FINAL

IMA

PILOT STUDY INTERIM PROGRESS REPORT #4 FOR CORRECTIVE ACTIONS AT BULK FUEL FACILITY (HAA-09) FORMER UST 117 AST 7009 HUNTER ARMY AIRFIELD, GEORGIA FACILITY ID #9-025113*2

3d Inf Div (Mech)

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract Number W912HN-13-R-0023 Delivery Order Number 0001

July 2015

LEIDOS

contributed to the preparation of this document and should not be considered an eligible contractor for its review.

PILOT STUDY INTERIM PROGRESS REPORT #4 FOR CORRECTIVE ACTIONS AT BULK FUEL FACILITY (HAA-09) FORMER UST 117 AST 7009 HUNTER ARMY AIRFIELD, GEORGIA FACILITY ID #9-025113*2

Prepared for

U.S. Army Corps of Engineers, Savannah District Under Contract Number W912HN-13-R-0023 Delivery Order Number 0001

Prepared by

Leidos 301 Laboratory Rd Oak Ridge, TN 37831

and

SES Construction and Fuel Services, LLC 1006 Floyd Culler Court Oak Ridge, TN 37830

July 2015

The undersigned certifies that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completions of accredited university courses, to enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my direction.

15-029(E)/072415

FINAL

FIGU	IRES	iii ;;;
ACR	ONYMS	iii
1.0	INTRODUCTION	1
2.0	SITE HISTORY OF AND CONTAMINANTS AT ABOVEGROUND STORAGE TANK 7009	1
	2.1 RELEASES AT THE BULK FUEL FACILITY2.2 NATURE AND EXTENT OF CONTAMINATION AT ABOVEGROUND	1
	STORAGE TANK 7009 (2001 THROUGH 2011) 2.2.1 Soil	6 6
	 2.2.2 Groundwater	6 7
3.0	2.4 REGULATORY REQUIREMENTS	8 Q
5.0	 3.1 SOIL TREATABLITY TESTING	9 9
	3.4 SYSTEM PREPARATION	11
4.0	PILOT STUDY OPERATIONS	11 12 12
5.0	BIANNUAL GROUNDWATER SAMPLING	12
6.0	QUARTERLY GUAGING	17
7.0	REMEDIATION-DERIVED WASTE	17
8.0	PROBLEMS ENCOUNTERED	19
9.0	COMMUNICATIONS/CONTACTS	19
10.0	CONCLUSIONS AND RECOMMENDATIONS	19
11.0	REFERENCES	20
APPE APPE APPE	ENDIX A INJECTION WELL INSTALLATION DETAILS ENDIX B CHAINS OF CUSTODY AND ANALYTICAL RESULTS ENDIX C WASTE MANIFEST	A-1 B-1 C-1
APP	ENDIX D_UNDERGROUND INJECTION CONTROL PERMIT REQUESTS AND APPROVALS	D-1

CONTENTS

FIGURES

1	Location of the Bulk Fuel Facility. Hunter Army Airfield, Georgia	2
2	Site Location Map for the Bulk Fuel Facility, Hunter Army Airfield, Georgia	3
3	Site Layout	10
4	Chromatogram Overlay for Analyses of F-24 Aviation Fuel and Site Free Product	18

TABLES

1	Injection Wells Installed at AST 7009 for Second Pilot Study	9
2	Analytical Results of Treated Effluent Samples	. 13
3	Volatile Organic Compounds Detected in Effluent Air Samples	. 14
4	Groundwater Analytical Results for BTEX, 1999 through 2014	. 15
5	Results of Well Gauging on March 19, 2015.	. 17

ACRONYMS

AST	aboveground storage tank
BFF	Bulk Fuel Facility
BOD	biological oxygen demand
BTEX	benzene, toluene, ethylbenzene, and xylene
CAP	Corrective Action Plan
COD	chemical oxygen demand
DRO	diesel-range organics
EFR®	Enhanced Fluid Recovery®
GA EPD	Georgia Environmental Protection Division
GRO	gasoline-range organics
GUST	Georgia Underground Storage Tank
HAAF	Hunter Army Airfield
IWQS	In-stream Water Quality Standards
JP	jet propellant
MAE2	Mid-Atlantic Environmental Equipment, Inc.
OWS	oil/water separator
PAH	polycyclic aromatic hydrocarbon
RDW	remediation-derived waste
SAIC	Science Applications International Corporation
SP	sample port
STL	soil threshold level
USACE	U. S. Army Corps of Engineers
UST	underground storage tank
USTMP	Underground Storage Tank Management Program
VOC	volatile organic compound
WWTP	waste water treatment plant

1.0 INTRODUCTION

This document represents the fourth Interim Progress Report for pilot study activities at the Bulk Fuel Facility (BFF; HAA-09), Former Underground Storage Tank (UST) 117, Aboveground Storage Tank (AST) 7009 at Hunter Army Airfield (HAAF), Georgia (Figure 1). An initial surfactant flushing pilot study was conducted in 2011 and 2012 at the site by Science Applications International Corporation (SAIC) for the U.S. Army Corps of Engineers (USACE), Savannah District. The 2011 through 2012 pilot study activities were conducted in accordance with the *Corrective Action Plan–Part B Addendum #1, Bulk Fuel Facility (HAA-09), Building 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2* (SAIC 2011a), which was approved by the Georgia Environmental Protection Division (GA EPD) through correspondence dated May 2, 2011 (Guentert 2011), and the *Addendum #28 to the Work Plan for Preliminary Groundwater and Corrective Action Plan–Part B Investigations at Former Underground Storage Tank Sites, Hunter Army Airfield and Fort Stewart, Georgia (SAIC 2011b).* Three Interim Progress Reports associated with the 2011 through 2012 pilot study were previously submitted to GA EPD (SAIC 2012a, 2012b, 2013).

This fourth Interim Progress Report is the first report associated with a second round of pilot study activities initiated in 2014. The 2014 through 2015 pilot study activities are being conducted in accordance with the 2011 Corrective Action Plan (CAP)–Part B Addendum #1 (SAIC 2011a) and the Addendum #29 to the Work Plan for Preliminary Groundwater and Corrective Action Plan–Part A/Part B Investigations at Former Underground Storage Tank Sites, Hunter Army Airfield and Fort Stewart, Georgia (Leidos 2014) by SES Construction and Fuel Services, LLC and Leidos (formerly a part of SAIC) for USACE, Savannah District under Contract Number W912HN-13-R-0023, Task Order Number 0001.

This document reviews the site history and contaminants, documents the installation of additional injection wells in Fall 2014, summarizes injection/extraction and treatment operations, and presents preliminary results of the second pilot study pending additional quarterly gauging. Results of the 2014 bi-annual groundwater monitoring also are presented within this report.

2.0 SITE HISTORY OF AND CONTAMINANTS AT ABOVEGROUND STORAGE TANK 7009

This section summarizes releases at the BFF and the site history of and contaminants at AST 7009, including the 2011 through 2012 pilot study.

2.1 RELEASES AT THE BULK FUEL FACILITY

The BFF is approximately 600 by 1,200 ft and covers an area of approximately 16.5 acres (Figure 2). Currently, the facility contains two active ASTs (AST 7007 and AST 7009) for the storage of jet propellant (JP)-8 with capacities of approximately 500,000 gal each; above- and underground piping; and off-loader and pump stations for the distribution of fuel to and from the tanks, and a third active AST constructed in 2011 at the location of former AST 7005. The capacity of this third AST is 30,000 barrels or 1,260,000 gal. Previously, UST 117, a 550-gal JP-4 fuel tank, and three 500,000-gal ASTs (AST 7001, AST 7003, and AST 7005) were located at the BFF. Since the closure of UST 117 in 1996, three separate releases have been identified at the BFF under GA EPD Underground Storage Tank Management Program (USTMP) regulations.

Figure 1. Location of the Bulk Fuel Facility, Hunter Army Airfield, Georgia

In association with the area designated as Release #1, SAIC performed a soil gas survey of the BFF in January 1999 to identify areas of significant contaminant concentrations (SAIC 1999). SAIC conducted a CAP–Part A investigation in December 1999 and January 2000 and a CAP–Part B investigation from November 2000 to March 2001 to determine the extent of petroleum contamination at the BFF, including the areas around UST 117, AST 7001, AST 7003, AST 7005, AST 7007, and AST 7009. Thirty-four monitoring wells, seven soil borings, and six vertical-profile borings were installed during these investigations, and surface water and sediment samples were collected from Lamar Canal (Figure 2). The *Corrective Action Plan–Part B Report for the Former Underground Storage Tank 117, Building 7002 Site, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia* (SAIC 2001) was submitted to GA EPD USTMP in July 2001.

Release #1: UST 117, Building 7002. UST 117 was a 500-gal UST located near Building 7002 at the BFF. This tank was removed and the piping abandoned in place on September 30, 1996. A CAP–Part A investigation was conducted by SAIC between December 1999 and January 2000 to identify areas of significant contamination concentrations (SAIC 2000). A CAP–Part B investigation was conducted by SAIC from November 2000 to March 2001 to determine the extent of petroleum contamination at the site (SAIC 2001). As part of these investigations, a groundwater plume was identified in the vicinity of AST 7003, which is located 100 to 150 ft south of UST 117. Semiannual monitoring of Release #1 was initiated in July 2002 and discontinued in January 2003. GA EPD USTMP granted no further action status for Release #1 in correspondence dated October 6, 2003 (Lewis 2003). All wells associated with this release were abandoned between February 2006 and January 2008 with the exception of monitoring wells MW-04 and MW-05.

Release #2: AST 7009. In December 1999 and January 2000, the CAP-Part A investigation associated with Release #1 to identify areas of significant contamination concentrations involved collecting samples from the vicinity of AST 7009. A CAP-Part B investigation, which included the vicinity of AST 7009, was conducted by SAIC from November 2000 to March 2001 to determine the extent of petroleum contamination at the site (SAIC 2001). The nature and extent of contamination was determined during the CAP-Part B investigation. In July 2002, as part of the groundwater monitoring for Release #1, free product was observed in well MW-E5, which is located within the bermed area of AST 7009 (identified as Release #2). The prefix "BF-" is sometimes used to distinguish wells located at the BFF from others at HAAF (i.e., BF-MW-E5); however, as all wells within this plan are located at the BFF, this prefix is not included in well identifiers within this document. This tank is approximately 500 ft northeast of AST 7003 and is hydraulically sidegradient to AST 7003. Semiannual monitoring of Release #2 was initiated in July 2004 and discontinued in January 2005 because detected benzene, toluene, ethylbenzene, and xylene (BTEX) and polycyclic aromatic hydrocarbon (PAH) constituents were below the In-Stream Water Quality Standards (IWQS). GA EPD concurred with the recommendation of suspending the semiannual groundwater sampling until free product removal in BF-MW-E5 is complete (letter from William Logan GA EPD USTMP dated May 16, 2006). Free product removal activities were implemented in July 2004 consisting of absorbent socks in well MW-E5 and bi-monthly or quarterly pumping of the same well. In July 2007, an 8-hr Enhanced Fluid Recovery® (EFR®) event was initiated to vacuum extract the free product from well MW-E5 on a quarterly basis. Free product has not been observed in the other wells located within the berm or those located around the perimeter of the berm for AST 7009. EFR® events were conducted on a quarterly basis through the spring of 2010 with biannual groundwater monitoring of sentinel well MW-38. The final EFR® event was conducted in March 2010. Activities conducted under the USTMP are documented in the reports listed below:

• Soil Gas Survey Report for the Bulk Fuel Facility (HAA-09) at Hunter Army Airfield, Georgia (SAIC 1999), documents the results of the 1999 soil gas survey that was performed to identify areas of significant contaminant concentrations.

- Corrective Action Plan–Part A Report for the Former Underground Storage Tank 117, Building 7002 Site, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia (SAIC 2000), documents the results of the CAP–Part A investigation conducted in 1999 and 2000.
- CAP-Part B Report (SAIC 2001) documents the results of the CAP-Part B investigation conducted in 2000 and 2001.
- First Annual Monitoring Only Report for Former Underground Storage Tank 117, Building 7002, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia (SAIC 2003), documents the results of the July 2002 and January 2003 monitoring events for Release #1.
- Second Annual Monitoring and Free Product Removal Report for Former Underground Storage Tank 117, Building 7009, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*2, Hunter Army Airfield, Georgia (SAIC 2005), documents the results of the July 2004 and January 2005 monitoring events and the free product removal activities conducted between June 2004 and March 2005 for Release #2.
- Completion Report for Former Underground Storage Tank 117, Building 7002, Release #1, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia (SAIC 2006), documents the well abandonment activities for wells installed as part of the CAP-Parts A and B investigations for UST 117. Wells associated with Release #2 were not abandoned.
- Third Annual Monitoring and Free Product Removal Report for Former Underground Storage Tank 117, Building 7009, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*2, Hunter Army Airfield, Georgia (SAIC 2007), documents the results of the free product removal activities between April 2005 and December 2006 for Release #2 and the 2006 free product removal activities for Release #3.
- Fourth Annual Monitoring and Free Product Removal Report for Former Underground Storage Tank 117, Building 7009, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*2, Hunter Army Airfield, Georgia (SAIC 2008), documents the results of the 2007 free product removal activities for events for Release #2.
- 2008 Free Product Removal Report for the Bulk Fuel Facility (HAA-09), Building 7009, Hunter Army Airfield, Georgia (SAIC 2009), documents the results of the 2008 free product removal activities for events for Release #2.
- 2009 Free Product Removal Report for the Bulk Fuel Facility (HAA-09), Building 7009, Hunter Army Airfield, Georgia (SAIC 2010), documents the results of the 2009 free product removal activities for events for Release #2.

Free product was observed consistently in MW-E5 from 2002 through March 2010. Historical EFR® events at MW-E5 from June 18, 2004, through March 15, 2010, recovered a total of approximately 84 gal of free product. However, free product continued to be measured in the well at thicknesses greater than 1/8 in. (0.01 ft). During the four vacuum events conducted in 2009, free product thickness in MW-E5 ranged from 0.46 to 1.95 ft. In March 2010, free product was present in the well at a thickness of 1.28 ft. Other wells within the bermed area of the BFF remained clean, and BTEX and PAH concentrations from all wells within the vicinity of AST 7009 have remained well below applicable regulatory criteria since the first sampling event in 1999.

By 2010, it was determined that the quarterly vacuum events were not providing the constant treatment needed to remove the measurable free product present at Bulk Fuel Tank 7009 (Release #2). Alternative approaches, such as a soil vapor extraction solution and a surfactant injection solution, were evaluated, and surfactant injection was selected as both a time- and cost-effective option.

Release #3: AST 7003. In May 2006, the concrete foundation and berm for AST 7003 were removed by CAPE Environmental, and free product was discovered at a depth of 3 to 4 ft below ground surface. In August 2006, CAPE Environmental installed four, 2-ft-diameter sumps in the bermed area of former AST 7003. In November 2006, monitoring points were installed on 50-ft centers in the bermed area of the former AST. No water or free product was measured in any of the points; however, soil contamination was identified in the soil headspace readings. Griffin Services was contracted to remove the free product on a routine basis. In November 2009, Arcadis initiated remedial action in the vicinity of former AST 7003. Impacted soil exceeding alternate threshold levels was excavated, and an oxygen-releasing substance was placed in the excavated area to enhance bioremediation of contaminated groundwater. Quarterly groundwater monitoring events through October 2010 demonstrated that dissolved benzene in groundwater near former AST 7003 continued to exceed the alternate concentration limit but that attenuation was occurring. Continued semiannual monitoring demonstrated decreasing concentrations; GA EPD approved no further action for Release #3 in October 2013.

2.2 NATURE AND EXTENT OF CONTAMINATION AT ABOVEGROUND STORAGE TANK 7009 (2001 THROUGH 2011)

2.2.1 Soil

Three soil samples were collected from borings in the vicinity of AST 7009 during the CAP–Part A investigation prior to well installation (SB-25, SB-26, and SB-27). Twelve soil samples were collected from an additional six borings during the CAP–Part B investigation prior to installation of wells MW-E1 through MW-E6. BTEX and PAH concentrations for all constituents except ethylbenzene in those samples were below Georgia UST (GUST) soil threshold levels (STLs) (i.e., Table A, Column 1). Ethylbenzene exceeded the GUST STL (i.e., Table A, Column 1) of 0.370 mg/kg in one sample collected from MW-E3. The detected concentration of 4.5 mg/kg falls below the alternative threshold level of 61.85 mg/kg established for the site within the CAP–Part B Report (SAIC 2001).

The CAP–Part B Report concluded that active remediation/removal of soil was not recommended for the area around Tank 7009.

2.2.2 Groundwater

Groundwater samples were collected from monitoring wells MW-25, MW-26, and MW-27 during the CAP–Part A investigation. Additional groundwater samples were collected from these same three wells and wells MW-E1 through MW-E6 during the CAP–Part B investigation. Maximum detected concentrations of BTEX constituents were all detected in well MW-E5. All detected concentrations of BTEX and PAHs were below applicable GA EPD IWQSs. Free product was not identified in the area of AST 7009 during the CAP–Part B investigation.

Following the CAP–Part B Report, semiannual monitoring of Release #2 was initiated in July 2004. In 2002, during the CAP–B investigation, free product was noted in well MW-E5. Three additional wells (MW-35, MW-36, and MW-37) were installed around the perimeter of the bermed area in the vicinity of AST 7009 to confirm that the free product in MW-E5 was not from an upgradient source or migrating downgradient of the AST containment area. The results of semiannual well gauging from 2002 to 2009

with an oil/water interface probe have indicated that the free product is limited to well MW-E5 and does not extend beyond the bermed area.

BTEX and PAH concentrations from wells within the vicinity of AST 7009 have remained well below applicable regulatory criteria since the first sampling in 1999. The CAP–Part B Addendum #1 (SAIC 2011a) concluded that no groundwater remediation is warranted.

However, as of 2011, free product had been consistently encountered in MW-E5 since 2002. The CAP-Part B Addendum #1 (SAIC 2011a) proposed a pilot study, which was approved by stakeholders, with the following objective:

• Remove free product in excess of 1/8 in. by using surfactant flooding to flush the free product from the pore space of the fine-grained sand beneath the AST.

2.3 2011 THROUGH 2012 (INITIAL) PILOT STUDY

Based upon information gathered during prior facility upgrades and removals, a 4- to 5-ft-thick sand foundation was believed to have been installed underneath the concrete pad of each AST at the BFF. Prior activities at the BFF have resulted in a release of fuel into the subsurface in the vicinity of AST 7009. This fuel was believed to remain trapped within a sand foundation by the surrounding silty clay. Because AST 7009 is an active 500,000-gal AST, a surfactant flood of the fine-grained sand was conducted to flush the free product from the pore space without disruption of facility operations.

Surfactant flushing is a free product removal technology involving the injection and subsequent extraction of chemicals to solubilize and/or mobilize free product. The surfactant is injected into a system of wells positioned to sweep the source zone. The chemical flood and the solubilized or mobilized free product are removed through extraction wells, and the produced liquids are then either disposed (usually via off-site treatment) or treated on-site to remove contaminants.

Addendum #28 to the Work Plan identified locations for nine, 1-in. injection points to be installed around the perimeter of AST 7009 and existing monitoring wells MW-E5 and MW-E1 as primary extraction points (SAIC 2011b). The custom injection/product recovery system was manufactured by Mid-Atlantic Environmental Equipment, Inc. (MAE2) and includes a 10-leg injection manifold and 5-leg vacuum extraction manifold.

During initial injection well installation activities, field personnel encountered a layer of hard-packed soil coated with crystallized oil instead of the anticipated sand. This contaminated layer limited injection flow and product recovery. However, within the first 5 months of operation, approximately 1,000 gal of surfactant (i.e., Biosolve) in an average 2% solution were injected to treat one pore volume in the vicinity of AST 7009.

Primary effluent treatment steps are outlined below:

- 1. Extracted groundwater and vapors flowed through a liquid/vapor separator; separated vapor was sent to an air stripper vapor discharge, while liquid-phase effluent continued on to a 20,000-gal Baker frac tank.
- 2. In the frac tank, particulates and free product were allowed to settle and separate, respectively.

- 3. From the frac tank, liquid-phase effluent continued on through an oil/water separator (OWS); separated oil was stored for off-site disposal as free-phase product in 55-gal drums, and liquid-phase effluent continued on to an air stripper to remove dissolved volatile organic compounds (VOCs).
- 4. The liquid-phase effluent passed through an ultra-filtration system comprised of sand filters, polymer absorber, and an organo-clay vessel.
- 5. Finally, the effluent was passed through liquid-phase granular-activated carbon as a final polishing step and discharged to the HAAF waste water treatment plant (WWTP).

Two chemical dose systems (one for anti-fouling and one for anti-foaming) were used as required.

By April 2012, the pilot study product recovery system recovered approximately five pore volumes of groundwater and surfactant solution containing approximately 700 gal of free product, roughly half the volume estimated to be present in the subsurface. Recovery costs using the product recovery system dropped 87% per recovered gallon from historical costs using EFR®.

In mid-April 2012, SAIC and USACE agreed to terminate the pilot study treatment phase; the product recovery system was turned off on April 24, 2012. MAE2 disconnected connections to injection and extraction wells, drained lines within and connected to the treatment trailer, and powered down the system. All remediation-derived waste (RDW) was removed from the site.

Details of the initial pilot study are documented in the reports listed below:

- Pilot Study Interim Progress Report for Corrective Actions at Bulk Fuel Facility (HA-009), Former UST 117, AST 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2 (SAIC 2012a) summarizes installation and startup activities for the pilot study product recovery system and discusses field observations related to subsurface conditions at AST 7009.
- Pilot Study Interim Progress Report #2 for Corrective Actions at Bulk Fuel Facility (HA-009), Former UST 117, AST 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2 (SAIC 2012b) provides additional information on pilot study operation and results through May 2012.
- Pilot Study Interim Progress Report #3 for Corrective Actions at Bulk Fuel Facility (HAA-09), Former UST 117, AST 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2 (SAIC 2013) presents the results of four quarterly gauging events following surfactant injection/extraction activities and analytical results of groundwater sampling at two site monitoring wells, MW-E5 and MW-38, in November 2012.

Four rounds of quarterly gauging at extraction wells MW-E1 through MW-E6 were performed between April 30, 2012, and February 2, 2013. Three of the four quarterly events showed that free product was accumulating in well MW-E5 again, thus indicating that free product was still tied up in the soil column. Results of groundwater sampling conducted in November 2012 confirmed that BTEX concentrations remain well below applicable regulatory criteria.

2.4 REGULATORY REQUIREMENTS

Following submittal of the Third Annual Monitoring and Free Product Removal Report (SAIC 2007), GA EPD USTMP recommended that the site be transferred to the GA EPD Solid Waste Program in correspondence dated February 28, 2008 (Logan 2008). The site is currently being remediated under the GA EPD Solid Waste Program.

3.0 PREPARATORY FIELD ACTIVITIES

This section summarizes preparatory field activities conducted prior to the initiation of injection activities in the 2014 through 2015 pilot study.

3.1 SOIL TREATABLITY TESTING

A composite soil sample was collected from the BFF at AST 7009 in April 2014 and submitted for a co-solvent treatability test. The use of a co-solvent was determined to not be appropriate for field-scale application during this pilot study. Soil sampling details and results of the co-solvent treatability test were presented in Addendum #29 to the Work Plan (Leidos 2014).

3.2 INJECTION WELL ABANDONMENT

On October 16, 2014, field personnel attempted to remove the boot from existing injection well BFF-7J for re-use at a new injection well. Although the boot was removed, it could not be re-used, and injection well BFF-7J was abandoned in place by filling with grout. The polyvinyl chloride riser was cut off below the ground surface, and the BFF liner was patched.

3.3 INJECTION WELL INSTALLATION

During October 17 through 19, 2014, six new injection wells (BFF-AJ through BFF-FJ) were installed via hand auger at the approximate locations shown in Figure 3. Injection well construction details are summarized in Table 1. Boring logs and injection well construction diagrams are presented in Appendix A.

Injection Well ID	Material	Screened Interval (ft BGS)
BFF-AJ	1-in. Schedule 40 PVC	1.3 – 6.3
BFF-BJ	1-in. Schedule 40 PVC	3.7 - 8.7
BFF-CJ	1-in. Schedule 40 PVC	5.1 - 10.1
BFF-DJ	1-in. Schedule 40 PVC	4.4 - 9.4
BFF-EJ	1-in. Schedule 40 PVC	4.8 - 6.8
BFF-FJ	1-in. Schedule 40 PVC	6.4 - 8.4

AST = Aboveground storage tank.

BGS = Below ground surface.

ID = Identifier.

PVC = Polyvinyl chloride.

Figure 3. Site Layout

3.4 SYSTEM PREPARATION

During a site visit on September 17, 2014, it was noted that the 3-phase power feed at the telephone pole had been damaged. Pro-Electric repaired the damaged electrical box and associated wiring in October 2014.

Field personnel mobilized to the site for pilot study system preparations on November 3, 2014. The following activities were conducted from November 3 through 8, 2014:

- General site housekeeping activities were conducted, including clearing/killing vegetation in the work area and disposing of all empty surfactant drums.
- Well heads at all but two of the remaining injection wells from the first pilot study (BFF-1J, BFF-4J through BFF-6J, BFF-8J, and BFF-9J) were cut off for re-use. Risers were capped pending the completion of pilot study activities when injection wells will be abandoned.
- A 20,000-gal frac tank was received and sited.
- A water level transducer was installed in the frac tank.
- Power to the treatment system was confirmed.
- The treatment system effluent pipeline connection to the Base sanitary sewer force main was visually inspected and determined to require no repairs or adjustments.
- System pumps were tested for full functionality.
- A gravity-feed system was established for injection activities.

The gravity-feed injection system was selected for use in lieu of pumps due to the tight sand and clay observed in borings surrounding MW-E5 during collection of treatability soil samples in April 2014 and confirmed during injection well installation in October 2014. A gravity-feed test run yielded a combined injection rate of approximately 0.5 gal per minute. Surfactant solution was mixed to the appropriate ratio (6% Biosolve) and placed in a 250-gal poly tank located on the roof of the treatment system. From the poly tank, surfactant solution would be discharged to the six injection wells (BFF-AJ through BFF-FJ). The poly tank would be refilled with surfactant solution as necessary during injection events.

MAE2 arrived on-site the following week (November 10, 2014) to test the multi-phase treatment system prior to the start of injection/extraction activities. Minor system components (e.g., gauges and gaskets) were replaced, and a replacement backwash pump was ordered. The treatment system was ready for operation by startup on December 2, 2014.

4.0 PILOT STUDY OPERATIONS

As established in Addendum #29 to the Work Plan (Leidos 2014), two rounds of surfactant injection, extraction, and treatment were conducted during the second pilot study. Chains of custody and complete analytical results for effluent samples are presented in Appendix B.

4.1 INJECTION ROUND 1

The first round of surfactant injection was conducted from November 20 to December 19, 2014. Approximately 2,630 gal of surfactant solution (6% Biosolve) was injected into the six injection wells (BFF-AJ, BFF-BJ, BFF-CJ, BFF-DJ, BFF-EJ, and BFF-FJ) surrounding MW-E5; approximately 15,300 gal of injected surfactant and site groundwater were extracted from MW-E5 and temporarily stored on-site in the frac tank.

Prior to discharging any treated effluent to the HAAF WWTP via the sanitary sewer, a startup sample was analyzed to provide representative concentrations of key parameters in the treated effluent. During the week of December 1, 2014, approximately 225 gal was pumped from the frac tank through the treatment system and then sampled for VOCs, diesel-range organics (DRO), gasoline- range organics (GRO), phenols, iron, oil and grease, total suspended solids, total dissolved solids, biological oxygen demand (BOD), chemical oxygen demand (COD), pH, and hardness. Preliminary results of these startup analyses were submitted for HAAF WWTP approval on December 11, 2014. In addition, an effluent air sample was collected from sample port (SP)-402 and analyzed for VOCs by TO-15. Results of these analyses are summarized in Tables 2 and 3.

Following HAAF WWTP approval to discharge (received on January 8, 2015), initial attempts to restart the treatment system were unsuccessful. Water was determined to have infiltrated the buried electrical feed during the week of December 22, 2014. The damaged electrical line was repaired by Pro-Electric, and the treatment system was restarted on January 20, 2015.

A treated effluent sample was collected from SP-803 during treatment operations on January 20, 2015, and analyzed for VOCs, DRO, GRO, phenols, iron, oil and grease, total suspended solids, total dissolved solids, BOD, COD, pH, and hardness. An effluent air sample also was collected from SP-402 and submitted for analysis of VOCs by TO-15. Results of these analyses are summarized in Tables 2 and 3.

4.2 INJECTION ROUND 2

The second round of injections was initiated on January 27, 2015. Approximately 2,435 gal of surfactant solution (6% Biosolve) were injected in the second round, and extraction operations continued for approximately 1 week after injections were complete (through February 17, 2015). Approximately 27,000 gal of groundwater/surfactant mixture were extracted in the second round to ensure that no surfactant was left in the treatment area pore space.

A treated effluent sample was collected from SP-803 on February 11, 2015, and analyzed for VOCs, DRO, GRO, phenols, iron, oil and grease, total suspended solids, total dissolved solids, BOD, COD, pH, and hardness. Results of the analyses are summarized in Table 2.

5.0 BIANNUAL GROUNDWATER SAMPLING

On November 13, 2014, groundwater samples were collected from well MW-E5, located within the bermed area of AST 7009, and downgradient sentinel well MW-38. Samples were submitted to an off-site laboratory for analysis of BTEX. Results of the November 2014 sampling event are presented in Table 4. The only detected constituent was toluene, which was detected at a concentration of $2.51 \mu g/L$ in MW-E5.

Date		12/03/14	01/20/15	02/11/15
Sample Location		Poly Tank	SP-803	SP-803
Sample ID		BFF80301	BFF80302	BFF80303
Sample Description	Unit	Startup	Bi-weekly #1	Bi-weekly #2
Volatile Organic Compounds ^a				
Acetone	µg/L	1.95 J	4.08 J	5.0 U
Total Petroleum Hydrocarbons				
DRO	mg/L	4.27 J	2.39	36.5
GRO	mg/L	0.050 U	0.0281 J	0.0646
Miscellaneous				
BOD	mg/L	8.94	4.72 J	27.8
COD	mg/L	92.6	102	281
Hardness (as CaCO ₃)	mg/L	87.3	68.0	800
Iron	mg/L	9.69	8.82	9.49
Oil and grease	mg/L	2.66 J	1.63 J	29.9
рН	S.U.	5.90	6.89 J	8.04 J
Phenol	mg/L	0.00447 U	0.119	0.237 J
TDS	mg/L	470	234	373
TSS	mg/L	4.10	4.80	13.6 J

Table 2. Analytical Results of Treated Effluent Samples

^a Only volatile organic compounds detected in one or more samples are shown.

BOD = Biological oxygen demand.

 $CaCO_3 = Calcium carbonate.$

COD = Chemical oxygen demand.

DRO = Diesel-range organics.

GRO = Gasoline-range organics.

ID = Identifier.

S.U. = Standard unit.

TDS = Total dissolved solids.

TSS = Total suspended solids.

Laboratory Qualifiers

J = Detected at an estimated concentration.

U = Not detected at the concentration shown.

Date		12/03/14	01/20/15
Sample Location		SP-402	SP-402
Sample ID		BFF40201	BFF40202
Sample Description	Unit	Startup	Bi-weekly #1
2-Butanone	ppb_{v}	2.6	0.48 J
2-Hexanone	$ppb_{\rm v}$	0.24 J	0.1 U
4-Methyl-2-Pentanone	ppb_v	0.16 J	0.1 U
Acetone	ppb_{ν}	13.7	25.1
Benzene	$\text{ppb}_{\rm v}$	0.38 J	0.21 J
Carbon Disulfide	$\text{ppb}_{\rm v}$	0.1 U	0.36 J
Carbon Tetrachloride	$\operatorname{ppb}_{\mathrm{v}}$	0.08	0.08
Chloroform	$\text{ppb}_{\rm v}$	0.1 U	0.54
Chloromethane	$\text{ppb}_{\rm v}$	0.58	0.59
Cyclohexane	$\text{ppb}_{\rm v}$	1.3	2.6
Dichlorodifluoromethane	$ppb_{\rm v}$	0.65	0.64
Ethylbenzene	$\text{ppb}_{\rm v}$	0.1 U	0.26 J
Isopropylbenzene	$\operatorname{ppb}_{\mathrm{v}}$	0.1 J	0.1 U
m/p-Xylene	$\text{ppb}_{\rm v}$	0.23 J	0.8 J
Methylene Chloride	$ppb_{\rm v}$	0.2 U	2
o-Xylene	$\text{ppb}_{\rm v}$	0.14 J	0.37 J
Styrene	$ppb_{\rm v}$	2.7	1.1
Toluene	$\text{ppb}_{\rm v}$	1.4	3.4
Total Xylenes	ppb_{v}	0.37	1.17
Trichlorofluoromethane	ppb_v	0.27 J	0.23 J

 Table 3. Volatile Organic Compounds Detected in Effluent Air Samples

Note: Only analytes detected in one or more samples are shown.

ID = Identifier.

 $ppb_v = Parts per billion by volume.$

Laboratory Qualifier

J = Detected at an estimated concentration.

U = Not detected at the concentration shown.

Sample Location	Sample ID	Date Sampled	Benze (µg/I	ene L)	Tolue (µg/I	ne L)	Ethylbenz (µg/L)	ene	Xylen (µg/I	ies L)	Total BTEX (µg/L)
	CAP-Pa	art A Investi	gation -	- Dec	cember .	1999	and Janua	ary 2	000		
MW-25	BF2512	12/02/99	1	U	1	U	1	U	3	U	ND
MW-26	BF2612	12/02/99	1	U	1	U	1	U	3	U	ND
MW-27	BF2712	01/11/00	1	UJ	1	UJ	1	UJ	3	UJ	ND
		CAP-Part	B Inves	tiga	tion – D	ecen	nber 2000				
MW-25	BF2522	12/02/00	1	U	1	U	1	U	3	U	ND
MW-26	BF2622	12/02/00	1	U	1	U	1	U	3	U	ND
MW-27	BF2722	12/03/00	1	U	1	U	1	U	3	U	ND
MW-E1	BFE122	12/01/00	1	U	1	U	0.99	J	0.45	J	1.44
MW-E2	BFE222	12/02/00	1	U	0.3	J	1	U	3	U	0.3
MW-E3	BFE322	12/02/00	1	U	0.48	J	1	U	0.3	J	0.78
MW-E4	BFE422	12/02/00	0.29	J	0.27	J	0.28	J	0.36	J	1.2
MW-E5	BFE522	12/02/00	3.6	=	1	Ш	17.2	=	19	=	40.8
MW-E6	BFE622	12/01/00	1	U	1	U	1	U	3	U	ND
		Third Semic	annual S	Sam	oling Ev	ent ·	– July 2004	1			
MW-25	BF2552	07/16/04	1	U	1	U	1	U	1	U	ND
MW-26	BF2652	07/16/04	1	U	1	U	1	U	1	U	ND
MW-27	BF2752	07/16/04	1	U	1	U	1	U	1	U	ND
MW-35	BF3552	07/17/04	1	U	1	U	1	U	1	U	ND
MW-36	BF3652	07/17/04	1	U	1	U	1	U	1	U	ND
MW-37	BF3752	07/17/04	1	U	1	U	1	U	1	U	ND
MW-E1	BFE152	07/16/04	1	U	1	U	1	U	1	U	ND
MW-E2	BFE252	07/16/04	1	U	1	U	1	U	1	U	ND
MW-E3	BFE352	07/16/04	1	U	1	U	1	U	1	U	ND
MW-E4	BFE452	07/16/04	1	U	1	U	1	U	1	U	ND
MW-E5	BFE552	07/16/04	2	=	1	U	17.3	=	42.7	=	62.0
MW-E6	BFE652	07/16/04	1	U	1	U	1	U	1	U	ND
In-Stream Water Quality Standards (Georgia Rule 391-3-6.03)		51		200,0	00	28,718		NRC	5	NRC	
Alternate	Concentration	Limits	634								

Table 4. Groundwater Analytical Results for BTEX, 1999 through 2014

Sample Location	Sample ID	Date Sampled	Benze (µg/I	ene L)	Tolue (µg/I	ne L)	Ethylbenz (µg/L)	ene	Xylen (µg/I	ies L)	Total BTEX (µg/L)
	Fourth S	emiannual S	Samplin	g Ev	vent (Re	lease	e #2) – Jani	uary	2005		
MW-25	BF2562	01/12/05	1	U	1	U	1	U	1	U	ND
MW-26	BF2662	01/13/05	1	U	1	U	1	U	1	U	ND
MW-27	BF2762	01/13/05	1	U	1	U	1	U	1	U	ND
MW-35	BF3562	01/14/05	1	U	1	U	1	U	1	U	ND
MW-36	BF3662	01/14/05	1	U	1	U	1	U	1	U	ND
MW-37	BF3762	01/14/05	1	U	1	U	1	U	1	U	ND
MW-E1	BFE162	01/13/05	1	U	1	U	1	U	1	U	ND
MW-E2	BFE262	01/13/05	1	U	1	U	1	U	1	U	ND
MW-E3	BFE362	01/13/05	1	U	1	U	1	U	1	U	ND
MW-E4	BFE462	01/13/05	1	U	1	U	1	U	0.9	J	0.9
MW-E5	BFE562	01/13/05	1	U	0.43	J	10.4	=	34.9	=	45.73
MW-E6	BFE662	01/13/05	1	U	0.47	J	1	U	1	U	ND
		Sentinel	Well Sa	mpli	ing – De	cem	ber 2007				
MW-38	BF3872	12/10/07	1	U	1	U	1	U	1	U	ND
		First Biann	ual Sam	nplin	g Event	-0	ctober 2009)			
MW-E5	BFE592	10/08/09	3.82	=	0.360	J	34.7	=	69.4	=	108.28
MW-38	BF3892	10/08/09	1	U	1	U	1	U	1	U	ND
	Se	cond Biann	ual Sam	ıplin	g Event	-N	ovember 20	012			
MW-E5	BFE5A2	11/29/12	1	U	0.51	J	1	U	3	U	0.51
MW-38	BF38A2	11/29/12	1	U	1	U	1	U	1	U	ND
	T	hird Biannu	ial Samj	pling	g Event	- No	vember 20	14			
MW-E5	BFE5A2	11/13/14	1	U	2.51	=	1	U	3	U	2.51
MW-38	BF38A2	11/13/14	1	U	1	U	1	U	3	U	ND
In-Stream V (Georgi	Vater Quality ia Rule 391-3-	Standards 6.03)	51		200,0	00	28,718		NRC	2	NRC
Alternate Concentration Limits			634		_						_

Table 4. Groundwater Analytical Results for BTEX, 1999 through 2014 (continued)

BTEX = Benzene, toluene, ethylbenzene, and xylene.

CAP = Corrective Action Plan.

ID = Identifier.

ND = Not detected.

NRC = No regulatory criterion.

Laboratory Qualifier

J = Detected at an estimated concentration.

U = Not detected at the concentration shown.

UJ = Not detected at the estimated concentration shown.

'=' = Detected at the concentration shown.

The chain of custody and complete analytical results for bi-annual sampling are provided in Appendix B.

In conjunction with the bi-annual monitoring event, a sample of free product was collected from extraction well MW-E5 and submitted to an off-site laboratory for fingerprint analysis of DRO. Fingerprint sampling was conducted to evaluate the possibility that continued free product observations in MW-E5 might be the result of an ongoing leak or recent spill. Historical fuels stored on-site at the BFF included JP-4 and JP-8; however, the Air Force recently converted to the more common and commercially available Jet A fuel. The same additive package used for JP-8 is added to Jet A fuel, and the combination is identified as F-24. For comparative purposes, a sample of F-24 aviation fuel obtained from the BFF also was submitted for fingerprint analyses. Results of the two analyses indicate that the free product sample from MW-E5 exhibits hydrocarbons higher in the carbon range than those of the F-24 fuel sample, which closely resembles kerosene. An overlay chromatogram created by the laboratory does not show any conformity between the two samples (Figure 4), indicating that the free product in MW-E5 is not likely to be the result of a recent release of F-24.

6.0 QUARTERLY GUAGING

Following system shutdown, extraction wells MW-E1 through MW-E6 were gauged on March 19, 2015. No free product was detected in five of the six wells (see Table 5); free product was measured at a thickness of 0.13 ft in well MW-E5. Quarterly gauging will continue for a total of four events with the next event scheduled for June 2015.

Well ID (Screened Interval, ft BGS)	Depth to Water (ft BTOC)	Depth to Product (ft BTOC)	Product Thickness (ft)
MW-E1 (4.6 – 14.6)	2.40		0
MW-E2 (3.94 – 13.94)	2.16		0
MW-E3 (4.4 – 14.4)	2.71		0
MW-E4 (4.6 – 14.6)	2.90		0
MW-E5 (4.8 – 14.8)	2.95	2.82	0.13
MW-E6 (3.7 – 13.7)	1.87		0

 Table 5. Results of Well Gauging on March 19, 2015

BGS = Below ground surface. BTOC = Below top of casing. ID = Identifier.

7.0 REMEDIATION-DERIVED WASTE

Soil RDW generated during the installation of injection points was containerized in two 55-gal drums. Based upon analytical results for Toxicity Characteristic Leachate Procedure VOCs and metals and site process knowledge, the soils were determined to be non-hazardous. These non-hazardous soil drums were removed from the site on March 4, 2015, and transported for disposal by EQ-Environmental Quality Co. A copy of the chain of custody and complete analytical results are included in Appendix B; a copy of the waste manifest is provided in Appendix C.

Figure 4. Chromatogram Overlay for Analyses of F-24 Aviation Fuel and Site Free Product

15-029(E)/072415

All extracted groundwater/surfactant mixture was pumped to the 20,000-gal frac tank and ultimately passed through the treatment system and discharged to the HAAF WWTP. Purge water from the 2014 bi-annual sampling event also was treated and discharged to the HAAF WWTP. Thus, no off-site disposal of liquid RDW was required.

8.0 PROBLEMS ENCOUNTERED

The frac tank was scheduled for pickup on March 11, 2015; however, upon arrival, the tractor truck got stuck in the wet grass and had to be pulled out by a wrecker. The frac tank has been removed from the site.

9.0 COMMUNICATIONS/CONTACTS

A follow-on pilot testing notification was submitted to Mr. Bijan Rahbar at GA EPD by email on October 9, 2014; Mr. Rahbar approved a 90-day injection timeframe in an email that same date. Copies of the 2011 initial permit request, the 2011 approval email, and 2014 email correspondence can be found in Appendix D.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Two rounds of surfactant injection were conducted as part of a second pilot study between November 2014 and February 2015 at AST 7009 at the HAAF BFF. Approximately 5,065 gal of 6% Biosolve solution was gravity-fed into six injection wells surrounding well MW-E5 during a 90-day window (November 20, 2014, through February 10, 2015) in compliance with GA EPD pilot testing approval. In conjunction with injection activities, approximately 42,000 gal of groundwater/surfactant mixture was extracted from MW-E5 to maintain hydraulic control of the injected fluids and to pull the surfactant solution through the contaminated soil zone surrounding MW-E5.

No free product was observed within the frac tank during the 4-month pilot study operational period, and negligible (<5 gal) free product was captured by the treatment system OWS. Results of the first quarterly gauging event in March 2015, subsequent to pilot study activities, indicate that free product remains present in MW-E5 at 0.13 ft.

Due to the reduced amount of free product recovered during the second surfactant injection, it appears that the mobile and recoverable free-phase liquid beneath AST 7009 has been removed. Additional free product may be bound to the soils and, with time, will migrate to MW-E5; however, insufficient volume exists to make active recovery practical. HAAF recommends that the site be gauged for product quarterly for 1 year, then semiannually thereafter. In the event that free product is measured, a passive product recovery sock will be installed to absorb the free product. The sock would be removed at a minimum of 1 month before any gauging event. In addition to the product gauging, the biannual groundwater sampling of MW-E5 and MW-38 would continue to ensure contamination is not migrating off-site. The next progress report will follow completion of an additional three quarterly gauging events.

11.0 REFERENCES

- Guentert, James S. 2011. Letter to Thomas C. Fry (Fort Stewart Directorate of Public Works Environmental Branch) regarding approval of the Corrective Action Plan–Part B Addendum for AST 7009, Bulk Fuel Facility (HAA-09), May 2.
- Leidos 2014. Addendum #29 to the Work Plan for Preliminary Groundwater and Corrective Action Plan– Part A/Part B Investigations at Former Underground Storage Tank Sites, Hunter Army Airfield and Fort Stewart, Georgia.
- Lewis, Lisa L. 2003. Letter to Thomas C. Fry (Fort Stewart Directorate of Public Works Environmental Branch) regarding approval of no further action for Release #1 and proceed with corrective action on Release #2, October 6.
- Logan, William 2006. Letter to Algeana Stevenson (Fort Stewart Directorate of Public Works Environmental Branch) regarding semiannual groundwater sampling for Release #2 at AST 7009, May 16.
- Logan, William 2008. Letter to Algeana Stevenson (Fort Stewart Directorate of Public Works Environmental Branch) regarding review comments on the Third Annual Monitoring and Free Product Removal Report, February 28.
- SAIC (Science Applications International Corporation) 1999. Soil Gas Survey Report for the Bulk Fuel Facility (HAA-09) at Hunter Army Airfield, Georgia, November.
- SAIC 2000. Corrective Action Plan–Part A Report for the Former Underground Storage Tank 117, Building 7002 Site, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia, Oak Ridge, TN, June.
- SAIC 2001. Corrective Action Plan–Part B Report for the Former Underground Storage Tank 117, Building 7002 Site, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia, Oak Ridge, TN, July.
- SAIC 2003. First Annual Monitoring Only Report for Former Underground Storage Tank 117, Building 7002, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia, July.
- SAIC 2005. Second Annual Monitoring and Free Product Removal Report for Former Underground Storage Tank 117, Building 7009, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*2, Hunter Army Airfield, Georgia, December.
- SAIC 2006. Completion Report for Former Underground Storage Tank 117, Building 7002, Release #1, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*1, Hunter Army Airfield, Georgia, July.
- SAIC 2007. Third Annual Monitoring and Free Product Removal Report for Former Underground Storage Tank 117, Building 7009, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*2, Hunter Army Airfield, Georgia, September.

- SAIC 2008. Fourth Annual Monitoring and Free Product Removal Report for Former Underground Storage Tank 117, Building 7009, Bulk Fuel Facility (HAA-09), Facility ID #9-025113*2, Hunter Army Airfield, Georgia, September.
- SAIC 2009. 2008 Free Product Removal Report for the Bulk Fuel Facility (HAA-09), Building 7009, Hunter Army Airfield, Georgia, May.
- SAIC 2010. 2009 Free Product Removal Report for the Bulk Fuel Facility (HAA-09), Building 7009, Hunter Army Airfield, Georgia, May.
- SAIC 2011a. Corrective Action Plan–Part B Addendum #1, Bulk Fuel Facility (HAA-09), Building 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2, April.
- SAIC 2011b. Addendum #28 to the Work Plan for Preliminary Groundwater and Corrective Action Plan– Part A/Part B Investigations at Former Underground Storage Tank Sites, Hunter Army Airfield and Fort Stewart, Georgia, May.
- SAIC 2012a. Pilot Study Interim Progress Report for Corrective Actions at Bulk Fuel Facility (HA-009), Former UST 117, AST 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2, Final, January.
- SAIC 2012b. Pilot Study Interim Progress Report #2 for Corrective Actions at Bulk Fuel Facility (HA-009), Former UST 117, AST 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2, Final, September.
- SAIC 2013. Pilot Study Interim Progress Report #3 for Corrective Actions at Bulk Fuel Facility (HA-009), Former UST 117, AST 7009, Hunter Army Airfield, Georgia, Facility ID #9-025113*2, Final, April.

APPENDIX A

INJECTION WELL INSTALLATION DETAILS

INJECTION WELL LAYOUT

BFF IWs Screen Info BFF-AJ (5 ft) 1.3-6.3 ft bgs BFF-BJ (5 ft) 3.67-8.67 ft bgs BFF-CJ (5 ft) 5.1-10.1 ft bgs BFF-DJ (5 ft) 4.37-9.37 ft bgs BFF-EJ (2 ft) 4.75-6.75 ft bgs BFF-FJ (2 ft) 6.37-8.37 ft bgs

BORING LOGS

	HOLE NUMBER: BFF-AJ				
PROJECT: HA	SHEET 1 OF 1 SHEET(S)				
DEPTH (FT BGS)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS
Ξ	Silty sand (SM) with mixed clay, dark brown to black, hydrocarbon odor (0-6")				
	Silty sand (SM), medium brown, moist, fine-grained (6"-12")				
1	Silty sand (SM), medium to light grayish brown, moist to nearly wet, fine-grained (0.8'-2.5')				
2					
	Silty sand (SM), light grayish brown, wet, fine-grained, strong hydrocarbon				
3	odor (2.5'-3.5')				
	Sandy clay (SC), wet (3.5'-4.5')				
4	Clavev sand (SC), medium brownish				
	gray, wet, fine-grained, dense, hydrocarbon odor (4.5'-4.8') Sandy lean clay, medium gray,				
5	mottled, wet, very dense, crystallized layer (4.8'-4.9')				
	brownish gray, wet, hydrocarbon odor (4.9'-5.1')				
6	Clayey sand (SC), medium brownish gray, wet, fine-grained (5.1'-7')				
9					
10					

	BORING I	HOLE NUMBER: BFF-BJ			
PROJECT: HA	ROJECT: HAAF Pilot Study #2 (2014) GEOLOGIST: Bob Gelinas			SHEET 1 OF 1 SHEET(S)	
DEPTH (FT BGS)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS
	Silty sand (SM), dark brown to black, moist, fine-grained (0-6")				
1	Silty sand (SM), light pale brown, moist, fine-grained (8"-20")				
2					
3-					
	Hydrocarbon odor (3.4')				
4	Fat clay (CL) with fine trace sand, dark gray, wet (3.91'-4.3')				
5	Lean clay (CL) with fine sand, some clayey sand pockets, medium gray with some mottling, wet (4.3'-4.4') Sandy lean clay, medium gray, wet, fine-grained, hydrocarbon odor (4.4'-5.6')				
6-	Silty sand (SM) with clay, dark gray, wet, hydrocarbon odor (5.6'-5.8') Sandy clay to claying sand (SC), gray, wet, hydrocarbon odor (5.8'-7.1')				
7	Silty clayey sand, gray, wet, fine- grained, hydrocarbon odor, medium dilatancy (7.1'8.1')				
8					
9	Silty sand (SM), light to medium gray, wet, fine-grained (8.67')				
10					

	HOLE NUMBER: BFF-CJ				
PROJECT: HA	AAF Pilot Study #2 (2014)	GEOLOGIST: Bob Gelinas			SHEET 1 OF 1 SHEET(S)
DEPTH (FT BGS)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS
	Silty sand (SM), dark brown, moist, fine-grained (0-8")				
1	Silty sand (SM) to poorly graded sand with silt, medium brown to tan, fine- grained (10"-19")				
2	Fat clay (CH), olive brown, moist, highly plastic (21"-54")				
	vvater encountered (24°)				
3					
4					
5					
6					
	Silty sand (SM), medium brownish				
7					
8	Hydrocarbon odor (7.7') Silty sand (SM), medium gray, wet,				
0	nne-yranieu (o.2)				
10					

R: BFF-DJ	HOLE NUMBER:	BORING LOG					
IEET(S)	SHEET 1 OF 1 SHEE	GEOLOGIST: Bob Gelinas			AF Pilot Study #2 (2014)	PROJECT: HA	
S	REMARKS	ANALYTICAL SAMPLE NO.	GEOTECH SAMPLE OR CORE BOX	HEADSPACE SCREENING RESULTS	DESCRIPTION OF MATERIALS	DEPTH (FT BGS)	
					Silty sand (SM), very dark brown to black, moist, fine-grained (0-10")		
					Silty sand (SM), pale tan-gray, moist to wet at about 24", fine-grained (0.8'-2.4')	1	
					Fat clay (CH) with fine trace sand, dark	2	
					greenish brown, moist to wet (2.4'-3.6')	3-	
						4	
					Lean clay (CL) with fine trace sand, medium gray, wet (5.2'-6.4')	5	
						6	
					Silty sand (SM) with clay, medium gray, wet, fine-grained (6.4'-6.7') Silty sand (SM) medium gray, wet		
					fine-grained, slight hydrocarbon odor (6.7'-7.7') Clayey silty sand (SC-SM), medium gray, wet, fine-grained, slight		
					hydrocarbon odor (7.7-7.9')	8	
						9	
					Lean clay (CL) with fine trace sand, medium gray, wet (5.2'-6.4') Silty sand (SM) with clay, medium gray, wet, fine-grained (6.4'-6.7') Silty sand (SM), medium gray, wet, fine-grained, slight hydrocarbon odor (6.7'-7.7') Clayey silty sand (SC-SM), medium gray, wet, fine-grained, slight hydrocarbon odor (7.7'-7.9')	5 5 6 7 8 9 10	

	HOLE NUMBER: BFF-EJ				
PROJECT: HA	AAF Pilot Study #2 (2014)	GEOLOGIST: Bob Gelinas			SHEET 1 OF 1 SHEET(S)
DEPTH (FT BGS)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS
	Silty sand (SM), dark brown to black, moist, fine-grained (0-1.2')				
1					
	Silty sand to poorly graded firm sand (SM, SP-SM), medium grayish brown, moist to wet, fine-grained (2'-4')				
3					
4	Lean clay (CL) with trace sand, medium gray to dark olive gray, wet				
5	(4'-5.7')				
6	Clayey sand (SC), medium gray, wet, fine-grained (5.75'-6.2')				
	Clayey sand/silty sand mix, medium grayish brown, wet, fine-grained (6.2')				
7					
8-					
9					
10_					

	HOLE NUMBER: BFF-FJ				
PROJECT: HA	PROJECT: HAAF Pilot Study #2 (2014) GEOLOGIST: Bob Gelinas				SHEET 1 OF 1 SHEET(S)
DEPTH (FT BGS)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS
1	Silty sand (SM), dark brown, moist, fine-grained (0-6") Silty sand (SM) to poorly graded sand, tan to light brownish gray, moist, fine- grained (6"-4')				
2	Becomes wet, free product/				
3	hydrocarbon odor (2')				
	Lean clay (CL) with sand, medium brownish gray, wet, fine-grained, hydrocarbon odor (4.1'-6.05')				
5					
6	Silty sand (SM), medium gray, wet, fine-grained, hydrocarbon odor (6.05'-6.5')				
7					
8					
9					
10-					
WELL CONSTRUCTION DIAGRAMS

HAAF 6 : : '5 GH'+\$\$- 'Pilot Study' & 'f8\$% L 7 CBHF 5 7 H'W912HN-13-R-0023 TASK ORDER 0001

HAAF 6 : : '5 GH'+\$\$- 'Pilot Study' & f8\$% L 7 CBHF 5 7 H'W912HN-13-R-0023 TASK ORDER 0001

HAAF 6 : : '5 GH'+\$\$- 'Pilot Study' & 'f8\$% L 7 CBHF 5 7 H'W912HN-13-R-0023 TASK ORDER 0001

HAAF 6 : : '5 GH'+\$\$- 'Pilot Study' & f8\$% L 7 CBHF 5 7 H'W912HN-13-R-0023 TASK ORDER 0001

HAAF 6 : : '5 GH'+\$\$- 'Pilot Study' & f8\$% L 7 CBHF 5 7 H'W912HN-13-R-0023 TASK ORDER 0001

HAAF 6 : : '5 GH'+\$\$- 'Pilot Study' & 'f8\$% L 7 CBHF 5 7 H'W912HN-13-R-0023 TASK ORDER 0001

APPENDIX B

CHAINS OF CUSTODY AND ANALYTICAL RESULTS

361439

COC NO .:

301 Laboratory Road, Oak Ridge, Tennessee 37831(865) 482-9031

CHAIN OF CUSTODY RECORD

PROJECT NAME: Hunter	******	·			- <u>_</u>				RE	QUF	ESTE	D PA	RAME	TER	s,					LABORATORY N	NAME:
				-																General Enginee	ering Laboratory
PROJECT NUMBER: 301205.0	10.000.00.200																		als:	LABORATORY	ADDRESS:
PROJECT MANAGER: Patty S	itoli				5 DRO														ottles/ Via	2040 Savage Ro Charleston, SC	ad 29417
Sampler (Signature)	(Printed National Notice 1)	me)		EX	80/801														. of Be	PHONE NO: (843	3) 556-8171
Umarda nurren	TIMANA NO		r		35														l 2	OVA	OBSERVATIONS, COMMENTS,
Sample ID	Date Collected	Time Collected	Matrix	1	2		9.09.	T	TI			UNA I		ų.		633635				SCREENING	SPECIAL INSTRUCTIONS
BFE5B2	11/13/14	1145	GW	2															2		
TH0653	lab f	reparce	Water	12	•	and well a													2		
BFE5B4	11/13/14	1145	GW	2															2		
BF30BZ	11/13/14	1130	6W	2															2		
BF38B2MSD	11/13/14	1130	GW	2															2		
BF 30BZ WS	11/13/14	1130	<u>6w</u>	2															2		
	1																				
						10.00															
											a state										
											in the second second			1000							
		0									10,00										
RELINQUISHED BY:	Date/Time	REGENERB	Y: 1 /	1	ليستعمله	-	Da	te/Tir	me	Т	OTAL	. NUN	/BER	OF C	ONT	AINEF	RS:			Cooler Temperatu	ire:
Amande Hornes	11/13/14	17pc	bh	a	Ň		11	121	14	Co	ooler	ID:								FEDEX NUMBER	······································
COMPANY NAME:	14:30	COMPANY N	AME:		1			: در در س	· /												
SCF		<u> </u>	6	-		}	1	7-7	0	-1	2 - 4	10 ml	VOA	Vial,	HCL	to pH	< 2, 4	с			
RECEIVED BY:	Date/Time	RELINQUISH	ED BY:				Da	ite/Tir	me	2	1 - :	250 n	nl Amb	ber g	lass,	Cool	, 4C				
													,								
			/~\\¥IL								7	_	da	ry	7	A]				
RELINQUISHED BY:	Date/Time	RECEIVED B	Y:	Date/Time DEELOR + REE 584 ave from a MW				naMW													
		Alter	Mal	K			ii þ	3/1	ł	5	>an	pie	ט ג		50	, - 7 .L	21	• سب		1 940 1998	
COMPANY NAME:		COMPANY N	AME:				1	1610	15	-	wI	tr	ee f	240	au	CT.					
		1 (7)		- · ·			•														

	Volatile Certificate of Analysis							
Sample Summary								
SDG Number:	361439	Date Collected:	11/13/2014 11:45	Matrix:	WATER			
Lab Sample ID:	361439001	Date Received:	11/13/2014 16:45					
		Client:	LEID002	Project:	LEID00200			
Client ID:	BFE5B2	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038			
Batch ID:	1437367	Inst:	VOAA.I	Dilution:	1			
Run Date:	11/18/2014 20:51	Analyst:	JEB	Purge Vol:	5 mL			
Prep Date:	11/18/2014 20:51							
Data File:	111814\AJ220.D	Column:	DB-624					

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U U	1.00	ug/L	0.300	1.00
100-41-4	Ethylbenzene	υU	1.00	ug/L	0.300	1.00
108-88-3	Toluene	=	2.51	ug/L	0.300	1.00
1330-20-7	Xylenes (total)	U U	3.00	ug/L	0.300	3.00

Tentatively Identified Compound Summary

Tentatively Identified Compound Summary			Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	3.493	33.5	ug/L	0	J
	unknown	3.836	34.3	ug/L	0	J
000564-04-5	3-Pentanone, 2,2-dimethyl-	11.815	30.4	ug/L	80	J
000934-80-5	Benzene, 4-ethyl-1,2-dimethyl-	15.341	35.8	ug/L	97	NJ
001074-55-1	Benzene, 1-methyl-4-propyl-	15.581	34.5	ug/L	94	NJ
000527-84-4	Benzene, 1-methyl-2-(1-methylethyl	15.762	23.8	ug/L	95	NJ
000768-00-3	Benzene, (1-methyl-1-propenyl)-, (15.956	42.7	ug/L	81	J
000934-80-5	Benzene, 4-ethyl-1,2-dimethyl-	16.122	29.3	ug/L	96	NJ
001595-16-0	Benzene, 1-methyl-4-(1-methylpropy	16.66	25.7	ug/L	83	J
	unknown hydrocarbon	16.723	46	ug/L	0	J
	unknown hydrocarbon	16.741	28.8	ug/L	0	J
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	16.787	51.2	ug/L	91	NJ
000767-58-8	Indan, 1-methyl-	16.837	74.1	ug/L	90	NJ
	unknown hydrocarbon	16.847	29.2	ug/L	0	J
000119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	17.069	45.2	ug/L	95	NJ
020836-11-7	1H-Indene,2,3-dihydro-2,2-dimethyl	17.401	44.2	ug/L	91	NJ
003877-19-8	Naphthalene, 1,2,3,4-tetrahydro-2-	17.77	33.9	ug/L	76	J
	unknown hydrocarbon	18.464	27.5	ug/L	0	J

ug/L

Volatile Page 1 of 1 Certificate of Analysis Sample Summary										
SDG Number: Lab Sample ID:	361439 361439002	Date Colle Date Rece Client:	ected: eived:	11/13/2014 12:00 11/13/2014 16:45 LEID002	Matrix: Proiect:	WATER LEID0020	0			
Client ID: Batch ID: Run Date:	TH0653 1437367 11/19/2014 15:46	Method: Inst: Analyst:		SW846 8260B VOAA.I JEB	SOP Re Dilution Purge V	f: GL-OA-E : 1 ol: 5 mL	-038			
Prep Date: Data File:	11/19/2014 15:46 111914\AJ309.D	Column:		DB-624						
CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ				
71-43-2	Benzene	υ _U	1.00	ug/L	0.300	1.00				
100-41-4	Ethylbenzene	υU	1.00	ug/L	0.300	1.00				
108-88-3	Toluene	U U	1.00	ug/L	0.300	1.00				
1330-20-7	Xylenes (total)	U U	3.00	ug/L	0.300	3.00				
Tentatively Iden	tified Compound Summary			Estimate	d					
CAS No.	Tentatively Identi	ied Compound (TIC)	ŀ	RT	Units	Fit	Qual			

No Tentatively Identified Compounds Found

Volatile Page 1 of 1 Certificate of Analysis Sample Summary									
SDG Number:	361439	Date Collected:	11/13/2014 11:45	Matrix:	WATER				
Lab Sample ID:	361439003	Date Received:	11/13/2014 16:45						
		Client:	LEID002	Project:	LEID00200				
Client ID:	BFE5B4	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038				
Batch ID:	1437367	Inst:	VOAA.I	Dilution:	1				
Run Date:	11/18/2014 21:41	Analyst:	JEB	Purge Vol:	5 mL				
Prep Date:	11/18/2014 21:41			-					
Data File:	111814\AJ222.D	Column:	DB-624						

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U U	1.00	ug/L	0.300	1.00
100-41-4	Ethylbenzene	U U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	=	2.65	ug/L	0.300	1.00
1330-20-7	Xylenes (total)	U 📊	3.00	ug/L	0.300	3.00

Tentatively Identified Compound Summary

Tentatively Identi	Tentatively Identified Compound Summary		Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	3.513	27.5	ug/L	0	J
	unknown	3.846	25.3	ug/L	0	J
	unknown	11.815	31.7	ug/L	0	J
000934-80-5	Benzene, 4-ethyl-1,2-dimethyl-	15.344	46	ug/L	97	NJ
001074-55-1	Benzene, 1-methyl-4-propyl-	15.581	37	ug/L	94	NJ
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	15.761	25	ug/L	95	NJ
000527-84-4	Benzene, 1-methyl-2-(1-methylethyl	15.91	34.8	ug/L	92	NJ
	unknown hydrocarbon	15.956	46.4	ug/L	0	J
	unknown hydrocarbon	16.271	50.9	ug/L	0	J
001595-16-0	Benzene, 1-methyl-4-(1-methylpropy	16.66	28.9	ug/L	87	NJ
	unknown hydrocarbon	16.723	42.6	ug/L	0	J
	unknown hydrocarbon	16.741	27.8	ug/L	0	J
000934-74-7	Benzene, 1-ethyl-3,5-dimethyl-	16.787	53.4	ug/L	91	NJ
000767-58-8	Indan, 1-methyl-	16.836	77.6	ug/L	90	NJ
	unknown hydrocarbon	16.847	29.7	ug/L	0	J
000119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	17.069	45.9	ug/L	95	NJ
017059-48-2	1H-Indene, 2,3-dihydro-1,6-dimethy	17.401	45.9	ug/L	91	NJ
	unknown hydrocarbon	17.77	32.8	ug/L	0	J
002809-64-5	Naphthalene, 1,2,3,4-tetrahydro-5-	18.464	25.5	ug/L	91	NJ

	Page 1	of 1							
Sample Summary									
SDG Number:	361439		Date Collected:	11/13/2014 11:30	Matrix:	WATER			
Lab Sample ID:	361439004		Date Received:	11/13/2014 16:45					
			Client:	LEID002	Project:	LEID00200			
Client ID:	BF38B2		Method:	SW846 8260B	SOP Ref:	GL-OA-E-038			
Batch ID:	1437367		Inst:	VOAA.I	Dilution:	1			
Run Date:	11/19/2014 16:11		Analyst:	JEB	Purge Vol:	5 mL			
Prep Date:	11/19/2014 16:11								
Data File:	111914\AJ310.D		Column:	DB-624					

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	υυ	1.00	ug/L	0.300	1.00
100-41-4	Ethylbenzene	υ _U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U U	1.00	ug/L	0.300	1.00
1330-20-7	Xylenes (total)	U U	3.00	ug/L	0.300	3.00

Tentatively Identifie	ed Compound Summary	Estimated				
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	3.493	16.4	ug/L	0	J
	unknown	15.684	5.47	ug/L	0	J

a member of The GEL Group INC

November 19, 2014

Ms. Marie Simpson Leidos 301 Laboratory Rd. Oak Ridge, Tennessee 37830

Re: Product Recovery System Pilot Study 2, Hunter AA-09 Work Order: 361440

Dear Ms. Simpson:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the following analytical results for the sample(s) we received on November 13, 2014, and analyzed for Diesel Range Organics. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4485.

Sincerely,

Hope Taylor for

Valerie Davis Project Manager

Enclosures

P 843.556.8171 F 843.766.1178

www.gel.com

Leidos (p010165517) Product Recovery System Pilot Study 2, Hunter AA-09 Work Order #: 361440 SDG: 361440

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Data Review Qualifier Flag Definition Sheet	7
FID Diesel Range Organics Analysis	10
Case Narrative	11
Sample Data	16

Case Narrative for Leidos (p010165517) Product Recovery System Pilot Study 2, Hunter AA-09 Workorder #: 361440 SDG # : 361440

November 19, 2014

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary

Sample receipt The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on November 13, 2014 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Sample Identification The laboratory received the following samples:

Laboratory ID	<u>Client ID</u>
361440001	STANDARD
361440002	FREE PRODUCT

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Data Package

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Diesel Range Organics.

I certify that this data report is in compliance with the terms and conditions of the subcontract and task order, both technically and for completeness, for other than the conditions detailed in the attached case narrative.

Hope Taylor for

Valerie Davis Project Manager

GEL Laboratories LLC

State	Certification
Alaska	UST-110
Arkansas	88-0651
CLIA	42D0904046
California NELAP	01151CA
Colorado	SC00012
Connecticut	PH-0169
Delaware	SC000122013-10
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-12-00283, P330-12-00284
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC000122013-10
Idaho Chemistry	SC00012
Idaho Radiochemistry	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA130005
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC000122013-10
Nebraska	NE-OS-26-13
Nevada	SC000122014-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
Oklahoma	9904
Pennsylvania NELAP	68–00485
Plant Material Permit	PDEP-12-00260
South Carolina Chemistry	10120001
South Carolina GVL	23611001
South Carolina Radiochemi	10120002
Tennessee	TN 02934
Texas NELAP	T104704235-14-9
Utah NELAP	SC000122014-16
Vermont	VT87156
Virginia NELAP	460202
Washington	C780–12
Wisconsin	999887790

List of current GEL Certifications as of 19 November 2014

Chain of Custody and Supporting Documentation

leidos

361440

COC NO .:

.

CHAIN OF CUSTODY RECORD

301 Laboratory Road, Oak Ridge, Tenness	see 37831(865) 482-90	931			Cr		V V	FC	05	10	DYR	=00	RL)							
PROJECT NAME: Hunter									RE	QUE	STED P	ARAM	ETE 	RS			1		LABORATORY	NAME: ering Laboratory	
PROJECT NUMBER: 301205.00.000.00.200																		Vials:	LABORATORY 2 2040 Savage Ro	ADDRESS:	
PROJECT MANAGER: Patty Stoll																		ottles/	Charleston, SC	29417	
Sampler (Signature) (Printed Name)					0/801													of B(PHONE NO: (84	3) 556-8171	
amarda Harnen	Amanda	Harness	1	BTI	358											-		° N	OVA	OBSERVATIONS, COMMENTS,	
Sample ID	Date Collected	Time Collected	Matrix	1	2				,		1000		T	196455					SCREENING	SPECIAL INSTRUCTIONS	
STANDARD	11/13/14	0815	fuel	ļ				and a second sec					ļ		Nichowski Statistics Statistics Statistics Statistics Statistics Statistics			1			
FREE PRODUCT	11/13/14	0830	fuel		1													1			
								interiore Contractor De Decod			Contraction Contraction Contraction Contraction Contraction Contraction										
						101													w		
																	_				
						100							<u> </u>					-			
						HIPE AL									A CONTRACT REPORT OF REPORT OF						
												Andreas and a second se									
				<u> </u>									 				_				
	Date/Time	RECEIVEDE	1 10 1	L			<u> </u>	ato/Tir	<u> </u>			MRED				<u>.</u>		-+	Cooler Temperati		
Amarda Harrin	11/13/14	The	she	\checkmark														-+			
COMPANY NAME:	14:30	COMPANY NAME			L.			20	1												
RECEIVED BY:	Date/Time	RELINGUISH	IED BY:	Date/Pime/					2	1 2 - 40 ml VOA Vial, HCL to pH < 2, 4C 2 1 - 250 ml Amber glass, Cool, 4C											
COMPANY NAME:		COMPANY N	IAME:	1,645						7-dayTAT											
RELINQUISHED BY:	Date/Time	RECEIVED B	Y: Maen	k Date/Time																	
COMPANY NAME:		COMPANY N	IAME:				/	624	'5												

GEL Laboratories LLC SAMPLE RECEIPT & REVIEW FORM

Clie	Client: LEID SDG/AR/COC/Work Order: 361439 SV1440							
Rec	eived By: SHANTA MACK			Date	e Received: 11,314 @ 16:45			
Susj	pected Hazard Information	3 2 *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.						
COC	OC/Samples marked as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): D Orn							
Clas	Sified Radioactive II or III by RSO?	┼──		If ye	s, Were swipes taken of sample contatiners < action levels?			
Pack	cage, COC, and/or Samples marked as	<u> </u>	CHARTER					
bery	llium or asbestos containing?		Terrore	If ye	s, samples are to be segregeated as Safety Controlled Samples, and opened by the GEL Safety Group.			
Ship	ped as a DOT Hazardous?	ļ	and the second s	Haz	ard Class Shipped: UN#:			
Sam	ples identified as Foreign Soil?							
L	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (Required for Non-Conforming Items)			
1	Shipping containers received intact and sealed?	-			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)			
2	Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	;		/	Preservation Method: Ice bags Blue ice Dry ice Mone Other (describe) *all temperatures are recorded in Celsius			
2a	Daily check performed and passed on IR temperature gun?	****			Temperature Device Serial #: 130532792 Secondary Temperature Device Serial # (If Applicable):			
3	Chain of custody documents included with shipment?	-						
4	Sample containers intact and sealed?	-			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)			
5	Samples requiring chemical preservation at proper pH?	~			Sample ID's, containers affected and observed pH:			
6	VOA vials free of headspace (defined as < 6mm bubble)?	-	···		Sample ID's and containers affected:			
7	Are Encore containers present?				(If yes, immediately deliver to Volatiles laboratory)			
8	Samples received within holding time?				ID's and tests affected:			
9	Sample ID's on COC match ID's on bottles?	-			Sample ID's and containers affected:			
10	Date & time on COC match date & time on bottles?	-			Sample ID's affected:			
11	Number of containers received match number indicated on COC?	/			Sample ID's affected:			
12	Are sample containers identifiable as GEL provided?			الديني				
13	COC form is properly signed in relinquished/received sections?							
14	Carrier and tracking number.				Circle Applicable: FedEx Air FedEx Ground UPS Field Services Courier Other			
Con	nments (Use Continuation Form if needed):							
L								
_	PM (or PMA)	revie	w: In	itials	Datc 1/1/1 Pagc of GL-CHL-SR-001			

Data Review Qualifier Flag Definition Sheet

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL</p>
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

GEL Laboratories LLC PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

www.gel.com

- Organics-The concentrations between the primary and confirmation columns/detectors is >40% difference. Ρ For HPLC, the difference is >70%.
- Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. U

FID Diesel Range Organics Analysis

FID Diesel Range Organics Leidos (LEID) SDG 361440

Method/Analysis Information

Procedure:	Analysis of Diesel Range Organics by Flame Ionization Detector
Analytical Method:	SW846 3580A/8015C
Prep Method:	SW846 3580A
Analytical Batch Number:	1437858
Prep Batch Number:	1437857

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 3580A/8015C:

Sample ID	Client ID
361440001	STANDARD
361440002	FREE PRODUCT
1203214337	MB for batch 1437857

The samples in this SDG were analyzed on an "as received" basis.

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by GEL Laboratories LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-003 REV# 24.

Raw data reports are processed and reviewed by the analyst using the Chemstation software package. False positives have been removed from the quantitation reports per standard operating procedures (SOP).

Calibration Information

Initial Calibration

Samples 361440001 (STANDARD) and 361440002 (FREE PRODUCT) were for fingerprint analysis. The instrument initial calibration was not required.

Continuing Calibration Verification (CCV) Requirements

Samples 361440001 (STANDARD) and 361440002 (FREE PRODUCT) were for fingerprint analysis. The instrument calibration verification was not required.

Quality Control (QC) Information

Method Blank (MB) Statement

The MB analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

Surrogate was not added to any samples in this batch.

QC Sample Designation

The matrix spike and matrix spike duplicate analysis was not performed for this batch of the samples.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection of sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

The analysis was for fingerprint only.

Sample Dilutions

Samples 361440001 (STANDARD) and 361440002 (FREE PRODUCT) were diluted at 1:500.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Electronic Package Comment

This package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. The data validator will always sign and date the case narrative.

Data Exception (DER) Documentation

Data exception report (DER) is generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. A DER was not required for this SDG in this batch.

Manual Integrations

Certain standards and samples may have required manual integration to correctly position the baseline as set in the calibration standard injections. If manual integration was performed, copies of all manual integration peak profiles are included in the raw data section of this fraction.

Additional Comments

An overlay chromatogram of the patterns of samples 361440001 (STANDARD) and 361440002 (FREE PRODUCT) was created at client request. The overlay chromatogram does not show any conformity between the two samples. Sample 361440001 (STANDARD) closely resembles kerosene. Sample 361440002 (FREE PRODUCT) closely resembles diesel range organics.

System Configuration

The Diesel Range Organics analysis was performed on the following instrument configuration:

Instrument ID	Instrument	System Configuration	Column ID	Column Description
FID7.I	Agilent Gas Chromatograph	Agilent 6890N GC/FID	DB-5MS	30m x 0.25mm, 0.25um(J&W)

<u>Certification Statement</u>

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

LEID002 Leidos (p010165517)

Client SDG: 361440 GEL Work Order: 361440

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- DL Indicates that sample is diluted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.

Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP–like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Jimi Coo

Name: Jimin Cao

Date: 20 NOV 2014

Title: Data Validator

Quantitation Report GEL Laboratories, LLC Data Path : C:\msdchem\1\DATA\112014DR\ Data File : f7k2009.D Signal(s) : FID1A.CH Acq On : 20 Nov 2014 13:21 Operator : BYT1 InstName : FID7 Sample : |361440001|1437858|500|DROQ|1|LEID Misc : |MIX[A] ALS Vial : 8 Sample Multiplier: 500 Integration File: autoint1.e Quant Time: Nov 20 14:38:56 2014 Quant Method : C:\msdchem\1\DATA\112014DR\110414_DRO.m Quant Title : DRO TPH SubList : QLast Update : Wed Nov 05 07:51:49 2014 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. : 1 ul Signal Phase : DB-5MS Signal Info : 30m x 250um x 0.25um Exp R.T. Delta Response Conc Units Compound System Monitoring Compounds 13.593 0.000-13.593 0 N.D. mg/L 2) SA o-Terphenyl Amount Range Recovery 20.000 No Limits 0.00% Compound 2) o-Terphenyl Target Compounds 1) HA Diesel Range Organics Range 7.500 - 17.401 1429881625 1166.779 mg/L SemiQuant Compounds - Not Calibrated on this Instrument _____

(f)=RT Delta > 1/2 Window (A) = Over the calibration range (d) = deleted (m)=manual int.

Quantitation Report GEL Laboratories, LLC Data Path : C:\msdchem\1\DATA\112014DR\ Data File : f7k2010.D Signal(s) : FID1A.CH Acq On : 20 Nov 2014 14:00 Operator : BYT1 InstName : FID7 Sample : |361440002|1437858|500|DROQ|1|LEID Misc : |MIX[A] ALS Vial : 9 Sample Multiplier: 500 Integration File: autointl.e Quant Time: Nov 20 14:38:59 2014 Quant Method : C:\msdchem\1\DATA\112014DR\110414_DRO.m Quant Title : DRO TPH SubList : QLast Update : Wed Nov 05 07:51:49 2014 Response via : Initial Calibration Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped Volume Inj. : 1 ul Signal Phase : DB-5MS Signal Info : 30m x 250um x 0.25um Exp R.T. Delta Response Conc Units Compound System Monitoring Compounds 13.593 13.593 0.000 12005288 N.D. mg/L d 2) SA o-Terphenyl AmountRangeRecovery20.000No Limits0.00% Compound Amount 2) o-Terphenyl Target Compounds 1) HA Diesel Range Organics Range 7.500 - 17.401 1878873962 1533.155 mg/L m SemiQuant Compounds - Not Calibrated on this Instrument _____

(f)=RT Delta > 1/2 Window (A) = Over the calibration range (d) = deleted (m)=manual int.

File :C:\msdchem\l\DATA\l12014DR\f7k2010.D
Operator : BYT1
Acquired : 20 Nov 2014 14:00 using AcqMethod DRO_MOTOR.M
Instrument : FID7
Sample Name: |361440002|1437858|500|DROQ|1|LEID
Misc Info : |MIX[A]
Vial Number: 9

361439

COC NO .:

301 Laboratory Road, Oak Ridge, Tennessee 37831(865) 482-9031

CHAIN OF CUSTODY RECORD

PROJECT NAME: Hunter	******	·			- <u>_</u>				RE	QUF	ESTE	D PA	RAME	TER	s,					LABORATORY N	NAME:
				-																General Enginee	ering Laboratory
PROJECT NUMBER: 301205.0	10.000.00.200																		als:	LABORATORY	ADDRESS:
PROJECT MANAGER: Patty S	itoli				5 DRO														ottles/ Via	2040 Savage Ro Charleston, SC	ad 29417
Sampler (Signature)	(Printed National Notice 1)	me)		EX	80/801														. of Be	PHONE NO: (843	3) 556-8171
Umarda nurren	TIMANA NO		r		35														l 2	OVA	OBSERVATIONS, COMMENTS,
Sample ID	Date Collected	Time Collected	Matrix	1	2		9.09.	T	TI			UNA I		ų.		633635				SCREENING	SPECIAL INSTRUCTIONS
BFE5B2	11/13/14	1145	GW	2															2		
TH0653	lab f	reparce	Water	12	•	and well a													2		
BFE5B4	11/13/14	1145	GW	2															2		
BF30BZ	11/13/14	1130	6W	2															2		
BF38B2MSD	11/13/14	1130	GW	2															2		
BF 30BZ WS	11/13/14	1130	<u>6w</u>	2															2		
	1																				
						10.00															
											a seconda										
											in the second second			1000							
		0									10,00										
RELINQUISHED BY:	Date/Time	REGENERB	Y: 1 /	1	ليستعمله	-	Da	te/Tir	me	Т	OTAL	. NUN	/BER	OF C	ONT	AINEF	RS:			Cooler Temperatu	ire:
Amande Hornes	11/13/14	17pc	bh	a	Ň		11	121	14	Co	ooler	ID:								FEDEX NUMBER	······································
COMPANY NAME:	14:30	COMPANY N	AME:		1			: در در س	· /												
SCF		<u> </u>	6	-		}	1	7-7	0	- 1	2 - 4	10 ml	VOA	Vial,	HCL	to pH	< 2, 4	с			
RECEIVED BY:	Date/Time	RELINQUISH	ED BY:				Da	ite/Tir	me	2	1 - :	250 n	nl Amb	ber g	lass,	Cool	, 4C				
													,								
			/~\\¥IL								7	_	da	ry	7	A]				
RELINQUISHED BY:	Date/Time	RECEIVED B	Y:	4			Da	ite/Tir	ne		,	. 1 -	- 0	/ Ec	20	2	- RF	F	5BI	+ are from	naMW
		Alter	Mal	K			ii þ	3/1	ł	15	>an	pie	ט ג		50	, - 7 .L	21	• سب		1 940 1998	
COMPANY NAME:		COMPANY N	AME:				1	1610	15	-	wI	tr	ee f	240	au	CT.					
		1 (7)		- · ·			•														

Page: of Project #:301205.00.00.00.200	GEL Ch	ain of	Cu	stody	y and	d A	nal	lvti	cal	Re	equ	est			GEL 1 2040	Labora Savag	atories e Road	, LLC	
GEL Quote #: COC Number ⁽¹⁾ : GEL Wo PO Number:	rk Order Num	ber: 3	624	11	,			-,			H				Charle Phone Fax: (eston, e: (843 843) 7	SC 29 3) 556- 766-11	9407 •8171 78	
Client Name: Leidos		Phone #: 4	8654	814-	198			Sam	ple A	nalys	is Re	quest	ed ⁽⁵⁾	(Fill	in the	num	ber of	conta	iners for each test)
Project/Site Name: Hunter		Fax #:	/			Shoul	ld this	iners	₩Å	ΨÅ		밀		SA		sΑ	SA		< Preservative Type (6)
Address: 301 Laboratory Rd. Oak	Ridge, TI	V 37	831			samp consid	de be dered:	conta				rdues	(0			S			Commonto
Collected by: Amanda Harness Send Resu	Its TO: Patty	Stoll	4 J!	II Kov	alchi ^K		ated	iber of		Ø	Ş	4 ha	755	51		Srea			Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	•Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	Field Filtered ⁽³⁾	Sample Matrix ⁽⁴⁾	Radioactive	TSCA Regul	Total num	VOCS	TPH-61	TPH-D	Total Fe	TDS 4'	Pheno	рH	01140	COD	BOD	required for sample specific QC
TBHOIT	lab provided	/	TB	no	water			2	2										
BFF80301	1213/14	1530	N	no	water			15	Z	2	2	1	2		1	2	١	1	Everything 48 TAT. except JBOD.
TAT Requested: Normal: Rush: V Specify: 46	hr (Subject to Surchar	ge) Fax Re	esults:	Yes	/	No	$\overline{\mathbf{x}}$	Cir	rcle De	elivera	ble: C	c of A	/ Q	C Sun	nmary	/ L	evel 1	/ Le	vel 2 / Level 3 / Level 4
Remarks: Are there any known hazards applicable to	o these samples?	P If so, ple	ease lisi	the haz	eards)											Samp East Cent Mou	tral	lection Time Zone Pacific Other
Chain of Custo	dy Signatures											Sam	ple S	hippi	ng an	d Del	livery	Detai	ls
Relinquished By (Signed) Date Time	Received by (sig	ined) l	Date	Time			GEL	PM:											
1 Amarda Harris 12/3/14 1800	P. N.J.	und 1	2.4.	.14	091	40	Metho	od of SI	hipmen	<u>t:</u> Fa	dE	<u> </u>			Date	Shipp	ed:	12/3	3/14
2	2						Airbil	1 #:											
3	3						Airbil	1 #:										<u> </u>	To Lab Parainica Har Aut
 QC Codes: N = Normal Sample. TB = Trip Blank, FD = Field Duplicate, El Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample w Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Wate 	B = Equipment Blank, vas field filtered or - N r, WW=Waste Water,	MS = Matrix S for sample wa W=Water, SO	pike Samp as not field =Soil, SD=	ole, MSD = filtered. =Sediment,	Matrix Spil SL=Sludge	ke Dupli , SS=So	cate Sar lid Wast	nple, G te, O=0	= Grab, iil, F=Fi	C = Co	omposite Wipe, U	=Urine	, F=Fec	ai, N=N	lasal				Custody Seal Intact? YES NO
 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010 6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodiur 3. WHITE = 1 A DOB 	B/7470A) and number n Hydroxide, SA = Sulf	of containers p uric Acid, AA	rovided fo = Ascorbi	r each (i.e. c Acid, HX W = FI	8260B - 3, = Hexane, :	6010B/3 ST = So	7 <i>470A</i> - dium Th	1). niosulfa PIN	te, If no $\mathbf{K} = \mathbf{C}$	preserv	ative is : VT	added =	leave f	ield bla	nk				Cooler Temp: C

Page 5 of 345

CHAIN OF CUSTODY RECORD 365466 COC NO .:

301 Laboratory Road, Oak Ridge, Tennessee 37831(865) 482-9031					CH	IAI	N (JF	C	US		טנ	Y K	EC	OR	(D	<u> </u>	NU	14	r			
PROJECT NAME: Hunter								1		RE		IEST	ED	PARA	AME I	TERS	Т					ABORATORY N Seneral Engine	NAME: ering Laboratory
PROJECT NUMBER: 301205.00	.000.00.200						ardness													Viale.	Vials:	ABORATORY A	ADDRESS:
PROJECT MANAGER: Patty Sto	oll			0			and Ha	TSS			Grease									loc!to		Charleston, SC	29417
Sampler (Signature)	(Printed Na	me)		QR 0	- D R G	s	Ъe	and	slot		pu										ň 5 P	HONE NO: (84	3) 556-8171
amarda Harnen	Amanda I	Harness		TPH	TPH	200	Tota	TDS	Pher	Hd	oil a	CO CO	BOD							NO N	è	OVA	OBSERVATIONS, COMMENTS,
Sample ID	Date Collected	Time Collected	Matrix	1	2	3	4	5	6	7	8	9	10				· · · ·	1. 11. 10. 1	the same line			SCREENING	SPECIAL INSTRUCTIONS
TBH018	lab prepared		water	·	Activity Activity Activity Activity	2				[10 0 4 0 1								2	2		
BFF80302	1/20/15	13:00	water	2	2	2	1	2	1	1	2		1	Promise 1						19	5		
				ļ										direction of									
, ,				ļ										Anto Line ve	alisada. Alisada.								ž
										 				410000									
														of the location									
														nte o la Mandotta									
														100 100 100 100 100 100 100 100 100 100									
														, Addapping									·
														100000000000000000000000000000000000000									
														din find									
														100000000000000000000000000000000000000									
RELINQUISHED BY:	Date/Time	RECEIVED B	Y:					Date	e/Tir	ne	Т	TOT/	AL N	UMB	ER C	DF CO	NTA	INERS	i: 17		С	cooler Temperati	ure:
amanda Harris	1/20/15	KA	de				11	21	195	•	C	Coole	er ID	:		<					F	EDEX NUMBER	र:
COMPANY NAME:	16:00	COMPANY N	AME:				(07º	5-	7		Pr	ni	PC	1 1	ren		ire	s 7.	da	- <u> </u> av	ΤΔΤ	
RECEIVED BY:	Date/Time	RELINQUISH	ED BY:					Date	Date/Time 1 2-40 ml Vials, Cool, 4C (HCL to $ptt < 2$) 2 2-1 L Amberglass, Cool, 4C														
COMPANY NAME:		COMPANY N	AME:						$\begin{array}{c} 3 & 2 - 40 \text{ m} \text{ Vials, HCL to pH < 2, 4C} \\ 4 & 1 - \frac{125}{\text{m}} \text{ Polybottle, HNO3 to pH < 2, 4C} (250 \text{ mL}) \\ 5 & 2 - 1 \text{ L Polybottle, Cool, 4C} \end{array}$														
RELINQUISHED BY:	Date/Time	RECEIVED B	Y:					Date	e/Tir	ne	6 7 8	; 1 ; 1 ; 2	- 1- - 25 - 1	L Am 50 ml L Am	rberg Poly iberg	ylaes , /bottle ylass,	H29 9, Co H29	SO4 to ool, 40 SO4 to	pH<2, ; pH<2,	4C (4C	,25	some poly	•
COMPANY NAME:		COMPANY N	AME:	8 2 - 1 L Amberglass, H2SO4 to pH<2, 4C																			

age:	GEL Cha	nin of ber: 3	Cus 66	tody	and	l Aı	nal	ytic	all	Req	ues	t		GEL La 2040 Sa Charles Phone: Fax: (84	borato tvage F ton, SC (843) 5 43) 766	ries, LI Road C 29407 556-817 5-1178	LC 7 71	- for each test)
O Number:		Phone #: (g	<i>b</i> 65)2	97-2	543			Sam	ple An	alysis I	Reque	ested (*	' (Fill	in the r	Tumbe			The stine Ture (A
DeinerSite Name: Hunter	****	Fax #:				Should	d this	iners	5									< Preservative Type (0
Address: 301 Laboratory Rd. Oak Ridge	TN 37831	V		, Patt	V	consid	ered:	er of conta	C+Mch									Comments Note: extra sample is
Collected by: Amanda Harness Send Re Sample ID	•Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	Field Filtered ⁽⁷⁾	Sample Matrix ⁽⁴⁾	Radioactive	TSCA Regulate	Total numbe	TCLP VOI									required for sample specific QC
* For composites - indicate start and stop date/time	1128/15	11.00	C		50			2	2					<u> </u>	-			
JOIL LIN												·						
								ļ										
				+	1			1										
			+			1	1	1										
				+				+	$\left \right $									
	:													-	1			
																$\left \right $		
																	$\left \right $	
		-													<u> </u>			
TAT Requested: Normal:Rush:Specify:Remarks:Are there any known hazards applicab	Aays ubject to Surch le to these sample	narge) Fax F s? If so, p	Results: lease li	Ye ist the h	azards	Č	NO	<u>c</u>	ircle D	eliverat	ile: C	of A	QC S	ummar	y / L	East Cen Mot	/ Lev ble Colli- tern htral untain	vel 2 / Level 3 / Level 4 ection Time Zone Pacific Other
Chain of C	ustody Signatures											Samp	le Shij	oping a	ind De	elivery	y Detai	115
Relinquished By (Signed) Date Time	Received by	(signed)	Date	Tim	e		GE	L PM	l:									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$> . \square$	()	\mathcal{D}	291	5 0	SPC	C Me	thod of	Shipme	nt:				Dat	e Ship	ped:		
1 Amanda Harris 1720113 100	-fur	<u>*</u> X	-5-4-	<u> </u>			Air	bill #:										
2	3						Air	bill #:										For Lab Receiving Use Only
3			- 	male MCI) = Matrix	Spike Di	uplicate	Sample	, G = Gra	1b, C = Co	omposit	e						Custody Seal Intact?
 C. Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplic QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplic 	ate, EB = Equipment Blar mple was field filtered or	 MS = Matri N - for sample 	was not f	ield filtered	, 03 -01	udae ee-	-Solid V	Vaste. O	=0il. F=	Filter, P=	Wipe, I	U=Urine,	F=Fecal	N=Nasal				YES NO
3.) Field Filtered: For inquia manifes, marcare marcare SW=Surfa	e Water WW=Waste Wa	ter, W=Water,	SO=Soil.	SD=Sedime	int, SL=Sit	uage, 55°	-Sona i				-						1	Cooler Temp.

Page 5 of 131

CHEMITECH

				-1							000	Fact 1 000 700 00		CHEMT	ECH Project I	√o. :					
Client Contac	t Informa	ition		284	Sheffield S	Bottle C	order ID :	B14120	74	08 789 8	Cc	burier : VP	<u> </u>			Τ_		of		co	Cs
Client ID :	SCIE03			Proje	ect ID :	Hunter	Army Airf	ield Air			Sa	ampler Name(s): An	nonda H	arness	1	Analy	sis	1	Matrix	
Customer	Leidos		0			Project	Manager	Jill kov	alchik					การเปลี่มีผู้แปมการการเขางารเกาะการ ขางระบบ					Π		\Box
Name :					Ì	Phone N	Number :	858-82	6-6000			AI	R AM	VALYSIS	ı						
Address .	151 Lafa	vette D	rive			Fax Nur	mber :	865481	.8714		1	CHAI	N-OF	-CUSTO	DY						
/laaress i		,			Ì	Site De	tails:														
	PO Box 2	2502		******								Ba	atch	Certifie	d						
City :	Oak Rig	dge								44) (
State :	TN					Analysi	s Turnarour	id Time			┝─					-					
Zip Code :	37831					Standaı	rd: 4	<u>5-busines</u>	c_days_,	OR		ata Package Ty	pe :			-			Air		
Country :	1	1	1		1	Rush (S	Specify):	1	Days	1	E	DD Type :		[1	-			inet		
Sample	Sample	Time Start	Time Stop	Can Vacuum in Field	Can Vacuum in Field	Interior Temp. (F)	Interior Temp. (F)	Out going Can	In coming Can	Floy	N		Can	Flow Controlle r		15		n second a la second de la second de la second de la second	ndoor/Amb	il Gas	
Identificatio n	Date(s)	(24 hr Clock)	(24 hr Clock)	("Hg) (Start)	(''Hg) (Stop)**	(Start)	(Stop)	Pressure ("Hg)(Lab)	Pressure (''Hg)(Lab)	Reg.	ID	Can ID	(L)	Readout	Can Cert ID	<u> </u>				Ŝ	
BFF40202	1/20/15	12:30	12:30					-30	_3:\	NR		10298	6 L	NA	VL023539.D						
			A	Temp	perature (F	ahrenhei	it)														
		A	mbient		Maximum	1	Minimum			I									-A		
	Start									GC/MS	S Ar	nalyst Signature	e (TO-:	15)		\mathbb{Z}	<u>~</u>	5	5		
	Stop								1001-01-0-01-0-00-0-00-0-00-0-0-0-0-0-0										Ay Canada Langa Jawa Matanana	waster wraterial terms	
				Pre	ssure (Inch	ies of Hg)	Lange and a state of the second se		** Subm	nittal	I of this COC indi	cates ap	oproval of the	analysis based on	existing) condi	itio			
			Ambien	t	Maximum		Minimum		and the second a second s	1											
	Start								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1												
	Stop								acutoten 19 million and international distance of the	<u> </u>		Please fol	low the	instructions c	on the back of this	<u> </u>	acabu Moni - Marana				
Special Inst	ructions/C	QC Requi	rements	s & Comm	nents :												÷.,				
Suspected C	Contamina	ation:		High	Μ	edium	Lo	w		PID	Rea	adings:									
Sampling sit	te (State)	: Ge	orgia	\			an and the second s	and the state of the										NAMES OF COMPANY			
Quick Conne	ector requ	ired :	NG	2				1					TDat	o/Timo:	T						
Canisters Sh	niped by:			(Caller)	Date/Tim	e: //	V23/14	Canisters	s Received by	/:			Dat	e/Time:					B14	12074	- 1
Samples Rel	inquisned	DY: M	randia	www	Date/IIM	1/20/	12 7.011	Bocoived	by.				Dat	e/Time:							
Kelinquished	ару:				Date/IIm	е.		Received	Dy.					с/ IIIIс.							

		Vola Certificate	ntile of Analysis		Page 1	of 1
		Sample S	Summary			
SDG Number:	361439	Date Collected:	11/13/2014 11:45	Matrix:	WATER	
Lab Sample ID:	361439001	Date Received:	11/13/2014 16:45			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFE5B2	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1437367	Inst:	VOAA.I	Dilution:	1	
Run Date:	11/18/2014 20:51	Analyst:	JEB	Purge Vol:	5 mL	
Prep Date:	11/18/2014 20:51					
Data File:	111814\AJ220.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U U	1.00	ug/L	0.300	1.00
100-41-4	Ethylbenzene	υU	1.00	ug/L	0.300	1.00
108-88-3	Toluene	=	2.51	ug/L	0.300	1.00
1330-20-7	Xylenes (total)	U U	3.00	ug/L	0.300	3.00

Tentatively Identified Compound Summary

Tentatively Identi	ified Compound Summary		Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	3.493	33.5	ug/L	0	J
	unknown	3.836	34.3	ug/L	0	J
000564-04-5	3-Pentanone, 2,2-dimethyl-	11.815	30.4	ug/L	80	J
000934-80-5	Benzene, 4-ethyl-1,2-dimethyl-	15.341	35.8	ug/L	97	NJ
001074-55-1	Benzene, 1-methyl-4-propyl-	15.581	34.5	ug/L	94	NJ
000527-84-4	Benzene, 1-methyl-2-(1-methylethyl	15.762	23.8	ug/L	95	NJ
000768-00-3	Benzene, (1-methyl-1-propenyl)-, (15.956	42.7	ug/L	81	J
000934-80-5	Benzene, 4-ethyl-1,2-dimethyl-	16.122	29.3	ug/L	96	NJ
001595-16-0	Benzene, 1-methyl-4-(1-methylpropy	16.66	25.7	ug/L	83	J
	unknown hydrocarbon	16.723	46	ug/L	0	J
	unknown hydrocarbon	16.741	28.8	ug/L	0	J
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	16.787	51.2	ug/L	91	NJ
000767-58-8	Indan, 1-methyl-	16.837	74.1	ug/L	90	NJ
	unknown hydrocarbon	16.847	29.2	ug/L	0	J
000119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	17.069	45.2	ug/L	95	NJ
020836-11-7	1H-Indene,2,3-dihydro-2,2-dimethyl	17.401	44.2	ug/L	91	NJ
003877-19-8	Naphthalene, 1,2,3,4-tetrahydro-2-	17.77	33.9	ug/L	76	J
	unknown hydrocarbon	18.464	27.5	ug/L	0	J

ug/L

		Certi Sar	Volati ficate of nple Su	ile f Analysis mmary		Page	el of 1
SDG Number: Lab Sample ID:	361439 361439002	Date Colle Date Rece Client:	ected: eived:	11/13/2014 12:00 11/13/2014 16:45 LEID002	Matrix: Proiect:	WATER LEID0020	0
Client ID: Batch ID: Run Date:	TH0653 1437367 11/19/2014 15:46	Method: Inst: Analyst:		SW846 8260B VOAA.I JEB	SOP Re Dilution Purge V	f: GL-OA-E : 1 ol: 5 mL	-038
Prep Date: Data File:	11/19/2014 15:46 111914\AJ309.D	Column:		DB-624			
CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ	
71-43-2	Benzene	υ _U	1.00	ug/L	0.300	1.00	
100-41-4	Ethylbenzene	υU	1.00	ug/L	0.300	1.00	
108-88-3	Toluene	U U	1.00	ug/L	0.300	1.00	
1330-20-7	Xylenes (total)	U U	3.00	ug/L	0.300	3.00	
Tentatively Iden	tified Compound Summary			Estimate	d		
CAS No.	Tentatively Identi	ied Compound (TIC)	ŀ	RT	Units	Fit	Qual

No Tentatively Identified Compounds Found

		Vola Certificate Sample S	tile of Analysis ummary		Page 1	of 1
SDG Number:	361439	Date Collected:	11/13/2014 11:45	Matrix:	WATER	
Lab Sample ID:	361439003	Date Received:	11/13/2014 16:45			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFE5B4	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1437367	Inst:	VOAA.I	Dilution:	1	
Run Date:	11/18/2014 21:41	Analyst:	JEB	Purge Vol:	5 mL	
Prep Date:	11/18/2014 21:41			-		
Data File:	111814\AJ222.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U U	1.00	ug/L	0.300	1.00
100-41-4	Ethylbenzene	U U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	=	2.65	ug/L	0.300	1.00
1330-20-7	Xylenes (total)	U 📊	3.00	ug/L	0.300	3.00

Tentatively Identified Compound Summary

Tentatively Identi	ified Compound Summary		Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	3.513	27.5	ug/L	0	J
	unknown	3.846	25.3	ug/L	0	J
	unknown	11.815	31.7	ug/L	0	J
000934-80-5	Benzene, 4-ethyl-1,2-dimethyl-	15.344	46	ug/L	97	NJ
001074-55-1	Benzene, 1-methyl-4-propyl-	15.581	37	ug/L	94	NJ
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	15.761	25	ug/L	95	NJ
000527-84-4	Benzene, 1-methyl-2-(1-methylethyl	15.91	34.8	ug/L	92	NJ
	unknown hydrocarbon	15.956	46.4	ug/L	0	J
	unknown hydrocarbon	16.271	50.9	ug/L	0	J
001595-16-0	Benzene, 1-methyl-4-(1-methylpropy	16.66	28.9	ug/L	87	NJ
	unknown hydrocarbon	16.723	42.6	ug/L	0	J
	unknown hydrocarbon	16.741	27.8	ug/L	0	J
000934-74-7	Benzene, 1-ethyl-3,5-dimethyl-	16.787	53.4	ug/L	91	NJ
000767-58-8	Indan, 1-methyl-	16.836	77.6	ug/L	90	NJ
	unknown hydrocarbon	16.847	29.7	ug/L	0	J
000119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	17.069	45.9	ug/L	95	NJ
017059-48-2	1H-Indene, 2,3-dihydro-1,6-dimethy	17.401	45.9	ug/L	91	NJ
	unknown hydrocarbon	17.77	32.8	ug/L	0	J
002809-64-5	Naphthalene, 1,2,3,4-tetrahydro-5-	18.464	25.5	ug/L	91	NJ

		Vola Certificate	tile of Analysis		Page 1	of 1
		Sample S	ummary			
SDG Number:	361439	Date Collected:	11/13/2014 11:30	Matrix:	WATER	
Lab Sample ID:	361439004	Date Received:	11/13/2014 16:45			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BF38B2	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1437367	Inst:	VOAA.I	Dilution:	1	
Run Date:	11/19/2014 16:11	Analyst:	JEB	Purge Vol:	5 mL	
Prep Date:	11/19/2014 16:11					
Data File:	111914\AJ310.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	υυ	1.00	ug/L	0.300	1.00
100-41-4	Ethylbenzene	υ _U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U U	1.00	ug/L	0.300	1.00
1330-20-7	Xylenes (total)	U U	3.00	ug/L	0.300	3.00

Tentatively Identified Compound Summary			Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	3.493	16.4	ug/L	0	J
	unknown	15.684	5.47	ug/L	0	J

Report Date: December 9, 2014

		Vola	ıtile		Page 1	of 2
		Certificate	of Analysis			
		Sample S	Summary			
SDG Number:	362411	Date Collected:	12/03/2014 12:00	Matrix:	WATER	
Lab Sample ID:	362411001	Date Received:	12/04/2014 09:40			
		Client:	LEID002	Project:	LEID00200	
Client ID:	TBH017	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1441166	Inst:	VOA9.I	Dilution:	1	
Run Date:	12/05/2014 15:43	Analyst:	RXY1	Purge Vol:	5 mL	
Prep Date:	12/05/2014 15:43					
Data File:	120514V9\9Q517.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-55-6	1,1,1-Trichloroethane	U	1.00	ug/L	0.300	1.00 U
79-34-5	1,1,2,2-Tetrachloroethane	U	1.00	ug/L	0.300	1.00
79-00-5	1,1,2-Trichloroethane	U	1.00	ug/L	0.300	1.00
75-34-3	1,1-Dichloroethane	U	1.00	ug/L	0.300	1.00
75-35-4	1,1-Dichloroethylene	U	1.00	ug/L	0.300	1.00
87-61-6	1,2,3-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
120-82-1	1,2,4-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
96-12-8	1,2-Dibromo-3-chloropropane	U	1.00	ug/L	0.500	1.00
106-93-4	1,2-Dibromoethane	U	1.00	ug/L	0.300	1.00
95-50-1	1,2-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
107-06-2	1,2-Dichloroethane	U	1.00	ug/L	0.300	1.00
78-87-5	1,2-Dichloropropane	U	1.00	ug/L	0.300	1.00
541-73-1	1,3-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
106-46-7	1,4-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
123-91-1	1,4-Dioxane	U	50.0	ug/L	15.0	50.0
78-93-3	2-Butanone	U	5.00	ug/L	1.50	5.00
591-78-6	2-Hexanone	U	5.00	ug/L	1.50	5.00
108-10-1	4-Methyl-2-pentanone	U	5.00	ug/L	1.50	5.00
67-64-1	Acetone	U	5.00	ug/L	1.50	5.00 UJ C05
71-43-2	Benzene	U	1.00	ug/L	0.300	1.00 U
74-97-5	Bromochloromethane	U	1.00	ug/L	0.300	1.00
75-27-4	Bromodichloromethane	U	1.00	ug/L	0.300	1.00
75-25-2	Bromoform	U	1.00	ug/L	0.300	1.00
74-83-9	Bromomethane	U	1.00	ug/L	0.300	1.00
75-15-0	Carbon disulfide	U	5.00	ug/L	1.50	5.00
56-23-5	Carbon tetrachloride	U	1.00	ug/L	0.300	1.00
108-90-7	Chlorobenzene	U	1.00	ug/L	0.300	1.00
75-00-3	Chloroethane	U	1.00	ug/L	0.300	1.00
67-66-3	Chloroform	U	1.00	ug/L	0.300	1.00
74-87-3	Chloromethane	U	1.00	ug/L	0.300	1.00
110-82-7	Cyclohexane	U	1.00	ug/L	0.300	1.00
124-48-1	Dibromochloromethane	U	1.00	ug/L	0.300	1.00 🗸
75-71-8	Dichlorodifluoromethane	U	1.00	ug/L	0.300	1.00 UJ C05
100-41-4	Ethylbenzene	U	1.00	ug/L	0.300	1.00 U
98-82-8	Isopropylbenzene	U	1.00	ug/L	0.300	1.00
79-20-9	Methyl acetate	U	5.00	ug/L	1.50	5.00
108-87-2	Methylcyclohexane	U	1.00	ug/L	0.300	1.00
75-09-2	Methylene chloride	U	5.00	ug/L	1.00	5.00 🗸

		Vola	ıtile		Page 2	of 2
		Certificate	of Analysis			
		Sample S	Summary			
SDG Number:	362411	Date Collected:	12/03/2014 12:00	Matrix:	WATER	
Lab Sample ID:	362411001	Date Received:	12/04/2014 09:40			
		Client:	LEID002	Project:	LEID00200	
Client ID:	TBH017	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1441166	Inst:	VOA9.I	Dilution:	1	
Run Date:	12/05/2014 15:43	Analyst:	RXY1	Purge Vol:	5 mL	
Prep Date:	12/05/2014 15:43			_		
Data File:	120514V9\9Q517.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
100-42-5	Styrene	U	1.00	ug/L	0.300	1.00 U
127-18-4	Tetrachloroethylene	U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U	1.00	ug/L	0.300	1.00
79-01-6	Trichloroethylene	U	1.00	ug/L	0.300	1.00
75-69-4	Trichlorofluoromethane	U	1.00	ug/L	0.300	1.00
76-13-1	Trichlorotrifluoroethane	U	5.00	ug/L	2.00	5.00
75-01-4	Vinyl chloride	U	1.00	ug/L	0.300	1.00
156-59-2	cis-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-01-5	cis-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00
179601-23-1	m,p-Xylenes	U	2.00	ug/L	0.300	2.00
95-47-6	o-Xylene	U	1.00	ug/L	0.300	1.00
1634-04-4	tert-Butyl methyl ether	U	1.00	ug/L	0.300	1.00
156-60-5	trans-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-02-6	trans-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00 🗸

Tentatively Identifie	d Compound Summary		Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	4.286	9.22	ug/L	0	J
	unknown	5.307	7.72	ug/L	0	J

Report Date: December 9, 2014

		Vola	tile		Page 1	of 2
		Certificate	of Analysis			
		Sample S	bummary			
SDG Number:	362411	Date Collected:	12/03/2014 15:30	Matrix:	WATER	
Lab Sample ID:	362411002	Date Received:	12/04/2014 09:40			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFF80301	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1441166	Inst:	VOA9.I	Dilution:	1	
Run Date:	12/05/2014 16:11	Analyst:	RXY1	Purge Vol:	5 mL	
Prep Date:	12/05/2014 16:11					
Data File:	120514V9\9Q518.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-55-6	1,1,1-Trichloroethane	U	1.00	ug/L	0.300	1.00 U
79-34-5	1,1,2,2-Tetrachloroethane	U	1.00	ug/L	0.300	1.00
79-00-5	1,1,2-Trichloroethane	U	1.00	ug/L	0.300	1.00
75-34-3	1,1-Dichloroethane	U	1.00	ug/L	0.300	1.00
75-35-4	1,1-Dichloroethylene	U	1.00	ug/L	0.300	1.00
87-61-6	1,2,3-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
120-82-1	1,2,4-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
96-12-8	1,2-Dibromo-3-chloropropane	U	1.00	ug/L	0.500	1.00
106-93-4	1,2-Dibromoethane	U	1.00	ug/L	0.300	1.00
95-50-1	1,2-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
107-06-2	1,2-Dichloroethane	U	1.00	ug/L	0.300	1.00
78-87-5	1,2-Dichloropropane	U	1.00	ug/L	0.300	1.00
541-73-1	1,3-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
106-46-7	1,4-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
123-91-1	1,4-Dioxane	U	50.0	ug/L	15.0	50.0
78-93-3	2-Butanone	U	5.00	ug/L	1.50	5.00
591-78-6	2-Hexanone	U	5.00	ug/L	1.50	5.00
108-10-1	4-Methyl-2-pentanone	U	5.00	ug/L	1.50	5.00 🗸
67-64-1	Acetone	J	1.95	ug/L	1.50	5.00 UJ C05
71-43-2	Benzene	U	1.00	ug/L	0.300	1.00 U
74-97-5	Bromochloromethane	U	1.00	ug/L	0.300	1.00
75-27-4	Bromodichloromethane	U	1.00	ug/L	0.300	1.00
75-25-2	Bromoform	U	1.00	ug/L	0.300	1.00
74-83-9	Bromomethane	U	1.00	ug/L	0.300	1.00
75-15-0	Carbon disulfide	U	5.00	ug/L	1.50	5.00
56-23-5	Carbon tetrachloride	U	1.00	ug/L	0.300	1.00
108-90-7	Chlorobenzene	U	1.00	ug/L	0.300	1.00
75-00-3	Chloroethane	U	1.00	ug/L	0.300	1.00
67-66-3	Chloroform	U	1.00	ug/L	0.300	1.00
74-87-3	Chloromethane	U	1.00	ug/L	0.300	1.00
110-82-7	Cyclohexane	U	1.00	ug/L	0.300	1.00
124-48-1	Dibromochloromethane	U	1.00	ug/L	0.300	1.00 V
75-71-8	Dichlorodifluoromethane	U	1.00	ug/L	0.300	1.00 UJ C05
100-41-4	Ethylbenzene	U	1.00	ug/L	0.300	1.00 U
98-82-8	Isopropylbenzene	U	1.00	ug/L	0.300	1.00
79-20-9	Methyl acetate	U	5.00	ug/L	1.50	5.00
108-87-2	Methylcyclohexane	U	1.00	ug/L	0.300	1.00
75-09-2	Methylene chloride	U	5.00	ug/L	1.00	5.00 🗸

		Vola Certificate	ıtile of Analysis		Page 2	of 2
		Sample S	Summary			
SDG Number:	362411	Date Collected:	12/03/2014 15:30	Matrix:	WATER	
Lab Sample ID:	362411002	Date Received:	12/04/2014 09:40			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFF80301	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1441166	Inst:	VOA9.I	Dilution:	1	
Run Date:	12/05/2014 16:11	Analyst:	RXY1	Purge Vol:	5 mL	
Prep Date:	12/05/2014 16:11					
Data File:	120514V9\9Q518.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
100-42-5	Styrene	U	1.00	ug/L	0.300	1.00 U
127-18-4	Tetrachloroethylene	U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U	1.00	ug/L	0.300	1.00
79-01-6	Trichloroethylene	U	1.00	ug/L	0.300	1.00
75-69-4	Trichlorofluoromethane	U	1.00	ug/L	0.300	1.00
76-13-1	Trichlorotrifluoroethane	U	5.00	ug/L	2.00	5.00
75-01-4	Vinyl chloride	U	1.00	ug/L	0.300	1.00
156-59-2	cis-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-01-5	cis-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00
179601-23-1	m,p-Xylenes	U	2.00	ug/L	0.300	2.00
95-47-6	o-Xylene	U	1.00	ug/L	0.300	1.00
1634-04-4	tert-Butyl methyl ether	U	1.00	ug/L	0.300	1.00
156-60-5	trans-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-02-6	trans-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00 🗸

Tentatively Identi	fied Compound Summary	Estimated				
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	4.286	23.9	ug/L	0	J
	unknown	4.657	20.2	ug/L	0	J

Report Date: December 8, 2014

FID Diesel Range Organics Certificate of Analysis Sample Summary								1	of 1
SDG Number:	362411	Date Collect	ed:	12/03/2014 15:30	Ma	trix:	WATER		
Lab Sample ID:	362411002	Date Receive	ed:	12/04/2014 09:45					
		Client:		LEID002	Pro	oject:	LEID00200)	
Client ID:	BFF80301	Method:		SW846 3535A/8015C	SO	P Ref:	GL-OA-E-	003	
Batch ID:	1441025	Inst:		FID7.I	Dil	ution:	1		
Run Date:	12/05/2014 17:14	Analyst:		BYT1	Inj	. Vol:	1 uL		
Prep Date:	12/05/2014 07:25	Aliquot:		1060 mL	Fin	al Volume:	1 mL		
Data File:	120514DR\f710508.D	Column:		DB-5ms					
CAS No.	Parmname	Qualifier I	Result	Units	MDL/LO	D PQL	/LOQ		
DRO	Diesel Range Organics	B 4	4.27	mg/L	0.0472	0.1	89 J G	i01	

	GC Volatiles (GRO) Certificate of Analysis Sample Summary							
SDG Number: Lab Sample ID:	362411 362411002	Date Collec Date Receiv Client:	eted: 12 ved: 12 Ll	2/03/2014 15:30 2/04/2014 09:45 EID002	Matrix: Project:	WATER		
Client ID: Batch ID: Run Date:	BFF80301 1440965 12/04/2014 14:49	Method: Inst: Analyst:	SV V(A)	W846 8015C OC4A.I CJ	SOP Re Dilutior Inj. Vol	f: GL-OA-E-004 1: 1 1: 1 uL		
Prep Date: Data File:	12/04/2014 14:49 120414\4M404.D	Column:	D	B-MTBE	Ŭ			
CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ		
	Gasoline Range Organics	U	50.0	ug/L	16.7	50.0 U		

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No: 36	52411	METHOD TYPE: SW846								
SAMPLE II): 362411002	CLIENT ID: BFF80301								
CONTRAC	T: LEID00200									
MATRIX:V	Vater	DATE RE	CEIVED ()4–DE	C-14		LEVEL:	Low %S	SOLIDS:	
CAS No	Analyte	<u>Result</u>	<u>Units</u>	<u>C</u>	Qual	<u>M*</u>	<u>MDL</u>	<u>DF</u>	<u>Inst</u> ID	<u>Analytical</u> <u>Run</u>
7439-89-6	Iron	9690	ug/L		=	Р	30	1	OPTIMA6	120514A-1

*Analytical Methods:

P SW846 3005A/6010C

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: December 10, 2014

	Company : Address :	Leidos 301 Laborator	ry Rd.								
		Oal Diday T		20							
	Contact:	Oak Ridge, To Ms. Maria Sir	ennessee 378	30							
	Project:	Product Reco	npson verv System F	Pilot Study (2. Hunter AA	-09					
	Client Sample ID:	BFE80301	very bystein i	not bluey i	2, 11011001 111	Proje	et.	I EID00200			
	Sample ID:	362411002				Clion	+ ID.	LEID00200			
	Motrix:	302411002 Water				Clicii	t ID.	LLID002			
	Maurx.	02 DEC 14.1	5.20								
	Collect Date:	03-DEC-14 1	5:30								
	Receive Date:	04-DEC-14									
	Collector:	Client									
Parameter	Quali	fier Result		DI	RI	Units		Analyst Date	Tim	e Batch	Method
	Quan	iner Kesuit			KL.	Onits		maryst Date	1 1111	c Daten	wichiou
Flow Inject	T (1 DI 1 "A I										
EPA 420.4	Total Phenois "As I	Received"		1.67	5.00	na/I	1	AVII2 12/00/14	1017	1440600	1
Oil & Green	co Analycic	J 4.47	0 - 01 5.00	1.07	5.00	ug/L	1 /	AAH3 12/08/14	1217	1440690	1
	se Allalysis An Hayana Eytmaata	hla Matarial (O	il and Crosse	. "As Dessi	und"						
EPA 1004 <i>F</i> Oil and Greas	A n-Hexane Extracta		in and Grease) As Recei	4 03	mg/I	1	KIP1 12/08/14	1015	1441224	2
Solids Anal	lvsis	J 2.00	J	1.15	4.05	iiig/L		KLI I 12/00/14	1015	1441224	2
SM 2540D	Total Suspended Li	a "As Received									
Total Suspend	led Solids	4 10	=	0.570	2 50	mg/L	1	MXB3 12/04/14	1328	1440920	3
SM2540C S	Solids. Dissolved "A	As Received"		0.570	2.50	ing/E		12,01,11	1020	1110/20	5
Total Dissolve	ed Solids	470	=	3.40	14.3	mg/L	1	MXB3 12/04/14	1409	1440921	4
Spectromet	tric Analysis										
EPA 410.4	Chem. Oxygen Der	nand "As Recei	ved"								
COD	20	92.6	=	6.67	20.0	mg/L	1 \$	SXC5 12/05/14	1503	1441073	5
Titration an	nd Ion Analysis										
EPA 150.1	pH "As Received"										
pH at Temp 13	8.2C	Н 5.90	J A03	0.010	0.100	SU	1 1	PXO1 12/06/14	1546	1441508	6
SM 2340 C	C Total Hardness "As	s Received"									
Hardness as C	CaCO3	87.3	=	2.00	4.00	mg/L]	PXO1 12/06/14	1408	1441509	7
The follow	ing Prep Methods w	vere performed:									
Method	Descr	ription			Analyst	Date	Time	Prep Batch	l		
EPA 420.4	EPA 4	20.4 Phenols, Total	in liquid PREP		AXH3	12/08/14	1156	1440689			
The follow	ing Analytical Meth	nods were perfo	rmed:								
Method	Descr	iption				Ana	alyst Con	nments			
1	EPA 42	20.4					-				
2	EPA 10	664A/1664B									
3	SM 254	40D									
4	SM 254	40C									
`	EDA 41	10.4									

Notes:

SM 2340 C

7

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: December 10, 2014

	Company :	Lei	dos										
	Address :	301	Laboratory	y Rd.									
		Oak	Ridge, Te	nnessee 378	330								
	Contact:	Ms.	Marie Sim	pson									
	Project:	Pro	duct Recov	ery System	Pilot Study 2,	Hunter AA-	-09						
	Client Sample ID:	BFF	780301				Project	:	LEID0	0200			
	Sample ID:	362	411003				Client l	D:	LEID0	02			
	Matrix:	Wat	ter										
	Collect Date:	03-l	DEC-14 15	:30									
	Receive Date:	04-1	DEC-14										
	Collector:	Clie	nt										
Parameter	Quali	fier	Result		DL	RL	Units	DF	Analyst	Date	Tim	e Batch	Method
Micro biol	Qui		Itebuit				Cinto		1 mary se	Dute		e Buten	litetilou
SM 5210B	BOD 5DAY "As R	eceiv	ed"										
BOD, 5 DAY	202,0211 1101		8.94	=	3.00	6.00	mg/L		SXC4 1	2/05/14	0741	1441074	1
The follow	ving Analytical Metl	nods v	vere perform	med:									
Method	Descr	iption					Anal	yst Co	omments				
1	SM 52	10B											

Notes:

Report Date: January 27, 2015

	Page 1	of 2				
SDG Number:	365466	Date Collected:	01/20/2015 12:00	Matrix:	WATER	
Lab Sample ID:	365466001	Date Received:	01/21/2015 07:57			
		Client:	LEID002	Project:	LEID00200	
Client ID:	TBH018	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1452142	Inst:	VOA1.I	Dilution:	1	
Run Date:	01/22/2015 15:34	Analyst:	VXY1	Purge Vol:	5 mL	
Prep Date:	01/22/2015 15:34					
Data File:	012215V1\1S413.D	Column:	DB-624			

71-55-6 1,1,1-Trichloroethane U 1.00 ug/L 0.300 1.00 79-34-5 1,1,2,2-Tetrachloroethane U 1.00 ug/L 0.300 1.00 79-00-5 1,1,2-Trichloroethane U 1.00 ug/L 0.300 1.00 75-34-3 1,1-Dichloroethane U 1.00 ug/L 0.300 1.00 75-34-4 1.1 Dichloroethane U 1.00 ug/L 0.300 1.00	
79-34-5 1,1,2,2-Tetrachloroethane U 1.00 ug/L 0.300 1.00 79-00-5 1,1,2-Trichloroethane U 1.00 ug/L 0.300 1.00 75-34-3 1,1-Dichloroethane U 1.00 ug/L 0.300 1.00 75-34-3 1,1-Dichloroethane U 1.00 ug/L 0.300 1.00	
79-00-5 1,1,2-Trichloroethane U 1.00 ug/L 0.300 1.00 75-34-3 1,1-Dichloroethane U 1.00 ug/L 0.300 1.00 75-25-4 1 Dichloroethane U 1.00 ug/L 0.200 1.00	
75-34-3 1,1-Dichloroethane U 1.00 ug/L 0.300 1.00 75-35-4 1.1 Dichloroethane U 1.00	
75.25.4 11 Disblore U. 100 / 0.200 100	
/5-55-4 1,1-Dicnioroethylene U 1.00 ug/L 0.300 1.00	
87-61-6 1,2,3-Trichlorobenzene U 1.00 ug/L 0.300 1.00	
120-82-1 1,2,4-Trichlorobenzene U 1.00 ug/L 0.300 1.00	
96-12-8 1,2-Dibromo-3-chloropropane U 1.00 ug/L 0.500 1.00	
106-93-4 1,2-Dibromoethane U 1.00 ug/L 0.300 1.00	
95-50-1 1,2-Dichlorobenzene U 1.00 ug/L 0.300 1.00	
107-06-2 1,2-Dichloroethane U 1.00 ug/L 0.300 1.00	
78-87-5 1,2-Dichloropropane U 1.00 ug/L 0.300 1.00	
541-73-1 1,3-Dichlorobenzene U 1.00 ug/L 0.300 1.00	
106-46-7 1,4-Dichlorobenzene U 1.00 ug/L 0.300 1.00	
123-91-1 1,4-Dioxane U 50.0 ug/L 15.0 50.0	
78-93-3 2-Butanone U 5.00 ug/L 1.50 5.00	
591-78-6 2-Hexanone U 5.00 ug/L 1.50 5.00	
108-10-1 4-Methyl-2-pentanone U 5.00 ug/L 1.50 5.00	
67-64-1 Acetone U 5.00 ug/L 1.50 5.00	
71-43-2 Benzene U 1.00 ug/L 0.300 1.00	
74-97-5 Bromochloromethane U 1.00 ug/L 0.300 1.00	
75-27-4 Bromodichloromethane U 1.00 ug/L 0.300 1.00	
75-25-2 Bromoform U 1.00 ug/L 0.300 1.00	
74-83-9 Bromomethane U 1.00 ug/L 0.300 1.00	
75-15-0 Carbon disulfide U 5.00 ug/L 1.50 5.00	
56-23-5 Carbon tetrachloride U 1.00 ug/L 0.300 1.00	
108-90-7 Chlorobenzene U 1.00 ug/L 0.300 1.00	
75-00-3 Chloroethane U 1.00 ug/L 0.300 1.00	
67-66-3 Chloroform U 1.00 ug/L 0.300 1.00	
74-87-3 Chloromethane U 1.00 ug/L 0.300 1.00	
110-82-7 Cyclohexane U 1.00 ug/L 0.300 1.00	
124-48-1 Dibromochloromethane U 1.00 ug/L 0.300 1.00	
75-71-8 Dichlorodifluoromethane U 1.00 ug/L 0.300 1.00	
100-41-4 Ethylbenzene U 1.00 ug/L 0.300 1.00	
98-82-8 Isopropylbenzene U 1.00 ug/L 0.300 1.00	
79-20-9 Methyl acetate U 5.00 ug/L 1.50 5.00	
108-87-2 Methylcyclohexane U 1.00 ug/L 0.300 1.00	
75-09-2 Methylene chloride J J 1.01 ug/L 1.00 5.00	

Volatile Certificate of Analysis						of 2				
Sample Summary										
SDG Number:	365466	Date Collected:	01/20/2015 12:00	Matrix:	WATER					
Lab Sample ID:	365466001	Date Received:	01/21/2015 07:57							
		Client:	LEID002	Project:	LEID00200					
Client ID:	TBH018	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038					
Batch ID:	1452142	Inst:	VOA1.I	Dilution:	1					
Run Date:	01/22/2015 15:34	Analyst:	VXY1	Purge Vol:	5 mL					
Prep Date:	01/22/2015 15:34									
Data File:	012215V1\1S413.D	Column:	DB-624							

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
100-42-5	Styrene	υυ	1.00	ug/L	0.300	1.00
127-18-4	Tetrachloroethylene	U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U	1.00	ug/L	0.300	1.00
79-01-6	Trichloroethylene	U	1.00	ug/L	0.300	1.00
75-69-4	Trichlorofluoromethane	U	1.00	ug/L	0.300	1.00
76-13-1	Trichlorotrifluoroethane	U	5.00	ug/L	2.00	5.00
75-01-4	Vinyl chloride	U	1.00	ug/L	0.300	1.00
156-59-2	cis-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-01-5	cis-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00
179601-23-1	m,p-Xylenes	U	2.00	ug/L	0.300	2.00
95-47-6	o-Xylene	U	1.00	ug/L	0.300	1.00
1634-04-4	tert-Butyl methyl ether	U	1.00	ug/L	0.300	1.00
156-60-5	trans-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-02-6	trans-1,3-Dichloropropylene	U 🗸	1.00	ug/L	0.300	1.00

Tentatively Identi	fied Compound Summary		Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown siloxane	15.019	5.44	ug/L	0	J

Report Date: January 27, 2015

	Page 1	of 2				
SDG Number:	365466	Date Collected:	01/20/2015 13:00	Matrix:	WATER	
Lab Sample ID:	365466002	Date Received:	01/21/2015 07:57			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFF80302	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1452142	Inst:	VOA1.I	Dilution:	1	
Run Date:	01/22/2015 16:07	Analyst:	VXY1	Purge Vol:	5 mL	
Prep Date:	01/22/2015 16:07					
Data File:	012215V1\1S414.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ	
71-55-6	1,1,1-Trichloroethane	U U	1.00	ug/L	0.300	1.00	
79-34-5	1,1,2,2-Tetrachloroethane	U	1.00	ug/L	0.300	1.00	
79-00-5	1,1,2-Trichloroethane	U	1.00	ug/L	0.300	1.00	
75-34-3	1,1-Dichloroethane	U	1.00	ug/L	0.300	1.00	
75-35-4	1,1-Dichloroethylene	U	1.00	ug/L	0.300	1.00	
87-61-6	1,2,3-Trichlorobenzene	U	1.00	ug/L	0.300	1.00	
120-82-1	1,2,4-Trichlorobenzene	U	1.00	ug/L	0.300	1.00	
96-12-8	1,2-Dibromo-3-chloropropane	U	1.00	ug/L	0.500	1.00	
106-93-4	1,2-Dibromoethane	U	1.00	ug/L	0.300	1.00	
95-50-1	1,2-Dichlorobenzene	U	1.00	ug/L	0.300	1.00	
107-06-2	1,2-Dichloroethane	U	1.00	ug/L	0.300	1.00	
78-87-5	1,2-Dichloropropane	U	1.00	ug/L	0.300	1.00	
541-73-1	1,3-Dichlorobenzene	U	1.00	ug/L	0.300	1.00	
106-46-7	1,4-Dichlorobenzene	U	1.00	ug/L	0.300	1.00	
123-91-1	1,4-Dioxane	U	50.0	ug/L	15.0	50.0	
78-93-3	2-Butanone	U	5.00	ug/L	1.50	5.00	
591-78-6	2-Hexanone	U	5.00	ug/L	1.50	5.00	
108-10-1	4-Methyl-2-pentanone	υ 🗸	5.00	ug/L	1.50	5.00	
67-64-1	Acetone	JJ	4.08	ug/L	1.50	5.00	
71-43-2	Benzene	υU	1.00	ug/L	0.300	1.00	
74-97-5	Bromochloromethane	U	1.00	ug/L	0.300	1.00	
75-27-4	Bromodichloromethane	U	1.00	ug/L	0.300	1.00	
75-25-2	Bromoform	U	1.00	ug/L	0.300	1.00	
74-83-9	Bromomethane	U	1.00	ug/L	0.300	1.00	
75-15-0	Carbon disulfide	U	5.00	ug/L	1.50	5.00	
56-23-5	Carbon tetrachloride	U	1.00	ug/L	0.300	1.00	
108-90-7	Chlorobenzene	U	1.00	ug/L	0.300	1.00	
75-00-3	Chloroethane	U	1.00	ug/L	0.300	1.00	
67-66-3	Chloroform	U	1.00	ug/L	0.300	1.00	
74-87-3	Chloromethane	U	1.00	ug/L	0.300	1.00	
110-82-7	Cyclohexane	U	1.00	ug/L	0.300	1.00	
124-48-1	Dibromochloromethane	U	1.00	ug/L	0.300	1.00	
75-71-8	Dichlorodifluoromethane	U	1.00	ug/L	0.300	1.00	
100-41-4	Ethylbenzene	U	1.00	ug/L	0.300	1.00	
98-82-8	Isopropylbenzene	U	1.00	ug/L	0.300	1.00	
79-20-9	Methyl acetate	U	5.00	ug/L	1.50	5.00	
108-87-2	Methylcyclohexane	U	1.00	ug/L	0.300	1.00	
75-09-2	Methylene chloride	U 🗸	5.00	ug/L	1.00	5.00	

Report Date: January 27, 2015

		Vola	tile		Page 2	of 2
		Certificate	of Analysis			
		Sample S	ummary			
SDG Number:	365466	Date Collected:	01/20/2015 13:00	Matrix:	WATER	
Lab Sample ID:	365466002	Date Received:	01/21/2015 07:57			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFF80302	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1452142	Inst:	VOA1.I	Dilution:	1	
Run Date:	01/22/2015 16:07	Analyst:	VXY1	Purge Vol:	5 mL	
Prep Date:	01/22/2015 16:07					
Data File:	012215V1\1S414.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ	
100-42-5	Styrene	υυ	1.00	ug/L	0.300	1.00	
127-18-4	Tetrachloroethylene	U	1.00	ug/L	0.300	1.00	
108-88-3	Toluene	U	1.00	ug/L	0.300	1.00	
79-01-6	Trichloroethylene	U	1.00	ug/L	0.300	1.00	
75-69-4	Trichlorofluoromethane	U	1.00	ug/L	0.300	1.00	
76-13-1	Trichlorotrifluoroethane	U	5.00	ug/L	2.00	5.00	
75-01-4	Vinyl chloride	U	1.00	ug/L	0.300	1.00	
156-59-2	cis-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00	
10061-01-5	cis-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00	
179601-23-1	m,p-Xylenes	U	2.00	ug/L	0.300	2.00	
95-47-6	o-Xylene	U	1.00	ug/L	0.300	1.00	
1634-04-4	tert-Butyl methyl ether	U	1.00	ug/L	0.300	1.00	
156-60-5	trans-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00	
10061-02-6	trans-1,3-Dichloropropylene	U 🗸	1.00	ug/L	0.300	1.00	

Tentatively Identified Compound Summary

Tentatively Identif	ied Compound Summary		Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown siloxane	15.028	9.03	ug/L	0	J
	unknown	21.141	6.07	ug/L	0	J
	unknown	21.611	7.41	ug/L	0	J
	unknown	21.833	19.3	ug/L	0	J

		FID Diesel Ra Certificate Sample S	nge Organics of Analysis Summary		Page 1 of 1
SDG Number: Lab Sample ID:	365466 365466002	Date Collected: Date Received:	01/20/2015 13:00 01/21/2015 07:57	Matrix:	WATER
Client ID:	BFF80302	Client: Method:	LEID002 SW846 3535A/8015C	Project: SOP Ref:	LEID00200 GL-OA-E-003
Batch ID: Run Date:	1452152 01/23/2015 20:00	Inst: Analyst:	FID5.I BYT1	Dilution: Inj. Vol:	1 1 uL
Prep Date: Data File:	01/23/2015 10:50 012315DR\f5a2311.D	Aliquot: Column:	1050 mL DB-5ms	Final Volume:	1 mL
CAS No.	Parmname	Qualifier Res	ılt Units MI	DL/LOD PQI	L/LOQ
DRO	Diesel Range Organics	2.39	= mg/L 0	.0476 0.1	90

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No: 36	5466					M	ETHOD TYP	•E: SW846		
SAMPLE II	D: 365466002					CLIE	NT ID: BFF	80302		
CONTRAC	CT: LEID00200									
MATRIX:V	Water	DATE R	ECE	IVED 2	21–JA	N-15	LEVEL:	Low %S	OLIDS:	
CAS No	<u>Analyte</u>	<u>Result</u>		<u>Units</u>	<u>C</u>	<u>Qual</u> <u>M*</u>	MDL	<u>DF</u>	<u>Inst</u> ID	<u>Analytical</u> <u>Run</u>
7439–89–6	Iron	8820	=	ug/L		Р	30	1	OPTIMA3	012215-1

*Analytical Methods:

P SW846 3005A/6010C

		GC Vo Certifio Samj	olatiles cate of ple Sur	s (GR ' Anal mmar	O) ysis y			Page 1	of 1
SDG Number:	365466	Date Collec	ted: (01/20/2	015 13:00	Matrix:	,	WATER	
Lab Sample ID:	365466002	Date Receiv	ved: (01/21/2	015 07:57				
		Client:]	LEID0)2	Project:]	LEID00200	
Client ID:	BFF80302	Method:	5	SW846	8015C	SOP Re	f:	GL-OA-E-004	
Batch ID:	1453008	Inst:		VOC4	.I	Dilution	:	1	
Run Date:	01/26/2015 15:38	Analyst:	1	ACJ		Inj. Vol	:	1 uL	
Prep Date:	01/26/2015 15:38								
Data File:	012615\4T104.D	Column:]	DB-M'	BE				
CAS No.	Parmname	Qualifier	Result		Units	MDL/LOD	PQL/I	LOQ	
	Gasoline Range Organics	J	28.1	J	ug/L	16.7	50.0)	

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: January 27, 2015

	Company : Address :	Leid 301	los Laborator	y Rd.								
		Oak	Ridge, Te	nnessee 3'	7830							
	Contact:	Ms.	Marie Sim	npson								
	Project:	Pro	Juct Recov	ery Systen	n Pilot Study 2	2, Hunter AA	-09					
	Client Sample	ID: BFF	80302				Projec	et:	LEID00200			
	Sample ID:	365	466002				Client	ID:	LEID002			
	Matrix:	Wat	er									
	Collect Date:	20-J	AN-15 13:	:00								
	Receive Date:	21-J	AN-15									
	Collector:	Clie	nt									
Parameter	(Jualifier	Result		DL	RL	Units	DF	Analyst Dat	e Tir	ne Batch	Method
Flow Injoct	tion Analysis	Zuuiiiiei	itebuit				Cinto	- 21	Thujst Du	.0 11		litetiiou
	Total Dhanala "	A a Doooir	rad"									
EFA 420.4 Total Phenol	10tal Flienois	As Kecen	119	_	1.67	5.00	ug/I	1	AXH3 01/23/1	5 1238	1451956	1
Micro-biol	Ogy		11)		1.07	5.00	ug/L	1	11115 01/25/1	5 1250	1451750	1
SM 5210B	BOD 5DAY "	As Receiv	ed"									
BOD. 5 DAY	DOD, JDAT	J	4.72	J	3.00	6.00	mg/L		SXC4 01/21/1	5 1316	5 1451618	2
Oil & Grea	use Analysis	-					6					
EPA 1664/	A n-Hexane Ext	ractable M	laterial (Oi	l and Grea	se) "As Recei	ved"						
Oil and Greas	se	J	1.63	J	1.14	4.07	mg/L		JXT1 01/22/1	5 1032	1452126	3
Solids Ana	lysis						-					
SM 2540D	Total Suspende	d Liq "As	Received"									
Total Suspend	ded Solids	1	4.80	=	0.570	2.50	mg/L		MXB3 01/22/1	5 1019	1451982	4
SM2540C	Solids, Dissolve	d "As Rec	eived"									
Total Dissolve	ed Solids		234	=	3.40	14.3	mg/L		MXB3 01/22/1	5 1501	1451983	5
Spectromet	tric Analysis											
EPA 410.4	Chem. Oxygen	Demand '	'As Receiv	red"								
COD			102	=	6.67	20.0	mg/L	1	SXC5 01/23/1	5 1549	1452180	6
Titration ar	nd Ion Analysis											
EPA 150.1	pH "As Receiv	ved"										
pH at Temp 2	21.3C	Н	6.89	J A03	0.010	0.100	SU	1	PXO1 01/24/1	5 1402	1452689	7
SM 2340 C	C Total Hardness	s "As Rece	vived"				_					
Hardness as C	CaCO3		68.0	=	2.00	4.00	mg/L		PXO1 01/27/1	5 1458	1452687	8
The follow	ing Prep Metho	ds were pe	rformed:									
Method	I	Description	1			Analyst	Date	Tim	e Prep Bat	ch		
EPA 420.4	E	2PA 420.4 Ph	enols, Total i	n liquid PRE	P	AXH3	01/23/15	1215	1451955			

		Vola	tile		Page 1	of 2
		Certificate	of Analysis			
		Sample S	Summary			
SDG Number:	367015	Date Collected:	02/11/2015 14:00	Matrix:	WATER	
Lab Sample ID:	367015001	Date Received:	02/12/2015 08:35			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFF80303	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1458070	Inst:	VOA9.I	Dilution:	1	
Run Date:	02/16/2015 14:32	Analyst:	RXY1	Purge Vol:	5 mL	
Prep Date:	02/16/2015 14:32					
Data File:	021615V9\9B116.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-55-6	1,1,1-Trichloroethane	U	1.00	ug/L	0.300	1.00 U
79-34-5	1,1,2,2-Tetrachloroethane	U	1.00	ug/L	0.300	1.00
79-00-5	1,1,2-Trichloroethane	U	1.00	ug/L	0.300	1.00
75-34-3	1,1-Dichloroethane	U	1.00	ug/L	0.300	1.00
75-35-4	1,1-Dichloroethylene	U	1.00	ug/L	0.300	1.00
87-61-6	1,2,3-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
120-82-1	1,2,4-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
96-12-8	1,2-Dibromo-3-chloropropane	U	1.00	ug/L	0.500	1.00
106-93-4	1,2-Dibromoethane	U	1.00	ug/L	0.300	1.00
95-50-1	1,2-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
107-06-2	1,2-Dichloroethane	U	1.00	ug/L	0.300	1.00
78-87-5	1,2-Dichloropropane	U	1.00	ug/L	0.300	1.00
541-73-1	1,3-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
106-46-7	1,4-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
123-91-1	1,4-Dioxane	U	50.0	ug/L	15.0	50.0
78-93-3	2-Butanone	U	5.00	ug/L	1.50	5.00 🗸
591-78-6	2-Hexanone	U	5.00	ug/L	1.50	5.00 UJ C05
108-10-1	4-Methyl-2-pentanone	U	5.00	ug/L	1.50	5.00 U
67-64-1	Acetone	U	5.00	ug/L	1.50	5.00
71-43-2	Benzene	U	1.00	ug/L	0.300	1.00
74-97-5	Bromochloromethane	U	1.00	ug/L	0.300	1.00
75-27-4	Bromodichloromethane	U	1.00	ug/L	0.300	1.00
75-25-2	Bromoform	U	1.00	ug/L	0.300	1.00
74-83-9	Bromomethane	U	1.00	ug/L	0.300	1.00
75-15-0	Carbon disulfide	U	5.00	ug/L	1.50	5.00
56-23-5	Carbon tetrachloride	U	1.00	ug/L	0.300	1.00
108-90-7	Chlorobenzene	U	1.00	ug/L	0.300	1.00
75-00-3	Chloroethane	U	1.00	ug/L	0.300	1.00
67-66-3	Chloroform	U	1.00	ug/L	0.300	1.00
74-87-3	Chloromethane	U	1.00	ug/L	0.300	1.00
110-82-7	Cyclohexane	U	1.00	ug/L	0.300	1.00
124-48-1	Dibromochloromethane	U	1.00	ug/L	0.300	1.00 🗸
75-71-8	Dichlorodifluoromethane	U	1.00	ug/L	0.300	1.00 UJ C05
100-41-4	Ethylbenzene	U	1.00	ug/L	0.300	1.00 U
98-82-8	Isopropylbenzene	U	1.00	ug/L	0.300	1.00 U
79-20-9	Methyl acetate	U	5.00	ug/L	1.50	5.00 U
108-87-2	Methylcyclohexane	U	1.00	ug/L	0.300	1.00 U
75-09-2	Methylene chloride	U	5.00	ug/L	1.00	5.00 UJ P02

J 02/26/2015

		Vola	tile		Page 2	of 2
		Certificate	of Analysis			
		Sample S	ummary			
SDG Number:	367015	Date Collected:	02/11/2015 14:00	Matrix:	WATER	
Lab Sample ID:	367015001	Date Received:	02/12/2015 08:35			
		Client:	LEID002	Project:	LEID00200	
Client ID:	BFF80303	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038	
Batch ID:	1458070	Inst:	VOA9.I	Dilution:	1	
Run Date:	02/16/2015 14:32	Analyst:	RXY1	Purge Vol:	5 mL	
Prep Date:	02/16/2015 14:32					
Data File:	021615V9\9B116.D	Column:	DB-624			

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
100-42-5	Styrene	U	1.00	ug/L	0.300	1.00 U
127-18-4	Tetrachloroethylene	U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U	1.00	ug/L	0.300	1.00
79-01-6	Trichloroethylene	U	1.00	ug/L	0.300	1.00
75-69-4	Trichlorofluoromethane	U	1.00	ug/L	0.300	1.00
76-13-1	Trichlorotrifluoroethane	U	5.00	ug/L	2.00	5.00
75-01-4	Vinyl chloride	U	1.00	ug/L	0.300	1.00
156-59-2	cis-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-01-5	cis-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00
179601-23-1	m,p-Xylenes	U	2.00	ug/L	0.300	2.00
95-47-6	o-Xylene	U	1.00	ug/L	0.300	1.00
1634-04-4	tert-Butyl methyl ether	U	1.00	ug/L	0.300	1.00
156-60-5	trans-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-02-6	trans-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00 🗸

Tentatively Identified Compound Summary

Tentatively Identified Compound Summary			Estimated			
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	4.315	72.4	ug/L	0	J
	unknown hydrocarbon	14.687	12.3	ug/L	0	J
017302-28-2	Nonane, 2,6-dimethyl-	15.387	15.7	ug/L	94	NJ
	unknown hydrocarbon	15.553	5.08	ug/L	0	J
017302-32-8	Nonane, 3,7-dimethyl-	15.624	5.16	ug/L	86	NJ
001120-21-4	Undecane	16.311	15.2	ug/L	91	NJ
017301-23-4	Undecane, 2,6-dimethyl-	17.77	87.9	ug/L	93	NJ
	unknown hydrocarbon	18.588	149	ug/L	0	J

Volatile						of 2				
Sample Summary										
SDG Number:	367015	Date Collected:	02/11/2015 14:00	Matrix:	WATER					
Lab Sample ID:	367015002	Date Received:	02/12/2015 08:35							
		Client:	LEID002	Project:	LEID00200					
Client ID:	TBH019	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038					
Batch ID:	1458070	Inst:	VOA9.I	Dilution:	1					
Run Date:	02/16/2015 16:23	Analyst:	RXY1	Purge Vol:	5 mL					
Prep Date:	02/16/2015 16:23									
Data File:	021615V9\9B120.D	Column:	DB-624							

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-55-6	1,1,1-Trichloroethane	U	1.00	ug/L	0.300	1.00 U
79-34-5	1,1,2,2-Tetrachloroethane	U	1.00	ug/L	0.300	1.00
79-00-5	1,1,2-Trichloroethane	U	1.00	ug/L	0.300	1.00
75-34-3	1,1-Dichloroethane	U	1.00	ug/L	0.300	1.00
75-35-4	1,1-Dichloroethylene	U	1.00	ug/L	0.300	1.00
87-61-6	1,2,3-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
120-82-1	1,2,4-Trichlorobenzene	U	1.00	ug/L	0.300	1.00
96-12-8	1,2-Dibromo-3-chloropropane	U	1.00	ug/L	0.500	1.00
106-93-4	1,2-Dibromoethane	U	1.00	ug/L	0.300	1.00
95-50-1	1,2-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
107-06-2	1,2-Dichloroethane	U	1.00	ug/L	0.300	1.00
78-87-5	1,2-Dichloropropane	U	1.00	ug/L	0.300	1.00
541-73-1	1,3-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
106-46-7	1,4-Dichlorobenzene	U	1.00	ug/L	0.300	1.00
123-91-1	1,4-Dioxane	U	50.0	ug/L	15.0	50.0
78-93-3	2-Butanone	U	5.00	ug/L	1.50	5.00 ¥
591-78-6	2-Hexanone	U	5.00	ug/L	1.50	5.00 UJ C05
108-10-1	4-Methyl-2-pentanone	U	5.00	ug/L	1.50	5.00 U
67-64-1	Acetone	U	5.00	ug/L	1.50	5.00
71-43-2	Benzene	U	1.00	ug/L	0.300	1.00
74-97-5	Bromochloromethane	U	1.00	ug/L	0.300	1.00
75-27-4	Bromodichloromethane	U	1.00	ug/L	0.300	1.00
75-25-2	Bromoform	U	1.00	ug/L	0.300	1.00
74-83-9	Bromomethane	U	1.00	ug/L	0.300	1.00
75-15-0	Carbon disulfide	U	5.00	ug/L	1.50	5.00
56-23-5	Carbon tetrachloride	U	1.00	ug/L	0.300	1.00
108-90-7	Chlorobenzene	U	1.00	ug/L	0.300	1.00
75-00-3	Chloroethane	U	1.00	ug/L	0.300	1.00
67-66-3	Chloroform	U	1.00	ug/L	0.300	1.00
74-87-3	Chloromethane	U	1.00	ug/L	0.300	1.00
110-82-7	Cyclohexane	U	1.00	ug/L	0.300	1.00
124-48-1	Dibromochloromethane	U	1.00	ug/L	0.300	1.00 V
75-71-8	Dichlorodifluoromethane	U	1.00	ug/L	0.300	1.00 UJ C05
100-41-4	Ethylbenzene	U	1.00	ug/L	0.300	1.00 U
98-82-8	Isopropylbenzene	U	1.00	ug/L	0.300	1.00 U
79-20-9	Methyl acetate	U	5.00	ug/L	1.50	5.00 U
108-87-2	Methylcyclohexane	U	1.00	ug/L	0.300	1.00 U
75-09-2	Methylene chloride	U	5.00	ug/L	1.00	5.00 UJ P02
						02/26/2015

Volatile						of 2				
	Sample Summary									
SDG Number:	367015	Date Collected:	02/11/2015 14:00	Matrix:	WATER					
Lab Sample ID:	367015002	Date Received:	02/12/2015 08:35							
Client: LEID002 Project:					LEID00200					
Client ID:	TBH019	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038					
Batch ID:	1458070	Inst:	VOA9.I	Dilution:	1					
Run Date:	02/16/2015 16:23	Analyst:	RXY1	Purge Vol:	5 mL					
Prep Date:	02/16/2015 16:23									
Data File:	021615V9\9B120.D	Column:	DB-624							

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
100-42-5	Styrene	U	1.00	ug/L	0.300	1.00 U
127-18-4	Tetrachloroethylene	U	1.00	ug/L	0.300	1.00
108-88-3	Toluene	U	1.00	ug/L	0.300	1.00
79-01-6	Trichloroethylene	U	1.00	ug/L	0.300	1.00
75-69-4	Trichlorofluoromethane	U	1.00	ug/L	0.300	1.00
76-13-1	Trichlorotrifluoroethane	U	5.00	ug/L	2.00	5.00
75-01-4	Vinyl chloride	U	1.00	ug/L	0.300	1.00
156-59-2	cis-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-01-5	cis-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00
179601-23-1	m,p-Xylenes	U	2.00	ug/L	0.300	2.00
95-47-6	o-Xylene	U	1.00	ug/L	0.300	1.00
1634-04-4	tert-Butyl methyl ether	U	1.00	ug/L	0.300	1.00
156-60-5	trans-1,2-Dichloroethylene	U	1.00	ug/L	0.300	1.00
10061-02-6	trans-1,3-Dichloropropylene	U	1.00	ug/L	0.300	1.00 🗸

Tentatively Identi	Estimated					
CAS No.	Tentatively Identified Compound (TIC)	RT		Units	Fit	Qual
	unknown	4.301	29.4	ug/L	0	J
000556-67-2	Cyclotetrasiloxane, octamethyl-	14.663	6.32	ug/L	90	NJ

FID Diesel Range Organics Page 1 of 1 Certificate of Analysis Sample Summary								
SDG Number: Lab Sample ID:	367015 367015001	Date Collected: Date Received:	02/11/2015 14:00 02/12/2015 08:35	Matrix:	WATER			
Client ID: Batch ID: Run Date:	BFF80303 1457856 02/17/2015 04:40	Method: Inst: Analyst:	LEID002 SW846 3535A/8015C FID7.I BYT1	Project: SOP Ref: Dilution: Inj. Vol:	GL-OA-E-003 10 1 uL			
Prep Date: Data File:	02/16/2015 08:10 021615NW\f7b1627.D	Aliquot: Column:	1050 mL DB-5ms	Final Volume:	1 mL			
CAS No.	Parmname	Qualifier Resu	lt Units MD	L/LOD PQI	/LOQ			
DRO	Diesel Range Organics	36.5	= mg/L 0	476 1.	90			

GC Volatiles (GRO)Page 1 of 1Certificate of AnalysisSample Summary								
SDG Number: Lab Sample ID:	367015 367015001	Date Collec Date Receiv	cted: (ved: (02/11/2 02/12/2	015 14:00 015 08:35	Matrix:	WATER	
Client ID: Batch ID:	BFF80303 1458443	Client: Method: Inst:	2	LEID0 SW846 VOC44	92 8015C A.I	Project: SOP Re Dilution	f: GL-OA-E-0	04
Run Date: Prep Date:	02/17/2015 13:51 02/17/2015 13:51	Analyst:	ł	ACJ		Inj. Vol	: 1 uL	
Data File:	021715\4W1206.D	Column:]	DB-M]	BE			
CAS No.	Parmname	Qualifier	Result		Units	MDL/LOD	PQL/LOQ	
	Gasoline Range Organics		64.6	=	ug/L	16.7	50.0	
METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No: 36	57015		METHOD TYPE: SW846										
SAMPLE II	D: 367015001	CLIENT ID: BFF80303											
CONTRAC	CT: LEID00200												
MATRIX:V	Water	DATE REC	EIVED 1	l2–FE	B-15	LEVEL:	Low %S	OLIDS:					
CAS No	<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>C</u>	<u>Qual</u> <u>M*</u>	MDL	DF	<u>Inst</u> ID	<u>Analytical</u> <u>Run</u>				
7439–89–6	Iron	9490 =	ug/L		Р	30	1	OPTIMA3	021315A-1				

*Analytical Methods:

P SW846 3005A/6010C

GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: February 19, 2015

	Company : Address :	Leidos 301 Lal	boratory	v Rd.									
	Contact: Project:	Oak Rie Ms. Ma Product	dge, Ter arie Sim t Recove	nnessee 3783 pson ery System Pi	0 ilot Study 2	2, Hunter AA	1 -09						
(Client Sample ID:	BFF803	303				Projec	et:	LEID0	0200			
	Sample ID:	367015	001				Client	ID:	LEID0	02			
I	Matrix:	Water											
(Collect Date:	11-FEB	8-15 14:	00									
J	Receive Date:	12-FEB	B -15										
(Collector:	Client											
Parameter	Quali	fier R	lesult		DL	RL	Units	DF	Analyst	Date	Tim	e Batch	Method
Flow Injection	on Analysis												
EPA 420.4 T	otal Phenols "As R	leceived"	•										
Total Phenol			237	J H02	16.7	50.0	ug/L	1	AXH3 0	2/12/15	1434	1456214	1
Micro-biolog	У												
SM 5210B B	OD, 5DAY "As R	eceived"											
BOD, 5 DAY	A 1 '		27.8		10.0	20.0	mg/L		SXC4 0	2/12/15	1356	1457292	2
Oil & Grease	Analysis			~									
EPA 1664A 1	n-Hexane Extracta	ble Mater	rial (Oil	and Grease)	"As Receiv	ved"	-			~ ~ ~ ~ ~ ~	0010		2
Solids Analy	sis		29.9		1.12	4.00	mg/L		JXTI 0	2/16/15	0810	1457992	3
SM 2540D T	otal Suspended Lie	g "As Re	ceived"										
Total Suspended	Solids	1	13.6	J E02	2.28	10.0	mg/L		MXB3 0	2/13/15	1017	1457638	4
SM2540C Sc	olids, Dissolved "A	s Receiv	ed"										
Total Dissolved	Solids		373		3.40	14.3	mg/L		MXB3 0	2/16/15	0951	1457959	5
Spectrometrie	c Analysis												
EPA 410.4 C	hem. Oxygen Den	and "As	Receiv	ed"									
COD			281		6.67	20.0	mg/L	1	SXC5 0	2/13/15	1420	1457633	6
Titration and	Ion Analysis												
EPA 150.1 pl	H "As Received"												
pH at Temp 22.6	5C	Н	8.04	J A03	0.010	0.100	SU	1	PXO1 0	2/17/15	1458	1458383	7
SM 2340 C 1	Cotal Hardness "As	Receive	ed"				_						
Hardness as CaC	203		800		2.00	4.00	mg/L		SXC5 0	2/16/15	1359	1457634	8
The followin	g Prep Methods we	ere perfo	rmed:										
Method	Descr	iption				Analyst	Date	Tim	e Pre	p Batcl	1		
EPA 420.4	EPA 42	20.4 Phenol	ls, Total i	n liquid PREP		AXH3	02/12/15	1142	145	6212			

Client:	Leidos			Date Col	lected:	11	2/03/14	
Project:	Hunter Army Airfield Air			Date Rec	eived:	1	2/04/14	
Client Sample I	D. BFF40201			SDG No		F	4957	
Lah Samula ID	E 4057 01			Motrive		1		
Lab Sample ID	F4957-01			Matrix:		A	1Г	
Analytical Mether	hod: TO-15			Test:		V	OCMS Group2	
Sample Wt/Vol	: 400 Units: mL							
File ID/Qc Bate	ch: Dilution:	Prep Date		Date Analyzed		Pre	p Batch ID	
VL024313.D	1			12/04/14 21:44		VL	120414	
		G						
CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
75-71-8	Dichlorodifluoromethane	0.65	3.21	=	0.04	0.1	0.5	ppbv
74-87-3	Chloromethane	0.58	1.2	=	0.1	0.1	0.5	ppbv
75-01-4	Vinyl Chloride	0.03	0.08	υυ	0.03	0.03	0.03	ppbv
74-83-9	Bromomethane	0.1	0.39	υυ	0.03	0.1	0.5	ppbv
75-00-3	Chloroethane	0.1	0.26	υυ	0.1	0.1	0.5	ppbv
75-69-4	Trichlorofluoromethane	0.27	1.52	JJ	0.04	0.1	0.5	ppbv
76-13-1	1,1,2-Trichlorotrifluoroethane	0.1	0.77	υŪ	0.04	0.1	0.5	ppbv
75-35-4	1,1-Dichloroethene	0.1	0.4	υυ	0.05	0.1	0.5	ppbv
67-64-1	Acetone	13.7	32.5	В _	0.1	0.1	0.5	ppbv
75-15-0	Carbon Disulfide	0.1	0.31	υυ	0.05	0.1	0.5	ppbv
1634-04-4	Methyl tert-Butyl Ether	0.1	0.36	υυ	0.05	0.1	0.5	ppbv
75-09-2	Methylene Chloride	0.2	0.69	JB U F01	0.05	0.1	0.5	ppbv
156-60-5	trans-1,2-Dichloroethene	0.1	0.4	υυ	0.05	0.1	0.5	ppbv
75-34-3	1,1-Dichloroethane	0.1	0.4	υυ	0.04	0.1	0.5	ppbv
110-82-7	Cyclohexane	1.3	4.47	=	0.1	0.1	0.5	ppbv
78-93-3	2-Butanone	2.6	7.67	=	0.1	0.1	0.5	ppbv
56-23-5	Carbon Tetrachloride	0.08	0.5	=	0.03	0.03	0.03	ppbv
156-59-2	cis-1,2-Dichloroethene	0.1	0.4	UU	0.05	0.1	0.5	ppbv
67-66-3	Chloroform	0.1	0.49	UU	0.02	0.1	0.5	ppbv
71-55-6	1,1,1-Trichloroethane	0.03	0.16	UU	0.03	0.03	0.03	ppbv
71-43-2	Benzene	0.38	1.21	JJ	0.04	0.1	0.5	ppbv
107-06-2	1,2-Dichloroethane	0.1	0.4	UU	0.1	0.1	0.5	ppbv
79-01-6	Trichloroethene	0.03	0.16	UU	0.02	0.03	0.03	ppbv
78-87-5	1,2-Dichloropropane	0.1	0.46	UU	0.1	0.1	0.5	ppbv
/5-2/-4	Bromodichloromethane	0.1	0.67	UU	0.05	0.1	0.5	ppbv
108-10-1	4-Methyl-2-Pentanone	0.16	0.66	JJ	0.05	0.1	0.5	ppbv
108-88-3	loluene	1.4	5.28	=	0.05	0.1	0.5	ppbv
10061-02-6	t-1,3-Dichloropropene	0.1	0.45	UU	0.1	0.1	0.5	ppbv
10061-01-5	cis-1,3-Dichloropropene	0.1	0.45	UU	0.1	0.1	0.5	ppbv
/9-00-5	1,1,2-Irichloroethane	0.1	0.55	UU	0.1	0.1	0.5	ppbv
JUL- /8-0	2-Hexanone	0.24	0.98	J J	0.1	0.1	0.5	ppov
124-48-1	Dibromochloromethane	0.1	0.85	UU	0.05	0.1	0.5	ppbv
100-93-4	1,2-Dibromoeinane	0.1	0.//		0.1	0.1	0.5	ppov
12/-18-4	Chlorobanzana	0.03	0.2		0.03	0.05	0.03	ppov
100-90-7	Ethyl Dongono	0.1	0.46		0.1	0.1	0.5	ppov
100-41-4	Etilyi Delizelle	0.1	0.45		0.1	0.1	0.5	ppov
1/9001-23-1	III/p-Aylene Total Xulanaa	0.23	1 1 <i>C</i> 1	JJ	0.1	0.2	1 1 5	ppov
1330-20-7	Iotal Aylenes	0.37	1.01	=	0.2	0.5	1.5	ppov

=

Client:	Leidos	Date Collected:	12/03/14
Project:	Hunter Army Airfield Air	Date Received:	12/04/14
Client Sample ID:	BFF40201	SDG No.:	F4957
Lab Sample ID:	F4957-01	Matrix:	Air
Analytical Method:	TO-15	Test:	VOCMS Group2
Sample Wt/Vol:	400 Units: mL		

File ID/Qc Batch	Dilution:	Prep Date		Date Analyzed		Pre	p Batch ID	
VL024313.D	1			12/04/14 21:44		VL	120414	
CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-47-6	o-Xylene	0.14	0.61	JJ	0.1	0.1	0.5	ppbv
100-42-5	Styrene	2.7	11.5	=	0.1	0.1	0.5	ppbv
75-25-2	Bromoform	0.1	1.03	υυ	0.05	0.1	0.5	ppbv
98-82-8	Isopropylbenzene	0.1	0.49	JЈ	0.1	0.1	0.5	ppbv
79-34-5	1,1,2,2-Tetrachloroethane	0.03	0.21	υυ	0.03	0.03	0.03	ppbv
541-73-1	1,3-Dichlorobenzene	0.1	0.6	υυ	0.1	0.1	0.5	ppbv
106-46-7	1,4-Dichlorobenzene	0.1	0.6	υυ	0.1	0.1	0.5	ppbv
95-50-1	1,2-Dichlorobenzene	0.1	0.6	υυ	0.1	0.1	0.5	ppbv
120-82-1	1,2,4-Trichlorobenzene	0.1	0.74	υυ	0.04	0.1	0.5	ppbv
123-91-1	1,4-Dioxane	0.1	0.36	U UJ CO	5 0.1	0.1	0.5	ppbv
SURROGATES								
460-00-4	1-Bromo-4-Fluorobenzene	10.4			65 - 135		104%	SPK: 10
INTERNAL STAN	DARDS							
540-36-3	1,4-Difluorobenzene	2526110		8.27				
3114-55-4	Chlorobenzene-d5	1965530		13.68				
TENTITIVE IDE	NTIFIED COMPOUNDS							
563-58-6	1,1-Dichloropropane	0.5		U			0	ppbv
96-12-8	1,2,3-Trichlorobenzene	0.5		U			0	ppbv
87-61-6	1,2Dibromo-3-Chloropropane	0.5		U			0	ppbv
74-97-5	Bromochloromethane	0.5		U			0	ppbv
79-20-9	Methyl acetate	0.5		U			0	ppbv
108-87-2	Methylcyclohexane	0.5		U			0	ppbv

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Q = indicates LCS control criteria did not meet requirements

18

Client:	Leidos			Date Col	lected:	0	1/20/15	
Project:	Hunter Army Airfield Air			Date Rec	eived:	0	1/21/15	
Client Sample ID	: BFF40202			SDG No		G	1129	
Lak Samula ID:	C1120.01			Mataina		•	:	
Lab Sample ID:	G1129-01			Matrix:		А	ır	
Analytical Metho	d: TO-15			Test:		V	OCMS Group2	
Sample Wt/Vol:	400 Units: mL							
File ID/Qc Batch	: Dilution:	Prep Date		Date Analyzed		Pre	p Batch ID	
VL024532.D	1			01/23/15 20:23		VL	012315	
		C	C					
CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS		* DO NOT I	JSE					
75-71-8	Dichlorodifluoromethane	0.64	3.16	=	0.04	0.1	0.5	ppbv
74-87-3	Chloromethane	0.59	1.22	=	0.1	0.1	0.5	ppbv
75-01-4	Vinyl Chloride	0.03	0.08	υU	0.03	0.03	0.03	ppbv
74-83-9	Bromomethane	0.1	0.39	UU	0.03	0.1	0.5	ppbv
75-00-3	Chloroethane	0.1	0.26	UU	0.1	0.1	0.5	ppbv
75-69-4	Trichlorofluoromethane	0.23	1.29	JJ	0.04	0.1	0.5	ppbv
76-13-1	1,1,2-Trichlorotrifluoroethane	0.1	0.77	UU	0.04	0.1	0.5	ppbv
75-35-4	1,1-Dichloroethene	0.1	0.4	υU	0.05	0.1	0.5	ppbv
67-64-1	Acetone	21.2	50.4	Е*.	0.1	0.1	0.5	ppbv
75-15-0	Carbon Disulfide	0.36	1.12	JJ	0.05	0.1	0.5	ppbv
1634-04-4	Methyl tert-Butyl Ether	0.1	0.36	υU	0.05	0.1	0.5	ppbv
75-09-2	Methylene Chloride	2	6.95	В =	0.05	0.1	0.5	ppbv
156-60-5	trans-1,2-Dichloroethene	0.1	0.4	υU	0.05	0.1	0.5	ppbv
75-34-3	1,1-Dichloroethane	0.1	0.4	υυ	0.04	0.1	0.5	ppbv
110-82-7	Cyclohexane	2.6	8.95	=	0.1	0.1	0.5	ppbv
78-93-3	2-Butanone	0.48	1.42	JJ	0.1	0.1	0.5	ppbv
56-23-5	Carbon Tetrachloride	0.08	0.5	=	0.03	0.03	0.03	ppbv
156-59-2	cis-1,2-Dichloroethene	0.1	0.4	UU	0.05	0.1	0.5	ppbv
67-66-3	Chloroform	0.54	2.64	=	0.02	0.1	0.5	ppbv
71-55-6	1,1,1-Trichloroethane	0.03	0.16	υυ	0.03	0.03	0.03	ppbv
71-43-2	Benzene	0.21	0.67	JJ	0.04	0.1	0.5	ppbv
107-06-2	1,2-Dichloroethane	0.14	0.57	JJ	0.1	0.1	0.5	ppbv
79-01-6	Trichloroethene	0.03	0.16	υυ	0.02	0.03	0.03	ppbv
78-87-5	1,2-Dichloropropane	0.1	0.46	υU	0.1	0.1	0.5	ppbv
75-27-4	Bromodichloromethane	0.1	0.67	υυ	0.05	0.1	0.5	ppbv
108-10-1	4-Methyl-2-Pentanone	0.1	0.41	υU	0.05	0.1	0.5	ppbv
108-88-3	Toluene	3.4	12.8	=	0.05	0.1	0.5	ppbv
10061-02-6	t-1,3-Dichloropropene	0.1	0.45	υυ	0.1	0.1	0.5	ppbv
10061-01-5	cis-1,3-Dichloropropene	0.1	0.45	UU	0.1	0.1	0.5	ppbv
79-00-5	1,1,2-Trichloroethane	0.1	0.55	UU	0.1	0.1	0.5	ppbv
591-78-6	2-Hexanone	0.1	0.41	υU	0.1	0.1	0.5	ppbv
124-48-1	Dibromochloromethane	0.1	0.85	UU	0.05	0.1	0.5	ppbv
106-93-4	1,2-Dibromoethane	0.1	0.77	UU	0.1	0.1	0.5	ppbv
127-18-4	Tetrachloroethene	0.03	0.2	ΠU	0.03	0.03	0.03	ppbv
108-90-7	Chlorobenzene	0.1	0.46	υυ	0.1	0.1	0.5	ppbv
100-41-4	Ethyl Benzene	0.26	1.13	ĴJ	0.1	0.1	0.5	ppbv J01
179601-23-1	m/p-Xylene	0.8	3.47	JJ	0.1	0.2	1	ppbv
1330-20-7	Total Xylenes	1.17	5.08	=	0.2	0.3	1.5	ppbv

Client:	Leidos			Date Col	lected:	0	1/20/15	
Project:	Hunter Army Airfield Air			Date Rec	eived:	0	1/21/15	
Client Sample II	D: BFF40202			SDG No.	.:	G	1129	
Lab Sample ID:	G1129-01			Matrix:		А	ir	
A polytical Math	and TO 15			Test:		V	OCMS Group?	
Analytical Meth	lod. 10-13			Test.		v	OCMS Gloup2	
Sample Wt/Vol:	400 Units: mL							
File ID/Qc Bate	h: Dilution:	Prep Date		Date Analyzed		Pre	p Batch ID	
VL024532.D	1			01/23/15 20:23		VL	012315	
CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-47-6	o-Xylene	0.37	1.61	J J	0.1	0.1	0.5	ppbv
100-42-5	Styrene	1.1	4.68	Ξ.	0.1	0.1	0.5	ppbv
75-25-2	Bromoform	0.1	1.03	UU	0.05	0.1	0.5	ppbv
98-82-8	Isopropylbenzene	0.1	0.49	UU	0.1	0.1	0.5	ppbv
79-34-5	1,1,2,2-Tetrachloroethane	0.03	0.21	UU	0.03	0.03	0.03	ppbv
541-73-1	1,3-Dichlorobenzene	0.1	0.6	UU	0.1	0.1	0.5	ppbv
106-46-7	1,4-Dichlorobenzene	0.1	0.6	U U	0.1	0.1	0.5	ppbv
95-50-1	1,2-Dichlorobenzene	0.1	0.6	UU	0.1	0.1	0.5	ppbv
120-82-1	1,2,4-Trichlorobenzene	0.1	0.74	UU	0.04	0.1	0.5	ppbv
SURROGATES	1,4-Dioxane	0.1	0.36	UQUJ	0.1	0.1	0.5	04/13/1
460-00-4	1-Bromo-4-Fluorobenzene	9.7			65 - 135		97%	SPK: 10
INTERNAL STA	NDARDS							
540-36-3 3114-55-4	1,4-Difluorobenzene Chlorobenzene-d5	2100950 2068590		8.32 13.74				
TENTITIVE IDE	ENTIFIED COMPOUNDS							
563-58-6	1,1-Dichloropropane	0.5		U			0	ppbv
96-12-8	1,2,3-Trichlorobenzene	0.5		U			0	ppbv
87-61-6	1,2Dibromo-3-Chloropropane	0.5		U			0	ppbv
74-97-5	Bromochloromethane	0.5		U			0	ppbv
79-20-9	Methyl acetate	0.5		U			0	ppbv
108-87-2	Methylcyclohexane	0.5		U			0	ppbv

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Q = indicates LCS control criteria did not meet requirements

Client:	Leidos			Date Co	llected:	0	/20/15	
Project:	Hunter Army Airfield Air			Date Re	ceived.	0	/21/15	
					cerveu.	0.	1/21/13	
Client Sample ID	:: BFF40202DL			SDG No	0.1	G	1129	
Lab Sample ID:	G1129-01DL			Matrix:		А	ir	
Analytical Metho	d: TO-15			Test:		V	OCMS Group2	
Sample Wt/Vol·	400 Units: mL							
Sumple www.en								
File ID/Qc Batch	: Dilution:	Prep Date	-	Date Analyzed		Pre	p Batch ID	
VI 024530 D	10			01/23/15 18.10		VI	012315	
1 202 1330.2	10			01/25/15 10:10		12	012515	
CAS Number	Parameter	Conc. ppby	Conc. ug/M3	Qualifier	MDL	LOD	LOQ / CRQL	Units
			8					
TARGETS			* DO NOT US	E			_	
75-71-8	Dichlorodifluoromethane	1	4.94	UD *	0.4	1	5	ppbv
74-87-3	Chloromethane		2.07			1	5	ppbv
/5-01-4	Vinyl Chloride	0.3	0.77		0.3	0.5	0.3	ppbv
75 00 2	Chloroothana	1	5.88 2.64		0.5	1	5	ppov
75-00-5	Trichlorofluoromethane	1	2.04		0.4	1	5	ppbv
76-13-1	1 1 2-Trichlorotrifluoroethane	1	5.02 7.66		0.4	1	5	ppov
75-35-4	1 1-Dichloroethene	1	3.96		0.4	1	5	ppov
67-64-1	Acetone	25.1	59.6	D -	1	1	5	ppbv
75-15-0	Carbon Disulfide	1	3.11	UD *	0.5	1	5	ppby
1634-04-4	Methyl tert-Butyl Ether	1	3.61	UD	0.5	1	5	ppbv
75-09-2	Methylene Chloride	3.1	10.8	JDB	0.5	1	5	ppbv
156-60-5	trans-1,2-Dichloroethene	1	3.96	UD	0.5	1	5	ppbv
75-34-3	1,1-Dichloroethane	1	4.05	UD	0.4	1	5	ppbv
110-82-7	Cyclohexane	2.5	8.61	JD	1	1	5	ppbv
78-93-3	2-Butanone	1	2.95	UD	1	1	5	ppbv
56-23-5	Carbon Tetrachloride	0.3	1.89	UD	0.3	0.3	0.3	ppbv
156-59-2	cis-1,2-Dichloroethene	1	3.96	UD	0.5	1	5	ppbv
67-66-3	Chloroform	1	4.88	UD	0.2	1	5	ppbv
71-55-6	1,1,1-Trichloroethane	0.3	1.64	UD	0.3	0.3	0.3	ppbv
/1-43-2	Benzene	1	3.19		0.4	1	5	ppbv
107-06-2	Trichleroothene	1	4.05		1	1	5	ppov
79-01-0	1 2-Dichloropropage	0.5	4.62		0.15	0.5	0.5	ppov
75-27-4	Bromodichloromethane	1	67		0.5	1	5	ppbv
108-10-1	4-Methyl-2-Pentanone	1	4.1		0.5	1	5	ppbv
108-88-3	Toluene	3.1	11.7	JD	0.5	1	5	ppby
10061-02-6	t-1.3-Dichloropropene	1	4.54	UD	1	1	5	ppby
10061-01-5	cis-1,3-Dichloropropene	1	4.54	UD	1	1	5	ppbv
79-00-5	1,1,2-Trichloroethane	1	5.46	UD	1	1	5	ppbv
591-78-6	2-Hexanone	1	4.09	UD	1	1	5	ppbv
124-48-1	Dibromochloromethane	1	8.52	UD	0.5	1	5	ppbv
106-93-4	1,2-Dibromoethane	1	7.69	UD	1	1	5	ppbv
127-18-4	Tetrachloroethene	0.3	2.03	UD	0.3	0.3	0.3	ppbv
108-90-7	Chlorobenzene	1	4.61	UD	1	1	5	ppbv
100-41-4	Ethyl Benzene	1	4.34	UD	1	1	5	ppbv
179601-23-1	m/p-Xylene	2	8.69	UD	1	2	10	ppbv
1330-20-7	Iotal Xylenes	3	13.0	UD 🗸	2	3	15	ppbv

Client:	Leidos	Date Collected:	01/20/15
Project:	Hunter Army Airfield Air	Date Received:	01/21/15
Client Sample ID:	BFF40202DL	SDG No.:	G1129
Lab Sample ID:	G1129-01DL	Matrix:	Air
Analytical Method:	TO-15	Test:	VOCMS Group2
Sample Wt/Vol:	400 Units: mL		

File ID/Qc Batch	: Dilution:	Prep Date		Date Analyzed		Pre	p Batch ID	
VL024530.D	10			01/23/15 18:10		VL	012315	
CAS Number	Parameter	Conc. ppbv	Conc. ug/M3	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-47-6	o-Xylene	1	4.34	UD *	1	1	5	ppbv
100-42-5	Styrene	1	4.26	UD	1	1	5	ppbv
75-25-2	Bromoform	1	10.3	UD	0.5	1	5	ppbv
98-82-8	Isopropylbenzene	1	4.92	UD	1	1	5	ppbv
79-34-5	1,1,2,2-Tetrachloroethane	0.3	2.06	UD	0.3	0.3	0.3	ppbv
541-73-1	1,3-Dichlorobenzene	1	6.01	UD	1	1	5	ppbv
106-46-7	1,4-Dichlorobenzene	1	6.01	UD	1	1	5	ppbv
95-50-1	1,2-Dichlorobenzene	1	6.01	UD	1	1	5	ppbv
120-82-1	1,2,4-Trichlorobenzene	1	7.42	UD	0.4	1	5	ppbv
123-91-1	1,4-Dioxane	1	3.6	UDQ₩	1	1	5	ppbv
SURROGATES								
460-00-4	1-Bromo-4-Fluorobenzene	9.7			65 - 135		97%	SPK: 10
INTERNAL STAN	DARDS							
74-97-5 540-36-3 3114-55-4	Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5	1075580 2132030 2083500		6.64 8.31 13.73				

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Q = indicates LCS control criteria did not meet requirements

age:	GEL Cha	nin of ^{ber:} 3	Cus 66	tody	and	l Aı	nal	ytic	all	Req	ues	t		GEL La 2040 Sa Charles Phone: Fax: (84	borato tvage F ton, SC (843) 5 43) 766	ries, LI Road C 29407 556-817 5-1178	LC 7 71	- for each test)
O Number:		Phone #: (g	<i>b</i> 65)2	97-2	543			Sam	ple An	alysis I	Reque	ested (*	' (Fill	in the r	Tumbe			The stine Ture (A
DeinerSite Name: Hunter	****	Fax #:				Should	d this	iners	5									< Preservative Type (0
Address: 301 Laboratory Rd. Oak Ridge	TN 37831	V		, Patt	V	consid	ered:	er of conts	C+Mch									Comments Note: extra sample is
Collected by: Amanda Harness Send Re Sample ID	•Date Collected (mm-dd-yy)	*Time Collected (Military) (hhmm)	QC Code	Field Filtered ⁽⁷⁾	Sample Matrix ⁽⁴⁾	Radioactive	TSCA Regulate	Total numbe	TCLP VOI									required for sample specific QC
* For composites - indicate start and stop date/time	1128/15	11.00	C		50			2	Z					<u> </u>	-			
JOIL LIN												·						
								ļ										
				+	1			1										
			+			1	1	1										
				+				+	$\left \right $									
	:													-	1			
																$\left \right $		
																	$\left \right $	
															<u> </u>			
TAT Requested: Normal:Rush:Specify:Remarks:Are there any known hazards applicab	Thays ubject to Surch le to these sample	narge) Fax F s? If so, p	Results: lease li	Ye ist the h	azards	Č	NO	<u>c</u>	ircle D	eliverat	ile: C	of A	QC S	ummar	y / L	East Cen Mot	/ Lev ble Colli- tern htral untain	vel 2 / Level 3 / Level 4 ection Time Zone Pacific Other
Chain of C	ustody Signatures											Samp	le Shij	oping a	ind De	elivery	y Detai	115
Relinquished By (Signed) Date Time	Received by	(signed)	Date	Tim	e		GE	L PM	l:									
1 1/2 1/2 1/2 1/2	$> . \square$	()	\mathcal{D}	291	5 0	SPC	C Me	thod of	Shipme	nt:				Dat	e Ship	ped:		
1 Amanda Harris 1720113 100	- full	<u>*</u> X	-5-4-	<u> </u>			Air	bill #:										
2	3						Air	bill #:										For Lab Receiving Use Only
3	<u> </u>		- 	male MCI) = Matrix	Spike Di	uplicate	Sample	, G = Gra	1b, C = Co	omposit	e						Custody Seal Intact?
 C.) Created Frances QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplic QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplic 	ate, EB = Equipment Blar mple was field filtered or	 MS = Matri N - for sample 	was not f	ield filtered	, 03 -01	udae ee-	-Solid V	Vaste. O	=0il. F=	Filter, P=	Wipe, I	U=Urine,	F=Fecal	N=Nasal				YES NO
3.) Field Filtered: For inquia manifes, marcare marcare SW=Surfa	e Water WW=Waste Wa	ter, W=Water,	SO=Soil.	SD=Sedime	int, SL=Sit	uage, 55°	-Sona i				-						1	Cooler Temp.

Page 5 of 131

Report Date: February 3, 2015

	Page 1	of 1											
	Certificate of Analysis												
Sample Summary													
SDG Number:	366036	Date Collected:	01/28/2015 11:00	Matrix:	TCLP SOIL								
Lab Sample ID:	366036001	Date Received:	01/29/2015 09:20										
		Client:	LEID002	Project:	LEID00200								
Client ID:	Soil IDW	Method:	SW846 8260B	SOP Ref:	GL-OA-E-038								
Batch ID:	1454641	Inst:	VOA4.I	Dilution:	10								
Run Date:	02/02/2015 14:17	Analyst:	ACJ	Purge Vol:	5 mL								
Prep Date:	01/29/2015 16:00												
Data File:	020215V4\4U110.D	Column:	DB-624										

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ	
75-35-4	1,1-Dichloroethylene	U	0.010	mg/L	0.003	0.010	
107-06-2	1,2-Dichloroethane	U	0.010	mg/L	0.003	0.010	
106-46-7	1,4-Dichlorobenzene	U	0.010	mg/L	0.003	0.010	
78-93-3	2-Butanone	U	0.050	mg/L	0.015	0.050	
71-43-2	Benzene	U	0.010	mg/L	0.003	0.010	
56-23-5	Carbon tetrachloride	U	0.010	mg/L	0.003	0.010	
108-90-7	Chlorobenzene	U	0.010	mg/L	0.003	0.010	
67-66-3	Chloroform	U	0.010	mg/L	0.003	0.010	
127-18-4	Tetrachloroethylene	U	0.010	mg/L	0.003	0.010	
79-01-6	Trichloroethylene	U	0.010	mg/L	0.003	0.010	
75-01-4	Vinyl chloride	U	0.010	mg/L	0.003	0.010	

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No: 366036					ME	THOD TYP	E: SW846		
SAMPLE I	D: 366036001				CLIEN	NT ID: Soil	IDW		
CONTRAC	CT: LEID00200								
MATRIX:	ГСLР	DATE REC	CEIVED 2	9–JA	N-15	LEVEL:	Low %S	SOLIDS:	
CAS No	Analyte	<u>Result</u>	<u>Units</u>	<u>C</u>	Qual <u>M*</u>	MDL	<u>DF</u>	<u>Inst</u> ID	<u>Analytical</u> <u>Run</u>
7440-38-2	Arsenic	0.05	mg/L	U	Р	0.05	1	OPTIMA5	020215-1
7440-39-3	Barium	0.31	mg/L		Р	0.01	1	OPTIMA5	020215-1
7440-43-9	Cadmium	0.01	mg/L	U	Р	0.01	1	OPTIMA5	020215-1
7440-47-3	Chromium	0.01	mg/L	U	Р	0.01	1	OPTIMA5	020215-1
7439-92-1	Lead	0.0587	mg/L	В	Р	0.033	1	OPTIMA5	020215-1
7439–97–6	Mercury	0.00067	mg/L	U	AV	0.00067	1	HG4	020215W2-2
7782-49-2	Selenium	0.06	mg/L	U	Р	0.06	1	OPTIMA5	020215-1
7440-22-4	Silver	0.01	mg/L	U	Р	0.01	1	OPTIMA5	020215-1

*Analytical Methods:

P SW846 3010A/6010C

AV SW846 7470A

APPENDIX C

WASTE MANIFEST

Invoice: 134090

			#2641	9	Ź)				
NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number GA9 210 020	872	2. Page 1 of 3. Em. 1	ergency Response 800) 275-	se Phone 6629	4. Waste 7	racking Ni	^{imber} 076	931	
Generator's Name and Mailin 1550 FRANK C BLDG 1137 FORT STEWAF	Ng Address DWP ENVIRC OCHRAN DRIVE		FICE Genera	ator's Site Addres DWP ENV NR	ss (il different i 'IRONMI	than mailing addr ENTAL Of	FICE-	HUNTER	ARMY	,
Transporter 1 Company Nam	e (800) 607-826	¥				U.S. EPA ID	Number			
EQ INDUSTRIA	L SERVICES					U.S. EPA ID	<u>(435 6</u> Number	42 7 <u>42</u>		
Designated Facility Name an 5600 FULTON (ATLANTA, GA (acility's Phone: (40	^{d Site Address} EQIS ATL NDUSTRIAL BLVD, SV 30336 4) 494-3520	_ANTA TRANSF W	ER & PRO	CESSING		U.S. EPA ID GAI	Number R 000	039 776		
9. Waste Shipping Name	and Description			10. Cont	alners	11. Total	12. Unit			
1. NON-HAZARD				No.	Type OM	Quantity	WL/Vol. P			
2 2 2 2			ran dan series Angeler Angeler			1200		Sector .		
	, \$									
3.										
4. 4.									i Herrie Alternie	
. Special Handling Instruction	is and Additional Information								<u>~</u>	
GENERATOR'S CERTIFIC/ Fride Stofferor's Printed/Ty Hornational Shipments International Shipments International Shipments	TTON: I certify the materials described sed Name D D D D D D D D D D D D D D D D D D D	above on this manifest are	e not subject to leder Signifiant L xport from U.S.	a regulations or Port of er Date leav	ntry/axit:	per disposal of He	azardous W	astə. Month .3	Day ↓ 4	Year 15
Transporter Acknowledgmen esporter 1 Printed/Typed Nar PART 2 Printed/Typed Nar Insporter 2 Printed/Typed Nar	t of Receipt of Materials	{	Signature Signature	ynder	el M	on han	l	Month 3 Month	Day 4 Day	Year 15 Year
Discrepancy a. Discrepancy Indication Spa	29 Quantity	Туре		Residue		Partial Reja	etion		Full Rejection	Den
. Alternata Facility (or Genera	ttor)		Man	ifest Reference I	łumber:	U.S. EPA ID N	łumber			
· · · ·						1				
ility's Phone: Signature of Atternate Facili	ty (or Generator)		 			1		Month	Dey	Year
					¥,					
NONE			and the		s the second second		in here	3 1.4 5 8		6A.
NONS Designated Facility Owner or ted/Typed Name	Operator: Certification of receipt of ma	aterials covered by the man	ifest except as noted	in item 17a		<u> </u>		155	Desc	Ven

APPENDIX D

UNDERGROUND INJECTION CONTROL PERMIT REQUESTS AND APPROVALS

Kovalchik, Jill M.

From:	Stevenson, Algeana L CIV USARMY IMCOM ATLANTIC (US)
	<algeana.l.stevenson.civ@mail.mil></algeana.l.stevenson.civ@mail.mil>
Sent:	Thursday, October 09, 2014 3:36 PM
Го:	Stoll, Patricia A.; Kovalchik, Jill M.; Brian Odom (SES)
Cc:	Kiefer, Dale F CTR USARMY IMCOM ATLANTIC (US); Vergara, Ana del R
	SAS; Zsolt Haverland
Subject:	Approval UIC Application for HAA-09R2, HAAF, Georgia
-	(UNCLASSIFIED)
importance:	High
importance:	(UNCLASSIFIED) High

Classification: UNCLASSIFIED Caveats: NONE

Please see Bijan's approval of the permit for only 90-days in his email correspondence below. Also, note that in the event we require additional time we will be required to submit a full permit application to continue injection beyond this (i.e. 90-days)

Patty,

Did SAIC install the power box in which the lines were damaged? As noted in one of my previous emails. Canoochee has removed the meter and they need the repairs done before they'll re-energize the meter. If this is not an Installation power box there may be some additional logistical issues.

Algeana L. Stevenson Remediation Section Leader/Chem. Eng. DPW Prevention and Compliance Branch 1550 Veterans Parkway, Bldg. # 1137 Ft. Stewart, GA 31314-4927 T Work: (912) 315-5144 Cell: (912) 210-2950 Fax: (912) 315-5148 "ROCK" Resources Optimize Compliance Keep improving

THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, forwarding or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by email, and delete the original message immediately. Thank you. -----Original Message-----From: Rahbar, Bijan [mailto:Bijan.Rahbar@dnr.state.ga.us] Sent: Thursday, October 09, 2014 2:50 PM To: Stevenson, Algeana L CIV USARMY IMCOM ATLANTIC (US) Subject: RE: UIC Application for HAA-09R2, HAAF, Georgia (UNCLASSIFIED)

Algeana,

Please note that Pilot test notifications are only good for 90 days. Under rare circumstances we extend the pilot tests for another 90 days. Those circumstances need to be explained and most people request for the extension when they could not obtain enough data. I'll be ok with your notification this time but please submit a full permit application if you needed to continue injection beyond this. Thanks, Bijan

-----Original Message-----

From: Stevenson, Algeana L CIV USARMY IMCOM ATLANTIC (US) [mailto:algeana.l.stevenson.civ@mail.mil] Sent: Thursday, October 09, 2014 1:31 PM To: Rahbar, Bijan; Kiefer, Dale F CTR USARMY IMCOM ATLANTIC (US) Cc: Stoll, Patricia A.; Brian Odom (SES); Vergara, Ana del R SAS; Zsolt Haverland Subject: RE: UIC Application for HAA-09R2, HAAF, Georgia (UNCLASSIFIED)

Classification: UNCLASSIFIED Caveats: NONE

Bijan,

This is actually a request for the continuation of a Pilot Study in which the first phase of this study was conducted in 2011. I've attached to this email the original pilot study request along with an email denoting your previous approval. If possible we're looking to restart the pilot study. I've also attached the Addendum to the Work Plan for your review as well.

Thanks Again

Algeana L. Stevenson Remediation Section Leader/Chem. Eng. DPW Prevention and Compliance Branch 1550 Veterans Parkway, Bldg. # 1137 Ft. Stewart, GA 31314-4927 T Work: (912) 315-5144 C Cell: (912) 210-2950 Fax: (912) 315-5148 "ROCK" Resources Optimize Compliance Keep improving

THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. If the reader of this message is not the intended recipient,

2

or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, forwarding or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by email, and delete the original message immediately. Thank you.

-----Original Message-----From: Rahbar, Bijan [mailto:Bijan.Rahbar@dnr.state.ga.us] Sent: Thursday, October 09, 2014 12:21 PM To: Kiefer, Dale F CTR USARMY IMCOM ATLANTIC (US) Cc: Stevenson, Algeana L CIV USARMY IMCOM ATLANTIC (US) Subject: RE: UIC Application for HAA-09R2, HAAF, Georgia (UNCLASSIFIED)

Mr. Keifer,

The attached form was pilot test notification and not a UIC permit application. Is this the first notification for this site?

Our address is:

Watershed Protection Branch

2 MLK Jr. Drive.

East Tower

Suite 1152

Atlanta, GA 30334

Thanks, Bijan

From: Kiefer, Dale F CTR USARMY IMCOM ATLANTIC (US) [mailto:dale.f.kiefer.ctr@mail.mil]
Sent: Thursday, October 09, 2014 10:53 AM
To: Rahbar, Bijan
Cc: Stevenson, Algeana L CIV USARMY IMCOM ATLANTIC (US)
Subject: UIC Application for HAA-09R2, HAAF, Georgia (UNCLASSIFIED)

Classification: UNCLASSIFIED Caveats: NONE

Mr. Rahbar,

I left a telephone message for you, but you do not have to return my call if you receive this email. I attached a signed transmittal letter from Fort Stewart and a UIC Application Permit for HAA-09R2 that has a prior UIC approved from your office. The site has an approved prior Work Plan from Mr. Guentert. However, we are sending Mr. Guentert an Addendum #29 to the Work Plan (Part A/Part B) and will provide you with his approval. I understand that your office possibly moved within the past year. Would please verify your current mailing address so I can send you the hard copy of the attachment ? if it is not correct in the attached letter? I will correct the office mailing address (if necessary) in future correspondence. Thanks and have a good day.

Dale F. Kiefer, P.E.

CONTRACTOR, ERG, L.L.C.

Environmental Services

Phone: 912-767-4629 / Fax: 912-767-1724

email: dale.f.kiefer.ctr@mail.mil

"ROCK" - Resources, Optimize, Compliance, Keep Improving

THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW.

If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, forwarding or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by email and delete the original message immediately. Thank you

4

Classification: UNCLASSIFIED Caveats: NONE

Classification: UNCLASSIFIED Caveats: NONE

Classification: UNCLASSIFIED Caveats: NONE Underground Injection Control Program Pilot Test Injection Well Notification Form Attachment A EPD-UIC-003 Revision 1 Page 2 of 2

1.0 Address	Facility	<u>Operator</u>
1.1 Name	Hunter Army Air Field Bulk Fuel Facility	United States Army
1.2 Street Address	Building 7009, Perimeter Road	Mr. Thomas Fry
1.3 City, State	Hunter Army Air Field, Savannah, Georgia	Chief Environmental Division
1.4 ZIP Code	31405	
1.5 Telephone	(912) 767-2010	
2.0 Location:	Latitude: 32° 01' 45"	Longitude: 81° 08' 40"
3.0 What is the contami	nant in the Ground Water? Free product (LNA	APL)

4.0 Georgia Licensed Water Well Contractor or Bonded Driller: N/A – wells will be hand-augered under the supervision of a P.G. (see 5.0)

5.0 Professional Engineer or Geologist: Patricia Stoll, P.E. and Robert Gelinas, P.G.

6.0 Well Data Table

	Injection Wells	Monitoring Wells
6.1 Number Wells	Six (6) – proposed	One (1) extraction well – existing well MW-E5
6.2 Well Depth(s)	approx. 6-10 ft bgs	14 ft bgs
6.3 Well Diameter	1"	2"
6.4 Volume in/out	In – approx. 150 gal surfactant and approx. 4,250 gal potable water (solution & chase water)	Out - approx. 2.5 times the injected volume - 11,000 gal
6.5 Sampling freq.	Not applicable	Bi-weekly

7.0 Responsible EPD Associate for site: Jim Guentert of the Solid Waste Program

8.0 Date injection started: November 1, 2014 (earliest anticipated start date)

8.1 Date* injection stopped: 3 months maximum after start; extraction continues for up to 6 months total8.2 Reason Injection Stopped? Completion of pilot study

8.3 Date these injection wells were logged in to the UIC Class V Well inventory and file: Not applicable

9.0 UIC Class V Well Inventory Number: Not applicable

10.0 UST/HWMB CAP tracking number: Facility ID #9-025113*2

11.0 Pending UIC Class V Permit Number: Not applicable

*Note: This pilot test well form is valid only for 90 days from the start of injection.

**Submit this form to: Georgia Environmental Protection Division, Regulatory Support Program UIC Unit Suite 1062 East Tower 2 M.L. King, Jr. Dr. Atlanta, Georgia, 30334 From: Stoll, Patty Sent: Wednesday, September 21, 2011 3:53 PM To: Kovalchik, Jill M. Subject: FW: Hunter Army Airfield Temporary UIC Permit for Bulk FuelFacility Patty Stoll | SAIC Project Manager | Energy, Engineering & Infrastructure Business Unit (E2I) phone: 865.481.8792 | fax 865.482.7257 mobile: 865.556.9421 | email: patricia.a.stoll@saic.com -----Original Message-----From: Bijan Rahbar [mailto:Bijan.Rahbar@dnr.state.ga.us] Sent: Tuesday, July 26, 2011 11:49 AM To: Algeana L CIV US USA Stevenson Cc: Stoll, Patty Subject: Re: Hunter Army Airfield Temporary UIC Permit for Bulk FuelFacility I reviewed the attached pilot test notification form and the approval letter from the solid waste program. We have no objections to the notification and you may begin the field activities. Please note that 90-day approval window starts from the date that injection begins. Thanks, Bijan >>> "Stevenson, Algeana L CIV US USA" <<u>algeana.stevenson@us.army.mil</u>> 7/26/2011 11:22 am >>> Mr. Rahbar, Attached is an electronic copy of a request for a temporary UIC permit at the Bulk Fuel Facility Release 2 area located on Hunter Army Airfield. A hard copy is being forwarded via certified mail. I've also, attached the approval letter from the GA EPD Solid Waste Management Program of the proposed Work Plan. Patty Stoll from SAIC the contractor for this site asked me to forward this to you per your conversation authorizing the receipt of an electronic copy. Algeana L. Stevenson Remediation Section Leader DPW Prevention and Compliance Branch 1550 Frank Cochran Drive, Bldg. # 1137 Ft. Stewart, GA 31314-4927 * Work: (912) 315-5144 * Cell: (912) 210-2950 * Fax: (912) 315-5148 "ROCK"

Resources Optimize Compliance Keep improving

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND HEADQUARTERS, US ARMY GARRISON, FORT STEWART/HUNTER ARMY AIRFIELD DIRECTORATE OF PUBLIC WORKS 1587 FRANK COCHRAN DRIVE FORT STEWART. GEORGIA 31314-5048

REPLY TO ATTENTION OF

Office of the Directorate

July 26, 2011

CERTIFIED MAIL 70102780000144281913

Georgia Department of Natural Resources Environmental Protection Division Regulatory Support Program Watershed Protection Branch, Room 400 Attn: Mr. Bijan Rahbar, PhD 19 Martin Luther King Jr. Dr., S.W. Atlanta, Georgia 30334

Dear Mr. Rahbar:

Fort Stewart is pleased to submit to the Georgia Environmental Protection Division (GA EPD) the temporary permit request for the <u>Injection Well Operating Permit</u> <u>Application, Facility ID#9-025113*2, Hunter Army Airfield, Savannah, Georgia, for your</u> review and approval.

In accordance with the Federal Code of Regulations, Section 270.11(d), the following certification is provided by the Installation:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or comments please contact Ms. Algeana Stevenson at (912) 315-5144 or Ms. Tressa Rutland, Directorate of Public Works, Environmental Division, Prevention and Compliance Branch at (912) 767-2010.

Sincerely,

Robert R. Baumgardt Director, Public Works

Enclosure

Underground Injection Control Program Pilot Test Injection Well Notification

Attachment A EPD-UIC-003 Revision 1 Form Page 1 of 1

1.0 1.1 1.2 1.3 1.4	Address FACILI Name <u>Hunter</u> Street Address City, State <u>Hur</u> ZIP CODE <u>314</u>	TY : Army Air Field Bulk Fuel Facility Building 7009, Perimeter Road Ater Army Air Field, Savannah, GA 05	OPERATOR : <u>United States Army</u> <u>Mr. Thomas Fry</u> <u>Chief Environmental Division</u>
1.5	Telephone Num.	(912) 767-2010	
2.0	LOCATION:	Latitude: <u>32° 01' 45" (approx</u> Longitude: <u>81° 08' 40" (approx</u>	kimate center of site) imate center of site)
3.0	What is the con	taminant in the Ground Wat	er? Free product (LNAPL)
4.0	Georgia License Contractor or E supervision of a Geo	ed Water Well Sonded Driller: <u>N/A,we</u> Orgia P.G.	Ils will be hand-augered under

5.0 Professional Engineer or Geologist: Patricia Stoll, P.E. and Wayne Parker, P.G.

6.0 Well Data Table

		Injection Wells	Monitoring Wells
6.1	Number Wells	Nine (9) – proposed	Two (2) extraction wells – existing wells MW-E1 and MW-E5
6.2	Well Depth(s)	approx. 6 ft bgs	14 ft bgs
6.3	Well Diameter	1-inch	2-inch
6.4	Air volume in/out	IN: 2,000 gal of surfactant (for all 9 wells) and a maximum of 2,800 gal of water per day (for all 9 wells)	OUT: Maximum 7,800 gal per day (both wells)
6.5	Sampling freq	Not Applicable	Bi-weekly

7.0 Responsible EPD Associate for site: Jim Guentert of the Solid Waste Program

8.0 Date injection started: <u>August 3, 2011 (anticipated)</u>
8.1 Date* injection stopped: <u>Surfactant on or before September 3, 2011 (anticipated)</u>; Potable water: at completion of Pilot Study (estimated at 6 months)

8.2 Reason Injection Stopped? Completion of pilot study

8.3 Date these injection wells were logged in to the UIC Class V.Well Inventory and file: Not Applicable

9.0 UIC Class V Well Inventory Number: Not Applicable

10.0 UST/HWMB CAP tracking number: Facility ID #9-025113*2

11.0 Pending UIC Class V Permit Number: Not Applicable

*Note: This pilot test well form is only valid for 90 days from the start of injection. **Submit this form to: Georgia Environmental Protection Division Regulatory Support Program UIC Unit Suite 1062 East Tower 2 M.L.King Jr. Dr. Atlanta, Georgia, 30334

Bijan Rahbar

From:	McGowan, Jimmie M CIV US USA IMCOM [Jimmie.McGowanjr@us.army.mil]
Sent:	Tuesday, November 08, 2011 8:32 AM
To:	Bijan Rahbar
Cc:	Stoll, Patty; Stevenson, Algeana L CIV US USA; Kiefer, Dale F CTR US USA FORSCOM
Subject:	RE: Hunter Army Airfield Temporary UIC Permit for Bulk FuelFacility (UNCLASSIFIED)

Classification: UNCLASSIFIED Caveats: FOUO

Mr. Rahbar,

Fort Stewart is respectfully requesting an additional 90-day extension to the Bulk Fuel Facility (HAA-09 Release #2) Underground Injection Control, Pilot Test Injection Well Notification Permit, located on Hunter Army Airfield. At your earliest convenience, could you please respond with your concurrence to the request of extending the permit for this location. Also, if you need an additional transmittal letter, from the Installation requesting this action, please let me know, and I will assure that one will be routed for approval.

If you have any questions, comments, or concerns, please contact myself or Ms. Algeana Stevenson for further clarification.

Highest Regards,

Jimmie McGowan

Remediation/Restoration and Compliance Division Versar Inc. Environmental Division Directorate of Public Works (912)-767-2202 (o) (912)-228-7227 (c) 150*2470*136 (d.c) (912)-614-5400 (c)

ROCK

"Resources Optimize Compliance Keep Improving"