

Underground Storage Tanks 21 & 22 Facility ID #9-025053 Building 1327 Hunter Army Airfield, Georgia

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-95-D-0022 Delivery Order 0061

December 2000

DOCUMENT 2.6

FIRST ANNUAL MONITORING ONLY REPORT FOR UNDERGROUND STORAGE TANKS 21 & 22 FACILITY ID #9-025053 BUILDING 1327 HUNTER ARMY AIRFIELD, GEORGIA

Prepared for

U.S. Army Corps of Engineers, Savannah District and Fort Stewart Directorate of Public Works Under Contract Number DACA21-95-D-0022 Delivery Order 0061

Prepared by

Science Applications International Corporation 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

December 2000

FINAL

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMSiii
I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION
II. PROJECT SUMMARY
III. ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS 2 A. Potentiometric Data 2 B. Analytical Data 3
IV. SITE RANKING4
V. CONCLUSIONS/RECOMMENDATIONS4
VI. REIMBURSEMENT5
List of Appendices
APPENDIX I: REPORT FIGURESI-1Figure 1Location Map of USTs 21 & 22 at Hunter Army Airfield, Chatham County, Georgia.I-2Figure 2a Potentiometric Surface Map of the USTs 21 & 22 Site (February 2000)I-3Figure 2b Potentiometric Surface Map of the USTs 21 & 22 Site (June 2000)I-4Figure 3a Groundwater Quality Map for the USTs 21 & 22 Site (June 2000)I-5Figure 3b Groundwater Quality Map for the USTs 21 & 22 Site (June 2000)I-6Figure 4Trend of Contaminant Concentrations for the USTs 21 & 22 SiteAPPENDIX II: REPORT TABLESII-1Table 1Groundwater Analytical ResultsTable 2Groundwater Analytical ResultsTable 3Soil Analytical ResultsII-4APPENDIX III: LABORATORY ANALYTICAL RESULTSIII-1APPENDIX IV:SITE RANKING FORMAPPENDIX V:REIMBURSEMENT APPLICATIONV-1
Attachments
A SUMMARY OF FATE AND TRANSPORT MODELING RESULTS
B REFERENCES
C BORING LOGS AND WELL CONSTRUCTION DIAGRAMSC-1

List of Abbreviations and Acronyms

ACL	alternate concentration limit
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	Corrective Action Plan
DAF	dilution attenuation factor
GA EPD	Georgia Environmental Protection Division
HAAF	Hunter Army Airfield
IWQS	In-stream Water Quality Standard
NFAR	No Further Action Required
PAH	polynuclear aromatic hydrocarbon
SAIC	Science Applications International Corporation
UST	underground storage tank
USTMP	Underground Storage Tank Management Program

MONITORING ONLY REPORT

Submittal D	ate: December 2000	Monitoring Report N	umber: 1st Annual
For Period C	Covering: December 1999 t	o December 2000	
Facility Nan			White Drive & Wilson Boulevard
Facility ID:	9-025053 City: Airfield		atham Zip Code:
Latitude:	32° 00' 59" Longitude: 81° 07	" 26"	
Submitted b	y UST Owner/Operator:	Prepared by	Consultant/Contractor:
Name:	Thomas C. Fry/ Environmental Bran	nch Name:	Patricia A. Stoll
Company:	U.S. Army/HQ 3d, Inf. Div. (Mech)		SAIC
Address:	Directorate of Public Works, Bldg.		P.O. Box 2502
	1550 Frank Cochran Drive		5
City:	Fort Stewart State: GA	City:	Oak Ridge State: TN
Zip Code:	31314-4927	Zip Code:	37831
.	(912) 767-2010	Telephone:	(865) 481-8792

I. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: Patricia A. Stol Signature: 100 Date:

22851 ESCIONAL Georgia Stamp or Se

PROJECT SUMMARY п.

(Appendix I, Figure 1: Site Location Map)

Provide a brief description or explanation of the site and a brief chronology of environmental events leading up to this report.

Former Underground Storage Tanks (USTs) 21 & 22, Facility ID #9-025053 were located near Building 1327 at Hunter Army Airfield (HAAF), Georgia. The tanks were removed and the piping was abandoned in place on September 12, 1996. Science Applications International Corporation (SAIC) performed a Corrective Action Plan (CAP)-Part A investigation in 1998 (SAIC 1999a) and a CAP-Part B investigation in 1999 (SAIC 1999b) to determine the extent of petroleum contamination at the site. Five monitoring wells, five soil borings, and two vertical-profile borings were installed during these investigations. The CAP-Part B Report was submitted in October 1999 and approved by the Georgia Environmental Protection Division (GA EPD) Underground Storage Tank Management Program (USTMP) in correspondence January 25, 2000 (Logan 2000). The CAP-Part B Report recommended that two additional wells (MW-L8 and MW-L9) be installed as part of the long-term monitoring and that five monitoring wells (MW-L1, MW-L2, MW-L7, MW-L8, and MW-L9) be sampled on a semiannual basis for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAHs) because benzene and naphthalene were selected as constituents of potential concern in groundwater.

The fate and transport modeling performed as part of the CAP-Part B Report (SAIC 1999b) reflected a continuous source of contamination. The results are summarized in Attachment A of this document. As a result of the semiannual monitoring events in February 2000 and June 2000, it was not necessary to revise the fate and transport modeling results.

As recommended in the CAP-Part B Report (SAIC 1999b), monitoring wells MW-L8 and MW-L9 were installed in December 1999. One soil sample was collected from each boring and analyzed for BTEX, PAHs, total petroleum hydrocarbons (TPH)-diesel-range organics, and TPH-gasoline-range organics. The boring logs are provided in Attachment C of this report.

The purpose of the semiannual monitoring summarized in this report was to confirm the results of the fate and transport modeling and that natural attenuation is taking place at the site. The benzene and naphthalene concentrations during the February 2000 and June 2000 sampling events were below their respective In-stream Water Quality Standards (IWQSs) or alternate concentration limits (ACLs); therefore, a No Further Action Required status is being recommended for the site.

ACTIVITIES AND ASSESSMENT OF EXISTING CONDITIONS III.

Potentiometric Data: A.

(Appendix I, Figures 2a and 2b: Potentiometric Surface Maps) (Appendix II, Table 1: Groundwater Elevations)

Discuss groundwater flow at this site and implications for this project.

During the first semiannual sampling event in February 2000, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In February 2000, the groundwater flow direction was toward the east, and the groundwater gradient was approximately 0.0154 foot/foot.

During the second semiannual sampling event in June 2000, groundwater elevations were measured in all of the monitoring wells to determine the groundwater flow direction. In June 2000, the groundwater flow direction was toward the east-southeast, and the groundwater gradient was approximately 0.011 foot/foot.

B. Analytical Data:

(Appendix I, Figures 3a and 3b: Groundwater Quality Maps) (Appendix I, Figure 4: Trend of Contaminant Concentrations) (Appendix II, Table 2: Groundwater Analysis Results) (Appendix II, Table 3: Soil Analytical Results) (Appendix III: Laboratory Analytical Results)

Discuss groundwater analysis results, trend of contaminant concentrations, and implications for this project.

In December 1999, monitoring wells MW-L8 and MW-L9 were installed in accordance with the recommendation of the CAP–Part B Report (SAIC 1999b). One soil sample was collected from each boring, and the results are presented in Table 3.

During the first semiannual sampling event in February 2000, monitoring wells MW-L1, MW-L2, MW-L7, MW-L8, and MW-L9 were sampled for BTEX and PAHs. Analytical results from the first sampling event showed no detectable BTEX or PAH concentrations in well MW-L7. Benzene, ethylbenzene, xylenes, acenaphthane, fluorene, naphthalene, and phenanthrene were either detected or were estimated to be present in wells MW-L1, MW-L2, MW-L8, and MW-L9; however, none of the concentrations exceeded the respective IWQS. Benzene was detected at 2.6 μ g/L in well MW-L1 and 2.8 μ g/L in well MW-L2. Naphthalene was detected at 14.8 μ g/L in well MW-L1, 17.7 μ g/L in well MW-L2, 3.5 μ g/L in well MW-L9.

During the second semiannual sampling event in June 2000, monitoring wells MW-L1, MW-L2, MW-L7, MW-L8, and MW-L9 were sampled for BTEX and PAHs. Analytical results from the second sampling event showed no detectable BTEX or PAH concentrations in well MW-L7. Benzene, ethylbenzene, xylenes, acenaphthane, naphthalene, and phenanthrene were either detected or were estimated to be present in wells MW-L1, MW-L2, MW-L8, and MW-L9; however, none of the concentrations exceeded the respective IWQS. Benzene was detected at 2.7 μ g/L in well MW-L1 and 2.8 μ g/L in well MW-L2. Naphthalene was detected at 12.0 μ g/L in well MW-L1, 16.4 μ g/L in well MW-L2, 6.7 μ g/L in well MW-L8, and 1.2 μ g/L in well MW-L9.

The benzene concentrations during the two semiannual sampling events were below the IWQS of 71.28 μ g/L and the ACL of 2,210 μ g/L. Figure 4 shows the variations in benzene concentrations in groundwater for all the wells. There is not an IWQS for naphthalene; however, the concentrations during the two semiannual sampling events were below the naphthalene ACL of 201 μ g/L.

IV. SITE RANKING (Note: re-rank site after each monitoring event) (Appendix IV: Site Ranking Form)

Environmental Site Sensitivity Score: (April 1999 version of the Site Ranking Form was used for 2000 scores.) 0 (Jan. 2000 – First Semiannual Monitoring Event) 0 (June 2000 – Second Semiannual Monitoring Event)

V. CONCLUSIONS/RECOMMENDATIONS

Provide justification of no-further-action-required recommendation or briefly discuss future monitoring plans for this site.

Fort Stewart respectfully requests that GA EPD USTMP assign Facility ID #9-025053 a No Further Action Required (NFAR) status for the following reasons:

- The Monitoring Only Plan was conducted in accordance with Section III of the CAP-Part B Report (SAIC 1999b) and was submitted to GA EPD USTMP in October 1999 and approved by GA EPD USTMP in correspondence January 25, 2000 (Logan 2000).
- The site score for the last two rounds of semiannual groundwater sampling has been 0, which GA EPD USTMP representatives have indicated is an acceptable score for requesting an NFAR status (i.e., January 27, 1999, meeting between GA EPD, Fort Stewart, U.S. Army Corps of Engineers, and SAIC representatives).
- The fate and transport modeling conducted during the CAP-Part B Report (SAIC 1999b), which used a continuous source of contamination and which is summarized in Attachment A of this report, indicated that benzene will never reach the nearest potential preferential pathway (i.e., a drainage ditch) at a concentration above the IWQS of 71.28 µg/L.
- The benzene concentrations in all wells were below the IWQS of 71.28 µg/L and the ACL of 2,210 µg/L during the CAP-Part B investigation in April 1999 and the semiannual monitoring events in February and June 2000.
- The naphthalene concentrations in all wells were below the ACL of 201 µg/L during the CAP-Part A investigation, CAP-Part B investigation, and the semiannual monitoring events in February and June 2000.
- The closest surface water body is a drainage ditch 114 feet downgradient from the site.
- Natural attenuation has continued to take place at the site, as shown by the lower benzene concentrations observed during the CAP-Part B investigation and semiannual monitoring events compared to those observed during the CAP-Part A investigation.

The monitoring only program at this site will be discontinued.

VI. REIMBURSEMENT

Attached N/A X

(Appendix V: Reimbursement Application)

Fort Stewart is a federally owned facility and has funded the investigation for the USTs 21 & 22 site, Building 1327, Facility ID #9-025053 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

APPENDIX I

REPORT FIGURES

Figure 1. Location Map of USTs 21 & 22 at Hunter Army Airfield, Chatham County, Georgia

Figure 2a. Potentiometric Surface Map of the USTs 21 & 22 Site (February 2000)

Figure 2b. Potentiometric Surface Map of the USTs 21 & 22 Site (June 2000)

Figure 3a. Groundwater Quality Map for the USTs 21 & 22 Site (February 2000)

Figure 3b. Groundwater Quality Map for the USTs 21 & 22 Site (June 2000)

ACL = 2210 ug/L Benzene was not detected in MW-L7, MW-L8, and MW-L9. Nov-00 Sep-00 Benzene concentrations versus time in groundwater at the Figure 4. Trend of Contaminant Concentrations for the USTs 21 & 22 Site Jul-00 USTs 21 & 22 Site, HAAF May-00 Mar-00 IWQS = 71.28 ug/L Jan-00 NOTE: The detection limit was 2 ug/L in 1999 and 1 ug/L in February and June 2000. Nov-99 Sep-99 Jul-99 MW-L1 MW-L2 May-99 100 10 Benzene Concentration (ug/L)

First Annual Monitoring Only Report USTs 21 & 22, Building 1327, Facility ID #9-025053

APPENDIX II

REPORT TABLES

Well Number	Date of Measurement	Top of Casing Elevation (feet AMSL)	Screened Interval (feet BGS)	Water Depth (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
		First Semiannual	Monitoring Eve	nt – February 20	90	
MW-L1	2/1/00	28.18	4.4 - 14.4	4.69	0	23.49
MW-L2	2/1/00	28.70	4.6 - 14.6	4.92	0	23.78
MW-L3	2/1/00	28.85	4.9 - 14.9	5.55	0	23.30
MW-L4	2/1/00	28.73	4.1 - 14.1	4.67	0	24.06
MW-L5	2/1/00	28.55	3.6-13.6	4.61	0	23.94
MW-L6	2/1/00	27.98	5.2 - 15.2	5.1	0	22.88
MW-L7	2/1/00	28.18	3.7 - 13.7	4.37	0	23.81
MW-L8	2/1/00	27.97	3.1 – 13.1	4.88	0	23.09
MW-L9	2/1/00	28.28	1.9 - 11.9	4.26	0	24.02
		Second Semiannu	al Monitoring 1	Event – June 200	0	-
MW-L1	06/20/00	28.18	4.4 - 14.4	5.33	0	22.85
MW-L2	06/20/00	28.70	4.6 - 14.6	5.53	0	23.17
MW-L3	06/20/00	28.85	4.9 - 14.9	6.09	0	22.76
MW-L4	06/20/00	28.73	4.1 - 14.1	5.21	0	23.52
MW-L5	06/20/00	28.55	3.6-13.6	5.32	0	23.23
MW-L6	06/20/00	27.98	5.2 - 15.2	5.21	0	22.77
MW-L7	06/20/00	28.18	3.7 - 13.7	5.07	0	23.11
MW-L8	06/20/00	27.97	3.1 - 13.1	5.35	0	22.62
MW-L9	06/20/00	28.28	1.9 - 11.9	4.99	0	23.29

Table 1. Groundwater Elevations

NOTES: AMSL

Above mean sea level

BGS Below ground surface

BTOC Below top of casing

Sample Location	Sample ID	Date Sampled	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Xylenes (µg/L)	Total BTEX (μg/L)		
	First Semiannual Monitoring Event – February 2000								
MW-L1	CL1200	2/2/00	2.6 =	1 U	4.3 =	0.43 J	7.33		
MW-L2	CL2200	2/2/00	2.8 =	1 U	13.6 =	0.64 J	17.04		
MW-L7	CL7200	2/2/00	1 U	1 U	1 U	3 U	ND		
MW-L8	CL8200	2/2/00	1 U	1 U	0.61 J	0.49 J	1.1		
MW-L9	CL9200	2/2/00	1 U	1 U	0.12 J	3 U	0.12		
		Second S	emiannual M	onitoring Ev	ent – June 2000	1			
MW-L1	DL1200	6/23/00	2.7 =	1 U	5.9 =	0.33 J	8.93		
MW-L2	DL2200	6/23/00	2.8 =	1 U	9.0 =	0.50 J	12.3		
MW-L7	DL7200	6/23/00	1 U	1 U	0.091 J	0.29 J	0.381		
MW-L8	DL8200	6/25/00	1 U	1 U	0.51 J	3 U	0.51		
MW-L9	DL9200	6/25/00	1 U	1 U	1 U	3 U	ND		
	Water Quali PD Chapter :		71.28	200,000	28,718	NRC	NRC		
Alterna	te Concentrat	ion Limit	2,210			_			

Table 2. Groundwater Analytical Results

Sample	Sample	Date	Detec	ted PAH (Compounds (µ	ıg/L)	Total PAHs
Location	ID	Sampled	Acenaphthene	Fluorene	Naphthalene	Phenanthrene	(µg/L)
		First Sen	niannual Monito	ring Event	– February 20	000	
MW-L1	CL1200	2/2/00			14.8 =		14.8
MW-L2	CL2200	2/2/00	0.66 J	0.60 J	17.7 =		18.96
MW-L7	CL7200	2/2/00					ND
MW-L8	CL8200	2/2/00			3.5 =		3.5
MW-L9	CL9200	2/2/00	0.74 J	0.62 J	1.4 =	1.8 =	4.56
		Second	Semiannual Mo	nitoring Ev	ent – June 20	00	
MW-L1	DL1200	6/23/00			12 =		12
MW-L2	DL2200	6/23/00	1.0 =		16.4 =	1.8 =	19.2
MW-L7	DL7200	6/23/00					ND
MW-L8	DL8200	6/25/00			6.7 =		6.7
MW-L9	DL9200	6/25/00			1.2 =		1.2
	Water Quali PD Chapter 3		NRC	14,000	NRC	NRC	NRC
Alternate	e Concentrat	ion Limit			201		

NOTES:

Bold values exceed IWQSs.

BTEX Benzene, toluene, ethylbenzene, and xylenes

ND Not detected

- NRC No regulatory criteria
- PAH Polynuclear aromatic hydrocarbon

Laboratory Qualifiers

U Indicates that the compound was not detected at the concentration reported.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

Table 3. Soil Analytical Results

Sample Location	Sample ID		Date Sampled	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH- DRO (mg/kg)	TPH- GRO (mg/kg)
	1		Ad	ditional Wel	l Installatio	on – Decem	ber 1999	2		
MW-L8	HLB811	4.0 - 6.0	12/1/99	0.00091 J	0.0048 =	0.0014 U	0.0042 U	0.0057	3.8 U	0.165 =
MW-L9	HLB911	4.0 - 5.2	12/1/99	0.0023 U	0.0054 =	0.0023 U	0.0070 U	0.0054	2.0 U	0.111 U
	T Soil Thr Table A, C			0.008	6.0	10.0	700.0	NRC	NRC	NRC

Sample Location	Sample ID	Sample Depth (feet BGS)	Date Sampled	Polynuclear Aromatic Hydrocarbons (mg/kg)	Total PAHs (mg/kg)
		A	ditional W	ell Installation – December 1999	
MW-L8	HLB811	4.0 - 6.0	12/1/99		ND
MW-L9	HLB911	4.0-5.2	12/1/99		ND
GUST Soil Threshold Levels (Table A, Column 2)			ls		NRC

NOTES:

BTEX Benzene, toluene, ethylbenzene, and xylenes

BGS Below ground surface

DRO diesel-range organic

GRO gasoline-range organic

GUST Georgia Underground Storage Tank

ND Not detected; the detection limit for PAH compounds was less than 0.040 mg/kg.

NRC No regulatory criteria

PAH Polynuclear aromatic hydrocarbon

TPH Total petroleum hydrocarbons

Laboratory Qualifiers

U Indicates that the compound was not detected at the concentration reported.

J Indicates that the value for the compound is an estimated value.

= Indicates that the compound was detected at the concentration reported.

APPENDIX III

LABORATORY ANALYTICAL RESULTS

ADDITIONAL WELL INSTALLATION

DECEMBER 1999

1A VOLATILE ORGANICS ANALYSIS DATA SHEET EFR SAMPLE NO. Lab Name: GENERAL ENGINEERING LABOR Contract: N/A HLBOIL Lab Code: N/A Case No.: N/A SAS No.: N/A SDG Nc.: HBFA115 Matrix: (soil/water) SOIL Lab Sample ID: 9900835006 Sample wt/vol: 4.1 (g/ml) G Lab File ID: SN120 Level: (low/med) DATE Valle Date Received: 12/01/99 LOW COPY % Moisture: not dec. 13 Date Analyzed: 12/13/99 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.3 Soil Extract Volume: _____(uL) Soul Aliquot Volume: _____(uL CONCENTRATION UNITS: CAS NC. COMPOUND (ug/L or ug/Kg) UG/KG C

71-43-2Benzene	
108-88-3Toluera	0_91/3
100-41-4Etby bergene	- 4.8
1330-20-7Xylenes (total)	
	- ··· · · · · · · · · · · · · · · · · ·

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

CAS NO.

EPA SAMPLE NO.

i H

Lab Name: GENERAL EN	GINEERING LABOR	Contract: NA		HLB311
Lab Code: NA	Case No.: NA	SAS No.: NA	SDG	No.: HBFA02S
Matrix: (soil/water)	SOIL	Lab	Sample ID:	9900835006
Sample wt/vol:	30.0 (g/mL) G	Lab	File ID:	5%420
Level: (low/med)	LOW DATA VALID	ATION Date	Received:	12/01/99
<pre>% Moisture: 13</pre>	decanted: (Y/N)		Extracted	:12/02/99
Concentrated Extract	Volume: 1.00(r	nL) Date	Analyzed:	12/09/99
Injection Volume:	1.0(uL)	Dilu	tion Facto:	r: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0			

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

1-20-3Naphthalene	38.3 U
1-58-72-Chlorcnaphthalene	38.3 U
U8-96-8Acepaphthyleno	38.3 0
3-32-9Acenaphthene	38.3 U
6-73-7Fluorene	
5-01-8Phenanthrene	38.3 U
20-12-7Anthracene	38.3 U
06-44-0Fluoranthene	38.3 U
29-00-0Pyrene	38.3 0
Soft-3	38.3 U
6-55-3Benzo (a) anthracene	38.3 U
18-01-9Chrysene	38.3 0
05-99-2Benzo(b) fluoranthene	38.3 U
1/-08-9Benzo(k) fluorarthano	38.3 U
-32-8BADZO(2) DIFFORM	38.3 0
3-39-5Indeno (1 2 3-caunyrono	38.3 0
	39.30
91-24-2Benzo(g,h,i)perylene	
Louiso (g, ii, i) perviene	39.3 U

FORM I SV-1

а к 16 ж FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SAIC SAMPLE NC.

Lab Name: GENERAL EN	GINEERING LABOR	Contract:	NA	HLB811
Lab Code: NA	Case No.: NA	SAS No.:	NA SDG	No.: HBFA02S
Matrix: (sci]/water)	SOIL		Lab Sample ID	: 9900835006
Sample wt/vcl:			Lab File ID:	
Level: (low/med)			Date Received	: 12/01/99
% Moisture: 13	decanted: (Y/N)	λΥ	Date Extracte	d:12/03/99
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed	: 12/06/99
Injection Volume:	1.0(uL)		Dilution Fact	or: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0			
CAS NO.	CCMPOUND		TRATION UNITS or ug/Kg) MG/	

-----Dicsel Range Organics_____ 3.8 B U Fol,Fo7

FORM I SV

VOLATILE ORGAN	IA ICS ANALYSIS DATA :	SHEET	EPA SAMPLE NC.
Lab Name: GENERAL ENGINEER	ING LABOR Contract	: N/A	HLB811
Lab Code: N/A Case N	O.: N/A SAS NO	: N/A SDG	NC.: HEFAC2S
Matrix: (soil/water) SOIL		Lab Sample ID	: 9900835006
Sample wt/vol: 5.0	(g/mL) G	Lab File ID:	1M505
Level: (low/med) LOW	DATA VALIDAT	Date Received	: 12/01/99
<pre>% Moisture: not dec. 13</pre>	COPY	Date Analyzed	: 12/10/99
GC Column: RTX-VOLATILES I	D: 0.25 (mm)	Dilution	Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL
CAS NO. COM		NTRATION UNITS or ug/Kg) UG/3	
Gase	oline Range Organic	s	165

DUPULATE

LA VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NI.
) Lab Name: GENERAL ENGINEERING LABOR Contract: N/A	HL3813
Lab Code: N/A Case No.: N/A SAS No.: N/A	SDG No.: HBFA019
Matrix: (soil/water) SOIL Lab Sampl	.e ID: 9900835003
Sample wt/vol: 3.8 (g/mL) G Lab File	ID:
Level: (low/med) LOW Date Rece	ived: 12/01/99
% Moisture: not dec. 10	yzed: 12/14/99
	Factor: 1.0
	uot Volume:
CAS NO. COMPOUND CONCENTRATION U (ug/l or ug/Kg)	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.5 U U 2.6 U U 1.5 U U 4.4 U U

22222.2

,u

15 SEMIVOLATILE CRGANICS ANALYSIS DATA SHEET

DUPLICATE EPA SAMPLE NO.

t

Lab Name: GENERAL EN	GINEERING LABCR Contract	: NA
Lab Code: NA	Case No.: NA SAS No.	: NA SDG No.: HBFA02S
Matrix: (soil/water)	SOIL	Lab Sample ID: 9900335005
Sample wt/vol:	30.0 (g/mL) G	Lab File ID: 5X419
Level: (low/med)	LOW DATA VALIDATION	Date Received: 12/01/99
% Moisture: 10	decanted: (Y/N) N	Date Extracted:12/02/99
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 12/09/99
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

91-20-3Naphthalene	36.9 U	1
91-58-72-Chloronaphthalene	36.90	- 1
208-96-8Acenaphthylene	36.90	
33-32-9Acenaphthene	36.9 U	
36-73-7Fluorene	36.9 U	
35-01-8Phenanthrene		
.20-12-7Anthracene	36.9 0	
206-44-0Fluoranthene	36.9 U	
.29-00-0Pyrene	36.9 U	
23-00-0Pyrene	36.9 U	
6-55-3Benzo (a) anthracene	36.9 U	
18-01-9Chrysene	36.9 U	
05-99-2Benzo(b) fluoranchene	36.9 U	
07-08-9Benzo(k) fluoranchene	36.9 0	i
0-32-8Benzo (a) ovrere	36.9 U	
93-39-5Indenc(1,2,3-cd)pyrene	36.9 0	1
3-70-3Bibenz(a,h)anthracene	36.9 U	1
91-24-2Benzo(g,h,i)perylene		
Benzo (g,, 1) per yrene	36.9 U	

FORM I SV-1

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

DUPLICATE SAIC SAMPLE NO.

			HLB813
Lab Name: GENERAL ENG	GINEERING LABOR Con	tract: NA	HL3613
Lab Code: NA (Case No.: NA SA	S No.: NA SDG	No.: HBFAC25
Matrix: (soil/water)	SOIL	Lab Sample ID	: 9900835005
Sample wt/vcl:	30.0 (g/mL) G	Lab File ID:	004F0401
Level: (lcw/med)	LOW DATA VALIU	Alon Date Received	: 12/01/99
% Moisture: 10	decanted: $(Y/N) = N$	Date Extracted	d:12/03/99
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed	: 12/05/99
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0		
CAS NO.		CONCENTRATION UNITS (ug/L or ug/Kg) MG/H	
	Diesel Range Orga	nics	2.0 B U Fol,FC?

VOLATILE	LA E ORGANICS ANALYSI	IS DATA SHEET		DUPLICA EPA SAMPLE	
Lab Name: GENERAL EN				HL5813	
Lat Code: N/A	Case No.: N/A	SAS No.: N/A	SEG N	No.: HBFA02	s.
Matrix: (soil/water)	SCIL			9900835005	
Sample wt/vol:	5.0 (g/mL) G	Lab F	ile ID:	1M408	
Level: (low/med)	LOW	Date	Received	12/01/00	
% Moisture: not dec.	Cí	LIDATION ^{Date}	Analyzed:	12/09/99	
GC Column: RTX-VOLAT	ILES ID: 0.25 (m		ilution Fa	ctor: 1.0	
Soil Extract Volume:	(uL)	Scil	Aliquot Vo	lume:	(u
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug,	ON UNITS: /Kg) UG/KG	Q	
	Gasoline Range	Organics		182	=
		100 million - 10			1

VOLATILE ORGANICS AN	ALYSIS DATA SHEET	FLE NC.
Lab Name: GENERAL ENGINEERING LA		
Lab Coce: N/A Case No.: N/;	A SAS NO.: N/A SDG No.: HBFA	A025
Matrix: (scil/water) SOIL	Lab Sample ID: 99008350	
Sample wt/vol: 2.4 (g/mL)	G Lab File ID: 5N121	
Level: (low/med) LOW	Date Presses in the last	9
% Moisture: not dec. 10	Date Received: 12/01/99	ł
GC Column: DB-624 ID: 0.25 (m	mm) Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquet Volume:	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
71-43-2Benzene 108-88-3 Toluene 100-41-4Ethylbenzer 1330-20-7Xylenes (to	ne 2.3 U 5.4 otal) 7.0 U	

52463.2

COMPOUND

CAS NO.

18 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: GENERAL EN	GINEERING LABOR Contract	: NA HLB911
Lab Code: NA	Case No.: NA SAS No.	: NA SDG No.: HBFA02S
Matrix: (soil/water)	SOIL	Lab Sample ID: 9900835007
Sample wt/vol:	30.0 (g/mL) G	Lab File ID: 5X421
Level: (low/med)	LOW DATA VALIDATION	Date Received: 12/01/99
% Moisture: 10	decanted: (YALIDATICN (UPY)	Date Extracted:12/02/99
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 12/09/99
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

91-20-3Naphthalene	36.9 U
91-58-72-Chloronaphthalere	36.9 0
208-96-8Aceraphthylene	36.9 U
83-32-9Aceraphthene	36.9 U
86-73-7Fluorene	36.9 0
35-01-8Pnenanthrene	
L20-12-7Anthracene	36.90
206-44-0Fluoranthene	36.9 0
29-00-0Pyrene	36.9 U
S655-3 Dates (36.9 U
56-55-3Benzo(a) anthracene	36.9 0
210-01-9Chrysene	36.9 0
205-99-2Benzo (b) fluoranthene	36.9 U
207-08-9Benzo(k) fluoranthene	36.9 U
50-32-8Benzo(a) pyrene	35.9 0
93-39-5Indeno(1,2,3-cc)pyrene	36.9 0
13-/U-3	36.9 0
.91-24-2Benzo(g,h,i)perylene	35.9 U

FORM I SV-1

OLM03.0

FORM 1 SAIC SAMPLE NO. SAIC SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract: NA
Lab Code: NA Case No.: NA SAS No.: NA SDG No.: HBFA02S
Matrix: (soil/water) SOIL Lab Sample ID: 9900835007
Sample wt/vol: 30.0 (g/mL) G Lab File ID: 014F1401
Level: (low/med) LOW DATA VALIDATIO Bate Received: 12/01/99
% Moisture: 10 decanted: (Y/N)CNPY Date Extracted: 12/03/99
Concentrated Extract Volume: 1.00(mL) Date Analyzed: 12/03/99
Injection Volume: 1.0(uL) Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: 7.0
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) MG/KG Q
Diesel Range Organics 2.0 B U FolyFO

1A VOLATILE ORGANICS ANALYSIS DATA	SHEET
	.ct: N/A HLB911
Lab Code: N/A Case No.: N/A SAS N	O.: N/A SDG NO.: HBFAC2S
Matrix: (soil/water) SOIL	Lab Sample ID: 9900835007
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: 1M4010
Level: (low/med) LOW	Date Received: 12/01/99
<pre>% Moisture: not dec. 10</pre> DATA VALIDAT	Date Analyzed: 12/09/99
GC Column: RTX-VOLATILES ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Scil Aliquot Volume:(uL
	CENTRATION UNITS: /L or ug/Kg) UG/KG Q
Gasoline Range Organi	1csU

FIRST SEMIANNUAL MONITORING EVENT

FEBRUARY 2000
IA VOLATILE ORGANICS ANALYSIS DATA SHEET		EPA S	SAMPLE N	10.			
)	VOLATILE (DRGANICS ANALYSI	S DATA SELL		C	L1200	an 1
Lab Name: (GENERAL ENG	NEERING LABCR	Contract: N	i/A	4 (*)		
Lab Code: N	N/A C	ase No.: N/Λ	SAS No.: N	i/A S	SDG NO.: 1	HAAFLIMU)4W
	oil/water)		โเล	ab Sample	ID: 2134	2001	
		5.000 (g/ml) ML	Ĺa	ab File I	D: 2V31	1	
Level: (LOW	Da	ate Recei	ved: 02/0	3/00	
	: not dec.		Da	ate Analy	zed: 02/0	G/00	
		ID: 0.25 (mm)		ilution F			
Soil Extra	act Volume:_	(-:L)	S	oil Aliqu	lot Volume	*:	(uL
CAS	S NO.	COMPOLND	CONCENT (ug/l o	PATION UN r ug/Xg)	(ITS: CC/L	۱	
108	-43-2 3-88-3 0-41-4 30-20-7	Benzene Toluene -Ethylbenzene Xylenes (tota	a <u>l</u>)		2.4 1.0 4.1 3.4	5 7 3 3 J	= U FØY, FØS J

14

X

DATA VALIDATION COPY

FORM I VOA

	TB			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEE'I

CAS NO. COMPOUND

EPA SAMPLE NO.

CL1200

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene	14.8	1 -
91-58-72-Chloronaphthalene	0.98 0	16
208-96-8Acenaphthylene	0.98 U	1
B3-32-9Acenaphthène	0.98 U	
36-73-7Fluorene	0.98 0	
35-01-8Phenanthrene	0.98 U	1
120-12-7Anthracene	0.98 U	1
206-44-0Fluoranthene	0.93 U	
129-00-0Pyrene	ບ 88.0	
56-55-3Benzo (a) anthracene	0.98 U	1
218-01-9Chrysene	0.98 U	
205-99-2Benzo(b) fluoranthene	0.98 U	
207-08-9Benzo(k) fluoranthene	0.98 0	
50-32-8Benzo (a) pyrene	0.98 U	
193-39-5Indeno (1, 2, 3-cd) pyrene	0.98 U	
53-70-3Dibenz(a,h)anthracene	0.93 0	
191-24-2Benzo (g, h, i) perylene	0.98 0	

1A VOLATILE ORGANICS ANALYSIS	DATA SHEET
Lab Name: GENERAL ENGINEERING LABOR Co Lab Code: N/A Case No.: N/A Matrix: (soil/water) WATER Sample wt/vol: 5.000 (g/ml) ML Level: (low/med) LCW & Moisture: not dec.	ontract: N/A
GC Column: DB-624 ID: 0.25 (mm) Soil Extract Volume:(uL)	Dilution Factor: 1.0 Soil Aliquot Volume:(uL CONCENTRATION UNITS:
CAS NO. COMPOUND 71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total	(ug/L or ug/Kg; UG L Q = 2.3 = 9.27 = 13.6 = T

ÛATA LI

C

- <u>1</u>3463.

III-19

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

CAS NO.

EPA SAMPLE NO.

-1

1-

Lab Name: GENERAL ENG	GINEERING LABOR Contra	ACT: N/A	CL2200
Lab Code: N/A	Case No.: N/A SAS N	Io.: N/A SDG	No.: HAAFLTM04W
Matrix: (soil/water)	WATER	Lab Sample ID:	21342002
Sample wt/vol:	1030 (g/mL) ML	Lab File ID:	3G414
Level: (low/mcd)	LOW	Date Received:	02/03/00
% Moisture:	decanted: (Y/N)	Date Extracted	1:02/04/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	02/10/00
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N . pH: 7.0		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

17.7
0.97 0 4
0.97 0
0.66 J J
0.60 J
0.97 1
0.97 0
0.97 0
0.97 U
0.97 0
0.97 0
0.97 0
0.97 0
0.97
0.97 0
0.97
0.97 U

FORM I SV-1

LA SHEET	EPA GAMEDIS IN .
VOLATILE ORGANICS ANALYSIS DATA SHEET	CL7200
Lab Name: GENERAL ENGINEERING LABOR Contract: N/A	
Lab Code: N/A Case No.: N/A SAS No.: N/A	SDG NO.: MAAFLIMO4W
Matrix: (soil/water) WATER Lab Sam	ple ID: 21342003
Sample wt/vol: 5.000 (g/ml) ML Lab Fil	e ID: 2V313
Level: (low/med) LOW Date Ro	ceived: 02/03/00
Date An	nalyzed: C2/09/00
ac column: DB-624 (D: 0.25) (mat)	or Factor: 1.0
Soil Extract Volume:(uL) Soil Al	liquot Volume:(uL
CAS NO. COMPOUND (ug/L or ug/I	N UNITS: Kg) UG/L Q
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	1.0 U 1.0 U 1.0 U 3.0 U

EPA SAMPLE NO.

FORM L VIA

III-21

	13			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

EPA SAMPLE NO. -

Lab Name: GENERAL ENGINEERING LABOR Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	: N/A
Matrix: (soil/water) WATER	Lab Sa
Sample wt/vol: 1010 (g/mL) ML	Lab F.
Level: (low/med) LOW	Date 1
% Moisture: decanted: (Y/N)	Date 1
Concentrated Extract Volume: 1.00(mL)	Date
Injection Volume: 1.0(uL)	Dilut
GPC Cleanup: (Y/N) N pH: 7.0	

COMPOUND

CAS NO.

CL7200

....

SDG No.: HAAFLTM.04W ample ID: 21342003 ile ID: - 8G415 Received: 02/03/00 Extracted:02/04/00 Analyzed: 02/10/00 ion Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

0
O

1-20-3	Naphthalene	0.99	
	2-Chloronaphthalene	0.99	U
08-96-8	Acenaphthylene	0.99	U
	Acenaphthere	0.99	U
6-73-7	Fluorene	0.99	U
5-01-8	Phenanthrene	0.99	U
20-12-7	Anthracene	0.99	U
06-44-0	Fluoranchene	0.99	110000000
.29-00-0	Pyrene	0.99	e
6-55-3	Benzo(a)anchracene	0.99	1.000
18-01-9		0.99	Ŭ
	Berizo (b) fluoranthene	0.99	U
07-08-9	Benzo(k)fluoranthene	0.99	U
	Benzo(a)pyrene	0.99	U
.93-39-5	Indeno(1,2,3-cd)pyrene	0.99	U
3-70-3	Dibenz (a, h) anthracene	0.99	U
	Benzo(q,h,i)perylene	0.99	U

FORM I SV-L

	EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET	CL5200
Lab Name: GENERAL ENGINEERING LABOR Contract: N//	Α ΙΙ
Lab Code: N/A Case No.: N/A SAS No.: N/I	A SDG No.: HAAFLTMC4W
Matrix: (soil/water) WATER Lab	Sample ID: 21342004
Sample wt/vol: 5.000 (g/ml) ML Lab	P:1e-ID: -2V314
Level: (low/med) LCW Dat	e Received: 02/03/00
	e Analyzed: 02/09/00
	ution Factor: 1.0
Soil Extract Volume:(uL) Soi	11 Aliquot Volume:(ul
CONCENTRA	NTION UNITS: Ng/Kg/ UG/L Q
71-43 2Benzene 1C8-88-3Toluene 1C0-41-4Ethylbenzene	1.0 J 1.0 J 1.0 J UFOY, FOL 0.61 J 0.49 J J

108-83-3-----Toluene 100-41-4----Ethylbenzene 1330-20-7 -----Xylenes (total)

× 6

	lB			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

COMPOUND

CAS NO.

1

EPA SAMPLE NO.

Lab Name: GENERAL ENGINEERING LABOR Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	
Matrix: (soil/water) WATER	Lab Sample ID: 21342004
Sample wt/vol: 1020 (g/mī) Mī	Lab File ID: 8G416
Level: (low/med) LOW	Date Received: 02/03/00
% Moisture: decanted: (Y/N)	Date Extracted:02/04/00
Concentrated Extract Volume: 1.00(mL)	Date Analyzed: 02/10/00
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: 7.0	

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene	3.5	
1-58-72-Chloronaphthalene	0.98 0	
208-96-8Acenaphthylene	0.98 U	
33-32-9Acenaphthene	0.98 U	
36-73-7Fluorene	0.98 U	
35-01-8Phenanthrene	0.98 U	
20-12-7Anthracene	0.98 U	
206-44-0Fluoranthene	0.98 U	
29-00-0Pyrene	C.98 U	
56-55-3Benzo (a) anthracene	0.98 U	
218-01-9Chrysene	C.98 U	
205-99-2Benzo(b) fluoranthene	0.98 0	
207-08-9Benzo(k) fluoranthene	0.98 U	
50-32-8Benzo (a) pyrene	0.98 U	
193-39-5Indeno(1,2,3-cd)pyrene	0.98 U	
3-70-3Dibenz(a,h)anthracene	0.98 U	
91-24-2Benzo(g,h,i)perylene	0.98 0	

FORM I SV-1

1.141

22.8

LA VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NU.
Lab Name: GENERAL ENGINEERING LABOR Contract: N/A	CL9200
Lab Code: N/A Case No.: N/A SAS No.: N/A	SDG No.: HAAFLTM04W
Matrix: (soil/water) WATER Lab Samp	ole ID: 213-2005
Sample wt/vol: 5.000 (g/ml) ML Lab File	e ID: 2V315
Level: (low/med) LOW Date Rec	ceived: 02/03/00
% Moisture: not dec Date Ana	alyzed: 02/09/00
GC Column: DB-624 ID: 0.25 (mm) Dilution	n Factor: 1.0
Soil Extract Volume:(uL) Soil Ali	iquot Volume: (uL
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/Kg	
71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Kylenes (total)	1.0 U 1.0 J J J J J J J J J J J J J J

FORM I VOA

.

? :

-e ,

	18			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

EPA SAMPLE NO.

SEMIVOLATIL	E ORGANICS ANALISIS DAIN	SALEI
		CL9200
Lab Name: GENERAL ENG		
Lab Code: N/A C	ase No.: N/A SAS No.:	N/A SDG No.: HAAFLTM04W
Matrix: (soil/water)	WATER	Lab Sample ID: 21342005
Sample wt/vol:	1020 (g/mL) ML	Lab File ID: 8G417
Level: (low/med)	LOW	Date Received: 02/03/00
% Moisture:	decanted: (Y/N)	Date Extracted:02/04/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 02/10/00
Injection Volume:	1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	
	CONCE	NTRATION UNITS:

COMPOUND

CAS NO.

(ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene	1.4	
91-58-72-Chloronaphthalene	0.98	
208-96-8Acenaphthylene	0.98	
83-32-9Acenaphthene	0.74	-
86-73-7Fluorene	0.62	J
85-01-8Phenanthrene	1.8	[]
120-12-7Anthracene	0.98	
206-44-0Fluoranthene	0.98	U
129-00-0Pyrene	0.98	U
56-55-3Benzo (a) anthracene	0.98	U
218-01-9 Chrysene	0.98	U
205-99-2Benzo(b)fluoranthene	0.98	U
207-08-9Benzo(k)fluoranthene	0.98	U
50-32-8 Benzo (a) pyrene	0.98	ប
193-39-5Indeno(1,2,3-cd) pyrene	0.98	U
53-70-3Dibenz (a, h) anthracene	0.98	U
191-24-2 Benzo (g, h, i) perylene	0.98	U
1)1-24-2 Conso (g/m/1) por j zeno		

OLM03.0

73

 $\begin{array}{c} \mathcal{A} \xrightarrow{\mathcal{A}} \frac{\mathcal{A}}{2} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}$

III-26

))
UUDA 189 (521) 16815 NI agini keu Juhan ang ang ang ang ang ang ang ang ang a	00	CHA	IN OF	CHAIN OF CUSTODY RECORD	λdo.	RECO	RD				COC NO .:	COC NO .: CHIMAPIT
IDJECT NAME: HAAF-LIM UST 21	21;22		ŀ	REC	NESTED	REQUESTED PARAMETERS	ETERS				LABORATORY NAME	AME.
OJECT NUMBER: 01-1624-04-1764-220							-				ueneral Engineering Laboratory	ing Laboratory
									•		LABORATORY ADDRESS	DDRESS:
10JECT MANAGER: Patty Stoll										:slaiV	Charleston, SC 29417	29417
-0	me)									\settro8	PIIONE NO: (803) 556-8171	. 556-8171
Sample ID Date Collegied Time C	Time Callected Matrix	ХЭТ8 НАЯ								No. of	OVA	OBSERVATIONS, COMMENTS. SPECIAL INSTRUCTIONS
CLIZED 2/2/00 1345	15 water	2 2			1. 1970 1. 1970 1. 1970		<u> 1</u>	23	5.2	J		213421
CL2200 2/2/00 123	2355	22			-145 -145				j ri	T		×
CL7200 212/00 14/4	45	22	•: •:	14 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		141 144	-43 y 		: : : : :	Ŧ		
200 2/2/00	1140	22		ariy.	7.€ 		15. 1 : 1		: ::::::::::::::::::::::::::::::::::::	T		
2/2/20 1	340	22				-5.1			i.i	F		
MPCO22 2/2/00 0745	>	2	2		i, șși L	;;; ;		N.		N	-	
		• :				. 7%	24.00 24.00	1				
				:: 21.					1. 1. 1.		-	
					ترية. حر	Seit.		int.				
			A	A				<u>ě ::</u>	5. D 71.		_	
				9		T	14.1		·			
					₹°.4	·:						
				• • •	, 214, 1		n.¦.[зá				
LINGUISHER BY:	RECEIVED BY:	N V	Date/Time		FOTAL N	UMBER	TOTAL NUMBER OF CONTAINERS:	AINERS:	22	0	Cooler Temperature:	e: Ur Cr
IMPANY NAME: 1045	MEP.	1 - Low	2.2	14200	Cooler ID:	() #	15			<u>+</u>	HEDEX NUMBER:	
CEIVED BY: Date/T.mo	HELINQUISHED BY:	- 01	Date/Timu	Time						-		
12121	COMPANY NAME:						5 8 8					7
MOUISHED BY: DIEN 212/20	RECEIVED BY:		Date/Time	line								
MPANY NAME:	CCMPANY NAME:											

SECOND SEMIANNUAL MONITORING EVENT

JUNE 2000

1A VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
Lab Name: GENERAL ENCINEERING LABOR Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG No.: HAGLTMO2W
Matrix: (soil/water) WATER	Lab Sample ID: 27499003
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 2P214
Level: (low/med) LOW	Date Received: 06/24/00
% Moisture: not dec.	Date Analyzed: 06/27/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		Q.	×
108-88-3 100-41-4	Benzene Toluene Ethylbenzene Xylenes (tota	<u></u>	2.7 1.0 5.9 0.33		= FOI, FO8 U T
					_1

DATA VALIDATION COPY

OLM03.0

FORM I VOA

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

-1

1

		DL1200	
Lab Name: GENERAL ENC	INEERING LABOR Contract		
Lab Code: N/A	Case No.: N/A SAS No.	N/A SDG NO.: HAALTI	M02W
Matrix: (soil/water)	WATER	Lab Sample ID: 27499003	
Sample wt/vol:	990.0 (g/mL) ML	Lab File ID: 4A311	
Level: (low/med)	LOW	Date Received: 06/24/00	
% Moisture:	decanted: (Y/N)	Date Extracted:06/27/00	
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 06/28/00	
Injection Volume:	1.0(uL)	Dilution Factor: 1.0	
GPC Cleanup: (Y/N)	N		

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

53-70-3Dibenz (a, h) anthracene	91-20-3Naphthalene 91-58-72-Chloronaphthalene 208-96-8Acenaphthylene 83-32-9Acenaphthene 83-32-9Acenaphthene 86-73-7Phenaphthene 85-01-8Phenanthrene 120-12-7Anthracene 206-44-0Phenanthrene 129-00-0Pyrene 56-55-3Benzo (a) anthracene 218-01-9Chrysene 205-99-2Benzo (b) fluoranthene 207-08-9Benzo (k) fluoranthene 50-32-8Benzo (a) pyrene 193-39-5Indeno (1, 2, 3-cd) pyrene 193-39-5	12.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	מממממממממ	Fu
---------------------------------	--	--	-----------	----

FORM I SV-1

DATA VALIDATION OLMO3.0 COPY

1A VOLATILE ORGANICS ANALYSIS DATA SP	EPA SAMPLE NO. HEET
	DL2200
Lab Name: GENERAL ENGINEERING LABOR Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG No.: HAJELTMO2W
Matrix: (soil/water) WATER	Lab Sample ID: 27499002
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 2P213
Level: (low/med) LOW	Date Received: 06/24/00
% Moisture: not dec.	Date Analyzed: 06/27/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO. COM	POUND	(ug/L or ug/Kg) UG/L		Q	
71-43-2Ben 108-88-3Tol 100-41-4Eth 1330-20-7Xyl	uene ylbenzene	al)	2.8 1.0 9.0 0.50	U	= F01,F08 0 = J

DATA VALIDATION COPY

OLM03.0

FORM I VOA

SEMIVOLATIL	1B E ORGANICS ANALYSIS DATA	EPA SAMPLE NO.
	INEERING LABOR Contract	DL2200
Lab Code: N/A Ca	ase No.: N/A SAS No.	: N/A SDG No.: HAALTM02W
Matrix: (soil/water)	WATER	Lab Sample ID: 27499002
Sample wt/vol:	1020 (g/mL) ML	Lab File ID: 4A310
Level: (low/med)	LOW	Date Received: 06/24/00
% Moisture:	decanted: (Y/N)	Date Extracted:06/27/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 06/28/00
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) 1	N	
CAS NO.		NTRATION UNITS: or ug/Kg) UG/L Q

1-20-3Naphthalene	16.4	
1-58-72-Chloronaphthalene	0.98	U
08-96-8Acenaphthylene	0.98	U
3-32-9Acenaphthene	1.0	
6-73-7Fluorene	0.98	U
5-01-8Phenanthrene	1.8	
20-12-7Anthracene	0.98	Ū
06-44-0Fluoranthene	0.98	U
29-00-0Pyrene	0.98	U
6-55-3Benzo(a) anthracene	0.98	U
18-01-9Chrysene	0.98	U
05-99-2Benzo(b) fluoranthene	0.98	Ū
07-08-9Benzo(k)fluoranthene	0.98	
0-32-8Benzo(a)pyrene	0.98	Ū
93-39-5Indeno (1, 2, 3-cd) pyrene	0.98	Ū
3-70-3Dibenz(a,h)anthracene	0.98	U
91-24-2Benzo(g,h,i)perylene	0.98	6.077

OLM03.0

DATA VALIDATIUN COPY

1A VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract	: N/A
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG NO.: HAALTMO2W
Matrix: (soil/water) WATER	Lab Sample ID: 27499001
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 2P212
Level: (low/med) LOW	Date Received: 06/24/00
% Moisture: not dec.	Date Analyzed: 06/27/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION U (ug/L or ug/Kg)	NITS: UG/L	Q.	
			1.0 1.0 0.091 0.29	U U J J	1400

DATA VALIDATION

01.M03.0

FORM I VOA

CEMTVOL ATL	1B LE ORGANICS ANALYSIS DAT.		EPA SAMPLE NO.
	SINEERING LABOR Contrac		DL7200
Lab Code: N/A			IO.: HATALTMO2W
Matrix: (soil/water)	San Andrews State Security of Addrew Security Comparison (1999)	Lab Sample ID:	27499001
Sample wt/vol:	980.0 (g/mL) ML	Lab File ID:	4A309
Level: (low/med)	LOW	Date Received:	06/24/00
% Moisture:	decanted: (Y/N)	Date Extracted:	06/27/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	06/28/00
Injection Volume:	1.0(uL)	Dilution Factor	: 1.0
GPC Cleanup: (Y/N)	Ν	536	
CAS NO.	CONC COMPOUND (ug/	ENTRATION UNITS: L or ug/Kg) UG/L	Q
91-58-7 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7	Phenanthrene		1.0 U 1.0 U

85-01-8-----Phenanthrene 120-12-7-----Anthracene 206-44-0----Fluoranthene

56-55-3-----Benzo(a)anthracene

218-01-9-----Chrysene 205-99-2-----Benzo (b) fluoranthene 207-08-9-----Benzo (k) fluoranthene 50-32-8-----Benzo (a) pyrene 193-39-5-----Indeno (1, 2, 3-cd) pyrene 53-70-3-----Dibenz (a, h) anthracene 191-24-2----Benzo (g, h, i) perylene

129-00-0-----Pyrene

218-01-9-----Chrysene

CATA VALIDATION COPY

1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

OLM03.0

1A VOLATILE ORGANICS ANALYSIS DATA S	EPA SAMPLE NO.
) Lab Name: GENERAL ENGINEERING LABOR Contract	DL8200
Lab Code: N/A Case No.: N/A SAS No.	: N/A SDG No.: HAALTMO2W
Matrix: (soil/water) WATER	Lab Sample ID: 27499008
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 2P309
Level: (low/med) LOW	Date Received: 06/24/00
% Moisture: not dec.	Date Analyzed: 06/28/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

g/L or ug/Kg) UG/L	Q .
1.0	J J
	1.0 1.0 1.0 0.51 3.0

, DATA VALIEATION COPY

FORM I VOA

	SEMIVOLAT'I	1B LE ORGANICS ANALYSIS	5 DATA SHEET	EPA SAMPLE NO.
Lab Na	ame: GENERAL EN	GINEERING LABOR CON	ntract: N/A	DL8200
Lab Co	ode: N/A	Case No.: N/A SA	AS NO.: N/A SDG	No.: HAALTMO2W
Matriz	x: (soil/water)	WATER	Lab Sample ID	: 27499008
Sample	e wt/vol:	900.0 (g/mL) ML	Lab File ID:	4A316
Level	: (low/med)	LOW	Date Received	: 06/24/00
% Mois	sture:	decanted: (Y/N)	Date Extracted	1:06/27/00
Concer	ntrated Extract	Volume: 1.00(mL)	Date Analyzed	: 06/28/00
Inject	ion Volume:	1.0(uL)	Dilution Facto	pr: 1.0
GPC C	leanup: (Y/N)	N		
	CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/I	
	91-58-7	Naphthalene 2-Chloronaphthale Acenaphthylene	ene	6.7 = 0 1.1 U = 0

83-32-9----Acenaphthene

85-01-8-----Phenanthrene

206-44-0----Fluoranthene

50-32-8-----Benzo(a)pyrene

56-55-3----Benzo(a) anthracene

205-99-2-----Benzo(b) fluoranthene

207-08-9-----Benzo(k)fluoranthene

193-39-5-----Indeno (1,2,3-cd) pyrene

53-70-3-----Dibenz (a, h) anthracene 191-24-2----Benzo (g, h, i) perylene

120-12-7----Anthracene

86-73-7----Fluorene

129-00-0----Pyrene

218-01-9-----Chrysene

FORM I SV-1

OLM03.0

1.1 U

1.1 U

1.1 U

1.1 U

1.1 U

1.1 U

1.1

1.1 U

1.1 U

1.1 U

1.1 U

1.1 U

1.1 U 1.1 U

U

DATA VALIDATION COPY

1A VOLATILE ORGANICS ANALYSIS DATA SH	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR Contract:	DL9200
Lab Code: N/A Case No.: N/A SAS No.:	N/A SDG No.: HAALTM02W
Matrix: (soil/water) WATER	Lab Sample ID: 27499009
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 2P308
Level: (low/med) LOW	Date Received: 06/24/00
% Moisture: not dec.	Date Analyzed: 06/28/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
108-88-3	Benzene Toluene Ethylbenzene Xylenes (tota		1.0 U 1.0 U 1.0 U 3.0 U

DATA VALIDATION COPY

OLM03.0

FORM I VOA

SEMIVOLATILE	1B ORGANICS ANALYSIS DATA	SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENGIN	NEERING LABOR Contract	: N/A	DL9200
Lab Code: N/A Cas	se No.: N/A SAS No.	N/A SDG	No.: HAGLTMO2W
Matrix: (soil/water) WA	ATER	Lab Sample ID:	27499009
Sample wt/vol: 98	30.0 (g/mL) ML	Lab File ID:	4A317
Level: (low/med) LO	W	Date Received:	06/24/00
% Moisture: de	canted: (Y/N)	Date Extracted	:06/27/00
Concentrated Extract Vo	olume: 1.00(mL)	Date Analyzed:	06/29/00
Injection Volume: 1	0(uL)	Dilution Facto	r: 1.0
GPC Cleanup: (Y/N) N			
CAS NO.		NTRATION UNITS: or ug/Kg) UG/L	Q

1-20-3Naphthalene	1.2
1-58-72-Chloronaphthalene	1.0 U
08-96-8Acenaphthylene	1.010
3-32-9Acenaphthene	1.0 U
6-73-7Fluorene	1.0 U
5-01-8Phenanthrene	1.0 0
20-12-7Anthracene	1.00
06-44-0Fluoranthene	1.0 U
29-00-0Pyrene	1.0 0
6-55-3Benzo (a) anthracene	1.0 U
18-01-9Chrysene	1.0 U
05-99-2Benzo(b)fluoranthene	1.0 U
07-08-9Benzo(k) fluoranthene	1.00
0-32-8Benzo (a) pyrene	1.00
93-39-5Indeno (1, 2, 3-cd) pyrene	1.00
3-70-3Dibenz (a, h) anthracene	1.00
91-24-2Benzo (g, h, i) perylene	1.00
201120 (3,11,1) perview	1.00

DATA VALIDATION FORM I SV-1 COPY

OLM03.0

Q

	1000			65	590	3000		~	->	8.		~>									1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
\sum	COC NO .: H LTM 14	VAME:	ring Laboratory	ADDRESS: and 29417	31 556-8171	OBSERVATIONS, COMMENTS. SPECIAL INSTRUCTIONS	27499			274971										ure: 4,2						- · · · · · · · ·
	COC NO.:	LABORATORY NAME:	General Engineering Laboratory	LABORATORY ADDRESS: 2040 Savage Raod Charleston, SC 29417	PHONE NO: (843)	OVA SCREENING		-	_				-				-			Cooler Temperature:	FEDEX NUMBER:					
				;slal\	C \asl1108	la .oN	7	T	I	2	N	N					-		1/			1				
															25				Ĺ	R						
																		1		INERS:						
	~	RS																		CONTA	nt					
	CORD	AMETE			:												1			BER OF	のとや井					
	CUSTODY RECORD	REQUESTED PARAMETERS					780										1 10			TOTAL NUMBER OF CONTAINERS:				8 . 32		
5 	TOD	EQUEST					5.15 C									Y	9			TOTA	Cooler (D:					
)		BE													•	A)			Date/Time	1.55	Time		Time		
	CHAIN OF														Q					Date	6/24 00 115	Date/Time		Date/Time		
	HAI					VOC				N	NI	1			đ		. m.ș.s			2		¦				1
	C					ХЭТВ НА9		N						4	1	<u>J</u>				0	A.					
(g)					10	Matrix	water	•				>								RECEIVED BY:	COMPANY NAME:	RELINQUISHED BY:	COMPANY NAME:	RECEIVED BY:	COMPANY NAME:	
						ollected	2	n	Q	ali	1250	130		$\ $								RELING	COMP	RECEIV	COMP/	
6	481-4500	toring	00		[Printed Name]	Time Collected	0261	1405	1235	228	<u>0</u>	+								La 1224/00	30	Turne 1/100	2	Date/Time	انخ بخر	
und Congu	(628) 10	m Mon	-2725-2		IPHI		100	00	VI		8	001	1	T						L 12	0930	Date/Turne	0330	6/24	11.5	
The state of the s	ık Rüdge Turnpüka, Oak Ridge, TN 37831 (423) 481-4600	LECT NAME: HAAF Long Term Monitoring	ECT NUMBER: 01-1624-04-2725-200	ECT MANAGER: Patty Stoll	Ô	Date Collected	12	162 0	27	-		12210								ð		Z				
Le Aplanua latmantera Copentier	ike, Oak Ri	E HAAI	ER: 01	GER: P	_Q		-		81	vr		1 TC	\parallel									Ke	(ن	eed	. نن	
And Applement	lidge Turnp	T NAM	T NUME	T MAN	er (Signature)	Sampla ID	+200	200	25			1¢								ипизнеро	ANY NAME	IVED BY	ANY NAME:	auistienter:	ANY NAME:	
971111 Q	4	С Ц	L C	<u>2</u>	5 _ n		ןך היי	ןך הכי				Ē		1	I		J	I	1	ĕ 3	AI	23/	57 9	₽, G	<u>x</u> //	
							o southing a little		~	-		a.e 0														

,

III-39

6

	0			T-		<u>936</u>	5000	100	· /	. T	T	T	T		3 6	5.	T	Т	Т	1	Т	Т	Γ	1-			
	COC NO .: HLTMIC	AME:	ing Laboratory	DDRESS:	od 9417		1 556-8171	OBSERVATIONS, COMMENTS, SPECIAL INSTPUCTIONS	1.667720	8/11/1												re: 41					
	COC NO.:	LABORATORY NAME	General Engineering Laboratory	LABORATORY ADDRESS:	2040 Savage Raod Charleston, SC 29417		PHONE NO: (843) 556-8171	OVA SCREENING	1													Cooler Temperature:	FEDEX NUMBER:				
				-	:slal	∧ /s=	Bottl	to .oN	1	-1	Ц	4	T	T	N	N	-	-		-	6	2					
																						X					
																				\parallel		VERS:					
																				 		TOTAL NUMBER OF CONTAINERS:	[]				
	BD	REQUESTED PARAMETERS																				I OF C	#511				<u>.</u> *
	CUSTODY RECORD	ARAN																				UMBEF	≁ ⊢				
	Р Р	STED P																	¢2			TAL N	Cooler fD:				
)	STO	EQUES	23 24																To			10			·		
	CU	Ē																Ś	h			Date/Time		Date/Tims		Date/Time	
	CHAIN OF	F																	0			Date	- Jac	Date		Date	
	HAIR							VOC	<u> </u>								(X	1			2		· · · · · · · · · · · · · · · · · · ·	Τ		
	O	H						(JT8. HA9	2 2	2 2	22	22	NN	2	N	2	_(H.	4) ,					
			T			Γ	7	F	5								-4	TU	f			R	iii iii	BY:	ME:		ИE:
						1	-umler	Mateb	water	-	-		-+	-	-)						DBY	NAN Y	A C C	IY NAI	D BY:	IY NAI
											~		0	10	1			\square				RECEIVED BY	COMPANY NAME:	RELINQUISHED BY:	COMPANY NAME:	RECEIVED BY:	COMPANY NAME:
	1600	59				(ama)	auco	Time Collected	1235	5251	1350	1330	55	1035	2 2 2 2 2	2745					ł				- I	-	8
fund	0097-182 (628)	nitorin	-200			[Printed Næne	S.V.	Ē	21	47	5	2	_	-			_					Date/Time	0011	Dayenge	100	Date Tinte	Ph
f An Employee Owned Company d Carparation	331 (42	rm Mo	-2725			4	لہ	pcted	00	00	00	8	00/	25/00	24/00	00/22/01						Dat Dat	~~~	Daysn Ca761	~	C C	10
împleyre -0 rporation	ALE NI	ong Te	24-04		γ Stoll		Der	Date Cothacted	u/24/00	a 24/00	6 24 BO	10124/00	6251	-	HZ	121						4	Pc	L			λ
An E	ek Ridge,	AAFLo	01-16		t: Patt		0		2	3	3	e	+	9	ø	9	-		-	+	-	C		1 La	$\left \right\rangle$	Z	2
in her	npike, O	AE: H	ABER:		NAGER	=	Â	0	N	N	N	T	8	28	226	212						Ď	AME:	L'AC	(Jiji)	ED/BY:	
A Province	sk Ridge Turnpike, Osk Ridge, TN 37831	IECT NAME: HAAF Long Term Monitoring	ECT NUMBER: 01-1624-04-2725-200		ECT MANAGER: Patty Stoll	er (Signature	Contra	Sample ID	61022	22117	1322	1324	-/1		0	S						IDUISHED	ANY NAME:	Neofer C	ANY NAME	BUISHED BY:	ANY NAME
1741 🖬 🖇		Ĕ	1 5		ы Ц	er	4	~	4 61	\sim	5 7	ן. ל	JI.		000	Ć	11	ļ	ļ]	ğ	4 X	NZ N	. ×.	Ra R	A
									2.	X	3.	7.				1-											

III-40

APPENDIX IV

SITE RANKING FORMS

First Annual Monitoring Only Report USTs 21 & 22, Building 1327, Facility ID #9-025053

FIRST SEMIANNUAL MONITORING EVENT

FEBRUARY 2000

First Annual Monitoring Only Report USTs 21 & 22, Building 1327, Facility ID #9-025053

SITE RANKING FORM

Facil	ity Nam	e: <u>USTs 21 & 22, Building 1327</u>	Ranked by: <u>S. Stoller</u>						
Cour	nty: Cl	hatham Facility ID #: 9-025053	Date	e Ranked: 5/4/00					
SOIL	CONTA	MINATION							
Α.	Maxir (Assu	PAHs – B. mum Concentration found on the site ime <0.660 mg/kg if only gasoline stored on site)		al Benzene - imum Concentration found o	on the site				
			* 🛛	<u><</u> 0.005 mg/kg =	0				
	* 🛛	$\leq 0.660 \text{ mg/kg} = 0$		>0.00505 mg/kg =	1				
		>0.66 - 1 mg/kg = 10		>0.05 - 1 mg/kg =	10				
		>1 - 10 mg/kg = 25		>1 - 10 mg/kg =	25				
		>10 mg/kg = 50		>10 - 50 mg/kg =	40				
		AP-Part B location BL2 was installed immediately adjacent t ata from sample BL2103 superceded analytical data from sa			50				
C.		to Groundwater below land surface)							
		>50' bls = 1							
		>25' - 50' bls = 2							
		>10' - 25' bls = 5							
	\boxtimes	$\leq 10'$ bls = 10							
Fill in	the bla	nks: (A0_) + (B0_) = (0) x (C	. 10	_) = (D. <u>0</u>)					
GROL	INDWA	TER CONTAMINATION							
E.	liquid	Product (Nonaqueous-phase F. hydrocarbons; See Guidelines efinition of "sheen").	Maxi (One	olved Benzene - mum Concentration at the si well must be located at the e release.)					
	\boxtimes	No free product = 0		a T					
		Sheen - 1/8" = 250	* 🖾	<u>≤</u> 5 μg/L	= 0				
		>1/8" - 6" = 500		>5 - 100 µg/L	= 5				
		>6" - 1ft. = 1,000		>100 - 1,000 µg/L	= 50				
				>1,000 - 10,000 µg/L	= 500				
		For every additional inch, add another 100 points = <u>1,000 +</u>	□.	>10,000 µg/L LTM Sample CL2200 (February 20	= 1500 <i>00)</i>				
Fill in	the bla	nks: (E. <u>0</u>) + (F. <u>0</u>) = (G. <u>0</u>)							

00-323(doc)110600

County: Chatham Facility ID #: 9-025053

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

н.	Public Water Supply I.	19	Non-Public Water Supply
*	$ \begin{array}{ c c c c } & \text{Impacted} & = 2000 \\ \hline & \leq 500' & = 500 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = 25 \\ \hline & \frac{1}{4} \text{ mi} - 1 \text{ mi} & = 10 \\ \hline & >1 \text{ mi} - 2 \text{ mi} & = 2 \\ \hline & & > 2 \text{ mi} & = 0 \\ \hline & & \text{For lower susceptibility areas only:} \\ \hline & & >1 \text{ mi} & = 0 \\ \hline & & \text{Note: If site is in lower susceptibility area, do} \end{array} $	not	$ \begin{array}{ c c c c c c c c } & \text{Impacted} & = & 1000 \\ \hline & \leq 100' & = & 500 \\ \hline & >100' - 500' & = & 25 \\ \hline & >500' - \frac{1}{4} \text{ mi} & = & 5 \\ \hline & >\frac{1}{4} - \frac{1}{2} \text{ mi} & = & 2 \\ \hline & >\frac{1}{2} \text{ mi} & = & 0 \\ \hline & \text{For lower susceptibility areas only:} \\ \hline & >\frac{1}{4} \text{ mi} & = & 0 \\ \hline & \text{use the shaded areas.} \\ \end{array} $
	* For justification that withdrawal point is not hyd	raul	cally connected, see attached text.
J.	Distance from nearest Contaminant Plume K boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water table	<.	Distance from any Free Product to basements and crawl spaces
	$ mpacted = 500 \\ \le 500' = 50 \\ \ge 500' - 1,000' = 5 \\ \ge >1,000' = 2 $	6)	Impacted = 500 <500'
Fill in	n the blanks: (H. <u>0</u>) + (l. <u>0</u>) + (J. <u>50</u>	_) +	(K. <u>0</u>) = L. <u>50</u>
	(G. <u>0</u>	_) x	(L. <u>50</u>) = M. <u>0</u>
	(M0	_) +	(D. <u>0</u>) = N. <u>0</u>
Ρ.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Water P	'ollu	ion Susceptibility Area = 0.5
	All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possibly or any subsurface structure (e.g., utility trenches, bas		
	Yes = 200,000		
	No = 0		
Fill in	n the blanks: (N. <u>0</u>) x (P. <u>1</u>) = (<u>0</u>) + ((Q	_0)
	= 0 (January 2000 - First Semia ENVIRONMENTAL SENSITIVITY		

SECOND SEMIANNUAL MONITORING EVENT

JUNE 2000

SITE RANKING FORM

Facil	ity Nam	e: USTs 21 &	22, Buildin		Ranl	ked by:	S. Stoller	0		
Cour	nty: _Cł	atham Fac	ility ID #:	-025053		Date	Ranked:	10/25/00		
SOIL	CONTA	MINATION								
A.	Maxir (Assu	PAHs – num Concentrat me <0.660 mg/l tored on site)			B.		Benzene - mum Conce	entration foun	d on	the site
						* 🖂	<u><</u> 0.005 m	g/kg	=	0
	* 🛛	<u><</u> 0.660 mg/kg	, =	0			>0.005	05 mg/kg	=	1
		>0.66 - 1 mg/	′kg =	10			>0.05 - 1	mg/kg	=	10
		>1 - 10 mg/kg	g =	25			>1 - 10 m	g/kg	=	25
		>10 mg/kg	. =	50			>10 - 50 r	ng/kg	= .	40
	* C/ da	NP-Part B location Bl ta from sample BL21	L2 was installe 103 supercede	d immediately adjac d analytical data froi	cent to m sam	CAP-Pai pple HL91	>50 mg/kg et A location L-s 01.	g 9, thus analytical	= ;	50
C.		to Groundwate below land surfa								
		>50' bls	= 1							
		>25' - 50' bls	= 2							
		>10' - 25' bls	= 5							
	\boxtimes	<u><</u> 10' bls	= 10							62
Fill in	the blar	nks: (A. <u>0</u>	_) + (B	<u>0)</u> = (<u>0</u>) x	x (C.	10) = (D. <u>0</u>	_)		
GROU	INDWAT	ER CONTAMI	NATION							
E.	Free P liquid ł For de	roduct (Nonaqu ydrocarbons; S finition of "shee	ieous-phas ee Guidelir n").		F.	Maxin (One v		ne - ntration at the e located at th		
	\boxtimes	No free produc	ct = 0		*	\boxtimes	<u>≤</u> 5 µg/L		=	• 0
		Sheen - 1/8"	= 250			П	>5 - 100 µ	a/L	=	: 5
		>1/8" - 6"	= 500				>100 - 1,0	-	-	50
		>6" - 1ft.	= 1,000							
		For every addi 100 points = <u>1</u>		add another			>1,000 - 10 >10,000 μξ LTM Sample D		=	500 1500
Fill in f	the blan	ks: (E. <u>0</u>	_) + (F. <u>(</u>)_) = (G. <u>0</u>	_)				25	
00 202/1	-)110700			D 1						

Facility Name: USTs 21 & 22, Building 1327

County: Chatham Facility ID #: 9-025053

POTENTIAL RECEPTORS (MUST BE FIELD-VERIFIED)

Distance from nearest contaminant plume boundary to the nearest downgradient and hydraulically connected Point of Withdrawal for water supply. If the point of withdrawal is not hydraulically connected, evidence as outlined in the CAP-A guidance document MUST be presented to substantiate this claim.

Н.	Public Water Supply I.		Non-Public Water Supply
*	Impacted = 2000 ≤500' = 500 >500' - ¼ mi = 25 ¼ mi - 1 mi = 10 >1 mi - 2 mi = 2 ✓ > 2 mi = 0 For lower susceptibility areas only: > 1 mi = 0 Note: If site is in lower susceptibility area, do not susceptibility area, do not susceptibility area ★ For justification that withdrawal point is not hydr		
J.	Distance from nearest Contaminant Plume K. boundary to downgradient Surface Waters OR UTILITY TRENCHES & VAULTS (a utility trench may be omitted from ranking if its invert elevation is more than 5 feet above the water table		Distance from any Free Product to basements and crawl spaces
	$ \begin{array}{ c c c c c } & Impacted & = 500 \\ \hline & \leq 500' & = 50 \\ \hline & >500' - 1,000' & = 5 \\ \hline & >1,000' & = 2 \end{array} $		<pre><500' = 50 >500' - 1,000' = 5 >1,000' or = 0 no free product.</pre>
Fill in	n the blanks: (H. <u>0</u>) + (I. <u>0</u>) + (J. <u>50</u>)) +	(K. <u>0</u>) = L. <u>50</u>
	(G. <u>0</u>)) х	(L. <u>50</u>) = M. <u>0</u>
	(MI0)) +	(D. <u>0</u>) = N. <u>0</u>
P.	SUSCEPTIBILITY AREA MULTIPLIER		
	If site is located in a Low Ground-Water Po	ollu	tion Susceptibility Area = 0.5
	All other sites = 1		
Q.	EXPLOSION HAZARD		
	Have any explosive petroleum vapors, possibly originary subsurface structure (e.g., utility trenches, bas		
	Yes = 200,000		
	🖾 No = 0		
Fill in	n the blanks: (N. <u>0</u>) x (P. <u>1</u>) = (<u>0</u>) + (0	Q	_0)
	= 0 (June 2000 - Second Semia ENVIRONMENTAL SENSITIVITY		

ADDITIONAL GEOLOGIC AND HYDROGEOLOGIC DATA

The following information is presented to provide supplemental information to Item H of the Site Ranking Form. It provides detailed information relating to the geologic and hydrogeologic conditions at HAAF that supports HAAF's determination that the water withdrawal points located at the airfield cannot hydraulically connect to the surficial aquifer.

1.0 REGIONAL GEOLOGY

Southeastern Georgia is located within the coastal plain physiographic province of the southeastern united states (Clark and Zisa 1976). In this region the thickness of southeastward-dipping, subsurface strata ranges from 0 feet at the fall line, located approximately 350 miles inland from the Atlantic coast, to approximately 4,200 feet below ground surface at the coast. Herrick (1961) provides detailed lithologic descriptions of the stratigraphic units encountered during the installation of water and petroleum exploration wells in Chatham County. The well log of GGS Well 125, located on White Bluff Road (700 feet west and 0.3 mile north of Buckhalter Road in Savannah, Georgia) provides one of the more complete lithologic descriptions of upper Eocene, Miocene, and Pliocene to Recent sedimentary strata in Chatham County.

The upper Eocene (Ocala Limestone) section of GGS Well 125 is approximately 225 feet thick and is dominated by light gray to white, fossiliferous limestone. The Miocene section is approximately 250 feet thick and consists of limestone with a 160-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known to occupy the Coosawatchie Formation of the Hawthorn Group (Furlow 1969; Arora 1984; Huddlestun 1988). The interval from approximately 80 feet to the surface is Pliocene to Recent in age and composed primarily of sand interbedded with clay and silt. This section is occupied by the Satilla and Cypresshead Formations (Huddlestun 1988).

2.0 LOCAL GEOLOGY

HAAF is located within the barrier island sequence district of the coastal plain physiographic province of the southeastern United States (Clark and Zisa 1976). The barrier island sequence district in Chatham and Bryan counties is characterized by the existence of several marine terraces (step-like topographic surfaces that decrease in elevation toward the coast). These marine terraces, and their associated deposits, are the results of sea level fluctuations that occurred during the Pleistocene epoch. The surficial (Quaternary) deposits in Chatham and Bryan counties, by decreasing elevation and age, are part of the Okefenokee, Wicomico, Penholoway, Pamlico, and Silver Bluff Terrace complexes (Wilkes et al. 1974; GA DNR 1976; Huddlestun 1988).

HAAF, as well as most of Chatham County, is underlain by the Pleistocene Pamlico Terrace. The Pleistocene Satilla Formation (formerly known as the Pamlico Formation) consists of deposits of the Pamlico Terrace complex and other terrace complexes in the region (Huddlestun 1988). The Satilla Formation is a lithologically heterogeneous unit that consists of variably bedded to nonbedded sand and variably bedded silty to sandy clay. During the Pleistocene epoch, these sand and clay deposits were formed in offshore and inner continental shelf, barrier island, and marsh/lagoonal-type environments (Huddlestun 1988). According to the *Geologic Map of Georgia* (GA DNR 1976), clay beds of marsh origin, which were deposited on the northwestern side of the former Pamlico barrier island complex, exist in the western quarter of HAAF. Very fine- to coarse-grained sand deposits of barrier island origin are more common throughout the remaining areas of HAAF.

Based on the coring and sampling of unconsolidated strata at HAAF during the CAP–Part A investigations, it is concluded that all former USTs were buried within the Satilla Formation, which is overlain by various soil types. Soil groups at HAAF include the Chipley, Leon, Ellabelle, Kershaw, Pelham, Albany, Wahee, and Ogeechee (Wilkes et al. 1974).

3.0 REGIONAL AND LOCAL HYDROGEOLOGY

The hydrogeology in the vicinity of HAAF is mostly influenced by two aquifer systems. These are referred to as the Principal Artesian (Floridan) Aquifer and the surficial aquifer (Miller 1990). The Principal Artesian Aquifer is the lowermost hydrologic unit and is regionally extensive from South Carolina through Georgia, Alabama, and most of Florida. Known elsewhere as the Floridan, this aquifer, which is approximately 800 feet in total thickness, is composed primarily of Tertiary-age limestone, including the Bug Island Formation, the Ocala Group, and the Suwannee Limestone. Groundwater from the Floridan is used primarily for drinking water (Arora 1984). According to Miller (1990), one of the largest cones of depression produced in the Upper Floridan Aquifer exists directly beneath Savannah, Georgia. Net water-level decline in the Floridan system between the predevelopment period and 1980 exceeded 80 feet beneath Savannah. In addition, according to 1980 estimates, more than 500 million gallons of water per day were withdrawn from the Floridan for public and industrial use in southeastern Georgia, more than any other region.

The confining layer for the Principal Artesian (Floridan) Aquifer is the phosphatic clay of the Hawthorn Group. There are minor occurrences of aquifer material within the Hawthorn Group; however, they have limited utilization (Miller 1990). The surficial aquifer overlies the Hawthorn confining unit.

The surficial aquifer consists of widely varying amounts of sand and clay, ranging from 55 feet to 150 feet in thickness, and is composed primarily of the Satilla and Cypresshead Formations in the Savannah vicinity (Arora 1984). This aquifer is primarily used for domestic lawn and agricultural irrigation. The top of the water table ranges from approximately 2 feet to 10 feet below ground level (Miller 1990). Groundwater in the surficial aquifer system is under unconfined, or water table, conditions; however, locally, thin clay beds create confined or semiconfined conditions, as is the case at HAAF where thin, surficial clay beds are present in the western quadrant (GA DNR 1976).

Groundwater encountered at all the UST investigation sites is part of the surficial aquifer system. Based on the fact that all public and nonpublic water supply wells draw water from the Principal Artesian (Floridan) Aquifer and that the Hawthorn confining unit separates the Principal Artesian Aquifer from the surficial aquifer, it is concluded that there is no hydraulic interconnection between the surficial aquifer (and associated groundwater plumes, if applicable) located beneath former UST sites and identified water supply withdrawal points at HAAF. First Annual Monitoring Only Report USTs 21 & 22, Building 1327, Facility ID #9-025053

APPENDIX V

REIMBURSEMENT APPLICATION

Fort Stewart is a federally owned facility and has funded the investigation for the USTs 21 & 22 site, Building 1327, Facility ID #9-025053 using U.S. Department of Defense Environmental Restoration Account Funds. Application for Georgia Underground Storage Tank Trust Fund reimbursement is not being pursued at this time.

ATTACHMENT A

SUMMARY OF FATE AND TRANSPORT MODELING RESULTS

A.1. FATE AND TRANSPORT MODELING

The fate and transport modeling that was performed as part of the CAP–Part B Report (SAIC 1999b) was based on the assumption of a continuous source of contamination of infinite duration at the site based on the maximum observed benzene concentration in groundwater (i.e., 217 μ g/L temporary piezometer L-2 during the CAP–Part A investigation in April 1998). In summary, the Analytical Transient 1-, 2-, 3-Dimensional Model was used to model contaminant migration to one potential downgradient receptor: a drainage ditch located approximately 114 feet east-northeast of the site. The modeling results indicated that, due to dilution attenuation, benzene would not reach the drainage ditch at concentrations above the IWQS.

Based on modeling results, the estimated dilution attenuation factor (DAF) for benzene at the drainage ditch is 31. ACLs were developed by adjusting the regulatory level by the DAF. The ACLs for the site are presented in Table A-1.

Contaminant	Regulatory Level (µg/L)	DAF" (Drainage Ditch)	ACL ^b (µg/L)
Benzene	71.28 ^c	31	2,210
Naphthalene	6.5 ^d	31	201

Table A-1. ACLs for the USTs 21 & 22 Site

^{*a*} DAF = Maximum observed benzene concentration \div predicted benzene concentration at the receptor = $217 \div 7 = 31$ at the drainage ditch.

^b ACL = Regulatory level \times DAF.

^c IWQS.

^d Risk-based screening criterion

1.1 FATE AND TRANSPORT MODELING CONCLUSIONS

The conclusions below are based on fate and transport modeling that assumed a continuous source of contamination of infinite duration at the site based on the maximum observed benzene concentration (i.e., 217 μ g/L) in groundwater during the CAP–Part A and CAP–Part B investigations.

- Benzene concentrations in groundwater have not exceeded the ACL of 2,210 μ g/L in any of the wells at the site, indicating that the benzene concentrations at the site are not high enough to reach the drainage ditch at levels above the IWQS.
- Naphthalene concentrations in groundwater have not exceeded the ACL of 201 µg/L in any of the wells at the site, indicating that the naphthalene concentrations at the site are not high enough to reach the drainage ditch at levels above the risk-based screening criterion.

ATTACHMENT B

REFERENCES

REFERENCES

- Arora, Ram, 1984. Hydrologic Evaluation for Underground Injection Control in the Coastal Plain of Georgia, Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey.
- Clark, W. Z., Jr. and A.C. Zisa 1976. *Physiographic Map of Georgia*, Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey (reprinted 1988).
- Furlow, J.W., 1969. Stratigraphy and Economic Geology of the Eastern Chatham County Phosphate Deposit, Department of Mines and Mining, Division of Conservation, Georgia Geologic Survey, Bulletin 82.
- GA DNR (Georgia Department of Natural Resources) 1976. *Geologic Map of Georgia*, Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey (reprinted 1997).
- Herrick, S.M., 1961. *Well Logs of the Coastal Plain of Georgia*, Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey
- Huddlestun, P.F., 1988. A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia: The Miocene through Holocene, Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey, Bulletin 104.
- Logan, William E., 2000. Letter to Ovidio Perez (Fort Stewart Directorate of Public Works, Environmental Branch), January 25.
- Miller, James A., 1990. Groundwater Atlas of the United States, U.S. Department of the Interior, U.S. Geological Survey, Hydrologic Inventory Atlas 730G.
- SAIC (Science Applications International Corporation) 1999a. CAP-Part A Report for USTs 21 & 22, Facility ID #9-025053, Building 1327, Hunter Army Airfield, Georgia, March.
- SAIC 1999b. CAP-Part B Report for USTs 21 & 22, Facility ID #9-025053, Building 1327, Hunter Army Airfield, Georgia, October.
- SAIC 2000. First Semiannual Monitoring Only Report for USTs 21 & 22, Facility ID #9-025053, Building 1327, Hunter Army Airfield, Georgia, May.
- Wilkes, R.L., J.H. Johnson, H.T. Stoner, and D.D. Bacon 1974. Soil Survey of Bryan and Chatham Counties, Georgia, U.S. Department of Agriculture Soil Conservation Service.

ATTACHMENT C

BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

OTO		HTRW DRIL		<u> </u>		HOLE NUMBER MW-L
ROJECT			INSPECTOR H.			SHEET 1 OF 1
CLEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
	Ξ	0				
	_	CONCRETE				
	_	Silty SAND (sm), medium			<u>.</u>	-
	1 =	grained, subrounded to				
		angular moist soft.				
		angular, moist, soft, non plastic, loose, pale	Oppm			
	-	brown (104 R 6/3)				
	2 =					
	1 -					
	_					
	Ξ					
	,	silty SAND (Sm), fineqrained, soft to firm, black (1048 2/1)	F Oppm			
		silty SAND (Sm), medium grained, angular to				
	_	subangular, moist,				
	4	aray (10 yes/1) to light				-
		gray (10 YR 7/2)				
					Q	
	_		-		Sample 811	
	5	silty SAND (sm), fine	Oppm		- 00	
	Ξ	grained, soft to firm 30% silt, nonplastic	oppin			
	_				Soil HLB	
	=				H N	
	6 _					WET BELOW 6.0 PT
	_				1.1.3. States (2.8.5.5 Mercure Street Stree Street Street Stre	
	_					
	17 <u></u>					
	, _		0			9
			Oppm			2
	=		•			
					81	91
	8 =					
		END OF CORING AT 8.0 FT				PUSHED TO 13.5 FT BES
	_					TO SET I" WELL
	_					
	Ξ					
	°					
	Ξ			0		
	Ξ					

		HTRW DRIL				HOLE NUMBER MW. L9
PROJEC	T: HAAF	F - USTs 21 & 22	INSPECTOR H.	Smith	,	SHEET 1 OF 1
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	FIELD SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)
	Ξ	CONCRETE				
		Silty SAND (sm), medium grained, loose, soft light brownish yellow (10 Y R 6/4), Fill to build parking Lot	0 ppm			
	3		N/A			
	•	CONCRETE Silty SAND (SM), medium grained, loose, soft, wet,	 -		Soil Sample HLB911	
	5	Olive brown (2.59 4/3)	0 _{Ppm}		Seil Sa Huban	WET BELOW S.OFT
	6	Ϋ́	N/A			
×	8 -	a.	Оррт		5	
	9		N/A			
2	10	ENDOF CORING AT 12.0 FT				Pushed to 12.0 FIB65 to set 1" well

C-5