminated with 7\$pps black sand 2,2' to 2.7' silty Fine sand 5/3/2 Begau 125\$ headspace 2,71% 3.4' 1255 end 4' to G' OL/OH Sandy 4.\$'to 7.3' organtic soll 1225 Recovery well graded O' to 3.4' UNCON-Solid ated 4.\$' to 4.7' head space Same as above 6408' 4,7' to 5,5' 10YRG/G. brownish yellow 17 PPM Fine sand UNCONSOLIDATEd 8 grados 84016 840 Began BOD 2.5¥ HN11\$5 end 13\$5 9.1 2.546/3 FULL RECOVERY 256 ppm light yellowish brown WFine Sand UNCON-Solidated CONTINUED ON Page 22 HOLL: NO NI

1

HTRW DRILLIN	GLO	G			-	1915	TRUCT	1	0		_ Fo	ormer	Hea	ting C	Dil Ta	nks A	CAP- A & B	, Bu	ildin	g 850)_
COMPANY NAME	-				-	2 D		USACE Savannah NZ SUBCONTRACTOR SHEET SHEET										_			
PROJECT	-			_												OF Z					
ITAAF CA	PP	art	A	US	T.	Si	Tes			122223	ov	A	A		RIA	1.	05	XT.		A	1.
NAME OF PRELLER	1550		-	~					HUNTEY AAF BIdg. 850 Tanks A4 6. MANUFACTURESS DESIGNATION OF DRILL												
SIZES AND TYPES OF DRILLING	2"0		may	cro	co	ve		Beoprobe Salina, KA													
Dush rods =	ace	1.001-0	lih	engt	4	' [e	uft	5	0.0100					N	2,	_			_		
serven lengt	L -	- 7		EH.	n			-	9. SUK	FACEE	LEVAT	ION	T	BD)						
/			-		-	-		-	10. DA	TE STAL		-9.	8		n.	DATEC	OMPLETE	299	K		
2. OVERBURDEN THICKNESS	NA							1	15. DE	-		VATER E	-	TERED		-1-	6-	1.	,	-	-
. DEPTH DRILLED INTO ROCK				-				-	16. DE	TH TO	WATE	RANDE	APSEL	TIME AF	9.0		OMPLETE	D			_
. TOTAL DEPTH OF HOLE	NA	-		-		-			5	ee	2 1	Na	ter	P	VP	1 1	09				_
I. TOTAL DEPTH OF HOLE	12	/	5		_			_	S	ee		W/C		MENTS (ST	ECIFY	19	100	à			
8. GEOTECHNICAL SAMPLES DISTURBED NA							UNDE	STURBE	ÎA	19	9. TOT.	AL NUME	BER OF	CORE BO	NA	F	~ ~	7			
Soil / water	S	B16,			PAH	VIETAL	-	-	OTHER					ECIFY)	and the second se	1.4	SPECIFY)		21. TOT	AL COR	E %
DISPOSITION OF HOLE			CKFLLET		MONT	TORING	WELL	GR	U 2	1	2	DR1 23. 510		RE OF DES	PECTOR	NA	-			62	
p: ezometer	-		V			NA		L	٨	A			te	lin	B	Ke	ei	è			
OCATION SKETCH/COMM	MENTS											0	/	SCALE	:						
	11													T	T	7-	1-18	-	1		
						•••••	•••••		•••••		•••••										
	17				•••••	•••••			•••••						-						
	+				•••••	•••••					•••••										
	+				•••••	•••••															
+			K																		
				e	,	ρ_c	ic	e		4											••••
					a.g.	. 6	200	К.	Ħ	-6											
·																					
				ļ																	
																1		•••••			
														T.		1					
																1		•••••			-
								1				····				1		•••••			
	1 T									•••••						1					
	1	1																			
				$\left \cdot \right $																	
<u>+</u>																.					
LIIIII ROJECT	11			<u>1 i</u>	_1						i			1	HOI	ENC					-
HAAF	CA	P	Pa	rt	A	()	sT	5	ita	5					HOL	E INC	N	12			
NG FORM 5056-R, AUG	(; 94				-1			-		-		_					Propon				

DE E Hunter Army Airfield CAP-Part A Report -----Former Heating Oil Tanks A & B, Building 850 MTION OF MATERIALS ALESIA TS (D) GEOTECH SAMPLI OR CORE BOX NO (E) Begin 133¢ \$ to \$.6 7.5 YR 2.5/1 01-21 HN2101 1335 end OL/OH organitic Oto2' soil with sand of Recovery O to 3.1' PPM \$.6 to1.7 7,5YRG/3 light brown 2'to4' Ø PPM SaN 1.7 to 3.1' 7.5YR 5/2 brown sand 4.0' to G.Z. 4-6.98 4'66' Begin 1335 end 1340 4406 5.00 · Same as above 1 5.902 4-6-9 1340 ϕ PPM 5.\$ to 58.8 4-6-98 Recovery 4.0 to 6.2' 7,5 YR2,5/1 vevy davk braun Silty Fine Sand 5.8' to 6.2' sub andular poorly sorted Sand 10YR 6/C brownish yellow 5.\$ to 8'+010' Begao 1350 eud 13 sandy clay HN2105 9.9' 6.0+6.6.2" 2.546/2 light recovery Ø PPM \$ 8932 4-6-28 brownish gray 8.0' to 10.1 30%+0 40% 2.5×85/8 fark red HOL: NO N2 932-6-98 **IV-8** 18 plasticity J11 ... Dace 29

1

ITRW DRILLING LO	G			USACE Savannah						∧ & B,	N3		
COMPANY NAME SAIC			2 DRILL SUBC	CONTRACTOR SHEET							HEET S	SHEETS	
PROFECT				and the second second	TION J	NT	1	~	<u> </u>			OF	
HUNTER AAF (CAP Part	AC	STSite	5 HUNTER AAF Bldg. 854 Tanks A									
John Ha	sselhoff		_	6. MANUFACTURERS DESIGNATION OF DRILL Gerando De Salina KA 8. HOLE LOCATION									
SIZES AND TYPES OF DRILLING 24 C	tia macroc	ort		8. HOLE	LOCATION	N					~		-
Sheete drive cap	= 4.6 ; pa:		9 = 34	4 9. SURF	ACE ELEVA	TION	1.1.1.1						-
Siren length = 3	5.5'			10 DAT	ESTARTE		'BD						_
					4.	3-0				4		8	
OVERBURDEN THICKNESS				15. DEP	TH GROUN	DWATER E	NCOUNTE	RED 913	R 10-12	-13 q	.41		
DEPTH DRALLED INTO ROCK				16. DEP		TER AND E		ME AFTE	RDRILLING	COMPLE	TED		
TOTAL DEPTH OF HOLE IL		211		17. OTH	SC	E VA	ASUREMEN	V I	eve	110	29		-
GEOTECHNICAL SAMPLES	14.5 C	3GS			See	e V	vate	v I	eve	(1	pc		
NA	CONTRACT.	NA	UNDIST	NA	19. TC	TAL NUM	BER OF CO	RE BOXE	NA				
SAMPLES FOR CHEMICAL ANALYSIS (BEG.	Brex.voc	PAIA	TALS	OTHER (HER (SPEC	1000	OTHE	R (SPECIFI	n	21. TOTAL	CORE
DISPOSITION OF HOLE	BAČKFILLED	MONITO	RING WELL	GIRU OTHER (RC 2			14		-73	
Diezometer		1	24	r	A	14	Laks	n B	Re	ene	6		
OCATION SKETCH/COMMENTS						V	so	CALE:					
			11	11				1			1	1 1	
	\sim								†			·····	
		1				1.7	24-					+	
NI		1				UD.	< 4-	-6 -	10			<u></u>	
		+++			-	\swarrow			<u> </u>				
									ļļ.			ļļ.	
		- -				+			ļļ.		V	.	
												ļļ.	
	X		NZ								$\underline{\Lambda}$	I]
	X			-						14			
		06	T	122					1			\mathbf{N}	
	·	Nº 1	5.	A				10	Y			. /	
			X	1.	1.			39					
					1			V					
		1		1	·	<u>-</u>		F	herele				
					1	N	X K				· ·····		
						192	30	-B					
		+		++		V	f						
	BI	dq											
		7											
							I						1
HUNTER AN IGFORM 5056-R, AUG 94		~	1						HOLE				
	10 -10	11		1.	-	C .1					3		

١

Hunter Army Airfield CAP-Part A Report 10 11/1 IN SURFITION OF MATERIALS CENTECH SANDLE OR CORE BOX NO (E) Former Heating Oil Tanks A & B, Building 850 96F 4-3-88 \$ +0 Ø.9' Started 1100E O'to2' Finished 1105 Sandy Sitter HN3101 full recovery SW-SM with Silf 7.5/R5/4 drilled 4' Øto 2' Ø. 9' to 2.7! Ф organic soil w Sand 7.5YR 2.5/1 2'-4' 2.7' to 4.0' 7.5YR5/1 4 4.0 to 7.3' 4.0' to 7.3' Same as above 4't=6' Φ recovery Started 1105 Finished 1110 6-5' Ø 9BR 4-3-88 8 8.0' to +0.8' 9.4' 8'told' started 11:20 HN3165 8.0 to 94 Finished 11:25 8.\$ to 10 38 4--98 same as above φ MAAF 2451 CAP A UST Envestigations N3 Bldg. 850

1

ITRW DRILLING	LOG		SACE	Savann	Oil Tanks A & B	N4							
SAIC		2 DRILL SUBCON	RE W	leight (SAIC)	SHEET SHEETS OF							
HUNTER AAF	CAP Part AU	ST Sites	4. LOCATION HUNTER AAF BIDG 850 Tanks AT										
John He	sselhoff		6. MANUFACTURERS DESIGNATION OF DRALL Geoprobe Salina KA										
TO SAMPLING EQUIPMENT	dia macrocore rubtate liver = 4'	longth	<u> </u>										
shoe to drive car	' and 21', 1.5"	diam	9. SURFACE ELEVATION TBP										
sween length	= 3,51		10. DATE STARTED 4-3-98 11. DATE COMPLETED 4-3-98										
OVERBURDEN THICKNESS			15. DEPTH GROUND	WATER ENCOUNTERED	9.31								
DEPTH DRELLED INTO ROCK	/		See	Nater le	TER DRILLING COMPLETED	9							
TOTAL DEPTH OF HOLE	14.5		17. OTHER WATER L	EVEL MEASUREMENTS (S	evel loc	4							
GEOTECHNICAL SAMPLES N A		UNDISTUR	the second s	AL NUMBER OF CORE BO		3							
SAMPLES FOR CHEMICAL ANALYSIS 3011 / Water	BTCX VOC PAH	METALS	OTHER (SPECIFY)	DRU E/O	OTHER (SPECIFY)	21. TOTAL CORE RECOVERY							
DISPOSITION OF HOLE		TORING WELL	OTHER (SPECIFY)	23. SIGNATURE OF INS	SPECTOR =								
CATION SKETCH/COMMEN	TS			C SCALL) Koene E:								
	Seet												
		rage											
		ļ											
	F CAP Part	AUS	t st		HOLE NO.	<u> </u>							
						-							

1

Hunter Army Airfield CAP-Part A Report 1111 FLD SCREENIN RESULTS (D) Former Heating Oil Tanks A & B, Building 850 CENTECH SANDLE UN CORE BOX NO (E) \$ to \$.8' highly organitic with sand Start 12:50 Ø'to2' Finish12:55 HN41Ø1 \$-2' Q.6' to 2.3' drilled \$to4' Ø OL/OH organitic soil recovered . with sand \$ to 3.5' 2,3' 8 3.5' SW-SM well graded sand with silt 2'to4' 5YR4/3 100 Ø Moistore 4.\$ to 4.7' highly organitic 4.7' to 6.4' Sw-SM well graded sand with silt 5YR5/3 Start 12:55 Finish 13:00 4'+66' Ø dvilled 4'to8' recovered 41 to X. 2' 6'to 8' Ø ∞ mhuilimhuilimhiinh well graded sand wsilt. 5YR7/2 8'to 16' 8. P. to 11.5' Start 13:10 S'torz' HN4195 5.0 to 8.8 some as Þ FINISH 13:15 duilled 8' to 12' 8,8 +0 9.3 5 YR 4/3 Gandy recovered 3.5' HAAF - CAP A UST Investigation IV-16 HOLD: NO N4

1.5

1
5

1

THIS PAGE INTENTIONALLY LEFT BLANK

ŝ,

APPENDIX V

SOIL LABORATORY REPORTS

THIS PAGE INTENTIONALLY LEFT BLANK

Former HOTs A & B, Building 850 Hunter Army Airfield Chatham County, Facility ID: N/A

TABLE V-A. SUMMARY OF SOIL ANALYTICAL RESULTS³

Location		N-1	N-1	N-2	N-2	N-3	N-3	N-3
Sample ID		HN1101	HN1105	HN2101	HN2105	HN3101	HN3105	HN3110 ⁴
Date Collected	Applicable	04/06/98	04/06/98	04/06/98	04/06/98	04/03/98	04/03/98	04/03/98
Depth (ft BGS)	Standards ¹	0.0 to 2.0	8.0 to 9.1	0.0 to 2.0	8.0 to 9.9	0.0 to 2.0	8.0 to 9.4	8.0 to 9.4
VOCs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.008	0.0022 UJ	0.0021 UJ	0.0021 UJ	0.0021 UJ	0.0022 UJ	0.0022 U	0.0022 U
Toluene	6.00	0.0464 J	0.0157 =	0.0021 U	0.0037 =	0.0022 UJ	0.0043 =	0.0022 U
Ethylbenzene	10.00	.0.0022 U	0.0021 U	0.0021 U	0.0021 U	0.0022 UJ	0.0022 U	0.0022 U
Xylenes	700.00	0.0012 J	0.0064 U	0.0251 =	0.0046 J	0.0064 UJ	0.0066 U	0.0067 U
TPH-DRO	NRC	4,950 =	4.2 =	0.58 U	0.77 U	9.3 =	3.5 =	2.6 U
TPH-GRO	NRC	0.538 U	0.532 UJ	0.521 U	0.532 UJ	0.538 U	0.549 U	0.556 U
PAHs	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2-Chloronaphthalene	NRC	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Acenaphthene	N/A ²	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Acenaphthylene	NRC	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Anthracene	N/A ²	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Benzo(a)anthracene	N/A ²	3.47 =	1.62 =	0.346 U	0.352 U	0.714 U	0.730 U	0.557 J
Benzo(a)pyrene	N/A ²	3.96 =	1.78 =	0.346 U	0.352 U	1.32 =	0.522 J	1.20 =
Benzo(b)fluoranthene	N/A ²	5.00 =	2.46 =	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Benzo(g,h,i)perylene	N/A ²	2.25 =	1.05 J	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Benzo(k)fluoranthene	N/A ²	2.55 =	1.03 J	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Chrysene	N/A ²	3.94 =	1.69 =	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Dibenzo(a,h)anthracene	N/A ²	0.819 J	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Fluoranthene	N/A ²	3.31 =	1.97 =	0.346 U	0.352 U	1.25 =	0.730 U	1.12 =
Fluorene	N/A ²	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Indeno(1,2,3-cd)pyrene	N/A ²	2.44 =	1.11 J	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Naphthalene	N/A ²	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Phenanthrene	N/A ²	1.42 U	1.41 U	0.346 U	0.352 U	0.714 U	0.730 U	0.738 U
Pyrene	N/A ²	3.39 =	1.76 =	0.346 U	0.352 U	0.994 =	0.730 U	1.18 =

NOTE: ¹Georgia Department of Natural Resources (GA DNR) Applicable Soil Threshold Levels (i.e., Table A, column 2).

²Not applicable; the health-based threshold level exceeds the expected soil concentration under free product conditions.
³All field work and analytical sampling were performed prior to the release of the new GA DNR Corrective Action Plan (CAP)-Part A Guidance (i.e., May 1998); therefore, the new analytical methods specified were not used.
⁴Duplicate sample for sample collected from location N-3 at a depth of 8.0 to 9.4 ft BGS.

BGS - Below ground surface.

NRC - No regulatory criteria.

PAHs - Polynuclear aromatic hydrocarbons.

TPH-DRO - Total petroleum hydrocarbon-diesel-range organics.

TPH-GRO - Total petroleum hydrocarbon-gasoline-range organics.

VOCs - Volatile organic compounds.

Laboratory Qualifier

U - Indicates the compound was not detected at the concentration reported.

J - Indicates the value for the compound is an estimated value.

UJ - Indicates the compound was not detected at the reported concentration and the concentration was estimated.

= - Indicates the compound was detected at the concentration reported.

Location Sample ID Date Collected	Applicable	N-4 HN4101 04/03/98	N-4 HN4105 04/03/98
Depth (ft BGS)	Standards ¹	0.0 to 2.0	8.0 to 9.3
VOCs	mg/kg	mg/kg	mg/kg
Benzene	0.008	0.0022 U	0.0022 U
Toluene	6.00	0.0022 U	0.0022 U
Ethylbenzene	10.00	0.0022 U	0.0022 U
Xylenes	700.00	0.0065 U	0.0064 U
TPH-DRO	NRC	9.6 =	3.2 =
TPH-GRO	NRC	0.543 U	0.538 U
PAHs	mg/kg	mg/kg	mg/kg
2-Chloronaphthalene	NRC	0.362 U	0.358 U
Acenaphthene	N/A ²	0.362 U	0.358 U
Acenaphthylene	NRC	0.362 U	0.358 U
Anthracene	N/A ²	0.362 U	0.358 U
Benzo(a)anthracene	N/A ²	0.0757 J	0.198 J
Benzo(a)pyrene	N/A ²	0.0892 J	0.172 J
Benzo(b)fluoranthene	N/A ²	0.141 J	0.232 J
Benzo(g,h,i)perylene	N/A ²	0.0564 J	0.105 J
Benzo(k)fluoranthene	N/A ²	0.0819 J	0.119 J
Chrysene	N/A ²	0.106 J	0.313 J
Dibenzo(a,h)anthracene	N/A ²	0.362 U	0.358 U
Fluoranthene	N/A ²	0.103 J	0.228 J
Fluorene	N/A ²	0.362 U	0.358 U
Indeno(1,2,3-cd)pyrene	N/A ²	0.0677 J	0.111 J
Naphthalene	N/A ²	0.362 U	0.358 U
Phenanthrene	N/A ²	0.0367 J	0.0824 J
Pyrene	N/A ²	0.112 J	0.328 J

TABLE V-A. SUMMARY OF SOIL ANALYTICAL RESULTS³ (continued)

NOTE: ¹Georgia Department of Natural Resources (GA DNR) Applicable Soil Threshold Levels (i.e., Table A, column 2).

²Not applicable; the health-based threshold level exceeds the expected soil concentration under free product conditions.

³All field work and analytical sampling were performed prior to the release of the new GA DNR Corrective Action Plan (CAP)-Part A Guidance (i.e., May 1998); therefore, the new analytical methods specified were not used.

BGS - Below ground surface.

NRC - No regulatory criteria.

PAHs - Polynuclear aromatic hydrocarbons.

TPH-DRO - Total petroleum hydrocarbon-diesel-range organics.

TPH-GRO - Total petroleum hydrocarbon-gasoline-range organics.

VOCs - Volatile organic compounds.

Laboratory Qualifier

U - Indicates the compound was not detected at the concentration reported.

J - Indicates the value for the compound is an estimated value.

UJ - Indicates the compound was not detected at the reported concentration and the

concentration was estimated.

= - Indicates the compound was detected at the concentration reported.

BOO Dak Ridge Tumpika, Dak Ridge, TN 37831 DBO TECT BIABAC Can	t Ridge, TN 37831 (41	(423) 481-4600		5	CHAIN OF CUSTODY RECORD	CUST	DDY RE	CORD				COC NO .:	сос NO.: 4\$898В
FRUJEUL MAME: UAP - Hunter AFB - Part A	P - Hunter AFB - P	art A				REOL	REQUESTED PARAMETERS	RAMETER	S		F	LABORATORY NAME:	VAME:
PROJECT NUMBER: 0019	019										Ē	Seneral Enginee	General Engineering Laboratory
PROJECT MANAGER: Allison Bailay	Allison Bailey						*					LABORATORY ADDRESS: 2040 Savage Reod Charleston SC 20417	(DDRESS: od
Sampler (Signature)	4	(Printed Name)				_			_	_	ea/ Vial		
"Miledall ghall	MI	Mitchell Hall	11								. C	PHONE NO: (803) 556-8171	3) 556-8171
Sample ID	Cel	Time Collected	Matrix	GT8 HA9	CRO GRO TOC						10 ,01	DVA	OBSERVATIONS, COMMENTS
HULLOI	4/6/98	1240	Soi!	XX	X						NÖ	- Dinkel	
HNIDS	4/6/98	1305	Soil	× ×							11	1 course	0-318-021-
HNZIGI	v 6 98	1334	Soi		×						10	nd a co	00
HN 2105	4/6/98	1356	Soi	XX							1	11	
	4/6/98	IYSS	Soi	XX	X							mod A.A	
HG 3101		1540	Soil	XX	X						10	mdd air	
10 5192	4/2/18	1545	Soil	いがと	X							wed che	0
	4/10/98	1605	Soil	オメメ			╞				11	0.7 Ppm	Ea
01120H	-	1515	Soil	XXY	X						11	medd (1)	
HG6400	86/t/h	115	Soil		X						<u>-</u>	HI PPW	4
HG ZIGI	4/6/48	1515	Seil	× X	d X ⊨	-						APr	7124215-18
						1 1 00	8						1-XIRLOXL
The second se		F		23									
Reconcisioned and here	~	Date/Time RECEIVED BY:	ED BY:	K Y	Date/Time		TOTAL NUMBER OF CONTAINERS:	BER OF C(NTAINER:	s: [9	8	Cooler Temperature:	20/ :au
COMPANY NAME:	145	COMPA	COMPANY NAME:	-	14.30		Cooler ID:	63	9		Щ. Ш.	FEDEX NUMBER:	NA
COMPANY DAME:			RELINQUISHED BY: COMPANY NAME.		Date/Time	e E							
D We	112	1540											
RELINGUIGHED BY:	2979 S	FIME RECEIVED BY:) BY:		Date/Time	80							
COMPANY NAME:	1 2	COMPANY NAME:	Y NAME:		-								

8

THIS PAGE INTENTIONALLY LEFT BLANK

900 Oak Nidge Tumpite, Oak Ridge, TN 37831 1423) 481-4600 PROJECT NAME: CAP - Himsey Acto Boos A	7831 (423) 48 AED Dov 4	1-4600			CHAIN OF	OFC	USTO	CUSTODY RECORD	CORD				COC N	COC NO .: 40398 3
	ALD - LAU A			F	-	E	REQUE	REQUESTED PARAMETERS	RAMETE	ß			LABORATORY NAME	Y NAME:
PROJECT NUMBER: 0019						_		_					General Engi	General Engineering Laboratory
PROJECT MANAGER: Allison Balley	lley												LABORATOF 2040 Savage	LABORATORY ADDRESS; 2040 Savage Raod Charleston SC 20417
1 Aul	Printed Mrt	Printed Name)	1 A. Hall									ilei Viai		PHONE NO: (803) 556-8171
Date Collected	-	Time Collected	Matrix	XƏTEX	9AG	20	_	_		-		. m.	OVA	OBSERVATIO
4/3	-		soil has	1	805016	T								SPECIAL INSTRUCTIONS
4/3	198		Soil									11		1
3 4/3	-	\$900	501										400 0	C 9884105
4/3	198	\$936	1:05		X				1.1			1,	10%	
5/13	198	6946	Sorl	Ž	X							JIN	99	\uparrow
2/7	158	1105	Sort	X	オイ							JIN	a de	
4/3	186	1136	Soil	K K	イ							10	2 2	+
913	86/	1130	1105	×	XX			0.57				11	20	
512	861	111-1-4 0.4	when	X			14		No			1	\prod	3
	-			Ś	V									0801196
4398	-	28105	1.8	7	12	261						-		-
14 198	7	6:15	-		3								9804105-09 00 00 00	al andred he was
REYNOUSMED BY ALAIL	Date/Time	BECEN				Date/Time		TOTAL NUMBER OF CONTAINERS:	ER OF C	ANTAINE	li si		Cooler Temperatura (Jel)
think	2-	1	V as as y	3	1	いのやけ	(i de la	-			T		BIT
	A.	1.00			1	07.91			N#	5	~		FEDEX NUMBER:	di
()	H 3/50		Relinquished BY:			Date/Time	-							
,	13/20		COMPANY NAME:		-									
teringelished phis he later	Date/Time	RECEIVED BY:) BY:		ä	Date/Time	Ť.							
OMPANY NAME:	1221				Т		_							

L

Hunter Army Airfield CAP-Part A Report Former Heating Oil Tanks A & B, Building 850

ł

V-7

THIS PAGE INTENTIONALLY LEFT BLANK

800 Osk Ridge Tumplie, Osk Ridge, TN 37831 (423) 481-4600	is Ridge, TN 37831	(423) 481-460	0		Ċ	CHAIN OF		CUSTODY RECORD	RECO	RD				COC NO .:	000 NO .: 40498C
PROJECT NAME: CAP - Hunter AFB	P - Hunter AFB	- Part A				F	E	REQUESTED PARAMETERS	D PARAM	ETERS			F	LABORATORY NAME	IAME:
PROJECT NUMBER: 0019	0019				-								Ē	seneral Enginee	General Engineering Laboratory
PROJECT MANAGER: Allison Bailey	Allson Bailey											_	::	LABORATORY ADDRESS: 2040 Savage Raod Charleston SC 20417	VDDRESS: lod 20117
Sampler (Signatura)	Del	(Printed Nomo) M: tchel	ell	H. Hell				_					IsiV \vertice	PHONE NO: (803) 556-8171	3) 556-8171
	e Col		P	Matrix	хэта НА9	0R0 0R0 DDT	0.5.1						8 to .0	OVA	DBSERVATIONS, COMMENTS,
113103	0			they	X X	X X							NN	6, 0 per	1,9804 losses
1. 7.61	4/3/98	4	1	Suil	× ×.	X							N	7.0 PD	didata di di
HL 2103	2012/ P	1570	t	501/	2	X							2	30 ppm	0 1/2 2/ 0
423101	1	-	1	chil		× 12				2			2	16 pm	ういうどう
INHOID	10	F	-	501)							N		N	6 ppm	0 - 2 th 15
SOLANH	915/26	13/	+	9011		XX							14	P. P.P.	91, +++ 2, Ø
1/11/101	\$15196	1430	6	591									210	nd of	8:0-93/4
HUIDS	9K14	8 1445		5017	À T	R							21	2 open	0.5 - 5.518
H 5305	86/4/4 .			arat of	×								Vr	hadd	9.8.2-0.4
478663	4/4/98		0750	water	X							-	20	110	ueto billes 1/205
H15301	4/4/9	8 1640	5	water	X					1			20	M	FRAR AVA
H 5310	4/4/98	8 103	55 4	water	A								50	Hr.	vent. plat 15
RELINGOISHED BY	fed of	Dareframe	RECEIVED BY:	ED BY:	23	Dat	Date/Time		TOTAL NUMBER OF CONTAINERS:	DF CONT,	AINERS:	22		Cooler Temperature:	In: 10 00
COMPANY MAME:	H	1350	COMPANY NAME:	NAME:	ð	T P	\$ 350	Cooler ID:	3	29			E		14
RECEIVED BY: Card Ran	del 4/4	Date/Time	Relinquished by:	HED BY:		Date	Date/Time				1		-		
18	neering /		COMPANY NAME:	NAME:		-					h	the	+		
Cano Cano	del Jeh	Date/Time	RECEIVED BY:	BY:		Date	Date/Time					1	14/	24	
COMPANY NAME:	= /		COMPANY NAME:	NAME:		г-	1					1	2	Y	

V-9

L

THIS PAGE INTENTIONALLY LEFT BLANK

	Former Heating OII Tanks A & B, Building 850
1A VOLATILE ORGANICS ANALYS	EPA SAMPLE NO.
Tab Mara, CENTRAL ENGINEERS (1990)	HN1101
Lab Name: GENERAL ENGINEERING LABOR Lab Code: NA Case No.: NA	
Matrix: (soil/water) SOIL	SAS NO.: NA SDG NO.: HA008S
Sample wt/vol: 10.0 (g/mL) G	Lab Sample ID; 9804218-01 Lab File ID: 2F106
Level: (low/med) LOW	Date Received: 04/08/98
% Moisture: not dec. 7	Date Analyzed: 04/20/98
GC Column: J&W DB-624 (PID) ID: 0.53	(mm) Dilution Factor: 1.0
Soil Extract Volume: (ml)	Soil Aliquot Volume: (uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
71-43-2Benzene 108-88-3Toluene	2.2 U UJ UØ8
100-41-4Ethylbenzene 1330-20-7Xylenes (tota	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	PPY
FORM 2	I VOA
	/-11
IFP: 802-825-2815 b' 004	אאוי דיא אאוי דיא אאוי דיאט אאוי דיאטואנגעואט

Lab Name: GENERAL ENGINEERING LABOR Contra	HN1101DT1
Lab Code, No.	NC.: NA SDG NO.: HA008S
Matrix: (soil/water) SOIL	Lab Sample ID: 9834218-01
Sample wt/vol: 30.9 (g/mL) G	Lab File 1D: 4D4006
Level: (low/med) LOW	Date Received: 04/08/98
% Moisture: 7 decanted: (Y/N) N	Date Extracted:04/10/98
Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 04/23/98
Injection Volume: 1.0(uL)	Dilution Factor: 1000.0
GPC Cleanup: (Y/N) N pH: 7.0	6
	CENTRATION UNITS: /L or ug/Kg) MG/KG Q
Diesel Range Organic	s 4950 B =

FORM I SV

÷

Hunter Army Airfield CAP-Part A Re	port
Former Heating Oil Tanks A & B, Building	850

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	HNIIOI
Lab Code: NA Case No.: NA SAS No.: NA	SDG No.: HADOBS
Matrix: (soil/water) SOIL Lab	Sample ID: 9804218-01
Sample wt/vol: 10.0 (g/mL) G Lab	File ID: 1F108
Level: (low/med) LOW Date	Received: 04/08/98
% Moisture: not dec. 7 Date	Analyzed: 04/20/98
GC Column: J&W DB-624(FID) ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL) Soil	Aliquot Volume:(uL
CAS NO. COMPOUND CONCENTRAT	ION UNITS: g/Kg) UG/KG Q
Gasoline Range Organics	538 U U

-

Q

SEMIVOLATIL	E ORGANICS ANALYSIS DATA	SHEET	EPA SAMPLE NO.
Lab Name: GENERAL, ENG	INEERING LABOR Contract:	: NA	HN1101
Lab Code: NA C	ase No.: NA SAS No.:	NA SDG	No.: HA008S
Matrix: (soil/water)	SOIL	Lab Sample ID:	9804218-01
Sample wt/vol:	30.2 (g/mL) G	Lab File ID:	1Q108
Level: (low/med)	LOW	Date Received:	04/08/98
% Moisture: 7	decanted: (Y/N) N	Date Extracted	:04/09/98
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	04/20/98
Injection Volume:	1.0(uL)	Dilution Factor	r: 4.0
GPC Cleanup: (Y/N)	N pH: 7.0		

1.15

CAS NO. COMPOUND

.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

1-20-3naphthalene		1420	υ
1-58-72-chloronaphthalene		1420	U
08-96-8acenaphthylene		1420	U
3-32-9acenaphthene		1420	U
6-73-7fluorene		1420	U
5-01-8phenanthrene		1420	Ū
20-12-7anthracene		1420	Ū I
6-44-0fluoranthene		3310	-
29-00-0pyrene	-	3390	
5-55-3benzo(a)anthracene	-	3470	
.8-01-9chrysene		3940	
5-99-2benzo(b)fluoranthene	-	5000	
7-08-9benzo(k)fluoranthene	-	2550	
-32-8benzo(a)pyrene		3960	
3-39-5indeno(1,2,3-cd)pyrene	-		
-70-3dibenz (a, h) anthracene	-	2440	
1-24-2benzo(g,h,i)perylene	-1	819 2250	J

OLM03.0

45

Lab Code: NACase No.: NASAS No.: NASDG No.: HA008SMatrix: (soil/water) SOILLab Sample ID: 9804218-02Sample wt/vol:30.6 (g/mL) GLab File ID: 4D4007Level: (low/med)LOWDate Received: 04/08/98% Moisture: 6decanted: (Y/N) NDate Extracted:04/10/98Concentrated Extract Volume:1.00 (mL)Date Analyzed: 04/23/98Injection Volume:1.0 (uL)Dilution Factor: 1.0GPC Cleanup:(Y/N) NpH: 7.0CAS NO.COMPOUNDCONCENTRATION UNITS: (ug/L or ug/Kg) MG/KGQ	Lab Name: GENERAL ENGINEERING LABOR Cont	HN1105
Matrix: (soil/water) SOILLab Sample ID: 9804218-02Sample wt/vol:30.6 (g/mL) GLab File ID: 4D4007Level:(low/med)LOWDate Received: 04/08/98% Moisture:6decanted: (Y/N) NDate Extracted:04/10/98% Concentrated Extract Volume:1.00 (mL)Date Analyzed: 04/23/98Injection Volume:1.0 (uL)Dilution Factor:GPC Cleanup:(Y/N) NpH: 7.0		
Level: (low/med) LOW Date Received: 04/08/98 Moisture: 6 decanted: (Y/N) N Date Extracted:04/10/98 Concentrated Extract Volume: 1.00(mL) Date Analyzed: 04/23/98 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS:		
<pre>% Moisture: 6 decanted: (Y/N) N Date Extracted:04/10/98 Concentrated Extract Volume: 1.00(mL) Date Analyzed: 04/23/98 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS:</pre>	Sample wt/vol: 30.6 (g/mL) G	Lab File ID: 4D4007
Concentrated Extract Volume: 1.00(mL) Date Analyzed: 04/23/98 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS:	Level: (low/med) LOW	Date Received: 04/08/98
Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS:	% Moisture: 6 decanted: (Y/N) N	Date Extracted:04/10/98
GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS:	Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 04/23/98
CONCENTRATION UNITS:	Injection Volume: 1.0(uL)	Dilution Factor: 1.0
	GPC Cleanup: (Y/N) N pH: 7.0	

FORM I SV

	Hunter Army Airfield CAP-Part A Report Former Heating Oil Tanks A & B, Building 850
1A VOLATILE ORGANICS ANALYS	SIS DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR	Contract: NA HN1105
Lab Code: NA Case No.: NA	SAS NO.: NA SDG NO.: HA008S
Matrix: (soil/water) SOIL	Lab Sample ID: 9804218-02
Sample wt/vol: 10.0 (g/mL) G	Lab File ID: 1F2019
Level: (low/med) LOW	Date Received: 04/08/98
<pre>% Moisture: not dec. 6</pre>	Date Analyzed: 04/21/98
GC Column: J&W DB-624 (FID) ID: 0.53	(mm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
Gasoline Range	e Organics532 U UJ AØ
1 	IIIC\$

FORM I VOA

1B SEMIVILATILE ORGANICS ANALYSIS DAT	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contrac	t: NA HN1105
Lab Code: NA Case No.: NA SAS No	.: NA SDG No.: HA008S
Matrix: (soil/water) SOIL	Lab Sample ID: 9804218-02
Sample wt/vol: 30.1 (g/mL) G	Lab File ID: 1Q109
Level: (low/med) LOW	Date Received: 04/08/98
* Moisture: 6 decanted: (Y/N) N	Date Extracted:04/09/98
Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 04/20/98
Injection Volume: 1.0(uL)	Dilution Factor: 4.0
GPC Cleanup: (Y/N) N pH: 7.0	

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

91-20-3naphthalene	1410	U
91-58-72-chloronaphthalene	1410	and the second se
208-96-8acenaphthylene	1410	TT
83-32-9acenaphthene	1410	Ū
86-73-7fluorene	1410	Ū
85-01-8phenanthrene	1410	11 .
120-12-7anthracene	1410	U
206-44-0fluoranthene	1970	-
129-00-0pyrene	1760	
56-55-3benzo (a) anthracene	1620	
218-01-9chrysene	1690	
205-99-2benzo(b)fluoranthene	2460	
207-08-9benzo(k)fluoranthene	1030	J
50-32-8benzo (a) pyrene	1780	0
193-39-5indeno (1,2,3-cd) pyrene	1110	
03-70-3dibenz(a,h)anthracene	1410	U
191-24-2benzo(g,h,i)perylene	1050	J

FORM I SV-1

47

Sample wt/vol:	in solution of	
	30.7 (g/mī) G	Lab Sample ID: 9804218-03 Lab File ID: 4D10043
Level: (low/med)	LOW	Date Received: 04/08/98
Moisture: 4	decanted: (Y/N) N	Date Extracted:04/10/98
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 04/22/98
njection Volume:	1.0(uL)	Dilution Factor: 1.0
PC Cleanup: (Y/N)	N pH: 7.0	

FORM I SV

FØ6

1A VOLATILE ORGANICS ANAI	LYSIS DATA SHEET
Lab Name: GENERAL ENGINEERING LABO	DR Contract: NA
Lob Code: NA Case No.: NA	SAS No.: NA SDG No.: HA008S
Matrix: (scil/water) SOIL	Lab Sample ID: 9804218-03
Sample wt/vol: 10.0 (g/mL)	G Lab File ID: 1F1010
Level: (low/med) LOW	Date Received: 04/08/98
% Moisture: not dec. 4	Date Analyzed: 04/20/98
GC Column: J&W DB-624 (FID) ID: 0.5	3 (mm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
Gasoline Ra	nge Organics 521 U V

.

FORM I VOA

31

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	HN2101
Lab Code: NA Case No.: NA SAS No.: NA	SEG No.: HA008S
Matrix: (soil/water) SOIL Lab Sam	ple ID: 9804218-03
Sample wt/vol.	e ID: 10110
Level: (low/med) tow	ceived: 04/08/98
* Moisture 4 decented (main	tracted:04/09/98
Concentrated Extract Volume: 1.00(mL) Date Ana	alyzed: 04/20/98
Injection Volume.	n Factor: 1.0
GPC Cleanup: (Y/N) N pH: 7.0	
CAS NO. COMPOUND CONCENTRATION (ug/L or ug/Kc	UNITS:

1-20-3naphthalene	346	77
1-58-72-chloronaphthalene	346	
	346	
J-J4-9aconophtham	346	
	346	
5-01-8phenanthrene	346	
20-12-7anthracene	346	
29-00-0pyrene	346	
8-01-9	346	
18-01-9chrysene	346	
05-99-2benzo(b) fluoranthene	346	
	346	
-32-8benzo(k) fluoranthene 3-39-5indeno(1,2,3-cd) pyrene	346	
3-39-5indeno (1 2 2 advisor	346	
1-24-2-2-2-2-dibenz (a, h) anthracene	346	
1-24-2benzo(g,h,i)perylene	346	Ŭ
20m20(g,m,1)perytene	346	U

FORM I SV-1

SEMIVOLATI	FORM 1 S SE ORGANICS ANALYSIS DATA	Science Applications08-APR-1998 SA
Lab Name: GENERAL ENG	GINEERING LABOR Contract	HN2105
Lab Code: NA	Case No.: NA SAS No.	: NA SDG No.: HA008S
Matrix: (soil/water)	SOIL	Lab Sample ID: 9804218-04
Sample wt/vol:	30.7 (g/mL) G	Lab File 1D: 4D10044
Level: (low/med)	LOW	Date Received: 04/08/98
% Moisture: 6	decanted: (Y/N) N	Date Extracted:04/10/98
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 04/22/98
Injection Volume:	1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	
CAS NO.		ENTRATION UNITS: or ug/Kg) MG/KG Q
	Diesel Range Organics	0.77 B U FØI

Hunter Army Airfield CAP-Part A Report

1A VOLATILE ORGANICS ANALYSIS DATA SEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA	HN2105
Lab Code: NA Case No.: NA SAS No.: NA SDG	No.: HA0085
Matrix: (soil/water) SOIL Lab Sample ID	: 9804218-04
Sample wt/vol: 10.0 (g/mL) G Lab File ID:	151011
Level: (low/med) LOW Date Received:	: 04/08/98
<pre>% Moisture: not dec. 6 Date Analyzed:</pre>	
GC Column , ISH DD COLUMN	1 Factor: 1.0
Soil Extract Volume:(uL) Soil Aliquot V	
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/K	G Q
Gasoline Range Organics	532 U UJ GOZ.

FORM I VOA

SEMIVOLATILE ORGANICS ANALYSIS DAT.	A SHEET EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract	HN2105
Lab Code: NA Case No.: NA SAS No	.: NA SDG No.: HA008S
Matrix: (soil/water) SOIL	Lab Sample ID: 9804218-04
Sample wt/vol: 30.2 (g/mL) G	Lab File ID: 1Q107
Level: (low/med) LOW	Date Received: 04/08/98
<pre>% Moisture: 6 decanted: (Y/N) N</pre>	Date Extracted:04/09/98
Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 04/20/98
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: 7.0	
	INTRATION UNITS: Gorug/Kg) UG/KG Q

91-20-3naphthalene	352	11
91-58-72-chloronaphthalene	352	
208-96-8acenaphthylene	352	-
83-32-9acenaphthene	352	10 To 1
86-73-7fluorene	352	
85-01-8phenanthrene	352	10 400 million 10 10 10
120-12-7anthracene		-
206-44-0fluoranthene	352	1 + 2.77
129-00-0pyrene	352	
56-55-3benzo(a)anthracene	352	
218-01-9chrysene	352	1.2.2.1
205-99-2benzo(b)fluoranthene	352	
207-08-9benzo(k)fluoranthene	352	
50-32-8benzo(a)pyrene	352	
193a39-5benzo(a)pyrene	352	-
193-39-5indeno(1,2,3-cd)pyrene	352	
53-70-3dibenz (a, h) anthracene	352	U
191-24-2benzo(g,h,i)perylene	352	U

FORM I SV-1

VOLATII	E ORGANICS ANALYS	SIS DATA SHEET	EPA SAM	PLE NO.
Lab Name: GENERAL E			HN31	
Lab Code: NA	Case No.: NA	SAS No.: NA S	DG NO.: HADO	038
Matrix: (soil/water) SOIL	Lab Sample		
Sample wt/vol:	10.0 (g/mL) G	Lab File ID		
Level: (low/med)	10.24.24.2	Date Receive		3
Moisture: not dec.		Date Analyze		
GC Column: J&W DB-62			ion Factor:	
Soil Extract Volume:	(ml)	Soil Aliquot		
CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg) UG	rs.	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene Xylenes (total		2.2 U 2.2 U 2.2 U	UT K

6017

FORM I VOA

SEMIVOLATI	FORM 1 S LE ORGANICS ANALYSIS DATA	cience Applications03-APR-1998 SA SHEET		
Lab Name: GENERAL EN	GINEERING LABOR Contract	: NA HN3101DL1		
Lab Code: NA	Case No.: NA SAS No.	: NA SDG No.: HA003S		
Matrix: (soil/water)	SOIL	Lab Sample ID: 9804105-06		
Sample wt/vol:	30.5 (g/mL) G	Lab File ID: 4B30063		
Level: (low/med)	LOW	Date Received: 04/03/98		
% Moisture: 7	decanted: (Y/N) N	Date Extracted:04/07/98		
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 04/10/98		
Injection Volume: 1.0 (uL)		Dilution Factor: 2.0		
GPC Cleanup: (Y/N)	N pH: 7.0			
CAS NO.		NTRATION UNITS: or ug/Kg) MG/KG Q		
	Diesel Range Organics_	9.3 B = FØ1, FØ8		

Diesel Range Organics	9.3	В	= F\$1, F\$8

 $e^{1-1}e^{i\theta}$

FORM I SV