

FINAL CORRECTIVE ACTION PLAN - PART B DAACG FACILITY AREA EPD FACILITY No. 9025085

at

HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

under

Contract No. DACA21-93-D-0049 Delivery Order No. 19

September 1996

Submitted to: U.S. ARMY CORPS OF ENGINEERS SAVANNAH, GEORGIA

Presented by: METCALF & EDDY, INC. ATLANTA, GEORGIA

Georgia Department of Natural Resources

Environmental Protection Division

Underground Storage Tank Management Program
4244 International Parkway, Suite 104, Atlanta, Georgia 30354
Lonice C. Barrett, Commissioner
Harold Reheis, Director
(404) 362-2698

CORRECTIVE ACTION PLAN PART A

Facility Name: Hunter Army Airfield	
Street Address: Building 833	
City: Savannah County: Chatham	Facility ID:9025085
Submitted by UST Owner/Operator:	Prepared by:
Name: Mr. John Spears (DEH AFZP-DEV)	Name:
Company: U.S. Army Corps of Engineers	Company: Metcalf & Eddy, Inc.
Address: Building 1139	Address: 1201 Peachtree St., NE
	400 Colony Square, Suite 1101
City: Ft. Stewart State: GA	City: Atlanta State: GA
Zip Code: 31314-5000	Zip Code:30361
. PLAN CERTIFICATION:	
A. UST Owner/Operator	
Signature:	Date:
. Professional Engineer or Professional Geologist	
with State Rules and Regulations. As a register qualified groundwater professional, as defined b	Tield work and preparation of this plan, in accordance and geologist and/or engineer, I certify that I am a sy the Georgia State Board of Professional Geologists. As and in all of the attachments are true, accurate,
complete, and in accordance with applicable State	e Rules and Regulations.
Name: David M. Wilderman	M. WILDEN
Signature: John Aw	A Comment of the Comm
Signature: 1-0 WW	
Date: 9.30.96	
	Geangia Stamp or S
GUST-CAPA.FOR 1	of 6 November 19

Release: Corrective Action Plan - Part B (CAP-B) Content," GUST-7B. II. SITE INVESTIGATION REPORT: Horizontal and Vertical Extent of Contamination: (see Supporting Documentation Section II.A.) A. Soil Groundwater Free product Surface water Local and Site Hydrogeology: (see Supporting Documentation Section II.B.) B. Documentation of Local Groundwater Conditions Stratigraphic Boring Logs (see Appendix D) Stratigraphic Cross Sections (see Figures 9 and 10) Referenced or Documented Calculations of Relevant Aquifer Parameters Direction of Groundwater Flow: Table of Monitoring Well Data (see Table 6) Potentiometric Map (see Figure 6) Flow Net Superimposed on a Base map (see Figure 6) III. REMEDIAL ACTION PLAN: Corrective Action Completed or In-Progress: A. Recovery/Removal of Free Product (Non-aqueous Phase Hydrocarbons) Remedial/Treatment of Contaminated Backfill Material & Native Soils Other (specify) Objectives of Corrective Action: (see Supporting Documentation Section III.B) B. Remove Free Product that Exceeds One-Eighth Inch Remediate Groundwater Contamination that Exceeds: Maximum Contaminant Levels (MCLs) OR In-stream Water Quality Standards

Check all boxes below that apply. Attach supporting documentation, i.e., narrative, figures, tables, maps, boring/well logs, etc., for all items checked. Supporting documentation should be three-hole punched and prepared in conformity with the guidance document "Underground Storage Tank (UST)

В.	Obj	ectives	of Corrective Action (continued):
		Reme	ediate Soil Contamination that Exceeds:
			Threshold Values Listed in Table A
			OR
			Threshold Values Listed in Table B
			OR
			Alternate Threshold Levels (ATLs) (Reference CAP A App. I)
		Prov	ide Risk-Based Corrective Action (Reference CAP B App. I)
			Remediate Soil and/or Groundwater Contamination that Exceeds Alternate Concentration Limits (ACLs) and Monitor Residual Contaminants
			OR
			Monitor Soil and/or Groundwater Contamination that Exceeds Levels in Rule09(3) But is Less than ACLs. See Section III.B. of the supporting documentation.
C.	Des	ign and	d Operation of Corrective Action Systems:
		Soil	☐ Groundwater ☐ Free Product ☐ Surface Water
D.	Imp	lement	ation:
	Incl	udes, a	s a minimum, the following:
	•	Miles	stone schedule for site remediation
	•	Inspe	ection and preventive maintenance schedule for all specialized remediation equipment
	•	Monitoring/sampling and reporting plan for measuring interim progress and project completion	
	•	Plan	to decommission equipment/wells and close site
IV.	PUI	BLIC N	NOTICE:
		Certi	fied Letters to Adjacent, and Potentially Affected Property Owners and Local Officials
		Lega	Notice in Newspaper, as approved by EPD
		Othe	r EPD-approved Method (specify) see Supporting Documentation Section IV.

V.	CL	AIM F	OR REIMBURSEMENT (For GUST Trust Fund sites only)
		GUS	T Trust Fund Application (GUST-36), must be attached if applicable
		Cost	Proposal
			Non-Reimbursable Costs
			OR
			Reimbursable Costs
			□ Total Project Costs
			☐ Costs incurred to date, per GUST-92
			☐ Estimated costs to complete corrective action, per GUST-92
			☐ Invoices and Proofs-of-Payment for Costs Incurred To-Date
		Prop	osed Schedule for Reimbursement
			Lump Sum Payment Upon Completion of Corrective Action
			OR
			Interim Payments With Final Payment Upon Completion

SUPPORTING DOCUMENTATION CORRECTIVE ACTION PLAN - PART B EPA FACILITY ID: 9025085

HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA CONTRACT NO. DACA 21-93-D-0049 DELIVERY ORDER NO. 0019

TABLE OF CONTENTS

	Pag	e
List of Tables		ii
List of Figures .		ii
List of Acronyms	i i	ii
List of References		V
Section I.A	Introduction	1
	Site Location and Use	1
Section II.A.	Horizontal and Vertical Extent of Contamination	2
	Criteria for Evaluation of Soil	
4	Criteria for Evaluation of Groundwater	2
	Background Soil and Groundwater Conditions	3
	Field Investigation Overview	
	Passive Soil Gas Survey	
	Subsurface Investigation	
	Extent of Contamination in Soil	
	Extent of Contamination in Groundwater	
Section II.B.	Local and Site Hydrogeology	7
	Documentation of Local Groundwater Conditions	7
	Local Geology	
Section III.B.	Objectives of Corrective Action	0
	Risk of Exposure Assessment	0
Section IV.	Public Notice	3

TABLE OF CONTENTS (Continued)

LIST OF TABLES

<u>Table</u>	Title
1	Soil Screening Criteria
2	Groundwater Screening Criteria
- 3	Summary of Constituents Detected in Soil
	Summary of Constituents Detected in Groundwater
5	Water Supply Wells Within 2-Mile Radius
4 5 6	DAACG Area Well Summary
7	DAACG Area Grain Size Analysis
	LIST OF FIGURES
<u>Figure</u>	
1	Airfield Location Map
2	Sampling Locations
3	Extent of Petroleum Hydrocarbons in Soil (Benzene)
4	Extent of Petroleum Hydrocarbons in Groundwater (Benzene)
5A	Water Supply Wells Within 2-Mile Radius
5B	Water Supply Wells Within 2-Mile Radius
6	Potentiometric Surface Map
7	Cross Section Location Map
8	Cross Section A-A' (Northwest-Southeast)
9	Cross Section B-B' (Southwest-Northeast)
10	Land Use Map
APPENDI	X
A	Passive Soil Gas Survey Data
В	Field Equipment Calibration Sheets
C	Soil and Groundwater Sampling Sheets
D	Geologic Logs
E	Analytical Data
F	Monitoring Well Schematics, Monitoring Well Development Sheets, and Photographs
G	Geotechnical Data
H	Survey Data

LIST OF ACRONYMS

Alternative Concentration Limit ACL American Society of Testing and Materials ASTM Alternate Threshold Level ATL Aviation Gasoline **AVGAS** below land surface bls Benzene, Toluene, Ethylbenzene, Xylenes BTEX Corrective Action Plan CAP Chain-of-Custody COC Departure/Arrival Air Control Group DAACG Deionized organic-free DIOF Department of Natural Resources DNR Delivery Order DO Data Quality Objectives DOO Diesel Range Organics DRO Engineer Manual EM **Environmental Protection Agency** EPA Environmental Protection Division (State of Georgia, EPD Department of Natural Resources) **Equipment Rinsates** ER Flame ionization detector FID feet per day ft/day feet per feet ft/ft degrees fahrenheit °F Gas chromatograph GC W. L. Gore and Associates, Inc. GORE Gasoline Range Organics GRO Georgia Underground Storage Tank GUST HAAF Hunter Army Airfield Hollow Stem Auger HSA Inside diameter ID Investigation-derived waste IDW Instream Water Quality Standard **IWOS** Maximum Contaminant Level MCL M&E Metcalf & Eddy, Inc. milligrams mg Milligrams per liter mg/L Matrix Spike ms mean sea level msl Matrix spike/matrix spike duplicate MS/MSD Monitoring Well MW National Geodetic Vertical Datum NGVD NSF National Sanitation Foundation Outside diameter OD Organic Vapor Analyzer OVA

Polynuclear Aromatic Hydrocarbons

PAH

ACRONYMS (Continued)

ppb	Parts per billion
ppm	Parts per million
PVC	Polyvinyl chloride
QA	Quality Assurance

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan

QC Quality Control

RBCA Risk-Based Corrective Action

RF Response Factor

RPD Relative Percent Difference

SADL South Atlantic Division Laboratory

SAV Savannah District

SDG Sample Delivery Group

SI Site Investigation
SIP Site Investigation Plan
SL Savannah Laboratories

SOW Scope of Work

SPH Separate Phase Hydrocarbons

SSS Split Spoon Sample

SPT Standard Penetration Test

SVOC Semivolatile organic compound

TB Trip Blanks
TOC Top of Casing

TPH Total Petroleum Hydrocarbons
UST Underground storage tank

USACE United States Army Corps of Engineers

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

VOC Volatile organic compound

LIST OF REFERENCES

Burroughs Quadrangle, Georgia, 7.5 Minute Series Topographic Map, 1988.

Clarke, John S., Hacke, Charles M. and Peck, Michael F., 1990, <u>Geology and Ground Water Resources of the Coastal Area of Georgia</u>, Department of Natural Resources, Bulletin 113, 106p.

Fetter, C. W., 1988, Applied Hydrogeology, Second Edition, Merrill Publishing Co., Columbus, Ohio, p. 126.

Garden City Quadrangle, Georgia, 7.5 Minute Series Topographic Map, 1980.

Georgia Department of Natural Resources, Environmental Protection Division, February 1995, <u>Underground Storage Tank Management</u>, Chapter 391-3-15.

Isle of Hope Quadrangle, Georgia, 7.5 Minute Series Topographic Map, 1988.

Savannah Quadrangle, Georgia 7.5 Minute Series Topographic Map, 1978.

State of Georgia, 1995, Underground Storage Tank Act, Chapter 13, Section 12-13.

p:\017618\CAPB.TOC

SECTION I.

INTRODUCTION

Information presented in the following sections of this Supporting Documentation is arranged in the order referenced in the Georgia Environmental Protection Division (EPD) "GUST-CAPB.FOR" form, dated February 1995. For simplicity of reference, the section titles in this Supporting Documentation are identical to the section titles on the form. Information required by the Georgia EPD is presented herein.

SITE LOCATION AND USE

Metcalf & Eddy (M&E) was contracted by the U.S. Army Corps of Engineers (USACE) to conduct a subsurface investigation of soil and groundwater quality in proximity to Building 833 (also known as the Departure/Arrival Airfield Control Group "DAACG") at Hunter Army Airfield (HAAF), Savannah, Georgia. The investigation was conducted following Georgia Rule 391-3-15 for petroleum-related investigations. Several aircraft fueling pump houses exist on the perimeter of the study area for this project. The pump houses, particularly Pump House #1, are suspected sources for petroleum hydrocarbons identified in the subsurface within the DAACG study area. Airfield fuel pipelines also exist in proximity to the DAACG building. The location of the study area is provided in Figure 1.

In the spring of 1994, the drainage system piping located east of the DAACG facility was upgraded from 48-inch steel to concrete. The construction activities sparked a small fire in one of the pipe excavation pits. A previous investigation at the DAACG facility identified petroleum hydrocarbons in both soil and groundwater. The results of this investigation were incorporated into a CAP-Part A, submitted to EPD in July 1995. This Corrective Action Plan (CAP) - Part B is submitted in accordance with the Site Investigation Plan (SIP) outlined in the July 1995 CAP-Part A.

The storm water drainage system carries runoff from the west ramp area at HAAF to a drainage ditch on the northwestern boundary of the airfield. This drainage ditch eventually

empties into the Springfield canal that joins the Little Ogeechee River approximately 3 miles from the study area.

SECTION II.A. Horizontal and Vertical Extent of Contamination

Criteria for Evaluation of Soil

The State of Georgia EPD has promulgated Soil Threshold Levels under the Underground Storage Tank (UST) Management program, Chapter 391-3-15. These threshold levels are based on groundwater pollution susceptibility, the distance to drinking water sources, and the distances between the contaminated media and surface water bodies. The study site is located within a higher groundwater pollution susceptibility area (as defined by the EPD 1992 Geologic Survey Map). Although public water supply wells were identified within 2 miles of the study area, these wells are not believed to be hydraulically connected to the shallow aquifer. Information on regional geology, discussed in Section II.B of this document, indicates that several confining units separate the shallow groundwater aquifer from the deeper Floridan aquifer used locally for potable water supply. Therefore, Table B Soil Threshold Levels (391-3-15-.09) which are based on distances to surface water bodies are used for evaluation of remedial alternatives. No surface water features were located within 500 feet from the petroleum contaminated soil identified in the study area. Therefore, criteria for sites where surface water bodies exist greater than 500 feet from the petroleum contaminant source were selected for evaluating soil analyses.

Site-specific soil results were compared to the Soil Threshold Levels for the volatile organic compounds and polynuclear aromatic hydrocarbons (PAHs) listed by EPD. The constituents identified in soil samples and the associated screening criteria are listed in Table 1.

Criteria for Evaluation of Groundwater

The State of Georgia Department of Natural Resources (DNR) Environmental Protection Division (EPD) has promulgated Instream Water Quality Standards (IWQS) under Chapter 391-3-6. These standards, listed in Table 2, may be more stringent than the federal maximum contaminant level (MCLs), as is the case for one PAH. The State IWQS are the criteria used to determine if contamination exists in the fresh waters of the state and may be applied as clean-up goals for surface water and groundwater which is not used for drinking water purposes. These standards will be used to evaluate the data obtained from groundwater sampling at HAAF. Federal standards such as the maximum contaminant level (MCL) or secondary drinking water standards will not be used to evaluate groundwater data because the shallow aquifer is not in contact with aquifers used locally for potable water supply.

Background Soil and Groundwater Conditions

Background conditions are generally characterized by naturally occurring soil and groundwater conditions without contamination. Background locations are typically situated beyond plume boundaries and are located hydraulically upgradient of known contaminated areas. No specific background soil or groundwater locations were selected for this CAP-Part B investigation because little information was available on groundwater flow directions and the extent of contamination. There are, however, numerous sampling locations along the investigation area where the sampling results (for benzene, toluene, ethylbenzene, and toluene--"total BTEX", purgeable and extractable total petroleum hydrocarbons (TPH), and PAHs were non-detect, and these results are taken to be representative of background conditions.

Field Investigation Overview

Seven hundred passive soil gas screening modules, 50 soil borings, and 32 groundwater monitoring wells were installed during the DAACG site investigation (SI) as presented in Figure 2. Backup documentation including soil boring logs, well development sheets, equipment calibration logs are presented in appendices. Portions of the passive soil gas survey report prepared by W. L. Gore and Associates, Inc. (Gore) are provided in Appendix A. Field equipment calibration sheets are provided in Appendix B. Soil and groundwater

sampling sheets are provided in Appendix C. Geologic logs are provided in Appendix D. Analytical data are presented in Appendix E. Monitoring well schematics, monitoring well development sheets, and well development water photographs are provided in Appendix F. The geotechnical data are provided in Appendix G. Soil boring and groundwater monitoring well survey data can be found in Appendix H.

Passive Soil Gas Survey

The initial field work effort consisted of collecting soil vapor samples from 700 locations spaced on a grid laid over the area of interest. The study area and number of passive soil vapor modules was defined in the USACE Scope of Work. The passive soil vapor sampling devices utilized for the survey were capable of detecting both volatile and semi-volatile compounds in the subsurface. GORE-SORBER® screening modules were used to collect the samples.

The purpose of the soil gas survey was to identify areas of potential contamination in the vadose zone and groundwater. Quality matching (the process of comparing module analytical chromatograms against the chromatograms of known fuel types) was conducted to determine the type of fuel released. The soil vapor module analyses were also used to select proposed locations for soil borings and groundwater monitoring wells. Detailed information on the GORE-SORBER™ module construction, installation and retrieval procedures, and analytical methods is provided in Appendix A.

The quality matching of the soil gas survey results to standards in GORE's fluids library indicates a range of aviation fuel products. Overall, the quality matching indicates a release of aviation gasoline (AVGAS) along with a mixture of other heavier fuels typically in the range of JP4 to kerosene. Several distinct areas where both volatile and semivolatile fuel components exist in soil vapor were identified. This information was used along with drawings which provide the layout of the stormwater drainage system to select locations for further subsurface investigation. Color maps showing the extent of hydrocarbons identified in soil vapor are provided in Appendix A.

Subsurface Investigation

The subsurface investigation of the DAACG facility and adjoining storm water drainage system included the installation of 50 soil borings and 32 groundwater monitoring wells. These sampling locations were selected to define the extent of soil and groundwater contamination identified by the soil vapor survey. Prior to conducting any intrusive fieldwork, all screening instruments were properly calibrated. Field equipment calibration sheets are provided in Appendix B. Soil and groundwater sampling sheets are provided in Appendix C.

Extent of Contamination in Soil

A total of 50 soil borings and 32 well borings were conducted to define the extent of subsurface contamination. Drilling and sampling methods used during the boring program are described in Appendix D. Soil boring logs are also provided in Appendix D.

Petroleum hydrocarbons were identified along the southern portion of the study area. Benzene was detected in soil samples from several locations at concentrations which exceed the soil screening criteria listed in Table B of Georgia Rule 391-3-15.09. Both PAH and volatile organic compounds were identified in soil samples collected in the DAACG area. However, no PAH soil screening criteria exists because the site is not located within 500 feet of a surface water body. Further evaluation of PAH remediation is therefore not considered in this CAP-Part B. The extent of petroleum hydrocarbons in soil has been defined to the north, east, and west. However, horizontal and vertical extent of soil contamination has not been defined to the south. Table 3 lists petroleum constituents and concentrations identified in soil samples. Figure 2 identifies all sampling locations within the study area. Figure 3 illustrates benzene concentrations in soil. Soil analytical data are presented in Appendix E. The data prefix "H833" (an abbreviation for "Hunter Building 833") has been removed from analytical tables, figures, and text references throughout this document for ease of viewing sampling locations. However, the prefix remains on all analytical reports presented in

appendices. Therefore, the sampling location MW04 listed on a figure is synonymous with analytical results entitled H833MW04.

The benzene concentration at six soil boring locations exceeded the Table B threshold level of 0.12 ppm. Benzene concentrations in soil samples ranged from 23 ppm in MW02 to 410 ppm in MW17. Ethylbenzene concentrations in soil samples from SB10 were detected at the threshold level of 140 ppm at 10 feet below land surface (bls), although the results were estimated (J flagged) by the laboratory. No other petroleum constituent detected in soil exceeded soil threshold levels.

Elevated benzene concentrations were typically identified near the groundwater table (around 10 feet bls). However, benzene was identified in soil samples both above (3.3 feet bls), and below (20 feet bls) the water table. The northern, eastern, and western boundaries of soil contamination appear to be defined within the study area. However, petroleum contamination in soil extends beyond the study area boundary to the south and further investigation was not authorized under this project's scope of work. However, Metcalf & Eddy will be performing a subsurface investigation in proximity to Pump Houses #1, #2, and #6 to define the extent of soil and groundwater contamination in that area. The pump houses are located directly south of the study area covered in this project. The pump house project is considered a separate delivery order from the USACE and results of the project will be summarized in a CAP-Part A and CAP-Part B for the pump house area. Metcalf & Eddy will attempt to orient the soil vapor grids, soil boring locations, and monitoring well locations in such a way that data can be compared between the DAACG area and pump house area investigations.

Extent of Contamination in Groundwater

Thirty-two monitoring wells (MW01 through MW32) were installed in the area of concern during April 22-29, 1996. The locations were based upon the results of the soil gas survey and the soil boring investigation. Detailed descriptions of well installation procedures, well construction, development, and sampling techniques are provided in Appendix F.

Dissolved petroleum hydrocarbons have been identified along the southern portion of the area investigated. The extent of petroleum hydrocarbons in groundwater has been defined to the north and east. However, horizontal and vertical extent of groundwater contamination has not been defined to the south and west. Table 4 lists petroleum constituents and concentrations identified in monitoring wells at the site. Figure 4 illustrates benzene concentrations in groundwater. Groundwater analytical data is presented in Appendix E.

Georgia IWQS for benzene was exceeded in samples collected from eight monitoring wells. Benzene concentrations that exceeded Georgia IWQS (71.28 ppb) ranged from 100 ppb in MW01 to 4,100 ppb in MW05. No other petroleum constituent exceeded Georgia IWQS.

The extent of benzene contamination in the subsurface has been defined to the east, north, and west of the central plume area. However, it has not been defined to the south. M&E will be conducting a subsurface investigation under separate contract to define the extent of this contamination. As previously described, the pump house investigation will encompass the area south of the DAACG study area and should be sufficient to define the extent of both soil and groundwater contamination.

SECTION II.B Local and Site Hydrogeology

Documentation of Local Groundwater Conditions

Nine potable wells were located within a 2-mile radius of the study area. Figures 5A and 5B illustrate the well locations within a 2-mile radius of the site. No private potable wells were found in the search area. Table 5 lists the potable wells identified, cased intervals, total depths, and usage. Documented reports of investigations conducted throughout the coastal plain area on groundwater resources indicate three major aquifers exist in the study area: the surficial aquifer, Brunswick aquifer, and the upper and lower Floridan aquifers (Clark et al, 1990). Separating the surficial aquifer from the deeper aquifers are two confining units.

The upper confining unit, Miocene unit A, ranges in thickness from about 15 feet to 90 feet with a vertical hydraulic conductivity of 5.3 x 10⁻⁵ to 1.3 x 10⁻⁴ feet/day (Clark et al, 1990). The lower confining unit, Miocene unit B, ranges in thickness from about 10 feet to 50 feet with a vertical hydraulic conductivity of 6.7 x 10⁻⁵ feet/day to 1.3 x 10⁻² feet/day (Clark et al, 1990).

Eight of the nine wells located in the 2-mile radius are cased down to the Upper Floridan aquifer and are not hydraulically connected to the surficial aquifer where soil/groundwater contamination has been identified. One of the nine wells is cased down to only 90 feet and accesses both the Brunswick and Upper Floridan aquifers. However, this well is not hydraulically connected to the surficial aquifer since the casing extends into the uppermost confining unit, Miocene unit A. Moreover, the well (No. 290) is located over 6,500 feet west of the study area and is no longer in use.

All of the 32 monitoring wells were gauged on May 21, 1996. Table 6 provides water level, elevations of top of casing (TOC), and the ground surface elevations for all wells in the study area. Figure 6 shows the potentiometric surface over the area. Groundwater flow occurs toward the west with a variable gradient; averaging 0.004 ft/ft. Groundwater at the site is under water table conditions and is encountered between 7 and 12 feet bls, averaging 9.2 feet bls.

The surficial aquifer extends to approximately 40 feet around the Skidaway Island area in Chatham County. Aquifer tests performed in this area conclude the surficial aquifer has a hydraulic conductivity ranging from 2 to 65 feet/day and a transmissivity ranging from 14 to 1,100 square feet/day (Clark et al, 1990).

The approximate seepage velocity can be calculated for the study area using the formula (Fetter, 1988):

$$v = \frac{ki}{n_e}$$

where:

v = seepage velocity

k = hydraulic conductivity

i = gradient

n_e = effective porosity (assumed 0.20, Heath, 1987)

Using published values of k and n_e , the seepage velocity is calculated to range from 4.0×10^{-2} to 1.3 feet/day for the study area.

Local Geology

The local geology has been documented by the collection of soil samples from 82 locations along the investigation area. Depth of drilling was generally 16 feet bls.

The lithology encountered was predominantly a dusky red to yellowish brown, very fine to fine sand, with variable silt and clay content. Geologic boring logs are provided in Appendix D. Approximately 69 percent of the samples contained less than 10 percent fines which prevented Atterburg Limits testing. Moisture content averaged about 26 percent but ranged from 5.5 to 60.3 percent. Appendix G contains the results of geotechnical tests performed on well borings. An area of higher fines content was noted to exist toward the west-northwest portion of the site. Soil samples from 32 monitoring well locations were analyzed for grain size distribution and the results are presented in Table 7. Figure 7 provides a plan view of the study area showing lines where cross-gradient (Figure 8) and downgradient (Figure 9) geologic cross sections have been prepared. The cross sections show the local geology encountered across the site.

SECTION III.B. Objectives of Corrective Action

Analytical results indicate a total of six soil samples exceed the benzene criteria established in Table B of 391-3-15.09. The Georgia IWQS were exceeded at eight locations for benzene. A risk of exposure assessment, discussed in the following paragraphs, identified no contaminant receptors downgradient of the study area. An additional investigation to the south of the study area is forthcoming to define the extent of subsurface soil and groundwater contamination in that direction. The study area for this continued subsurface investigation will be identified as the Pump House #1, #2, and #6 investigation area.

Risk of Exposure Assessment

The comprehensive study of the DAACG facility area indicated that only a small percentage of the area contained soil and groundwater contamination in excess of State standards. The 1-D modeling conducted during this investigation using formulae provided in Appendix I of the EPD CAP-Part A Guidance indicated that Alternate Threshold Limits (ATLs) for soil were also exceeded. The outcome of the ATL calculations suggests that contaminants in soil may adversely impact groundwater quality above Georgia IWQS. Metcalf & Eddy also performed a Risk of Exposure Assessment following guidelines provided in Appendix I of the CAP-Part B guidance documentation. The exposure assessment was comprised of six main steps which are briefly summarized below:

- Conducting a thorough search for both private and public potable water supply wells.
- Locating surface water bodies in proximity to contaminated areas.
- Inspecting subsurface utilities within and adjacent to the study area and determine if they might serve as a preferential conduit for contaminant migration.
- Examining all buildings proximal to the contaminated areas for the presence of basements which may become impacted from petroleum vapors.
- Inquiring about the planned future use of the subject site and of downgradient areas.

• Preparing a land use map which shows potential points of exposure within a 1/2-mile radius of the study site.

The results of the potable well survey were discussed in Section II.B. The study area is located on an active airfield and no private or potable public wells were identified within a 1/2-mile radius of contaminated zones. Public potable wells located within 2 miles of the DAACG area are hydraulically isolated from the shallow aquifer by two confining units. Metcalf & Eddy has identified a number of surface water bodies that exist south and southwest of the study area. The distance between the closest drainage feature and the contaminated areas identified during this DAACG facility investigation is approximately 700 feet. This drainage canal is located south of the southern border of the DAACG study area. Contours of the potentiometric surface indicate that groundwater flows toward the west in the study area. Therefore, these surface water drainage features are unlikely receptors to contaminants identified in the soil and groundwater. Two other man-made drainage features exist approximately 1000 feet west of the zone of highest soil and groundwater contamination. These features are more likely receptors of potentially mobile hydrocarbons in the subsurface.

Metcalf & Eddy personnel met with Department of Public Works (DPW) personnel at HAAF to discuss the location of subsurface stormwater drainage features. The flash fire that occurred during the stormwater drain replacement program prompted this investigation. Several stormwater features traverse the study area, eventually leading to the drainage features located south and west of the study area. Results of the passive soil vapor survey indicate that these storm drains do not act as conduits for preferential migration of hydrocarbons within the study area.

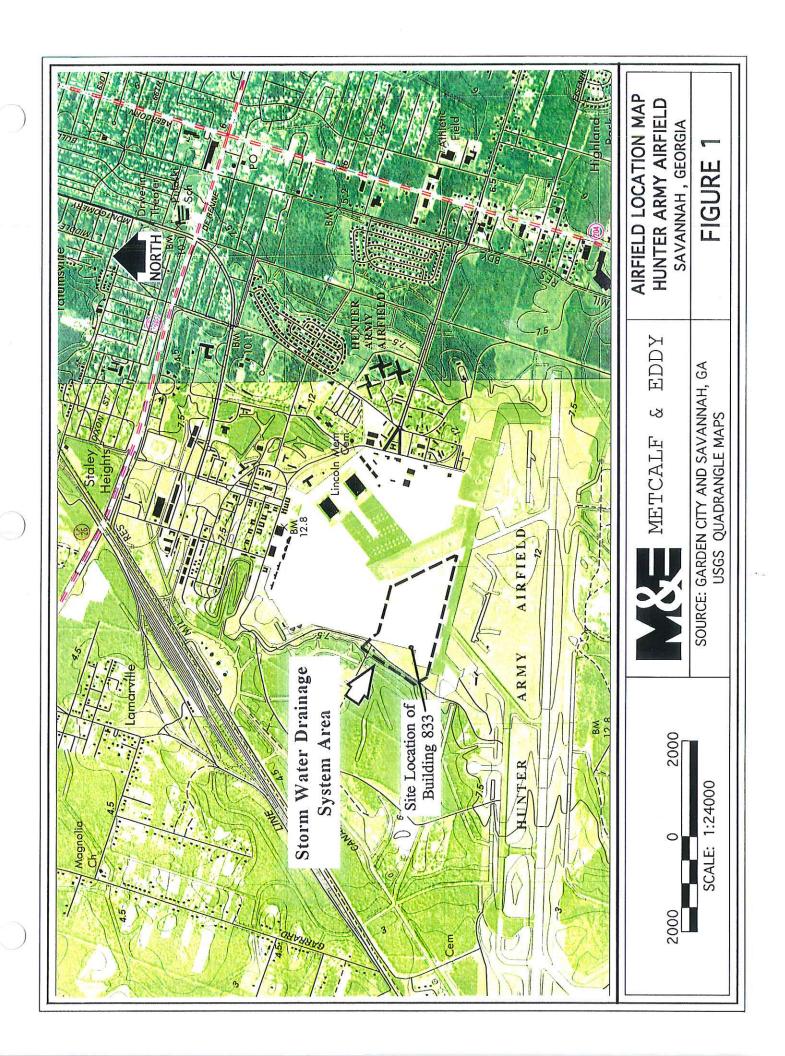
All buildings located within and adjacent to the study area were inspected for the presence of basements or underground areas. Only two buildings were identified: Building 833 (the DAACG building) and the Fire Department facility. No basements were identified at either building.

Inquiries were made to USACE and HAAF personnel concerning the future use of the land within the study area. The future use of downgradient areas was also discussed. Construction activities will be conducted in proximity to the existing Building 833 during 1996 and 1997. A new DAACG facility is being built in that area. However, Metcalf & Eddy's investigation identified no elevated levels of soil or groundwater contamination within the area of the new DAACG. Construction activities are not scheduled to take place anywhere else within the study area or downgradient in the foreseeable future. Figure 10 provides a scale site drawing showing current land use, the new DAACG construction area, and the location of surface water bodies within 1/2-mile radius of the study site. This map indicates that no areas are at risk of exposing humans to contact with contaminated soil or groundwater.

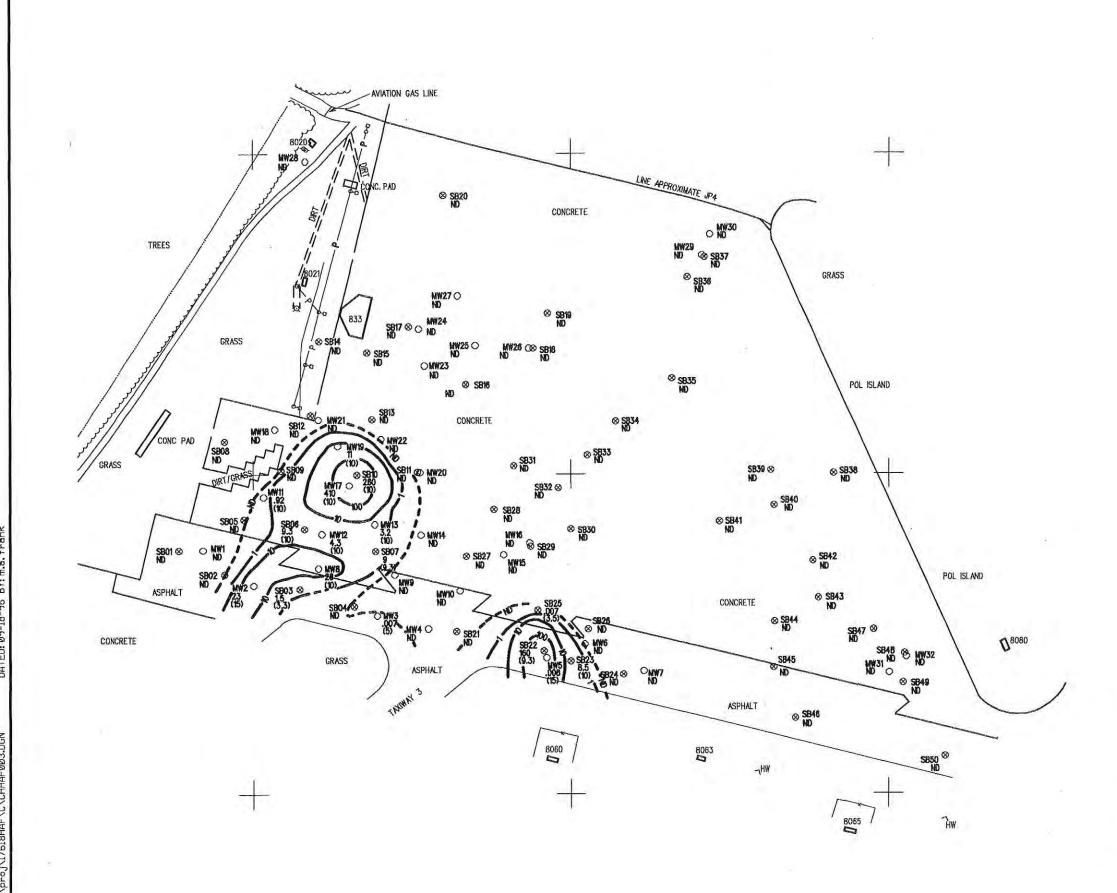
The study area covered under this project is currently utilized for airfield activities only. Access is restricted to the entire area where contaminants have been identified in the subsurface. Moreover, the area is nearly completely covered with concrete pavement ranging in thickness from 8 to 18 inches. Human contact with contaminated groundwater and soil is unlikely in the study area. Likewise, human contact with surface water which exists south of the study area is unlikely because of access restrictions. Surface water samples will be collected from drainage ditches located south of the study area during the proposed Pump House #1, #2, and #6 investigation. Analyses presented in that report will indicate if petroleum hydrocarbons are present in surface water samples and the associated risk, if any, to human health and the environment.

Natural attenuation of subsurface hydrocarbons and groundwater monitoring should be sufficient to provide adequate protection of human health and the environment in light of the access restrictions and very limited use of the study area. The proposed Pump Houses #1, #2, and #6 investigation will include a potential receptor survey that will verify all points of withdrawal for water supply, downgradient surface water bodies, and underground utilities. A surrounding land use map will also be prepared for a 2-mile radius of the area of highest contamination for soil and groundwater. The land use map will identify present and future potential receptors or critical habitats.

Quarterly monitoring of the plume will be conducted to observe changes in the distribution of soluble hydrocarbons. Groundwater samples will be collected from across the entire plume to monitor the plume geometry, biodegradation effects, and contaminant migration.


Monitoring will be conducted for at least 1 year to evaluate seasonal variations. Additional monitoring time may be required in order to evaluate the potential for contaminants to reach the nearest downgradient receptor (assumed to be the storm water drainage ditch).

Corrective action using natural attenuation and the monitoring program will be re-evaluated if contamination is identified in the nearest surface water receptor above IWQS or if free product is identified in any DAACG area monitoring well. The USACE will respond to this condition as appropriate to limit any risk to human health and the environment.


SECTION IV Public Notice

The site is located within the boundaries of HAAF, with the closest property boundary being over 1 mile away. Since no private property is contiguous to the study area, public notification of the Corrective Action Plan is not required.

p:\017618\CAPB.TXT

REPLACE THIS PAGE WITH SCANNED MAP!

■ SOIL BORING LOCATION

MONITORING WELL LOCATION

260 - TOTAL BENZENE IN mg/kg

(10) - AT 10 FEET

ND - NOT DETECTED

DATES SAMPLED:

H833SBØ1 THROUGH H833SB5Ø (2-27-96 THROUGH 3-5-96)

H833WBØ1 THROUGH H833WB32 (4-22-96 THROUGH 4-29-96)

CONTAINMENT CONTOUR

---- ND CONTOUR

SCALE: 1" = 300'

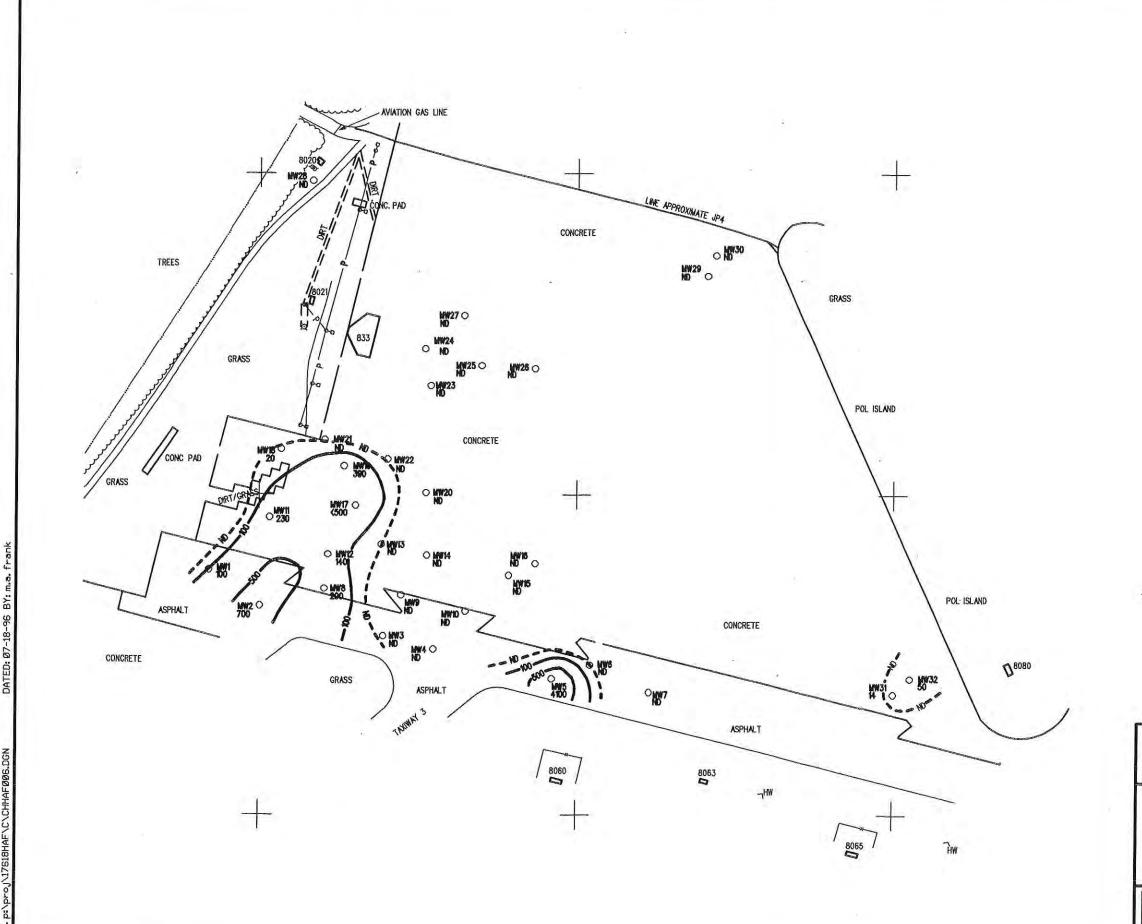
300 300'

FIGURE 3

U.S. ARMY ENGINEER DISTRICT, SAVANNAH CORPS OF ENGINEERS SAVANNAH, GEORGIA

EXTENT OF BENZENE IN SOIL

HUNTER ARMY AIRFIELD


SAVANNAH, GEORGIA

APPROVED: SOURCE:

SCALE:

DATE:

O MONITORING WELL LOCATION 390 - TOTAL BENZENE IN ug/1

ND - NOT DETECTED

DATE SAMPLED: 5-21-96 THROUGH 5-23-96

BENZENE CONTAMINANT CONTOUR BENZENE ND CONTOUR

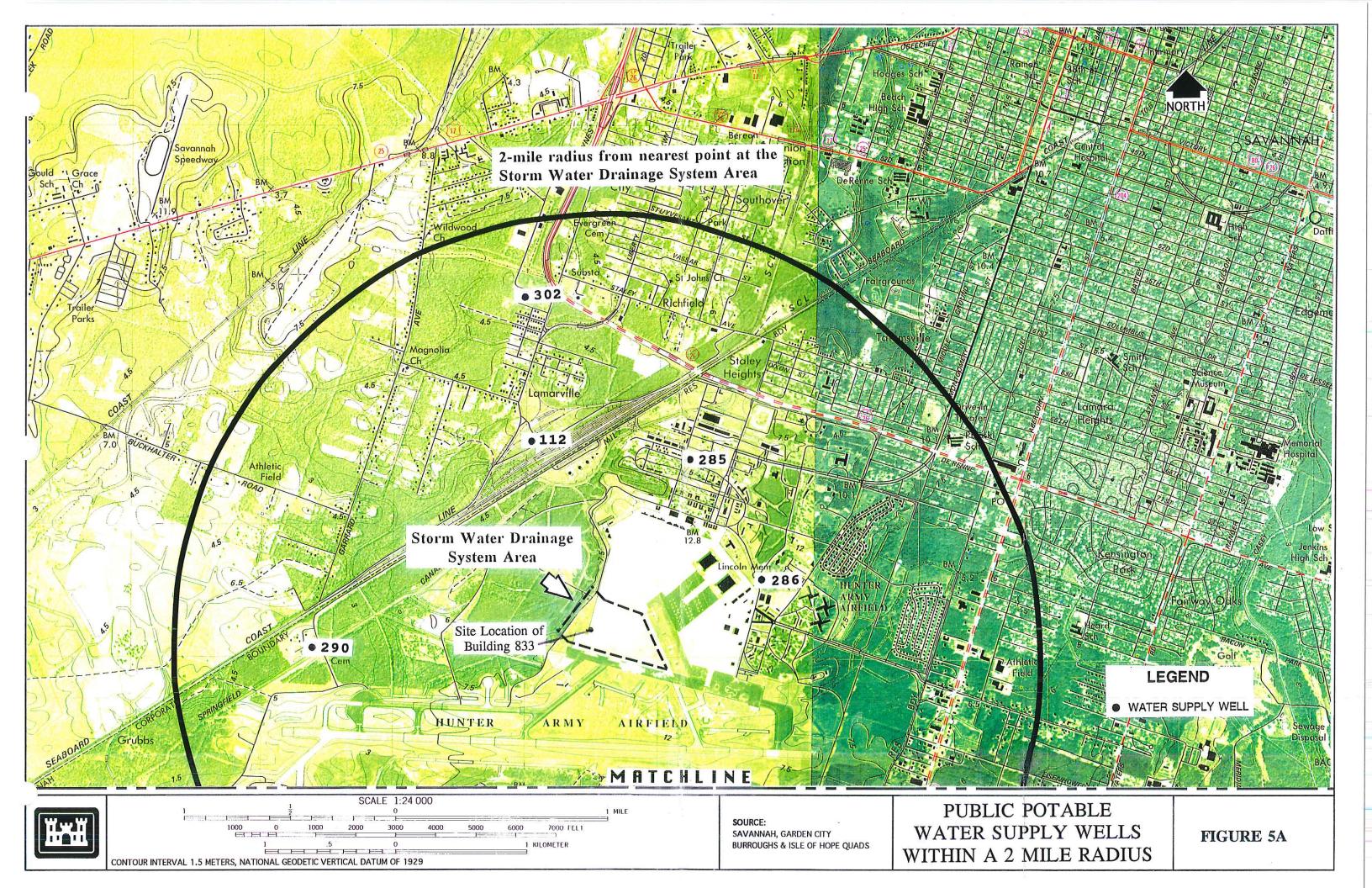
SCALE: 1" - 300' 300' 300'

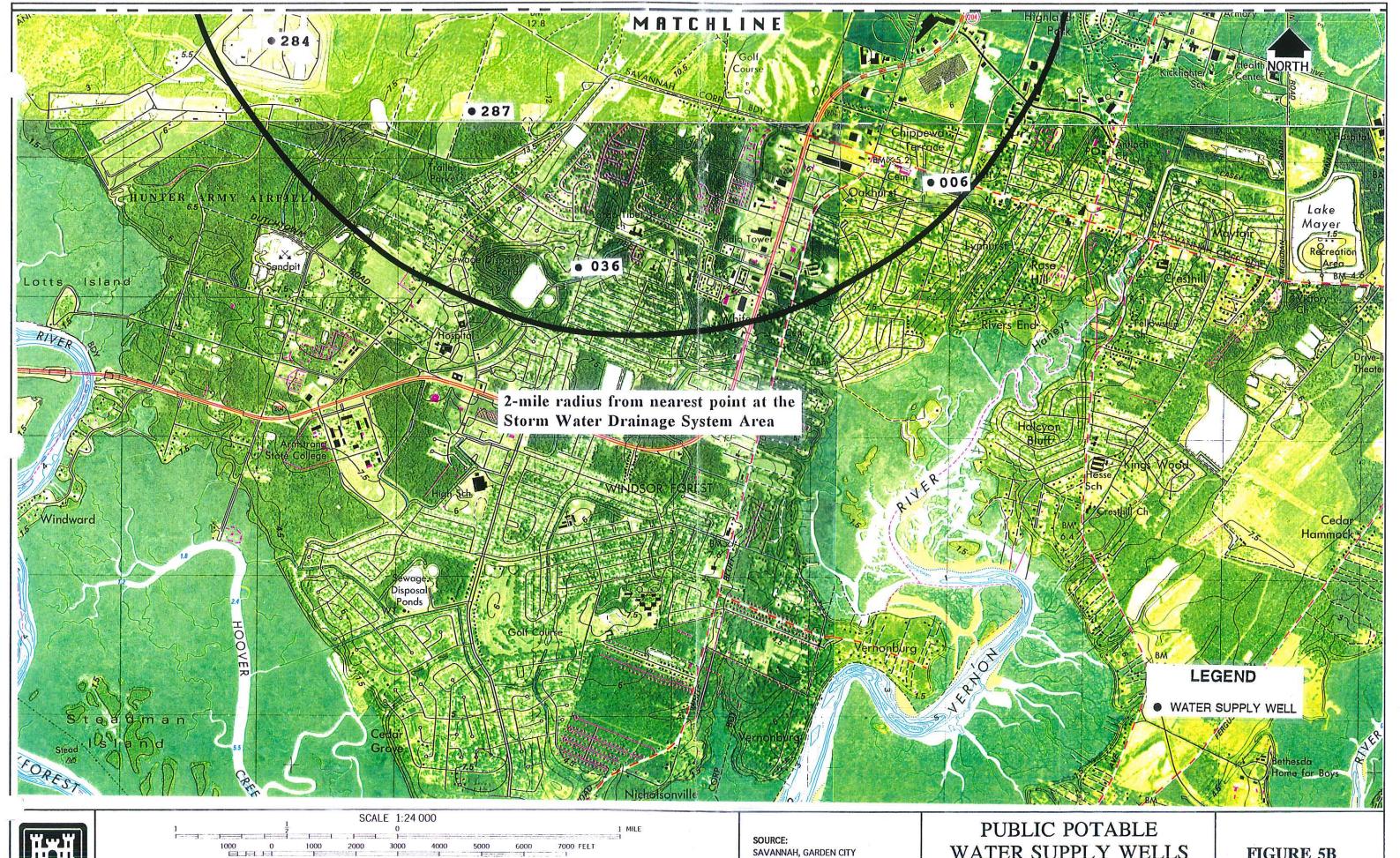
FIGURE 4

U.S. ARMY
ENGINEER DISTRICT, SAVANNAH
CORPS OF ENGINEERS
SAVANNAH, GEORGIA

EXTENT OF BENZENE IN GROUNDWATER

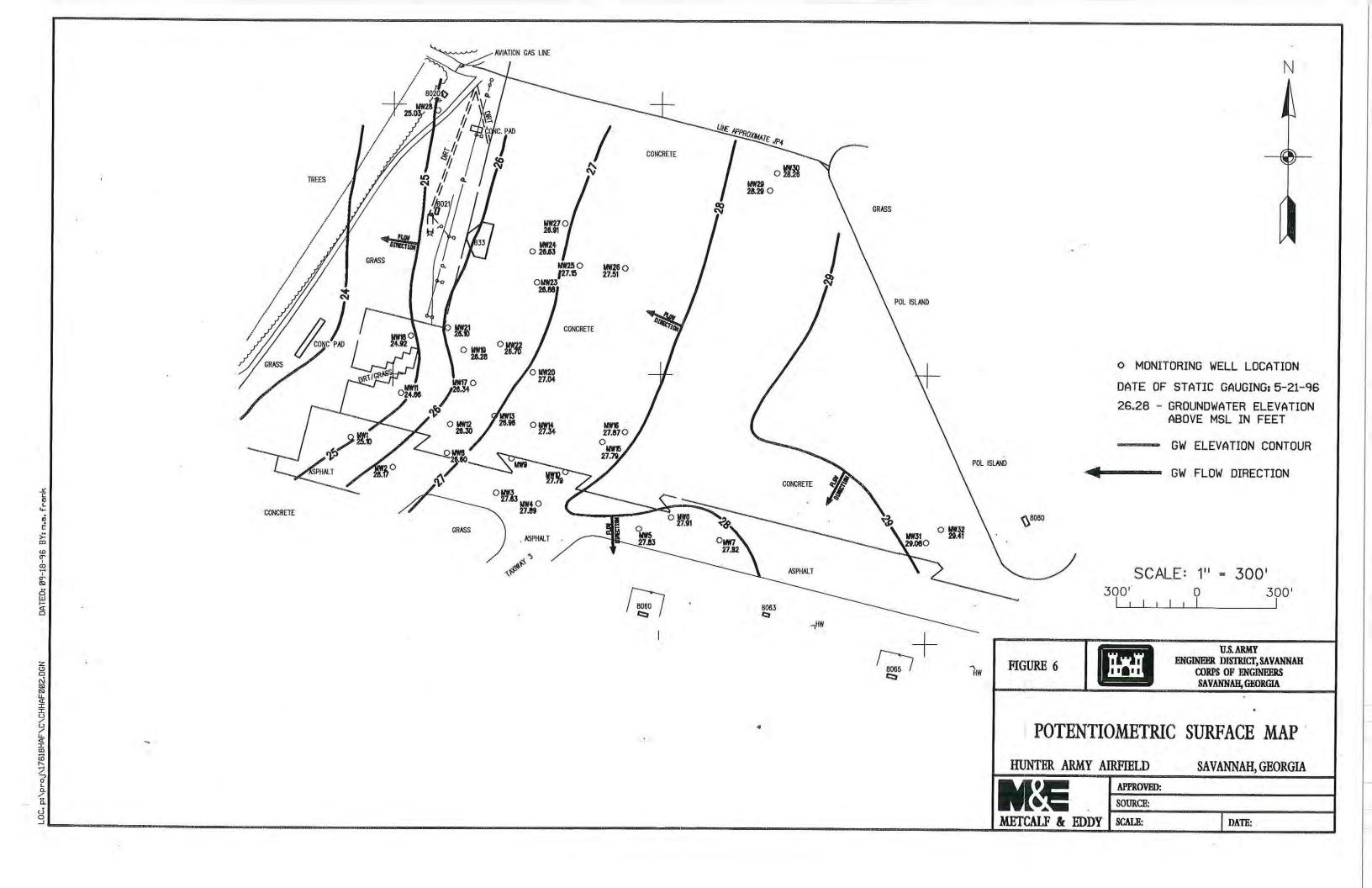
HUNTER ARMY AIRFIELD

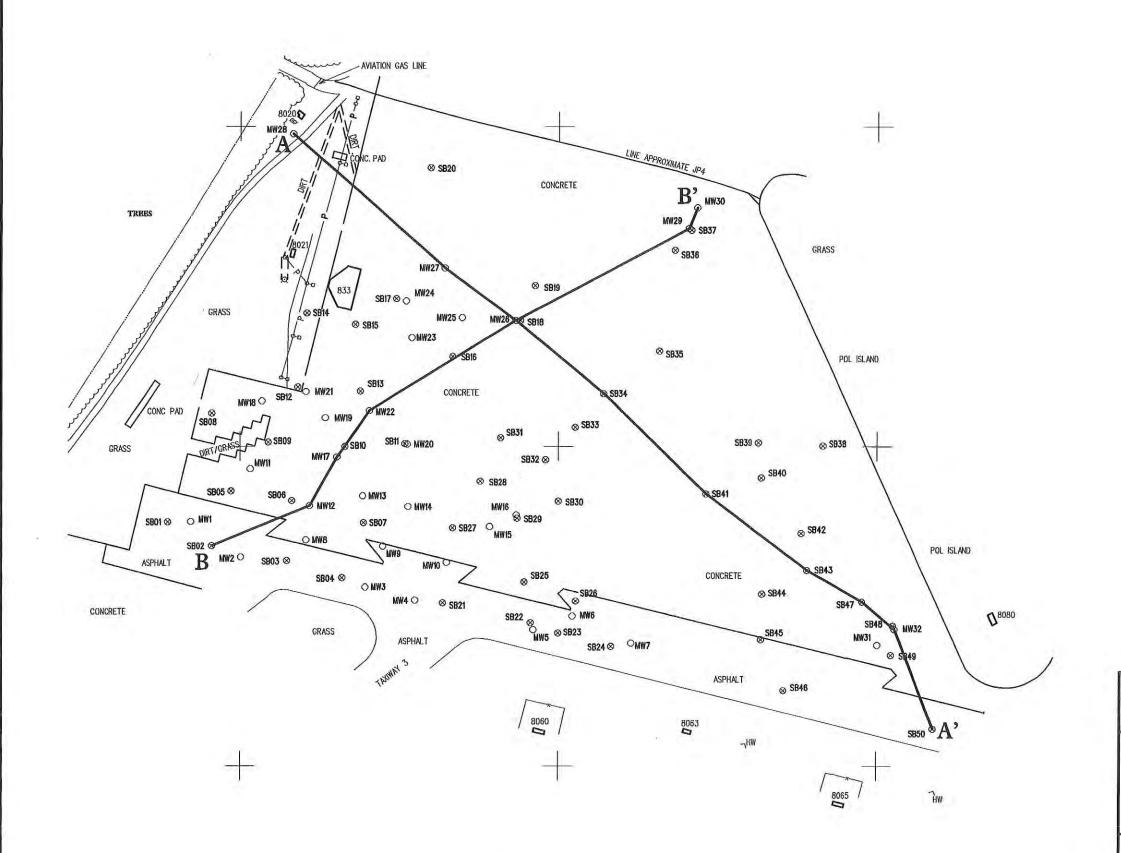

SAVANNAH, GEORGIA


DATE:

APPROVED: SOURCE:

METCALF & EDDY SCALE:





WATER SUPPLY WELLS WITHIN A 2 MILE RADIUS

FIGURE 5B

- ⊗ SOIL BORING LOCATION
- O MONITORING WELL LOCATION

SCALE: 1" = 300'

FIGURE 7

U.S. ARMY ENGINEER DISTRICT, SAVANNAH CORPS OF ENGINEERS SAVANNAH, GEORGIA

CROSS-SECTION LOCATION MAP

HUNTER ARMY AIRFIELD

SAVANNAH, GEORGIA

APPROVED:

SOURCE:

DDY SCALE: DATE:

LOC. p:\proj\17618haf\c\cxhaf@g5.DGN

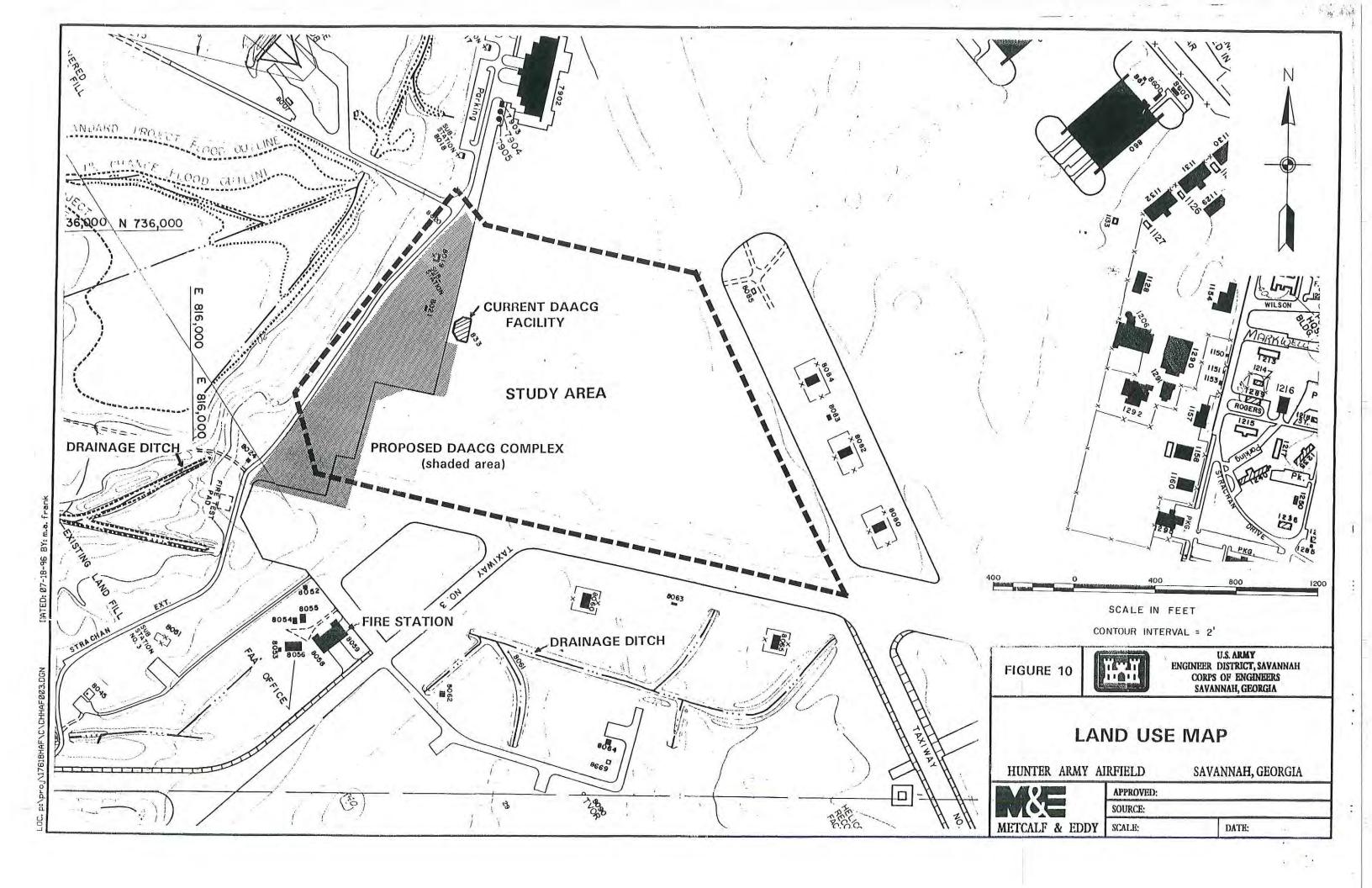
U.S. ARMY
ENGINEER DISTRICT, SAVANNAH
CORPS OF ENGINEERS
SAVANNAH, GEORGIA

HUNTER ARMY AIRFIELD STORM WATER DRAINAGE SYSTEM

CROSS SECTION B-B'

SAVANNAH,

GEORGIA



METCALF & EDDY

SCALE: AS SHOWN

DATE:

APPROVED:

TABLES

TABLE 1
SOIL SCREENING CRITERIA
DAACG FACILITY INVESTIGATION CAP Part-B
HUNTER ARMY AIRFIELD

CONTAMINANT	SOIL THRESHOLD LEVELS 1
UNITS	mg/kg
VOLATILE ORGANICS	
BENZENE	0.12
ETHYL BENZENE	140
TOLUENE	500
TOTAL XYLENES	700
POLYNUCLEAR AROMATICS	
ANTHRACENE	NA ²
BENZO(a)ANTHRACENE	NA ²
BENZO(b)FLUORANTHENE	NA ²
BENZO(k)FLUORANTHENE	NA ²
BENZO(a)PYRENE	NA ²
CHRYSENE	NA ²
DIBENZ(a,h)ANTHRACENE	NA ²
FLUORANTHENE	NA ²
FLUORENE	NA ²
INDENO(1,2,3-c,d)PYRENE	NA ²
PHENANTHRENE	NA ²
PYRENE	NA ²

⁽¹⁾ Soil Threshold Levels — GA DNR EPD, Chapter 391—3—15—.09, UST Management, Table B for an Average or Higher Groundwater Pollution Susceptibility Area based on a distance of > 500 feet to a surface water body. (2) NA — Not Applicable; The Health—based threshold level exceeds the expected soil concentration under free product condition.

TABLE 2

GROUNDWATER SCREENING CRITERIA DAACG FACILITY INVESTIGATION CAP Part-B HUNTER ARMY AIRFIELD

CONTAMINANT	GA EPD WQ STDS 1
UNITS	ug/L
VOLATILE ORGANICS	
BENZENE	71.28
ETHYL BENZENE TOLUENE	28,718
TOTAL XYLENES	200,000
POLYNUCLEAR AROMATICS	38
ACENAPTHENE	_
ACENAPHTHYLENE	-
ANTHRACENE	110,000
BENZO(a)ANTHRACENE	0.0311
BENZO(b)FLUORANTHENE	-
BENZO(k)FLUORANTHENE	0.0311
BENZO(a)PYRENE	0.0311
BENZO(g,h,i)PERYLENE CHRYSENE	-
DIBENZ(a,h)ANTHRACENE	0.0311 0.0311
FLUORANTHENE	370
FLUORENE	14,000
INDENO(1,2,3-c,d)PYRENE	0.0311
1-METHYLNAPHTHALENE	3374 53
2-METHYLNAPHTHALENE	9
NAPHTHALENE	-
PHENANTHRENE	0 -
PYRENE	11,000

^(-) No Level is listed (1) GA EPD WQ STDS - Georgia DNR, EPD, Water Quallity Control, Instream Water Quality Standards, Chapter 391-3-6-.03, section 5(d)(ii)&(iii), 10/23/95

HUNTER ARMY AIRFIELD

of 1X

Page: 1A

Date: 07/18/96

SUMMARY OF CONSTITUENTS DETECTED IN SOIL **BUILDING 833**

	SITE		H833SB01	H833SB01	H833SB02	H833SB02	H833SB02
CONSTITUENT (Units in mg/kg)	SAMPLE ID	-	H833-SB0101	H833-SB0102	H833-SB0201	H833-SB0202	H833-SB0203
	DATE	ă.	03/02/96	96/20/20	02/27/96	02/27/96	02/27/96
	DEPTH (ft) G	GA-SSC	3.30	9.30	3.50	10.00	15.00
		0.120	<0.0053	<0.0053	<0.0053	<0.0055	<0.0064
Ethylbenzene	140	40	<0.0053	<0.0053	< 0.0053	<0.0055	<0,0064
Toluene	IO.	200	<0.0053	<0.0053	<0.0053	<0.0055	<0.0064
Xylene (total)	700	00	<0.0053	< 0.0053	<0.0053	<0.0055	<0.0064
Acenaphthylene			<0.35	<0.35	<0.35	<0.36	<0.42
Benzo(a)pyrene			<0.35	<0.35	<0.35	0.82 J	<0.42
Benzo(b,k)fluoranthene			<0.35	<0.35	<0.35	2.1	<0.42
Benzo(ghi)perylene			< 0.35	<0.35	<0.35	0.91	<0.42
Chrysene + Benzo(a)anthracene			<0.35	<0.35	<0.35	2.4	<0.42
Fluoranthene			<0.35	<0.35	<0.35	2.1	<0.42
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr)anthr		<0.35	<0.35	<0.35	0.92	<0.42
Naphthalene			<0.35	<0.35	<0.35	<0.36	<0.42
Phenanthrene + Anthracene			<0.35	<0.35	<0.35	1.3	<0.42
Pyrene			<0.35	<0,35	<0.35	1.9 J	<0.42
2-Methylnaphthalene			<0.35	<0.35	<0.35	<0.36	<0.42
GRO			<0.26	<0.26	<0.26 J	<0.27 J	<0.32
DRO			<11	<10	16 J	25 J	<13 J

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD

BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1B of 1X

Date: 07/18/96

	SITE		H833SB02	H833SB03	H833SB03	H833SB04	H833SB04
CONSTITUENT (Units in mg/kg)	SAMPLE ID		H833-SB0204	H833-SB0301	H833-SB0302	H833-SB0401	H833-SB0402
4000	DATE		02/27/96	03/02/96	96/90/80	02/27/96	02/27/96
	DEPTH (ft)	GA-SSC	20:00	3.30	9.30	3.50	10.00
Benzene		0.120	<0.0067	[1.5]	<0.47	<0.0057	<0.0054
Ethylbenzene		140	<0.0067	1.0	6.0 J	<0.0057	< 0.0054
Toluene		200	<0.0067	2.2	11.3	0.0071	<0.0054
Xylene (total)	700	700	<0.0067	3.2	13 J	0.0088	<0.0054
Acenaphthylene			<0.44	<1.7 R	<0.39	<0.38	<0.36
Benzo(a)pyrene			< 0.44	4.2 J	62:0>	<0.38	<0.36
Benzo(b,k)fluoranthene			<0.44	4.9 J	<0.39	<0.38	<0.36
Benzo(ghi)perylene			<0.44	4.3 J	<0.39	<0.38	0.54
Chrysene + Benzo(a)anthracene			<0.44	8.6 J	<0.39	<0.38	<0.36
Fluoranthene			<0.44	4.0.7	62.0>	<0.38	<0.36
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	hr		<0.44	2.7 J	<0.39	<0.38	<0.36
Naphthalene			<0.44	<1.7 R	<0.39	<0.38	<0.36
Phenanthrene + Anthracene			<0.44	2.7 J	<0.39	<0.38	<0.36
Pyrene			<0.44	7.4.J	<0.39	<0.38	<0.36
č			<0.44	<1.7 R	<0.39	<0.38	<0.36
GRO			<0.33	51.5	009	<0.29	<0.27 J
DRO			<13 J	84	46	16 J	<11.3

< = Not detected at indicated reporting limit --- = Not analyzed Values represent total concentrations unless noted [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1C of 1X Date: 07/18/96

CONSTITUENT (Units in mg/kg)	SITE SAMPLE ID DATE		H833SB05 H833-SB0501 03/05/96	H833SB05 H833-SB0502RE 03/05/96	H833SB06 H833-SB0601 02/27/96	H833SB06 H833-SB0602 02/27/96	H833SB06 H833-SB0603 02/27/96
	DEPTH (ft)	GA-SSC	3.30	9.30	3.50	10.00	15.00
Benzene		0.120	<0.0054	<0.0055	<0.0053	[9.3]	<0.0063
Ethylbenzene		140	<0.0054	<0.0055	<0.0053	4.2	<0.0063
Toluene		200	<0.0054	<0.0055	<0.0053	<0.40	<0.0063
Xylene (total)	700	700	<0.0054	<0.0055	<0.0053	2.1	<0.0063
Acenaphthylene			<0.35	<0.36	<0.35	<0.38	<0.42
Benzo(a)pyrene			<0.35	<0.36	<0.35	<0.38	<0.42
Benzo(b,k)fluoranthene			<0.35	<0.36	<0.35	<0.38	<0.42
Benzo(ghi)perylene			<0.35	<0.36	<0.35	<0.38	< 0.42
Chrysene + Benzo(a)anthracene			<0.35	<0.36	<0.35	<0.38	<0.42
Fluoranthene			<0.35	<0.36	<0.35	<0.38	< 0.42
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	ı,h)anthr		<0.35	<0.36	<0.35	<0.38	<0.42
Naphthalene			<0.35	<0.36	<0.35	<0.38	<0.42
Phenanthrene + Anthracene			<0.35	<0.36	<0.35	<0.35	<0.35
Pyrene			<0.35	<0.36	<0.35	<0.38	<0.42
2-Methylnaphthalene			<0.35	<0.36	<0.35	<0.38	<0.42
GRO			<0.27 J	<0.27	<0.26	180	<0.32
DRO			40	14	<10.7	, 22 J	<13 J

Values represent total concentrations unless noted <= Not detected at indicated reporting limit ---= Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD

SUMMARY OF CONSTITUENTS DETECTED IN SOIL **BUILDING 833**

Date: 07/18/96 Page: 1D

of 1X

CONSTITUENT (U	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (#)	GA-SSC	H833SB06 H833-SB0604 02/27/96 20.00	H833SB07 H833-SB0701 02/28/96 3:30	H833SB07 H833-SB0702 02/28/96 9.30	H833SB08 H833-SB0801 03/05/96 3:30	H8335B08 H833-SB0802 03/05/96 9.30
Benzene Ethylbenzene			0.120	<0.0065	<0.0053	[9.0] 3.6	<0.0054	< 0.0053
Toluene			500	<0.0065	<0.0053	<0.49	<0.0054	<0.0053
Xylene (total)			700	<0.0065	<0.0053	2.6	<0.0054	< 0.0053
Acenaphthylene				<0.43	<0.35	<0.40	<0.36	<0.35
Benzo(a)pyrene				<0,43	<0.35	<0.40	<0.36	<0.35
Benzo(b,k)fluoranthene	ane			<0.43	<0.35	<0.40	<0.36	<0.35
Benzo(ghi)perylene		Benzo(għi)perylene		< 0.43	<0.35	<0.40	98.0>	<0.35
Chrysene + Benzo(a)anthracene	a)anthracene			<0.43	<0.35	<0.40	<0.36	<0.35
Fluoranthene				<0.43	< 0.35	<0.40	<0.36	<0.35
Indeno(1,2,3-cd)pyre	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	thr		<0.43	<0.35	<0.40	<0.36	<0.35
Naphthalene	Naphthalene			<0.43	<0.35	<0.40	<0.36	<0.35
Phenanthrene + Anthracene	thracene			<0.43	<0.35	<0.40	<0.36	<0.35
Pyrene				<0.43	<0.35	<0.40	<0.36	<0.35
2-Methylnaphthalene				<0.43	<0.35	<0.40	<0.36	<0.35
GRO	GRO			<0.32	<0.26	170	<0.27 J	<0.26 J
DRO				<13 J	<11	32	11	11 >
							,	

<=Not detected at indicated reporting limit ---=Not analyzed</p> Values represent total concentrations unless noted [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1E of 1X Date: 07/18/96

		SITE		H833SB09	H833SB09	H833SB10	H833SB10	H833SB10
CONSTITUENT	(Units in mg/kg)	SAMPLEID	- 9-	H833-SB0901	H833-SB0902	H833-SB1001	H833-SB1002	H833-SB1003
*		DATE		02/29/96	03/04/96	02/28/96	02/28/96	02/28/96
Aug. 0.2000 10000		БЕРТН (ft)	GA-SSC	3.50	7.00	3.50	10.00	15.00
Benzene			0.120	<0.0056	<0.0053	<0.0054	[260] J	[0.19]
Ethylbenzene		140	140	<0.0056	<0.0053	<0.0054	78 J	0.029
Toluene			200	<0.0056	< 0.0053	<0.0054	140 J	0.019
Xylene (total)		700	700	<0.0056	<0.0053	<0.0054	200 J	0.052
Acenaphthylene				<0.37	<0.35	<0.35	<0.39	<0.41
Benzo(a)pyrene		Benzo(a)pyrene		<0.37	<0.35	<0.35	<0.39	<0.41
Benzo(b,k)fluoranthene	thene			<0.37	<0.35	< 0.35	<0.39	<0.41
Benzo(ghi)perylen	O	Benzo(ghi)perylene		<0.37	<0.35	<0.35	<0.39	<0.41
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.37	<0.35	<0.35	<0.39	<0.41
Fluoranthene		Fluoranthene		<0.37	<0.35	<0.35	<0.39	<0.41
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	nthr		<0.37	<0.35	<0.35	<0.39	<0.41
Naphthalene		Naphthalene		<0.37	<0.35	< 0.35	0.68	<0.41
Phenanthrene + Anthracene	Anthracene			<0.37	<0.35	<0.35	<0.39	<0.41
Pyrene				<0.37	<0.35	<0.35	<0.39	<0.41
2-Methylnaphthalene	ene			<0.37	<0.35	<0.35	09.0	<0.41
GRO		GRO		<0.28	<0.26 J	<0.27	3600 J	1.1
DRO				<11	<10	<11	470	12
						The state of the s	and the second s	

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1F of 1X Date: 07/18/96

	SITE		H833SB10	H833SB11	H833SB11	H833SB12	H833SB12
CONSTITUENT (Units in mg/kg)) SAMPLE ID		H833-SB1004	H833-SB1101	H833-SB1102	H833-SB1201	H833-SB1202
	DEPTH (ft)	GA-SSC	20.00	3.30	7.30	2.00	8.00
Benzene		0.120	[0.22]	<0.0054	<0.0057	< 0.0055	<0.0057
zene		140	0.046	<0.0054	<0.0057	<0.0055	<0.0057
Toluene		200	0.034	<0.0054	<0.0057	<0.0055	<0.0057
Xylene (total)	002	700	0.20	<0.0054	<0.0057	<0.0055	<0.0057
Acenaphthylene			<0.42	<0.35	<0.38	<0.36	<0.38
Benzo(a)pyrene			<0.42	<0.35	<0.38	>0.36	<0.38
Benzo(b,k)fluoranthene			<0.42	0.38	<0.38	<0.36	<0.38
Benzo(ghii)perylene			<0.42	<0.35	<0.38	<0.36	<0.38
Chrysene + Benzo(a)anthracene			<0.42	0.39	<0.38	<0.36	3.8
Fluoranthene			<0.42	<0.35	<0.38	<0.36	<0.38
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	(a,h)anthr		<0.42	<0.35	<0.38	<0.36	<0.38
Naphthalene			<0.42	<0.35	<0.38	€0.36	<0.38
Phenanthrene + Anthracene			<0.42	<0.35	<0.38	<0.36	<0.38
Pyrene			<0.42	< 0.35	<0.38	<0.36	<0.38
2-Methylnaphthalene			<0.42	<0.35	<0.38	<0.36	<0.38
GRO			2.5 J	<0.27	<0.29 J	<0.27	<0.29
DRO			<13	V11	<11	V11	×111
					observation to produce the second	The state of the s	

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1G of 1X

Date: 07/18/96

SITE	H833SB13	H833SB13	H833SB14	H833SB14	H833SB15
CONSTITUENT (Units in mg/kg) SAMPLE ID	H833-SB1301	H833-SB1302	H833-SB1401	H833-SB1402	H833-SB1501
DATE	02/28/96	02/28/96	02/29/96	02/29/96	02/29/96
DEPTH (ft) GA-SSC	3.30	7.30	2.00	8.00	3.50
	<0.0054	<0.0055	<0.0053	<0.0062	<0.0053
Ethylbenzene 140	<0.0054	< 0.0055	<0.0053	<0.0062	<0.0053
	<0.0054	<0.0055	<0.0053	<0.0062	<0.0053
Xylene (total) 700	<0.0054	<0.0055	<0.0053	<0.0062	<0.0053
Acenaphthylene	<0.36	<0.36	<0.35	<0.41	<0.35
Benzo(a)pyrene	<0.36	<0.36	<0,35	<0.41	<0.35
Benzo(b,k)fluoranthene	<0.36	<0.36	<0.35	<0.41	<0.35
Benzo(ghii)perylene	<0.36	<0.36	<0.35	<0.41	<0.35
Chrysene + Benzo(a)anthracene	<0.36	<0.36	<0.35	<0.41	<0.35
Fluoranthene	<0.36	<0.36	<0.35	<0.41	<0.35
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	<0.36	<0.36	<0.35	<0.41	<0.35
Naphthalene	<0.36	<0.36	<0.35	<0.41	<0.35
Phenanthrene + Anthracene	<0.36	<0.36	<0.35	<0.41	<0.35
Pyrene	<0.36	<0.36	<0.35	<0.41	<0.35
2-Methylnaphthalene	<0.36	<0.36	<0.35	<0.41	<0.35
GRO	<0.27	<0.27	<0.26	<0.31	<0.26 J
DRO	×11	<11	<11	<12	<10

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgía Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD

SUMMARY OF CONSTITUENTS DETECTED IN SOIL BUILDING 833

of 1X Page: 1H

Date: 07/18/96

	- F		fig*			e 35				
	-	SITE			H833SB15	H833SB16	H833SB16	H833SB17	H833SB17	111000
CONSTITUENT (Units in mg/kg)	/kg)	SAMPLE ID		¥,	H833-SB1502	H833-SB1601	H833-SB1602	H833-SB1701	H833-SB1702	
5. 30	- 1	DATE			02/29/96	02/29/96	02/29/96	02/29/96	02/29/96	-
		DEPTH (ft)	J	GA-SSC	10.00	3.30	7.30	3.50	10.00	
				0.120	<0.0066	< 0.0052	<0.0058	<0.0055	<0.0062	
Ethylbenzene				140	<0.0066	<0.0052	<0.0058	<0.0055	<0.0062	-
Toluene				200	0.0081	<0.0052	<0.0058	<0.0055	<0.0062	
Xylene (total)			700	700	0.010	<0.0052	<0.0058	<0.0055	<0.0062	1.5
Acenaphthylene					<0.43	<0.34	<0.38	<1.8	<0.41	
Benzo(a)pyrene					<0.43	< 0.34	<0.38	12	<0.41	
Benzo(b,k)fluoranthene					<0.43	<0.34	<0.38	20	<0.41	
Benzo(ghi)perylene					<0.43	<0.34	<0.38	7.7	<0.41	5000
Chrysene + Benzo(a)anthracene	ne				<0.43	<0.34	<0.38	27	<0.41	
Fluoranthene					<0.43	<0.34	<0.38	24	<0.41	
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	zo(a,h)ant	Þr.			<0.43	<0.34	<0.38	10	<0.41	
Naphthalene					<0.43	< 0.34	<0.38	<1.8	<0.41	
Phenanthrene + Anthracene					<0.43	<0.34	<0.38	16	<0.41	
Pyrene					<0.43	<0.34	<0.38	14	<0.41	
2-Methylnaphthalene					<0.43	<0.34	<0.38	<1.8	<0.41	
GRO					<0.33 J	<0.26	<0.29	<0.27 J	<0.31	30
DRO					<13	<10	<12	300 J	<12	
										- 23

<= Not detected at indicated reporting limit ---= Not analyzed</p> Values represent total concentrations unless noted

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD
BUILDING 833

BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 11 of 1X

Date: 07/18/96

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID		H8335B18 H833-SB1801	ΙÏ	H833SB18 H833-SB1802	200 4 2.	H833SB19 H833-SB1901	ÍĨ	H833SB19 H833-SB1902	H833SB20 H833-SB2001	
,		DATE		02/29/96	0	02/29/96		02/29/96	ò	02/29/96	02/29/96	
		DEPTH (ft)	GA-SSC	3.30	7	7.30		3.50		10.00	3.10	
Benzene			0.120	<0.0054	V	0.0056		<0.0054	\	<0.0062	<0.0054	
Ethylbenzene			140	<0.0054	٧	<0.0056		< 0.0054	٧	<0.0062	< 0.0054	- 1
Toluene			200	<0.0054	V	<0.0056		< 0.0054	V	<0.0062	<0.0054	
Xylene (total)	. *	700	700	<0.0054	٧	<0.0056	dia.	< 0.0054	٧	<0.0062	< 0.0054	
Acenaphthylene				0.98	V	<0.37		<0.36	V	<0.41	<0.35	
Benzo(a)pyrene				6.0	V	<0.37		<0.36	٧	<0.41	<0.35	
Benzo(b,k)fluoranthene				9.4	V	<0.37		<0.36	V	<0.41	<0.35	
Benzo(ghi)perylene				4.4	V	<0.37		<0.36	٧	<0.41	<0.35	
Chrysene + Benzo(a)anthracene	zo(a)anthracene			8.2	V	<0.37		<0.36	V	0.41	<0.35	
Fluoranthene		Fluoranthene		4.6	V	<0.37		<0.36	V	<0.41	<0.35	
Indeno(1,2,3-cd)	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	anthr		4.9	٧	<0.37		<0.36	V	<0.41	<0.35	
Naphthalene		Naphthalene		<0.72	٧	<0.37		<0.36	٧	<0.41	<0.35	9
Phenanthrene + Anthracene	Anthracene			<0.72	V	<0.37		<0.36	V	<0.41	<0.35	
Pyrene	Pyrene			4.6	٧	<0.37		>0.36	٧	<0.41	< 0.35	
2-Methylnaphthalene	lene			<0.72	V	<0.37		<0.36	٧	<0.41	<0.35	
GRO	GRO			<0.27	٧	<0.28		<0.27	V	<0.31	<0.27	
DRO				25	V	117		31	٧	<12	<11	

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

Date: 07/18/96

Page: 1J of 1X

BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL HUNTER ARMY AIRFIELD

	1410		Control of the second				
	SILE	- 2	H8335BZ0	H833SBZ1	H833SB21	H833SB22	H833SB22
CONSTITUENT (Units in mg/kg)	SAMPLEID		H833-SB2002	H833-SB2101	H833-SB2102	H833-SB2201	H833-SB2202
	DATE		02/29/96	02/29/96	02/29/96	02/29/96	02/29/96
	DEPTH (ft)	GA-SSC	7.10	3.50	10.00	3.30	9.30
Benzene		0.120	<0.0055	<0.0054	<0.0062	[13]	[160] J
Ethylbenzene 140		140	<0.0055	0.019 J	<0.0062	2.2	31.J
Toluene		500	<0.0055	0.082 J	<0.0062	0.61	43 J
Xylene (total) 700		700	<0.0055	0.076 J	<0.0062	8.2	74.3
Acenaphthylene			<0.36	<0.35	<0.41	<0.36	<0.39
Benzo(a)pyrene			<0.36	< 0.35	<0.41	<0.36	68.0>
Benzo(b,k)fluoranthene			<0.36	<0.35	<0.41	<0.36	<0.39
Benzo(ghi)perylene			92'0>	0.58	<0.41	<0.36	<0.39
Chrysene + Benzo(a)anthracene			<0.36	<0.35	<0.41	<0.36	<0.39
Fluoranthene			<0.36	< 0.35	<0.41	<0.36	<0.39
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	ıthr		<0.36	<0.35	<0.41	<0.36	<0.39
Naphthalene			<0.36	<0.35	<0.41	<0.36	<0.39
Phenanthrene + Anthracene			<0.36	<0.35	<0.41	<0.36	<0.39
Pyrene			98:0>	<0.35	<0.41	<0.36	<0.39
2-Methylnaphthalene			<0.36	<0.35	<0.41	<0.36	<0.39
GRO			<0.27 J	<0.27 J	<0.31	200	1900 J
DRO			<11	×11	<12	16	88

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD
BUILDING 833
SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1K of 1X

Date: 07/18/96

S	SITE		H833SB23	H833SB23	H833SB23	H833SB23	H833SB24
CONSTITUENT (Units in mg/kg) S	SAMPLE ID		H833-SB2301	H833-SB2302	H833-SB2303	H833-SB2304	H833-SB2401
	DATE		02/28/96	02/28/96	02/28/96	02/28/96	02/29/96
	БЕРТН (ft)	GA-SSC	3.50	10.00	15.00	20.00	3.30
Benzene		0.120	[0.34]	[8.5] J	<0.0062	0.091	<0.0056
zene		140	0.027	6.1.3	<0.0062	0.026	<0.0056
Toluene		500	<0.0056	1.1 J	<0.0062	<0.0063	0.013
Xylene (total)		700	0.047	12.J	0.025	0.028	0.012
			<0.37	<0.36	<0.41	<0.42	<0.37
Benzo(a)pyrene			<0,37	<0.36	<0.41	<0.42	<0.37
Benzo(b,k)fluoranthene			<0.37	<0.36	<0.41	<0.42	<0.37
Benzo(ghi)perylene			0.84	<0.36	<0.41	<0.42	<0.37
Chrysene + Benzo(a)anthracene			<0.37	<0.36	<0.41	<0.42	<0.37
Fluoranthene			<0.37	<0.36	<0.41	<0.42	<0.37
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr			<0.37	<0.36	<0.41	<0.42	<0.37
Naphthalene			<0.37	<0.36	<0.41	<0.42	<0.37
Phenanthrene + Anthracene			<0.37	<0.36	<0.41	<0.42	<0.37
Pyrene			<0.37	<0.36	<0.41	<0.42	<0.37
			<0.37	<0.36	<0.41	<0.42	<0.37
			<0.28	210 J	<0.31	1.1	<0.28 J
DRO			17	. 23	<12	<13	<11

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1L of 1X

Date: 07/18/96

	SITE		H833SB24	H833SB25	H833SB25	H833SB26	H833SB26
CONSTITUENT (Units in mg/kg)	SAMPLEID		H833-SB2402	H833-SB2501	H833-SB2502	H833-SB2601	H833-SB2602
	DATE		02/29/96	02/29/96	02/29/96	03/04/96	03/04/96
	DEPTH: (ft)	GA-SSC	9.30	3.50	10.00	3.50	10.00
Benzene		0.120	<0.0057	0.0067	<0.0062	<0.0056	<0.0060
Ethylbenzene	140	140	<0.0057	< 0.0054	<0.0062	0.0095	<0.0060.
Toluene		200	<0.0057	<0.0054	<0.0062	<0.0056	<0.0060
Xylene (total)		200	<0.0057	< 0.0054	<0.0062	650.0	<0.0060
Acenaphthylene			<0.38	<0.36	<0.41	<0.37	<0.40
Benzo(a)pyrene			<0.38	<0.36	<0.41	<0.37	<0,40
Benzo(b,k)fluoranthene			<0.38	<0.36	<0.41	<0.37	<0.40
Benzo(ghi)perylene			<0.38	<0.36	<0.41	<0.37	<0.40
Chrysene + Benzo(a)anthracene			<0.38	<0.36	<0.41	<0.37	<0.40
Fluoranthene			<0.38	<0.36	<0.41	<0.37	<0.40
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr)anthr		<0.38	<0.36	<0.41	<0.37	<0.40
Naphthalene			<0.38	<0.36	<0.41	<0.37	<0.40
Phenanthrene + Anthracene			<0.38	<0.36	<0.41	<0.37	<0.40
Pyrene			<0.38	<0.36	<0.41	<0.37	<0.40
2-Methylnaphthalene			<0.38	<0.36	<0.41	<0.37	<0.40
GRO			<0.29 J	<0.27	<0.31	0,71	<0.30
DRO			<12	<11	<12	<11	<12

Values represent total concentrations unless noted <= Not detected at indicated reporting limit ---= Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

4.9

HUNTER ARMY AIRFIELD BUILDING 833

BULDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1M of 1X Date: 07/18/96

		SITE		H833SB27	H833SB27	H833SB28	H833SB28	H833SB29
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-SB2701	H833-SB2702	H833-SB2801	H833-SB2802	H833-SB2901
		DATE		02/29/96	02/29/96	02/29/96	02/29/96	02/28/96
		DEPTH (ft)	GA-SSC	3.50	10.00	3.20	7.20	3.50
Benzene			0.120	<0.0056	<0.0059	<0.0054	<0.0059	<0.0057
Ethylbenzene			140	<0.0056	<0.0059	<0.0054	< 0.0059	<0.0057
Toluene			200	<0.0056	< 0.0059	< 0.0054	<0.0059	<0.0057
Xylene (total)			700	<0.0056	<0.0059	<0.0054	< 0.0059	0.0067
Acenaphthylene				<0.37	<0.39	<0.36	<0.39	<0.38
Benzo(a)pyrene				<0.37	<0.39	<0.36	<0.39	< 0.38
Benzo(b,k)fluoranthene				<0.37	<0.39	<0.36	<0.39	<0.38
Benzo(ghi)perylene	9			<0.37	<0.39	<0.36	<0.39	<0.38
Chrysene + Benzo(a)anthracene				<0.37	<0.39	<0.36	<0.39	<0.38
Fluoranthene				<0.37	<0.39	<0.36	<0.39	<0.38
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	þ,		<0.37	<0.39	<0.36	<0.39	<0.38
Naphthalene				<0.37	<0.39	<0.36	<0.39	<0.38
Phenanthrene + Anthracene	Anthracene			<0.37	<0.39	<0.36	<0.39	<0.38
Pyrene				<0.37	<0.39	<0.36	<0.39	<0.38
2-Methylnaphthalene	ene			<0.37	<0.39	<0.36	<0.39	<0.38
GRO				<0.28	<0.29	<0.27 J	<0.29	<0.29
DRO				<11	<12	<11	<12	<11

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

· 医松子 经产业

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1N of 1X

Date: 07/18/96

CONSTITUENT Unite in mg/kg) SAMPLE ID H833-S82902 H833-S82903 H833-S82904 H833-S829004 H833-S829007 H833-S829007 H833-S829007 H833-S829007 H833-S829007 H833-S829007 H833-S829007 H833-S829007 H833-S829007 H833-S829004 H833-S829007 H833-S829007			SITE		H833SB29	B29	H833SB29	H833SB29	H833SB30	H833SB30
DATE 02/28/96 02/28/96 02/28/96 02/28/96 03/04/96 DEPTH (ft) GA-SSC 10.00 15.00 20.00 3.60 0.120 < 0.0057 < 0.0063 < 0.0059 < 0.0059 140 < 0.0057 < 0.0063 < 0.0059 < 0.0059 500 < 0.0057 < 0.0063 < 0.0059 < 0.0059 700 < 0.0077 < 0.0063 < 0.0059 < 0.0059 700 < 0.0077 < 0.0063 < 0.0059 < 0.0059 700 < 0.0077 < 0.0063 < 0.0059 < 0.0059 700 < 0.0077 < 0.042 < 0.41 < 0.39 8.8 < 0.42 < 0.41 < 0.39 1.3 < 0.42 < 0.41 < 0.39 1.3 < 0.42 < 0.41 < 0.39 1.3 < 0.42 < 0.41 < 0.39 1.9 < 0.42 < 0.41 < 0.39 1.9 < 0.42 < 0.41 < 0.39 1.0	CONSTITUENT	(Units in mg/kg)	SAMPLE ID.		H833-	SB2902	H833-SB2903	H833-SB2904	H833-SB3001	H833-SB3002
DEPTH (ft) GA-SSC 10:00 15:00 20:00 3:60 0.120 < 0.0067 < 0.0063 < 0.0069 < 0.0069 140 < 0.0067 < 0.0063 < 0.0069 < 0.0069 500 < 0.0067 < 0.0063 < 0.0069 < 0.0069 700 < 0.0067 < 0.0063 < 0.0069 < 0.0069 1.3 < 0.0063 < 0.0062 < 0.0069 1.3 < 0.0063 < 0.0062 < 0.0069 1.3 < 0.0063 < 0.0062 < 0.0069 1.3 < 0.0077 < 0.0062 < 0.0069 1.3 < 0.042 < 0.041 < 0.39 1.9 < 0.042 < 0.041 < 0.39 1.9 < 0.042 < 0.041 < 0.39 1.0 < 0.076 < 0.042 < 0.041 < 0.39 1.0 < 0.029 < 0.042 < 0.041 < 0.39 1.0 < 0.042 < 0.041 < 0.39 1.0 < 0.042 < 0.041 < 0.39	- 15	200	DATE		02/28/	96.	02/28/96	02/28/96	03/04/96	03/04/96
0.120			M. F.	GA-SSC	10.00		15.00	20.00	3.60	10:00
140	Benzene	and the second s		0.120	<0.00	750	<0.0063	<0.0062	<0.0059	<0.0060
500 <0.0057	Ethylbenzene			140	<0.0<)57	<0.0063	<0.0062	<0.0059	< 0.0060
700 0.0077 <0.0062	Toluene			200	<0.00	757	<0.0063	<0.0062	<0.0059	<0.0060
1.3	Xylene (total)			700	0.007	7	<0,0063	<0.0062	<0.0059	<0.0060
5.1 <0.42	Acenaphthylene				1.3		<0.42	<0.41	<0.39	<0.40
5.1 <0.42	Benzo(a)pyrene				3.8		<0.42	<0.41	<0.39	<0.40
6.7	Benzo(b,k)fluoran	thene			5.1		<0.42	<0.41	<0.39	<0.40
6.7	Benzo(ghi)perylen	O			2.9		<0.42	<0.41	<0.39	<0.40
1.3 < 0.42 < 0.41 < 0.39 >(a,h)anthr 1.9 < 0.42 < 0.41 < 0.39 < 0.76 < 0.42 < 0.41 < 0.39 < 0.76 < 0.42 < 0.41 < 0.39 < 0.76 < 0.42 < 0.41 < 0.39 < 0.76 < 0.42 < 0.41 < 0.39 < 0.76 < 0.42 < 0.41 < 0.39 < 0.79 < 0.32 < 0.31 < 0.29 < 0.29 < 0.32 < 0.31 < 0.29 < 0.29 < 0.31 < 0.29 < 0.29	Chrysene + Benz	o(a)anthracene			6.7		<0.42	<0.41	<0.39	<0.40
o(a,h)anthr 1.9 < 0.42 < 0.41 < 0.39 < 0.76	Fluoranthene				1.3		<0.42	<0.41	68.0>	<0.40
<0.76 <0.42 <0.41 <0.39 3.0 <0.42	Indeno(1,2,3-cd)p	yrene + Dibenzo(a,h)an			1.9		<0.42	<0.41	<0.39	<0.40
<0.76	Naphthalene				<0.76		<0.42	<0.41	<0.39	<0.40
3.0 < 0.42	Phenanthrene + ,	Anthracene			<0.76		<0.42	<0.41	<0.39	<0.40
<0.76	Рутепе				3.0		<0.42	<0.41	68:0>	<0.40
<0.29	2-Methylnaphthal	ene			<0.76		<0.42	<0.41	<0.39	<0.40
33 <13 <12 <12	GRO				<0.29		<0.32	<0.31	<0.29	<0.30
	DRO				33		<13	<12	<12	<12

Values represent total concentrations unless noted <= Not detected at indicated reporting limit --- = Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD
BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 10 of 1X

Date: 07/18/96

	- *	SITE		H833SB31	H833SB31	H833SB32	H833SB32	H833SB32	-
CONSTITUENT	(Units in mg/kg)	SAMPLE ID DATE		H833-SB3101 03/04/96	H833-SB3102 03/04/96	H833-SB3201 02/28/96	H833-SB3202 02/29/96	H833-SB3203 02/29/96	
		DEPTH (ft)	GA-SSC	3.50	10.00	3.50	10.00	15.00	
Benzene			0.120	<0.0067	<0.0062	<0.0056	<0.0062	<0.0063	
Ethylbenzene			140	<0.0067	<0.0062	<0.0056	<0.0062	<0.0063	****
Toluene			500	<0.0067	<0.0062	0.0059	<0.0062	<0.0063	
Xylene (total)			700	<0,0067	0.0084	0.013	<0.0062	<0.0063	
Acenaphthylene				<0.39	<0.41	<0.37	<0.41	<0.42	
Benzo(a)pyrene				<0.39	<0.41	<0.37	<0.41	<0.42	
Benzo(b,k)fluoranthene	thene			<0.39	<0.41	<0.37	<0.41	<0.42	
Benzo(ghi)perylen	Ø	Benzo(ghi)perylene		<0.39	<0.41	<0.37	<0.41	<0.42	
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.39	<0.41	<0.37	<0.41	<0.42	
Fluoranthene	Fluoranthene			<0.39	<0.41	<0.37	<0.41	<0.42	
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	h)anthr		<0.39	<0.41	<0.37	<0.41	<0.42	
Naphthalene		Naphthalene		<0.39	<0.41	<0.37	<0.41	<0.42	
Phenanthrene + Anthracene	Anthracene			<0.39	<0.41	<0.37	<0.41	<0.42	
Pyrene				<0.39	<0.41	<0.37	<0.41	<0.42	
2-Methylnaphthalene	ene			<0.39	<0.41	<0.37	<0.41	<0.42	
GRO				<0.29	< 0.31 J	<0.28	<0.31	<0.32 J	
DRO				<12	<12	<11	<12	<13 J	-

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

; 131

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL HUNTER ARMY AIRFIELD

Page: 1P

of 1X

Date: 07/18/96

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID DATE DEPTH (ft)	GA-SSC	H833SB32 H833-SB3204 02/29/96 20:00	H833SB33 H833-SB3301 03/04/96 3:50	H833SB33 H833-SB3302 03/04/96 10:00	H833SB34 H833-SB3401 03/04/96 3.10	H833SB34 H833-SB3402 03/04/96 8.00
Benzene Ethylbenzene		0.120	0.120	<0.0062 <0.0062	<0.0054	<0.0062 <0.0062	<0.0054 <0.0054	<0.0060
Toluene Xylene (total)		500	500	<0.0062	<0.0054	<0.0062	<0.0054	<0.0060
Acenaphthylene Benzo(a)pyrene				<0.41	<0.36 <0.36	<0.41	<0.36 <0.36	< 0.39
Benzo(b,k)fluoranthene Benzo(ghi)perylene	nene			<0.41	<0.36 <0.36	<0.41 <0.41	<0.36 <0.36	<0.39
Chrysene + Benzo(a)anthracene Fluoranthene	(a)anthracene	Chrysene + Benzo(a)anthracene Fluoranthene		<0.41	<0.36	<0.41	<0.36 <0.36	< 0.39 < 0.39
Indeno(1,∠,3-cd)pyrene + Dibenzo(a,n)anthr Naphthalene	rrene + Dibenzo(a,r			<0.41	<0.36	<0.41	<0.36	< 0.39
Pyrene + Anniacene Pyrene	<u>a</u>			<0.41	<0.36		<0.36 <0.36	<0.39
GRO DRO	2			<0.31 20	<0.36 <0.27 <11	<0.41 <0.31 <12	<0.36 <0.27 <11	<0.39 <0.30 <12

Values represent total concentrations unless noted <= Not detected at indicated reporting limit ---= Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD
BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 10 of 1X

Date: 07/18/96

, and the same of						
	SITE	H833SB35	H833SB35	H833SB36	H833SB36	H833SB37
CONSTITUENT (Units in mg/kg)	SAMPLEID	H833-SB3501	H833-SB3502	H833-SB3601	H833-SB3602	H833-SB3701
	DATE	03/04/96	03/04/96	03/04/96	03/04/96	96/50/20
	DEPTH (ft) GA-SSC	3.50	8.00	3.30	8.00	3:30
	0.120	<0.0055	<0.0063	<0.0056	<0.0060	<0.0054
Ethylbenzene	140	<0.0055	<0.0063	<0.0056	<0.0060	<0.0054
Toluene	200	<0.0055	<0.0063	<0.0056	<0.0060	<0.0054
Xylene (total)	700	<0.0055	<0.0063	<0.0056	<0.0060	<0.0054
Acenaphthylene		<0.36	<0.42	<0.37	<0.39	<1.8 R
Benzo(a)pyrene		<0.36	<0.42	<0.37	<0.39	9.13
Benzo(b,k)fluoranthene		<0.36	<0.42	<0.37	<0.39	15 J
Benzo(ghi)perylene		<0.36	<0.42	<0.37	<0.39	7.3.3
Chrysene + Benzo(a)anthracene		<0.36	<0.42	<0.37	<0.39	19 J
Fluoranthene		<0.36	<0.42	<0.37	<0.39	f01
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	thr	<0.36	<0.42	<0.37	<0.39	9.2 J
Naphthalene		<0.36	<0.42	<0.37	<0.39	<1.8 R
Phenanthrene + Anthracene		<0.36	<0.42	<0.37	<0.39	4.1 J
Pyrene		92'0>	<0.42	<0.37	<0.39	113
2-Methylnaphthalene		<0.36	<0.42	<0.37	<0.39	<1.8 R
GRO		<0.27	<0.32	<0.28 J	<0.30	<0.27 J
DRO		L1>	<13	11 >	<12	36

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

10

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1R of 1X

Date: 07/18/96

		SITE		H833SB37	H833SB37	H833SB37	H833SB38	H833SB38
CONSTITUENT (U	(Units in mg/kg)	SAMPLE ID		H833-SB3702RE	H833-SB3703RE	H833-SB3704	H833-SB3801	H833-SB3802
8.		DATE		03/05/96	96/50/60	96/50/20	03/04/96	03/04/96
		DEPTH (ft)	GA-SSC	5.30	15.00	20.00	3.30	5.30
Benzene	The second second		0.120	<0.0054	<0.0060	<0.0060	<0.0056	<0.0057
Ethylbenzene			140	<0.0054	<0.0060	<0.0000	<0.0056	< 0.0057
Toluene			200	<0.0054	<0.0060	<0.0060	<0.0056	<0.0057
Xylene (total)	200		700	<0.0054	<0.0060	<0.0000	<0.0056	<0.0057
Acenaphthylene				2.2 J	<0.40	<0.40	<0.37	<0.38
Benzo(a)pyrene				10 J	0.76	0.43	<0.37	<0.38
Benzo(b,k)fluoranthene	ne			22 J	1.3	0.83	<0.37	<0.38
Benzo(ghi)perylene	Benzo(ghi)perylene			11.3	0.63	<0.40	<0.37	<0.38
Chrysene + Benzo(a)anthracene)anthracene			22 J	1.4	1.1	<0.37	<0.38
Fluoranthene	Fluoranthene			9,2.J	0,77	1.0	<0.37	<0.38
Indeno(1,2,3-cd)pyre	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr			14 J	0.63	<0.40	<0.37	<0.38
Naphthalene	Naphthalene			<1.8 R	<0.40	<0.40	<0.37	<0.38
Phenanthrene + Anthracene				6.5 J	0.51	1.1	<0.37	<0.38
Pyrene				7.10	0.81	06.0	<0.37	<0.38
2-Methylnaphthalene				<1.8 R	<0.40	<0.40	<0.37	<0.38
GRO	GRO			<0.27	<0.30	<0.30	<0.28	<0.28
DRO				51	<12	<12	<11	<11

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

HUNTER ARMY AIRFIELD

BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1S of 1X

Date: 07/18/96

		SITE) () - w	H833SB39	H833SB39	H833SB40	H833SB40	H833SB40
CONSTITUENT	(Units in mg/kg)	SAMPLEID		H833-SB3901	H833-SB3902	H833-SB4001	H833-SB4002	H833-SB4003
		DATE	*	03/04/96	03/04/96	96/50/80	03/02/96	03/02/96
		DEPTH (ft)	GA-SSC	3.50	8.00	3.50	7.00	15,00
Benzene			0.120	<0.0058	<0.0063	<0.0061	<0.0062	<0.0064
Ethylbenzene	300		140	<0.0058	<0.0063	<0.0061	<0.0062	< 0.0064
Toluene			500	<0.0058	<0.0063	<0.0061	<0.0062	<0.0064
Xylene (total)		700	700	< 0.0058	<0.0063	<0.0061	<0.0062	< 0.0064
Acenaphthylene				<0.38	<0.42	<0.80	<0.41	<0.42
Benzo(a)pyrene				<0.38	<0.42	<0.80	<0.41	<0.42
Benzo(b,k)fluoranthene	thene			<0.38	<0.42	<0.80	<0.41	<0.42
Benzo(ghi)peryler	Benzo(ghi)perylene			<0.38	<0.42	<0.80	<0.41	<0.42
Chrysene + Benzo(a)anthracene	zo(a)anthracene			<0.38	<0.42	<0.80	<0.41	<0.42
Fluoranthene	Fluoranthene			<0.38	<0.42	<0.80	<0.41	<0.42
Indeno(1,2,3-cd);	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr			<0.38	<0.42	<0.80	<0.41	<0.42
Naphthalene	Naphthalene			<0.38	<0.42	<0.80	<0.41	<0.42
Phenanthrene + Anthracene	Anthracene			<0.38	<0.42	<0.80	<0.41	<0.42
Pyrene				<0,38	<0.42	<0.80	<0.41	< 0.42
2-Methylnaphthalene	lene			<0.38	<0.42	<0.80	<0.41	<0.42
GRO				<0.29 J	<0.32	<0.30	<0.31	<0.32 J
DRO				<12	<13	65	<12	<13

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1T of 1X

Date: 07/18/96

8				7.2				
		SITE		H833SB40	H833SB41	H833SB41	H833SB42	H833SB42
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-SB4004	H833-SB4101	H833-SB4102	H833-SB4201	H833-SB4202
	÷	DATE		96/50/20	03/04/96	03/04/96	03/04/96	03/04/96
		DEPTH (ft) GA-SSC	၁ಽ	20.00	3,50	7.00	3.30	8.00
Benzene		0.120	C	<0.0064	<0.0056	<0.0060	<0.0054	<0.0062
Ethylbenzene		140		<0.0064	<0.0056	<0.0060	< 0.0054	<0.0062
Toluene		200		<0.0064	<0.0056	<0.0060	<0.0054	<0.0062
Xylene (total)		700		0.014	<0.0056	<0.0060	< 0.0054	<0.0062
Acenaphthylene				<0.42	<0.37	<0.39	<0.36	<0.41
Benzo(a)pyrene		Benzo(a)pyrene		< 0.42	<0.37	<0.39	<0.36	<0.41
Benzo(b,k)fluoranthene	hene			<0.42	<0.37	<0.39	<0.36	<0.41
Benzo(ghi)perylene		Benzo(ghi)perylene		<0.42	<0.37	<0.39	<0.36	<0.41
Chrysene + Benzo(a)anthracene	(a)anthracene			<0.42	<0.37	<0.39	<0.36	<0.41
Fluoranthene		Fluoranthene		<0.42	<0.37	<0.39	<0.36	<0.41
Indeno(1,2,3-cd)py	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	thr		<0.42	<0.37	<0.39	<0.36	<0.41
Naphthalene		Naphthalene		<0,42	<0.37	<0.39	<0.36	<0.41
Phenanthrene + Anthracene	nthracene			<0.42	<0.37	<0.39	<0.36	<0.41
Pyrene		Pyrene		<0.42	<0.37	<0.39	<0.36	<0.41
2-Methylnaphthalene	ne			<0.42	<0.37	<0.39	<0.36	<0.41
GRO				<0.32 J	<0.28	< 0.30 J	<0.27	<0.31
DRO				<13	13	<12	<11	<12

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833

Date: 07/18/96

×

ot

Page: 1U

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

					-				
		SITE		H833SB43	H833SB43	H833SB44	H833SB44	H833SB44	
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-SB4301	H833-SB4302	H833-SB4401	H833-SB4402	H833-SB4403	
		DATE		03/04/96	03/04/96	96/50/80	03/02/96	03/02/96	
		ДЕРТН (ft)	GA-SSC	3.50	7.00	3.50	7.00	15.00	
Benzene			0.120	<0.0055	<0.0057	<0.0054	<0.0058	<0.0063	
Ethylbenzene			140	<0.0055	<0.0057	< 0.0054	< 0.0058	<0.0063	
Toluene			200	0.0065	<0.0057	< 0.0054	<0.0058	<0.0063	
Xylene (total)			700	<0.0055	<0.0057	< 0.0054	<0.0058	<0.0063	
Acenaphthylene				<0.36	<0.38	<0.36	<0.38	<0.42	
Benzo(a)pyrene				<0.36	<0.38	<0.36	<0.38	<0.42	-5
Benzo(b,k)fluoranthene	thene			<0.36	<0.38	<0.36	<0.38	<0.42	
Benzo(ghi)perylene				<0.36		<0.36	<0.38	<0.42	
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.36	<0.38	<0.36	<0.38	<0.42	
Fluoranthene	Fluoranthene			<0.36	<0.38	<0.36	<0.38	<0.42	
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	thr		<0.36	<0.38	<0.36	<0.38	<0.42	
Naphthalene	Naphthalene			<0.36	<0.38	< 0.36	<0.38	<0.42	
Phenanthrene + Anthracene	Anthracene			<0.36	<0.38	<0.36	<0.38	<0.42	
Pyrene				<0.36	<0.38	<0.36	<0.38	<0.42	
2-Methylnaphthalene	ene			<0.36	<0.38	<0.36	<0.38	<0.42	
GRO				<0.27	<0.29 J	<0.27	<0.29	<0.32	
DRO				15	<11	<11	<12	<13	-
									2

<=Not detected at indicated reporting limit ---=Not analyzed</p> Values represent total concentrations unless noted

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD

BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1V of 1X Date: 07/18/96

		SITE	182356A1	1030COU	1000001		
CONSTITUENT (Ur	(Units in mg/kg)	SAMPLE ID	H833-SB4404	H833-SB4501	H833-SB45 H833-SB4502	H833SB46 H833-SB4601	H833SB46 H833-SB4602
	3.	DATE	03/02/96	03/04/96	03/04/96	03/04/96	03/04/96
		DEPTH (ft) GA-SSC	20.00	2.50	7.00	3.50	10.00
Benzene		0.120	<0.0061	<0.0055	<0.0060	<0.0054	<0.0056
Ethylbenzene		140	<0.0061	<0.0055	<0.0060	<0.0054	<0.0056
Toluene		200	<0.0061	<0.0055	<0.0060	<0.0054	<0.0056
Xylene (total)		700	< 0.0061	<0.0055	0.0077	<0.0054	<0.0056
Acenaphthylene			<0.40	<0.36	<0.40	<0.36	<0.37
Benzo(a)pyrene	**************************************		< 0.40	<0.36	<0.40	<0.36	<0.37
Benzo(b,k)fluoranthene	ā		<0.40	<0.36	<0.40	<0.36	<0.37
Benzo(ghi)perylene			<0.40	<0.36	0.47	<0.36	0.64
Chrysene + Benzo(a)anthracene	anthracene		<0.40	<0.36	<0.40	<0.36	<0.37
Fluoranthene		Fluoranthene	<0.40	<0.36	<0.40	<0.36	<0.37
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	ıe + Dibenzo(a,h)anth	ır	<0.40	<0.36	<0.40	<0.36	<0.37
Naphthalene		Naphthalene	<0.40	<0.36	<0.40	<0.36	<0.37
Phenanthrene + Anthracene	3		<0.40	<0.36	<0.40	<0.36	<0.37
Pyrene			< 0.40	<0.36	<0.40	<0.36	<0.37
2-Methylnaphthalene	and the second s		<0.40	<0.36	<0.40	<0.36	<0.37
GRO			<0.30	<0.27 J	<0.30	<0.27	<0.28 J
DRO	10.		<12	11 >	<12	30	<11

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1W of 1X

Date: 07/18/96

		SITE		H833SB47	H833SB47	H833SB48	H833SB48	H833SB48
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-SB4701	H833-SB4702	H833-SB4801	H833-SB4802	H833-SB4803
		DATE		03/04/96	03/04/96	96/20/20	96/90/60	03/02/96
		DEPTH (ft)	GA-SSC	3.50	7.00	3.50	7.00	15.00
Benzene			0.120	<0.0056	<0.0057	<0.0061	<0.0060	<0.0063
Ethylbenzene			140	<0.0056	< 0.0057	0.0082	<0.0060	<0.0063
Toluene			200	<0.0056	< 0.0057	<0.0061	<0.0060	<0.0063
Xylene (total)		200	700	<0.0056	<0.0057	0.15	0.094	<0.0063
Acenaphthylene				<0.37	<0.38	<0.40	<0.40	<0.42
Benzo(a)pyrene				<0.37	<0.38	<0.40	<0.40	<0.42
Benzo(b,k)fluoranthene	thene			<0.37	<0.38	<0.40	<0.40	<0.42
Benzo(ghi)perylen	Benzo(ghi)perylene			<0.37	<0.38	<0.40	<0.40	<0.42
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.37	<0.38	<0.40	<0.40	<0.42
Fluoranthene	Fluoranthene			<0.37	<0.38	.<0.40	<0.40	<0.42
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	i.		<0.37	<0.38	<0.40	<0.40	<0.42
Naphthalene	Naphthalene			<0.37	<0.38	<0.40	<0.40	<0.42
Phenanthrene + Anthracene	Anthracene			<0.37	<0.38	<0.40	<0.40	<0.42
Pyrene				<0.37	<0.38	<0.40	<0.40	<0.42
2-Methylnaphthalene	ene			<0.37	<0.38	<0.40	<0.40	<0.42
GRO				<0.28	<0.29	1.6	0.54	<0.32
DRO		Comment of the Commen		<11	1	<12	<12	<13

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1X of 1X

Date: 07/18/96

									-
		SITE		H833SB48	H833SB49	H833SB49	H833SB50	H833SB50	
CONSTITUENT	(Units in mg/kg)	SAMPLEID		H833-SB4804	H833-SB4901	H833-SB4902	H833-SB5001	H833-SB5002	~
*	. 8	DATE		96/50/20	03/02/96	03/02/96	03/04/96	03/04/96	-
		DEPTH (ft)	GA-SSC	20.00	3.30	8:00	3.10	10.00	
Benzene			0.120	<0.0061	<0.0054	<0.0057	<0.0056	<0.0060	
Ethylbenzene			140	<0.0061	<0.0054	<0.0057	<0.0056	<0.0000	9.50
Toluene			200	< 0.0061	< 0.0054	<0.0057	<0.0056	<0.0060	
Xylene (total)		700	700	<0.0061	< 0.0054	<0.0057	<0.0056	<0.0060	744
Acenaphthylene				<0.40	<0.36	<0.38	<0.37	<0.39	
Benzo(a)pyrene	Benzo(a)pyrene			<0.40	<0.36	<0.38	<0.37	< 0.39	
Benzo(b,k)fluoranthene	thene			<0.40	<0.36	<0.38	<0.37	<0.39	_
Benzo(ghi)perylen	Benzo(ghi)perylene			<0.40	>0.36	<0.38	<0.37	<0.39	
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.40	<0.36	<0.38	<0.37	<0.39	-
Fluoranthene		Fluoranthene		<0.40	<0.36	<0.38	<0.37	<0.39	
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	ıthr		<0.40	<0.36	<0.38	<0.37	<0.39	
Naphthalene	Naphthalene			<0.40	<0.36	<0.38	<0.37	<0.39	-
Phenanthrene + Anthracene	Anthracene			<0.40	<0.36	<0.38	<0.37	<0.39	
Pyrene				< 0.40	<0.36	<0.38	<0.37	<0.39	-

--- = Not analyzed < = Not detected at indicated reporting limit</p> Values represent total concentrations unless noted

< 0.30

<0.37

<0.38

<0.36

<0.30

2-Methylnaphthalene

GRO

117

<11

<11

<12

<0.39

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1A of 1M

Date: 07/18/96

CONSTITUENT (Units in mg/kg)	SITE SAMPLE ID		MW-01 H833-WB0101	MW-01 H833-WB0102	MW-02 H833-WB0201	MW-02 H833-WB0202	MW-03 H833-WB0301
	DATE		04/23/96	04/23/96	04/23/96	04/23/96	04/24/96
	DEРТН (ft)	GA-SSC	7.20	15.00	5.00	15.00	5.00
Benzene		0.120	<0.0054	<0.0062	0.0056	[23]	0.0073 J
izene		140	<0.0054	<0.0062	<0.0055	2.2	<0.0053
Toluene		200	<0.0054	<0.0062	<0.0055	1.7	<0.0053
Xylene (total)		700	<0.0054	<0.0062	<0.0055	2.5	0.0066
			<0.36	<0.41	<0.36	<0.41	<0.35
Benzo(a)pyrene			<0.36	<0.41	<0.36	<0.41	< 0.35
Benzo(b,k)fluoranthene			<0.36	<0.41	<0.36	<0.41	<0.35
Benzo(ghi)perylene			<0.36	<0.41	>0.36	<0.41	<0.35
Chrysene + Benzo(a)anthracene			<0.36	<0.41	<0.36	<0.41	<0.35
Fluoranthene			<0.36	<0.41	<0.36	<0.41	<0.35
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr			<0.36	<0.41	<0.36	<0.41	<0.35
Pyrene			<0.36	<0.41	98.0>	<0.41	< 0.35
GRO			<0.20	<0.22	<0.20	089	<0.19 J
рко			<11	<12	1.>	13	11 >

<=Not detected at indicated reporting limit ---= Not analyzed</p> Values represent total concentrations unless noted

Ì.

[] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD
BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1B of 1M

Date: 07/18/96

CONSTITUENT (Units in	(Units in mg/kg)	SITE SAMPLE ID DATE		MW-03 H833-WB0302 04/24/96	MW-04 H833-WB0401 04/24/96	MW-04 H833-WB 04/24/96	MW-04 H833-WB0402 04/24/96	MW-05 H833-WB0501 04/25/96	MW-05 H833-WB0502 04/25/96	
		DEPTH (ft)	GA-SSC	10.00	7.30	10.00		10:00	15.00	
Benzene			0.120	<0.0061	<0.0056	<0.0060	090	< 5.6	0.0077 J	
Ethylbenzene			 140	<0.0061	<0.0056	<0.0060	090	13 J	0.027 J	
Toluene			200	<0.0061	<0.0056	<0.00	090	12 J	<0.0062	
Xylene (total)			700	<0.0061	<0.0056	<0.0060	090	28 J	0.0000	-
Acenaphthylene				<0.40	<0.37	<0.39		<0.36	<0.41	
Benzo(a)pyrene				<0.40	<0.37	<0.39		< 0.36	<0.41	
Benzo(b,k)fluoranthene				<0.40	<0.37	<0.39		<0.36	<0.41	
Benzo(ghi)perylene				<0.40	<0.37	<0.39		<0.36	<0.41	100
Chrysene + Benzo(a)anthracene	racene			<0.40	<0.37	<0.39	-	<0.36	<0.41	
Fluoranthene				<0.40	<0.37	<0.39		<0.36	<0.41	
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	Dibenzo(a,h)ant	ħ.		<0.40	<0.37	<0.39		<0.36	<0.41	
Pyrene				<0.40	<0.37	<0.39		<0.36	<0.41	* * ·
GRO				<0.22	<0.20 J	<0.21		<12000 J	35 J	
DRO				<12	<11	<12		-	<12	- 337

< = Not detected at indicated reporting limit --- = Not analyzed</p> Values represent total concentrations unless noted

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD

BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1C of 1M

Date: 07/18/96

CONSTITUENT	(Units in ma/ka)	SITE		MW-06	MW-06	MW-07	MW-07	MW-08
	5	DATE		04/25/96	04/25/96	04/29/96	04/29/96	04/24/96
		DEPTH (TQ)	GA-SSC	3.25	00.00	3,30	10.00	7.25
Benzene			0.120	<0.0054	<12	<0.0054	<0.0058	<0.0054 J
Ethylbenzene		140	140	0.033	23 J	<0.0054	< 0.0058	<0.0054
Toluene			200	<0.0054	<12	<0.0054	<0.0058	<0.0054
Xylene (total)			700	0.13	44.3	<0.0054	<0.0058	<0.0054
Acenaphthylene				<0.36	<0.40	<0.36	<0.38	<0.36
Benzo(a)pyrene				<0.36	<0.40	<0.36	<0.38	0.46
Benzo(b,k)fluoranthene	Je.			<0.36	<0.40	<0.36	<0.38	0.94
Benzo(ghi)perylene		Benzo(ghi)perylene		<0.36	<0.40	<0.36	<0.38	<0.36
Chrysene + Benzo(a)anthracene	anthracene			<0.36	<0.40	<0.36	<0.38	0.43
Fluoranthene				<0.36	<0.40	<0.36	<0.38	0.40
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	ne + Dibenzo(a,h)ant			<0.36	<0.40	<0.36	<0.38	<0.36
Pyrene		Pyrene		<0.36	<0.40	>0.36	<0.38	0.54
GRO				<5.8 J	<26000 J	<0.20	<0.21	<0.20 J
DRO				~11	<12	15	<12	13

Values represent total concentrations unless noted <=Not detected at indicated reporting limit --=Not analyzed

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1D of 1M

2000		Date: 07/18/96
	JG 833	ENTS DETECTED IN SOIL

		SITE		MW-08	WW-09	WW-09	MW-10	MW-10
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-WB0802	H833-WB0901	H833-WB0902	H833-WB1001	H833-WB1002
		DATE		04/24/96	04/24/96	04/24/96	04/24/96	04/24/96
		DEPTH (ft)	GA-SSC	10.00	6.40	15.00	4.40	10.00
Benzene			0.120	[28] J	<0.0054	<0.0060	<0.0054	<0.0060
Ethylbenzene			140	<5.6 J	<0.0054	<0.0060	< 0.0054	<0.0060
			200	<5.0	<0.0054	<0.0060	< 0.0054	<0.0060
	200		. 700	10.1	< 0.0054	<0.0060	<0.0054	<0.0060
Acenaphthylene	A CONTRACT OF STREET STREET	1		<0.37	<0.35	<0.39	<0.36	<0.40
Benzo(a)pyrene				<0.37	<0.35	<0.39	<0.36	<0.40
Benzo(b,k)fluoranthene	hene			<0.37	<0.35	<0.39	<0.36	<0.40
Benzo(ghi)perylene	Benzo(ghi)perylene			<0.37	< 0.35	<0.39	< 0.36	<0.40
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.37	<0.35	<0.39	<0.36	<0.40
Fluoranthene	Fluoranthene			<0.37	<0.35	<0.39	<0.36	<0.40
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	nthr		<0.37	<0.35	<0.39	<0.36	<0.40
Pyrene	Pyrene			<0.37	<0.35	68.0>	<0.36	<0.40
GRO	And the second of the second o			<1.20 J	<0.19 J	<0.21	<0.20	<0.22
DRO	DRO			<11	7.	<12	×11	<12

Values represent total concentrations unless noted <= Not detected at indicated reporting limit --- = Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Date: 07/18/96

of 1M

Page: 1E

		SITE		MW-11	MW-11	MW-12	MW-12	MW-13	
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-WB1101	H833-WB1102	H833-WB1201	H833-WB1202	H833-WB1301	
		DATE		04/23/96	04/23/96	04/22/96	04/22/96	04/22/96	
		DEPTH (ft)	GA-SSC	5.30	10.00	7.30	10.00	5.50	-
Benzene			0.120	<0.0054	[0.92]	0.0085	[4.3]	<0.0056	_
Ethylbenzene			140	< 0.0054	<0.47	0.017	1.4	<0.0056	-
Toluene			500	< 0.0054	0.55	<0.0057	<0.46	<0.0056	_
Xylene (total)				< 0.0054	0.49	0.012	0,92	<0.0056	
Acenaphthylene				<0.35	<0.39	<0.35	<0.38	0.61	
Benzo(a)pyrene	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30			<0.35	<0.39	<0.35	<0.38	2.4	-1000
Benzo(b,k)fluoranthene	thene			<0.35	<0.39	<0.35	<0.38	4.8	
Benzo(ghi)perylen	9	Benzo(ghi)perylene		<0.35	<0.39	<0.35	< 0.38	1.9	20.00
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.35	<0.39	<0.35	<0.38	4.0	_
Fluoranthene		Fluoranthene		<0.35	<0.39	<0.35	<0.38	1.4	30.0
Indeno(1,2,3-cd)p	Indeno(1,2,3-cd)pyrene+Dibenzo(a,h)anthr	ı,h)anthr		<0.35	<0.39	<0.35	<0.38	2.0	_
Pyrene	Pyrene			<0.35	< 0.39	<0.35	<0.38	1,5	0.02
GRO				<0.19	51	<6.1 J	<1000 J	1.5 J	_
DRO		DRO		2.	19	28	13	18	

< = Not detected at indicated reporting limit --- = Not analyzed Values represent total concentrations unless noted [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

8()

HUNTER ARMY AIRFIELD **BUILDING 833**

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

of 1M Page: 1F

Date: 07/18/96

CONSTITUENT	(Units in mg/kg)	SITE SAMPLE ID		MW-13 H833-WB1302	MW-14 H833-WB1401	MW-14 H833-WB1402	MW-15 H833-WB1501	MW-15 H833-W81502
		DATE		04/22/96	04/22/96	04/22/96	04/25/96	04/25/96
		DEPTH (ft)	GA-SSC	10:00	10:00	17.00	7.30	10.00
Benzene	and the state of t		0.120	[3.2]	<0.0060	<0.0063	<0.0060	<0.0062
Ethylbenzene			140	1.2	<0.0060	<0.0063	<0.0060	<0.0062
Toluene			200	<0.45	<0.0060	<0.0063	<0.0060	<0.0062
Xylene (total)	200		700	1.3	<0.0060	<0.0063	<0.0060	<0.0062
Acenaphthylene				<0.38	<0.40	<0.42	<0.40	<0.41
Benzo(a)pyrene	Benzo(a)pyrene			<0.38	< 0.40	<0.42	<0.40	<0.41
Benzo(b,k)fluoranthene	ene			<0.38	<0.40	<0.42	<0.40	<0.41
Benzo(ghi)perylene	Benzo(għi)perylene			<0.38	<0.40	<0.42	<0.40	<0.41
Chrysene + Benzo(a)anthracene	a)anthracene			<0.38	<0.40	<0.42	<0.40	<0.41
Fluoranthene	Fluoranthene			<0.38	<0.40	<0.42	<0.40	<0.41
Indeno(1,2,3-cd)pyi	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	<u>_</u>		<0.38	<0.40	<0.42	<0.40	<0.41
Pyrene	Pyrene			<0.38	<0.40	<0.42	< 0.40	<0.41
GRO				160 J	<0.22	<0.23 J	<0.22	<0.22
DRO	DRO			36	<12	<13 J	<12	<12
				,				

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

į.

HUNTER ARMY AIRFIELD
BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1G of 1M

Date: 07/18/96

									P
		SITE		MW-16	MW-16	MW-17	MW-17	MW-18	
CONSTITUENT	(Units in mg/kg)	SAMPLEID		H833-WB1601	H833-WB1602	H833-WB1701	H833-WB1702	H833-WB1801	
		DATE		04/25/96	04/25/96	04/22/96	04/22/96	04/23/96	
		ДЕРТН (ft)	GA-SSC	5.30	10.00	7.40	10.00	5.30	1
Benzene			0.120	<0.0062	<0.0060	<0.0054	[410] J	<0.0053	
Ethylbenzene			140	<0.0062	<0.0060	< 0.0054	50 J	<0.0053	
Toluene			200	<0.0062	<0.0060	< 0.0054	30 J	<0.0053	
Xylene (total)		700	700	<0.0062	<0.0060	< 0.0054	120 J	< 0.0053	-
Acenaphthylene				<0.41	<0.39	<0.36	<0.38	<0.35	
Benzo(a)pyrene				<0.41	<0.39	<0.36	<0.38	<0.35	45-
Benzo(b,k)fluoranthene	thene			<0.41	<0.39	<0.36	<0.38	<0.35	
Benzo(ghi)perylen	Benzo(ghi)perylene			<0.41	<0.39	<0.36	<0.38	<0.35	7
Chrysene + Benzo(a)anthracene	zo(a)anthracene			<0.41	<0.39	<0.36	<0.38	<0.35	
Fluoranthene	Fluoranthene			<0.41	<0.39	<0.36	86.0>	< 0.35	
Indeno(1,2,3-cd)r	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	<u>_</u>		<0.41	<0.39	<0.36	<0.38	<0.35	0
Pyrene	Pyrene			<0.41	<0.39	< 0.36	<0.38	< 0.35	40
GRO				<0.22	<0.21	<0.20 J	<120000 J	<0.19	
DRO				<12	<12 J	17	64	<11	

ev L

<=Not detected at indicated reporting limit ---=Not analyzed</p> Values represent total concentrations unless noted

[] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD

BUILDING 833

Date: 07/18/96

of 1M

Page: 1H

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

H833-WB2002 < 0.0064 <0.42 <0.0064 <0.0064 <0.0064 04/23/96 <0.23 J <0.42 MW-20 < 0.42 <0.42 < 0.42 <0.42 15.00 <0.42 < 0.42 <13 H833-WB2001 < 0.0060 <0.0060 <0.0060 <0.0060 04/23/96 MW-20 < 0.40 < 0.40 < 0.40 <0.40 < 0.40 <0.40 <0.40 < 0.40 <0.22 10.00 <12 H833-WB1902 04/22/96 <12 < 0.031 MW-19 <0.031 < 0.41 < 0.41 < 0.41 <0.41 0.044 <0.41 <0.41 <0.41 <0.41 15.00 [08:0] 7.7 3 H833-WB1901 <0.38 <12000 J 22 04/22/96 <0.38 1.3 J < 0.38 <0.38 WW-19 <0.38 <0.38 <0.38 <0.38 10.00 <0.46 2.0 J [11] H833-WB1802 <0.0056 <0.0056 <0.0056 <0.0056 04/23/96 <0.37 < 0.37 < 0.37 <0.37 MW-18 <0.37 <0.37 <0.20 <0.37 <0.37 10.00 ×11 GA-SSC 0.120 700 140 500 SAMPLE ID DEPTH (ft) DATE SITE Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr (Units in mg/kg) Chrysene + Benzo(a)anthracene Benzo(b,k)fluoranthene Benzo(ghi)perylene Pyrene Acenaphthylene Benzo(a)pyrene CONSTITUENT Xylene (total)

·

59

DRO

Fluoranthene

Ethylbenzene

Toluene

Benzene

X

--- = Not analyzed < = Not detected at indicated reporting limit</p> Values represent total concentrations unless noted [] = Greater than Action Level

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

SUMMARY OF CONSTITUENTS DETECTED IN SOIL HUNTER ARMY AIRFIELD **BUILDING 833**

Date: 07/18/96

of 1M Page: 11

		SITE		MW-21	WW-21	MW-22	MW-22	MW-23
CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-WB2101	H833-WB2102	H833-WB2201	H833-WB2202	H833-WB2301
		DATE		04/23/96	04/23/96	04/23/96	04/23/96	04/23/96
		DEPTH (ft)	GA-SSC	7,25	10.00	5.25	10.00	7.25
Benzene			0.120	<0.0056	<0.0061	<0.0056	<0.0058	<0.0058
Ethylbenzene			140	<0.0056	<0.0061	<0.0056	<0.0058	<0.0058
Toluene			200	<0.0056	<0.0061	<0.0056	<0.0058	<0.0058
Xylene (total)			700	<0.0056	<0.0061	<0.0056	<0.0058	<0.0058
Acenaphthylene				<0.37	<0.40	<0.37	<0.38	<0.38
Benzo(a)pyrene	Benzo(a)pyrene			<0.37	<0.40	<0.37	< 0.38	<0.38
Benzo(b,k)fluoranthene	hene			<0.37	<0.40	<0.37	<0.38	<0.38
Benzo(ghi)perylene	Benzo(ghi)perylene			<0.37	<0.40	<0.37	<0.38	<0.38
Chrysene + Benzo(a)anthracene	o(a)anthracene			<0.37	<0.40	<0.37	<0.38	<0.38
Fluoranthene	Fluoranthene			<0.37	<0.40	<0.37	<0.38	<0.38
Indeno(1,2,3-cd)p)	Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	<u>.</u>		<0.37	<0.40	<0.37	<0.38	<0.38
Pyrene	Pyrene			<0.37	<0.40	<0.37	< 0.38	<0.38
GRO				< 0.20 J	<0.22 J	<0.20 J	<0.21 J	<0.21
DRO				-	<12	5	<12	<12

\$** ***

< = Not detected at indicated reporting limit --- = Not analyzed</p> Values represent total concentrations unless noted

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD

BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1J of 1M Date: 07/18/96

(Units in mg/kg) SAMPLE ID H833-WE2302 H833-WE2401 H833-WE2402 H833-WE2501 DATE 04/23/96 04/23/96 04/23/96 04/23/96 04/24/96 DATE 0.120 <0.0067 \$0.0055 <0.0064 \$0.0063 140 <0.0067 <0.0055 <0.0064 <0.0063 500 <0.0067 <0.0056 <0.0063 <0.0063 600 <0.0067 <0.0056 <0.0063 <0.0063 600 <0.0067 <0.0056 <0.0064 <0.0063 600 <0.0067 <0.0056 <0.0064 <0.0063 600 <0.0067 <0.0056 <0.0064 <0.0063 600 <0.0067 <0.0056 <0.0064 <0.0053 600 <0.0067 <0.0056 <0.0064 <0.0053 600 <0.0067 <0.0056 <0.0056 <0.0053 613 <0.0057 <0.0056 <0.0056 <0.0056 <0.0056 613 <0.005 <0.0056 <			SITE		MW-23	MANA, 24	MAN 20	BAYA! 2E	BANAL DE
C 04/23/96 04/23/96 04/24/96 C 10.00 5.25 10.00 5.40 <0.0067 <0.0055 <0.0064 <0.0053 <0.0067 <0.0055 <0.0064 <0.0053 <0.0067 <0.0055 <0.0064 <0.0053 <0.0067 <0.0055 <0.0064 <0.0053 <0.0067 <0.0055 <0.0064 <0.0053 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.044 <0.36 <0.42 <0.35 <0.44 <0.36 <0.42	CONSTITUENT	(Units in mg/kg)	SAMPLE ID		H833-WB2302	H833-WB2401	H833-WB2402	H833-WB2501	H833-WB2502
C 10.00 5.25 10.00 5.40 <0.0067 <0.0055 <0.0063 <0.0067 <0.0055 <0.0063 <0.0067 <0.0055 <0.0063 <0.0067 <0.0064 <0.0063 <0.0067 <0.0064 <0.0063 <0.0067 <0.0064 <0.0063 <0.044 <0.36 <0.42 <0.35 <0.44 <0.36 <0.42 <0.35 <0.44 <0.36 <0.42 <0.35 <0.44 <0.36 <0.42 <0.35 <0.44 <0.36 <0.42 <0.35 <0.44 <0.36 <0.042 <0.35 <0.44 <0.36 <0.042 <0.35 <0.44 <0.36 <0.042 <0.35 <0.44 <0.36 <0.042 <0.35 <0.44 <0.36 <0.042 <0.35 <0.24 <0.035 <0.042 <0.35 <0.24 <0.020 <0.023 <0.035 <0.24 <0.020 <0.023 <0.019 <0.25 <0.023 <0.023 <0.019			DATE		04/23/96	04/23/96	04/23/96	04/24/96	04/24/96
<0.0067 <0.0055 <0.0064 <0.0063 <0.0067 <0.0055 <0.0064 <0.0063 <0.0067 <0.0055 <0.0064 <0.0063 <0.0067 <0.0055 <0.0064 <0.0063 <0.044 <0.36 <0.042 <0.035 <0.44 <0.36 <0.042 <0.035 <0.44 <0.36 <0.042 <0.035 <0.44 <0.36 <0.042 <0.035 <0.44 <0.36 <0.042 <0.035 <0.44 <0.36 <0.042 <0.035 <0.44 <0.36 <0.042 <0.035 <0.042 <0.035 <0.035 <0.044 <0.36 <0.042 <0.035 <0.044 <0.36 <0.042 <0.035 <0.044 <0.36 <0.042 <0.035 <0.044 <0.036 <0.042 <0.035 <0.044 <0.036 <0.042 <0.035 <0.044 <0.036 <0.042 <0.035 <0.044 <0.020 <0.020 <0.035 <0.0			DEPTH (ft)	GA-SSC	10.00	5.25	10.00	5.40	10.00
<0.0067	Benzene			0.120	<0.0067	<0.0055	<0.0064	<0.0053	<0.0062
<0.0067	Ethylbenzene			140	<0.0067	<0.0055	<0.0064	< 0.0053	<0.0062
<0.0067	Toluene			200	<0.0067	<0.0055	<0.0064	<0.0053	0.0085
<0.44	Xylene (total)			700	<0.0067	<0.0055	<0.0064	<0.0053	0600.0
<0.44	Acenaphthylene				<0.44	<0.36	<0.42	<0.35	<0.41
<0.44	Benzo(a)pyrene				<0.44	<0.36	<0.42	<0.35	<0.41
<0.44	Benzo(b,k)fluoran	thene			<0.44	<0.36	<0.42	<0.35	<0.41
<0.44	Benzo(ghi)peryler				<0.44	<0.36	<0.42	<0.35	<0.41
<0.44	Chrysene + Benz	zo(a)anthracene			<0.44	<0.36	<0.42	<0.35	<0.41
<0.44	Fluoranthene				<0.44	<0.36	<0.42	<0.35	<0.41
< 0.44	Indeno(1,2,3-cd)	oyrene + Dibenzo(a,h)ant	ħ.		<0.44	<0.36	<0.42	<0.35	<0.41
<0.24 <0.20 <0.23 <0.19 < <0.24 <0.20 <0.23 <0.19	Pyrene		100		<0.44	<0.36	<0.42	<0.35	<0.41
C*/	GRO				<0.24	<0.20	<0.23	<0.19	<0.22
27	DRO				<13	×1.	<13	<10	<12

< = Not detected at indicated reporting limit --- = Not analyzed</p> Values represent total concentrations unless noted

æ.

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1K of 1M

Date: 07/18/96

	SITE		MW-26	MW-26	MW-27	MW-27	MW-28
CONSTITUENT (Units in mg/kg)	SAMPLEID		H833-WB2601	H833-WB2602	H833-WB2701	H833-WB2702	H833-WB2801
e e	DATE		04/24/96	04/24/96	04/24/96	04/24/96	04/25/96
	DEPTH (ft)	GA-SSC	7.30	10.00	5.30	10.00	6.00
Benzene		0.120	<0.0054	<0.0062	<0.0057	<0.0061	<0.0053
Ethylbenzene		140	<0.0054	<0.0062	< 0.0057	<0.0061	<0,0053
Toluene		200	< 0.0054	<0.0062	<0.0057	<0.0061	<0.0053
	700	700	<0.0054	<0.0062	<0.0057	<0.0061	<0.0053
Acenaphthylene			<0.35	<0.41	<0.38	<0.40	<0.35
Benzo(a)pyrene			0.45	<0.41	<0.38	<0.40	<0.35
Benzo(b,k)fluoranthene			0.80	<0.41	<0.38	<0.40	<0.35
Benzo(ghi)perylene			<0.35	<0.41	<0.38	<0.40	< 0.35
Chrysene + Benzo(a)anthracene			0.39	<0.41	<0.38	<0.40	<0.35
Fluoranthene			0.44	<0.41	<0.38	<0.40	<0.35
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	anthr		<0.35	<0.41	<0.38	<0.40	<0.35
Pyrene			0.48	<0.41	<0.38	<0.40	< 0.35
GRO			<0.19	<0.22	<0.21	<0.22	<0.19
DRO			<11	<12	~17	<12	<10

< = Not detected at indicated reporting limit ---= Not analyzed</p> Values represent total concentrations unless noted

METHODS: EPA 8020,8100,8100M,8015M. J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

of 1M

Page: 1L

Date: 07/18/96

H833-WB3002 < 0.0063 < 0.0063 <0.0063 <0.42 <0.0063 04/29/96 < 0.42 < 0.42 < 0.42 MW-30 10.00 <0.42 H833-WB3001 < 0.0059 04/29/96 0.0061 0.0078 MW-30 < 0.39 0.023 <0.39 7.30 0.64 1.2 2.0 H833-WB2902 <0.0062 < 0.0062 <0.0062 <0.0062 04/29/96 <0.41 MW-29 <0.41 < 0.41 <0.41 <0.41 10.00 H833-WB2901 <3.7 0.0075 J <0.0056 <0.0056 <0.0056 04/29/96 MW-29 4.3) <3.7 <3.7 3.30 H833-WB2802 <0.0068 <0.0068 <0.45 <0.0068 <0.0068 04/25/96 <0.45 MW-28 < 0.45 < 0.45 < 0.45 15.00 GA-SSC 0.120 700 140 500 SAMPLE 1D DEPTH (ft) DATE SITE (Units in mg/kg) Chrysene + Benzo(a)anthracene Benzo(b,k)fluoranthene Benzo(ghi)perylene Acenaphthylene Benzo(a)pyrene CONSTITUENT Xylene (total) Ethylbenzene Benzene Toluene

--- = Not analyzed < = Not detected at indicated reporting limit</p> Values represent total concentrations unless noted

<0.42

<0.42

< 0.22 24

27

34

33

<14

**

DRO

< 0.42

<0.39

0.83

< 0.41

5.7 J < 0.20 J

<0.45

Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr

Pyrene

Fluoranthene

<3.7

0.43

< 0.41

5.9 J

< 0.45

< 0.45

<0.41

HUNTER ARMY AIRFIELD

. BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN SOIL

Page: 1M of 1M Date: 07/18/96

		SITE			MW-31	MW-31	MW-32	MW-32	
CONSTITUENT (Units	(Units in mg/kg)	SAMPLEID		_	H833-WB3101	H833-WB3102	H833-WB3201	H833-WB3202	
		DATE		_	04/29/96	04/29/96	04/29/96	04/29/96	
		DEPTH (ft)	 GA-SSC		5.50	10.00	7.40	10.00	
Benzene			0.120		<0.0060	<0.0062	<0.0060	<0.0062	
Ethylbenzene		140	140	1	<0.0060	<0.0062	<0.0060	<0.0062	
Toluene			500		<0.0060	<0.0062	<0.0060	<0.0062	
Xylene (total)		700	700		<0.0060	<0.0062	0.026	<0.0062	
Acenaphthylene					<0.40	<0.41	<0.40	<0.41	
Benzo(a)pyrene					<0.40	<0.41	<0.40	<0.41	A
Benzo(b,k)fluoranthene					<0.40	<0.41	<0.40	<0.41	
Benzo(ghil)perylene					<0.40	<0.41	<0.40	<0.41	
Chrysene + Benzo(a)anthracene	thracene				<0.40	<0.41	<0.40	<0.41	
Fluoranthene					<0.40	<0.41	<0.40	<0.41	
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	+ Dibenzo(a,h	ı)anthr			<0.40	<0.41	<0.40	<0.41	
Pyrene					<0.40	<0.41	<0.40	<0.41	
GRO					<0.22	<0.22	<6.6 J	<0.22	
DRO					20	22	19	4	

< = Not detected at indicated reporting limit --- = Not analyzed Values represent total concentrations unless noted

METHODS: EPA 8020,8100,8100M,8015M, J = Result is estimated.

GA-SSC = Georgia Soil Screening Criteria listed in TABLE 1.

HUNTER ARMY AIRFIELD
BUILDING 833
SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

of 1G Page: 1A

Date: 07/19/96

CONSTITUENT		ANCTITICAL Ministration of the Contraction of the C						
	luggu III s	SAMPLEID		MW-01 H833-GW0101	WW-02 H833-GW0201	MW-03 H833-GW0301	MW-04 H833-GW0401	MW-05 H833-GW0501
		DATE	GA-W0S	05/21/96	05/21/96	05/23/96	05/23/96	05/23/96
Benzene			71.28	[100]	[700]	, 1	1	[4100]
Ethylbenzene			28718	230	1100	⊽	Σ	1700
			200000	<25	12000	^	4.6	8900
Xylene (total)				860	4500	7	~	6400
Acenaphthene				<10	20	<10	<10	<10
Acenaphthylene				<10	< 10	<10	<10	<10
Fluorene			14000	<10	<10	<10	<10	<10
Naphthalene				<10	<10	<10	<10	<10
1-Methylnaphthalene				<10	<10	<10	<10	<10
2-Methylnaphthalene				<10	<10	<10	<10	<10

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed [] = Greater than Action Level

METHODS: EPA 8020, 8100.

J = The result is estimated.

HUNTER ARMY AIRFIELD
BUILDING 833
SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

Page: 1B of 1G

Date: 07/19/96

CONSTITUENT (Units in ug/l) SITE SAMPLE ID	SITE SAMPLE ID		MW-06 H833-GW0601	MW-07 1 H833-TB0301	MW-07 11 H833-GW0701	MW-08 H833-GW0801	MW-09 H833-GW0901
DATE GA-WOS	DATE	GA-WOS	05/23/96			05/21/96	05/23/96
Benzene		71.28	<25	\ \ \ \	7	[200]	7
Ethylbenzene 287		28718	320	٧	^	310	V
Toluene		200000	1400	۲ ۲	.	920	^
Xylene (total)			1400	7	7	1200	2
Acenaphthene			<10	1	<10	<10	<10
Acenaphthylene			<10	1	<10	<10	10
Fluorene		14000	<10	ı	<10	<10	<10
Naphthalene			<10	Î	<10	<10	21
1-Methylnaphthalene			<10	1	<10	<10	<10
2-Methylnaphthalene			<10		<10	<10	<10
		Section 1					

[] = Greater than Action Level

METHODS: EPA 8020, 8100.

J = The result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833

SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

Page: 1C of 1G

Date: 07/19/96

CONSTITUENT (Units in ug/I) SITE	(//si uj //)	SITE		MW-10	MW-11	MW-12	MW-13	MW-14
		SAMPLE ID DATE GA-WI	GA-WQS	H833-GW1001 05/23/96	H833-GW1101 05/22/96	H833-GW1201 05/22/96	H833-GW1301 05/23/96	H833-GW1401 05/23/96
zene		71.28	71.28	∇ ∇ :	[230] 440		<50 1500	2.2
		SOCO	200000	· · ·	3600 2100	540 2700	600 6200	
Acenaphthylene				<10	× × 0.0	<10	<10 <10	010 010
Fluorene 14000 Naphthalene			14000	10 < 10	<10 <10	<10 <10	<10 <10	<10 <10
1-Methylnaphthalene 2-Methylnaphthalene				<10	<10	<10 <10	<10 <10	<10 <10

Values represent total concentrations unless noted <= Not detected at indicated reporting limit ---= Not analyzed

[] = Greater than Action Level

METHODS: EPA 8020, 8100.

J = The result is estimated.

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

of 1G Page: 1D

Date: 07/19/96

CONSTITUENT (Units in ug/l) SITE SAMPLE ID Benzene Ethylbenzene								
۵	(V)B	SITE SAMPLE ID DATE	GA-WQS	MW-15 H833-GW1501 05/22/96	MW-16 H833-GW1601 05/22/96	MW-17 H833-GW1701 05/22/96	MW-18 H833-GW1801 05/22/96	MW-19 H833-GW1901 05/22/96
		71.28	71.28	\ \nabla \nabla \	\ \ \ \ \	<500	20	[390]
4			200000	٧	√	16000	17	3300
				. v	. · ·	5200	710	1300
Acenaphthylene				× × × × × × × × × × × × × × × × × × ×	2 0 >	× × ×	< 10 < 10	5 0 V
Fluorene Naphthalene		1400	14000	<10	<10 <10	<10 30	<10 41	<10
				01.5	< 10 < 10	ot >	16 23	< 10 < 10
					500			

GA-WQS = Georgia Instream Water Quality Standards

J = The result is estimated.

METHODS: EPA 8020, 8100. []=Greater than Action Level

HUNTER ARMY AIRFIELD

Page: 1E of 1G

Date: 07/19/96

BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

CONSTITUENT (Units in ug/l), SITE SAMPLE ID DATE GA-W	(V6	SITE SAMPLE DATE	ID GA-W0	SO.	MW-21 H833-GW2101 05/23/96	MW-22 H833-GW2201 05/22/96	MW-23 H833-GW2301 05/22/96	MW-24 H833-GW2401 05/22/96	MW-25 H833-GW2501 05/22/96
Benzene Ethylbenzene			71.28		₩	<2 27	▽ ▽	V V	\[\nabla \cdot \]
Toluene			20000	0	. ∠	, 7	7	, \	, _{\(\sigma\)}
Aylene (total) Acenaphthene					<10 <10	29 <10	× × 10	<10	10 10
Acenaphthylene					<10	01>	<10	× 10	<10
Fluorene Naphthalene			14000		0 V V V V V V V V V V V V V V V V V V V	0 V 0 0	o 10 0 0	<10 <10	× × × × × × × × × × × × × × × × × × ×
1-Methylnaphthalene 2-Methylnaphthalene					0 V V	0 V V V V V V V V V V V V V V V V V V V	010	<!--</td--><td>010</td>	010
						200 000 000 000 000 000 000 000 000 000			

J = The result is estimated.METHODS: EPA 8020, 8100.

Page: 1F of 1G Date: 07/19/96

HUNTER ARMY AIRFIELD BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

CONSTITUENT (Units in ug/l)	SITE SAMPLE ID DATE GA-WOS	GA-WQS	MW-26 H833-GW2601 05/22/96	MW-27 H833-GW2701 05/22/96	MW-28 H833-GW2801 05/23/96	MW-29 H833-GW2901 05/22/96	MW-30 H833-TB0201 05/22/96
0		71.28	\ \	7	\ \	\ \	V
Ethylbenzene 2871		28718	7	, <u>v</u>	; \	; ⊽	, ⁵
Toluene		200000	∇	^	۲ ۲	2.2	^
Xylene (total)			<1	, ,	, ,	V	× 1.
Acenaphthene			<10	<10	<10	<10	1
Acenaphthylene			<10	<10	<10 710	√10	1
Fluorene		14000	<10	<10	<10	<10	1
Naphthalene			× 10	<10	<10	< 10	1
1-Methylnaphthalene 2-Methylnaphthalene			<!--</td--><td>01 × 01 ×</td><td>< 10</td><td>01 × 01 × 01 × 01 × 01 × 01 × 01 × 01 ×</td><td>1 1</td>	01 × 01 ×	< 10	01 × 01 × 01 × 01 × 01 × 01 × 01 × 01 ×	1 1

GA-WQS = Georgia Instream Water Quality Standards

J = The result is estimated.

METHODS: EPA 8020, 8100.

HUNTER ARMY AIRFIELD

BUILDING 833 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

of 1G Page: 1G

Date: 07/19/96

				3 %			701					24	
				2000	34%	746		200	2 H	20.0		430	
												340	
							1000			100	8.44 1	****	
		100						44	384 2.97		1	-	
	5						- 35						
	H833-GW3201 05/22/96	- 20			7445- 8a			1			200	182	
MW-32	H833-GW 05/22/96	_		0	0	0							
≥	H83	50 J	400	19	<10 45	1018							
	1018	1900	100	8078	****	2 Å	***	15-				10000	
	H833-GW3101 05/23/96				9 (4 50 (4)								
MW-31	H833-GW 05/23/96	4 2 2	300	× 10 × 10	<10	^ 10 10	4.5		800				
2	Ιο		v m	V	٧ -	VV							- 0
	ě	1.0		- 17	÷.			32.7					
	3040 6		4,						250	2.5			
MW-31	H833-TB0401 05/23/96				4.23			1986					
M	H8;	~ ~	VV	1]	1 1	1 1		## N			181	N. Sa	
		100			1,140								
	H833-GW3001 05/22/96		(A)	300 200	4.000 4.000 V.S				24.				
Ω.	96/i	1	3.5				10		4		5		31.7
MW-30	H833-GW3 05/22/96	∵ ∵ :	- V	0 > 10	< 10 < 10	× 10 × 10			*		¥4.	R.A.	
_	1.0									4,54			
		3-4 5-87											
	S			75									
	GA-WOS	718	70000	5874 5874	14000	35					8		3
	GA	2871	8		1400								
	Land 8	1										2	1.2
					78) 10) t		.		3				
	CE 10	4				1284 1284		:44				4 2 2.4	
SITE	SAMPLE ID DATE								187	V			
S	S						35						
												17.4	
(l/g												are -	
							- 156. - 156.						
(Units in ug/I)	1					ற ற							484
				do		nalen							
JENT	- 4	e e	(la)	ylent	ē	aphtf		40					
II.		enze	tot)	phth phth	ne	hylne hylne	2 2 2 3 3		**	1			1.00
CONSTITUENT		Benzene Ethylbenzene	Xylene (total)	Acenaphthene Acenaphthylene	Fluorene Naphthalene	1-Methylnaphthalene 2-Methylnaphthalene				٠.	300	3	
. 0		கு பூ டி	×	4 4	ΙŽ	÷ 4	3.	13		Šist.	-22		

GA-WQS = Georgia Instream Water Quality Standards

Values represent total concentrations unless noted <=Not detected at indicated reporting limit ---=Not analyzed

J = The result is estimated.

METHODS: EPA 8020, 8100.

		TAB WATER SUPPLY WELLS	LE 5 WITHIN 2-MIL	E RADIUS	
Well I.D.	Quad.	Owner	Total Depth	Casing Depth	Use
302	36Q	City of Savannah 25	540	287	Public
112	36Q	SCL RR, Shops	508	275	Commercial
284	36Q	U.S. Army, Hunter 9	623	270	Public
285	36Q	U.S. Army, Hunter 1	504	259	Public
286	36Q	U.S. Army, Hunter 2	555	260	Public
290	36Q	U.S. Army, Hunter 4	300	90	Not Used
287	36Q	U.S. Army, Hunter 3	370	324	Public
036	36P	City of Savannah 36	414	252	Public
006	37P	City of Savannah 13	1000	270	Public

Quad: Georgia Grid System. The full well name as in Bulletin 113 is 36Q302 but only 302 is listed on the map for brevity.

Sources: Hunter AAF in AT&E, 1993.

GA Geologic Survey, Bulletin 113, 1990.

U.S.G.S. Well Listing, 1991 in AT&E, 1993.

	D	The second secon	ble 6 WELL SUMMAI	RY	
Location	Screen Interval ft,bgs	Water Depth TOC	TOC Elevation msl	Water Level Elevation msl	Surface Elevation msl
MW1	7.0-17.0	11.73	36.83	25.10	37.0
MW2	7.6-17.6	11.28	37.45	26.17	37.6
MW3	6.0-16.0	9.92	37.55	27.63	37.8
MW4	5.0-15.0	9.98	37.87	27.89	38.1
MW5	6.5-16.5	10.15	37.98	27.83	38.3
MW6	6.0-16.0	9.80	37.71	27.91	37.9
MW7	5.8-15.8	10.34	38.16	27.82	38.5
MW8	7.0-17.0	10.50	37.10	26.60	37.4
MW9	6.0-16.0	9.32	36.76	27.44	37.0
MW10	6.0-16.0	9.36	37.15	27.79	37.3
MW11	6.6-16.6	10.00	34.66	24.66	34.8
MW12	5.6-15.6	10.10	36.40	26.30	36.6
MW13	5.0-15.0	9.79	36.75	26.96	36.9
MW14	5.0-15.0	8.28	35.62	27.34	35.8
MW15	4.7-14.7	7.85	35.74	27.79	35.9
MW16	4.9-14.9	8.19	36.06	27.87	36.3
MW17	6.5-16.5	9.54	35.88	26.34	36.1
MW18	6.6-16.6	10.48	35.40	24.92	35.6
MW19	6.0-16.0	9.18	35.46	26.28	35.8
MW20	7.0-17.0	9.77	36.81	27.04	37.0
MW21	6.0-16.0	9.72	35.82	26.10	36.0
MW22	6.0-16.0	8.74	35.44	26.70	35.7
MW23	5.0-15.0	7.49	34.37	26.88	34.6
MW24	5.0-15.0	8.16	34.79	26.63	34.9
MW25	4.8-14.8	7.94	35.09	27.15	35.3

Table 6 (Continued) DAACG AREA WELL SUMMARY

Location	Screen Interval ft,bgs	Water Depth TOC	TOC Elevation msl	Water Level Elevation msl	Surface Elevation msl
MW26	4.7-14.7	8.66	36.17	27.51	36.4
MW27	4.5-14.5	7.88	34.79	26.91	35.0
MW28	14.5-24.5	10.15	35.18	25.03	35.3
MW29	4.5-14.5	8.28	36.57	28.29	36.7
MW30	2.9-12.9	8.50	36.76	28.26	36.9
MW31	4.0-14.0	7.71	36.79	29.08	37.0
MW32	4.6-14.6	6.99	36.40	29.41	36.6

		Cnain	Size Distributi	on (%)	
			7-9-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1		700000
Location	Depth (ft, bgs)	Gravel	Sand	Silt/Clay	USCS
WB1	8-10	0	96.4	3.6	SP
WB2	8-10	0	77.8	22.2	SM
WB3	14	0	93.0	7.0	SP-SM
WB4	13-15	0	92.9	7.1	SP-SM
WB5	8-10	0	92.1	7.9	SP-SM
WB6	13-15	0 .	96.3	3.7	SP
WB7	13-15	0	96.8	3.2	SP
WB8	14	0	91.9	8.1	SP-SM
WB9	13-15	0	94.7	5.3	SP-SM
WB10	13-15	0	93.8	6.2	SP-SM
WB11	13-15	0	98.6	1.4	SP
WB12	10	0	22.2	77.8	СН
WB13	13-15	0	45.5	54.5	CL
WB14	8-10	0	94.7	5.3	SP-SM
WB15	13-15	0	96.6	3.4	SP
WB16	5.3-7.3	0	89.5	10.5	SP-SM
WB17	15	0	93.7	6.3	SP-SM
WB18	15	0	85.0	15.0	SM
WB19	13-15	0	92.4	7.6	SP-SM
WB20	8-10	0	95.9	4.1	SP
WB21	15	0	4.8	95.2	СН
WB22	14	0	91.1	8.9	SP-SM
WB23	8-10	0	95.9	4.1	SP
WB24	8-10	0	84.6	15.4	SM

TABLE 7 (Continued) DAACG AREA GRAIN SIZE ANALYSIS

TABLE 7 DAACG AREA GRAIN SIZE ANALYSIS								
		Grain	Size Distributi	on (%)				
Location	Depth (ft, bgs)	Gravel	Sand	Silt/Clay	USCS			
WB25	13-15	0	72.3	27.7	SM			
WB26	3.3-5.3	0	96.3	3.7	SP			
WB27	13-15	0	96.1	3.9	SP			
WB28	18-20	0	83.8	16.2	SM			
WB29	8-10	0	97.8	2.2	SP			
WB30	13-15	0	97.7	2.3	SP			
WB31	8-10	0	89.4	10.6	SP-SM			
WB32	13-15	0	98.7	1.3	SP			

Note: WB (well boring) refers to monitoring well location (e.g. WB31 is synonymous with MW31)

APPENDIX A PASSIVE SOIL GAS SURVEY DATA

DESCRIPTION OF PASSIVE SOIL VAPOR MODULES AND MODULE INSTALLATION AND RETRIEVAL PROCESSES

Each soil vapor module consists of three separate GORE-SORBER® Passive Sorbent Collection Devices (sorbers). A sorber is 40 millimeters (mm) long, with a 3 mm inside diameter (ID), and contains 40 milligrams (mg) of a suitable granular adsorbent material. The three sorbers are sheathed in the bottom of a 4-foot length of vapor-permeable insertion and retrieval cord. Both the retrieval cord and sorbent container are constructed solely of inert, hydrophobic, microporous GORE-TEX® expanded polytetrafluoroethylene.

The hydrophobic nature of the material means that liquid water will be excluded yet they do not retard vapor transfer, thus allowing VOC and SVOC vapors to freely penetrate the module and collect on the adsorbent material. This ability to protect the sorbent media from contact with ground and soil pore water without retarding soil vapor adsorption facilitates the use of the modules in saturated and very low permeability, poorly drained soils.

Installation of the modules was performed by utilizing a slam bar and an electric rotary hammer-drill to create a 3/4-inch-diameter pilot hole for the deployment of the modules to an average depth of 3 to 5 feet below grade. Modules were inserted into the completed boreholes using a stainless steel insertion rod after the pilot hole was completed. The top of each cord was fastened to a cork, which was tamped flush with the ground surface to assist in retrieval of the module, and to seal the annulus of the boring.

The modules were left in place for the recommended 3-week screening period. Module retrieval required field personnel to remove the cork, grasp the retrieval cord and manually pull the module from each location. Corks were separated from the module and discarded. The exposed modules were resealed in their respective designated shipping vials and placed immediately on ice in coolers, along with trip blanks and water temperature control blanks (provided by GORE). Coolers were returned along with the chain-of-custody (COC) form to GORE's laboratory in Elkton, Maryland via overnight carrier. The results of the Screening Survey are summarized in a brief report which includes the chain of custody, laboratory analytical data summary tables, and color contour maps. Excerpts from Gore's report and the BTEX contour map are provided in this Appendix.

W. L. GORE & ASSOCIATES, INC.

101 LEWISVILLE ROAD • P.O. BOX 1100 • ELKTON, MARYLAND 21922-1100 PHONE: 410/392-3300 FAX: 410/996-3325 • TELEX 467637 GORE FB ELKT ENVIRONMENTAL PRODUCTS GROUP

GORE-SORBERSM Screening Survey Final Report

Stormwater Drainage System, Hunter Army Airfield Savannah, GA

February 12, 1996

Prepared For: Metcalf & Eddy, Inc. 1201 Peachtree Street, NE 400 Colony Square, Suite 1101 Atlanta, GA 30361

W.L. Gore & Associates, Inc.

Written/Submitted by

Jay W. Hodny, M.S.

Associate

W.L. Gore & Associates, Inc. Reviewed/Approved by

Mark J. Wrigley, P.G.
Product Specialist

I:\PROJECTS\METEDDY\HUNT_AAF.GA\960212R.DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

FORM 11R.2 Rev 10/11/95

GORE-SORBERsm Screening Survey Final Report

REPORT DATE: February 12, 1996

AUTHOR: JWH

SITE INFORMATION

Site Reference: Stormwater Drainage System, Hunter Army Airfield, Savannah, GA

Customer Purchase Order Number: 145694

Gore Production Order Number: 066625

Gore Site Code: LO

FIELD PROCEDURES

Modules shipped: 735

Installation Date(s): December 11, 12, 13, 18, 19, & 20 1995

Modules Installed: 699

Field work performed by: G. Rowell, K. Shimkus (Metcalf & Eddy, Inc.)

Retrieval date(s): January 3, 9, & 10, 1996

Modules Retrieved: 698

Modules Lost in Field: 1

Exposure Time: 18 to 23 [days]

Trip Blanks Returned: 36

Unused Modules Returned: 0

Received by at Gore: CJF, TS

Chain of Custody/Cooler	Date/Time Received at Gore	Water Temperature Control Blank temperature - °C
066625B	January 4, 1996/no time recorded	2.5
066625A	January 5, 1996/1:00pm	4.3
066625D	January 5, 1996/2:00pm	3.6*
066625F	January 5, 1996/12:10pm	3.0*
066625E	January 5, 1996/3:00pm	7.4**
0666251	January 10, 1996/1:45pm	3.1*
066625C	January 11, 1996/2:00pm	3.6*
066625J	January 11, 1996/2:25pm	3.9
066625K	January 11, 1996/2:50pm	2.8
066625H	January 11, 1996/2:40pm	2.7
066625G	January 11, 1996/3:20pm	3.8

^{* -} No water control blank was returned in the cooler. Cooler temperature is measured on the ambient air within the cooler.

Chain of Custody Form attached: √

Chain of Custody discrepancies: See individual COC sheets.

Comments: None.

^{** -} Temperature of the water control blank exceeded the generally accepted criteria for preservation of environmental samples, 4.0 ± 2.0 °C.

GORE-SORBERsm Screening Survey Final Report

ANALYTICAL PROCEDURES

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded thirty (30) days from the date of this report.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection

Quality Assurance Level: 1 (ANA-1)

Instrument ID: # 1 & 2 Chemist: JW/WW Data Subdirectory: 066625

Compounds/mixtures requested: Gore GS3; Expanded VOCs and SVOCs target list (A5),

plus tentative fluids identification on unresolved peak envelopes (UPEs).

Deviations from Standard Method: BFB tuning criteria was based on 2.5 µg, instead 5.0 µg

for the analysis dated 1-29-96 to 1-31-96.

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 4).

DATA TABULATION

CONTOUR MAPS ENCLOSED: Six (6) B-size color contour maps LIST OF MAPS ENCLOSED:

- Combined BTEX Masses (BTEX)
- Undecane, Pentadecane, & Tridecane (C11, C15, & C13)
- Naphthalene, 2-Methylnaphthalene, Acenaphthalene, Acenaphthene, & Fluorene (5 PAHs)
- 1,2,4-Trimethylbenzene (1,2,4-TMB)
- Octane
- Unknown C8 Alkane

Compound Name	Low Reporting Limit [µg]	Low Map (gray) Limit [µg]	Highest Detect Level [µg]	Upper Map (purple) Limit [µg]
BTEX	0.01	0.01	360.10	360.10
C11, C15, & C13	0.01	0.01	73.40	73.40
5 PAHs	0.01	0.01	84.31	84.31
1,2,4-TMB	0.01	0.02	34.20	34.20
Octane	0.01	0.02	11.76	11.76
Unknown C8	0.01	0.01*	115.92	115.92
Alkane				

^{* -} No method detection limit (MDL) available.

GORE-SORBERsm Screening Survey Final Report

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore, as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

Comments:

- During the analysis of several modules (see the data table in Appendix A), the masses of hydrocarbons eluting from the instrumentation caused an instrument detector overload (under maximum dilution conditions). As a result, ethylbenzene and m/p-xylene overlapped in the chromatogram and were reported as m/p-xylene, in some cases. Interference by non-target compounds prevented the quantification and reporting of 1,3,5-trimethylbenzene in some samples. In these situations, values reported in the data table were indicated with a ">" sign. This indicates that the microgram levels were at least this high. Quantification of these compounds is integrated up to a point of confidence in the chromatograms. For mapping purposes, those values reported with a ">" sign were set equal to that value. For example, with module #117433, m/p-xylene was reported as >106.35 μg. Thus, this level was set at 106.35 μg in the mapping data table.
- Modules exhibiting unresolved peak envelopes (UPEs) were tentatively identified by matching the UPE to fluids in Gore's fluids library. Metcalf & Eddy, Inc. were interested in tentative matches indicating fluids in the range of aviation fuel products, specifically aviation gasoline and other aviation fuel products.
 - The aviation gasoline standard in Gore's fluids library consists primarily of early eluting compounds with a relatively simple chromatographic peak pattern. Other aviation fuel products have chromatographic fingerprints which are more complex and cover a broader range of elution times. Due to the complexity of some of the chromatograms, computer matching was not very helpful. Therefore visual matching was performed using three general categories to classify the chromatographic signal: AVGAS (virtually all signal is consistent with Gore's aviation gasoline standard), AVGAS PLUS (The peak pattern was dominated by aviation gasoline signature peaks but evidence of other unknown products was present), and MIXTURE (these peak patterns were complex, typically indicating fuels in the range of JP4, JP8, Jet A, kerosene. However, early eluting fractions could not be differentiated as being aviation gasoline or light components of these heavier fuels). The results are summarized in Appendix A, Tentative Fluid Matching Results.
- In order to identify potential hydrocarbon distributions which could be associated with
 different fuel types, the primary peak in aviation gasoline (which may also be present in
 other fuel types) was tentatively identified as a branched C8 alkane and was mapped. Other
 analytes that were mapped included normal octane and C11-C15 alkanes, neither of which
 were present in our aviation gasoline fluid standard. Comparison of the maps show several

GORE-SORBERsm Screening Survey Final Report

areas of impact are common on all maps. The unknown C8 alkane distribution also shows two linear features which are overlaid on the other pattern and may, or may not, be significant.

• Normally, the minimum (gray) contour level, for each mapped analyte or group of analytes, is set at the maximum blank level observed or the method detection limit (MDL), whichever is greater. The maximum contour level is set at the maximum value observed. At the request of Metcalf and Eddy, Inc., the gray level for each map was set at the MDL. The maximum and average blank levels observed were printed on the maps adjacent to the respective color scale bars. The MDL for the Unknown C8 alkane was not available.

GORE-SORBER is a registered trademark of W. L. Gore & Associates, Inc.

GORE-SORBERsm Screening Survey Final Report

KEY TO DATA TABLE Stormwater Drainage System, Hunter Army Airfield, Savannah, GA

UNITS

micrograms (per sorber), reported for compounds for which external standards μg

were analyzed.

ANALYTES

BTEX combined masses of benzene, toluene, ethylbenzene and total xylenes

(Gasoline Range Aromatics)

combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) C11,C13&C15

(Diesel Range Alkanes)

MTBE methyl t-butyl ether trans-1.2-dichloroethene t12DCE 1,1-dichloroethane 11DCA cis-1.2-dichloroethene c12DCE

CHC13 chloroform

111TCA 1.1.1-trichloroethane 12DCA 1,2-dichloroethane

BENZ benzene

carbon tetrachloride CC14 trichloroethene TCE toluene TOL

OCT octane PCE

tetrachloroethene CIBENZ chlorobenzene **EtBENZ** ethylbenzene mpXYL m-, p-xylene o-xylene oXYL PHENOL phenol

135TMB 1,3,5-trimethylbenzene **124TMB** 1,2,4-trimethylbenzene

1,2,4- & 1,3,5-trimethylbenzenes **TMBs**

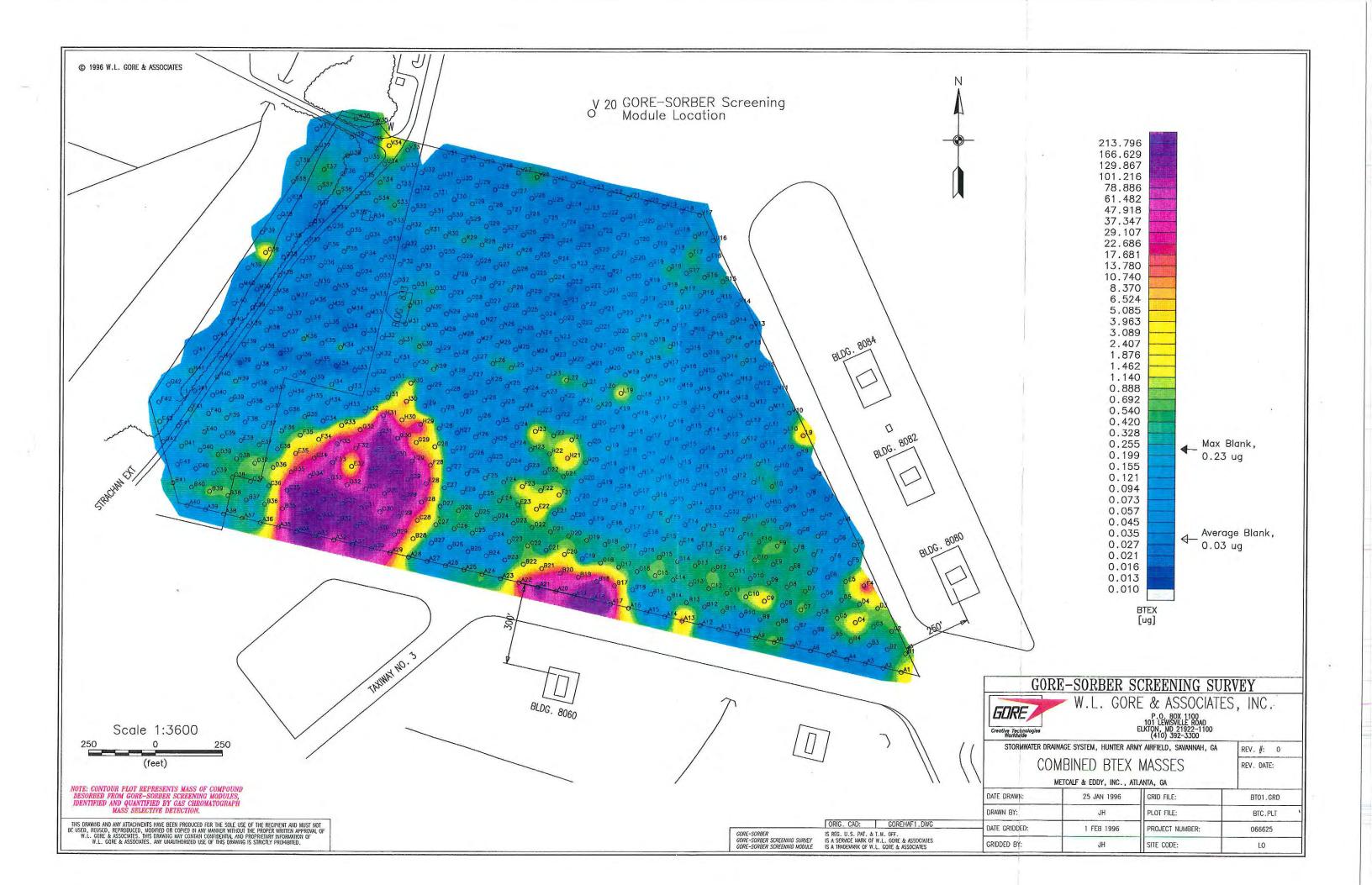
14DCB 1,4-dichlorobenzene 2MePHENOL 2-methyl phenol undecane C₁₁/UNDEC

NAPH naphthalene

NAPH&2MN naphthalene & 2-methyl naphthalene

C13/TRIDEC tridecane

2-methyl naphthalene 2MeNAPH


C15/PENTADEC pentadecane

5 PAHs naphthalene, 2-methylnaphthalene, acenaphthene, acenaphthalene, and fluorene

BLANKS

TB n unexposed trip blanks, which traveled with the exposed modules

BLK n method blank, retained at Gore

APPENDIX B FIELD EQUIPMENT CALIBRATION SHEETS

0 10 10 10	MOLLOW	ENI CALIB	HATION		
DATE	OVA-FID	OVA-FID	CGT COND PEN	CGI	HNu-PID
MODEL NUMBER	OVA 128	OVADE	MX251	MX251	
SERIAL / ID NUMBER	A42171	A41388	1267	1909	
CALIBRATION STANDARD	* ************************************	,			
MANUFACTURER	FagleInstr	Eagle Instr.	HAZCO	HAZCO	
IDENTIFICATION (LOT #)	. 029194	024194	43432	43432	
CONCENTRATION		95,5pm		50.0%	
READING/ADJUSTMENT	90 ppm	89 ppm	OX	50%/20.9	
ZERO GAS:	ambient	ambient	1	1. 4	
MANUFACTURER	andien	ambient	ambient	ambient	
IDENTIFICATION (LOT #)				+	
READING/ADJUSTMENT		<u>O</u> .		0	
BATTERY CHECK:	V	/			
IME CALIBRATED:	0751	0752	0811	0811	
CALIBRATED BY:	PLAY	DRIV	DXH	DIH	
CALIBRATION CHECK:					_
TIME:	1708	1500	1709	1702	1
BY:	Dyal	DH	DIH	DIH	
STATUS:	101	92	37	53	-
TIME:	-				
BY:					
STATUS:				-	

OVA-FED:

Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro

PH PEN:

Electronic pH tester manufactured by Fisher Brand

COND PEN:

Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand.

CGI:

Combustible Gas Indicator manufactured by Industrial Scientific Devices.

HNu-PID:

Photo - lonization Detector manufactured by HNu.

		INSTRUM	ENT CALIB	HAIION		
DATE. 2/28	196		OVA PED	CGI		
INSTRUMENT (1)		OVA-FID	PHPEN	-COND PEN	CGI	HNu-PIO
MODEL NUM	IBER	OV4128	OVAR8	M X 251	MX 251	
SERIAL / ID I	NUMBER	A42171	A41388	1267	1909	
CALIBRATION STAND)ARD					
MANUFACTU	JRER	Eagle Inst	Fagle Inst	- <u>HAZCO</u>	HAZCO	N
IDENTIFICAT	FION (LOT #)		029194		43432	-
CONCENTRA	ATION	95.50pm	95.5pp m	50%	50%	
READING/AD	DUSTMENT	100	91	45%/20.9	52%/20.9	
ZERO GAS:					4	
MANUFACTU	JRER	ambient	ambient	am bient	ambient	
IDENTIFICAT	FION (LOT #)					
READING/AD	JUSTMENT	0	0	0	0	
BATTERY CHECK:		W low	/	_/		
TIME CALIBRATED:		0741	0741	0745	0745	
CALIBRATED BY:		D1H	D1 H	82H	D1#	
CALIBRATION CHECK	K:					-
TIME:		l_	1643	1712	1703	
BY:		71º	DH	WPV	DA	
STATUS:			92	46	60	
TIME:						
BY:		9				
STATUS:					-	_
1. OVA-FED:	Organic Vapor	Analyzer, Flame I	onization Detector	manufactured by f	oxbore	:
pH PEN:	Electronic pH	tester manufacture	d by Fisher Brand			
COND PEN:		d solids tester with by Fisher Brand.	automatic temper	rature correction.		

Combustible Gas Indicator manufactured by Industrial Scientific Devices.

Photo - lonization Detector manufactured by HNu.

CGI:

HNu-PID:

DATE. 2/29/96	MONIEM	ENI CALIE	MATION		
INSTRUMENT (1)	OVA-FID	OVA PID	CGI	cgi	HNu-PID
MODEL NUMBER	128	128	MX 251	MX251	
SERIAL / ID NUMBER	A42171	A41388	1267	1909	
CALIBRATION STANDARD		71.30		-	
MANUFACTURER	EagleInstr	EngleInstr	HAZCO	HAZCO	
IDENTIFICATION (LOT #)	029194	029194	and the second second		
CONCENTRATION		95,5ppm		50%	
READING/ADJUSTMENT	94 ppm	92ppm	50%/20×9	50%/ 20.9	
ZERO GAS:				4+	
MANUFACTURER	ambient	ambient	ambient	ambien	
IDENTIFICATION (LOT #)	_				
READING/ADJUSTMENT	_0_	0	0	0	
BATTERY CHECK:	/	/	~		
TIME CALIBRATED:	0724	0724	0730	0730	
CALIBRATED BY:	D2#	92H	BC	BC	
CALIBRATION CHECK:		1736			
TIME:	÷1036	€538 AC	1730	1736	
BY:	DH	Bc	BC	BC	
STATUS:	LO BATT	93 ppm	48%	48 %	-
TIME:			-	رخص	
BY:	2				
STATUS:					

OVA-FED:

Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro

PH PEN:

Electronic pH tester manufactured by Fisher Brand

COND PEN:

Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand.

CGI:

Combustible Gas Indicator manufactured by Industrial Scientific Devices.

HNu-PID:

Photo - lonization Detector manufactured by HNu.

	0/11	1	MOLITORI	ENI CALID	MATION			
DATE	i. <u>3/4/</u>	96		ALL DEO	PIT			1
INSTR	RUMENT (1)		OVA-FID	OVA PLD	COL	CGI	HNu-PID	
	MODEL NUMB	ER	128	128	MX251	MX251		
	SERIAL / ID NU	JMBER	A 42171	A41388	1267	1909		
CALIB	RATION STANDA	RD						
	MANUFACTUR	ER	EagleInstr	Eagle Instr	HAZCO	HAZCO		
	IDENTIFICATE	ON (LOT #)	029194					
	CONCENTRAT	TON	95,5ppm	95 5ppm	50%	50%		
	READING/ADJ	USTMENT	96 ppm	96 ppm	50%/209	50%/20gax		
ZERO	GAS:							
	MANUFACTUR	ER	ambient	ambiant	- ambiont	- ambient		
	IDENTIFICATE	ON (LOT #)						
	READING/ADJ	USTMENT	_0_	0	0	0_		
BATTE	ERY CHECK:			/ -				
TIME (CALIBRATED:		0740	0740	07.35	0735		(
CALIB	RATED BY:		DH	<u>DH</u>	BC .	BC_		
CALIBI	RATION CHECK:			•				
	TIME:			1545	1636	1630		
	BY:		-de	DH	_DH_	DH		
	STATUS:		V1530	90	44	50		
	TIME:							
	BY:				-			
	STATUS:							
1.	OVA-FED:	Organic V	/apor Analyzer, Flame I	onization Detector	manufactured by F	oxboro		
	pH PEN:	Electronic	pH tester manufacture	d by Fisher Brand				
	COND PEN:	Total diss	solved solids tester with ured by Fisher Brand.	automatic temper	ature correction.			
	CGI:		ble Gas Indicator manu	ufactured by Indus	trial Scientific Devic	:08.		y
	HNu-PID:	Photo - lo	onization Detector manu	factured by HNu.				1

0//01	INSTRU	INSTRUMENT CALIBRATION						
DATE. 3/5/96	OVA-FID	OVA	CGI CONDPEN	CGI	HNu-PIO			
INSTRUMENT (1)		_pH-PEN		افکا	HNU-PIO			
MODEL NUMBER	128	128	MX 251	MX 251	احتنا			
SERIAL / ID NUMBER	A 42171	A 41388	1267	1907	-			
CALIBRATION STANDARD	111	i a	11	3.2				
MANUFACTURER	. Engle In			9200				
IDENTIFICATION (LOT				32	-			
CONCENTRATION	95.5 p	1000	50,					
READING/ADJUSTMEN	IT <u>90</u>	90	50%/20.9	50%/20.9	-			
ZERO GAS:								
MANUFACTURER	Ambient	<u> </u>	11					
IDENTIFICATION (LOT	#) <u> </u>							
READING/ADJUSTMEN	NT	0		6				
BATTERY CHECK:	<u>UK</u>	OK	01	<u>OK</u>				
TIME CALIBRATED:	0720	0720	0722	0722				
CALIBRATED BY:	_DH	DH	DH	DH	_			
CALIBRATION CHECK:								
TIME:	1505	1500	1500	500	-			
BY:	DA	014	DIT	be	· -			
STATUS:	96	90	46	50	-			
TIME:	-	-						
BY:								
STATUS:		-			-			
1. OVA-FED: Organ	лю Vapor Analyzer, Flam	ne Ionization Detec	ctor manufactured by	Foxboro				
pH PEN: Elect	ronic pH tester manufact	ured by Fisher Bra	ind					

Electronic pH tester manufactured by Fisher Brand

COND PEN:

Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand.

CGI:

Combustible Gas Indicator manufactured by Industrial Scientific Devices.

HNu-PID:

Photo - lonization Detector manufactured by HNu.

	INSTRUM	IENI CALIB	MATION			
DATE: $4/22/96$ INSTRUMENT (1)	OVA-FID	OVA-FID	COND PEN	CGI	CGI	(
MODEL NUMBER	0VA128	OVA 128		M X251	MX251	
SERIAL / ID NUMBER	A 42171	A 4/858		9 5 6 3 4 05 - 0 2 0	9305079-0)31
CALIBRATION STANDARD						
MANUFACTURER	aneven Envir, In	str american Envi		HAZCO	HAZCO	
IDENTIFICATION (LOT #)	45273	45273		43432	43432	
CONCENTRATION	97.700	m 97.7 ppm		50% LEL 102	50%LFL/0	12
READING/ADJUSTMENT		105 ppm			496/20,	9
ZERO GAS:	am bient	ambient				
MANUFACTURER		<u></u>		+	\	
IDENTIFICATION (LOT #)			-		_	
READING/ADJUSTMENT	0-	0				
BATTERY CHECK:	/	/				
TIME CALIBRATED:	0900	0905		6928	0925	(
CALIBRATED BY:	214	D1 #	-	GA	DLH	
CALIBRATION CHECK:						
TIME:	16:15	16:20	-	16:25	16:27	
BY:	DH-	D#		JH T		
STATUS:	90	100		47%	46	
TIME:	1				·	
BY:		-		-	-	
STATUS:					وكنا	

Electronic pH tester manufactured by Fisher Brand

Photo - Ionization Detector manufactured by HNu.

Manufactured by Fisher Brand.

Total dissolved solids tester with automatic temperature correction.

Combustible Gas Indicator manufactured by Industrial Scientific Devices.

pH PEN:

CGI:

HNu-PID:

COND PEN:

DATE	: 4-23-94	,					
	RUMENT (1)		OVA-FID	OVA phi PEN	COND PEN	CGI	CGI HNu-PID
	MODEL NUMBE	₽.	DUA 128	128		MX	251
	SERIAL / ID NU		A 42/71	A 41858		9503405	9305079-1
CALIE	BRATION STANDA	RD				000	
	MANUFACTURE	ER	_ Amer	Envir. Inst.	r -1	HAZ	
	IDENTIFICATIO	ON (LOT #)	4	5273		43	432
	CONCENTRATI	ION	9	7.7pm	·	50/CEL	Pertane
	READING/ADJU	USTMENT	93 ppm	100 ppu	1. 2 	50%	50%
ZERO	GAS:						
	MANUFACTURE	ER	Am	b, ent			
	IDENTIFICATIO	ON (LOT#)					<u></u>
	READING/ADJI	USTMENT			1		
BATT	ERY CHECK:				-		
TIME	CALIBRATED:		0715	0713	-	0720	0720
CALIE	BRATED BY:		68	<u>6R</u>	-	<u>6</u> R	GR_
CALIE	BRATION CHECK:	-0					
	TIME:		1710	171.0			-
	BY:		DH	_DX	08	_D#	D#
	STATUS:		82	105			1
	TIME:	- 0	وتتبيغ	 -			·
	BY:						
	STATUS:		-		-		·
1.	OVA-FID:	Organic Vap	or Analyzer, Flam	e Ionization Detecto	or manufactured by	Foxboro	
	pH PEN:	Electronic pl	H tester manufactu	red by Fisher Bran	nd		
	COND PEN:	Total dissolv Manufacture	ed solids tester w d by Fisher Brand	ith automatic temp	erature correction.		
	CGI:	Combustible	Gas Indicator ma	nufactured by Indu	ustrial Scientific De	vices.	

Photo - Ionization Detector manufactured by HNu.

HNu-PID:

DATE	: 4-24-96						
	UMENT (1)		OVA-FID	DVA PHPEN	COND PEN	CGI	CGI-
			12	.8		MX	251
	MODEL NUMBER			A44 858		9503405-	9305079-
AI IRI	RATION STANDAR					oro	0-4
, LID	MANUFACTURE		Ame	r. Envir. Inst			200
	IDENTIFICATION		45	273		434	152
	CONCENTRATIO		97	1.7 ppm		50%	ea Pentan
	READING/ADJU		98 ppm	100 ppm		50%	50%
ERO	GAS:			7 * 7			
	MANUFACTURE	R	Am	bient		1	1-
	IDENTIFICATIO	N (LOT#)				-	
	READING/ADJU	JSTMENT		_6_	-		\
BATTE	ERY CHECK:		DK	OK		_OK_	OK
IME (CALIBRATED:		0730	0730	-	0720	0720
CALIB	RATED BY:		CR	GR		GR	68
CALIE	BRATION CHECK:						0
	TIME:		1650	1650		1645	1645
	BY:		GA_	- Col		_GR_	- CR
	STATUS:	1	Battery Deac	110 ppm		5290	58%
	TIME:		\			1	1
	BY:						
	STATUS:		\rightarrow				\
1.	OVA-FID:	Organic Vapor	Analyzer, Flame	e Ionization Detec	tor manufactured b	y Foxboro	\
	pH PEN:			red by Fisher Bra			
	COND PEN:	Total dissolved		ith automatic temp	perature correction		
	CGI:				lustrial Scientific D	evices.	
	HNu-PID:	Photo - Ionizati	on Detector ma	nufactured by HN	u.		

DATE	E: 4-25	79					
	RUMENT (1)		OVA-FID	DVA pH PEN	COND PEN	CGI	CGI H Nu PID
	MODEL NUMBI	ER	128		-	MX	251
	SERIAL / ID NU		A 42171	A 41858		9503405-	9305079-
CALIE	BRATION STANDA	ARD				020	034
	MANUFACTUR	RER	_ Amer I	Env. Inst.		HA	200
	IDENTIFICATION	ON (LOT#)		273	-	43	432
	CONCENTRAT	TION	97	Jbbm		50% L	a Pentane
	READING/ADJ	USTMENT	115 ppm	100 gpm		50%	_50%_
ZERO	GAS:			/ 4			
	MANUFACTUR	RER	- Am 5	nent -			<u> </u>
	IDENTIFICATION	ON (LOT#)					\
	READING/ADJ	IUSTMENT					
BATT	ERY CHECK:			<u>ok</u>			OK
TIME	CALIBRATED:	ŧ			(
CALIE	BRATED BY:		Col	GN		GR	GR
CALIE	BRATION CHECK:						
	TIME:		1710	1710	<u> </u>	1705	1705
	BY:		Col	- Od		GA	GR
	STATUS:		115 PPM	100 ppu		47070	low Fat
	TIME:						
	BY:						-
	STATUS:		, -				
1.	OVA-FID:	Organic Vapor A	nalyzer, Flame	Ionization Detecto	or manufactured b	y Foxboro	
	pH PEN:	Electronic pH te	ster manufactur	ed by Fisher Brand	d		
	COND PEN:	Total dissolved s Manufactured by	solids tester wit Fisher Brand.	h automatic tempe	erature correction		
	CGI:	Combustible Ga	s Indicator mar	nufactured by Indu	strial Scientific D	evices.	

Photo - Ionization Detector manufactured by HNu.

HNu-PID:

DATE	E: 4-29-9	6	9,000,000					
INSTRUMENT (1) MODEL NUMBER ,			OVA-FID	pH PEN	COND PEN	CGI	CGT HNu-PID	
			128			MX251		
	SERIAL / ID NU		A 42/71	A41858		9503405-	9305079-	
CALIBRATION STANDARD !		RD !				020		
	MANUFACTURER :		Amer Env. Inst			HAZCO		
IDENTIFICATION (LOT#)			45-273			43432 50% LEZ Pentane		
	CONCENTRAT	TON!	9:	7.7 pm		SOB LE	1 tentane	
	READING/ADJ	USTMENT	-		-			
ZERC	GAS:			/ .				
	MANUFACTUR	ER:	_ Am	bient			\	
	IDENTIFICATION	ON (LOT#)			-		\	
	READING/ADJ	USTIMENT	0	- 100 ppm		50	50% LE	
BATT	ERY CHECK:			OK	نيسة		OK.	
TIME CALIBRATED:			-	0720 GAL		-	0715	
CALIE	BRATED BY:		-	0720	-	-	GR	
CALIE	BRATION CHECK:							
	TIME:			1745	-	-	61740	
	BY:			CAL			_GR_	
	STATUS:			-OK	-	\ 	OK_	
	TIME:					-		
	BY:					-		
	STATUS:		-			-		
1.	OVA-FID:	Organic Vapo	or Analyzer, Flam	e Ionization Detecto	or manufactured b	y Foxboro		
	pH PEN:	Electronic ph	I tester manufactu	red by Fisher Bran	d			
	COND PEN:	Total dissolve Manufacture	ed solids tester w d by Fisher Brand	ith automatic tempe	erature correction			
	CGI:	Combustible	Gas Indicator ma	nufactured by Indu	strial Scientific D	evices.		
	HNu-PID:	Photo - Ioniz	ation Detector ma	nufactured by HNu.				

DATE: 4-30-94					
INSTRUMENT (1)	OVA-FID	pH PEN	HYDIAC	lydac.	HNu-PID
MODEL NUMBER	128		910	910	
SERIAL / ID NUMBER	A41858		9107B	9502	
CALIBRATION STANDARD MANUFACTURER	AMEX ENU. INST. 45273	-	Fisher	Fisher	
IDENTIFICATION (LOT#) CONCENTRATION READING/ADJUSTMENT	97.7 ppm		105.4/4.00/10.00	105.4/4.00/10.00	
ZERO GAS:					
MANUFACTURER	Andient		_	\rightarrow	
IDENTIFICATION (LOT#)	_				
READING/ADJUSTMENT					-
BATTERY CHECK:	OK		OK_	OK_	
TIME CALIBRATED:	0740		0720	0730	-
CALIBRATED BY:	al		_ct	Ch	-
CALIBRATION CHECK:	,			Transa.	
TIME:	1740	-	1730	1730	-
BY:	- Orl	17	DIA	6R_	
STATUS:	100 ppin		10,18, Cond	9.53 Cmc	+
TIME:	-				
BY:	-				
STATUS:					

OVA-FID:

Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro

pH PEN:

Electronic pH tester manufactured by Fisher Brand

COND PEN:

Total dissolved solids tester with automatic temperature correction.

Manufactured by Fisher Brand.

CGI:

Combustible Gas Indicator manufactured by Industrial Scientific Devices.

HNu-PID:

Photo - Ionization Detector manufactured by HNu.

INSTRUMENT CALIBRATION DATE: _ 5-1-96 INSTRUMENT (1) Hydae **OVA-FID** pH PEN CGI HNu-PID 128 MODEL NUMBER SERIAL / ID NUMBER 9502 CALIBRATION STANDARD Amer Env. Inst MANUFACTURER **IDENTIFICATION (LOT#)** CONCENTRATION READING/ADJUSTMENT 98 ZERO GAS: MANUFACTURER **IDENTIFICATION (LOT#)** READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: 0740 CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: 1. OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.

Photo - Ionization Detector manufactured by HNu.

HNu-PID:

DATE	5-7-94						
	UMENT (1)		OVA-FID	pH PEN	Hydae COND PEN	Hydae -OGI	HNu-PID
	MODEL NUMBE	ER			910	910	
	SERIAL / ID NU	IMBER			9502	91073	, <u></u>
CALIB	RATION STANDA	RD					
	MANUFACTUR	ER			F:shev	Fisher	-
	IDENTIFICATIO	ON (LOT#)					
	CONCENTRAT	ION		1	105.4/4.00/10.00	105:4/4.00/10.00	
	READING/ADJ	USTMENT			105.4/4.00/9.62	105.4/4.00/10.00	
ZERO	GAS:						
	MANUFACTUR	ER	-	-	-\	1	-
	IDENTIFICATIO	ON (LOT#)		-			
	READING/ADJ	USTMENT	-	-) —	_	-
BATTI	ERY CHECK:		·		_ OK	OK	-
TIME	CALIBRATED:			-	0730	0730	·
CALIB	RATED BY:			1	<u>Crl</u>	<u>Al</u>	-
CALIE	RATION CHECK:						
	TIME:			100	1735	1702	
	BY:				GR	DH_	
	STATUS:				97.7/405/960	92.8 /4.44/10	80.08
	TIME:						-
	BY:			-			
	STATUS:		السي			 -	
1.	OVA-FID:	Organic Vapor	Analyzer, Flame	e Ionization Dete	ctor manufactured by	Foxboro	
	pH PEN:	Electronic pH	ester manufactu	red by Fisher Br	and		
	COND PEN:	Total dissolved Manufactured	d solids tester wi by Fisher Brand	ith automatic tem	perature correction.		
	CGI:	Combustible C	Sas Indicator ma	nufactured by In	dustrial Scientific Dev	ices.	
	HNu-PID:	Photo - Ionizat	ion Detector ma	nufactured by HI	Nu.		

DATE	=: 5-8-96						
	RUMENT (1)		OVA-FID	pH PEN	Hydac COND PEN	Hydac	HNu-PID
	MODEL NUMBE	ER:	-		910	910	
	SERIAL / ID NU	IMBER			9502	9107B	
CALIE	BRATION STANDA	RD					
	MANUFACTURE	ER			F: sher	Fisher	
	IDENTIFICATIO	ON (LOT#)					
	CONCENTRATI	ION		2	105.4/4.00/10.00	105.4/4.00/10.00	
	READING/ADJU	USTMENT			105.4/4.00/ 10.00	105.4/4.03/10.02	
ZERO	GAS:						
	MANUFACTURE	ER	<u> </u>		1	1	
	IDENTIFICATIO	ON (LOT#)) , 0			
	READING/ADJU	USTMENT					
BATT	ERY CHECK:				_OK	OK	
TIME	CALIBRATED:				0715	0650	
CALIE	BRATED BY:		-	-	- Col	DH_	-
CALIE	BRATION CHECK:						
	TIME:			1	1755	1140	
	BY:				_DIt_	DH_	
	STATUS:			-	105.8/4.12/10,21	04.8/4.08 /287	
	TIME:	÷					-
	BY:						-
	STATUS:			-	-	_	
1.	OVA-FID:	Organic Vapor	Analyzer, Flame	e Ionization Dete	ector manufactured by	Foxboro	
	pH PEN:			red by Fisher Br			
	COND PEN:	Total dissolved		th automatic ten	nperature correction.		
	CGI:	Combustible G	as Indicator ma	nufactured by In	ndustrial Scientific Dev	ices.	
	HNu-PID:	Photo - Ionizati	on Detector ma	nufactured by HI	Nu.		

	- 9.0						
DATE	5-10-9	6			Hydae	4.1.	
INSTR	RUMENT (1)		OVA-FID	pH PEN	-COND PEN	- Hydac	HNu-PID
	MODEL NUMB	ER			9.10	910	
	SERIAL / ID NU	JMBER			9502	91078	
CALIB	RATION STANDA	RD					
	MANUFACTUR	ER			Fisher	Fisher	
	IDENTIFICATION	ON (LOT#)		,		-	
	CONCENTRAT	TON		-	105.4/4.00/9.00	105.4/4.00/7.00	
	READING/ADJ	USTMENT		-	105.4/4.01/7.11	105.4/4.00 /7.00	
ZERO	GAS:					4	
	MANUFACTUR	ER	1,===0		\	-\-	
	IDENTIFICATION	ON (LOT#)		1		_	-
	READING/ADJ	USTMENT	-				
BATTE	ERY CHECK:				<u> </u>	OK'	
TIME	CALIBRATED:		(4		0655	0645	-
CALIB	RATED BY:				<u>A</u>	_DH_	
CALIB	RATION CHECK:						
	TIME:				1740	1730	
	BY:				-GK	ZH	
	STATUS:				105.2/4.92/7.20	101.3/3.97/6.14	
	TIME:		والتعقيا				
	BY:						
	STATUS:		()	-	-		-
1.	OVA-FID:	Organic Vapor	r Analyzer, Flame	lonization Detec	tor manufactured by	Foxboro	
	pH PEN:	Electronic pH	tester manufactu	red by Fisher Bra	ind		
Ť	COND PEN:	Total dissolve Manufactured	d solids tester wi by Fisher Brand.	th automatic tem	perature correction.		
	CGI:	Combustible C	Gas Indicator ma	nufactured by Inc	lustrial Scientific De	vices.	
	HNu-PID:	Photo - Ioniza	tion Detector ma	nufactured by HN	u.		

DATE	5-10-96						
	1			TALLET	+14dae	Hydac	HNu-PID
INSTF	RUMENT (1)		OVA-FID	pH PEN	COND PEN	الماما	HNU-PID
	MODEL NUMBE	R			910	910	_
	SERIAL / ID NUI	MBER			9502	9107B	
CALIE	BRATION STANDAR	RD					
	MANUFACTURE	R	-		Fisher	Fisher	
	IDENTIFICATIO	N (LOT#)					-
	CONCENTRATION	ON			105.4/1.00/4.00	-	
	READINGIADJU	STMENT	-		1054 / 7.00 /400	+	-
ZERC	GAS:						
	MANUFACTURE	:R			1	1	-
	IDENTIFICATIO	N (LOT#)					
	READING	ISTMENT		(_	-
BATT	ERY CHECK:						1
TIME	CALIBRATED:				0710	- fre we	
CALIE	BRATED BY:				DA	(10) out	li y.
CALIE	BRATION CHECK:						
	TIME:				1550	1010	
	BY:				ch	DH	
	STATUS:				105.2/4.10/4.02	105.4 7.02/4.	00
	TIME					1520	
	TIME:		-	-		PH	
	BY:					100.6/7.12/	4.23
	STATUS:					100,01	
1.	OVA-FID:	Organic Vapo	or Analyzer, Flame	e Ionization Dete	ector manufactured by	Foxboro	
	pH PEN:	Electronic pH	tester manufactu	red by Fisher Br	rand		
	COND PEN:	Total dissolve Manufactured	ed solids tester wi by Fisher Brand.	ith automatic ten	nperature correction.		
	CGI:	Combustible	Gas Indicator ma	nufactured by Ir	ndustrial Scientific Dev	vices.	
	HNu-PID:	Photo - Ioniza	ation Detector ma	nufactured by H	Nu.		

DATI	E: 5-21-94						
INSTE	RUMENT (1)		OVA-FID	Hydac PH PEN	COND PEN	CGI	HNu-PID
	MODEL NUMBE		128 A41858	9/0			
CALIE	SERIAL / ID NO BRATION STANDAL MANUFACTURE IDENTIFICATIO CONCENTRATE READING/ADJI	RD ER ON (LOT#) ON	4 - 1780 Amer. Env. INST. 45273 97.790m 9991m	[:shev 			
ZERC	MANUFACTURE IDENTIFICATIO	N (LOT#)	Amb: end	<u>\</u>			
	ERY CHECK: CALIBRATED:		0.K.	1350			
CALIE	BRATED BY:		Col	CR	-		-
CALIE	BRATION CHECK:						
	TIME: BY: STATUS:		1800 <u>A</u> 100 ppm	=			_
	TIME: BY: STATUS:			7 105.6/7.00/4.6 GR 1 1800		=	
1.	OVA-FID: pH PEN: COND PEN:	Electronic pH Total dissolve Manufactured	tester manufactur d solids tester wit by Fisher Brand,	Ionization Detector ed by Fisher Brand h automatic temper	ature correction.		
	CGI:	Combustible (Gas Indicator man	ufactured by Indus	trial Scientific Dev	rices.	3

Photo - Ionization Detector manufactured by HNu.

HNu-PID:

MODEL NUMBER	DATE:	5.22	96					
SERIAL / ID NUMBER SERIAL / ID NUMBER CALIBRATION STANDARD MANUFACTURER IDENTIFICATION (LOT #) CONCENTRATION READING/ADJUSTMENT ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CAL OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro ph PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.	INSTRU	JMENT (1)		OVA-FID	14 ydae -PHPEN		CGI	HNu-PID
CALIBRATION STANDARD MANUFACTURER IDENTIFICATION (LOT #) CONCENTRATION READING/ADJUSTMENT ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: Toganic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro ph PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		MODEL NUME	BER		910	910		
MANUFACTURER IDENTIFICATION (LOT #) CONCENTRATION READING/ADJUSTMENT ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME: BY: STATUS: TIME: BY: STATUS: I. OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro ph PEN: Electronic ph tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Industrial Scientific Devices.		SERIAL / ID N	UMBER		9308	9304		
IDENTIFICATION (LOT #) CONCENTRATION READING/ADJUSTMENT JOS. 1/4.0/7.00 105.4/4.0/7.00 READING/ADJUSTMENT JOS. 1/4.0/7.00 105.4/4.0/7.00 ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: STATUS: TIME: BY: STATUS: JOS. 1/5.58/7.01 JOS. 1/4.0/7.0 JOS. 4/4.0/7.0 JOS. 4/4	CALIBR	RATION STANDA	ARD					
CONCENTRATION READING/ADJUSTMENT READING/ADJUSTMENT ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: TIME: BY: STATUS: 1. OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		MANUFACTUR	RER		Fisher	Fisher		
ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CALIBRATION: TIME: BY: STATUS: TIME: BY: STATUS: TOganic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		IDENTIFICATI	ON (LOT#)		<u> </u>			
ZERO GAS: MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CALIBRATION: TIME: BY: STATUS: TIME: BY: STATUS: TOganic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		CONCENTRA	ΠΟN		105.4/4.00/7.00	105.4/4.0/7.2)	
MANUFACTURER IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CAL O'S.:\[\frac{15.58}{2.01} \] TIME: BY: STATUS: CAL O'S.:\[\frac{105.2}{2.58} \] TIME: BY: STATUS: CAL O'A-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		READING/AD.	USTMENT	·	105.4/4.01/7.00	105,4/3,99/2.0		3
IDENTIFICATION (LOT #) READING/ADJUSTMENT BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CAL OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.	ZERO G	BAS:						
BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CALIBRATION: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		MANUFACTUE	RER		_	1		
BATTERY CHECK: TIME CALIBRATED: CALIBRATED BY: DH GR CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CALIBRATION: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		IDENTIFICATION	ON (LOT#)					
TIME CALIBRATED: CALIBRATED BY: CALIBRATION CHECK: TIME: BY: STATUS: TIME: BY: STATUS: CALIBRATION: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		READING/ADJ	USTMENT					-
CALIBRATION CHECK: TIME: BY: CALIBRATION CHECK: TIME: BY: STATUS: CAL OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.	BATTER	RY CHECK:	ž		0	_/		
CALIBRATION CHECK: TIME: BY: CAL STATUS: TIME: BY: STATUS: CAL CAL CAL CAL CAL CAL CAL CA	TIME CA	ALIBRATED:		-	0730	1100		
TIME: BY: 105.2/5.58/7.01 105.2/1.00/7.01	CALIBR	ATED BY:			_DH_	GR	_	
BY: STATUS: CAC CAC CAC TIME: BY: STATUS: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.	CALIBRA	ATION CHECK:						
TIME: BY: STATUS: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		TIME:		4	1800			
TIME: BY: STATUS: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		BY:		13.5	105.2/3.58/2.01	105.2/4.00/7.01		
BY: STATUS: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		STATUS:		-	ch'	ch		
STATUS: OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		TIME:						
OVA-FID: Organic Vapor Analyzer, Flame Ionization Detector manufactured by Foxboro pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		BY:						1
pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.		STATUS:						-
pH PEN: Electronic pH tester manufactured by Fisher Brand COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.	1.	OVA-FID:	Organic Vapor	Analyzer Flam	e Ionization Detector r	manufactured by Fox	rhoro	
COND PEN: Total dissolved solids tester with automatic temperature correction. Manufactured by Fisher Brand. CGI: Combustible Gas Indicator manufactured by Industrial Scientific Devices.							7.	
			Total dissolved	solids tester w	ith automatic tempera	ture correction.		
HNu-PID: Photo - Ionization Detector manufactured by HNu.		CGI:	Combustible G	as Indicator ma	nufactured by Industr	ial Scientific Devices	3.	
		HNu-PID:	Photo - Ionizati	on Detector ma	nufactured by HNu.			

DATI	E: 5.23	-96					
INSTE	RUMENT (1)		OVA-FID	Hydac -PHPEN	COND PEN	CGI	HNu-PID
	MODEL NUMBI	ER		910			
	SERIAL / ID NU	JMBER		9308		بنيت	
CALIE	BRATION STANDA	RD					
	MANUFACTUR	ER		Fisher			
	IDENTIFICATION	ON (LOT#)		- 			
	CONCENTRAT	ON		1054/4.00/700			
	READING/ADJ	USTMENT		1054/4.00/7.01		-	-
ZERC	GAS:						
	MANUFACTUR	ER:					
	IDENTIFICATION	ON (LOT#)				-	
	READING/ADJ	USTMENT			-	$(\frac{1}{1+\epsilon^{-1}})_{i}$	
BATT	ERY CHECK:			_OK			
TIME	CALIBRATED:		-	0700		-	
CALIE	BRATED BY:		-	of	-		-
CALIE	BRATION CHECK:		-				
	TIME:			1300			-
	BY:			ap			-
	STATUS:			105.2/4.00/7.	02	-	
	TIME:			-			
	BY:						
	STATUS:			\	-		
1.	OVA-FID:	Organic Vapor A	nalyzer, Flam	ne Ionization Detector	manufactured by l	Foxboro	
	pH PEN:	Electronic pH tes	ter manufact	ured by Fisher Brand			
-	COND PEN:	Total dissolved s Manufactured by	olids tester v Fisher Brand	vith automatic temper J.	rature correction.		
	CGI:			anufactured by Indus	strial Scientific Dev	ices.	
	HNILPID:	Photo - Ionization	Detector ma	anufactured by HNu.			

APPENDIX C SOIL AND GROUNDWATER SAMPLING SHEETS

	3/5/96 Location <u>H833-5801'</u>
Sampler	s used D Howard D Humphris
Drawing the pre etc.)	of sampling location (including location description as well sence of debris, surface sheens, recent excavations, vegetat
Weather	Partly cloudy, temp 60°F, slight breage
	diment sampling parameters:
De	escription of sample see boning log
T	me of sample collection 0820-580101 /0830-580102
De	epth of water (for sediment sampling)
	amination (page number reference)
	poons or spatulas
	rowel
	and corer
	and auger
	owls
	plit spoons
	raph frame numbers Non C
	ure (of field team personnel making data entry)

te	Location _	H833-580201
mplers Used SS Spans SS colit SA	con	
rawing of sampling location me presence of debris, surface.)	i (including locat face sheens, recen	ion description as well t excavations, vegetati
P. Cloudy -	- High 850	
oil/sediment sampling parameters of sample	neters: 8020/8/100/ Pak yello	DRO/GRO W-Silty Sand
Time of sample collect		
Depth of water (for se scontamination (page numbe	diment sampling) _	NAD A-27
Spoons or spatulas	5(ap) V	
Trowel		
Hand corer		
Hand auger		
Bowls		
Split spoons	S(up) V	
Photograph frame numbers		
Signature (of field team pe	ersonnel making da	ta entry)

te <u>2/27/96</u>	Location <u>#833-580202</u>
amplers Used SS - SS - A/-	Split Spain HE PAN
rawing of sampling lo he presence of debris tc.)	ocation (including location description as we s, surface sheens, recent excavations, vegeta
eather P. You	idy - High 85°
·	8020/8/co/Deo/Geo
Soil/sediment sampling	g parameters: 8020/8/co/DRO/GRO
	ample White - Silty Sand
Time of sample co	ollection 1400°.
Depth of water (f	for sediment sampling)
Decontamination (page	number reference) <u>CDAP A-27</u>
Spoons or spatula	
Trowel	
Hand corer	
Hand auger	
Bowls	
Split spoons	
Photograph frame number	ers 5 (W)
FILOCOGEAPIL FEATHE HUMBI	
Signature (of field to	eam personnel making data entry)
1	

te <u>2/27/96</u> mplers Used	SS- SPOON Location <u>H833-380203</u>
	SS- SPLIT SPOOP A1- Vie Paus
eawing of sampling presence of desc.)	ng location (including location description as webris, surface sheens, recent excavations, veget
eather P.	Cloudy - High 85°
oil/sediment sam	pling parameters: 8020/8/04/Deo/GRO of sample White - Silfy Sand
	le collection 1420
	er (for sediment sampling)
econtamination (page number reference) <u>CDAP A-27</u>
Spoons or sp	atulas Siap
_	
Bowls	-00/
Split spoons	57(11)
Photograph frame	
Signature (of fie	old team personnel making data entry)
ri ^t	W. Way

	rawing of sampling loca	ing of sampling location (including location description as well presence of debris, surface sheens, recent excavations, vegetat
Description of sample	c.)	BUTIACE BREGRES, 100000 CARETAGENS, 1230
Description of sample		
Description of sample	D M. I	1/2 /2 85°
Description of sample	ather / Cloudy	-man 03
Description of sample	La la recordina de la constante de la constant	81120/8/00/DRO/GRO
Time of sample collection	il/sediment sampling	parameters: 10 Ly or y Lly cand
Depth of water (for sediment sampling) contamination (page number reference) Spoons or spatulas Trowel Hand corer Hand auger Bowls Split spoons Mand Spoons Split spoons	Description of sam	1430
Spoons or spatulas Swar Trowel Hand corer Bowls Split spoons Swar Swar Swar Swar Swar Swar Swar Swar		
Spoons or spatulas Swall Swall Swall Swall Spoons Swall Swall Spoons Swall Swa	Depth of water (fo	or sediment sampling)
Hand corer Hand auger Bowls Split spoons $S(ux)$	contamination (page n	number reference)
Hand corer Hand auger Bowls Split spoons $S(uv)$	Spoons or spatulas	51(an) V
Hand auger Bowls Split spoons S(ua)		
Split spoons S(ua)	Trower	
Split spoons S(ua)		
Split spoons S(ua)	Hand corer	
	Hand corer	
	Hand corer	

Sample	DHoward, DHumphris
Drawing the present of the present o	ng of sampling location (including location description as well as sesence of debris, surface sheens, recent excavations, vegetation,
Weath	Partly sunny, temp 60-65°F, slight breeze
	sediment sampling parameters:
	Time of sample collection 0850-580301 / 0900-580302
	Time of sample collection 0850-580301 / 0900-580302
	Depth of water (for sediment sampling)
Decon	tamination (page number reference)
	Spoons or spatulas
	Trowel
	Hand corer
	Hand auger
	Bowls
	split spoons
Photo	ograph frame numbers Non e
Signa	ture (of field team personnel making data entry)

mplers Used $\frac{2/27/96}{55-5600}$	Location H833-SB0401
SS- SP17 A1- VIE N	T SPOON
rawing of sampling location ne presence of debris, surf cc.)	n (including location description as we face sheens, recent excavations, veget
eather P. Clary-	- High 85°
oil/sediment sampling param	meters: 802/8/co/DRO/GRO
	Lt. Brown-Gray
Time of sample collect	
Depth of water (for se	
Decentemination (name numbe	er reference) CDAP A-27
Spoons or spatulas	
Hand corer	
Hand auger	
	4
Bowls	
Split spoons	V
/ /	Very
· W.	very -

plers Used SS-Spoon	Location #833-SB0402
55-15011-5	s poor
Al-pie Ma	
wing of sampling location presence of debris, sur	on (including location description as rface sheens, recent excavations, vege
P. Cloudy -	High 85°
	CARNOUN A DOLLADA
ll/sediment sampling para	ameters: 8029/8/04/BRO/GRO
Description of sample	14 Bran-Gray
Time of sample collect	tion /505
Depth of water (for s	
Depth of Water (for so	CALO 1-27
contamination (page numb	per reference) CDAP A-27
Spoons or spatulas	8100V
Trowel	
Hand auger	
Bowls	
Split spoons 57	Aug 1
otograph frame numbers _	
gnature (of field team p	personnel making data entry)

Date 2/27/96 Location #833-580403
Samplers Used SS-Spoon SS-Skrt Spoon Al-PIE PAR
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather P. Cloudy - High 85°
Soil/sediment sampling parameters: 802/8/09/DRO/GRO
Description of sample Dark red-gray
Time of sample collection /5/5
Depth of water (for sediment sampling)
Decontamination (page number reference) CDAP A-27
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons 5/60/
Photograph frame numbers
Signature (of field team/personnel making data entry)

eawing of	Bampling location (including location description as w
e presenc	sampling location (including location descriptions, veget of debris, surface sheens, recent excavations, veget
ather _	P. Claudy - High 85°
	nt sampling parameters: 8029/809/DRO/GRO
Descri	ption of sample Darkred-gray
Time o	f sample collection /520.
Depth	of water (for sediment sampling)
econtemina	tion (page number reference) <u>CDAP-A-ZD</u>
Spoon	or spatulas Swa
Hand	corer
Hand	uger
Bowl a	- (D)
DOWER	The state of the s
	spoons

Date 3/5/96 Location H833-5805
samplers used D Howard, D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Clear + sunny, temp 65 of, slight breeze
Soil/sediment sampling parameters:
Description of sample see boring log
Time of sample collection 1025-580501+ day 580503 1032-580502
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers None
Signature (of field team personnel making data entry) Daniel Howard

plers Used	196 Location #833-580601 55-5800V
	SS-SPLAT SPOON AI-PIE PAN
awing of same presence c	pling location (including location description as we f debris, surface sheens, recent excavations, vegeta
ather	P. Cloudy High 85°
il/sediment	sampling parameters: 8020/8100/BRO/GRO
Descript	on of sample 1. Yellow Brown
Time of	sample collection 1630.
	water (for sediment sampling)
econtamination	on (page number reference) CDAP A-27
	spatulas SW
	r
	oons 5 m
	ame numbers
경기 등은 경우한 경투이 되었다.	field team personnel making data entry)

Date 2/27/96	Location #833-580602
Samplers Used SS-SPOOP SS-SPOOP	SPOON
Drawing of sampling location the presence of debris, surfect.)	(including location description as well a face sheens, recent excavations, vegetation
P. Cloudy	- High 850
Soil/sediment sampling param	Brand Silly Son
Description of sample _	
Time of sample collecti	
Depth of water (for sec	diment sampling)
Spoons or spatulas	Strance) CDAP A-27
Trowel	
Hand corer	
Hand auger	10
Bowls	Stade 1
Split spoons	gas v
Photograph frame numbers	
Signature (of field team pe	ersonnel making data entry)
- W	July .

	SS-SRIT AI- PIE PA		
rawing of sa me presence me.c.)	mpling location of debris, sur	on (including le rface sheens, re	ocation description as we ecent excavations, veget
eather	P. Cloudy -	High 850	
oil/sediment	sampling par	ameters: 8020/	18100/ DRO/GRO
Descript	ion of sample	Lf Gray	
Time of	sample collec	tion 1653	- 1
Depth of	water (for s	ediment samplin	(g)
econtaminat:	on (page numb	er reference) _	CDAP A-27
Spoons	or spatulas	5160	
Hand co	er		
Hand au	ger		
Pouls			
Split s	poons	STEWN)	
Photograph f	rame numbers		

rawing of sa	mpling location (including location description as a
he presence (of debris, surface sheens, recent excavations, veget
(84.4.81)	P. Clady - High 850
ather	7. 910 W - 1979 N 0 3
il/sediment	sampling parameters: 8020/8100/DRO/GRO
Descript	ion of sample Olive - Silfy Sand
Time of	sample collection 1705
Depth of	water (for sediment sampling)
ocontaminati	on (page number reference) CDAP A-27
Spoons o	r spatulas SIGN
Hand cor	er
Hand aug	er
Bowls _	(a)
C=1 i + c=	poons
Spric at	

Date $\frac{2/28/96}{2}$ Location $\frac{H833-5B07}{2}$
samplers used D Howard, D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Overcust, temp 60°F, slight breeze
Soil/sediment sampling parameters: 580701 / 580702 Description of sample medium brown and medium from and with petro-
Time of sample collection 1/35 / 1/50 Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers None
Signature (of field team personnel making data entry)

Date 3/5/96 Location H833-5BQ8
samplers used D Howard, D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Partly Clear + ownny, temp 65°F, slight breeze
Soil/sediment sampling parameters:
Description of sample seeboring log
Time of sample collection 0950 - #833- 58 0801 / 89 7000- 380802
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers None
Signature (of field team personnel making data entry)

ate 2/29	
amplers Used	SS-SPOON SS-SRITSPOON
rawing of sa he presence tc.)	impling location (including location description as well of debris, surface sheens, recent excavations, vegetati
leather	Cloudy-High 650
oil/sedimen	sampling parameters: \$820/8100/DRO/GRO
Descrip	tion of sample Fray Brown
Time of	sample collection 1615
Depth o	f water (for sediment sampling) $\frac{1}{(10.00000000000000000000000000000000000$
econtaminat	ion (page number reference) CDAP A-27
	or spatulas Star
Hand co	rer
Hand au	ger
Bowls _	
Split s	poons 6 (www)
Photograph f	rame numbers
Signature (c	f field team personnel making data entry)

SS-SPOON SS-SPOON A1-PIE PA	3/00/0
awing of sampling location e presence of debris, sur	on (including location description as we rface sheens, recent excavations, vegeta
Suny-High	700
oil/sediment sampling para	Pale Yellow
Time of sample collect	1625 ·
Depth of water (for se	ediment sampling)
Spoons or spatulas	or reference) CDAP A-27
Trowel	
Hand corer	
Hand auger	
Bowls	1 CUAN
Split spoons	
hotograph frame numbers _	
The second secon	ersonnel making data entry)

eawing o	SS-SPLIT SFOON AI - PIE PAN f sampling location (including location descript	tion as w
e prese	f sampling location (including location description of debris, surface sheens, recent excavation	ns, veget
eather _	P. Cloudy - High 75°	
	ment sampling parameters: 8029/8/09/DRA/GRO	
Desc	ription of sample Lt Brown - Gray	
Time	of sample collection	
	h of water (for sediment sampling)	
pepc	nation (page number reference) CDAP A-2	20
econtami	nation (page number reference)	
	ons or spatulas 5300 V	
Trow	rel	
Wan-	corer	
Hanc	auger	
Hand	.5	
Hand Bowl	534	
Bowl Spli	at spoons	

z/28/96 mplers Used SS-Sf	Poor
mplers Used SS-Sh AF-NE	IT SPOON PAN
rawing of sampling locat ne presence of debris, s :c.)	tion (including location description as well surface sheens, recent excavations, vegetat
P. Cloudy	1-High 75°
il/sediment sampling Da	erameters: 8029/8104 DR9/FRO
nescription of sample	1e Lt. Gray
mine of sample colle	ection <u>0845</u>
	sediment sampling)
pepth of water (101	Ther reference) CDAP A-27
Spoons or spatulas	mber reference) <u>CDAP A-27</u> 536000
Trowel	
Hand auger	
Bowls	THE LIPTURE TO THE PARTY OF THE
Split spoons	ST JUNE V
hotograph frame numbers	
ignature (of field team	personnel making data entry)
· (1). 1	Hen C

	SS-SPOON SS-SPUT SPOON Al-VIE-PAN
rawing of sam he presence o	pling location (including location description as we f debris, surface sheens, recent excavations, vegeta
eather	P. Clardy-High 250
Soil/sediment	sampling parameters: 2020/800/DRO/GRO
	on of sample 14. Gray
	ample collection 09/0
Depth of	water (for sediment sampling)
econtaminatio	n (page number reference) <u>CDAP A-27</u>
Spoons or	spatulas 5340
Hand core	
Hand auge	or
Bowls	
	53WW
Split spo	ons 7/

	SS-SPUNT SPOO SS-SPOON AI-PIEPAN			
rawing of sampli he presence of d tc.)	ng location (inc ebris, surface s	luding loc heens, rec	ation descripti ent excavations	ion as we geta
Teather P.	Cloudy - Hig.	1250		
Soil/sediment sam	pling parameters	1: 8029/8109	DRY GRO	
Description	of sample	IVE	-	
Time of same	le collection _	092	5.	
South of the	er (for sediment	sampling	*	
Debeu or war	er (101 section)		CAAD A-27	
econtamination (page number rei		CDAF 11 =1	
Spoons or sp	patulas	5 90		
Trowel				
Hand corer				
Bowls	12/	DV)	1/	
	376			
Split spoon				

Date 2/28/96 Location 14833-5811
Date 2/28/96 Location 1-1833-5811 Samplers Used D Howard, D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Overast, windy, temp 65-70°F chance of
soil/sediment sampling parameters: 381101 581102 Description of sample medium bran ailty and I medium brown silty sand
Time of sample collection 1255 / 1315
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers Note
Signature (of field team personnel making data entry) Daniel Howard

Date 2/28/96	Location <u>H833-5812</u>
Samplers Used 1 110W	ard D Humphris
Drawing of sampling locati the presence of debris, su etc.)	on (including location description as well as arface sheens, recent excavations, vegetation
Weather Cloudy, chance	afablition rain, brezz, 65-700F
Soil/sediment sampling par	rameters:
Description of sample	see bourslog
Time of sample collect	$\frac{1833-581201}{1615} + \frac{1833-58120}{1615} = \frac{1833-58120}{1635}$
	sediment sampling)
	ber reference)
	spoon
Bowls	
Split spoons	
Photograph frame numbers	
	personnel making data entry)

Date 2/28/96 Location <u>H833-5813</u>
samplers used D Howard D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Cloudy class of additud rain, breezy 80 65-700 F
soil/sediment sampling parameters: 58/301 SB/302
Description of sample median bran silty sand / median bran silty sand
Time of sample collection 1525 / 1540
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas Agon
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers
Signature (of field team personnel making data entry)

Date 2/29/96 Location <u>H833-5B14</u>
samplers used D Howard D Humphr; s
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Partly cloudy, slight breeze wol trang 2550F
Description of sample top poil tradim from alt, and crem als ally sand Time of sample collection 0825 0845
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers None
Signature (of field team personnel making data entry)

	Used SS-SPLAT SPOON SS-SPOON AI- PIE PAN	
rawing (he presente.)	of sampling location (including location description as we ence of debris, surface sheens, recent excavations, vegeta	ill iti
leather	Claudy - High 65°	
	iment sampling parameters: 8020/8/03/DRc/GRO	1+1
SOTT\ Bed	cription of sample Lt. Yellow Brown	
Des	e of sample collection	
Dep	th of water (for sediment sampling)	
Decontam	ination (page number reference) CDAP A-27	
	ons or spatulas 5400	
	wel	
	d corer	
Han	d auger	
	ols	
Spl	it spoons 59(4)	
	ph frame numbers	
Signatur	e (of field team personnel making data entry)	
	· W. Very	

	SS-SPUT SPOON SS-SPOON A1-PIE PAN
cawing of same presence (apling location (including location description as we of debris, surface sheens, recent excavations, vegeta-
eather	Cloudy - High 650
Soil/sediment Descript	sampling parameters: 8029/8/09/DR9/GR0 ion of sample Davk Brown
	sample collection //00 ·
Depth of	water (for sediment sampling)
Spoons o	r spatulas 59(m) CDAP A-27
Trowel _	
	er
Hand aug	er
	-AIA))
split sp	oons 39000
	ame numbers

Sambiers	Used D Howard, D Humphris
Drawing the pres	of sampling location (including location description as well a ence of debris, surface sheens, recent excavations, vegetation
Wea ther	Partly cloudy, dight breeze, teny, 550F
Soil/sed	cription of sample lift from sitty sand / rusty from sitty sand
Des	cription of sample lift brown sitty sand frusty brown sitty sand
Tin	ne of sample collection $0915 / 0930$
Der	oth of water (for sediment sampling)
Decontar	nination (page number reference)
Spc	oons or spatulas
	owel
	nd corer
	nd auger
	vls
Sp.	aph frame numbers None

Date 2/29/96 Location <u>H833-SB1701</u>
Samplers Used SS-SPOON SS-SPOON AI-PIE VAN
Drawing of sampling location (including location description as well a the presence of debris, surface sheens, recent excavations, vegetation etc.)
Weather Cloudy - High 650
Soil/sediment sampling parameters: 8029800/DR94R6 Description of sample Dark Brown
Time of sample collection 120
Depth of water (for sediment sampling)
Decontamination (page number reference) <u>CDAP A-27</u>
Spoons or spatulas 5900
Trowel
Hand corer
Hand auger
Bowls
Split spoons Study
Photograph frame numbers
Signature (of field team personnel making data entry)

하기 때문에서 가는 중에 하고 있다.	mpling location (include	ding location description as ens, recent excavations, veg
e presence	OI debris, surface since	Bita, 2000.00 Once Colony, 19
	0/1 1/1/1	70
eather	Clary - High 65)
	: sampling parameters: (8070/8/00/DRO/GRO
oil/sedimen	isampling parameters: (I Row
	sample collection	
Depth c	water (for sediment s.	ampling)
econtaminat	ion (page number refere	nce) <u>CDAP- A-27</u>
Spoons	or spatulas Sch	
Hand co	rer	*
Hand au	ger	
	poons 59W	V
-1		
hotograph i		

Date 2/29/96 Location H833-5B/8
samplers used D Howard D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Darthy cloudy, breezy, temp 550F
soil/sediment sampling parameters: SB1801 SB1802
Description of sample light brown silty sand bight cream silty sand
Time of sample collection 1025 / 1040
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas year
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers
Signature (of field team personnel making data entry)
Daniel Howard

	1000000	AND AND ADDRESS	(100 mag)	alas das	anistian as w	-11
rawing of sample ne presence of (tc.)	ng locat lebris, s	cion (includ	ns, rece	nt excav	ations, veget	ati
eather	Clou dy	1-High	650			
-		0	120/8/00	VAPO/6	PA .	
oil/sediment sa	apling pa	rameters: ()	Valla	Dry W), CU	
Description						
Time of sam					-	
Depth of wa						
econtamination	(page num	ber referen	nce)	CDAP	A-27	
Spoons or s	patulas	Stule				
Trowel						
Hand corer						
Hand auger						
Bowls						
BOWLS	8	- Strey	1			
	_	V / -				

	AI- PIE PAN ampling location (including location description as w
rawing or m	of debris, surface sheens, recent excavations, veget
eather	Cloudy - High 650
	SIZO/SIOC/DRO/GRO
oil/sedimer	tion of sample Lt. Gray
Descrip	ion of sample Ly. Oray
	sample collection 1010
Depth o	f water (for sediment sampling)
econtaminat	ion (page number reference) CDAP A-2)
Spoons	or spatulas 5000
Trowel	
Hand co	rer
Hand au	ger
Bowls	
Split i	poons

Samplers Used D Howard D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Partly cloudy, slight breeze, temp 550+
Description of sample lift bran ailty and light brank in the ailty sand Time of sample collection 1110 / 1125
Depth of water (for sediment sampling) Decontamination (page number reference)
Spoons or spatulas
Hand corer
Bowls
Photograph frame numbers Non 8
Signature (of field team personnel making data entry)

Date 2/29/96 Location #833-582/01
Samplers Used SS-SRIT SPOON SS-SPOON AI-PIE PLATE
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Cloudy-High 650
Soil/sediment sampling parameters: 8029/8/00/DR0/GRO
Description of sample 17. Gray
Time of sample collection
Depth of water (for sediment sampling)
Spoons or spatulas 57 W CDAP A-27
Trowel
Hand corer
Hand auger
Bowls
Split spoons 5 Tub
Photograph frame numbers
Signature (of field team personnel making data entry)

	SS-SPLITSPOON SS-SPOON AI-PIEPAN
rawing of sam he presence o tc.)	apling location (including location description as well of debris, surface sheens, recent excavations, vegetat:
eather	Cloudy-High 650
oil/sediment	sampling parameters: 8029/8/09/DR0/GRO
	ion of sample 14. Gray
Time of	sample collection
Depth of	water (for sediment sampling)
econtamination Spoons of	r spatulas CDAP A-27
	er
	er
Split sp	oons 55 (un)
	ame numbers

Date 2/2			H833-5B2102
Samplers Used _	SS-SPLITS SS-SPOON AL- NE PAN		
Prawing of samp the presence of etc.)		ingluding locat	tion description as well at excavations, vegetat
leather	Cloudy -	High 650	
soil/sediment s	sampling paramet	Lt. Gray	DRO/ARO
Time of sa	umple collection	1540	
econtamination	n (page number :	ment sampling) reference)	DAP A-27
Spoons or	spatulas	59000 L	
	ons	and i	
Photograph fra			
Signature (of	field team pers	onnel making da	ta entry)

Date $\frac{2/29/96}{}$ Location $\frac{H8.33-5B22}{}$
samplers used D Howard, D Humphris
Drawing of sampling location (including location description as well as the presence of debris, surface sheens, recent excavations, vegetation, etc.)
Weather Partly closely, light breeze, temp 55-600F
Soil/sediment sampling parameters; 5B2201 / 5B2202
Description of sample medium from alty sand rusty from alty and petror ode
Time of sample collection 1345 / 1416
Depth of water (for sediment sampling)
Decontamination (page number reference)
Spoons or spatulas spoon
Trowel
Hand corer
Hand auger
Bowls
Split spoons
Photograph frame numbers Nonc
Signature (of field team personnel making data entry)

Date 2	2/28/96 Location #833-58230/
Samplers U	SS-SPLIT SPOON SS-SPOON AL-PIEPAN
Barrier - 6	sampling location (including location description as well a ce of debris, surface sheens, recent excavations, vegetation
Weather	P. Cloudy - Argh 750
Soil/sedim	ent sampling parameters: 8020/8/00/DRO/GRO iption of sample Gray-Brown
Time	of sample collection 1100
Decontamin	of water (for sediment sampling) ation (page number reference) CDAP A-20
	s or spatulas 53 (4)
	auger
Bowls	spoons 53(W)
Photograph	frame numbers
Signature _	(of field team personnel making data entry)

awing of sampling location (including location description as a presence of debris, surface sheens, recent excavations, veget e	apada oud	SS-SPLIT SL SS-SPOON A1-PIE PAN		
Description of sample	awing of same presence of	11 1-oction 1	including local sheens, rec	cation description as we cent excavations, veget
Depth of water (for sediment sampling) Secontamination (page number reference) Spoons or spatulas Trowel Hand corer Hand auger Bowls Split spoons Split spoons Motograph frame numbers	ather	P. Cloudy - H	rgh 75°	
Time of sample collection		sampling paramet	ers: 80298/	DRO/ARO
Time of sample collection	Descript	Lon of sample	Ye llow-	red
Spoons or spatulas 53 W CDAP A-27 Trowel Hand corer Hand auger Bowls Split spoons Split spoons	Time of	sample collection	1115	
Spoons or spatulas Trowel Hand corer Hand auger Bowls Split spoons Shotograph frame numbers	Depth of	water (for sedim	ent sampling	1010100
Trowel	econtaminati	on (page number r	reference) _	CDAP A-21
Hand corer Hand auger Bowls Split spoons Photograph frame numbers	Spoons o	r spatulas	5300	
Hand auger Bowls Split spoons Photograph frame numbers				
Split spoons 53 (42) Photograph frame numbers	Hand cor	er		
Split spoons 53 WY Photograph frame numbers	Hand aug	er		
Photograph frame numbers	Bowls			
Photograph frame numbers	Split sp	oons 5	300	
signature (or rield team personner massing			onnel making	data entry)
		· W. V.	in	

	SS-SPOON Al-PIEPAN
rawing of he present tc.)	sampling location (including location description as we se of debris, surface sheens, recent excavations, vegeta-
leather	P. Clandy - High 75°
Soil/sedim	ent sampling parameters: $8020/8/04/DR0/GR0$ eption of sample $Vellow - Red$
	of sample collection
	of water (for sediment sampling)
Spoon	s or spatulas 5 July CDAP A-20
Hand	corer
Hand	auger
Bowls	- SUPI)
	spoons 5500
Split	