Imagine the result

Army Environmental Command and Fort Stewart Directorate of Public Works Under Contract Number W91ZLK-05-D-0015 D.O. 0003

Revised Corrective Action Plan – Part B Addendum #1 Former Pumphouse #1 (Release #1) Former Building 8060 Hunter Army Airfield Savannah, GA Facility ID No. 9-025085*1

October 1, 2009

C. Scott Bostian, P.E. Senior Engineer

M Charles A. Bertz, PE

Senior Project Manager

Revised Corrective Action Plan – Part B Addendum #1

Hunter Army Airfield

Prepared for: U.S. Army Environmental Command

Prepared by: ARCADIS 801 Corporate Center Drive Suite 300 Raleigh North Carolina 27607 Tel 919.854.1282 Fax 919.854.5448

Our Ref.: GP08HAFS.H13B.EH1R1

Date: October 1, 2009

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

1.	Corre	ctive Action Plan Part B Checklist	1-1
2.	Introd	luction	2-1
3.	Pre-d	esign Field Data Collection	3-1
4.	Basis	for Selection of Corrective Action	4-1
5.	Desig	n and Operation of Corrective Action	5-1
	5.1	Well Layout and Design	5-1
	5.2	Calcium Peroxide Dosing and Injection Volume Design	5-1
	5.3	Injection Implementation	5-2
	5.4	Performance Monitoring Plan	5-2
6.	Unde	rground Injection Permit Application	6-1
7.	Proje	ct Schedule	7-1
8.	Refer	ences	8-1

Appendices

Appendix A: Figures

2-1	Site Location
3-1	BTEX Concentrations in Groundwater Monitor Wells (June 2009)
3-2	Biogeochemical Concentrations in Groundwater Monitor Well (June 2009)
3-3	Metal Concentrations in Groundwater Monitor Wells (June 2009)

5-1 Remedial Design for Calcium Peroxide Injection Wells

Appendix B: Tables

- 3-1 Biogeochemical Parameter Concentrations in Groundwater Monitor Wells - June 2009
- 3-2 Field Parameters in Groundwater Monitor Wells June 2009
- 3-3 Historical BTEX Concentrations in Monitor Wells
- 4-1 Properties of Oxygen Release Chemicals

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

Appendix C: Laboratory Data – June 2009

Appendix D: Calcium Peroxide Dosing Calculations

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

Acronyms

ACLs BTEX CaO2	alternate concentration limits benzene, toluene, ethyl benzene and xylenes calcium peroxide
CAP	Corrective Action Plan
COD	chemical oxygen demand
COPCs	constituents of potential concern
DAACG	Departure/Arrival Air Control Group
DO	dissolved oxygen
DOC	dissolved organic carbon
GA EPD	Georgia Environmental Protection Division
g/L	grams per liter
HAAF	Hunter Army Airfield
H2O2	hydrogen peroxide
IWQS	in-stream water quality standard
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
Nm	mobile porosity
MNA	monitored natural attenuation
NOM	natural organic matter
ROI	radius of injection
SAIC	Science Application International Corporation
TPH	total petroleum hydrocarbons
TSS	total suspended solids
UIC	underground injection control
USEPA	United States Environmental Protection Agency
VOCs	volatile organic compounds

CORRECTIVE ACTION PLAN-PART B

Facility Name:	Former Pump		- <u>-</u>	Street Address	: Former	Building 8060	, near Taxiway 3	
Facility ID:	9-025085*1		Hunter Army Airfield	County:	Chatham	Zip Code:	31409	
Latitude:	<u>32° 00' 54″</u> I	Longitude	: <u>81° 08' 26"</u>					
Submitted by U	JST Owner/Operator	r <u>:</u>		Prepared I	oy Consultant/C	ontractor:		
Name:	Tom Fry/ Environm	iental Brai	nch	Name:	Charles E	Bertz		
Company:	U.S. Army/HQ 3d,	Inf. Div.	(Mech)	Company	ARCAD	S		
Address:	DPW ENRD ENV.	Br.		Address:	801 Corp	orate Center D	r.	
	1550 Frank Cochran	n Drive, B	ldg. 1137		Suite 300)		
City:	Fort Stewart	State:	GA	City:	Raleigh	State:	NC	
Zip Code:	31314-4927	•		Zip Code:	27607			
Telephone:	(912) 767-2010			Telephon	e: (919) 854	(919) 854-1282		

I. PLAN CERTIFICATION:

A. UST OWNER/OPERATOR

I hereby certify that the information contained in this plan and in all the attachments is true, accurate, and the plan satisfies all criteria and requirements of rule 391-3-15-09 of the Georgia Rules for Underground Storage tank Management.

Name: Tom Fry
Signature:

Date:

B. REGISTERED PROFESSIONAL ENGINEER OR PROFESSIONAL GEOLOGIST CERTIFICATION

I hereby certify that I have directed and supervised the fieldwork and preparation of this plan in accordance with State Rules and Regulations. As a registered professional geologist and/or professional engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Georgian And the information and laboratory data in this plan and in all of the attachments are true, accurates complete, alwing acordance with applicable State Rules and Regulations.

Name: Scott Bos	stian, PE	£
Signature:	12/207	N-
Date: 10/11	09	
11		······································

Check all boxes that apply. Attach supporting documentation, i.e. narrative, figures, tables, maps, boring/well logs, etc., for all items checked. Supporting documentation should be three-hole punched and prepared in conformity with the guidance document "Underground Storage Tank (UST) Release: Corrective Action Plan-Part B (CAP-B) Content", GUST 7B.

II.

SITE INVESTIGATION REPORT

	X	Not Applicable The extent of contamination, and the local & site hydrogeology										
		requirements have been fulfilled under the CAP Part A, therefore additional SIR										
		reporting is not necessary.										
		Extent of Contamination:										
		Soil Groundwater Free Product Surface water										
		Local and Site Hydrogeology:										
		Documentation of Local Groundwater Conditions										
		Stratigraphic Boring Logs										
		Stratigraphic Cross Sections										
		Referenced or Documented Calculations of Relevant Aquifer Parameters										
	Direction of Groundwater Flow											
		Table of Monitoring Well Data										
		Potentiometric Map										
		Flow Net Superimposed on a Base Map										
III.	REI	MEDIAL ACTION PLAN										
	А.	Corrective Action Completed or In-Progress:										
		Not Applicable										
		X Recovery/Removal of Free Product (Non-Aqueous Phase Hydrocarbons)										
		Remediation/Treatment of Contaminated Soils										
		Other (specify)										
	B.	Objectives of Corrective Action:										
		No Further Action										
		X Remove Free Product That Exceeds One-Eighth Inch										
		Remediate Groundwater Contamination That Exceeds:										
		Maximum Contaminant Levels (MCLs)										
		OR										
		In-stream Water Quality Standards										
	B.	Objectives of Corrective Action (CONTINUED):										
		Remediate Soil Contamination That Exceeds:										
		Threshold Values Listed In Table A										

OR

Threshold Values Listed In Table B

OR

Alternate Threshold Levels (ATLs) (Reference CAP A App. I)

X Provide Risk-Based Corrective Action (Reference CAP B App. I):

X Remediate Soil and/or Groundwater Contamination That Exceeds Alternate Concentration Limits (ACLs) and Monitor Residual Contaminants

OR

Monitor Soil and/or Groundwater Contamination That Exceeds Levels In Rule – 391-3-15-.09(3).

C. Design and Operation of Corrective Action Systems:

 X Soil
 X Groundwater
 X Free Product
 Surface water
 Not Applicable

D. Implementation (MUST INCLUDE THE FOLLOWING):

NOTE: If No Further Action is proposed and none of the following apply, a brief explanation must be provided with the signed Certificate of Completion.

- Milestone schedule for proposed site activities
- Inspection and preventive maintenance schedule for all specialized remediation equipment

AND / OR

Monitoring/sampling and reporting plan for measuring interim progress and project completion

▶ Plan to decommission equipment/wells and close site

IV.		PUBLIC NOTICE:
		Not Applicable The Corrective Action Objectives submitted and approved under
		the CAP-Part A have not changed.
		Certified Letters to Adjacent, Potentially Affected Property Owners and Local Officials
	X	Legal Notice in Newspaper, as approved by EPD
		Other EPD-approved Method (specify)
V.	CL	AIM FOR REIMBURSEMENT (For GUST Trust Fund sites only)
	X	Not Applicable (specify)
		GUST Trust Fund Application - (attach if applicable)
		Cost Proposal:
		A Total of All Costs Incurred To Date (MUST INCLUDE THE FOLLOWING):
		Invoices and Proofs-of-Payment For All Costs Incurred To Date
		Invoices itemized on the GUST-4D
		All Non-Eligible Costs Clearly Identified as such
		 Incurred Costs Itemized per GUST-92 form or EPD provided form/specifications
		A Total of Estimated Costs To Complete Corrective Action
		 Estimated Costs Itemized per GUST-92 form or EPD provided form or specifications
		Total Project Costs
		Proposed Schedule For Reimbursement
		Lump Sum Payment Upon Completion Of Corrective Action
		OR
		Interim Payments With Final Payment Upon Completion
		OR
		EPD Established Payment Schedule

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

2. Introduction

Addendum #1 to the Revised Corrective Action Plan – Part B (Revised CAP – Part B Addendum) for Pumphouse #1 Release #1 has been prepared to provide additional detail to the proposed corrective action for groundwater. The proposed groundwater corrective action is explained in the Revised Corrective Action Plan – Part B with 2008 Annual Report (Revised CAP – Part B) (ARCADIS 2009). The former Pumphouse #1, Facility ID #9-025085 was located near former Building 8060 at Hunter Army Airfield (HAAF), in Savannah, Georgia (Figure 2-1).

The horizontal and vertical extent of petroleum-related impacts in soil and groundwater was delineated by activities performed during the previous investigations at the former Pumphouse #1 site and the Departure/Arrival Air Control Group (DAACG) facility. The investigations are documented in the CAP–Part B Report (SAIC 2000), the CAP–Part B Addendum #1 Report (SAIC 2002), and the CAP–Part B Addendum #2 Report (SAIC 2006). Benzene, ethylbenzene, toluene, benzo(*a*)pyrene, chrysene, and naphthalene were identified as chemicals of potential concern (COPCs) for groundwater.

The recommended remedial strategy for groundwater in the previous corrective action plans (CAPs) was free product removal followed by monitored natural attenuation (MNA). The first phase of the corrective action has been completed as free product is no longer present at recoverable quantities and has been consistently less than 1/8 inch in thickness in monitor wells. The second phase of the corrective action is remediation of groundwater to below approved alternate concentration limits (ACLs). To reduce the estimated timeframe for groundwater to reach ACLs, an active corrective action addressing the remaining smear zone and groundwater contamination is recommended. The proposed remedial action, the basis for selection, conceptual design of the remedy, and implementation logistics are presented in the following sections.

Hunter Army Airfield, Georgia

3. Pre-design Field Data Collection

Pumphouse #1 Release #1 is located adjacent to an active runway. Consequently, it is important that the remedial strategy selected minimizes impacts to military operations as much as possible. The proposed remedial strategy is enhanced bioremediation via electron acceptor amendment. Enhanced bioremediation will result in less impact to the military flight operations at the site relative to more intrusive technologies such as six-phase heating, air sparge/soil vapor extraction, and chemical oxidation. To better characterize the biogeochemical conditions of the groundwater and to select the most appropriate electron acceptor, a round of groundwater sampling from selected monitor wells was performed in June 2009. Groundwater samples were collected from monitor wells D-MW-1, D-MW-2, D-MW-11, D-MW-19, D-MW-34, D-MW-35, D-MW-37, D-MW-41 and D-MW-42. The samples were analyzed and measured for the following:

- § Dissolved Organic Carbon (DOC)
- § Alkalinity
- § Total Phosphorus (from D-MW-34 and D-MW-41 only)
- § Total Kjeldahl Nitrogen (from D-MW-34 and D-MW-41 only)
- § Nitrogen as Nitrate
- § Total and Dissolved Iron
- § Sulfate
- § Sulfide
- § Methane
- § Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)
- § Total Petroleum Hydrocarbons (TPH)
- § Total/dissolved lead
- § Lead speciation (organic and inorganic forms in D-MW-34 and D-MW-41 only)
- § pH (field measured)
- § Dissolved Oxygen (DO) (field measured)

The sample results are summarized in Tables 3-1 through 3-3 in Appendix B and are presented in Figures 3-1 through 3-3 in Appendix A. The laboratory results are included in Appendix C. In general, the average concentrations of electron acceptors (dissolved oxygen and sulfate) are lower in monitor wells within the petroleum hydrocarbon impacted areas (i.e., D-MW-1, D-MW-2, D-MW-34, D-MW-35, D-MW-37) relative to the background (i.e., D-MW-41 and D-MW-42). Similarly, the average concentrations of metabolic by-products (ferrous [dissolved] iron and methane) are higher within the impacted areas. These observations indicate that intrinsic bioremediation of petroleum hydrocarbons coupled with reduction of electron acceptors is ongoing at the site. However, the relatively low background concentrations of oxygen, nitrate, ferric iron (the difference of total iron and dissolved iron), and sulfate have likely limited biodegradation of the

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

petroleum hydrocarbons, as evidenced by the relatively stable concentrations of BTEX between 2001 and 2009 (Table 3-3).

In addition to electron acceptors, nutrients such as nitrogen and phosphorus were also analyzed. Nitrogen and phosphorus are essential for biodegradation of organic contaminants by bacteria. The results indicate that nutrient levels are generally low within the groundwater unit. It is not clear whether the low nutrient levels have limited the intrinsic biodegradation since the biogeochemical data strongly indicate that electron acceptor availability is a limiting factor.

Lead was previously detected in groundwater samples collected from DPT borings in January 2008 at levels above the in-stream water quality standard (IWQS) of 30 μ g/L. However, the high turbidity of the DPT water samples may have contributed to the elevated concentration of lead. For example, lead concentrations exceeding the IWQS were detected in approximately 10 to 15 percent of the low-flow groundwater samples (3 of the 30 samples from the December 2007 sampling event, and 4 of 27 samples from the December 2008 event), whereas lead concentrations exceeding the IWQS were detected in more than 30 percent of the DPT water samples (15 of 44 samples) during the January 2008 supplemental investigation (ARCADIS 2009).

Lead in groundwater was also evaluated during the June 2009 sampling event to better understand its speciation. The results indicate that inorganic lead exists in both dissolved phase and solid phase as suspended solids in the groundwater. In addition, it appears that lead exists predominantly in the organic form, especially in the BTEX source area (D-MW-34). This may have been a result of microbial alkylation of inorganic lead in anaerobic environments (USEPA 2007).

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

4. Basis for Selection of Corrective Action

As mentioned in the Revised CAP – Part B report, either oxygen or sulfate will be selected as the electron acceptor to be amended into the impacted groundwater. The qualitative assessment in Section 3 suggests that neither electron acceptor is present at a background level high enough to provide sufficient biodegradation capacity for cleanup within a reasonable timeframe. As a result, the selection of electron acceptor will be based on the inherent characteristics of the electron acceptor processes and of the microbial populations.

As described by Wiedemeier *et. al.* (1999), biodegradation of BTEX occurs more rapidly under aerobic conditions than under sulfate-reducing process. The production of hydrogen sulfide and metal sulfide precipitates (e.g., iron sulfide) from sulfate-reducing processes may result in reduction of permeability and hence injection capacity of the soil matrix. Additionally, sulfate-reducing microorganisms are typically sensitive to environmental conditions, including temperature, inorganic nutrients, and pH (Wiedemeier *et. al.* 1999). An imbalance in suitable environmental conditions could limit BTEX degradation via sulfate reduction.

The background sulfate concentrations indicate the sulfate reducer population may not be adequate to respond to sulfate amendments. Consequently, biodegradation through sulfate reduction may lag significantly or stall entirely. Conversely, many bacteria can rapidly adapt to perform biodegradation under aerobic conditions. Based on these comparisons, oxygen amendment is preferred over sulfate additions. Aerobic conditions can be engineered via different methods, such as oxygen/air sparging coupled with soil vapor extraction, injection and extraction of oxygen-saturated water for a recirculation system, and injection of chemicals that slowly release oxygen (e.g., magnesium peroxide, calcium peroxide, sodium percarbonate). The first two methods are more intrusive and would require trenching for the construction of underground conveyance piping for substrate or air delivery and groundwater or vapor extraction. Due to the significant disruption the construction would have on military flight operations, the first two methods were not selected as part of the remedial strategy. The injection of oxygen releasing substrates involves less intrusive site activities such as well installation and periodic injection events with mobile equipment.

The most important physico-chemical properties of three possible oxygen release chemicals are listed in Table 4-1. The comparison shows that calcium peroxide releases the most oxygen. Calcium peroxide has a low solubility (in comparison with sodium percarbonate). As a result, calcium peroxide is less reactive and provides a slower release of oxygen occurring over the course of several months. Sodium percarbonate releases oxygen more rapidly because of its higher solubility. Consequently, there is a less efficient use of the released oxygen. Because of the higher oxygen content and slow release characteristics, calcium peroxide is chosen to stimulate the biodegradation.

Calcium peroxide (CaO_2) slowly releases oxygen when in contact with water according to the following reaction:

 $2 \text{ CaO}_2 + 2 \text{ H}_2 \text{O} \bullet 2 \text{ Ca(OH)}_2 + \text{O}_2$

Hunter Army Airfield, Georgia

The speed at which oxygen is released is determined by physical and chemical properties of the aquifer (e.g., pH and temperature). When CaO_2 is exposed to a lower pH, hydrogen peroxide (H_2O_2) can be generated according to the following reaction:

 $CaO_2 + 2 H^+ \bullet Ca^{2+} + H_2O_2$

 H_2O_2 releases oxygen according to the following reaction:

 $2 H_2O_2 \bullet 2 H_2O + O_2$

Hydrogen peroxide is not expected to be generated directly around the injection wells because of the higher pH associated with calcium hydroxide and calcium peroxide. This ensures an efficient release of oxygen. As a consequence of the low solubility of calcium peroxide in water (<0.1 gram per liter [g/L] @ 20 °C), an oxygen release period of more than 6 months is typical.

As mentioned previously, it is not clear whether the low nutrient levels in the groundwater have contributed to the slow biodegradation of BTEX. Therefore, nutrient amendment as a remedial strategy will not be considered at this point. However, this option will be re-evaluated if oxygen amendment appears to be inadequate for simulating an increase in biodegradation rates.

As mentioned in the Revised CAP – Part B (ARCADIS 2009), the mitigation of lead in groundwater was considered during the remedy evaluation for dissolved petroleum hydrocarbons. The engineering of an aerobic environment is not expected to affect the mobility of lead as the geochemical transport processes of lead are not directly affected by redox conditions (USEPA 2007). The aerobic environment resulting from calcium peroxide injection may limit the microbial alkylation of inorganic lead to organic lead, which is a more soluble form of lead.

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

5. Design and Operation of Corrective Action

5.1 Well Layout and Design

Calcium peroxide will be delivered to the target treatment zone via an array of injection wells. Two lines of injection wells will be installed perpendicular to the general direction of groundwater flow in the most impacted areas near monitoring wells D-MW-34 and D-MW-2 (Figure 5-1). The injection wells will be installed 20 feet apart, with a target radius of injection (ROI) of 10 feet. The wells will be constructed with 15-foot screens that extend approximately 5 feet into the vadose zone to address the smear zone.

5.2 Calcium Peroxide Dosing and Injection Volume Design

The dosing of calcium peroxide was calculated by considering three sources of oxygen demand in the subsurface:

- § Oxygen required by aerobic bacteria to degrade BTEX compounds;
- § Oxygen demand by natural organic matter (NOM) in the groundwater; and
- § Oxygen demand by NOM in the soil.

The amount of oxygen required to aerobically biodegrade BTEX was calculated using the total BTEX concentration observed in D-MW-34 during the June 2009 semiannual sampling event and an oxygen utilization factor for BTEX as described in Wiedemeier, *et. al.* (1999). The stoichiometry of the oxidation reaction of individual BTEX compounds by oxygen was considered when calculating the oxygen utilization factor, which is 3 g oxygen/g BTEX. The oxygen demand by NOM in soil and groundwater was calculated based on a typical soil NOM content of 200 milligrams per kilogram (mg/kg) of soil and an average chemical oxygen demand (COD) in groundwater of 104 milligrams per liter (mg/L) from the Pumphouse 1 Release 2 area. In addition, the mass flux of BTEX and NOM in groundwater through the calcium peroxide barrier within the 6-month longevity of calcium peroxide was determined based on a groundwater seepage velocity of 0.52 foot/day and a barrier cross section of 15 feet (thickness) x 100 feet (length perpendicular to groundwater flow). The total oxygen demand was converted to calcium peroxide dosing using an oxygen content of 17 percent by weight and a safety factor of 1.5 to account for losses of oxygen. The estimated calcium peroxide dosing is approximately 34 g calcium peroxide/L of water. The calcium peroxide dosing calculations are included as Appendix D.

The injection volume of calcium peroxide solution was calculated using the following equation:

$$V_{inj} = ROI^2 \times \pi \times h \times n_m \times \left(\frac{7.481 \, gal}{ft^3}\right)$$

Hunter Army Airfield, Georgia

where:

V_{inj} = volume of injection (gal)

ROI = radius of injection (e.g., 10 feet)

h = height of injected fluid column (15 feet)

n_m = mobile porosity

The estimated injection volumes per injection well and the corresponding amounts of calcium peroxide with different mobile porosity (n_m) values are shown in the following table:

	n _m = 0.05	n _m = 0.1	n _m = 0.15	n _m = 0.20
Injection volume (gallons)	1,763	3,525	5,288	7,050
Mass of calcium peroxide (lb)	497	995	1,492	1,989

5.3 Injection Implementation

After the injection wells have been installed, a startup injection event utilizing all injection wells will be implemented. The purpose of the startup injection is to quantify the injection volume required to reach the design ROI. The arrival of calcium peroxide at a dose-response well located at the design ROI from an injection well (e.g., D-MW-2) will be monitored through measurement of total suspended solids (TSS), dissolved oxygen and conductivity. The likely calcium peroxide injection frequency is expected to be semi-annual but will be adjusted and optimized based on DO and BTEX concentrations in performance monitor wells (described in the following section). Based on estimates from the current data set, the need for a minimum of two injection events is anticipated.

5.4 Performance Monitoring Plan

Quarterly monitoring of designated performance monitor wells is proposed to evaluate remediation progress. Performance monitoring will consist of sampling up to 20 wells. These wells may include, but are not limited to, D-MW-1, D-MW-2, D-MW-11, D-MW-18, D-MW-34, D-MW-35, D-MW-37, D-MW-19, D-MW-33, D-MW-38, D-MW-43, and P1-MW-42. Sufficient downgradient wells will be included in the monitoring plan to evaluate contaminant migration. The quarterly monitoring schedule will include analysis of water quality parameters including dissolved oxygen, TSS and VOCs.

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

Total and dissolved inorganic lead and organic lead will also be analyzed in monitor well samples within the source area (e.g., D-MW-34, D-MW-1, D-MW-35, and D-MW-2) to evaluate the effect of calcium peroxide injection on lead concentrations in the groundwater.

Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

6. Underground Injection Permit Application

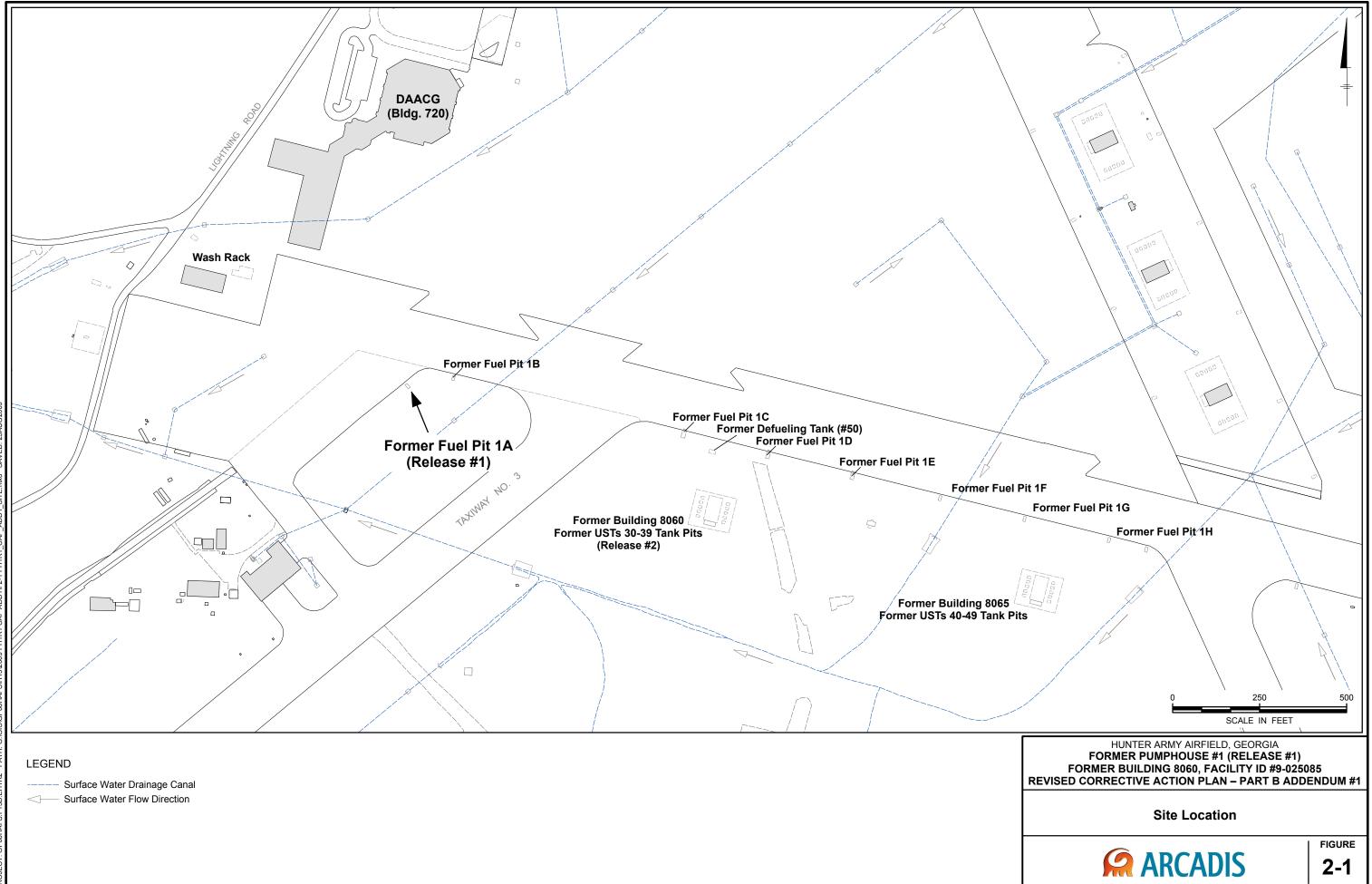
Upon approval of the Revised CAP-Part B and this addendum, a permit application will be submitted to the Underground Injection Control (UIC) Division of Georgia Environmental Protection Division (GA EPD). The permit will be obtained before the initial injection event is conducted.

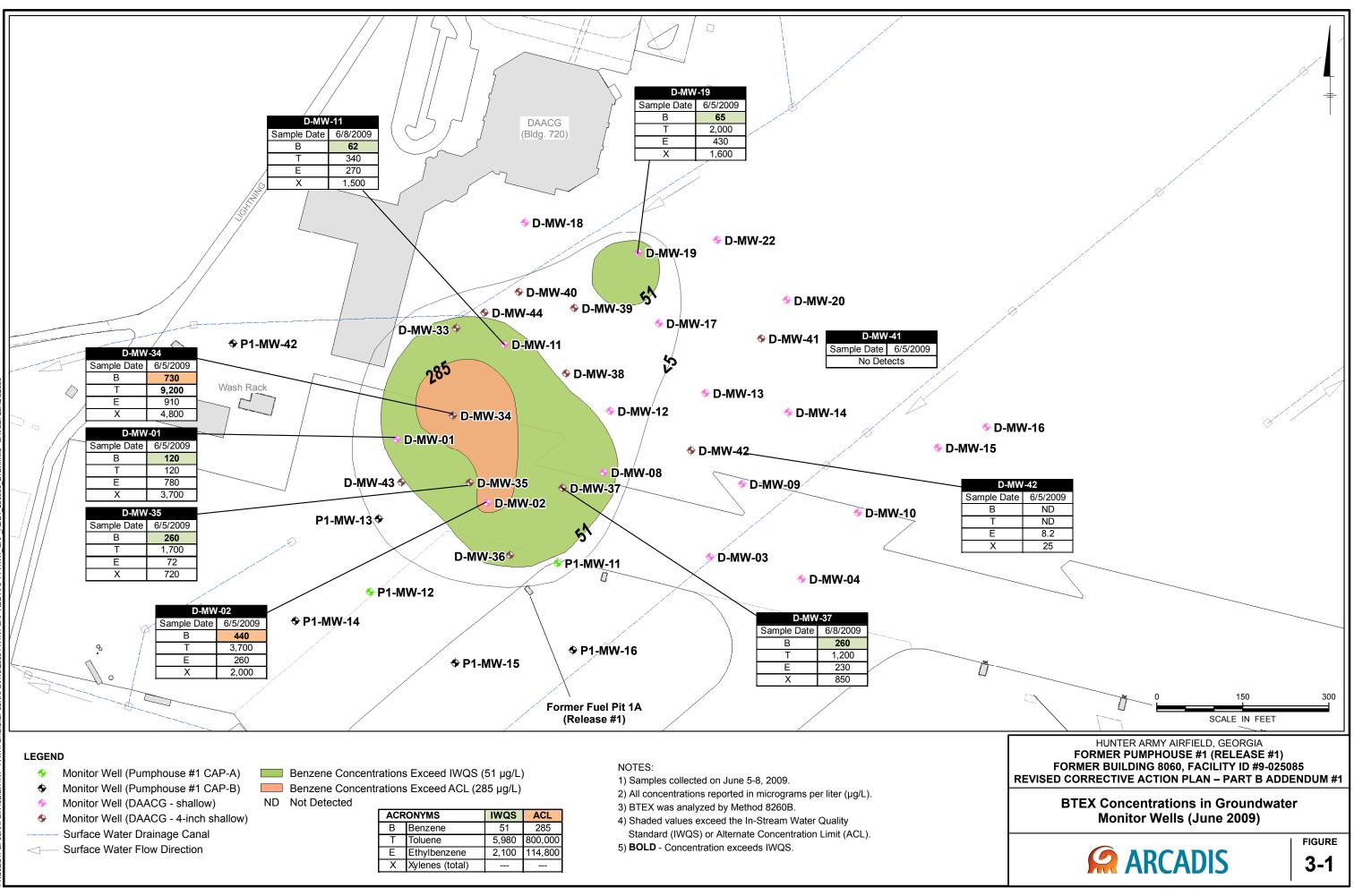
Revised Corrective Action Plan – Part B Addendum for Pumphouse #1 Release #1

Hunter Army Airfield, Georgia

7. Project Schedule

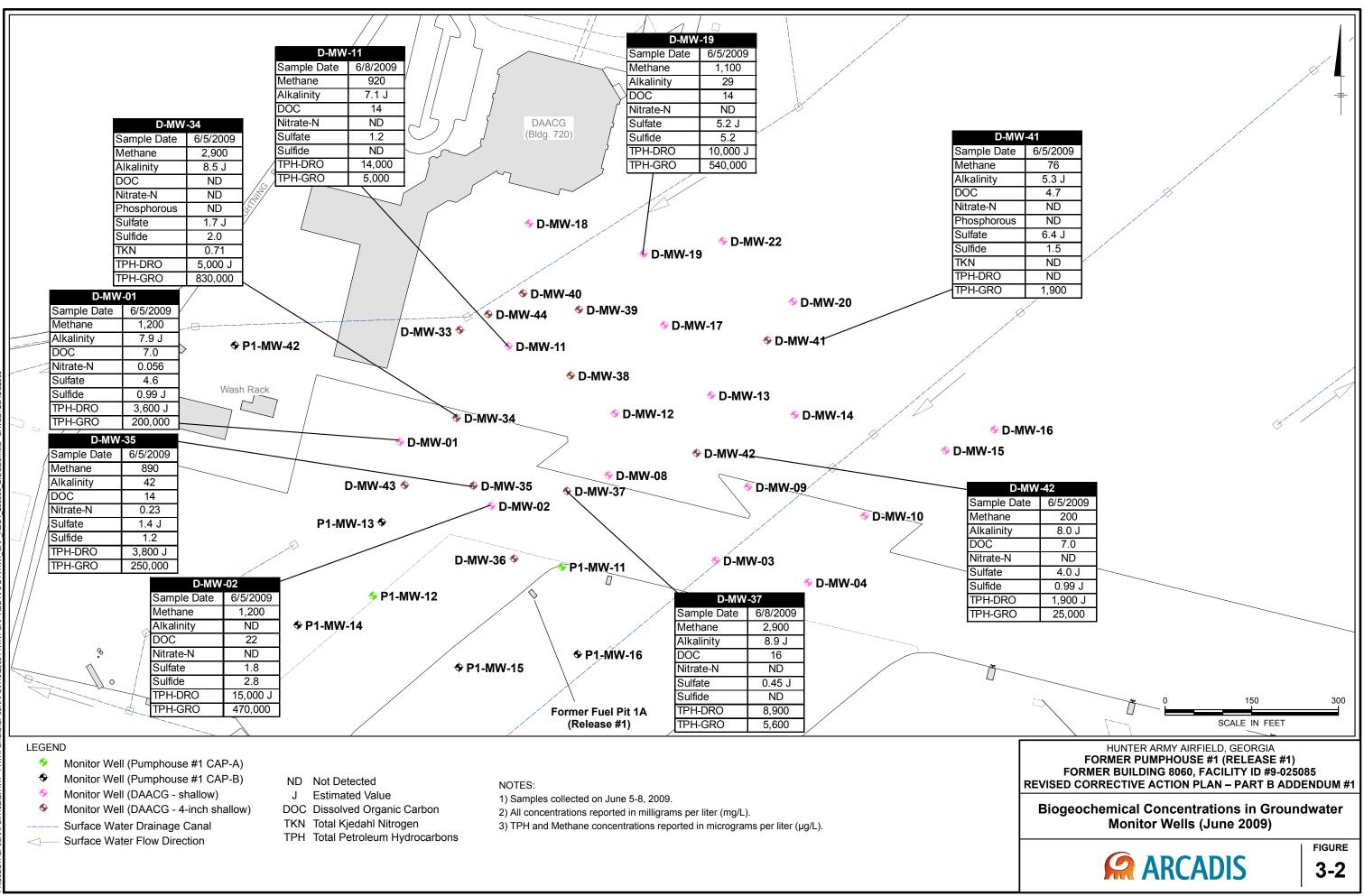
A project schedule for the proposed corrective action was provided in the Revised CAP (ARCADIS 2009). Fort Stewart will notify GA EPD of any significant changes to the schedule and will provide GA EPD with an updated Gantt chart, as necessary.

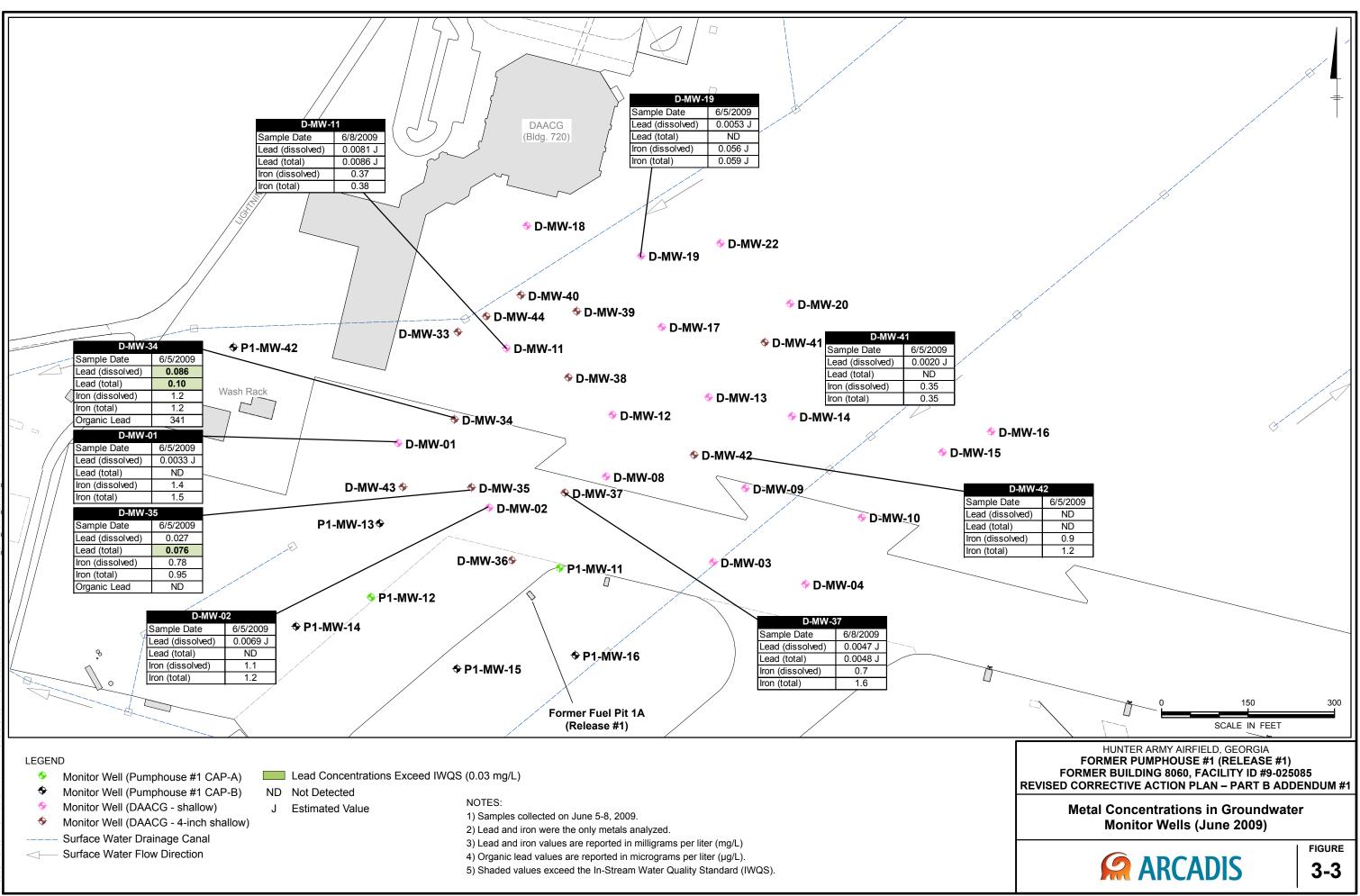

Hunter Army Airfield, Georgia

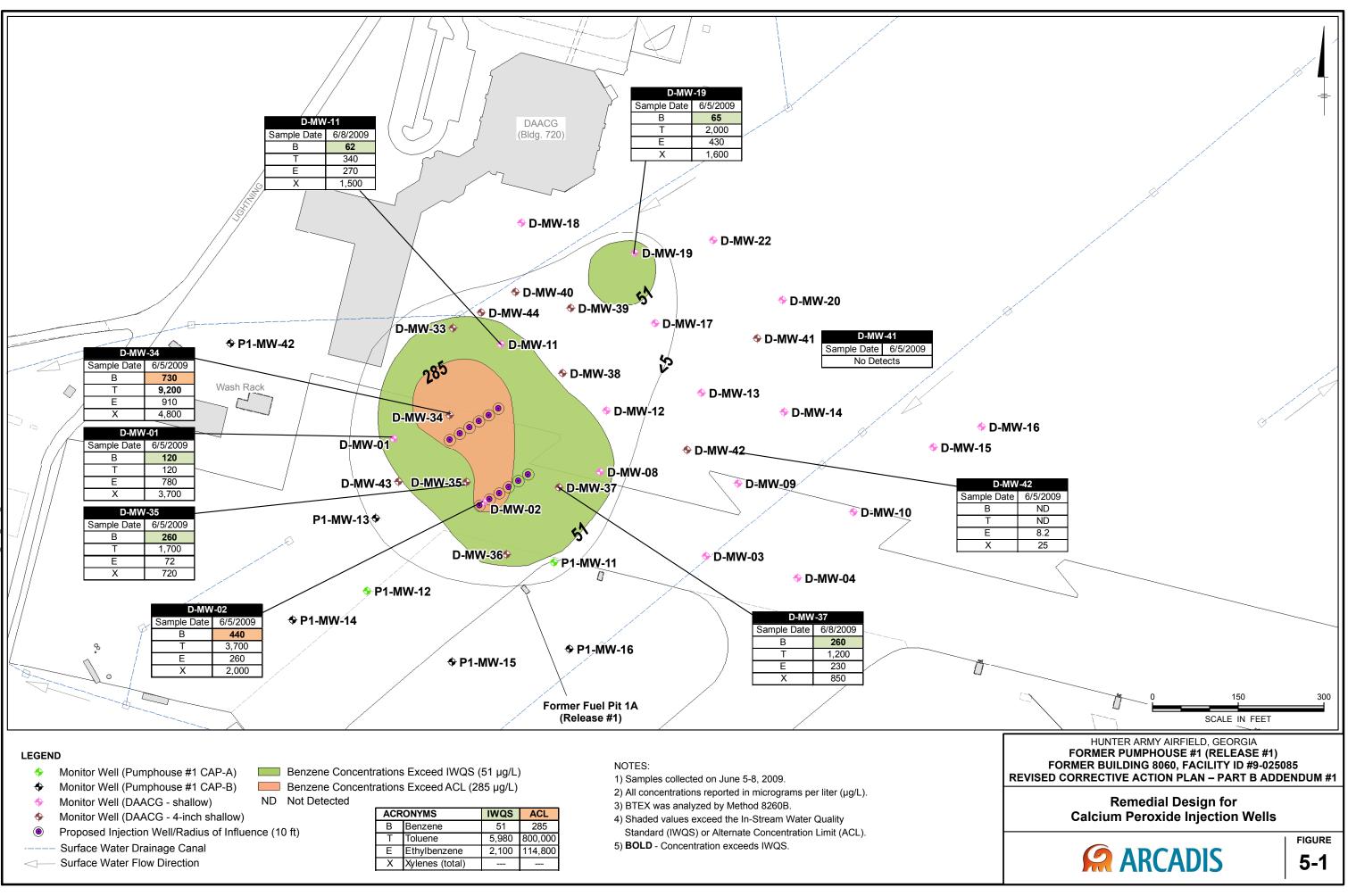

8. References

- ARCADIS. 2009. Final Revised Corrective Action Plan Part B with 2008 Annual Report for Former Pumphouse #1 (Release #1), Former Building 8060, Facility ID #9-025085*1, Hunter Army Airfield, Georgia. June.
- U.S. Environmental Protection Agency (USEPA). 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Vol. 2. Assessment for Non-Radionuclides including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium. October.
- Science Applications International Corporation. 2006. Corrective Action Plan–Part B Addendum #2 for Former Pumphouse #1, Facility ID #9-025085, Building 8060, Hunter Army Airfield, Georgia. July.
- Science Applications International Corporation. 2002. Corrective Action Plan–Part B Addendum #1 for Former Pumphouse #1, Facility ID #9-025085, Building 8060, Hunter Army Airfield, Georgia. July.
- Science Applications International Corporation. 2000. Corrective Action Plan–Part B for Former Pumphouse #1, Facility ID #9-025085, Building 8060, Hunter Army Airfield, Georgia. August.
- Wiedemeier, T.H., H.S. Rifai, J.T. Wilson, and C. Newell. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley and Sons.

Appendix A


Figures




ACR	ONYMS	IWQS	ACL
В	Benzene	51	285
Т	Toluene	5,980	800,000
Е	Ethylbenzene	2,100	114,800
Х	Xylenes (total)		

MADI q DB:(B.,

TAN/E. DB:(B

Appendix B

Tables

Table 3-1 Biogeochemical Parameter Concentrations in Groundwater Monitor Wells - June 2009 Revised Corrective Action Plan - Part B Addendum #1 Former Pumphouse #1 (Release #1) Former Building 8060

Hunter Army Airfield, Georgia

	Location ID	D-MW-01	D-MW-02	D-MW-11	D-MW-19	D-MW-34	D-MW-35	D-MW-37	D-MW-41	D-MW-42
	Sample ID	D-MW1 (060509)	D-MW2 (060509)	D-MW11(060809)	D-MW19(060509)	D-MW34 (060509)	D-MW35 (060509)	D-MW37(060809)	D-MW 41 (060509)	D-MW 42 (060509)
	Sample Date	6/5/2009	6/5/2009	6/8/2009	6/5/2009	6/5/2009	6/5/2009	6/8/2009	6/5/2009	6/5/2009
Chemical Name	Unit									
VOCs										
Methyl tert-butyl ether	ug/l	< 20	< 25	< 2.5	<5	< 25	< 20	< 10	< 0.5	< 0.5
Metals										
Iron (dissolved)	mg/l	1.4	1.1	0.37	0.056 J	1.2	0.78	0.7	0.35	0.9
Iron (total)	mg/l	1.5	1.2	0.38	0.059 J	1.2	0.95	1.6	0.35	1.2
Lead (dissolved)	mg/l	0.0033 J	0.0069 J	0.0081 J	0.0053 J	0.086	0.027	0.0047 J	0.002 J	< 0.01
Lead (total)	mg/l	0.0064 UB	0.026 UB	0.0086 J	0.0068 UB	0.1	0.076	0.0048 J	0.0035 UB	0.0023 UB
Organic Lead	ug/l				-	341	<23	-		
Biogeo										
Methane	ug/l	1,200	1,200	920	1,100	2,900	890	2,900	76	200
TPH-GRO	ug/l	200,000	470,000	5,000	540,000	830,000	250,000	5,600	1,900	25,000
TPH-DRO	ug/l	3,600 J	15,000 J	14,000	10,000 J	5,000 J	3,800 J	8,900	200 UB	1,900 J
Sulfate	mg/l	4.6	1.8	1.2	5.2 J	1.7 J	1.4 J	0.45 J	6.4 J	4.0 J
TKN	mg/l					0.71			< 0.5	
Nitrate	mg/l	0.056	0.045 UB	< 0.02	0.011 UB	< 0.02	0.23	< 0.02	0.0044 UB	0.0038 UB
Phosphorus	mg/l					< 0.01			< 0.01	
Alkalinity	mg/l	7.9 J	< 10	7.1 J	29	8.5 J	42	8.9 J	5.3 J	8 J
Sulfide	mg/l	0.99 J	2.8	2.9 UB	5.2	2	1.2	2 UB	1.5	0.99 J
Dissoved Organic Carbon	mg/l	7	22	14	14	10 UB	14	16	4.7	7

Notes:

mg/L - miligram per Liter

ug/L - microgram per Liter

J - estimated result

UB - result reported as non-detect due to blank contamination

TKN - Total Kjedahl Nitrogen

TPH - Total Petroleum Hydrocarbons

DRO - Diesel Range Organics

GRO - Gasoline Range Organics

Table 3-2Field Parameters in Groundwater Monitor Wells - June 2009Revised Corrective Action Plan-Part B Addendum #1Former Pumphouse #1 (Release #1)Former Building 8060Hunter Army Airfield, Georgia

Sample ID	Turbidity (NTUs)	pH (SU)	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)
D-MW-01	0.0	4.66	40	26.18	0.22
D-MW-02	0.0	4.28	37	26.09	0.19
D-MW-11	2.74	4.55	32	27.18	0.64
D-MW-19	0.03	5.07	93	26.24	0.57
D-MW-34	0.0	4.64	38	25.22	0.46
D-MW-35	0.0	5.55	143	26.91	0.28
D-MW-37	3.98	4.68	50	25.73	0.26
D-MW-41	0.0	4.69	40	27.96	0.49
D-MW-42	4.5	4.99	37	26.69	0.55

Notes:

NTU - Nephelometric Turbidity Units SU - Standard Unit mg/L - milligram per Liter uS/cm - microsiemens per centimeter °C - degrees Celsius

Sample			Benzene	Toluene	Ethylbenzene	Xylenes
Location	Sample ID	Date Sampled	(• g/L)	(• g/L)	(• g/L)	(• g/L)
	Supplemental Corre	ective Action Plan–Pa	art B Investiga	ation - 2001 (R	elease #1)	
D-MW-01	AK0122	3/10/2001	99.8 =	17.3 =	119 =	776 =
D-MW-02	AK0222	3/11/2001	400 =	11,200 =	1,050 =	4,940 =
D-MW-03	AK0322	3/11/2001	1 U	1 U	0.21 J	0.74 J
D-MW-08	AK0822	3/11/2001	156 =	31.4 =	389 =	1,930 =
D-MW-09	AK0922	3/9/2001	1 U	1 U	1 U	0.54 J
D-MW-11	AK1122	3/10/2001	179 =	398 =	187 =	1,490 =
D-MW-12	AK1222	3/11/2001	58.1 =	123 =	222 =	2,020 =
D-MW-13	AK1322	3/9/2001	25.0 U	36.2 U	861 =	3,200 =
D-MW-14	AK1422	3/9/2001	1 U	1 U	0.2 J	1.4 J
D-MW-17	AK1722	3/11/2001	159 =	3,550 =	364 =	3,250 =
D-MW-18	AK1822	3/10/2001	0.32 J	1.4 =	0.61 J	4.3 =
D-MW-19	AK1922	3/9/2001	64.2 =	1,510 =	365 =	1,450 =
D-MW-20	AK2022	3/9/2001	1 U	1 U	1 U	3 U
D-MW-22	AK2222	3/9/2001	1 U	0.33 J	10	3 U
D-MW-33	AK3322	3/9/2001	77.9 =	774 =	470 =	2,060 =
D-MW-34	AK3422	3/11/2001	388 =	8,180 =	1,060 =	4,740 =
D-MW-35	AK3522	3/11/2001	765 =	29,600 =	1,280 =	6,370 =
D-MW-36	AK3622	3/9/2001	197 =	2,050 =	586 =	2,120 =
D-MW-37	AK3722	3/10/2001	601 =	5,340 =	423 =	1,860 =
D-MW-38	AK3822	3/9/2001	123 =	2,410 =	738 =	3,730 =
D-MW-39	AK3922	3/9/2001	29.7 =	98.4 =	340 =	2,010 =
D-MW-40	AK4022	3/9/2001	313 =	75.3 =	959 =	4,230 =
D-MW-41	AK4122	3/9/2001	10	1 U	1 U	0.43 J
D-MW-42	AK4222	3/9/2001	1 U	112 =	192 =	962 =
D-MW-43	AK4322	3/9/2001	10 =	157 =	36.8 =	161 =
P1-MW-12	AN1222	3/11/2001	1.7 =	2.1 =	138 =	440 =
P1-MW-13	AN1322	3/9/2001	19.5 =	493 =	182 =	788 =
P1-MW-14	AN1422	3/10/2001	0.2 J	1.5 =	1.2 =	6 =
P1-MW-15	AN1522	3/10/2001	1 U	0.29 J	0.24 J	1.3 J
P1-MW-16	AN1622	3/10/2001	1 U	0.27 J	10	0.4 U
P1-MW-42	AN4222	3/9/2001	1 U	1 U	10	0.48 J
	n Water Quality Standa		51	5,980	2,100	NRC
	Iternate Concentration	\ /	285	800,000	114,800	

Source: 2007 Free Product Removal and Monitoring only Report (SAIC 2008)

Notes:

a - Groundwater sample inadvertently not collected in December 2006; therefore, the sample was collected in January **Bold** values exceed In-Stream Water Quality Standard

Italic values exceed Alternate Concentration Limits

BTEX - benzene, toluene, ethylbenzene, and xylenes

ND - Not Detected

NRC - No Regulatory Criteria

Laboratory Qualifiers:

J - Indicates that the value for the compound is estimated

U - Indicates that the compound was not detected at the concentration reported

= - Indicates that the compound was detected at the concentration reported

Sample			Benzene	Toluene	Ethylbenzene	Xylenes
Location	Sample ID	Date Sampled	(• g/L)	(• g/L)	(• g/L)	(• g/L)
	Firs	t Annual Sampling E	vent – Decem	ber 2006		
D-MW-01	AK0132	12/14/2006	95.9 =	43.9 =	605 =	1,930 =
D-MW-02	AK0232	12/14/2006	399 =	2,430 =	659 =	1,940 =
D-MW-03	AK0332	12/14/2006	1 U	0.563 J	0.518 J	2.2 =
D-MW-08	AK0832	12/14/2006	113 =	51.2 =	258 =	1,390 =
D-MW-09	AK0932	12/13/2006	1 U	1 U	1 U	1 U
D-MW-11	AK1132	12/14/2006	78 =	312 =	352 =	1,750 =
D-MW-12	AK1232	12/14/2006	15.2 =	63 =	337 =	1,940 =
D-MW-13	AK1332	12/15/2006	1 U	3.27 J	332 =	721 =
D-MW-14	AK1432	12/13/2006	1 U	1 U	1 U	1 U
D-MW-17	AK1732	12/15/2006	45.6 =	1,280 =	264 =	1,810 =
D-MW-18	AK1832	12/15/2006	1 U	1 U	1 U	1 U
D-MW-19	AK1932	12/15/2006	98.6 =	2,270 =	705 =	2,170 =
D-MW-20	AK2032	12/15/2006	1 U	0.436 J	1 U	0.458 J
D-MW-22	AK2232	12/15/2006	1 U	1 U	1 U	1 U
D-MW-33	AK3332	12/14/2006	115 =	1,130 =	287 =	1,140 =
D-MW-34	AK3432	12/14/2006	254 =	2,220 =	175 =	1,490 =
D-MW-35	AK3532	12/14/2006	143 =	922 =	126 =	1,400 =
D-MW-36	AK3632	12/13/2006	131 =	18 =	234 =	379 =
D-MW-37	AK3732	12/13/2006	18.5 =	130 =	14.5 =	79.3 =
D-MW-38	AK3832	12/14/2006	18.8 =	116 =	291 =	1300 =
D-MW-39	AK3932	12/15/2006	1 U	0.273 J	18.6 =	9.74 =
D-MW-40	AK4032	12/15/2006	8.09 =	4.95 =	46.4 =	181 =
D-MW-41	AK4132	12/13/2006	1 U	0.266 J	1 U	0.474 J
D-MW-42	AK4232	12/13/2006	1 U	0.392 J	2.59 =	10.2 =
D-MW-43	AK4332	12/15/2006	28.4 =	119 =	200 =	562 =
D-MW-44	AK4432	01/17/07 <i>a</i>	23.2 =	85 =	225 =	496 =
P1-MW-12	AN1232	12/13/2006	1.42 =	0.452 J	234 =	247 =
P1-MW-13	AN1332	12/15/2006	6.82 =	50.6 =	252 =	899 =
P1-MW-14	AN1432	12/13/2006	1 U	1 U	1 U	1 U
P1-MW-15	AN1532	12/13/2006	1 U	1 U	1 U	1 U
Instream	Water Quality Standa	ard (IWQS)	51	5,980	2,100	NRC
Alternate Concentration Limit			285	800,000	114,800	
Source: 2007 Free Product Removal and Monitoring only Reg				,	• •	

Source: 2007 Free Product Removal and Monitoring only Report (SAIC 2008)

Notes:

a - Groundwater sample inadvertently not collected in December 2006; therefore, the sample was collected in January **Bold** values exceed In-Stream Water Quality Standard

Italic values exceed Alternate Concentration Limits

ND - Not Detected

NRC - No Regulatory Criteria

Laboratory Qualifiers:

J - Indicates that the value for the compound is estimated

U - Indicates that the compound was not detected at the concentration reported

= - Indicates that the compound was detected at the concentration reported

Sample			Benzene	Toluene	Ethylbenzene	Xylenes
Location	Sample ID	Date Sampled	(• g/L)	(• g/L)	(• g/L)	(• g/L)
	Seco	nd Annual Sampling	Event – Decei	mber 2007		
D-MW-01	AK0152	12/6/2007	17.9 =	5.1 =	228 =	512 =
D-MW-02	AK0252	12/6/2007	204 =	2,550 =	324 =	1,650 =
D-MW-03	AK0352	12/5/2007	1 U	1 U	1 U	1 U
D-MW-08	AK0852	12/5/2007	118 =	26.4 =	312 =	1,610 =
D-MW-09	AK0952	12/5/2007	1 U	1 U	1 U	1 U
D-MW-11	AK1152	12/6/2007	90.3 =	277 =	247 =	1,580 =
D-MW-12	AK1252	12/5/2007	8.77 =	69.1 =	174 =	605 =
D-MW-13	AK1352	12/5/2007	1 U	2.13 =	334 =	633 =
D-MW-14	AK1452	12/5/2007	1 U	1 U	1 U	1 U
D-MW-17	AK1752	12/7/2007	51.5 =	2,680 =	297 =	1,420 =
D-MW-18	AK1852	12/6/2007	1 U	1 U	1 U	1 U
D-MW-19	AK1952	12/6/2007	96.3 =	2,280 =	692 =	811 =
D-MW-20	AK2052	12/6/2007	1 U	1 U	1 U	0.281 J
D-MW-22	AK2252	12/7/2007	1 U	1 U	1 U	1 U
D-MW-33	AK3352	12/6/2007	240 =	1,180 =	557 =	2,240 =
D-MW-34	AK3452	12/6/2007	935 =	8,270 =	1,000 =	4,680 =
D-MW-35	AK3552	12/6/2007	330 =	3,180 =	130 =	1,010 =
D-MW-36	AK3652	12/6/2007	116 =	10.5 =	165 =	369 =
D-MW-37	AK3752	12/7/2007	212 =	407 =	77.1 =	384 =
D-MW-38	AK3852	12/7/2007	3.97 =	3.65 =	80 =	283 =
D-MW-39	AK3952	12/7/2007	1.7 =	0.259 J	64.8 =	32.6 =
D-MW-40	AK4052	12/7/2007	5.94 =	2.25 =	44.1 =	170 =
D-MW-41	AK4152	12/7/2007	1 U	0.492 J	1 U	0.464 J
D-MW-42	AK4252	12/7/2007	1 U	1 U	1.63 =	2.07 =
D-MW-43	AK4352	12/8/2007	9.99 =	158 =	82.8 =	269 =
D-MW-44	AK4452	12/7/2007	13.1 =	78.9 =	54.2 =	206 =
P1-MW-12	AN1252	12/7/2007	1.02 =	0.307 J	265 =	211 =
P1-MW-13	AN1352	12/8/2007	7.43 =	194 =	195 =	536 =
P1-MW-14	AN1452	12/8/2007	1 U	0.263 J	1 U	0.317 J
P1-MW-15	AN1552	12/7/2007	1 U	1 U	1 U	1 U
Instream Water Quality Standard (IWQS)			51	5,980	2,100	NRC
Alternate Concentration Limit			285	800,000	114,800	

Source: 2007 Free Product Removal and Monitoring only Report (SAIC 2008)

Notes:

a - Groundwater sample not collected in December 2006; sample was collected in January 2007.

Bold values exceed In-Stream Water Quality Standard

Italic values exceed Alternate Concentration Limits

ND - Not Detected

NRC - No Regulatory Criteria

Laboratory Qualifiers:

 ${\sf J}$ - Indicates that the value for the compound is estimated

 $\ensuremath{\mathsf{U}}$ - Indicates that the compound was not detected at the concentration reported

= - Indicates that the compound was detected at the concentration reported

Sample			Benzene	Toluene	Ethylbenzene	Xylenes	
Location	Sample ID	Date Sampled	(• g/L)	(• g/L)	(• g/L)	(• g/L)	
Groundwater DPT Samples - January 2008							
D-DB-01	AK0118(011508)	1/15/2008	1 U	1.63 =	0.754 J	3.35 =	
D-DB-02	AK0214(011508)	1/15/2008	0.999 J	122 =	150 =	496 =	
D-DB-02	AK0218(011508)	1/15/2008	0.959 J	141 =	159 =	535 =	
D-DB-03	AK0318(011508)	1/15/2008	1 U	0.276 J	0.257 J	0.904 J	
D-DB-04	AK0418(011508)	1/15/2008	216 =	2360 =	1010 =	3890 =	
D-DB-05	AK0518(011608)	1/16/2008	137 =	3730 =	542 =	1890 =	
D-DB-06	AK0618(011608)	1/16/2008	106 =	10100 =	1030 =	3900 =	
D-DB-07	AK0714(011608)	1/16/2008	1 U	0.553 J	0.357 J	1.65 =	
D-DB-07	AK0718(011608)	1/16/2008	1 U	0.622 J	0.367 J	1.56 =	
D-DB-08	AK0818(012308)	1/23/2008	131 =	917 =	827 =	3740 =	
D-DB-09	AK0918(012308)	1/23/2008	0.815 J	7.36 =	641 =	2080 =	
D-DB-10	AK1018(012408)	1/24/2008	171 =	5830 =	577 =	3610 =	
D-DB-11	AK1118(012408)	1/24/2008	133 =	6680 =	1070 =	5670 =	
D-DB-12	AK1218(012408)	1/24/2008	<u>1 U</u>	4.46 =	83.9 =	192 =	
D-DB-12	AK1214(012408)	1/24/2008	<u>1 U</u>	4.12 =	80.1 =	183 =	
D-DB-13	AK1318(012408)	1/24/2008	0.538 J	0.476 J	1 U	10	
D-DB-14	AK1418(012308)	1/23/2008	738 =	6130 =	808 =	3680 =	
D-DB-15	AK1518(012308)	1/23/2008	156 =	1140 =	384 =	1800 =	
D-DB-16	AK1618(012408)	1/24/2008	35.5 =	333 =	810 =	3570 =	
D-DB-17	AK1714(012408)	1/24/2008	6.51 =	2250 =	415 =	1910 =	
D-DB-17	AK1718(012408)	1/24/2008	5.97 =	2350 =	440 =	2070 =	
D-DB-18	AK1818(012408)	1/24/2008 1/25/2008	1.56 =	246 =	1500 =	5190 =	
D-DB-19	AK1918(012508)		1 U	0.329 J	0.266 J	10	
D-DB-20	AK2018(012308)	1/23/2008	448 =	1370 =	653 =	3280 =	
D-DB-21 D-DB-22	AK2118(012308) AK2218(012508)	1/23/2008 1/25/2008	599 = 497 =	5460 = 250 =	786 = 548 =	3570 = 2160 =	
D-DB-22 D-DB-23	AK2318(012508)	1/25/2008	<u>497 =</u> 93.4 =	250 =	871 =	2550 =	
D-DB-23 D-DB-24	AK2418(012508)	1/25/2008	0.399 J	6.55 =	50.3 =	2550 = 143 =	
D-DB-24 D-DB-25			<u> </u>	0.55 = 1 U	0.252 J	143 = 1U	
D-DB-25 D-DB-26	AK2518(012508) AK2618(012508)	1/25/2008 1/25/2008	382 =	3280 =	620 =	2580 =	
D-DB-26 D-DB-27	AK2010(012508) AK2714(012608)	1/26/2008	208 =	5210 =	543 =	2360 =	
D-DB-27 D-DB-27	AK2714(012608)	1/26/2008	208 =	6570 =	680 =	2720 =	
D-DB-27 D-DB-28	AK2818(012608)	1/26/2008	1,360 =	555 =	715 =	2650 =	
D-DB-20 D-DB-29	AK2918(012608)	1/26/2008	709 =	292 =	919 =	3490 =	
D-DB-23 D-DB-30	AK3018(012608)	1/26/2008	10.4 =	2.04 J	70.3 =	330 =	
D-DB-30	AK3118(012608)	1/26/2008	1 U	0.27 J	0.579 J	1.74 =	
D-DB-31	AK3218(012708)	1/27/2008	37 =	2300 =	472 =	1810 =	
D-DB-32	AK3214(012708)	1/27/2008	32.5 =	2240 =	439 =	1620 =	
D-DB-33	AK3318(012708)	1/27/2008	153 =	3700 =	400 =	1790 =	
D-DB-34	AK3418(012708)	1/27/2008	434 =	4030 =	673 =	1380 =	
D-DB-35	AK3518(012708)	1/27/2008	157 =	276 =	952 =	4490 =	
D-DB-36	AK3618(012608)	1/26/2008	9.47 =	8.85 =	447 =	1720 =	
D-DB-37	AK3718(012608)	1/26/2008	<u> </u>	1 U	1U	0.301 J	
D-DB-38	AK3818(011608)	1/16/2008	1.28 =	385 =	338 =	1220 =	
D-DB-39	AK3918(011608)	1/16/2008	2.04 =	555 =	120 =	475 =	
D-DB-40	AK4018(012308)	1/23/2008	1.97 =	1.62 =	12.9 =	67.3 =	
D-DB-41	AK4118(012708)	1/27/2008	12.4 =	119 =	302 =	1180 =	
D-DB-42	AK4218(012708)	1/27/2008	1 U	59.9 =	480 =	3080 =	
D-DB-43	AK4318(012808)	1/28/2008	1 U	1 U	1 U	0.728 J	
D-DB-44	AK4418(012808)	1/28/2008	1 U	10	1 U	0.264 J	
D-DB-45	AK4518(012808)	1/28/2008	1 U	10	1 U	1 U	
	ream Water Quality Standard		51	5,980	2,100	NRC	
	Alternate Concentration Lim	, <u>,</u>	285	800,000	114,800		
Alternate Concentration Limit			200	000,000	114,000		

Source:2008 Supplemental Site Investigation Data Package Former Pumphouse #1, Release #1 (SAIC, 2008)

Notes:

Bold values exceed IWQS

Italics values exceed alternate threshold limits

ug/L - microgram per Liter

NRC - No regulatory Criteria

DPT - Direct Push Tecnology

Laboratory Qualifiers:

U - Indicates the compound was not detected at the concentration reported

J - Indicates the value of the compound is an estimated value

= - Indicates the compound was detected at the concentration reported

Sample			Benzene	Toluene	Ethylbenzene	Xylenes	
Location	Sample ID	Date Sampled	(• q/L)	(• q/L)	(• g/L)	(• g/L)	
Third Annual Sampling Event – December 2008							
D-MW-01	D-MW1 (121608)	12/16/2008	300	220	2,500	8,800	
D-MW-02	D-MW2 (121708)	12/17/2008	260	2,200	230	1,200	
D-MW-08	D-MW8 (121708)	12/17/2008	120	20	260	1,400	
D-MW-11	D-MW11 (121708)	12/17/2008	74	280	270	1,600	
D-MW-12	D-MW12 (121708)	12/17/2008	15	140	270	1,700	
D-MW-13	D-MW13 (121708)	12/17/2008	2.5 U	2.5 U	220	800	
D-MW-17	D-MW17 (121708)	12/17/2008	40	1,600	210	1,500	
D-MW-18	D-MW18 (121708)	12/17/2008	0.5 U	0.5 U	0.5 U	0.5 U	
D-MW-19	D-MW19 (121708)	12/17/2008	120	2,900	690	2,400	
D-MW-22	D-MW22 (121708)	12/17/2008	0.5 U	0.5 U	0.5 U	0.5 U	
D-MW-33	D-MW33 (11708)	12/17/2008	250	1,400	530	2,200	
D-MW-34	D-MW34 (121608)	12/16/2008	490 J	4,900 J	510 J	2,700 J	
D-MW-34	DUP-HAA13RI-1 (121608)	12/16/2008	240 J	2,400 J	220 J	1,300 J	
D-MW-35	D-MW35 (121708)	12/17/2008	140	1,100	110	840	
D-MW-35	DUP-HAA13R1-2 (121708)	12/17/2008	140	1.000	98	740	
D-MW-36	D-MW36 (121608)	12/16/2008	57	1.7	200	350	
D-MW-37	D-MW37 (121708)	12/17/2008	64	100	160	720	
D-MW-38	D-MW38 (121708)	12/17/2008	3.1	4.3	43	160	
D-MW-39	D-MW39 (121708)	12/17/2008	2.7	1.9	40	180	
D-MW-40	D-MW40 (121708)	12/17/2008	16	11	94	420	
D-MW-41	D-MW41 (121708)	12/17/2008	0.5 U	0.5 U	0.5 U	0.5 U	
D-MW-42	D-MW42 (121708)	12/17/2008	0.5 U	0.5 U	1.4	1.9	
D-MW-43	D-MW43 (121808)	12/18/2008	22	57	180	620	
P1-MW-11	P1-MW11 (121608)	12/16/2008	29	91	680	1,900	
P1-MW-12	P1-MW12 (121608)	12/16/2008	0.5 U	0.5 U	17	64	
P1-MW-13	P1-MW13 (121608)	12/16/2008	4.8	130	160	480	
P1-MW-42	P1-MW42 (121708)	12/17/2008	0.5 U	0.5 U	0.5 U	0.5 U	
In-Str	eam Water Quality Standard	(IWQS)	51	5,980	2,100	NRC	
Al	ternate Concentration Limit (A	(CL)	285	800,000	114,800		
Sample	(/	Benzene	Toluene	Ethylbenzene	Xylenes	
Location	Sample ID	Date Sampled	(• q/L)	(• g/L)	(• g/L)	(• g/L)	
		Annual Samplin					
D-MW-01	D-MW1 (060509)	6/5/2009	120	120	780	3,700	
D-MW-02	D-MW2 (060509)	6/5/2009	440	3,700	260	2,000	
D-MW-11	D-MW11(060809)	6/8/2009	62	340	270	1,500	
D-MW-19	D-MW19(060509)	6/5/2009	65	2,000	430	1,600	
D-MW-34	D-MW34 (060509)	6/5/2009	730	9,200	910	4,800	
D-MW-35	D-MW35 (060509)	6/5/2009	260	1,700	72	720	
D-MW-37	D-MW37(060809)	6/8/2009	260	1,200	230	850	
D-MW-41	D-MW 41 (060509)	6/5/2009	< 0.5	< 0.5	< 0.5	< 0.5	
D-MW-42	D-MW 42 (060509)	6/5/2009	< 0.5	< 0.5	8.2	25	
In-Stream Water Quality Standard (IWQS) (Revised 2009)			51	5,980	2,100		
Alternate Concentration Limit (ACL)				,			

Notes: Bold values exceed IWQS or ACLs

Italics values exceed alternate threshold limits

ug/L - microgram per Liter

NRC - No regulatory Criteria

DPT - Direct Push Tecnology

Laboratory Qualifiers: U - Indicates the compound was not detected at the concentration reported

J - Indicates the value of the compound is an estimated value

= - Indicates the compound was detected at the concentration reported

Table 4-1Properties of Oxygen Release ChemicalsRevised Corrective Action Plan-Part B Addendum #1Former Pumphouse #1 (Release #1)Former Building 8060Hunter Army Airfield, Georgia

Properties	Magnesium-Peroxide	Calcium-Peroxide	Sodium-Percarbonate	
Formula	MgO ₂	CaO ₂	2 Na ₂ CO ₃ 3 H ₂ O ₂	
Molecular weight (g/mol)	56	72	314	
Purity (%)	35	>75	>88	
Additions	Mg (60%)	Ca(OH) ₂ , CaCO ₃		
pH (con = 10 g/L; T = 20° C)	10.3	11.9	10.4-10.6	
Density (kg/m ³)	500	670	900-1200	
Solubility in water (g/L)	<0.1	<0.1	150	
formed in solution	Mg(OH) ₂ ,	Ca(OH) ₂ ,	Na ₂ CO ₃ ,	
	O ₂	O_2	H_2O_2 and O_2	
Clogging Potential	Yes: Mg(OH) ₂	Yes: Ca(OH) ₂	No	
%O ₂ generated	28	22	15	
$%O_2$ in relation to its purity	10	17	13	

Appendix C

Laboratory Analytical Results

Comments	3. Relinquested by AR	2. Relinquished by	VI 6	ne Required (Prior] Rush (Specify)	Non-Hazard Flammable Skin Irritant Poison Unknown	Prosible Hazard Identification		U DO	R		0608m) V	IB-01 (060809) 11		D-MW37 (060009) 6/8/09/	Sample ID / Description Date (Containers for each sample may be combined on one line.)	SPOBHAFJ. HIZA. NAIKZ P.O. NO.	muse 1 Release	Attunta GA 30339	ies Ferry	ARCADIS	SHE. Chain of Custody Record
LAB USE ONLY Received on ice (Circle) (Yas)	Date 9/ 69 Time 3. Laboration received		9	QC Requirements (Specify)	Return to Client	Sample Disposal					1430 X 3 3		345 X 2 1511	1350 K 2 1.511	G=d C=Cor Aqueous Solid Non- Aqueous Unpres. H2SO4 HNO3 HCI NaOH 5035 Kil	be te te te te te te te te te t	Erica Maddox	Q	Sampler's signature	Report to Contact SLOVA BOSTICUM	SHEALY ENVIRONMENTAL-SERVICES, INC 106 Va Point Drive West Columbia, Jouth Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111
cle) (Yds) No Ice Pack	- HIM Ma			Specify		Note: All samples are retained for six weeks from receipt									CHERT (HE EL CON CON	A T P PS	the for the fo		Maguni inv.	Telephone No. / Fax No. / E-mail 770-431-86666 /770-435-	VICES, INC. 29172 803) 791-9111
Receipt Temp. 3 . 5 °C	Clate glag Time Og 15	Date			e made.	leeks from receipt									H Rem	ZIUDULL REFUS			Page of	5-2666 Quote No.	Number _ 2134

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINK-Field/Client Copy

Drammant Alimhan E AD 110 Effaction Dr.

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINK-Field/Client Copy	3. Relinquished by LollEx	2. Relinquished by	T. Relinquished by	or lab approval req	Possible Hazard Identification			(060507) 1		D-MWI (000009) 6/5/09/11		HAANS Rimphonse 1, Release 1	State GH	29449 Paces Ferry Rd	Client ARCADIS	SHEA Chain of Custody Record
Received on ice (Circle) Yes) No	Cate/G/6/5 Time 3. Laboratory received by Mall	Date Time 2. Received by	Date Time 1. Received by	QC Requirements (Specify)	Sample Disposal Note:	Selfa Maria		1230 X 3 V	1300 X 3 1 5 · V V	$ S X 3 5 \sqrt{\sqrt{2}}$	Time G=Grab C=Composite Aqueous Solid Non- Aqueous by Preservative Type HRSO4 HNO3 HCI HRSO4 HO1 HRSO4 HNO3 HCI NaOH KI Solid Non- Aqueous Solid Non- Non- Solid Non- Solid Non- Non-		Printed Name	Waybill No.	ו≽ יו	SHEALY ENVIRONMENTAL SERVICES, INC. 106 Var Point Drive West Columbia, south Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111
Ice Pack Receipt Temp 2.8 °C "	L Date Time CASHER 1700 SAV	Date Time していしていていていていていていていていていていていていていていていていていて	Date Time		All samples are retained for six weeks from receipt unless other arrangements are made.						$\frac{1}{12} = \frac{1}{12} $	15 Jest Strip	Attach list if more space is needed.)	Page 1 of	o. / Fax No. / E-mail Quote No.	Number 1-2191

•

•

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINK-Field/Client Copy

665

Commer'	3. Relinquished by Fedre Ex	2. Relinquished by	(made) us	or lab approval required for exp	Possible Hazard Identification				-					6/s/09	on one line.)	SPOBHAFS, HIBA, NULL P.O. NO.	Project Name HAA-13 Primphase 1. Release 1	ON AAlanta AA 30339	s Ferry Rd	-		SHEALY Chain of Custody Record
's USE DNLY seived on ice (Circle)	Date Chong Time 3. Laboratory received by		Date Time 1. Received by		Sample Disposal				201.12	AWAA & Vola		0900 X 2	1425 X 2 35	0910 K 2 35	Gree Creation Aqueous Solid Non- Aqueous Unpres. H2SO4 HNO3 HCI NaOH 5035 Kill	appine Matrix by Preservative Type	Enca Maddox	Printed Name	S. Maddo	Sampler's Signature		SHEALY ENVIRONMENTAL-SERVICES, INC 106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111
No loe Pack	aby MAAN Date	Date	Date	pecily)	Note: All samples are retained for six weeks from receipt unless other arrangements are made.			/						/ / / /	1 05: 14 A	1 20 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H SH SE	1 1 101	Analysis (Attach lit	1702431-8666/20-435-2466 Waybill No.	Telenhone No / Fax No / E-mail	-9111
Receipt Temp. X	5/0 5 Time 77	e Time	e Time		from receipt	Ochichar.	NAR -	request	asper	Sulfide	Addard				72	KENGDRY	10	<u> </u>	ce is needed.)		Quote No.	Number 102226

-

DISTRIBUTION; WHITE & YELLOW-Return to laboratory with Sample(s); PINK-Field/Client Copy

-

Dorviment Milmher F.4D.012 Effective Date: 08.04.02

WRONMENTAL SERVICES, INC. 106 Varitage Point Drive Columbia, South Carlolina 29172 Recommentation of the service	DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINIK-Field/Client Copy	Commen	3. Relinquished by Folk	2. Relinquished by	T. Relinquished by	21	Possible Hazard Coentrication Non-Hazard Flammable Skin Imitant Poison Unknown	Constant of the second s			Trip blank 6/s/ml.	(06050g) (elsting)	060509) 6/5/09	afs/91	Ine.) Date	Project No. CONSHADS, HOA, NIRI PO. NO.	Pumohouse	City I State Zip Code	advess 2849 Pares Forn Rd Stelloo	Arradis	SHEALY Chain of Custody Record
Analysis (Attach is Analysis (Attach is Analys		rUSE ONLY (109 mme	Time	Iston Time 1.		Return to Client	Samtle Disnose/					GX 221	2 1	Aqueous Solid Non- Aqueous Unpres.	trix	5				SHEALY ENVIRONMENTAL SERVIC 106 Vantage Point Drive West Columbia, South Carolina 291 Telephone No. (803) 791-9700 Fax No. (803)
		No .	all	Date	Date							8	2	2	No.		art	'ysis (Atta	Vaybill No.	elephone No. / Fax No. / E-mail 770-435-2660	CES, INC. 172 3) 791-9111

Report of Analysis

ARCADIS U.S., Inc.

30 Patewood Drive Suite 155 Greenville, SC 29615 Attention: Janet Christy

Project Name: HAA13 Pumphouse 1, Release 1 Project Number: GP08HAFS.H13A.N1R1

Lot Number: KF06033 Date Completed:06/18/2009

:Kal

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

* KF06033*

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010

NELAC No: E87653

NC DEHNR No: 329

Case Narrative ARCADIS U.S., Inc. Lot Number: KF06033

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

DRO

Samples -001 and -002 have an unknown pattern associated with the DRO analysis.

Nitrate - N

The MS/MSD recoveries in batch 11983 were outside acceptance criteria. All other QA/QC criteria for the batch were within acceptance criteria and method control limits. The MS/MSD recovery results are attributed to matrix interference. The associated sample results were reported and no corrective action was required.

Sample Summary ARCADIS U.S., Inc. Lot Number: KF06033

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	D-MW1 (060509)	Aqueous	06/05/2009 1115	06/06/2009
002	D-MW2 (060509)	Aqueous	06/05/2009 1300	06/06/2009
003	TB-03 (060509)	Aqueous	06/05/2009 1230	06/06/2009

(3 samples)

Executive Summary ARCADIS U.S., Inc. Lot Number: KF06033

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	D-MW1 (060509)	Aqueous	Alkalinity	SM 2320B	7.9	J	mg/L	5
001	D-MW1 (060509)	Aqueous	DOC	SM 5310D	7.0	В	mg/L	5
001	D-MW1 (060509)	Aqueous	Nitrate - N	353.2	0.056	В	mg/L	5
001	D-MW1 (060509)	Aqueous	Sulfate	300.0	4.6		mg/L	5
001	D-MW1 (060509)	Aqueous	Sulfide	SM 4500-S2 F	0.99	J	mg/L	5
001	D-MW1 (060509)	Aqueous	Benzene	8260B	120		ug/L	6
001	D-MW1 (060509)	Aqueous	Ethylbenzene	8260B	780		ug/L	6
001	D-MW1 (060509)	Aqueous	Toluene	8260B	120	В	ug/L	6
001	D-MW1 (060509)	Aqueous	Xylenes (total)	8260B	3700	В	ug/L	6
001	D-MW1 (060509)	Aqueous	TPH-DRO	8015C	3600	BI1	ug/L	7
001	D-MW1 (060509)	Aqueous	TPH-GRO	8015B	200000		ug/L	8
001	D-MW1 (060509)	Aqueous	Dissolved Iron	6010B	1.4		mg/L	9
001	D-MW1 (060509)	Aqueous	Dissolved Lead	6010B	0.0033	J	mg/L	9
001	D-MW1 (060509)	Aqueous	Iron	6010B	1.5		mg/L	10
001	D-MW1 (060509)	Aqueous	Lead	6010B	0.0064	BJ	mg/L	10
002	D-MW2 (060509)	Aqueous	DOC	SM 5310D	22	В	mg/L	11
002	D-MW2 (060509)	Aqueous	Nitrate - N	353.2	0.045	В	mg/L	11
002	D-MW2 (060509)	Aqueous	Sulfate	300.0	1.8		mg/L	11
002	D-MW2 (060509)	Aqueous	Sulfide	SM 4500-S2 F	2.8		mg/L	11
002	D-MW2 (060509)	Aqueous	Benzene	8260B	440		ug/L	12
002	D-MW2 (060509)	Aqueous	Ethylbenzene	8260B	260		ug/L	12
002	D-MW2 (060509)	Aqueous	Toluene	8260B	3700	В	ug/L	12
002	D-MW2 (060509)	Aqueous	Xylenes (total)	8260B	2000	В	ug/L	12
002	D-MW2 (060509)	Aqueous	TPH-DRO	8015C	15000	BI1	ug/L	13
002	D-MW2 (060509)	Aqueous	TPH-GRO	8015B	470000		ug/L	14
002	D-MW2 (060509)	Aqueous	Dissolved Iron	6010B	1.1		mg/L	15
002	D-MW2 (060509)	Aqueous	Dissolved Lead	6010B	0.0069	J	mg/L	15
002	D-MW2 (060509)	Aqueous	Iron	6010B	1.2		mg/L	16
002	D-MW2 (060509)	Aqueous	Lead	6010B	0.026	В	mg/L	16

(29 detections)

Inorganic non-metals

Client: ARCADIS U.S., Inc. Laboratory ID: KF06033-001 Description: D-MW1 (060509) Matrix: Aqueous Date Sampled:06/05/2009 1115 Date Received: 06/06/2009 Run **Prep Method Analytical Method** Dilution Analysis Date Analyst **Prep Date** Batch 1 (Alkalinity) SM 2320B 06/10/2009 0905 PMM 12132 1 1 (DOC) SM 5310D 1 PMM 11962 06/09/2009 0540 1 (Nitrate - N) 353.2 1 06/06/2009 1724 MML 11983 (Sulfate) 300.0 1 DAS 1 06/18/2009 0308 12681 1 (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 ΒM 12103 CAS Analytical PQL MDL Units Parameter Result Q Run Number Method Alkalinity SM 2320B 7.9 J 10 3.9 mg/L 1 DOC SM 5310D В 1.0 0.063 1 7.0 mg/L 0.056 в 0.020 0.0013 1 Nitrate - N 353.2 mg/L Sulfate 300.0 4.6 1.0 0.13 mg/L 1

18496-25-8 SM 4500-S2 F

0.99

J

1.0

0.62

mg/L

1

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Sulfide

Page: 5 of 56 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

	Client: ARCADIS (J.S., Inc.					La	aboratory I	D: KF060	33-001	
Des	cription: D-MW1 (06	0509)						Matri	x: Aqueo	us	
Date S	ampled:06/05/2009	1115									
Date R	eceived: 06/06/2009										
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 40	Analysis I 06/09/2009	•	Prep Da	ate	Batch 12076			
Param	neter		1	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ene			71-43-2	8260B	120		20	1.1	ug/L	1
Ethylk	enzene		1	00-41-4	8260B	780		20	6.8	ug/L	1
Methy	tertiary butyl ether	(MTBE)	16	34-04-4	8260B	ND		20	0.76	ug/L	1
Tolue	ne		1	08-88-3	8260B	120	в	20	6.8	ug/L	1
Xylen	es (total)		13	30-20-7	8260B	3700	В	20	6.8	ug/L	1
Surro	gate	Q	Run 1 % Recove	Accepta ery Limit							
1,2-Di	chloroethane-d4		94	52-1	38						
Bromo	fluorobenzene		102	70-1-	47						
Toluer	ne-d8		96	76-1	25						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and > MDL
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 6 of 56 Level 1 Report v2.1

				TPH	- DRO						
	Client: ARCADIS U	.S., Inc.					La	aboratory II	D: KF060	33-001	
	cription: D-MW1 (060 ampled: 06/05/2009 [/]	•						Matri	x: Aqueo	us	
Date Re	eceived: 06/06/2009										
Run 1	Prep Method 3520C	Analytical Method 8015C	Dilution 1	Analysis Da 06/13/2009 1	•	Prep D 06/09/20		Batch 12123			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-D	RO				8015C	3600	BI1	200	23	ug/L	1
Surrog	gate	Q	Run 1 % Recov								
o - Ter	phenyl		88	53-118	}						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 7 of 56 Level 1 Report v2.1

				TPH	l - GRO						
	Client: ARCADIS U	I.S., Inc.					L	aboratory II	D: KF060	33-001	
	cription: D-MW1 (060 ampled: 06/05/2009	•						Matri	x: Aqueo	us	
Date Re	eceived: 06/06/2009										
Run 1	Prep Method 5030B	Analytical Method 8015B	Dilution 2	Analysis D 06/17/2009	•	Prep Da	te	Batch 12676			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-G	RO				8015B	200000		200	40	ug/L	1
Surrog	jate	Q	Run 1 % Recov								
Bromo	fluorobenzene		108	70-13	30						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 8 of 56 Level 1 Report v2.1

ICP-AES

Laboratory ID: KF06033-001

Matrix: Aqueous

Client: ARCADIS U.S., Inc.

Description: D-MW1 (060509) Date Sampled:06/05/2009 1115

Date Re	eceived: 06/06/2009										
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution 1	Analysis D 06/16/2009		Prep Da 06/12/200		Batch 12368			
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Disso	lved Iron		7	439-89-6	6010B	1.4		0.10	0.023	mg/L	1
Disso	lved Lead		7	439-92-1	6010B	0.0033	J	0.010	0.0019	mg/L	1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 9 of 56 Level 1 Report v2.1

ICP-AES

Client: ARCADIS U.S., Inc. Laboratory ID: KF06033-001 Description: D-MW1 (060509) Matrix: Aqueous Date Sampled:06/05/2009 1115 Date Received: 06/06/2009 Run **Prep Method Analytical Method Dilution Analysis Date** Analyst Prep Date Batch 1 3005A 6010B 1 06/12/2009 0042 CDF 06/11/2009 1203 12240 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Iron 7439-89-6 6010B 1.5 0.10 0.023 mg/L 1 7439-92-1 6010B 0.0064 BJ 0.010 0.0019 mg/L 1 Lead

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 10 of 56 Level 1 Report v2.1

Inorganic non-metals

Client: ARCADIS U.S., Inc. Description: D-MW2 (060509)

Date Sampled:06/05/2009 1300

Laboratory ID: KF06033-002 Matrix: Aqueous

Date Received: 06/06/2009

Sulfate

Sulfide

Analytical Method	Dilution	Analysis I	Date	Analyst	Prep Da	ate	Batch	1		
(Alkalinity) SM 2320B	1	06/10/2009	0914	PMM			12132	2		
(DOC) SM 5310D	1	06/09/2009	0600	PMM			11962	2		
(Nitrate - N) 353.2	1	06/06/2009	9 1813	MML			11983	3		
(Sulfate) 300.0	1	06/18/2009	0415	DAS			12681			
(Sulfide) SM 4500-S2 F	1	06/08/2009	9 1510	BM			12103	3		
		CAS			Result	Q	PQL	MDL	Units	Run
		Number				-				1
			-			в	-		•	1
				353.2	0.045	B	0.020	0.003	mg/L	1
	(Alkalinity) SM 2320B (DOC) SM 5310D (Nitrate - N) 353.2 (Sulfate) 300.0	(Alkalinity) SM 2320B 1 (DOC) SM 5310D 1 (Nitrate - N) 353.2 1 (Sulfate) 300.0 1	(Alkalinity) SM 2320B 1 06/10/2005 (DOC) SM 5310D 1 06/09/2005 (Nitrate - N) 353.2 1 06/06/2005 (Sulfate) 300.0 1 06/18/2005 (Sulfate) SM 4500-S2 F 1 06/08/2005	(Alkalinity) SM 2320B 1 06/10/2009 0914 (DOC) SM 5310D 1 06/09/2009 0600 (Nitrate - N) 353.2 1 06/06/2009 1813 (Sulfate) 300.0 1 06/18/2009 0415 (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 CAS Anal Number Me SM 2 SM 2 SM 2 SM 2	(Alkalinity) SM 2320B 1 06/10/2009 0914 PMM (DOC) SM 5310D 1 06/09/2009 0600 PMM (Nitrate - N) 353.2 1 06/06/2009 1813 MML (Sulfate) 300.0 1 06/18/2009 0415 DAS (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 BM CAS Analytical Number Number Method SM 2320B SM 5310D	(Alkalinity) SM 2320B 1 06/10/2009 0914 PMM (DOC) SM 5310D 1 06/09/2009 0600 PMM (Nitrate - N) 353.2 1 06/06/2009 1813 MML (Sulfate) 300.0 1 06/08/2009 0415 DAS (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 BM CAS Analytical Method Number Method Result SM 2320B ND SM 5310D 22	(Alkalinity) SM 2320B 1 06/10/2009 0914 PMM (DOC) SM 5310D 1 06/09/2009 0600 PMM (Nitrate - N) 353.2 1 06/06/2009 1813 MML (Sulfate) 300.0 1 06/08/2009 0415 DAS (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 BM CAS Analytical Number Method Result Q SM 2320B ND SM 5310D 22 B	(Alkalinity) SM 2320B 1 06/10/2009 0914 PMM 12132 (DOC) SM 5310D 1 06/09/2009 0600 PMM 11962 (Nitrate - N) 353.2 1 06/06/2009 1813 MML 11983 (Sulfate) 300.0 1 06/08/2009 0415 DAS 12681 (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 BM 12103 CAS Analytical Number Method Result Q SM 2320B ND 10 SM 5310D 10	(Alkalinity) SM 2320B 1 06/10/2009 0914 PMM 12132 (DOC) SM 5310D 1 06/09/2009 0600 PMM 11962 (Nitrate - N) 353.2 1 06/06/2009 1813 MML 11983 (Sulfate) 300.0 1 06/08/2009 1510 DAS 12681 (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 BM 12103 CAS Analytical Number Method Result Q PQL MDL SM 2320B ND 10 3.9 SM 5310D 22 B 1.0 0.063	(Alkalinity) SM 2320B 1 06/10/2009 0914 PMM 12132 (DOC) SM 5310D 1 06/09/2009 0600 PMM 11962 (Nitrate - N) 353.2 1 06/06/2009 1813 MML 11983 (Sulfate) 300.0 1 06/08/2009 1510 DAS 12681 (Sulfide) SM 4500-S2 F 1 06/08/2009 1510 BM 12103 CAS Analytical Number Method Result Q PQL MDL Units SM 2320B ND 10 3.9 mg/L SM 5310D 22 B 1.0 0.063 mg/L

18496-25-8 SM 4500-S2 F

300.0

1.8

2.8

1.0

1.0

0.13

0.62

mg/L

mg/L

1

1

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	the calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
Where applicable, all soil sample analysis are reported on a	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 11 of 56 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc. Laboratory ID: KF06033-002 Description: D-MW2 (060509) Matrix: Aqueous Date Sampled:06/05/2009 1300 Date Received: 06/06/2009 Run **Prep Method Analytical Method** Dilution Analysis Date Analyst **Prep Date** Batch 1 5030B 8260B 50 06/09/2009 0808 DLB 12076 CAS Analytical Parameter Result Q PQL MDL Units Run Number Method Benzene 71-43-2 8260B 440 25 1.4 ug/L 1 8260B 25 Ethylbenzene 100-41-4 260 8.5 ug/L 1 Methyl tertiary butyl ether (MTBE) 1634-04-4 8260B ND 25 0.94 1 ug/L Toluene 108-88-3 8260B 3700 В 25 8.5 ug/L 1 Xylenes (total) 1330-20-7 8260B 2000 в 25 1 8.5 ug/L Run 1 Acceptance Limits Q % Recovery Surrogate 1,2-Dichloroethane-d4 94 52-138 Bromofluorobenzene 99 70-147 93 Toluene-d8 76-125

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 12 of 56 Level 1 Report v2.1

				TPH	- DRO						
	Client: ARCADIS L	J.S., Inc.					La	aboratory II	D: KF060	33-002	
	cription: D-MW2 (06 ampled: 06/05/2009	•						Matri	x: Aqueo	us	
Date Re	eceived: 06/06/2009										
Run 1	Prep Method 3520C	Analytical Method 8015C	Dilution 1	Analysis Da 06/13/2009 1	•	Prep D 06/09/20		Batch 12123			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-D	RO				8015C	15000	BI1	200	23	ug/L	1
Surrog	jate	Q	Run 1 % Recov		се						
o - Ter	phenyl		75	53-118							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 13 of 56 Level 1 Report v2.1

				TPH	- GRO						
	Client: ARCADIS U	J.S., Inc.					L	aboratory II	D: KF060	33-002	
	cription: D-MW2 (06 ampled: 06/05/2009	,						Matri	x: Aqueo	us	
Date Re	eceived: 06/06/2009										
Run 1	Prep Method 5030B	Analytical Method 8015B	Dilution 5	Analysis Da 06/17/2009 1	•	Prep Da	ite	Batch 12676			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-G	RO				8015B	470000		500	100	ug/L	1
Surrog	jate	Q	Run 1 % Recov		ce						
Bromo	fluorobenzene		81	70-130							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 14 of 56 Level 1 Report v2.1

ICP-AES

Client: ARCADIS U.S., Inc.

Description: D-MW2 (060509) Date Sampled:06/05/2009 1300 Laboratory ID: **KF06033-002** Matrix: **Aqueous**

Date Received: 06/06/2009

Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution 1	Analysis Date 06/16/2009 0657	Analyst CDF	Prep Da 06/12/200		Batch 0 12368			
Param	eter		1		alytical lethod	Result	Q	PQL	MDL	Units	Run
Dissol	ved Iron		74	39-89-6	6010B	1.1		0.10	0.023	mg/L	1
Dissol	ved Lead		74	39-92-1	6010B	0.0069	J	0.010	0.0019	mg/L	1

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 15 of 56 Level 1 Report v2.1

ICP-AES

Laboratory ID: KF06033-002 Client: ARCADIS U.S., Inc. Description: D-MW2 (060509) Matrix: Aqueous Date Sampled:06/05/2009 1300 Date Received: 06/06/2009 Run Prep Method **Analytical Method Dilution Analysis Date** Analyst Prep Date Batch 1 3005A 6010B 1 06/12/2009 0047 CDF 06/11/2009 1203 12240

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Iron	7439-89-6	6010B	1.2		0.10	0.023	mg/L	1
Lead	7439-92-1	6010B	0.026	В	0.010	0.0019	mg/L	1

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 16 of 56

Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc.

Description: TB-03 (060509)

Date Sampled:06/05/2009 1230

Laboratory ID: KF06033-003 Matrix: Aqueous

Date Received: 06/06/2009

Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 1	Analysis D 06/09/2009		Prep Da	ate	Batch 12069			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzer	ne			71-43-2	8260B	ND		0.50	0.027	ug/L	1
Ethylbe	enzene		1	00-41-4	8260B	ND		0.50	0.17	ug/L	1
Methyl	tertiary butyl ether	(MTBE)	16	34-04-4	8260B	ND		0.50	0.019	ug/L	1
Toluen	e		1	08-88-3	8260B	ND		0.50	0.17	ug/L	1
Xylene	s (total)		13	30-20-7	8260B	ND		0.50	0.17	ug/L	1
Surrog	jate	Q	Run 1 % Recov								
1,2-Dic	hloroethane-d4		106	52-13	8						
Bromo	fluorobenzene		94	70-14	7						
Toluen	e-d8		105	76-12	5						

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	he calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
Where applicable, all soil sample analysis are reported or	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 17 of 56 Level 1 Report v2.1 **QC Summary**

Inorganic non-metals - MB									
Sample ID: KQ11962-001 Matrix: Aqueous Batch: 11962 11962									
Analytical Method: SM 5310D									
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date		

1

1.0

0.063

mg/L

06/09/2009 0009

0.26

J

PQL = Practical quantitation limit

DOC

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		Inorganic no	on-metals - LCS	
Sample ID: KQ11962-002 Batch: 11962 Analytical Method: SM 5310D			Matrix: Aqueous	
	Spike Amount	Result	% Rec	

Q

Dil

1

(mg/L)

20

% Rec

107

Limit

90-110

Analysis Date

06/09/2009 0030

(mg/L)

21

PQL = Practical quantitation limit

Parameter

DOC

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ11962-003 Batch: 11962					Matrix: A	queous			
Analytical Method: SM 5310D									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
DOC	20	22		1	109	2.0	90-110	20	06/09/2009 0051

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		Inorga	anic non-	metals - MB			
Sample ID: KQ11983-001 Batch: 11983				Matrix: Aque	ous		
Analytical Method: 353.2							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date

1

.....

0.020

0.0013

mg/L

06/06/2009 1657

J

0.011

PQL = Practical quantitation limit

Nitrate - N

P = The RPD between two GC columns exceeds 40%

lumns exceeds 40% N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ11983	3-002			Matrix	: Aqueous		
Batch: 11983							
Analytical Method: 353.2							
	Spike						
B	Amount	Result	•		04 D	% Rec	Associate Data
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate - N	0.80	0.82		1	103	90-110	06/06/2009 1658

Inorganic non-metals - LCS

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ11983-003 Batch: 11983	Matrix: Aqueous								
Analytical Method: 353.2									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Nitrate - N	0.80	0.83		1	104	0.84	90-110	20	06/06/2009 1700

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MS

Sample ID: KF06033-001	Mati	Matrix: Aqueous						
Batch: 11983								
Analytical Method: 353.2								
	Sample Amount	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate - N	0.056	0.80	0.84		1	98	90-110	06/07/2009 1103

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MSD

Sample ID: KF06033-00 Batch: 11983			Matr	ix: Aqueo	us					
Analytical Method: 353.2										
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit) Analysis Date
Nitrate - N	0.056	0.80	0.85		1	100	0.94	90-110	20	06/07/2009 1104

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MS

Sample ID: KF06033-002MS				Mati	r ix: Aqueou	S		
Batch: 11983								
Analytical Method: 353.2								
	Sample Amount	Spike Amount	Result				% Rec	
Parameter	(mg/L)	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Nitrate - N	0.045	0.80	0.94	Ν	1	112	90-110	06/07/2009 1105

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MSD

• • • • • • • • • • • • • • • • • • • •	Sample ID: KF06033-002MD Batch: 11983					ix: Aqueo	us			
Analytical Method: 353.2										
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit) Analysis Date
Nitrate - N	0.045	0.80	0.94	Ν	1	112	0.74	90-110	20	06/07/2009 1106

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

ns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

	Inorganic non-metals - MB											
Sample ID: KQ12103-001 Batch: 12103 Analytical Method: SM 4500-S2 F				Matrix: Aque	eous							
D	Deceli	•		501	MD							

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Sulfide	ND		1	1.0	0.62	mg/L	06/08/2009 1510

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCS

Sample ID: KQ12103-002 Batch: 12103	Matrix: Aqueous								
Analytical Method: SM 4500-S2 F									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Sulfide	10	9.4		1	94	80-120	06/08/2009 1510		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12103-003 Batch: 12103					Matrix: A	queous			
Analytical Method: SM 4500-S2 F									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	9.3		1	93	1.9	80-120	20	06/08/2009 1510

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		Inorg	anic non-	metals - MB			
Sample ID: KQ12132-001 Batch: 12132				Matrix: Aque	ous		
Analytical Method: SM 2320B							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date

.

.....

Parameter Units Result Q Dil PQL MDL 10 Alkalinity ND 1 3.9 mg/L

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

06/10/2009 0713

Inorgan	ic non-	metals -	LCS

Sample ID: KQ12132-002		Matrix: Aqueous										
Batch: 12132 Analytical Method: SM 2320B												
	Spike Amount	Result	_		~ -	% Rec						
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date					
Alkalinity	100	100		1	100	90-110	06/10/2009 0729					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12132-003 Batch: 12132 Analytical Method: SM 2320B	Matrix: Aqueous										
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date		
Alkalinity	100	100		1	102	2.2	90-110	20	06/10/2009 0745		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MB											
Sample ID: KQ12681-001 Batch: 12681 Analytical Method: 300.0				Matrix: Aqueo	ous						
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date				

1

0.13

mg/L

1.0

06/18/2009 0139

ND

PQL = Practical quantitation limit

Sulfate

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		Inorganic	non-r	netals -	LCS		
Sample ID: KQ12681-002 Batch: 12681				Matrix	: Aqueous		
Analytical Method: 300.0							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Sulfate	20	18		1	92	90-110	06/18/2009 0201

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12681-003 Batch: 12681	Matrix: Aqueous								
Analytical Method: 300.0									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Sulfate	20	18		1	90	2.2	90-110	20	06/18/2009 0223

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KF06033-001N Batch: 12681	ИS			Mati	r ix: Aqueou	IS			
Analytical Method: 300.0									
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
Sulfate	4.6	20	23		1	93	90-110	06/18/2009 0331	

Inorganic non-metals - MS

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MSD

Sample ID: KF06033-001M Batch: 12681	Matrix: Aqueous									
Analytical Method: 300.0										
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPC Limit) Analysis Date
Sulfate	4.6	20	25		1	101	6.6	90-110	20	06/18/2009 0353

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: KQ12069-001
Batch: 12069
Analytical Method: 8260B

Matrix: Aqueous Prep Method: 5030B

Parameter	Result		Q	Dil	PQL	MDL	Units	Analysis Date
Benzene	ND			1	0.50	0.027	ug/L	06/08/2009 2302
Ethylbenzene	ND			1	0.50	0.17	ug/L	06/08/2009 2302
Methyl tertiary butyl ether (MTBE)	ND			1	0.50	0.019	ug/L	06/08/2009 2302
Toluene	ND			1	0.50	0.17	ug/L	06/08/2009 2302
Xylenes (total)	ND			1	0.50	0.17	ug/L	06/08/2009 2302
Surrogate	Q %	% Rec		eptance Limit				
Bromofluorobenzene		95	-	70-130				
1,2-Dichloroethane-d4		106	7	70-130				
Toluene-d8		107	7	70-130				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: KQ12069-002 Batch: 12069 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B										
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Benzene	50	50		1	101	70-130	06/08/2009 2136				
Ethylbenzene	50	50		1	99	70-130	06/08/2009 2136				
Methyl tertiary butyl ether (MTBE)	50	50		1	99	70-130	06/08/2009 2136				
Toluene	50	50		1	99	70-130	06/08/2009 2136				
Xylenes (total)	100	99		1	99	70-130	06/08/2009 2136				
Surrogate	Q% Rec	Acceptan Limit	се								
Bromofluorobenzene	98	70-130									
1,2-Dichloroethane-d4	102	70-130									
Toluene-d8	108	70-130									

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: KQ12069-003 Batch: 12069 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)		Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date		
Benzene	50	51		1	102	1.4	70-130	20	06/08/2009 2158		
Ethylbenzene	50	51		1	103	3.6	70-130	20	06/08/2009 2158		
Methyl tertiary butyl ether (MTBE)	50	50		1	100	0.72	70-130	20	06/08/2009 2158		
Toluene	50	50		1	100	0.55	70-130	20	06/08/2009 2158		
Xylenes (total)	100	100		1	101	1.9	70-130	20	06/08/2009 2158		
Surrogate	Q %	A Rec	cceptance Limit								
Bromofluorobenzene	9	9	70-130								
1,2-Dichloroethane-d4	10	04	70-130								
Toluene-d8	10	07	70-130								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $\mathsf{J} = \mathsf{Estimated}\ \mathsf{result} < \mathsf{PQL}\ \mathsf{and} \geq \mathsf{MDL}$

N - Recovery is out of criteria + - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

Sample ID: KQ12076-001 Batch: 12076		Matrix: Aqueous Prep Method: 5030B									
Analytical Method: 8260B											
Parameter	Result		Q	Dil	PQL	MDL	Units	Analysis Date			
Benzene	ND			1	0.50	0.027	ug/L	06/08/2009 2336			
Ethylbenzene	ND			1	0.50	0.17	ug/L	06/08/2009 2336			
Methyl tertiary butyl ether (MTBE)	ND			1	0.50	0.019	ug/L	06/08/2009 2336			
Toluene	0.35		J	1	0.50	0.17	ug/L	06/08/2009 2336			
Xylenes (total)	0.44		J	1	0.50	0.17	ug/L	06/08/2009 2336			
Surrogate	Q	% Rec	4	Acceptance Limit							
Bromofluorobenzene		94		70-130							
1,2-Dichloroethane-d4		85		70-130							
Toluene-d8		93		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Matrix: Aqueous Prep Method: 5030B									
Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
50	51		1	103	70-130	06/08/2009 2210			
50	53		1	105	70-130	06/08/2009 2210			
50	56		1	112	70-130	06/08/2009 2210			
50	53		1	106	70-130	06/08/2009 2210			
100	110		1	107	70-130	06/08/2009 2210			
Q%Rec	Acceptano Limit	e							
96	70-130								
80	70-130								
93	70-130								
	Amount (ug/L) 50 50 50 50 50 100 Q % Rec 96 80	Amount (ug/L) Result (ug/L) 50 51 50 53 50 56 50 53 100 110 Q % Rec 96 70-130 80 70-130	Spike Amount (ug/L) Result (ug/L) Q 50 51 53 50 53 56 50 53 100 100 110 Acceptance Limit 96 70-130 80 70-130	Spike Amount (ug/L) Result (ug/L) Q Dil 50 51 1 50 53 1 50 56 1 50 56 1 50 53 1 50 53 1 100 110 1 96 70-130 80	Spike Amount (ug/L) Result (ug/L) O % Rec 50 51 1 103 50 53 1 105 50 56 1 112 50 56 1 106 100 110 1 107 96 70-130 80 70-130	Spike Amount (ug/L) Result (ug/L) Q Dil % Rec % Rec % Rec Limit 50 51 1 103 70-130 50 53 1 105 70-130 50 56 1 112 70-130 50 56 1 106 70-130 50 53 1 106 70-130 50 53 1 107 70-130 50 110 1 107 70-130 100 110 1 107 70-130 96 70-130 80 70-130 107 100			

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: KQ12076-003 Batch: 12076 Analytical Method: 8260B		Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amoun (ug/L)	t	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Benzene	50		50		1	100	2.6	70-130	20	06/08/2009 2231	
Ethylbenzene	50		51		1	102	3.8	70-130	20	06/08/2009 2231	
Methyl tertiary butyl ether (MTBE)	50		54		1	108	3.1	70-130	20	06/08/2009 2231	
Toluene	50		52		1	104	2.0	70-130	20	06/08/2009 2231	
Xylenes (total)	100		100		1	102	4.2	70-130	20	06/08/2009 2231	
Surrogate	Q %	% Rec	Acc	ceptance Limit							
Bromofluorobenzene		96		70-130							
1,2-Dichloroethane-d4		81		70-130							
Toluene-d8		96		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 $\mathsf{ND}=\mathsf{Not}$ detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - DRO - MB Matrix: Aqueous Sample ID: KQ12123-001 Prep Method: 3520C Batch: 12123 Prep Date: 06/09/2009 2234 Analytical Method: 8015C Posult **D**:1 Analysis Data Darameter ~ МП Unite

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date	
TPH-DRO	57	J	1	200	23	ug/L	06/13/2009 0909	
Surrogate	Q % Re		ceptance Limit					
o - Terphenyl	88		53-118					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - DRO - LCS

Sample ID: KQ12123-002 Batch: 12123 Analytical Method: 8015C			Pr	ep Method:	: Aqueous 3520C : 06/09/2009 223	34	
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
TPH-DRO	2500	2200		1	90	70-130	06/13/2009 0928
Surrogate	Q% Rec	Acceptan Limit	ce				
o - Terphenyl	87	53-118					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \geq MDL$

N - Recovery is out of criteria + - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - MB

Sample ID: KQ12676-001 Batch: 12676 Analytical Method: 8015B		Matrix: Aqueous Prep Method: 5030B							
Parameter	Result	t	Q	Dil	PQL	MDL	Units	Analysis Date	
TPH-GRO	ND			1	100	20	ug/L	06/17/2009 1229	
Surrogate	Q	% Rec		Acceptance Limit					
Bromofluorobenzene		118		70-130					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < PQL and \geq MDL$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - LCS

Sample ID: KQ12676-002 Batch: 12676 Analytical Method: 8015B			Pr	Matrix rep Method:	Aqueous 5030B		
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
TPH-GRO	1000	980		1	98	70-130	06/17/2009 1139
Surrogate	Q% Rec	Acceptan Limit	се				
Bromofluorobenzene	120	70-130)				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

mns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and \geq MDL$

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - LCSD

Sample ID: KQ12676-003 Batch: 12676 Analytical Method: 8015B					Prep I	Matrix: Ad Method: 50	•			
Parameter	Spik Amou (ug/l	int	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
TPH-GRO	1000		980		1	98	0.0	70-130	20	06/17/2009 1204
Surrogate	Q	% Rec	A	cceptance Limit						
Bromofluorobenzene		122		70-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12240-001	Matrix: Aqueous	
Batch: 12240	Prep Method: 3005A	
Analytical Method: 6010B	Prep Date: 06/11/2009 1203	

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date	
Iron	ND		1	0.10	0.023	mg/L	06/11/2009 2341	
Lead	0.0041	J	1	0.010	0.0019	mg/L	06/11/2009 2341	

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 $J = Estimated result < PQL and \geq MDL$

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		ICP	-AES	- LCS			
Sample ID: KQ12240-00 Batch: 12240	2		Pi	Matrix rep Method:	: Aqueous 3005A		
Analytical Method: 6010B				Prep Date	: 06/11/2009 120)3	
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Iron	20	20		1	101	80-120	06/11/2009 2346
Lead	0.40	0.39		1	98	80-120	06/11/2009 2346

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12240-003 Batch: 12240				Prep I	Matrix: Ad Method: 30	•			
Analytical Method: 6010B				Pr	ep Date: 06	6/11/2009 1	203		
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
ron	20	20		1	103	1.8	80-120	20	06/11/2009 2351
Lead	0.40	0.40		1	100	2.1	80-120	20	06/11/2009 2351

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

ICP-AES - MB						
Sample ID: KQ12368-001	Matrix: Aqueous					
Batch: 12368	Prep Method: 3005A					
Analytical Method: 6010B	Prep Date: 06/12/2009 2200					

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Dissolved Iron	ND		1	0.10	0.023	mg/L	06/16/2009 0402
Dissolved Lead	ND		1	0.010	0.0019	mg/L	06/16/2009 0402

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ123	868-002			Matrix	: Aqueous		
Batch: 12368			Pr	ep Method:	3005A		
Analytical Method: 6010B				Prep Date	: 06/12/2009 220	00	
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Dissolved Iron	20	19		1	96	80-120	06/16/2009 0407

ICP-AES - LCS

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12368-003 Batch: 12368		Matrix: Aqueous Prep Method: 3005A							
Analytical Method: 6010B				Pr	ep Date: 06	6/12/2009 2	200		
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Dissolved Iron	20	20		1	98	2.5	80-120	20	06/16/2009 0413
Dissolved Lead	0.40	0.38		1	95	2.4	80-120	20	06/16/2009 0413

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

SHEALY ENVIRONMENTAL SERVICES, INC.

		1.0.4.4		Sample Receipt Checklist (SRC)
Client	-	ARCA	DIS	Cooler Inspected by/date: <u>SAM 1.6/6/09</u> Lot #: <u>KF06033</u>
Mean	is of	receipt:	SESI	Client UPS FedEx Airborne Exp Other
Yes		No	NA	1. Were custody seals present on the cooler?
Yes		No	NA 🗸	If custody seals were present, were they intact and unbroken?
Cool	er ID	/tempera	ture upon 1	eccipt <u>2.37</u> °C °C °C/ °C/ °C/ °C °C °C
Meth Meth		Coolant:	mperature l	Blank Against Bottles et Ice Blue Ice Dry Ice None
If res	pons	e is No (or Yes for	14, 15, 16), an explanation/resolution must be provided.
Yes		No 🗌	NA 🛛	 If temperature of any cooler exceeded 6.0°C, was Project Manager notified? PM notified by SRC, phone, note (circle one), other: (For
	_			coolers received via commercial courier, PMs are to be notified immediately.
Yes	⊒,	No	NA 🖸	4. Is the commercial courier's packing slip attached to this form?
Yes	4	No	NA	5. Were proper custody procedures (relinquished/received) followed?
Yes	4	No	NA	6. Were sample IDs listed?
Yes	4	No	NA	7. Was collection date & time listed?8. Were tests to be performed listed on the COC or was quote # provided?
Yes	4	No	NA NA	 Were tests to be performed instea on the COC of was quote # provided? Did all samples arrive in the proper containers for each test?
Yes	4	No	NA	10. Did all container label information (ID, date, time) agree with COC?
Yes	H	No	NA 🗌	 Did all containers arrive in good condition (unbroken, lids on, etc.)?
Yes	-/	No	NA	 12. Was adequate sample volume available?
Yes	2	No 🗌	NA 🗌	13. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
Yes		No	NA	14. Were any samples containers missing?
Yes	Ē l	No	NA	15. Were there any excess samples not listed on COC?
Yes		No	NAK	16. Were bubbles present >"pea-size" (¼"ör 6mm in diameter) in any VOA vials?
Yes	1	No	NA	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?
Yes	D	No	NA 🖸	18. Were all cyanide and/or sulfide samples received at a pH >12?
Yes		No	NA	 Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb (<0.2mg/L) and toxicity (<0.1mg/L) samples free of residual chlorine?
Yes		No	NA	20. Were collection temperatures documented on the COC for NC samples?
Sam	ple P	reservat	ion (Mus	st be completed for any sample(s) incorrectly preserved or with headspace.)
Sam	ple(s))		were received incorrectly preserved and were adjusted
acco	rding	ly in sam		ng with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
Sam	ple(s)			were received with bubbles >6 mm in diameter.
Sam	ple(s)		\/pest/PCB	were received with TRC >0.2 mg/L for NH3/
		ample(s)		were received with TRC >0.1 mg/L and were
		by metho		
Was c	lient	notified:	taken, if n Yes [Did client respond: Yes No
SESI	emple	nyee:		Date of response:

SHEALY Chain of Custody Record	SHEALY ENVIRONME 106 Vantag West Columbia, S Telephone No. (803) 791-9	SHEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111	nber 102191
es Fe	Report to Contact Scott Boshan Sempler's Signature X Droo Mae	Takephons No. / Fax No. / E-mail 770-435-24666 Wayom Mo. Analysis (Atherh for it more space is noreded)	Quote No. Pageof
HATANTAG DATA DATA DATA DATA SU337 Project No. Project	Timed Name Active Machine Active Machine Active Act	IOX IOX No. at Containers No. at Containers by Preservative Type IOX 52 22 52 25 52 55 52 55 52 55	Lat No. K F DG 633 Remarks / Coolor I.D.
les/so	1115 X 3 1300 X 3 1230 X 3		
Possible Hazaro identitication Non-Hazaro Identitication Non-Hazard Pfarmadue Swn Indant Poison Untwown Turn Arquint Turne Required (Phor int approvnl required for expedited TAT.)	Sample Disposal	Note: All samples are retained for six weeks from receipt Disposal by Lab Unless other arrangements are made. QC Requirements (Sprecky)	rr receipt
Standard Rush (Soeoly) 	Color 1700	1. Received by Date 2. Received by Date	Turno 6/6/64 04 30
a. Halinquished by LONEX comments	0/6/69 700	3. Laboratory increasing by MUH Date LAB USE ONLY Haceived on ice (Circle) Testy No Kim Pack	Date 7570 1700 54M Freesper Temp. 2.8 v 6/6/04
DISTRIBUTION: WHITE & YELLOW-Hahum to laboratory with Sample(s); PIWE-Field/CNarl COPY	s); PINKERIeld/Clisvit Copy	Document Nurruser, F-AD-012	F-AD-012 Effective Date: 08-01-02

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Report of Analysis

ARCADIS U.S., Inc. 30 Patewood Drive Suite 155 Greenville, SC 29615 Attention: Janet Christy

Project Name: HAA-13 Pumphouse 1, Release 1 Project Number: GP08HAFS. H13A. N1R1

Lot Number: KF06034 Date Completed:06/18/2009

Kal

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

* KF06034*

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010

NELAC No: E87653

NC DEHNR No: 329

Case Narrative ARCADIS U.S., Inc. Lot Number: KF06034

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

DRO

Sample -001 and -002 have an unknown pattern associated with the DRO analysis.

Sulfate

The RPD for duplicate -002 exceeded method control limits; however, all other QA/QC criteria for the LCS/LCSD were within acceptance criteria and method control limits. The associated sample results were reported and no corrective action was required.

SHEALY ENVIRONMENTAL SERVICES, INC.

Sample Summary ARCADIS U.S., Inc. Lot Number: KF06034

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	D-MW34 (060509)	Aqueous	06/05/2009 0910	06/06/2009
002	D-MW35 (060509)	Aqueous	06/05/2009 1425	06/06/2009
003	TB-02 (060509)	Aqueous	06/05/2009 0900	06/06/2009

(3 samples)

Executive Summary ARCADIS U.S., Inc. Lot Number: KF06034

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	D-MW34 (060509)	Aqueous	Alkalinity	SM 2320B	8.5	J	mg/L	5
001	D-MW34 (060509)	Aqueous	DOC	SM 5310D	10	В	mg/L	5
001	D-MW34 (060509)	Aqueous	Sulfate	300.0	1.7		mg/L	5
001	D-MW34 (060509)	Aqueous	Sulfide	SM 4500-S2 F	2.0		mg/L	5
001	D-MW34 (060509)	Aqueous	TKN	351.2	0.71		mg/L	5
001	D-MW34 (060509)	Aqueous	Benzene	8260B	730		ug/L	6
001	D-MW34 (060509)	Aqueous	Ethylbenzene	8260B	910		ug/L	6
001	D-MW34 (060509)	Aqueous	Toluene	8260B	9200	В	ug/L	6
001	D-MW34 (060509)	Aqueous	Xylenes (total)	8260B	4800	В	ug/L	6
001	D-MW34 (060509)	Aqueous	TPH-DRO	8015C	5000	В	ug/L	7
001	D-MW34 (060509)	Aqueous	TPH-GRO	8015B	830000		ug/L	8
001	D-MW34 (060509)	Aqueous	Dissolved Iron	6010B	1.2		mg/L	9
001	D-MW34 (060509)	Aqueous	Dissolved Lead	6010B	0.086		mg/L	9
001	D-MW34 (060509)	Aqueous	Iron	6010B	1.2		mg/L	10
001	D-MW34 (060509)	Aqueous	Lead	6010B	0.10	В	mg/L	10
002	D-MW35 (060509)	Aqueous	Alkalinity	SM 2320B	42		mg/L	11
002	D-MW35 (060509)	Aqueous	DOC	SM 5310D	14	В	mg/L	11
002	D-MW35 (060509)	Aqueous	Nitrate - N	353.2	0.23	В	mg/L	11
002	D-MW35 (060509)	Aqueous	Sulfate	300.0	1.4		mg/L	11
002	D-MW35 (060509)	Aqueous	Sulfide	SM 4500-S2 F	1.2		mg/L	11
002	D-MW35 (060509)	Aqueous	Benzene	8260B	260		ug/L	12
002	D-MW35 (060509)	Aqueous	Ethylbenzene	8260B	72		ug/L	12
002	D-MW35 (060509)	Aqueous	Toluene	8260B	1700	В	ug/L	12
002	D-MW35 (060509)	Aqueous	Xylenes (total)	8260B	720	В	ug/L	12
002	D-MW35 (060509)	Aqueous	TPH-DRO	8015C	3800	В	ug/L	13
002	D-MW35 (060509)	Aqueous	TPH-GRO	8015B	250000		ug/L	14
002	D-MW35 (060509)	Aqueous	Dissolved Iron	6010B	0.78		mg/L	15
002	D-MW35 (060509)	Aqueous	Dissolved Lead	6010B	0.027		mg/L	15
002	D-MW35 (060509)	Aqueous	Iron	6010B	0.95		mg/L	16
002	D-MW35 (060509)	Aqueous	Lead	6010B	0.076	В	mg/L	16

(30 detections)

Inorganic non-metals

Client: ARCADIS U.S., Inc. Description: D-MW34 (060509) Date Sampled:06/05/2009 0910 Laboratory ID: KF06034-001 Matrix: Aqueous

Date Re	eceived:06/06/200	09					
Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1		(Alkalinity) SM 2320B	1	06/10/2009 0951	PMM		12132
1		(DOC) SM 5310D	1	06/09/2009 0621	PMM		11962
1		(Nitrate - N) 353.2	1	06/06/2009 1814	MML		11983
1		(Phosphorus) 365.1	1	06/17/2009 2353	SLH	06/16/2009 1239	12522
1		(Sulfate) 300.0	1	06/18/2009 0438	DAS		12681
1		(Sulfide) SM 4500-S2 F	1	06/08/2009 1510	BM		12103
1	351.4	(TKN) 351.2	1	06/17/2009 1828	SLH	06/16/2009 0814	12504

Parameter	CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Alkalinity		SM 2320B	8.5	J	10	3.9	mg/L	1
DOC		SM 5310D	10	В	1.0	0.063	mg/L	1
Nitrate - N		353.2	ND		0.020	0.0013	mg/L	1
Phosphorus	7723-14-0	365.1	ND		0.010	0.0048	mg/L	1
Sulfate		300.0	1.7		1.0	0.13	mg/L	1
Sulfide	18496-25-8	SM 4500-S2 F	2.0		1.0	0.62	mg/L	1
TKN		351.2	0.71		0.50	0.084	mg/L	1

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	E = Quantitation of compound exceeded the calibration range			
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns exceeds 40%				
Where applicable, all soil sample analysis are reported of	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time			

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 5 of 60 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

Client: ARCADIS U.S., Inc. Laboratory ID: KF06034-001											
Des	cription: D-MW34 (0	60509)				Matrix: Aqueous					
Date S	ampled:06/05/2009	0910									
Date Re	eceived:06/06/2009										
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution Analysis Date Analyst 50 06/09/2009 0830 DLB				Batch 12076				
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene				71-43-2	8260B	730		25	1.4	ug/L	1
Ethylk	benzene		100-41-4		8260B	910		25	8.5	ug/L	1
Methy	I tertiary butyl ether	(MTBE)	1634-04-4		8260B	ND		25	0.94	ug/L	1
Tolue	ne		1	08-88-3	8260B	9200	В	25	8.5	ug/L	1
Xylen	es (total)		13	30-20-7	8260B	4800	В	25	8.5	ug/L	1
Surro	gate	Q	Run 1 % Recov	Accept ery Limi	ance ts						
1,2-Di	chloroethane-d4		96	52-1	38						
Bromofluorobenzene			99	70-1	47						
Toluer	ne-d8		95	76-1	25						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 6 of 60 Level 1 Report v2.1

				TPI	H - DRO						
	Client: ARCADIS I	U.S., Inc.					L	aboratory I	D: KF060	34-001	
Description: D-MW34 (060509) Date Sampled:06/05/2009 0910			Matrix: Aqueous								
Date R	eceived:06/06/2009										
Run 1	Prep Method 3520C	Analytical Method 8015C	Dilution 1	Analysis 06/13/2009	5	Prep Da 06/09/200		Batch 12123			
Paran	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-D	DRO				8015C	5000	В	200	23	ug/L	1
Surro	gate	Q	Run % Recov								
o - Te	rphenyl		84	53-1	18						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 7 of 60 Level 1 Report v2.1

TPH - GRO

Client: ARCA	DIS U.S., Inc.			Laboratory ID: KF06034-001							
Description: D-MW3	34 (060509)			Matrix: Aqueous							
Date Sampled:06/05/2009 0910											
Date Received: 06/06/2	2009										
Run Prep Method 1 5030B	5	Dilution Analysis Da 10 06/17/2009 1		Prep Date	è	Batch 12676					
Parameter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run		
TPH-GRO			8015B	830000		1000	200	ug/L	1		
Run 1 Acceptance Surrogate Q % Recovery											
Bromofluorobenzene		96 70-130)								

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded t	E = Quantitation of compound exceeded the calibration range				
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%				
Where applicable, all soil sample analysis are reported or	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time				

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 8 of 60 Level 1 Report v2.1

ICP-AES

	Client: ARCADIS	U.S., Inc.		Laboratory ID: KF06034-001								
	cription: D-MW34 (0	•			Matrix: Aqueous							
Date Sampled:06/05/2009 0910												
Date Re	eceived:06/06/2009											
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution Analysis Date Analyst 1 06/16/2009 2128 CDF 0		Prep DateBatch06/15/2009 180012463							
Param	neter		CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run		
Dissolved Iron		7439-89-6	6010B	1.2		0.10	0.023	mg/L	1			
Dissolved Lead		7439-92-1	6010B	0.086		0.010	0.0019	mg/L	1			

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeded the valueWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 9 of 60 Level 1 Report v2.1

	Client: ARCADIS		Laboratory ID: KF06034-001									
Des	cription: D-MW34 (0	60509)		Matrix: Aqueous								
Date Sampled:06/05/2009 0910												
Date Received: 06/06/2009												
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution Analysis Date Analyst 1 06/18/2009 0327 KJC (Prep Da 06/16/200		Batch 0 12573					
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run	_
Iron		7439-89-6		6010B	1.2		0.10	0.023	mg/L	1		
Lead			7-	439-92-1	6010B	0.10	В	0.010	0.0019	mg/L	1	

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry wight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 10 of 60 Level 1 Report v2.1

Inorganic non-metals

Date S	Client: ARCADIS U.S., Inc.Laboratory ID: KF06034-002Description: D-MW35 (060509)Matrix: AqueousDate Sampled:06/05/2009 1425Total ComplexityDate Received: 06/06/2009Total Complexity											
Run 1 1 1 1 1	Prep Method	Analytical Method (Alkalinity) SM 2320B (DOC) SM 5310D (Nitrate - N) 353.2 (Sulfate) 300.0 (Sulfide) SM 4500-S2 F	Dilution 1 1 1 1 1	Analysi 06/10/20 06/09/20 06/06/20 06/18/20 06/08/20	09 1003 09 0642 09 1817 09 0500	Analyst PMM PMM MML DAS BM	Prep Da	te	Batch 12132 11962 11983 12681 12103			
Parameter				CAS Number		llytical ethod	Result	Q	PQL	MDL	Units	Run
Alkalinity DOC Nitrate - N Sulfate Sulfide			184	196-25-8		2320B 5310D 353.2 300.0 0-S2 F	42 14 0.23 1.4 1.2	B B	10 1.0 0.020 1.0 1.0	3.9 0.063 0.0013 0.13 0.62	mg/L mg/L mg/L mg/L mg/L	1 1 1 1 1

ND = Not detected at or above the MDL J = Estimated result < PQL and ≥ MDL	PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded t	he calibration range
Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" N = Recovery is out of criteria H = Out of holding time	ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
	Where applicable, all soil sample analysis are reported or	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 11 of 60 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

	Client: ARCADIS L	J.S., Inc.					La	aboratory I	D: KF060	34-002	
Des	cription: D-MW35 (0	60509)		Matrix: Aqueous							
Date S	ampled:06/05/2009	1425									
Date R	eceived:06/06/2009										
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 40	Analysis 06/09/200	5	Prep Da	ate	Batch 12076			
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ene			71-43-2	8260B	260		20	1.1	ug/L	1
Ethylk	benzene		1	00-41-4	8260B	72		20	6.8	ug/L	1
Methy	I tertiary butyl ether	(MTBE)	1634-04-4		8260B	ND		20	0.76	ug/L	1
Tolue	ne		1	08-88-3	8260B	1700	В	20	6.8	ug/L	1
Xylen	es (total)		13	330-20-7	8260B	720	В	20	6.8	ug/L	1
Surro	gate	Q	Run 1 % Recov								
1,2-Di	chloroethane-d4		96	52-1	138						
Bromo	ofluorobenzene		97	70-1	147						
Toluer	ne-d8		96	76-1	125						

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded t	he calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	xceeds 40%
Where applicable, all soil sample analysis are reported o	n a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 12 of 60 Level 1 Report v2.1

				TPI	H - DRO						
	Client: ARCADIS U	.S., Inc.	Laboratory ID: KF06034-002								
	cription: D-MW35 (06 ampled:06/05/2009 1	,						Matr	ix: Aqueo	us	
Date Re	eceived:06/06/2009										
Run 1	Prep Method 3520C	Analytical Method 8015C	Dilution 1	Analysis 06/13/200	2	Prep Da 06/09/200		Batch 12123			
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-D	RO				8015C	3800	В	200	23	ug/L	1
Surro	gate	Q	Run % Reco								
o - Ter	phenyl		78	53-1	118						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 13 of 60 Level 1 Report v2.1

TPH - GRO	
-----------	--

Date S	Client: ARCADIS cription: D-MW35 (0 ampled:06/05/2009	060509) 9 1425						L	aboratory I Matri	D: KF060 ix: Aqueo		
Date Re Run 1	Prep Method 5030B	Analytical Method 8015B	Dilution 5	Analysis		Analyst IVC	Prep Dat	e	Batch 12676			
Param	neter			CAS Number		alytical lethod	Result	Q	PQL	MDL	Units	Run
TPH-G	RO					8015B	250000		500	100	ug/L	1
Surro	gate	Q	Run % Reco									
Bromo	fluorobenzene		93	70-	130							

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	the calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
Where applicable, all soil sample analysis are reported or	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 14 of 60 Level 1 Report v2.1

ICP-AES

	Client: ARCADIS I	J.S., Inc.						L	aboratory	/ ID: KF060	34-002		
Des	cription: D-MW35 (0	60509)							Ma	trix: Aquec	ous		
Date S	ampled:06/05/2009	1425											
Date Received: 06/06/2009													
Run 1	Prep Method 3005A	Analytical Method 6010B		Analysis [06/16/2009	5		Prep Dat /15/2009		Batch 0 12463				
Param	neter		Ν	CAS lumber	Analytical Method	Re	sult	Q	PQL	MDL	Units	Run	
Dissolved Iron		7439-89-6		6010B		0.78		0.10	0.023	mg/L	1		
Dissolved Lead			743	6010B	0	.027		0.010	0.0019	mg/L	1		

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeded the valueWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 15 of 60 Level 1 Report v2.1

	Client: ARCADIS	U.S., Inc.					Laboratory ID: KF06034-002							
Des	cription: D-MW35 (C)60509)							Ma	itrix: Aqueo	ous			
Date S	ampled:06/05/2009	1425												
Date Received: 06/06/2009														
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution Analysis Date Analy 1 06/12/2009 0052 CD		5	Prep Date E 06/11/2009 1203 1								
Param	neter			CAS Number	Analytica Method		Result	Q	PQL	MDL	Units	Run		
Iron		7439-89-6		6010B		0.95		0.10	0.023	mg/L	1			
Lead			7	439-92-1	6010E	3	0.076	В	0.010	0.0019	mg/L	1		

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeded the valueWhere applicable, all soil sample analysis are reported on a try weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 16 of 60 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

	Client: ARCADIS U	J.S., Inc.				Laboratory ID: KF06034-003						
Des	cription: TB-02 (060	509)				Matrix: Aqueous						
Date S	ampled:06/05/2009	0900										
Date Re	eceived:06/06/2009											
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 1	Analysis 06/09/200	5	Prep Da	ite	Batch 12069				
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run	
Benze	ne			71-43-2	8260B	ND		0.50	0.027	ug/L	1	
Ethylb	enzene		1	100-41-4	8260B	ND		0.50	0.17	ug/L	1	
Methy	I tertiary butyl ether	(MTBE)	1634-04-4		8260B	ND		0.50	0.019	ug/L	1	
Toluer	ne		1	108-88-3	8260B	ND		0.50	0.17	ug/L	1	
Xylene	es (total)		13	330-20-7	8260B	ND		0.50	0.17	ug/L	1	
Surro	gate	Q	Run 1 % Recov									
1,2-Di	chloroethane-d4		107	52-1	138							
Bromo	fluorobenzene		92	70-1	147							
Toluer	ne-d8		108	76-1	125							

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 17 of 60 Level 1 Report v2.1

QC Summary

		norga						
Sample ID: KQ11962-00 Batch: 11962)1			Matrix: Aqueo	ous			
Analytical Method: SM 5310D								
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date	
DOC	0.26	J	1	1.0	0.063	mg/L	06/09/2009 0009	

ND = Not detected at or above the MDL

P = The RPD between two GC columns exceeds 40%

C columns exceeds 40% N - Recovery is out of criteria

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ11962-002		Matrix: Aqueous						
Batch: 11962 Analytical Method: SM 5310D								
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
DOC	20	21		1	107	90-110	06/09/2009 0030	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ11962-003 Batch: 11962 Analytical Method: SM 5310D					Matrix: Ad	queous			
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
DOC	20	22		1	109	2.0	90-110	20	06/09/2009 0051

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		morg					
Sample ID: KQ11983-00 Batch: 11983	1			Matrix: Aqueo	DUS		
Analytical Method: 353.2							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Nitrate - N	0.011	J	1	0.020	0.0013	mg/L	06/06/2009 1657

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

C columns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ11983-00)2			Matrix: Aqueous					
Batch: 11983 Analytical Method: 353.2									
	Crailica								
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Nitrate - N	0.80	0.82		1	103	90-110	06/06/2009 1658		

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ11983-003 Batch: 11983 Analytical Method: 353.2					Matrix: Aqueous				
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Nitrate - N	0.80	0.83		1	104	0.84	90-110	20	06/06/2009 1700

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		Inorga	anic non-	metals - MB			
Sample ID: KQ12103-001 Batch: 12103							
Analytical Method: SM 4500-S2 F							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date

1

ND

1.0

0.62

mg/L

PQL = Practical quantitation limit

Sulfide

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

06/08/2009 1510

Sample ID: KQ12103-002				Matrix: Aqueous				
Batch: 12103 Analytical Method: SM 4500-S2 F								
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
Sulfide	10	9.4		1	94	80-120	06/08/2009 1510	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12103-003 Batch: 12103 Analytical Method: SM 4500-S2 F					Matrix: Ad	queous			
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	9.3		1	93	1.9	80-120	20	06/08/2009 1510

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		norga					
Sample ID: KQ12132-00 Batch: 12132	1			Matrix: Aque	ous		
Analytical Method: SM 2320B							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Alkalinity	ND		1	10	3.9	mg/L	06/10/2009 0713

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12132	-002	Matrix: Aqueous						
Batch: 12132								
Analytical Method: SM 2320E	3							
	Spike							
	Amount	Result	_			% Rec		
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date	
Alkalinity	100	100		1	100	90-110	06/10/2009 0729	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12132-003 Batch: 12132 Analytical Method: SM 2320B					queous				
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Alkalinity	100	100		1	102	2.2	90-110	20	06/10/2009 0745

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		Inorga	anic non-i	metals - MB				
Sample ID: KQ12504-001Matrix: AqueousBatch: 12504Prep Method: 351.4Analytical Method: 351.2Prep Date: 06/16/2009 814								
Parameter	Result	Result Q Dil PQL MDL Units Analysis Date						
TKN	ND		1	0.50	0.084	mg/L	06/17/2009 1753	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

umns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCS

Sample ID: KQ12504-00 Batch: 12504)2	Matrix: Aqueous Prep Method: 351.4						
Analytical Method: 351.2	Prep Date: 06/16/2009 814							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
TKN	2.0	1.9		10	97	90-110	06/18/2009 1552	

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

P = The RPD between two GC columns exc J = Estimated result < PQL and \geq MDL N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12504-003 Batch: 12504 Analytical Method: 351.2					Matrix: A Method: 35 ep Date: 06		14		
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
TKN	2.0	1.9		1	93	3.9	90-110	20	06/18/2009 1521

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MB										
Sample ID: KQ12522-001 Batch: 12522 Analytical Method: 365.1		Matrix: Aqueous Prep Method: 365.1 Prep Date: 06/16/2009 1239								
Parameter	Result	esult Q Dil PQL MDL Units Analysis Date								
Phosphorus	ND									

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

nns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - L	CS
--------------------------	----

Sample ID: KQ125 Batch: 12522		Matrix: Aqueous Prep Method: 365.1 Prep Date: 06/16/2009 1239						
Analytical Method: 365.1		Prep Date: 06/16/2009 1239						
	Spike Amount	Result				% Rec		
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date	
Phosphorus	0.25	0.24		1	97	90-110	06/17/2009 2237	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12522-00 Batch: 12522	03	Matrix: Aqueous Prep Method: 365.1							
Analytical Method: 365.1		Prep Date: 06/16/2009 1239							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Phosphorus	0.25	0.24		1	98	0.75	90-110	20	06/17/2009 2237

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MB	
---------------------------	--

		morg					
Sample ID: KQ12681- Batch: 12681	001			Matrix: Aque	ous		
Analytical Method: 300.0							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Sulfate	ND		1	1.0	0.13	mg/L	06/18/2009 0139

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCS

Sample ID: KQ12681-0 Batch: 12681	002	Matrix: Aqueous						
Analytical Method: 300.0								
	Spike							
Parameter	Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
Sulfate	20	18		1	92	90-110	06/18/2009 0201	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12681-003 Batch: 12681 Analytical Method: 300.0		Matrix: Aqueous							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Sulfate	20	18		1	90	2.2	90-110	20	06/18/2009 0223

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - Duplicate	
5	

Sample ID: KF0603	4-002DU						
Batch: 12681 Analytical Method: 300.0							
Parameter	Sample Amount (mg/L)	Result (mg/L)	Q	Dil	% RPD	% RPD Limit	Analysis Date
Sulfate	1.4	2.0	+	1	35	20	06/18/2009 0523

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12069-001 Batch: 12069 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date				
Benzene	ND	1	0.50	0.027	ug/L	06/08/2009 2302				
Ethylbenzene	ND	1	0.50	0.17	ug/L	06/08/2009 2302				
Methyl tertiary butyl ether (MTBE)	ND	1	0.50	0.019	ug/L	06/08/2009 2302				
Toluene	ND	1	0.50	0.17	ug/L	06/08/2009 2302				
Xylenes (total)	ND	1	0.50	0.17	ug/L	06/08/2009 2302				
Surrogate	Q % Rec	Acceptance Limit								
Bromofluorobenzene	95	70-130								
1,2-Dichloroethane-d4	106	70-130								
Toluene-d8	107	70-130								

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: KQ12069-002 Batch: 12069 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	50		1	101	70-130	06/08/2009 2136			
Ethylbenzene	50	50		1	99	70-130	06/08/2009 2136			
Methyl tertiary butyl ether (MTBE)	50	50		1	99	70-130	06/08/2009 2136			
Toluene	50	50		1	99	70-130	06/08/2009 2136			
Xylenes (total)	100	99		1	99	70-130	06/08/2009 2136			
Surrogate	Q % Rec	Acceptan Limit	се							
Bromofluorobenzene	98	70-130)							
1,2-Dichloroethane-d4	102	70-130)							
Toluene-d8	108	70-130)							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: KQ12069-003 Batch: 12069 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Benzene	50	51		1	102	1.4	70-130	20	06/08/2009 2158	
Ethylbenzene	50	51		1	103	3.6	70-130	20	06/08/2009 2158	
Methyl tertiary butyl ether (MTBE)	50	50		1	100	0.72	70-130	20	06/08/2009 2158	
Toluene	50	50		1	100	0.55	70-130	20	06/08/2009 2158	
Xylenes (total)	100	100		1	101	1.9	70-130	20	06/08/2009 2158	
Surrogate	Q % Rec	Ac	ceptance Limit							
Bromofluorobenzene	99		70-130							
1,2-Dichloroethane-d4	104		70-130							
Toluene-d8	107		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - MB

		5	I	5						
Sample ID: KQ12076-001 Batch: 12076 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date			
Benzene	ND		1	0.50	0.027	ug/L	06/08/2009 2336			
Ethylbenzene	ND		1	0.50	0.17	ug/L	06/08/2009 2336			
Methyl tertiary butyl ether (MTBE)	ND		1	0.50	0.019	ug/L	06/08/2009 2336			
Toluene	0.35	J	1	0.50	0.17	ug/L	06/08/2009 2336			
Xylenes (total)	0.44	J	1	0.50	0.17	ug/L	06/08/2009 2336			
Surrogate	Q % Rec		Acceptance Limit							
Bromofluorobenzene	94		70-130							
1,2-Dichloroethane-d4	85		70-130							
Toluene-d8	93		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: KQ12076-002 Batch: 12076 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Benzene	50	51		1	103	70-130	06/08/2009 2210			
Ethylbenzene	50	53		1	105	70-130	06/08/2009 2210			
Methyl tertiary butyl ether (MTBE)	50	56		1	112	70-130	06/08/2009 2210			
Toluene	50	53		1	106	70-130	06/08/2009 2210			
Xylenes (total)	100	110		1	107	70-130	06/08/2009 2210			
Surrogate	Q % Rec	Acceptar Limit								
Bromofluorobenzene	96	70-13	0							
1,2-Dichloroethane-d4	80	70-13	0							
Toluene-d8	93	70-13	0							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: KQ12076-003 Batch: 12076 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Benzene	50	50		1	100	2.6	70-130	20	06/08/2009 2231	
Ethylbenzene	50	51		1	102	3.8	70-130	20	06/08/2009 2231	
Methyl tertiary butyl ether (MTBE)	50	54		1	108	3.1	70-130	20	06/08/2009 2231	
Toluene	50	52		1	104	2.0	70-130	20	06/08/2009 2231	
Xylenes (total)	100	100		1	102	4.2	70-130	20	06/08/2009 2231	
Surrogate	Q % Rec	Ac	cceptance Limit							
Bromofluorobenzene	96		70-130							
1,2-Dichloroethane-d4	81		70-130							
Toluene-d8	96		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

				TPH - DR	0 - MB				
Sample ID: KQ12123-001 Batch: 12123 Analytical Method: 8015C		Matrix: Aqueous Prep Method: 3520C Prep Date: 06/09/2009 2234							
Parameter	Result Q Dil PQL MDL Units Analysis [
TPH-DRO Surrogate									06/13/2009 0909
o - Terphenyl		88		53-118					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12123-002 Batch: 12123 Analytical Method: 8015C			Matrix: Aqueous Prep Method: 3520C Prep Date: 06/09/2009 2234						
Parameter	Spike Amount Result % Rec (ug/L) (ug/L) Q Dil % Rec Limit Analysis								
TPH-DRO	2500	2200		1	90	70-130	06/13/2009 0928		
Surrogate	Q % Rec	Accepta Limi							
o - Terphenyl	87 53-118								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

columns exceeds 40% N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = \text{Estimated result} < PQL and <math>\geq \text{MDL}$

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - MB

				me					
Sample ID: KQ12676-001 Batch: 12676 Analytical Method: 8015B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date		
TPH-GRO	ND		1	100	20	ug/L	06/17/2009 1229		
Surrogate	Q % Rec		Acceptance Limit						
Bromofluorobenzene	118		70-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - LCS

Sample ID: KQ12676-002 Batch: 12676 Analytical Method: 8015B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
TPH-GRO	1000	980		1	98	70-130	06/17/2009 1139			
Surrogate	Q % Rec	Accepta Limit								
Bromofluorobenzene	120	70-13	0							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

umns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - LCSD

Sample ID: KQ12676-003 Batch: 12676 Analytical Method: 8015B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
TPH-GRO	1000	980		1	98	0.0	70-130	20	06/17/2009 1204
Surrogate	Q % Rec		eptance limit						
Bromofluorobenzene	122	70	D-130						

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

	ICP-AES - MB									
Sample ID: KQ12240-001Matrix: AqueousBatch: 12240Prep Method: 3005AAnalytical Method: 6010BPrep Date: 06/11/2009 1203										
Parameter Result Q Dil PQL MDL Units Analysis Date										
Iron	ND		1	0.10	0.023	mg/L	06/11/2009 2341			

1

0.010

0.0019

mg/L

06/11/2009 2341

0.0041

J

PQL = Practical quantitation limit

Lead

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		ICP	-AES	- LCS					
Sample ID: KQ12240-002Matrix: AqueousBatch: 12240Prep Method: 3005AAnalytical Method: 6010BPrep Date: 06/11/2009 1203									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Iron	20	20		1	101	80-120	06/11/2009 2346		
Lead	0.40	0.39		1	98	80-120	06/11/2009 2346		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

 ND = Not detected at or above the MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12240-003 Batch: 12240 Analytical Method: 6010B		Matrix: Aqueous Prep Method: 3005A Prep Date: 06/11/2009 1203							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
lron Lead	20 0.40	20 0.40		1	103 100	1.8 2.1	80-120 80-120	20 20	06/11/2009 2351 06/11/2009 2351

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

ds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

ICP-AES - MB										
Sample ID: KQ12463-001Matrix: AqueousBatch: 12463Prep Method: 3005AAnalytical Method: 6010BPrep Date: 06/15/2009 1800										
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date			
Dissolved Iron	ND		1	0.10	0.023	mg/L	06/16/2009 2112			

1

0.010

0.0019

mg/L

06/16/2009 2112

ND

PQL = Practical quantitation limit

Dissolved Lead

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		ICP	-AES	- LCS					
Sample ID: KQ12463-002Matrix: AqueousBatch: 12463Prep Method: 3005AAnalytical Method: 6010BPrep Date: 06/15/2009 1800									
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Dissolved Iron	20	20		1	99	80-120	06/16/2009 2117		
Dissolved Lead	0.40	0.38		1	95	80-120	06/16/2009 2117		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

 ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12463-003 Batch: 12463 Analytical Method: 6010B					Matrix: Ad Method: 30 ep Date: 06		800		
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Dissolved Iron Dissolved Lead	20 0.40	20 0.38		1	98 94	0.90 0.94	80-120 80-120	20 20	06/16/2009 2123 06/16/2009 2123

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

ICP-AES - MB										
Sample ID: KQ12573-001Matrix: AqueousBatch: 12573Prep Method: 3005AAnalytical Method: 6010BPrep Date: 06/16/2009 1800										
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date			
Iron	ND		1	0.10	0.023	mg/L	06/18/2009 0311			

1

0.010

0.0019

mg/L

06/18/2009 0311

PQL = Practical quantitation limit

Lead

P = The RPD between two GC columns exceeds 40%

ND = Not detected at or above the MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

J = Estimated result < PQL and \geq MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

0.0023

J

		ICP	-AES	- LCS					
Sample ID: KQ12573-00 Batch: 12573 Analytical Method: 6010B)2	Matrix: Aqueous Prep Method: 3005A Prep Date: 06/16/2009 1800							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Iron	20	21		1	104	80-120	06/18/2009 0317		
Lead	0.40	0.40		1	100	80-120	06/18/2009 0317		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

 ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12573-003 Batch: 12573 Analytical Method: 6010B	Matrix: Aqueous Prep Method: 3005A Prep Date: 06/16/2009 1800								
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
lron Lead	20 0.40	20 0.39		1	101 96	2.6 3.3	80-120 80-120	20 20	06/18/2009 0322 06/18/2009 0322

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

ds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

HEALY Chain of Custody Record	Cord West Columbia, South Carolina 29172 Telephone No. (803) 791-9700 Fax No. (803) 791-9111		Number 102226
Citerry Address Address Ferry Ed Address Beyg Rates Ferry Ed Cny Address Beyg Rates Ferry Ed Cny Address 200333 Proper Name Proper	Performente Comitant Scatta Bustham Sampters signature 2333 Printen Name A Grice Maddor A Grice Maddor Printen Name Printen Name Print	Telegotrone No. / Fax No. / E-mail Telegotrone No. Waycom No. Maycom No. M	BS-2466 Quanta Mo. Page da la
Possible Hazard Identification Non-Hazard I Flammable Skin Initant Poison	Sample Disposal Peturn to Client – Discussal by Lab	Note: All samples are relatived for aix treates from receipt unders other analysements are notice	from receipt
n keb approvati regit		(Specify)	
	Date Date Time 1. Received by	Date	a Tuna
2 Relinquished by	Date Thomas 2. Heceweid by	Date	a Time
3. Reinguished by F20JEX	12/6/04 Time 3. Labriatory received by	Scipt M/ M Sale	2 11
Contration	LAB USE ONE	nn c	SAN DELO

SHEALY ENVIRONMENTAL SERVICES, INC.

healy Environmental Services, Inc. acument Number: F-AD-016	Page L of T Replaces Date: 09/22/06
evision Number: 6	Effective Date: 05/29/07
-	Receipt Checklist (SRC)
lient: <u>ARCADIS</u> Cooler In:	spected by/date: <u>SAM 1616/09</u> Lot #: KF06034
Means of receipt: SESI Client	UPS FedEx Airborne Exp Other
	seals present on the cooler?
Name of Concession, and the second	ls were present, were they intact and unbroken?
could instemperature apoint or off	°C/°C/°C/°C °C/°C/°C/°C
	gainst Bottles ue Ice
f response is No (or Yes for 14, 15, 16), an expl	anation/resolution must be provided.
Yes 🗌 No 🗌 NA 📝 PM notified by	e of any cooler exceeded 6.0°C, was Project Manager notified? y SRC, phone, note (circle one), other: (For ed via commercial courier, PMs are to be notified immediately.
and the second sec	reial courier's packing slip attached to this form?
	custody procedures (relinquished/received) followed?
Yes No NA 6. Were sample	
	n date & time listed?
Yes 🚺 No 🗌 NA 🗌 8. Were tests to 1	be performed listed on the COC or was quote # provided?
Yes 📝 No 🗌 NA 🗌 9. Did all sample	es arrive in the proper containers for each test?
	ainer label information (ID, date, time) agree with COC?
	iners arrive in good condition (unbroken, lids on, etc.)?
	te sample volume available?
res No NA comes first?	nples received within 1/2 the holding time or 48 hours, whichever
	mples containers missing?
	ny excess samples not listed on COC?
Yes NOL NAL vials?	es present >"pea-size" (¼"or 6mm in diaméter) in any VOA
	tals/O&G/HEM/nutrient samples received at a pH of <2?
	nide and/or sulfide samples received at a pH >12?
	licable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb
North Contraction of the second	and toxicity (<0.1mg/L) samples free of residual chlorine? tion temperatures documented on the COC for NC samples?
	any sample(s) incorrectly preserved or with headspace.) were received incorrectly preserved and were adjusted
Sample(s) accordingly in sample receiving with	(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
Sample(s)	were received with bubbles >6 mm in diameter.
Sample(s)	were received with TRC >0.2 mg/L for NH3/
TKN/cyanide/BNA/pest/PCB/herb.	,
Toxicity sample(s)	were received with TRC >0.1 mg/L and were
analyzed by method 330.5.	
orrective Action taken, if necessary:	anders ARCADIS INC. Phone 770 431-8666
Vas client notified: Yes 🗌 No 🗌	
ESI employee:	Company ACADIS
omments:	Address 2849 PACES FERRY RD SE STE 400
	ATLANTA State GA ZP 30339-3769

Report of Analysis

ARCADIS U.S., Inc. 30 Patewood Drive Suite 155 Greenville, SC 29615 Attention: Janet Christy

Project Name: HAA-13 Pumphouse 1, Release 1 Project Number: GP08HAFS. H13A. NA1R1

Lot Number: KF09013 Date Completed:06/22/2009

:Kal

Nisreen Saikaly Project Manager

This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

The following non-paginated documents are considered part of this report: Chain of Custody Record and Sample Receipt Checklist.

* KF09013*

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010

NELAC No: E87653

NC DEHNR No: 329

Case Narrative ARCADIS U.S., Inc. Lot Number: KF09013

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

TCLP Semivolatiles

The LCS recovery for Pyridine was outside method control limits in batch 12257. The MS results were within limits. Therefore the associated sample results were reported and no corrective action was required.

The surrogate recovery in batch 12257 was outside the acceptance limit. The surrogate recovery is attributed to matrix interference. The sample results are reported and no corrective action is required.

DRO

Samples -001 and -002 have an unknown pattern associated with the DRO analysis.

SHEALY ENVIRONMENTAL SERVICES, INC.

Sample Summary ARCADIS U.S., Inc. Lot Number: KF09013

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	D-MW37(060809)	Aqueous	06/08/2009 1350	06/09/2009
002	D-MW11(060809)	Aqueous	06/08/2009 1345	06/09/2009
003	IB-01(060809)	Aqueous	06/08/2009 1200	06/09/2009
004	HA13R1IDW-1(060809)	Aqueous	06/08/2009 1430	06/09/2009

(4 samples)

Executive Summary ARCADIS U.S., Inc. Lot Number: KF09013

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	D-MW37(060809)	Aqueous	Alkalinity	SM 2320B	8.9	J	mg/L	5
001	D-MW37(060809)	Aqueous	DOC	SM 5310D	16		mg/L	5
001	D-MW37(060809)	Aqueous	Sulfate	300.0	0.45	J	mg/L	5
001	D-MW37(060809)	Aqueous	Sulfide	SM 4500-S2 F	2.0	В	mg/L	5
001	D-MW37(060809)	Aqueous	Benzene	8260B	260		ug/L	6
001	D-MW37(060809)	Aqueous	Ethylbenzene	8260B	230		ug/L	6
001	D-MW37(060809)	Aqueous	Toluene	8260B	1200		ug/L	6
001	D-MW37(060809)	Aqueous	Xylenes (total)	8260B	850		ug/L	6
001	D-MW37(060809)	Aqueous	TPH-DRO	8015C	8900	В	ug/L	7
001	D-MW37(060809)	Aqueous	TPH-GRO	8015B	5600		ug/L	8
001	D-MW37(060809)	Aqueous	Dissolved Iron	6010B	0.70		mg/L	9
001	D-MW37(060809)	Aqueous	Dissolved Lead	6010B	0.0047	J	mg/L	9
001	D-MW37(060809)	Aqueous	Iron	6010B	1.6		mg/L	10
001	D-MW37(060809)	Aqueous	Lead	6010B	0.0048	J	mg/L	10
002	D-MW11(060809)	Aqueous	Alkalinity	SM 2320B	7.1	J	mg/L	11
002	D-MW11(060809)	Aqueous	DOC	SM 5310D	14		mg/L	11
002	D-MW11(060809)	Aqueous	Sulfate	300.0	1.2		mg/L	11
002	D-MW11(060809)	Aqueous	Sulfide	SM 4500-S2 F	2.9	В	mg/L	11
002	D-MW11(060809)	Aqueous	Benzene	8260B	62		ug/L	12
002	D-MW11(060809)	Aqueous	Ethylbenzene	8260B	270		ug/L	12
002	D-MW11(060809)	Aqueous	Toluene	8260B	340		ug/L	12
002	D-MW11(060809)	Aqueous	Xylenes (total)	8260B	1500		ug/L	12
002	D-MW11(060809)	Aqueous	TPH-DRO	8015C	14000	В	ug/L	13
002	D-MW11(060809)	Aqueous	TPH-GRO	8015B	5000		ug/L	14
002	D-MW11(060809)	Aqueous	Dissolved Iron	6010B	0.37		mg/L	15
002	D-MW11(060809)	Aqueous	Dissolved Lead	6010B	0.0081	J	mg/L	15
002	D-MW11(060809)	Aqueous	Iron	6010B	0.38		mg/L	16
002	D-MW11(060809)	Aqueous	Lead	6010B	0.0086	J	mg/L	16
004	HA13R1IDW-1(060809)	Aqueous	Ignitability (Pensky-Martens Closed-	1010A	>140		°F	18

(29 detections)

Inorganic non-metals

Date S	Client: ARCADI cription: D-MW37 ampled:06/08/20 eceived: 06/09/20	(060809) 09 1350						L	-	/ ID: KF090 Itrix: Aquec		
Run 1 1 1 1 1	Prep Method	Analytical Method (Alkalinity) SM 2320B (DOC) SM 5310D (Nitrate - N) 353.2 (Sulfate) 300.0 (Sulfide) SM 4500-S2 F	Dilution 1 1 1 1 1	Analysi 06/10/20 06/11/20 06/10/20 06/19/20 06/15/20	09 1528 09 1418 09 1047 09 1319	Analyst PMM PMM WD DAS BM	Prep Da	ate	Batch 12132 12218 12171 12908 12486			
Param	eter			CAS Number		llytical ethod	Result	Q	PQL	MDL	Units	Run
Alkalin DOC Nitrate Sulfate Sulfide	- N e		18	496-25-8		2320B 5310D 353.2 300.0 0-S2 F	8.9 16 ND 0.45 2.0	J J B	10 1.0 0.020 1.0 1.0	3.9 0.063 0.0013 0.13 0.62	mg/L mg/L mg/L mg/L mg/L	1 1 1 1 1

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded t	he calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	xceeds 40%
Where applicable, all soil sample analysis are reported of	on a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 5 of 62 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

	Client: ARCADIS U	J.S., Inc.					La	aboratory II	D: KF090	13-001	
Des	cription: D-MW37(06	60809)						Matri	x: Aqueo	us	
Date S	ampled:06/08/2009	1350									
Date R	eceived:06/09/2009										
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 20	Analysis 06/11/2009	2	Prep Da	te	Batch 12302			
Paran	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ene			71-43-2	8260B	260		10	0.54	ug/L	1
Ethylk	benzene		1	00-41-4	8260B	230		10	3.4	ug/L	1
Methy	I tertiary butyl ether	(MTBE)	16	534-04-4	8260B	ND		10	0.38	ug/L	1
Tolue	ne		1	08-88-3	8260B	1200		10	3.4	ug/L	1
Xylen	es (total)		13	330-20-7	8260B	850		10	3.4	ug/L	1
Surro	gate	Q	Run 1 % Recov		ance Its						
1,2-Di	chloroethane-d4		89	52-1	38						
Bromo	ofluorobenzene		95	70-1	47						
Toluer	ne-d8		90	76-1	25						

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 6 of 62 Level 1 Report v2.1

				IPH	- DRO						
	Client: ARCADIS U	.S., Inc.					La	aboratory I	D: KF090	13-001	
	cription: D-MW37(060 Sampled:06/08/2009 1							Matri	ix: Aqueo	us	
	eceived:06/09/2009										
Run 1	Prep Method 3520C	Analytical Method 8015C	Dilution 1	Analysis D 06/13/2009		Prep Da 06/09/200		Batch 12123			
Paran	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
TPH-D	RO				8015C	8900	В	200	23	ug/L	1
Surro	gate	Q	Run % Reco								
o - Te	rphenyl		69	53-11	8						

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 7 of 62 Level 1 Report v2.1

TPH - DRO

TPH - GRC)
-----------	---

Date S	Client: ARCADIS U.S., Inc. Laboratory ID: KF09013-001 Description: D-MW37(060809) Matrix: Aqueous Date Sampled:06/08/2009 1350 Date Received: 06/09/2009 Description to the indication of the in											
Run 2	Prep Method 5030B	Analytical Method 8015B	Dilutior 5	n Analysis 06/18/2009	5	,	Prep Date	9	Batch 12765			
Param	neter			CAS Number	Analytical Method		Result	Q	PQL	MDL	Units	Run
TPH-C	GRO				8015B		5600		500	100	ug/L	2
Surro	gate	Q	Run % Reco									
Bromo	ofluorobenzene		127	7 70-1	30							

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	E = Quantitation of compound exceeded the calibration range					
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%					
Where applicable, all soil sample analysis are reported or	a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time					

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 8 of 62 Level 1 Report v2.1

	Client: ARCADIS U.S., Inc. Laboratory ID: KF09013-001												
Des	cription: D-MW37(06	60809)							Ma	trix: Aquec	ous		
Date S	ampled:06/08/2009	1350											
Date Re	eceived:06/09/2009												
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution 1	Analysis 06/16/2009		nalyst CDF	Prep Da 06/15/200		Batch 0 12463				
Param	neter			CAS Number	Analyti Metho		Result	Q	PQL	MDL	Units	Run	
Dissolved Iron		7	7439-89-6		0B	0.70		0.10	0.023	mg/L	1		
Disso	lved Lead		7	439-92-1	601	0B	0.0047	J	0.010	0.0019	mg/L	1	

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 9 of 62 Level 1 Report v2.1

	Client: ARCADIS U.S., Inc. Laboratory ID: KF09013-001											
Des	cription: D-MW37(0	60809)						Ma	trix: Aqueo	us		
Date S	ampled:06/08/2009	1350										
Date Re	eceived:06/09/2009											
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution 1	Analysis 06/16/2009	5			Batch 0 12463				
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run	
Iron			7	439-89-6	6010B	1.6		0.10	0.023	mg/L	1	
Lead			7	439-92-1	6010B	0.0048	J	0.010	0.0019	mg/L	1	

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 10 of 62 Level 1 Report v2.1

Inorganic non-metals

Date S	Client: ARCADIS U.S., Inc. Laboratory ID: KF09013-002 Description: D-MW11(060809) Matrix: Aqueous Date Sampled:06/08/2009 1345 Date Received: 06/09/2009											
Run 1 1 1	Prep Method	Analytical Method (Alkalinity) SM 2320B (DOC) SM 5310D (Nitrate - N) 353.2 (Sulfate) 300.0	Dilution 1 1 1 1	Analysi 06/10/20 06/11/20 06/10/20 06/19/20	09 1602 09 1438 09 1048 09 1342	Analyst PMM PMM WD DAS	Prep Da	te	Batch 12132 12218 12171 12908			
Param	neter	(Sulfide) SM 4500-S2 F	1	06/15/20 CAS Number	Ana	BM Ilytical ethod	Result	Q	12486 PQL	MDL	Units	Run
Alkalin DOC Nitrate Sulfate Sulfide	- N e		184	496-25-8		2320B 5310D 353.2 300.0 0-S2 F	7.1 14 ND 1.2 2.9	J	10 1.0 0.020 1.0 1.0	3.9 0.063 0.0013 0.13 0.62	mg/L mg/L mg/L mg/L mg/L	1 1 1 1

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	the calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
Where applicable, all soil sample analysis are reported	on a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 11 of 62 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

	Client: ARCADIS L	J.S., Inc.		Laboratory ID: KF09013-002							
Dese	cription: D-MW11(06	0809)						Mati	rix: Aqueo	us	
Date S	ampled:06/08/2009	1345									
Date Re	eceived: 06/09/2009										
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 5	Analysis 06/11/200	5	Prep Da	ite	Batch 12302			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benze	ne			71-43-2	8260B	62		2.5	0.14	ug/L	1
Ethylb	enzene		1	00-41-4	8260B	270		2.5	0.85	ug/L	1
Methyl	tertiary butyl ether	(MTBE)	16	534-04-4	8260B	ND		2.5	0.094	ug/L	1
Toluer	ne		1	08-88-3	8260B	340		2.5	0.85	ug/L	1
Xylene	es (total)		13	330-20-7	8260B	1500		2.5	0.85	ug/L	1
Surro	gate	Q	Run 1 % Recov								
1,2-Dio	chloroethane-d4		90	52-1	138						
Bromo	fluorobenzene		100	70-1	147						
Toluer	ie-d8		90	76-1	125						

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded t	he calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	xceeds 40%
Where applicable, all soil sample analysis are reported of	n a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 12 of 62 Level 1 Report v2.1

				IPI	H - DRO							
C	Client: ARCADIS U	.S., Inc.		Laboratory ID: KF09013-002								
	ption: D-MW11(06	,						Matr	ix: Aqueo	us		
Date Sam	npled:06/08/2009	1345										
Date Rece	eived:06/09/2009											
Run F 1	Prep Method 3520C	Analytical Method 8015C	Dilution 1	Analysis 06/13/2009	5	Prep Da 06/09/200		Batch 12123				
Paramete	er			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run	
TPH-DRO	С				8015C	14000	В	200	23	ug/L	1	
Surrogat	te	Q	Run % Recov									
o - Terph	ienyl		82	53-1	18							

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeds 40%

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 13 of 62 Level 1 Report v2.1

TPH - DRO

IPH - GRO

	Client: ARCADIS	U.S., Inc.		Laboratory ID: KF09013-002								
Desc	cription: D-MW11(0	60809)							Matri	x: Aqueo	us	
Date Sa	ampled:06/08/2009	1345										
Date Re	eceived:06/09/2009											
Run 2	Prep Method 5030B	Analytical Method 8015B	Dilution 2	Analysis 06/18/2009		Analyst IVC	Prep Dat	te	Batch 12765			
Param	eter			CAS Number		lytical ethod	Result	Q	PQL	MDL	Units	Run
TPH-G	RO				8	8015B	5000		200	40	ug/L	2
Surrog	gate	Q	Run % Reco									
Bromo	fluorobenzene		122	2 70-1	30							

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	the calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
Where applicable, all soil sample analysis are reported	on a dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Page: 14 of 62 Level 1 Report v2.1

ICP-AES

Client: ARCADIS U.S., Inc. Laboratory ID: KF09013-002													
Description: D-MW11(060809) Matrix: Aqueous													
Date S	ampled:06/08/2009	1345											
Date Re	eceived:06/09/2009												
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution 1	Analysis 06/16/2009		Analyst CDF	Prep Da 06/15/200		Batch 0 12463				
Param	neter			CAS Number		lytical ethod	Result	Q	PQL	MDL	Units	Run	_
Disso	lved Iron		7	439-89-6	(6010B	0.37		0.10	0.023	mg/L	1	
Disso	lved Lead		7	439-92-1	6	6010B	0.0081	J	0.010	0.0019	mg/L	1	

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeded the valueWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 15 of 62 Level 1 Report v2.1

	Client: ARCADIS		Laboratory ID: KF09013-002									
Description: D-MW11(060809) Matrix: Aqueous												
Date S	ampled:06/08/2009	1345										
Date Re	eceived:06/09/2009	•										
Run 1	Prep Method 3005A	Analytical Method 6010B	Dilution 1	Analysis 06/16/2009	5	Prep Da 06/15/200		Batch 0 12463				
Param	neter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run	
Iron			7	7439-89-6	6010B	0.38		0.10	0.023	mg/L	1	
Lead			7	7439-92-1	6010B	0.0086	J	0.010	0.0019	mg/L	1	

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 16 of 62 Level 1 Report v2.1

Volatile Organic Compounds by GC/MS

	Client: ARCADIS U	J.S., Inc.					La	aboratory	ID: KF090	13-003	
Desc	ription: IB-01(06080)9)						Matr	ix: Aqueo	us	
Date S	ampled:06/08/2009	1200									
Date Re	ceived: 06/09/2009										
Run 1	Prep Method 5030B	Analytical Method 8260B	Dilution 1	Analysis 06/11/2009	2	Prep Da	te	Batch 12302			
Param	eter			CAS Number	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzer	ne			71-43-2	8260B	ND		0.50	0.027	ug/L	1
Ethylbe	enzene		1	00-41-4	8260B	ND		0.50	0.17	ug/L	1
Methyl	tertiary butyl ether	(MTBE)	16	534-04-4	8260B	ND		0.50	0.019	ug/L	1
Toluen	e		1	08-88-3	8260B	ND		0.50	0.17	ug/L	1
Xylene	s (total)		13	330-20-7	8260B	ND		0.50	0.17	ug/L	1
Surrog	jate	Q	Run 1 % Recov								
1,2-Dic	hloroethane-d4		89	52-1	38						
Bromo	fluorobenzene		95	70-1	47						
Toluen	e-d8		90	76-1	25						

PQL = Practical quantitation limit	B = Detected in the method blank	E = Quantitation of compound exceeded	the calibration range
ND = Not detected at or above the MDL	J = Estimated result < PQL and \geq MDL	P = The RPD between two GC columns e	exceeds 40%
Where applicable, all soil sample analysis are reported on a	dry weight basis unless flagged with a "W"	N = Recovery is out of criteria	H = Out of holding time

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Page: 17 of 62 Level 1 Report v2.1

Inorganic non-metals

	Client: ARCADIS	J.S., Inc.						La	aboratory I	D: KF090	13-004	
Desc	cription: HA13R1ID	W-1(060809)							Matr	ix: Aqueo	us	
Date S	ampled:06/08/2009	1430										
Date Re	eceived:06/09/2009											
Run 1	Prep Method	Analytical Method (Ignitability) 1010A	Dilution 1	Analysis 06/10/200		Analyst PMM	Prep Da	ite	Batch			
1		(pH) SM 4500-H B	1	06/09/200	9 1430	HBB			12150			
Param	neter			CAS Number		lytical ethod	Result	Q	PQL	MDL	Units	Run
Ignitat	oility (Pensky-Mart	ens Closed-Cup)				1010A	>140				°F	1
рН					SM 450	00-H B	5.24				su	1

 PQL = Practical quantitation limit
 B = Detected in the method blank
 E = Quantitation of compound exceeded the calibration range

 ND = Not detected at or above the MDL
 J = Estimated result < PQL and ≥ MDL</td>
 P = The RPD between two GC columns exceeded the value of holding time

 Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"
 N = Recovery is out of criteria
 H = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 18 of 62 Level 1 Report v2.1

TCLP Volatiles

Client: ARCADIS U.S., Inc.

Description: HA13R1IDW-1(060809) Date Sampled:06/08/2009 1430 Laboratory ID: KF09013-004 Matrix: Aqueous

Date Received: 06/09/2009

Run Prep Method 1 1311/5030B	Analytical Method 8260B	Dilution Analysis Da 10 06/19/2009		Prep Da	te Batch 12825	Leachate Date 06/11/2009 0000	
Parameter		CAS Number	Analytical	Result	Q PQL	MDL Units	Run
Benzene		71-43-2	Method 8260B	ND	0.050	mg/L	1
2-Butanone (MEK)		78-93-3	8260B	ND	0.050	mg/L	1
Carbon tetrachloride		56-23-5	8260B	ND	0.050	mg/L	1
Chlorobenzene		108-90-7	8260B	ND	0.050	mg/L	1
Chloroform		67-66-3	8260B	ND	0.050	mg/L	1
1,2-Dichloroethane		107-06-2	8260B	ND	0.050	mg/L	1
1,1-Dichloroethene		75-35-4	8260B	ND	0.050	mg/L	1
Tetrachloroethene		127-18-4	8260B	ND	0.050	mg/L	1
Trichloroethene		79-01-6	8260B	ND	0.050	mg/L	1
Vinyl chloride		75-01-4	8260B	ND	0.010	mg/L	1
Surrogate	Q	Run 1 Acceptar % Recovery Limits					
1,2-Dichloroethane-d4		88 70-13	0				
Bromofluorobenzene		99 70-130	0				
Toluene-d8		92 70-130	0				

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 19 of 62 Level 1 Report v2.1

TCLP Semivolatiles

Client: ARCADIS U.S., Inc.

Description: HA13R1IDW-1(060809) Date Sampled:06/08/2009 1430 Laboratory ID: KF09013-004 Matrix: Aqueous

Date Received: 06/09/2009

Run Prep Method 1 1311/3520C	Analytical Method 8270D		ysis Date /2009 0640	Analyst GLR	Prep Da 06/11/200		Leachat 06/11/20		
Parameter		CA Numb		llytical ethod	Result	Q PQL	MDL	Units	Run
,4-Dichlorobenzene		106-46-	-7	8270D	ND	0.050		mg/L	1
2,4-Dinitrotoluene		121-14-	-2	8270D	ND	0.10		mg/L	1
Hexachlorobenzene		118-74-	-1	8270D	ND	0.050		mg/L	1
Hexachlorobutadiene		87-68-	-3	8270D	ND	0.050		mg/L	1
Hexachloroethane		67-72-	-1	8270D	ND	0.050		mg/L	1
2-Methylphenol		95-48-	-7	8270D	ND	0.050		mg/L	1
3 & 4-Methylphenol		106-44-	-5	8270D	ND	0.10		mg/L	1
Nitrobenzene		98-95	-3	8270D	ND	0.050		mg/L	1
Pentachlorophenol		87-86	-5	8270D	ND	0.25		mg/L	1
Pyridine		110-86-	-1	8270D	ND	0.050		mg/L	1
2,4,5-Trichlorophenol		95-95	-4	8270D	ND	0.050		mg/L	1
2,4,6-Trichlorophenol		88-06-	-2	8270D	ND	0.050		mg/L	1
Surrogate	Q		ceptance Limits						
2,4,6-Tribromophenol		108	41-144						
2-Fluorobiphenyl		109	37-129						
2-Fluorophenol		96	24-127						
Nitrobenzene-d5		123	38-127						
Phenol-d5		98	28-128						
Ferphenyl-d14		105	10-148						

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"N = Recovery is out of criteriaH = Out of holding time

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Page: 20 of 62 Level 1 Report v2.1

QC Summary

Sample ID: KQ12132-00 Batch: 12132	1			Matrix: Aque	ous			
Analytical Method: SM 2320B								
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date	
Alkalinity	ND		1	10	3.9	mg/L	06/10/2009 0713	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12132	-002			Matrix	: Aqueous		
Batch: 12132							
Analytical Method: SM 2320E	3						
	Spike						
	Amount	Result	_			% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Alkalinity	100	100		1	100	90-110	06/10/2009 0729

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12132-003 Batch: 12132 Analytical Method: SM 2320B	Matrix: Aqueous								
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Alkalinity	100	100		1	102	2.2	90-110	20	06/10/2009 0745

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KF09013-001MS Batch: 12132 Analytical Method: SM 2320B					Matrix: Aqueous				
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date	
Alkalinity	8.9	100	110		1	101	70-130	06/10/2009 1540	

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - M	ЛSD
--------------------------	-----

Sample ID: KF09013-001 Batch: 12132	MD	Matrix: Aqueous								
Analytical Method: SM 2320B										
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RP Limit	
Alkalinity	8.9	100	110		1	103	1.9	70-130	20	06/10/2009 1553

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MB						
Sample ID: KQ12150-001 Batch: 12150	Matrix: Aqueous					
Analytical Method: SM 4500-H B						

Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
рН	ND		1	0.0		su	06/09/2009 1430

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

Imns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - Duplicate									
Sample ID: KF09013-004DU Matrix: Aqueous Batch: 12150 Analytical Method: SM 4500-H B									
Parameter	Sample Amount (su)	Result	Q	Dil	% RPD	% RPD Limit	Analysis Date		
рН	5.24	5.32		1	1.5	20	06/09/2009 1430		

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

PQL = Practical quantitation limit

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non	i-metals - MB
5	

inorganie non metals mb							
Sample ID: KQ12171-001 Batch: 12171				Matrix: Aque	ous		
Analytical Method: 353.2							
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date
Nitrate - N	ND		1	0.020	0.0013	mg/L	06/10/2009 0000

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

 ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic	non-metals -	LCS
-----------	--------------	-----

Sample ID: KQ12171-0	02			Matrix	: Aqueous		
Batch: 12171 Analytical Method: 353.2							
Analytical Method: 555.2							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Nitrate - N	0.80	0.86		1	108	90-110	06/10/2009 0000

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12171-00 Batch: 12171 Analytical Method: 353.2	3				Matrix: Ad	queous			
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Nitrate - N	0.80	0.87		1	108	0.81	90-110	20	06/10/2009 0000

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - MB								
Sample ID: KQ12218-001 Batch: 12218 Analytical Method: SM 5310D				Matrix: Aque	ous			
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date	

1.0

0.063

mg/L

06/11/2009 1316

1

ND

POI =	Practical	guantitation	limit
FQL -	Flactical	quantitation	mmu

DOC

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

ns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		5							
Sample ID: KQ12218- Batch: 12218	002	Matrix: Aqueous							
Analytical Method: SM 5310D)								
	Spike Amount	Result				% Rec			
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date		
DOC	20	20		1	100	90-110	06/11/2009 1337		

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12218-003 Batch: 12218 Analytical Method: SM 5310D					Matrix: A	queous			
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
DOC	20	20		1	99	1.0	90-110	20	06/11/2009 1357

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KF09013-00 Batch: 12218	2MS			Mati	rix: Aqueou	IS		
Analytical Method: SM 5310D								
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
DOC	14	20	33		1	94	70-130	06/11/2009 1459

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		morgan		nct	ais	MOD					
Sample ID: KF09013-002N Batch: 12218	ЛD				Matr	ix: Aqueo	us				
Analytical Method: SM 5310D											
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RP Limit		
DOC	14	20	33		1	94	0.21	70-130	20	06/11/2009 1519	

Inorganic non-metals - MSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

ns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		morg					
Sample ID: KQ12486-001 Batch: 12486				Matrix: Aqueo	ous		
Analytical Method: SM 4500-S2 F							
Parameter	Result	0	Dil	PQL	MDL	Units	Analysis Date
Sulfide	0.64	J	1	1.0	0.62	mg/L	06/15/2009 1325

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12486-002 Batch: 12486		Matrix: Aqueous								
Analytical Method: SM 4500-S2 F										
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
Sulfide	10	10		1	100	80-120	06/15/2009 1325			

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12486-003 Batch: 12486 Analytical Method: SM 4500-S2 F					Matrix: Ad	queous			
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Sulfide	10	10		1	103	3.5	80-120	20	06/15/2009 1325

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12908- Batch: 12908	01 Matrix: Aqueous											
Analytical Method: 300.0								—				
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date					
Sulfate	ND		1	1.0	0.13	mg/L	06/19/2009 1030					

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ1290 Batch: 12908	8-002	Matrix: Aqueous									
Analytical Method: 300.0											
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Sulfate	20	19		1	97	90-110	06/19/2009 1053				

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Inorganic non-metals - LCSD

Sample ID: KQ12908-003 Batch: 12908					Matrix: Aqueous						
Analytical Method: 300.0											
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date		
Sulfate	20	20		1	101	4.0	90-110	20	06/19/2009 1115		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12302-001 Batch: 12302 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date				
Benzene	ND	1	0.50	0.027	ug/L	06/11/2009 1137				
Ethylbenzene	ND	1	0.50	0.17	ug/L	06/11/2009 1137				
Methyl tertiary butyl ether (MTBE)	ND	1	0.50	0.019	ug/L	06/11/2009 1137				
Toluene	ND	1	0.50	0.17	ug/L	06/11/2009 1137				
Xylenes (total)	ND	1	0.50	0.17	ug/L	06/11/2009 1137				
Surrogate	Q % Rec	Acceptance Limit								
Bromofluorobenzene	97	70-130								
1,2-Dichloroethane-d4	88	70-130								
Toluene-d8	89	70-130								

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCS

Sample ID: KQ12302-002 Batch: 12302 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B										
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
Benzene	50	51		1	102	70-130	06/11/2009 1004				
Ethylbenzene	50	49		1	99	70-130	06/11/2009 1004				
Methyl tertiary butyl ether (MTBE)	50	52		1	105	70-130	06/11/2009 1004				
Toluene	50	49		1	99	70-130	06/11/2009 1004				
Xylenes (total)	100	98		1	98	70-130	06/11/2009 1004				
Surrogate	Q % Rec	Accepta Limit									
Bromofluorobenzene	97	70-13	0								
1,2-Dichloroethane-d4	85	70-13	0								
Toluene-d8	87	70-13	0								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: KQ12302-003 Batch: 12302 Analytical Method: 8260B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
Benzene	50	52		1	103	1.6	70-130	20	06/11/2009 1027	
Ethylbenzene	50	51		1	102	3.5	70-130	20	06/11/2009 1027	
Methyl tertiary butyl ether (MTBE)	50	53		1	106	1.0	70-130	20	06/11/2009 1027	
Toluene	50	51		1	101	2.7	70-130	20	06/11/2009 1027	
Xylenes (total)	100	100		1	101	3.4	70-130	20	06/11/2009 1027	
Surrogate	Q % Rec	Ac	cceptance Limit							
Bromofluorobenzene	97		70-130							
1,2-Dichloroethane-d4	84		70-130							
Toluene-d8	87		70-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TCLP Volatiles - MB

Sample ID: KQ12825-001 Batch: 12825 Analytical Method: 8260B Matrix: Aqueous

Prep Method: 1311/5030B

Leachate Date: 06/11/2009 0000

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
Benzene	ND	10	0.050		mg/L	06/19/2009 1107
2-Butanone (MEK)	ND	10	0.10		mg/L	06/19/2009 1107
Carbon tetrachloride	ND	10	0.050		mg/L	06/19/2009 1107
Chlorobenzene	ND	10	0.050		mg/L	06/19/2009 1107
Chloroform	ND	10	0.050		mg/L	06/19/2009 1107
1,2-Dichloroethane	ND	10	0.050		mg/L	06/19/2009 1107
1,1-Dichloroethene	ND	10	0.050		mg/L	06/19/2009 1107
Tetrachloroethene	ND	10	0.050		mg/L	06/19/2009 1107
Trichloroethene	ND	10	0.050		mg/L	06/19/2009 1107
Vinyl chloride	ND	10	0.010		mg/L	06/19/2009 1107
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	99	70-130				
1,2-Dichloroethane-d4	87	70-130				
Toluene-d8	94	70-130				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TCLP Volatiles - LCS

Sample ID: KQ12825-002 Batch: 12825			Pr		: Aqueous 1311/5030B		
Analytical Method: 8260B				-		Leachate D	ate: 06/11/2009 0000
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	0.50	0.50		10	99	72-127	06/19/2009 1003
2-Butanone (MEK)	1.0	0.85		10	85	60-140	06/19/2009 1003
Carbon tetrachloride	0.50	0.53		10	106	37-166	06/19/2009 1003
Chlorobenzene	0.50	0.48		10	96	78-129	06/19/2009 1003
Chloroform	0.50	0.44		10	87	63-123	06/19/2009 1003
1,2-Dichloroethane	0.50	0.49		10	98	59-143	06/19/2009 1003
1,1-Dichloroethene	0.50	0.55		10	111	50-132	06/19/2009 1003
Tetrachloroethene	0.50	0.51		10	102	70-130	06/19/2009 1003
Trichloroethene	0.50	0.50		10	101	73-124	06/19/2009 1003
Vinyl chloride	0.50	0.49		10	99	29-159	06/19/2009 1003
Surrogate	Q % Rec	Acceptan Limit	се				
Bromofluorobenzene	100	70-130					
1,2-Dichloroethane-d4	87	70-130	1				
Toluene-d8	96	70-130	1				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

mns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TCLP Volatiles - MS

Sample ID: KF09013-004N	1S
Batch: 12825	

Matrix: Aqueous Prep Method: 1311/5030B

Analytical Method: 8260B						Lea	achate Date	e: 06/11/2009 0000
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Benzene	ND	0.50	0.51		10	101	70-127	06/19/2009 1421
2-Butanone (MEK)	ND	1.0	1.0		10	102	60-140	06/19/2009 1421
Carbon tetrachloride	ND	0.50	0.54		10	108	37-166	06/19/2009 1421
Chlorobenzene	ND	0.50	0.46		10	92	78-129	06/19/2009 1421
Chloroform	ND	0.50	0.43		10	86	63-123	06/19/2009 1421
1,2-Dichloroethane	ND	0.50	0.48		10	95	59-143	06/19/2009 1421
1,1-Dichloroethene	ND	0.50	0.58		10	115	50-132	06/19/2009 1421
Tetrachloroethene	ND	0.50	0.50		10	101	70-130	06/19/2009 1421
Trichloroethene	ND	0.50	0.51		10	101	73-124	06/19/2009 1421
Vinyl chloride	ND	0.50	0.51		10	102	29-159	06/19/2009 1421
Surrogate	Q % Re	Ac	ceptance Limit					
Bromofluorobenzene	101		70-130					
1,2-Dichloroethane-d4	90		70-130					
Toluene-d8	94		70-130					

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TCLP Semivolatiles - MB

Sample ID: KQ12257-001 Batch: 12257 Analytical Method: 8270D Matrix: Aqueous Prep Method: 1311/3520C Prep Date: 06/11/2009 1723 Leachate Date: 06/11/2009 0000

Parameter	Result	Q Dil	PQL	MDL	Units	Analysis Date
1,4-Dichlorobenzene	ND	1	0.050		mg/L	06/14/2009 0558
2,4,5-Trichlorophenol	ND	1	0.050		mg/L	06/14/2009 0558
2,4,6-Trichlorophenol	ND	1	0.050		mg/L	06/14/2009 0558
2,4-Dinitrotoluene	ND	1	0.10		mg/L	06/14/2009 0558
2-Methylphenol	ND	1	0.050		mg/L	06/14/2009 0558
3 & 4-Methylphenol	ND	1	0.10		mg/L	06/14/2009 0558
Hexachlorobenzene	ND	1	0.050		mg/L	06/14/2009 0558
Hexachlorobutadiene	ND	1	0.050		mg/L	06/14/2009 0558
Hexachloroethane	ND	1	0.050		mg/L	06/14/2009 0558
Nitrobenzene	ND	1	0.050		mg/L	06/14/2009 0558
Pentachlorophenol	ND	1	0.25		mg/L	06/14/2009 0558
Pyridine	ND	1	0.050		mg/L	06/14/2009 0558
Surrogate	Q % Red	Acceptance C Limit				
2,4,6-Tribromophenol	93	41-144				
2-Fluorobiphenyl	108	37-129				
2-Fluorophenol	84	24-127				
Nitrobenzene-d5	98	38-127				
Phenol-d5	99	28-128				
Terphenyl-d14	106	10-148				

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TCLP Semivolatiles - LCS

Sample ID: KQ12257-002 Batch: 12257 Analytical Method: 8270D	Matrix: Aqueous Prep Method: 1311/3520C Prep Date: 06/11/2009 1723 Leachate Date: 06/11/2009 0000										
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date				
1,4-Dichlorobenzene	1.0	0.98		1	98	30-130	06/15/2009 1817				
2,4,5-Trichlorophenol	1.0	1.0		1	106	30-130	06/15/2009 1817				
2,4,6-Trichlorophenol	1.0	1.0		1	100	30-130	06/15/2009 1817				
2,4-Dinitrotoluene	1.0	0.95		1	95	30-130	06/15/2009 1817				
2-Methylphenol	1.0	0.88		1	88	30-130	06/15/2009 1817				
3 & 4-Methylphenol	2.0	2.0		1	101	30-130	06/15/2009 1817				
Hexachlorobenzene	1.0	1.1		1	110	30-130	06/15/2009 1817				
Hexachlorobutadiene	1.0	1.0		1	104	30-130	06/15/2009 1817				
Hexachloroethane	1.0	1.0		1	100	30-130	06/15/2009 1817				
Nitrobenzene	1.0	1.0		1	103	30-130	06/15/2009 1817				
Pentachlorophenol	1.0	0.96		1	96	30-130	06/15/2009 1817				
Pyridine	1.0	ND	Ν	1	0.0	30-130	06/15/2009 1817				
Surrogate	Q % Rec	Accepta Limi									
2,4,6-Tribromophenol	128	41-14	14								
2-Fluorobiphenyl	124	37-12	29								
2-Fluorophenol	108	24-12	27								
Nitrobenzene-d5	114	38-12	27								
Phenol-d5	111	28-12	28								
Terphenyl-d14	120	10-14	48								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

umns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TCLP Semivolatiles - MS

Sample ID: KF09013-004M Batch: 12257 Analytical Method: 8270D	15	S Matrix: Aqueous Prep Method: 1311/3520C Prep Date: 06/11/2009 1723 Leachate Date: 06/11/2009 0000									
Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
1,4-Dichlorobenzene	ND	1.0	0.94		1	94	30-130	06/14/2009 0702			
2,4-Dinitrotoluene	ND	1.0	0.89		1	89	30-130	06/14/2009 0702			
Hexachlorobenzene	ND	1.0	1.1		1	110	30-130	06/14/2009 0702			
Hexachlorobutadiene	ND	1.0	1.0		1	101	30-130	06/14/2009 0702			
Hexachloroethane	ND	1.0	0.99		1	99	30-130	06/14/2009 0702			
2-Methylphenol	ND	1.0	0.93		1	93	30-130	06/14/2009 0702			
3 & 4-Methylphenol	ND	2.0	2.2		1	109	30-130	06/14/2009 0702			
Nitrobenzene	ND	1.0	1.1		1	110	30-130	06/14/2009 0702			
Pentachlorophenol	ND	1.0	0.90		1	90	30-130	06/14/2009 0702			
Pyridine	ND	1.0	0.52		1	52	30-130	06/14/2009 0702			
2,4,5-Trichlorophenol	ND	1.0	1.0		1	102	30-130	06/14/2009 0702			
2,4,6-Trichlorophenol	ND	1.0	0.96		1	96	30-130	06/14/2009 0702			
Surrogate	Q % R	Ac	ceptance Limit								
2,4,6-Tribromophenol	115		41-144								
2-Fluorobiphenyl	117		37-129								
2-Fluorophenol	97		24-127								
Nitrobenzene-d5	N 150		38-127								
Phenol-d5	116		28-128								
Terphenyl-d14	109		10-148								

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

mns exceeds 40% N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

				TPH - DRC) - MB				
Sample ID: KQ12123-001 Batch: 12123 Analytical Method: 8015C	Matrix: Aqueous Prep Method: 3520C Prep Date: 06/09/2009 2234								
Parameter	Res	ult	Q	Dil	PQL	MDL	Units	Analysis Date	
TPH-DRO Surrogate	57 Q	% Rec	J	1 Acceptance Limit	200	23	ug/L	06/13/2009 0909	
o - Terphenyl		88		53-118					

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12123-002 Batch: 12123 Analytical Method: 8015C	Matrix: Aqueous Prep Method: 3520C Prep Date: 06/09/2009 2234								
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil % Rec		% Rec Limit	Analysis Date		
TPH-DRO	2500	2200		1	90	70-130	06/13/2009 0928		
Surrogate	Q % Rec	Accepta Limi							
o - Terphenyl	87	53-11	8						

P = The RPD between two GC columns exceeds 40%

columns exceeds 40% N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - MB

Sample ID: KQ12765-001 Batch: 12765 Analytical Method: 8015B	Matrix: Aqueous Prep Method: 5030B								
Parameter	Result		Dil	PQL	MDL	Units	Analysis Date		
TPH-GRO	ND		1	100	20	ug/L	06/18/2009 1510		
Surrogate	Q % Rec		Acceptance Limit						
Bromofluorobenzene	122		70-130						

PQL = Practical quantitation limit

ND = Not detected at or above the MDL

P = The RPD between two GC columns exceeds 40%

GC columns exceeds 40% N - Recovery is out of criteria

J = Estimated result < PQL and \geq MDL + - R

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - LCS

Sample ID: KQ12765-002 Batch: 12765 Analytical Method: 8015B	Matrix: Aqueous Prep Method: 5030B									
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date			
TPH-GRO	1000	960		1	96	70-130	06/18/2009 1420			
Surrogate	Q % Rec	Acceptar Limit								
Bromofluorobenzene	117	70-13	0							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

TPH - GRO - LCSD

Sample ID: KQ12765-003 Batch: 12765 Analytical Method: 8015B		Matrix: Aqueous Prep Method: 5030B								
Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date	
TPH-GRO	1000	940		1	94	1.6	70-130	20	06/18/2009 1445	
Surrogate	Q % Rec		ptance imit							
Bromofluorobenzene	115	70	0-130							

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

GC columns exceeds 40% N - Recovery is out of criteria

ND = Not detected at or above the MDL

J = Estimated result < PQL and \geq MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

ICP-AES - MB										
Sample ID: KQ12463-001 Batch: 12463 Analytical Method: 6010B										
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date			
Iron	ND		1	0.10	0.023	mg/L	06/16/2009 2112			

1

0.010

0.0019

mg/L

ND

PQL = Practical quantitation limit

Lead

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

06/16/2009 2112

		ICP	-AES	- LCS					
Sample ID: KQ12463-00 Batch: 12463 Analytical Method: 6010B)2	Matrix: Aqueous Prep Method: 3005A Prep Date: 06/15/2009 1800							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Iron	20	20		1	99	80-120	06/16/2009 2117		
Lead	0.40	0.38		1	95	80-120	06/16/2009 2117		

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

columns exceeds 40% N - Recovery is out of criteria

ND = Not detected at or above the MDL

 $J = Estimated result < PQL and <math>\geq$ MDL

+ - RPD is out of criteria

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12463-003 Batch: 12463 Analytical Method: 6010B		Matrix: Aqueous Prep Method: 3005A Prep Date: 06/15/2009 1800							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Iron Lead	20 0.40	20 0.38		1	98 94	0.90 0.94	80-120 80-120	20 20	06/16/2009 2123 06/16/2009 2123

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

ceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

			ICP-AES	- MB					
Sample ID: KQ12463-001 Batch: 12463 Analytical Method: 6010B			Matrix: Aqueous Prep Method: 3005A Prep Date: 06/15/2009 1800						
Parameter	Result	Q	Dil	PQL	MDL	Units	Analysis Date		
Dissolved Iron	ND		1	0.10	0.023	mg/L	06/16/2009 2112		

1

0.010

0.0019

mg/L

06/16/2009 2112

ND

PQL = Practical quantitation limit

Dissolved Lead

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

 ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

		ICP	-AES	- LCS			
Sample ID: KQ12463-002 Batch: 12463 Analytical Method: 6010B	2		Pr	rep Method:	: Aqueous 3005A : 06/15/2009 180	00	
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Dissolved Iron	20	20		1	99	80-120	06/16/2009 2117
Dissolved Lead	0.40	0.38		1	95	80-120	06/16/2009 2117

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

umns exceeds 40% N - Recovery is out of criteria

+ - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Sample ID: KQ12463-003 Batch: 12463 Analytical Method: 6010B		Matrix: Aqueous Prep Method: 3005A Prep Date: 06/15/2009 1800							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
Dissolved Iron Dissolved Lead	20 0.40	20 0.38		1	98 94	0.90 0.94	80-120 80-120	20 20	06/16/2009 2123 06/16/2009 2123

ICP-AES - LCSD

PQL = Practical quantitation limit

P = The RPD between two GC columns exceeds 40%

J = Estimated result < PQL and \geq MDL

N - Recovery is out of criteria + - RPD is out of criteria

ND = Not detected at or above the MDL

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Number 102134	A. V. F. resk Durse No. C. E. T.D U.S 2 (C. E. Page 1 of Analysis (Attach like if more space is nonclead) Page 2 of Analysis (Attach like if more space is nonclead) Page 2 of Page 2 of Page 2 of	six weeks from manyal Is are made	Date Twns - Date Date	03/9/169 7000 0915 6/9/169 7000 3.5 0
ERVICES, INC. ive ina 29172 Jo. (803) 791-9111	Telephone Mo. / Fax M Theophysical Mo. Mayball Mo. Mayball Mo.	Note: All samples are retained for kin works from namp unless other anargements are made		3. Lair from ingented of MUN UN UN LAB USE ONLY Floconsent on ine (Dichola) (46 Nov. Kan Princk
 THEALY ENVIRONMENTAL SERVICES, INC. 106 Vantage Point Drive West Columbia, South Carolina 29172 Telephone No. (803) 791-9703 Fax No. (803) 791-9111 	Pergravi to Contact Scorth BoSHum Sempler's Signature Printed Name Frinted Name Frinted Name Printed Name Pri	Sample Disposal Return to Client Disposal by Lab DC Requirements (Specify)	Date Time 1. Received by USA Tune 2. Received by Date Tune 2. Received by	2995
SHEALY Chain of Custody Record	Cherry Address 2-2649 Parles Fewry Rd 2-2649 Parles Fewry Rd Project Name Project N	8 2 1-	1. Relinquistion () (Austricity) 2. Relinquistion by Add	3 Frakman Sea of Comments Comments DISTRIBUTION: MATTE & YELL OWARDON IN SUMMERS), PINNE-FRAKTORENT CONF

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc. Accument Number: F-AD-016	Page 1 of 1 Replaces Date: 06/22/06 Effective Date: 05/29/07
Revision Number: 6	Sample Receipt Checklist (SRC)
1 1	Sample Receipt Checkhist (SRC)
Client: Arcadis	Cooler Inspected by/date: MMP / 6/9/08 Lot #: KF09.013
Means of receipt: SESI	Client UPS FedEx Airborne Exp Other
Yes No NA	1. Were custody seals present on the cooler?
Yes 🗌 No 🗌 NA 🛃	2. If custody seals were present, were they intact and unbroken?
Cooler ID/temperature upon	receipt <u>3.5/ °C / °C / °C / °C / °C</u>
Method: 🗌 Temperature Method of coolant: 💽 W	Blank Against Bottles /et Ice Blue Ice Dry Ice None
If response is No (or Yes for	14, 15, 16), an explanation/resolution must be provided.
Yes 🗌 No 🗌 NA 🗹	 If temperature of any cooler exceeded 6.0°C, was Project Manager notified? PM notified by SRC, phone, note (circle one), other: (For coolers received via commercial courier, PMs are to be notified immediately.
	 Is the commercial courier's packing slip attached to this form?
Yes No NA	 5. Were proper custody procedures (relinquished/received) followed?
Yes No NA	6. Were sample IDs listed?
Yes No NA	7. Was collection date & time listed?
Yes V No NA	8. Were tests to be performed listed on the COC or was quote # provided?
Yes V No NA	9. Did all samples arrive in the proper containers for each test?
Yes No NA	10. Did all container label information (ID, date, time) agree with COC?
Yes No NA	11. Did all containers arrive in good condition (unbroken, lids on, etc.)?
Yes No NA	12. Was adequate sample volume available?
Yes 🛃 No 🗌 NA 🗌	13. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
Yes No 1/ NA	14. Were any samples containers missing?
Yes 🗌 No 🛃 NA 🗌	15. Were there any excess samples not listed on COC?
Yes No MA	16. Were bubbles present >"pea-size" (¼"or 6mm in diameter) in any VOA vials?
Yes No NA	17. Were all metals/O&G/HEM/nutrient samples received at a pH of <2?
Yes No NA	 Were all cyanide and/or sulfide samples received at a pH >12?
Yes No NA	19. Were all applicable NH3/TKN/cyanide/phenol/BNA/pest/PCB/herb
	(<0.2mg/L) and toxicity (<0.1mg/L) samples free of residual chlorine?
	20. Were collection temperatures documented on the COC for NC samples?
Sample Preservation (Mu	ist be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s)	were received incorrectly preserved and were adjusted
accordingly in sample receiv	ing with(H ₂ SO ₄ ,HNO ₃ ,HCl,NaOH) with the SR # (number)
Sample(s)	were received with bubbles >6 mm in diameter.
Sample(s)	were received with TRC >0.2 mg/L for NH3/
TKN/cyanide/BNA/pest/PCI	
Toxicity sample(s)	were received with TRC >0.1 mg/L and were
analyzed by method 330.5.	
Corrective Action taken, if I	lecessary:
	Did client respond: Yes No
SESI employee:	Date of response:
Comments:	

Client Name: Arcadis Contact: Scott Bostian Address: 2849 Paces Ferry Rd. Atlanta, GA 30339

Page: Page 1 of 9 Lab Proj #: P0906093 Report Date: 06/18/09 Client Proj Name: Hunter Stewart Client Proj #: GP08HAFS.H13A.NA1R1

Laboratory Results

Total pages in data package:

Lab Sample #	Client Sample ID
P0906093-01	D-MW34(060509)
P0906093-02	D-MW35(060509)
P0906093-03	D-MW1(060509)
P0906093-04	D-MW2(060509)
P0906093-05	D-MW42(060509)
P0906093-06	D-MW41(060509)
P0906093-07	D-MW19(060509)

Microseeps test results meet all the requirer fents of the NELAC standards or provide reasons and/or justification if they do not.

Approved By: Debbie Hallo

6-18.09 <u>Date:</u>

Project Manager:

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis

> As a valued client we would appreciate your comments on our service. Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name:	Arcadis				Page: Pag	e 2 of 9				
	Scott Bostian			Lab Proj #; P0906093						
	Address: 2849 Paces Ferry Rd.				Report Date: 06/18/09					
	Client Proj Name: Hunter Stewart									
					Client Proj #: GP	D8HAFS.H13A.NA1	₹1			
Sample Description	Matrix	Lab	Sample	#	Sampled Date/Time	Receive	<u>ed</u>			
D-MW34(060509)	Water	P09	06093-0	1	05 Jun. 09 9:10	06 Jun. 09	10:20			
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	Ву			
RiskAnalysis N Methane		2900.000	0.100	ug/L	AM20GAX	6/17/09	rw			

Data Qualifiers. J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

	Arcadis Scott Bostian 2849 Paces Ferry Ro Atlanta, GA 30339	d.		C	e 3 of 9 066093 18/09 oter Stewart 08HAFS.H13A.NA1	R1	
<u>Sample Description</u> D-MW35(060509)	<u>Matrix</u> Water		b Sample # 906093-02		Sampled Date/Time 05 Jun. 09 14:25	<u>Receiv</u> 06 Jun. 09	
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis N Methane		890.000	0.100	ug/L	AM20GAX	6/17/09	rw

	Arcadis Scott Bostian 2849 Paces Ferry Ro Atlanta, GA 30339	1.		C	Page: Page 4 of 9 Lab Proj #: P0906093 Report Date: 06/18/09 Client Proj Name: Hunter Stewart Client Proj #: GP08HAFS.H13A.NA1R1				
<u>Sample Description</u> D-MW1(060509)	<u>Matrix</u> Water		Sample # 06093-03		Sampled Date/Time 05 Jun. 09 11:15	06 Jun. 09	10:20		
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	By		
RiskAnalysis N Methane	<u>(///www.anglorupy.com/anglorupy.com/anglorupy.com/anglorupy.com/anglorupy.com/anglorupy.com/anglorupy.com/anglo</u>	1200.000	0.100	ug/L	AM20GAX	6/17/09	rw		

	Arcadis Scott Bostian 2849 Paces Ferry Ro Atlanta, GA 30339	1.		С	Page: Page Lab Proj #: P09 Report Date: 06/ Client Proj Name: Hur Client Proj #: GP0	06093 18/09	R1
Sample Description D-MW2(060509)	<u>Matrix</u> Water		Sample : 06093-04		Sampled Date/Time 05 Jun. 09 13:00	06 Jun. 09	10:20
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis N Methane		1200.000	0.100	ug/L	AM20GAX	6/17/09	rw

	: Arcadis : Scott Bostian : 2849 Paces Ferry R Atlanta, GA 30339	d.		C	Page: Pag Lab Proj #: P09 Report Date: 06/ Client Proj Name: Hur Client Proj #: GP	906093 18/09	R1
Sample Description D-MW42(060509)	<u>Matrix</u> Water		o Sample 906093-0		Sampled Date/Time 05 Jun. 09 11:15	<u>Receiv</u> 06 Jun. 09	
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	By
RiskAnalysis N Methane		200.000	0.100	ug/L	AM20GAX	6/17/09	rw

	Arcadis Scott Bostian 2849 Paces Ferry Ro Atlanta, GA 30339	J.		C	Page: Pag Lab Proj #: P09 Report Date: 06/ Client Proj Name: Hur Client Proj #: GP0	906093 18/09	R1
<u>Sample Description</u> D-MW41(060509)	<u>Matrix</u> Water		ab Sample # 20906093-06		Sampled Date/Time 05 Jun. 09 12:30	<u>Receive</u> 06 Jun. 09	
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	By
RiskAnalysis N Methane		76.000	0.100	ug/L	AM20GAX	6/17/09	rw

RiskAnalysis N Methane	anner Aksid 2017 och 1990 av Skolar som en som e	1100.000	0.100	ug/L	AM20GAX	6/17/09	rw
Analyte(s)	Flag	Result	PQL	Units	Method #	Analysis Date	By
<u>Sample Description</u> D-MW19(060509)	<u>Matrix</u> Water		Sample : 06093-01		Sampled Date/Time 05 Jun. 09 13:50	<u>Receiv</u> 06 Jun. 09	ed
	Arcadis Scott Bostian 2849 Paces Ferry Ro Atlanta, GA 30339	i.		С	Page: Page Lab Proj #: P09 Report Date: 06/ Client Proj Name: Hur	06093 18/09	R1

Client Name: Arcadis Contact: Scott Bostian Address: 2849 Paces Ferry Rd. Atlanta, GA 30339

		Prep Method: Analysis Method:	In House Dissolved Gas Sample Preparation Light Hydrocarbons (C1-C4) in Water
M090618026-MB			
	Result	TrueSpikeConc. RDL	%Recovery Ctl Limits
Methane	< 0.100 ug/L	0.100	- NA
M090618026-LCS			
	<u>Result</u>	TrueSpikeConc.	<u>%Recovery</u> <u>Ctl Limits</u>
Methane	880.000 ug/L	825.00	107.00 75 - 125
M090618026-LCSD			
	Result	TrueSpikeConc.	%Recovery Ctl Limits RPD RPD Ctl Limits
Methane	880.000 ug/L	825.00	107.00 75 - 125 0.00 0 - 20

Outlined Results indicate results outside of Control limits

Data Qualifiers: J - estimated value, U - Non detect, R - Poor surrogate recovery, M - Recovery/RPD poor for MS/MSD, SAMP/DUP, B - detected in blank, S - field sample as received did not meet NELAC sample acceptance criteria, L - Subcontracted Lab used, N - NELAC certified analysis

	PINK COPY : Submitter		YELLOW COPY : Laboratory F		 	amples	WHITE COPY : Accompany Samples	
Date : Time	Company :	•••	Received by :	Time :	Date :	••	Company	Relinquished by :
Date : Time	Company :		Received by		Date :		Company :	Relinquished by :
$\frac{\text{Date : Time}}{6/6/09}$	Company: Much odupo	Barlie	Received by	Time :	Date : ///// ///	· · ·	Company :	Kelinquished by :
				. 4				
				:				
				or A				
			1					
				2				
					0250	\times		D-MW19660509)
*				~	0230			D- WW 41 (CUOSOA)
						× 		D- NW42 (046509)
	9- 				308	×		N- MWZ (040509)
					елен СЛ	×		B-MW (06050 g)
				6/5/042	F25	~		D-MN-35 (060509)
				810 2	15015/09	K 		D-MU34(060509)
Remarks:				Time 4	Date	Sample Type Water Vapor Solid	Sample Description	Sample:ID:
	·		etha	Cooler Temp		2. S	A A A	Sampler's signature :
Invoice t <u>o :</u>				. IT THE WAY	POG HAFS.	Release 1, SP	Princhause 1	Proj. Name/Number : HAA-15
			5.65**	✓	100		it Bostian	Proj. Manager :
				166	170-435-2666	Fax #: 170-	770-431-8446 F	Phone # : 770
				(2005 H	nta GA	R. Atlanta	9 Paces Ferry	Co. Address : 2649
Results <u>to :</u>		Parameters Requested					CAPOIS	Company : AR
Fax:No. : (412) 826-3433		Microseeps, Inc 220 William Pitt Way - Pittsburgh, PA 15238	⊃itt Way - Pi	Villam	- 220 V	oseeps, Ind		Phone: (412):826-5245
Microseeps COC cont. #		DY RECORD	CHAIN - OF - CUSTO	0 	AIN			Microseeps Lab. Proj. #

June 30, 2009

Nisveen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700

Re: Organic Lead Analyses

Dear Ms. Saikaly,

Attached is the report associated with two (2) aqueous samples submitted for organic lead quantification on June 9, 2009. The samples were received on June 10, 2009 in a sealed container at -0.5°C. Organic lead quantitation was performed by extraction following HML Method 939-M and analysis via inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS). Any analytical issues associated with the analysis are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

and

Russell Gerads Vice President Applied Speciation and Consulting, LLC

Applied Speciation and Consulting, LLC

Report Prepared for:

Nisveen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172

Project: Organic Lead Analyses

June 30, 2009

1. Sample Reception

Two (2) aqueous samples in glass jars (not supplied by Applied Speciation and Consulting) were submitted for organic lead quantification on June 9, 2009. The samples were received in acceptable condition on June 10, 2009 in a sealed container at -0.5° C.

The samples were received in a laminar flow clean hood void of trace metals contamination and ultra-violet radiation. Upon reception, the samples were immediately transferred to a secure monitored refrigerator maintained at a temperature of 4° C until extraction and analysis could be performed.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are monitored for contamination to account for any biases associated with the sample results.

<u>Organic Lead Quantification by ICP-DRC-MS</u> All samples were extracted in accordance with HML Method 939-M. Extraction was performed on June 29, 2009.

3. Sample Analysis

All sample analysis is precluded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. Calibration curves are performed at the beginning of each analytical day. All calibration curves, associated with each species of interest, are standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases associated with the analytical platform.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimal interval of every ten analytical runs.

<u>Organic Lead Quantification by ICP-DRC-MS</u> All extracts for organic lead quantification were analyzed by inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) on June 29, 2009. Aliquots of each extract are introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which preferentially reacts with interfering ions of the same target mass to charge ratios (m/z). A solid-state detector detects ions transmitted through the mass analyzer, on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

4. Analytical Issues

The overall analyses went very well and no significant analytical issues were encountered. All quality control parameters associated with these samples were within acceptance limits.

The samples were initially extracted and analyzed for organic lead on June 22, 2009. The recovery for the laboratory control sample (LCS) was below the established control limit of 75%. The samples were re-extracted and analyzed on June 29, 2009 resulting in acceptable recoveries for all quality control parameters. The concentration for organic lead was comparable between the two extractions.

If you have any questions or concerns regarding this report, please feel free to contact me at (206) 219-3779.

Sincerely,

Lunde

Russell Gerads Vice President Applied Speciation and Consulting, LLC

Date: June 30, 2009 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Sample ID	Organic Pb
D-Min34(060509)	341
D-MW35(060509)	ND (<23)
	' <i>/</i> /

All results are reported in ug/L

Date: June 30, 2009 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Quality Control Summary - Preparation Blank Summary

Analyte (ug/L)	PBW1	PBW2	PBW3	PBW4	Mean	StdDev	eMDL
Organic Pb	-16	-14	-3	-22	-14	8	23

eMDL = Estimated Method Detection Limit

Quality Control Summary - Certified Reference Materials

Analyte (ug/L)	CRM	True Value	Result	Recovery
Tetramethyl Pb	LCS	7651	7309	95.5

Date: June 30, 2009 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Quality Control Summary - Matrix Duplicates

Analyte (ug/L)	Sample ID	Rep 1	Rep 2	Mean	RPD
Organic Pb	D-MW35(060509)	ND (<23)	25.0762	NC	NC

ND = Not detected at the applied dilution

NC = Value was not calculated due to one or more concentrations below the eMDL

Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate

Analyte (ug/L)	Sample ID	Spike Conc	MS Result	Recovery	Spike Conc	MSD Result	Recovery	RPD
Organic Pb	D-MW35(060509)	7651	7342	96.0	7651	7098	92.8	3.4

June 30, 2009

Nisveen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700

Re: Organic Lead Analyses

Dear Ms. Saikaly,

Attached is the report associated with two (2) aqueous samples submitted for organic lead quantification on June 9, 2009. The samples were received on June 10, 2009 in a sealed container at -0.5°C. Organic lead quantitation was performed by extraction following HML Method 939-M and analysis via inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS). Any analytical issues associated with the analysis are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

and

Russell Gerads Vice President Applied Speciation and Consulting, LLC

Applied Speciation and Consulting, LLC

Report Prepared for:

Nisveen Saikaly Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172

Project: Organic Lead Analyses

June 30, 2009

1. Sample Reception

Two (2) aqueous samples in glass jars (not supplied by Applied Speciation and Consulting) were submitted for organic lead quantification on June 9, 2009. The samples were received in acceptable condition on June 10, 2009 in a sealed container at -0.5° C.

The samples were received in a laminar flow clean hood void of trace metals contamination and ultra-violet radiation. Upon reception, the samples were immediately transferred to a secure monitored refrigerator maintained at a temperature of 4° C until extraction and analysis could be performed.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are monitored for contamination to account for any biases associated with the sample results.

<u>Organic Lead Quantification by ICP-DRC-MS</u> All samples were extracted in accordance with HML Method 939-M. Extraction was performed on June 29, 2009.

3. Sample Analysis

All sample analysis is precluded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. Calibration curves are performed at the beginning of each analytical day. All calibration curves, associated with each species of interest, are standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases associated with the analytical platform.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimal interval of every ten analytical runs.

<u>Organic Lead Quantification by ICP-DRC-MS</u> All extracts for organic lead quantification were analyzed by inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) on June 29, 2009. Aliquots of each extract are introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which preferentially reacts with interfering ions of the same target mass to charge ratios (m/z). A solid-state detector detects ions transmitted through the mass analyzer, on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

4. Analytical Issues

The overall analyses went very well and no significant analytical issues were encountered. All quality control parameters associated with these samples were within acceptance limits.

The samples were initially extracted and analyzed for organic lead on June 22, 2009. The recovery for the laboratory control sample (LCS) was below the established control limit of 75%. The samples were re-extracted and analyzed on June 29, 2009 resulting in acceptable recoveries for all quality control parameters. The concentration for organic lead was comparable between the two extractions.

If you have any questions or concerns regarding this report, please feel free to contact me at (206) 219-3779.

Sincerely,

Lunde

Russell Gerads Vice President Applied Speciation and Consulting, LLC

Date: June 30, 2009 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Sample ID	Organic Pb
D-Min34(060509)	341
D-MW35(060509)	ND (<23)
	' <i>/</i> /

All results are reported in ug/L

Date: June 30, 2009 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Quality Control Summary - Preparation Blank Summary

Analyte (ug/L)	PBW1	PBW2	PBW3	PBW4	Mean	StdDev	eMDL
Organic Pb	-16	-14	-3	-22	-14	8	23

eMDL = Estimated Method Detection Limit

Quality Control Summary - Certified Reference Materials

Analyte (ug/L)	CRM	True Value	Result	Recovery
Tetramethyl Pb	LCS	7651	7309	95.5

Date: June 30, 2009 Report Generated by: Russell Gerads Applied Speciation and Consulting, LLC

Quality Control Summary - Matrix Duplicates

Analyte (ug/L)	Sample ID	Rep 1	Rep 2	Mean	RPD
Organic Pb	D-MW35(060509)	ND (<23)	25.0762	NC	NC

ND = Not detected at the applied dilution

NC = Value was not calculated due to one or more concentrations below the eMDL

Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate

Analyte (ug/L)	Sample ID	Spike Conc	MS Result	Recovery	Spike Conc	MSD Result	Recovery	RPD
Organic Pb	D-MW35(060509)	7651	7342	96.0	7651	7098	92.8	3.4

ARCADIS

Appendix D

Calcium Peroxide Dosing Calculations

Calcium Peroxide Initial Injection Dosing Calculations Hunter AAF PH1 R1

Injection zone thickness 15 ft Langth of injection line 120 ft 6 wells with 20-foot spacing With of injection line 20 ft Soil buk density 110 Ib/T3 Total porosity 0.30 Mobile porosity 0.15 Injection radius (R01) 10 ft Number of injection point 6 Background chemical oxygen demand (CDD) in water 104 mg/t, average value of baseline sampling event data from PH1 R2 Nutural organic matter in soil 200 mg/t, average value of baseline sampling event data from PH1 R2 Natural organic matter in soil 200 mg/t, average value of baseline sampling event data from PH1 R2 Natural organic matter in soil 200 mg/t, average value of baseline sampling event data from PH1 R2 Concentration of BTEX through the injection line 15.640 ug/L Long eroxited 180 days Oxygen utilization factor for BTEX 3 g.028 BTEX from Wiedemeier et. al., 1999 ² Oxygen othernet Zone volume 1.800.000 kg Freatment Zone volume 1.800.000 kg Valuencitic flow of groudwater through treatement zone 1.800.000 kg/day BTEX mass through barrier per day 0.06 kg/day Oxygen mas	Parameter	Value	Unit	Note / Reference	
Width of injection line 20 ft Soil bulk density 110 Ib/ft3 Soil bulk density 0.30 Mobile porosity 0.35 Mobile porosity 0.15 Injection radius (ROI) 10 Number of Injection point 6 Background chemical oxygen demand (COD) in water 104 Natural organic matter in soil 200 Groundwater scepage velocity 0.52 Concentration of BTEX through the injection line 15,640 Uorgevity of calcium peroxide 180 Oxygen utilization factor for BTEX 3 g 202 g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX 3 g 202 g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX 3 g 202 g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX 3 g 202 g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX 3 g 202 g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for GaO2 frada trans transition volumer' soil bulk density Mass of soil in treatment zone 1.400 frada escepage velocity' length 'thicknes	Injection zone thickness	15	ft		
Sait buik donsity 110 Ib/ft3 Total porosity 0.30 Mobile porosity 0.15 Injection radius (ROI) 10 ft Number of injection point 6 Background chemical oxygen demand (COD) in water 104 mg/L average value of baseline sampling event data from PH1 R2 Natural organic matter in soil 200 mg/kg assumed valve Concondwater seepage velocity 0.52 ft/day Concentration of BTEX through the injection line 15,640 ug/L total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009 Longevity of calcium peroxide 180 days 202/g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX 3 g 0.2/g BTEX from Wiedemeier et. al., 1999 ² Oxygen content of CaO2 product 17% by weight from Solvay (vendor of calcium peroxide) Safety factor for CaO2 dosing 1 180,0000 kg =treatment zone volume* soil buik density Mass of soil in treatment zone 140 12/day =seepage velocity* length*thickness of treatment zone *mobile porosity. BTEX mass through barrier per day 0.06 kg/day =ETE	Length of injection line	120	ft	6 wells with 20-foot spacing	
Total porosity 0.30 Mobile porosity 0.15 Injection radius (ROI) 10 ft Number of injection point 6 Background hemical oxygen demand (COD) in water 104 mg/L average value of baseline sampling event data from PH1 R2 Natural organic matter in soil 200 mg/kg assumed valve Groundwater seepage valocity 0.52 ft/day Concentration of BTEX through the injection line 15,640 ug/L total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009 Longevity of calcium peroxide 180 days Oxygen utilization factor for BTEX 3 g 02/g BTEX from Wiedemeire et. al., 1999 ² Oxygen outerit of Ca02 product 17% by weight from Solvay (vendor of calcium peroxide) Safety factor for Ca02 dosing 1.5 Treatment zone volume 160 tf3 Mass of soil in treatment zone 1800 kg/a Volumetric flow of groudwater through treatement zone 11 kg BTEX mass through barrier per day 0.066 kg/day BTEX mass through barrier between injection events 11 kg -BT	Width of injection line	20	ft		
Mobile porosity 0.15 Injection radius (RO) 10 ft Number of injection point 6 Background chemical oxygen demand (COD) in water 104 mg/L average value of baseline sampling event data from PH1 R2 Natural organic matter in soil 200 mg/kg assumed valve Groundwater sepage velocity 0.52 tt/day Concentration of BTEX through the injection line 15,640 ug/L total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009 Longevity of calcium peroxide 180 days Oxygen content of CaO2 product 17% by weight Safety factor for CaO2 dosing 1.5 Treatment zone volume Mass of soil in treatment zone 140 Yolumetric flow of groudwater through treatement zone 140 Yolumetric flow of groudwater through treatement zone 140 BTEX mass through barrier per day 0.66 Kg/day -BTEX concentration in water' volumetric flow of groundwater Oxygen mass required for background COD in water 74 Volumetric flow of groundwater 'longevity of CaO2 CoD Oxygen mass required for background COD in soil 3600 Kg -BTEX mass through barrier per day 11 Kg -BTEX ma	Soil bulk density	110	lb/ft3		
Injection radius (ROI)10ftNumber of Injection point6Background chemical oxygen demand (COD) in water104mg/LNatural organic matter in soil200mg/kgGroundwater seepage velocity0.52tt/dayConcentration of BTEX through the injection line15,640ug/LLongevity of calcium peroxide180daysOxygen utilization factor for BTEX3g Q2/g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX3g Q2/g BTEX from Wiedemeier et. al., 1999 ² Safety factor for CaO2 dosing1.5Treatment zone volume163.0000ft3Volumetric flow of groudwater through treatement zone10.000kg = treatment zone volume* soil bulk densityVolumetric flow of groudwater through treatement zone1013/day = seepage velocity* length* thickness of treatment zone *mobile porosityBTEX mass through barrier per day0.06kg/day = BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg = BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for background COD in water74kg = COD concentration in wate* volumetric flow of groundwater* longevity of CaO2Oxygen mass required for background COD in soil360kg = sum of all oxygen demandOxygen construction in soil* mass required for background COD in soil360kg = sum of all oxygen content of CaO2 productO	Total porosity	0.30			
Injection radius (ROI)10ftNumber of Injection point6Background chemical oxygen demand (COD) in water104mg/LNatural organic matter in soil200mg/kgGroundwater seepage velocity0.52tt/dayConcentration of BTEX through the injection line15,640ug/LLongevity of calcium peroxide180daysOxygen utilization factor for BTEX3g Q2/g BTEX from Wiedemeier et. al., 1999 ² Oxygen utilization factor for BTEX3g Q2/g BTEX from Wiedemeier et. al., 1999 ² Safety factor for CaO2 dosing1.5Treatment zone volume163.0000ft3Volumetric flow of groudwater through treatement zone10.000kg = treatment zone volume* soil bulk densityVolumetric flow of groudwater through treatement zone1013/day = seepage velocity* length* thickness of treatment zone *mobile porosityBTEX mass through barrier per day0.06kg/day = BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg = BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for background COD in water74kg = COD concentration in wate* volumetric flow of groundwater* longevity of CaO2Oxygen mass required for background COD in soil360kg = sum of all oxygen demandOxygen construction in soil* mass required for background COD in soil360kg = sum of all oxygen content of CaO2 productO	Mobile porosity	0.15			
Background chemical oxygen demand (COD) in water104mg/Laverage value of baseline sampling event data from PH1 R2Natural organic matter in soil200mg/kgassumed valueGroundwater seepage velocity0.52ft/dayConcentration of BTEX through the injection line15,640ug/Ltotal BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009Longevity of calcium peroxide180daysOxygen content of CaO2 product3g 02/g BTEX from Wiedemeier et. al., 1999 ² Oxygen content of CaO2 product17%by weightSafety factor for CaO2 dosing1.5Treatment zone volumeMass of soil in treatment zone1.800,000Mass of soil in treatment zone1.40Volumetric flow of groudwater through treatement zone1.30BTEX mass through barrier per day0.06BTEX mass through barrier per day0.06BTEX mass through barrier per day3BTEX mass required for BEX dyound COD in water74Kg= COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil3600Kg= Supper day*DodokgBTEX mass frough barrier per day0.06BTEX mass through barrier per day0.06Nygen mass required for BEX dyound COD in water74Kg= COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil360Kg=		10	ft		
Natural organic matter in soil 200 mg/kg assumed valve Groundwater seepage velocity 0.52 ft/day Concentration of BTEX through the injection line 15,640 ug/L total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009 Longevity of calcium peroxide 180 days Oxygen content of CaO2 product 17% by weight from Solvay (vendor of calcium peroxide) Safety factor for CaO2 dosing 1.5	Number of injection point	6			
Natural organic matter in soil 200 mg/kg assumed valve Groundwater seepage velocity 0.52 ft/day Concentration of BTEX through the injection line 15,640 ug/L total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009 Longevity of calcium peroxide 180 days Oxygen utilization factor for BTEX 3 g 02/g BTEX from Wiedemeier et. al., 1999 ² Oxygen content of CaO2 product 17% by weight from Solvay (vendor of calcium peroxide) Safety factor for CaO2 dosing 1.5 from Solvay (vendor of calcium peroxide) Treatment zone volume 36,000 ft3 Mass of soil in treatment zone 1,800,000 kg = treatment zone volume* soil bulk density Volumetric flow of groudwater through treatement zone 1,40 ft3/day =seepage velocity* length*thickness of treatment zone* mobile porosity BTEX mass through barrier per day 0.06 kg/day =BTEX mass through barrier per day* longe kg Strough barrier between injection events 11 kg =BTEX mass* oxygen utilization factor for BTEX cGo2 Oxygen mass required for background COD in water 7,4 kg =COD concentration in water*		104	mg/L	average value of baseline sampling event data from PH1 R2	
Groundwater seepage velocity0.52ft/dayConcentration of BTEX through the injection line15,640ug/Ltotal BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009Longevity of calcium peroxide180daysOxygen content of CaO2 product3g O2/g BTEX from Wiedemeier et al., 1999 ² Oxygen content of CaO2 product17%by weightSafety factor for CaO2 dosing1.5Treatment zone volumeft3Mage and the period of the	Natural organic matter in soil	200	•		
Concentration of BTEX through the injection line15,640ug/Ltotal BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009Longevity of calcium peroxide180daysOxygen utilization factor for BTEX3g O2/g BTEX from Wiedemeier et. al., 1999 ² Oxygen content of CaO2 product17%by weightSafety factor for CaO2 dosing1.5Treatment zone volumeMass of soil in treatment zone1,600.000Mass of soil in treatment zone140Volumetric flow of groudwater through treatement zone140BTEX mass through barrier per day0.06Mass sthrough barrier pet day0.06Mass sthrough barrier pet day11Kg=BTEX mass through barrier pet dayOxygen mass required for BTEX degradation35Kg=BTEX mass through barrier pet dayOxygen mass required for background COD in water74Kg=COD concentration in water* tollowetr* longevity of CaO2Oxygen required469Kg=sum of all oxygen demandMass of CaO2 product required2,711Kg=total oxygen demandMass of CaO2 product2,211Treatment zone4,241Traation volume6 CaO2 corcentration in soil* mass of soil in treatment zoneTreatment zone4,241Treatment zone4,241Treatment zone11Kg=COD concentration in water* olumetric flow of groundwater* longevity of CaO2Oxygen mass required for background COD in soil3	5	0.52			
Longevity of calcium peroxide180daysOxygen utilization factor for BTEX3g O2/g BTEX from Wiedemeier et. al., 19992Oxygen content of CaO2 product17%by weightSafety factor for CaO2 dosing1.5Treatment zone volumef13Mass of soil in treatment zoneVolumetric flow of groudwater through treatement zoneVolumetric flow of groudwater through treatement zoneBTEX mass through barrier per dayOxygen mass required for BTEX degradationOXygen mass required for background COD in waterOXygen mass required for background COD in soilA60Kg- COD concentration in soil* mass of soil in treatment zoneOXygen mass required for background COD in soilA60Kg- COD concentration in soil* mass of soil in treatment zoneOXygen mass required for background COD in soilOXygen mass required for background COD in soilA60Kg- COD concentration in soil* mass of soil in treatment zoneOxygen mass required for background COD in soilA60Kg- COD concentration in soil* mass of soil in treatment zone- COD concentration in soil* mass of soil in treatment zone- COD concentration in soil* mass of soil in treatment zone <td colspan<="" td=""><td></td><td>15,640</td><td>ug/L</td><td>total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009</td></td>	<td></td> <td>15,640</td> <td>ug/L</td> <td>total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009</td>		15,640	ug/L	total BTEX concentration in D-MW34 (just downgradient of the north injection line) in June 2009
Oxygen content of CaO2 product17%by weightfrom Solvay (vendor of calcium peroxide)Safety factor for CaO2 dosing1.5Treatment zone volume36,000ft3Mass of soil in treatment zone1,800,000kgVolumetric flow of groudwater through treatement zone140ft3/dayBTEX mass through barrier per day0.06kg/dayBTEX mass through barrier pet day0.06kgSygen mass required for BTEX degradation35kgOxygen mass required for background COD in water74kgOxygen mass required for background COD in soil360kgTotal oxygen required469kg-sum of all oxygen demandMass of CaO2 product required4,211ft3-sum of all oxygen demandMass of CaO2 product2,711kg-total oxygen demandCaO2 dosing concentration34g/L=mass of CaO2 product required / injection ovelume	Longevity of calcium peroxide	180			
Safety factor for CaO2 dosing1.5Treatment zone volume36,000ft3Mass of soil in treatment zone1,800,000kgVolumetric flow of groudwater through treatement zone1,800,000kgBTEX mass through barrier per day0.06kg/dayBTEX mass through barrier per day0.06kg/dayBTEX mass through barrier between injection events11kgOxygen mass required for BTEX degradation35kgOxygen mass required for background COD in water74kgOxygen required3600kgWass of CaO2 product required469Mass of CaO2 product required2,711Kg= stotal oxygen demandVolumetic4,241GaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Oxygen utilization factor for BTEX	3	g O2/g BTI	EX from Wiedemeier et. al., 1999 ²	
Treatment zone volume36,000ft3Mass of soil in treatment zone1,800,000kg=treatment zone volume* soil bulk densityVolumetric flow of groudwater through treatement zone140ft3/day=seepage velocity* length* thickness of treatment zone* mobile porosityBTEX mass through barrier per day0.06kg/day=BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen required360kg=cOD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demandMass of CaO2 product required4,241ft3=PI*(ROI)*2*screen length* mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Oxygen content of CaO2 product	17%	by weight	from Solvay (vendor of calcium peroxide)	
Mass of soil in treatment zone1,800,000kg= treatment zone volume* soil bulk densityVolumetric flow of groudwater through treatement zone140ft3/day=seepage velocity* length*thickness of treatment zone*mobile porosityBTEX mass through barrier per day0.06kg/day=BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen required360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Safety factor for CaO2 dosing	1.5			
Mass of soil in treatment zone1,800,000kg= treatment zone volume* soil bulk densityVolumetric flow of groudwater through treatement zone140ft3/day=seepage velocity* length*thickness of treatment zone*mobile porosityBTEX mass through barrier per day0.06kg/day=BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen required360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor					
Volumetric flow of groudwater through treatement zone140ft3/day=seepage velocity* length*thickness of freatment zone*mobile porosityBTEX mass through barrier per day0.06kg/day=BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for BTEX degradation35kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Treatment zone volume	36,000	ft3		
BTEX mass through barrier per day0.06kg/day=BTEX concentration* volumetric flow of groundwaterBTEX mass through barrier between injection events11kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Mass of soil in treatment zone	1,800,000	kg	=treatment zone volume* soil bulk density	
BTEX mass through barrier between injection events11kg=BTEX mass through barrier per day* longevity of CaO2Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Volumetric flow of groudwater through treatement zone	140	ft3/day	=seepage velocity* length*thickness of treatment zone*mobile porosity	
Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	BTEX mass through barrier per day	0.06	kg/day	=BTEX concentration* volumetric flow of groundwater	
Oxygen mass required for BTEX degradation35kg=BTEX mass* oxygen utilization factor for BTEXOxygen mass required for background COD in water74kg=COD concentration in water* volumetric flow of groundwater*longevity of CaO2Oxygen mass required for background COD in soil360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	BTEX mass through barrier between injection events	11	kg	=BTEX mass through barrier per day* longevity of CaO2	
Oxygen mass required for background COD in soil360kg=COD concentration in soil* mass of soil in treatment zoneTotal oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Oxygen mass required for BTEX degradation	35		=BTEX mass* oxygen utilization factor for BTEX	
Total oxygen required469kg=sum of all oxygen demandMass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Oxygen mass required for background COD in water	74	kg	=COD concentration in water* volumetric flow of groundwater*longevity of CaO2	
Mass of CaO2 product required2,711kg=total oxygen demand / oxygen content of CaO2 productTotal injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Oxygen mass required for background COD in soil	360	kg	=COD concentration in soil* mass of soil in treatment zone	
Total injection volume4,241ft3=PI*(ROI)^2*screen length*mobile porosity*number of injection wellCaO2 dosing concentration34g/L=mass of CaO2 product required / injection volume *safety factor	Total oxygen required	469	kg	=sum of all oxygen demand	
CaO2 dosing concentration 34 g/L =mass of CaO2 product required / injection volume *safety factor	Mass of CaO2 product required	2,711	kg	=total oxygen demand / oxygen content of CaO2 product	
	Total injection volume	4,241	ft3	=PI*(ROI)^2*screen length*mobile porosity*number of injection well	
CaO2 dosing concentration 3.4% calcium peroxide product by weight	CaO2 dosing concentration	34	g/L	=mass of CaO2 product required / injection volume *safety factor	
	CaO2 dosing concentration	3.4%	calcium pe	eroxide product by weight	

Notes:

1. Shaded cells denote calculated values.

2. Wiedemeier, T.H., Rifai, H.S., Wilson, J.T., and Newell, C., 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, John Wiley and Sons.