

CORRECTIVE ACTION PLAN PROGRESS REPORT FOR CALENDAR YEAR 2005

FINAL

3d Inf Div (Mech)

FOR

SOLID WASTE MANAGEMENT UNIT 24B, OLD RADIATOR SHOP/PAINT BOOTH AT FORT STEWART, GEORGIA

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-02-D-0004 Delivery Order 0048

September 2005

DOCUMENT 5.8

CORRECTIVE ACTION PLAN PROGRESS REPORT FOR CALENDAR YEAR 2005 FOR SOLID WASTE MANAGEMENT UNIT 24B, OLD RADIATOR SHOP/PAINT BOOTH AT FORT STEWART, GEORGIA

REGULATORY AUTHORITY Resource Conservation and Recovery Act Title II, Subtitle C, Section 3004; 42 U.S.C. 6901 et seq.; 40 CFR 264

Prepared for U. S. Army Corps of Engineers Savannah District Under Contract DACA21-02-D-0004 Delivery Order Number 0048

Prepared by Science Applications International Corporation 151 Lafayette Drive Oak Ridge, TN 37830

September 2005

FINAL

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

contributed to the preparation of this document and should not be considered an eligible contractor for its review.

CERTIFICATION

This Corrective Action Plan Progress Report for Calendar Year 2005 for Solid Waste Management Unit 24B, Old Radiator Shop/Paint Booth at Fort Stewart, Georgia, has been prepared in accordance with Title 40, Code of Federal Regulations, Part 264 and Hazardous Waste Facility Permit No. HW-45(S&T), as renewed August 14, 1997.

The undersigned certifies that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and that I have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, to enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my direction.

GISTE 22851 FESSIONAL 916105 Patricia A. Stoll, P.E. VGINEE

Technical Manager Science Applications International Corporation

05-074(E)/082405

THIS PAGE INTENTIONALLY LEFT BLANK.

FIGU	JRES .			vii
TAB	LES			vii
ACR	ONYN	/IS		ix
1.0	INTE	RODUC	TION	1-1
	1.1	SITE I	BACKGROUND AND OPERATIONAL HISTORY	1-1
	1.2	SUMN	MARY OF PHASE I AND II RCRA FACILITY INVESTIGATIONS	1-4
		1.2.1	Nature and Extent of Surface Soil Contamination	1-4
		1.2.2	Nature and Extent of Subsurface Soil Contamination	1-5
		1.2.3	Nature and Extent of Groundwater Contamination	1-5
	1.3		ECTIVE ACTION PLAN FOR SWMU 24B	
	1.4	BIAN	NUAL GROUNDWATER SAMPLING FOR CALENDAR YEAR 2003	1-7
	1.5	REPO	RT ORGANIZATION	1-7
2.0	SOII	AND (GROUNDWATER SAMPLING AND EVALUATION	2-1
	2.1	SOIL.		2-1
		2.1.1	Surface Soil	2-1
		2.1.2	Subsurface Soil	2-5
		2.1.3	Soil Data Evaluation	2-5
	2.2	GROU	JNDWATER	2-9
		2.2.1	Replacement of Monitoring Well 1	2-9
		2.2.2	Groundwater Sampling (March 2005)	2-9
		2.2.3	Groundwater Flow and Direction	2-9
		2.2.4	Analytical Results	2-9
		2.2.5	Groundwater Data Evaluation (CY 2005)	2-14
		2.2.6	Resolution of CY 2003 Recommendations	2-16
3.0	CON	CLUSI	ONS AND RECOMMENDATIONS	3-1
	3.1	CONC	CLUSIONS	3-1
		3.1.1	Soil	
		3.1.2	Groundwater	3-2
	3.2	RECO	MMENDATIONS	3-2
4.0	REF	ERENC	ES	4-1

CONTENTS

APPENDICES

Α	SOIL BORING LOGS AND WELL CONSTRUCTION DIAGRAM FOR MW1-R	A-1
В	ANALYTICAL DATA AND CHAIN-OF-CUSTODY FORMS	B-1
С	PROTOCOL FOR ESTABLISHING REMEDIAL LEVELS	C-1
D	GROUNDWATER DATA FROM MONITORING WELLS	D-1

THIS PAGE INTENTIONALLY LEFT BLANK.

FIGURES

Location of SWMU 24B at Fort Stewart, Georgia	1-2
Site Features and RFI Sampling Locations at SWMU 24B	1-3
Locations of Soil Samples in Building 1056 of SWMU 24B	
Site Inspection and Groundwater Sampling Locations for the Corrective Action for	
SWMU 24B (March 2005)	
Shallow Groundwater Potentiometric Surface Map of SWMU 24B (March 15, 2005)	
	Site Features and RFI Sampling Locations at SWMU 24B Locations of Soil Samples in Building 1056 of SWMU 24B Site Inspection and Groundwater Sampling Locations for the Corrective Action for SWMU 24B (March 2005)

TABLES

1-1	Remedial Levels for COCs in Soil at SWMU 24B	1-6
2-1	Summary of Analytical Results for Surface Soil Collected under Building 1056	
	of SWMU 24B	2-3
2-2	Summary of Analytical Results for Subsurface Soil Collected under Building 1056	
	of SWMU 24B	2-4
2-3	Evaluation of Site-Related Constituents in Surface Soil (August 2004), SWMU 24B	2-6
2-4	Evaluation of Site-Related Constituents in Subsurface Soil (August 2004), SWMU 24B	2-8
2-5	Summary of Analytes Detected in Groundwater (March 2005), SWMU 24B	2-11
2-6	Field Parameter Measurements during Groundwater Sampling (March 2005), SWMU 24B	2-12
2-7	Water-Level Data for Monitoring Wells, SWMU 24B.	2-12
2-8	Evaluation of Site-Related Constituents in Groundwater (March 2005), SWMU 24B	2-15
2-9	Resolution of Recommendations from Biannual Sampling (July 2003) Presented in the	
	CAP Progress Report for CY 2003, SWMU 24B.	2-17

THIS PAGE INTENTIONALLY LEFT BLANK.

ACRONYMS

BGS	below ground surface
CAP	Corrective Action Plan
COC	constituent of concern
COPC	constituent of potential concern
CY	calendar year
DPW	Directorate of Public Works
EM	Engineer Manual
EPA	U. S. Environmental Protection Agency
GA EPD	Georgia Environmental Protection Division
GSSL	generic soil screening level
PCE	tetrachloroethene
PRG	preliminary remediation goal
RBC	risk-based concentration
RCRA	Resource Conservation and Recovery Act
RFI	RCRA facility investigation
SAIC	Science Applications International Corporation
SAP	Sampling and Analysis Plan
SRC	site-related constituent
SVOC	semivolatile organic compound
SWMU	solid waste management unit
TCE	trichloroethene
USACE	U. S. Army Corps of Engineers
VOC	volatile organic compound

THIS PAGE INTENTIONALLY LEFT BLANK.

1.0 INTRODUCTION

This Corrective Action Plan (CAP) progress report for calendar year (CY) 2005 for Solid Waste Management Unit (SWMU) 24B, Old Radiator Shop/Paint Booth at Fort Stewart, Georgia, presents the results of the soil sampling performed in August 2004 and groundwater sampling performed in March 2005. This report was prepared in accordance with the requirements of the final CAP for the site (SAIC 2002).

This report has been prepared by Science Applications International Corporation (SAIC) for the U. S. Army Corps of Engineers (USACE), Savannah District under contract DACA21-02-D-0004, delivery order 0048. The soil and groundwater sampling were conducted in accordance with Addendum #4 to the Sampling and Analysis Plan for Phase II Resource Conservation and Recovery Act Facility Investigations of 16 Solid Waste Management Units (SAIC 2004a) and the Sampling and Analysis Plan for Phase II RCRA Facility Investigations of 16 Solid Waste Management Units (SAIC 2004a) and the Sampling and Analysis Plan for Phase II RCRA Facility Investigations of 16 Solid Waste Management Units (SAIC 2004a), which were developed in accordance with USACE Guidance Engineer Manual (EM) 200-1-3 (USACE 2001).

1.1 SITE BACKGROUND AND OPERATIONAL HISTORY

Solid Waste Management Unit (SWMU) 24B, the Old Radiator Shop/Paint Booth, is located in Building 1056, which is in the southern portion of the garrison area on the eastern side of Tilton Avenue (Figure 1-1). Building 1056 housed a radiator shop and a paint booth in the past and is currently used for equipment repair and storage. The location of the paint booth in relation to Building 1056 and site features of SWMU 24B are presented in Figure 1-2. Current plans for the area around the SWMU 24B site include demolition of Building 1056 within the next 2 years (CY 2005/2006) under a military construction project involving upgrading of maintenance facilities. A Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) was conducted for SWMU 24B, and the results were reported in the *Addendum for SWMU 24B: Old Radiator Shop/Paint Booth to the Revised Final Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia* (SAIC 2001).

The operational history of the site is vague. Building 1056 used to be a radiator shop. The area is currently used as an equipment repair and storage area. In 1993 long-time Building 1056 workers were interviewed regarding their knowledge of the history of former operations at this facility. One employee reported that an old paint booth had been located in the northern corner of the building, but that it had been out of use for about 18 years. Before use as a paint booth, the area reportedly housed the old radiator shop. Other employees indicated that they did not know what materials had been used in the old paint booth and were not aware of a radiator shop having been located in the building.

Other research into former operations at Building 1056 has indicated that a drainpipe led from the building and discharged into a ditch (Figure 1-2). It is unknown whether the drainpipe originally discharged to a ditch running parallel to Building 1056 or to the ditch on the west side of Tilton Avenue. It was reported that the Directorate of Engineering and Housing installed a pipe under Tilton Avenue that connected the drainpipe in Building 1056 to the industrial wastewater pipeline located on the west side of Tilton Avenue (Geraghty and Miller 1992), at which point the discharge was no longer routed to the ditch. The Fort Stewart Plumbing/Mechanical and Electrical Department was not able to determine when the piping from Building 1056 was connected to the industrial wastewater treatment plant drainage system or where the connection was located. There is a visible cut in the concrete across Tilton Avenue, approximately 15 ft southeast of the northwestern corner of Building 1056. It is believed that this is the location of the connection.

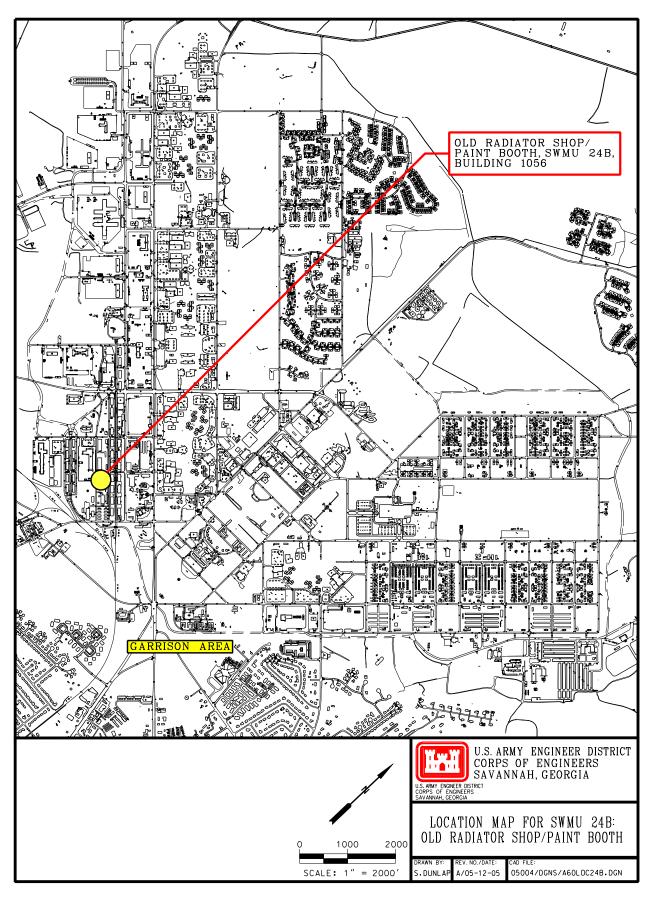


Figure 1-1. Location of SWMU 24B at Fort Stewart, Georgia

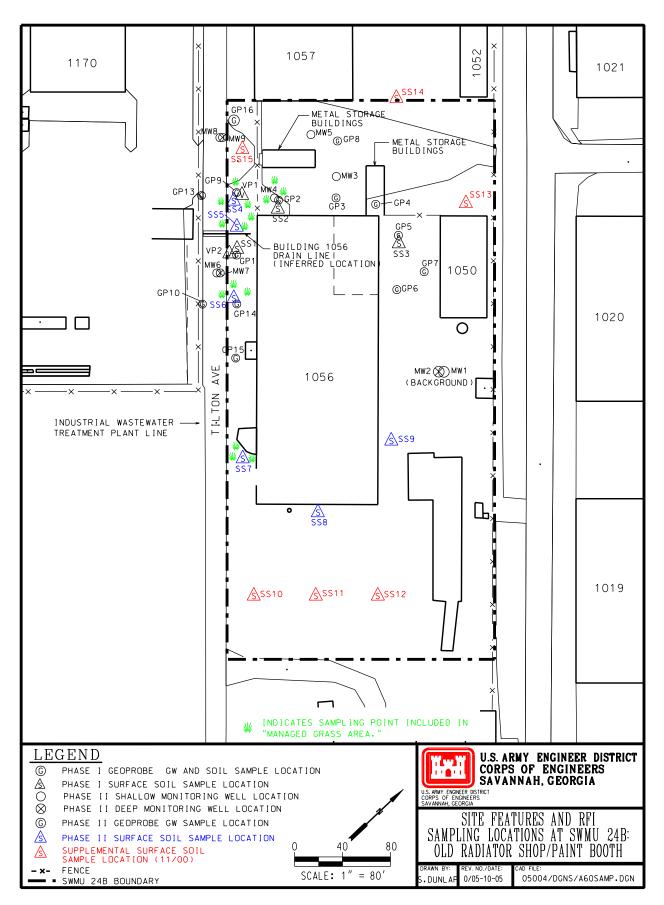


Figure 1-2. Site Features and RFI Sampling Locations at SWMU 24B

If the facility was previously used as a radiator repair shop, the wastes generated would probably have been the same as those generated under its current operations as an engine equipment repair facility. These wastes include caustic cleaning solution, sodium hydroxide, water-based fluorescein dye solution, and spent recirculation wastes from the wet-curtain spray paint booth.

SWMU 24B is generally level and covered with concrete or gravel around Building 1056. The site is heavily congested with stored equipment (e.g., motors and metal boxes). The surface elevation of the site is approximately 85.5 ft above mean sea level.

Groundwater was encountered at approximately 6 to 8 ft below ground surface (BGS). The shallow surficial groundwater flow direction across the site is generally to the west. The deep surficial groundwater generally flows from the southwest to south. There are no surface water/sediment migration pathways at the site. Former drain lines from the facility might have discharged to a ditch alongside Building 1056 that is no longer present or a ditch alongside Tilton Avenue. The closest surface water feature is an approximately 6-ft-deep man-made drainage ditch located approximately 500 ft to the west. This ditch is capable of intercepting the shallow groundwater from the site. The drainage ditch ultimately discharges into Mill Creek, approximately 2,600 ft to the west. In addition, a tributary of Mill Creek is located approximately 1,200 ft to the south. The deep surficial groundwater might intercept this tributary.

1.2 SUMMARY OF PHASE I AND II RCRA FACILITY INVESTIGATIONS

A Phase I RFI was conducted at SWMU 24B in 1998 by SAIC. During the investigation, five surface soil samples, four subsurface soil samples, and six groundwater samples were collected using direct-push technology techniques (Figure 1-2). The samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and RCRA metals.

A Phase II RFI was performed by SAIC in January 1999 and consisted of collecting eight groundwater screening samples to determine horizontal extent, collecting two vertical profiles to determine vertical extent, installing and sampling nine (six shallow and three deep) monitoring wells, sampling surface and subsurface soil during the installation of the monitoring wells, and collecting an additional six surface soil samples. The sampling locations from the Phase II investigations are shown in Figure 1-2. Supplemental groundwater sampling of all nine monitoring wells for VOCs and SVOCs was performed in November 2000.

1.2.1 Nature and Extent of Surface Soil Contamination

Four VOCs—carbon disulfide, butanone, acetone, and toluene—were detected in surface soil during the Phase I and Phase II RFIs. The Phase II RFI confirmed SVOC contamination in the shallow soil samples. Seventeen SVOCs were detected in surface soil: 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, benzo(*g*,*h*,*i*)perylene, benzo(*k*)fluoranthene, chrysene, di-*N*-octylphthalate, fluoranthene, fluorine, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene. Arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver were detected at concentrations above their reference concentrations in at least one of the surface soil samples during the Phase I or Phase II RFI. Of the site-related constituents (SRCs) in surface soil, benzo(*a*)pyrene, benzo(*b*)fluoranthene, and indeno(1,2,3-cd)pyrene were determined to be human health constituents of concern (COCs), and cadmium, chromium, and lead were determined to be contaminant migration COCs in surface soil requiring corrective action.

1.2.2 Nature and Extent of Subsurface Soil Contamination

In the subsurface soil, the VOCs detected were carbon disulfide, methylene chloride, tetrachloroethene (PCE), trichloroethene (TCE), and toluene. Only one SVOC, pyrene, was detected in the subsurface soil. The only metals detected at concentrations above their reference background criteria were mercury and selenium. None of the SRCs in subsurface soil was determined to be a COC requiring corrective action.

1.2.3 Nature and Extent of Groundwater Contamination

Low concentrations of three VOCs (methylene chloride, PCE, and TCE) were detected sporadically in groundwater from monitoring wells through the supplemental groundwater sampling of November 2000. No SVOCs were detected in groundwater.

Only one metal, chromium, was detected at concentrations above its reference background criterion in the shallow surficial groundwater. Two metals (chromium and barium) were detected at concentrations above their reference background criteria in the deep groundwater. None of the SRCs in groundwater was determined to be a COC requiring corrective action.

1.3 CORRECTIVE ACTION PLAN FOR SWMU 24B

In accordance with the recommendations of the Phase II RFI, a CAP was developed for SWMU 24B to evaluate potential remedial alternatives to address human health COCs in surface soil [benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene] (SAIC 2001).

Corrective action technologies were identified for contaminants [benzo(*a*)pyrene, benzo(*a*)anthracene, benzo(*b*)fluoranthene, and indeno(*1,2,3-cd*)pyrene] in surface soil at SWMU 24B. The screened technologies for surface soil were combined to form remedial alternatives to meet the remedial response objective to minimize human contact with surface soil containing SVOCs at concentrations greater than the remedial levels as developed in the revised final *Addendum for SWMU 24B: Old Radiator Shop/Paint Booth to the Revised Final Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia,* (SAIC 2001) within the boundaries of SWMU 24B. The recommended soil remedial levels are presented in Table 1-1. In addition, Building 1056 is scheduled to be demolished in CY 2005/2006; therefore, no definitive decision can be made about surface soil contamination until soil samples have been collected from below Building 1056 and their results evaluated to determine whether the activities in Building 1056 contributed to the surface soil contamination. Implementation of institutional controls will restrict access to surface soil until the soil below the building can be sampled so that any previously undiscovered contamination can be addressed. Groundwater monitoring was included as part of the remedial alternatives even though no groundwater contaminants were identified to ensure that contaminants are not leaching to the groundwater table.

The following three corrective action alternatives were evaluated for surface soil contamination at SWMU 24B:

- Alternative 1: Institutional Controls and Groundwater Monitoring,
- Alternative 2: Concrete Cap with Institutional Controls and Groundwater Monitoring, and
- Alternative 3: Excavation with Institutional Controls and Groundwater Monitoring.

COC	СОС Туре	Remedial Level (mg/kg)				
Benzo(a)pyrene	HHCOC	0.89				
Benzo(a)anthracene	HHCOC	8.93				
Benzo(b)fluoranthene	HHCOC	8.93				
Indeno(1,2,3-cd)pyrene	HHCOC	8.93				

Table 1-1. Remedial Levels for	COCs in Soil at SWMU 24B
--------------------------------	--------------------------

COC = Constituent of concern.

HHCOC = Human health constituent of concern.

SWMU = Solid waste management unit.

The selected corrective action alternative for remediation of surface soil was Alternative 1: Institutional Controls and Groundwater Monitoring. Implementation of this alternative will be coordinated with the demolition activities scheduled for the area. Building 1056 is scheduled to be demolished in CY 2005/2006. Per the recommendations of the CAP, following demolition of Building 1056, soil under the slab was to be sampled and analyzed for VOCs, SVOCs, and RCRA metals. For planning purposes, it was decided to sample the soil prior to building demolition. The soil sampling was performed in August 2004 and the results are reported in this document (Section 2.1) prior to the demolition of the building to allow earlier coordination with the construction plans for the area. Following analysis of the data from soil collected under the slab, an addendum to the CAP is to be prepared recommending additional actions and/or monitoring based on the new data and coordinating these actions with the final construction design and schedule. This alternative was selected for remediation because it will meet the remedial response objective. The specific features of the alternative include those described below.

- Land use restrictions will be used to prohibit excavation and groundwater use and construction within the property boundaries. Signs warning of the contamination will be posted approximately every 200 ft along Tilton Avenue and along existing fences around the site. During a site walkover in September 2003, the Georgia Environmental Protection Division (GA EPD) indicated to the Fort Stewart Directorate of Public Works (DPW) that installation of the warning signs could be postponed until the completion of the demolition of Building 1056, which is presently scheduled for the CY 2005/2006 timeframe.
- Groundwater monitoring will be conducted on a biannual basis (every other year) until Building 1056 has been demolished (scheduled to occur in CY 2005/2006) because of the potential for contaminants in soil under the slab to migrate to groundwater. Groundwater monitoring will consist of low-flow sampling of the six shallow surficial groundwater wells (MW1, MW3, MW4, MW5, MW6, and MW8). The groundwater samples will be analyzed for VOCs, SVOCs, and RCRA metals. VOCs and RCRA metals are not COCs at the site; however, they are the classes of chemicals most likely to be associated with the paint booth and, therefore, the most likely to be present under the building slab.
- A CAP progress report will be issued annually to report the results of site inspection and maintenance. In years in which groundwater monitoring is performed (biannually), the CAP progress report will include the results of the groundwater monitoring.
- With GA EPD's concurrence, all groundwater monitoring wells will be abandoned when concentrations are below remedial levels and the remediation is determined to be complete.

The CAP is presently under review by GA EPD. The Fort Stewart DPW has elected to implement the alternative to ensure protectiveness of human health in anticipation of concurrence from GA EPD with no major revisions.

1.4 BIANNUAL GROUNDWATER SAMPLING FOR CALENDAR YEAR 2003

The first biannual groundwater sampling event was performed in July 2003 to meet the requirements of the selected remedial alternative recommended in the CAP for SWMU 24B (SAIC 2002). Groundwater was collected from six shallow surficial groundwater wells at SWMU 24B and analyzed for VOCs, SVOCs, and RCRA metals. The results of the first biannual groundwater sampling event were presented in the *Corrective Action Plan Progress Report for CY 2003 for SWMU 24B* (SAIC 2004b). The results are summarized below.

Four constituents (TCE, PCE, cadmium, and mercury) were identified as SRCs in groundwater from the July 2003 sampling. PCE was detected above the U. S. Environmental Protection Agency (EPA) Region 3 preliminary remediation goal (PRG), but not the maximum concentration detected during the Phase II RFI. However, the maximum concentration of PCE was not specifically evaluated because of its having been screened out by the application of validation rules developed for the Phase II RFI for 16 SWMUs. Cadmium was detected above the EPA Region 3 tap water PRG and the maximum concentration detected during the Phase II RFI. Of the remaining constituents, TCE was detected below the maximum concentration from the previous sampling endeavor (Phase II RFI) and mercury was detected below the EPA Region 3 tap water PRG (1.1 μ g/L); therefore, no further action is required for these constituents.

The latest groundwater results (CY 2003) indicate concentrations of PCE and cadmium above the maximum concentration indicated in the Phase II RFI report and their EPA Region 3 tap water PRGs; therefore, in accordance with the established protocol, it was recommended that the next scheduled groundwater sampling event (CY 2005) be used to confirm whether cadmium and PCE are constituents of potential concern (COPCs) and require development of remedial levels.

Even though the remaining constituents (TCE and mercury) were not detected above regulatory criteria, they will continue to be monitored through the biannual groundwater sampling program to ensure that they are not migrating to groundwater and until Building 1056 is demolished. Building 1056 is scheduled to be demolished in CY 2005/2006.

1.5 REPORT ORGANIZATION

The report organization presented in this section provides an outline of the information required by the soil sampling (CY 2004) and groundwater monitoring for CY 2005. This report is organized as follows:

- Chapter 1.0: site background, operational history, and summary of Phase I and Phase II RFIs; the CAP; and biannual groundwater sampling (CY 2003);
- Chapter 2.0: soil (August 2004) and groundwater sampling (March 2005) and data evaluation;
- Chapter 3.0: conclusions and recommendations; and
- Chapter 4.0: references.

The soil boring logs for the soil sampling and the well construction diagram for the new MW1 are presented in Appendix A. Appendix B contains the chain-of-custody forms and the analytical results for the soil and groundwater sampling conducted in March 2005 at SWMU 24B. Appendix C contains the protocol approved by GA EPD for establishing remedial levels after GA EPD has approved the RFI and CAP. Appendix D presents a summary of all analytes detected in groundwater from the shallow surficial groundwater wells.

THIS PAGE INTENTIONALLY LEFT BLANK.

2.0 SOIL AND GROUNDWATER SAMPLING AND EVALUATION

In accordance with the corrective action recommended in the CAP, soil samples were to be collected under the slab of Building 1056 and groundwater samples were collected from six shallow surficial groundwater monitoring wells at SWMU 24B. As discussed in Section 1.3, GA EPD has agreed that the installation of warning signs can be postponed until after the demolition of Building 1056, which is scheduled for CY 2005/2006; therefore, no site inspection was performed in CY 2005. For planning purposes, it was decided to sample the soil below the building slab prior to the building demolition. The following sections present the results of soil sampling conducted in CY 2004 and groundwater sampling in CY 2005.

2.1 SOIL

In accordance with the corrective action recommended in the CAP, soil samples were collected from eight boreholes installed through the concrete slab of Building 1056 to determine whether soil is contaminated and to identify the potential impact to the alternatives selected in the CAP for SWMU 24B (SAIC 2002).

Eight soil borings were installed through the concrete slab in the area of the former drain line of Building 1056 (Figure 2-1). The borings were installed using a portable GeoprobeTM sampler following coring through the concrete slab, as described in the Sampling and Analysis Plan (SAP) (SAIC 1997). Two soil samples were collected from each boring. The first sample from each boring was collected from the 0.5- to 2.0-ft interval under the slab and base of the building's foundation. The second sample from each boring was collected at the depth of the bottom of the drain line approximately 3 to 5 ft BGS. The boring logs for the soil sampling are presented in Appendix A.

The soil samples were sent to an off-site analytical laboratory (General Engineering Laboratories) for VOC, SVOC, and RCRA metals analyses and received expedited analysis (i.e., 24- to 48-hour turnaround) from the receipt of the last soil sample. The surface soil and subsurface analytical results are summarized in Tables 2-1 and 2-2, respectively, and are discussed in the following sections. The complete analytical results and chain-of-custody forms are presented in Appendix B.

2.1.1 Surface Soil

The surface soil interval was considered the first interval below the concrete slab that made up the foundation of Building 1056; therefore, the surface soil interval ranged from 0.5 to 2.2 ft BGS.

VOCs. Two VOCs (PCE and toluene) were detected in surface soil (Table 2-1). PCE was detected in seven of eight surface soil samples at concentrations ranging from 0.0016 to 0.01 mg/kg. Toluene was detected only once at an estimated concentration of 0.00041J mg/kg. PCE and toluene are considered SRCs in surface soil from the CY 2004 sampling event.

SVOCs. Only one SVOC was detected in surface soil (Table 2-1). Benzoic acid was estimated in four of eight surface soil samples at concentrations ranging from 0.0366J to 0.057J mg/kg. Benzoic acid is considered an SRC in surface soil from the CY 2004 sampling event.

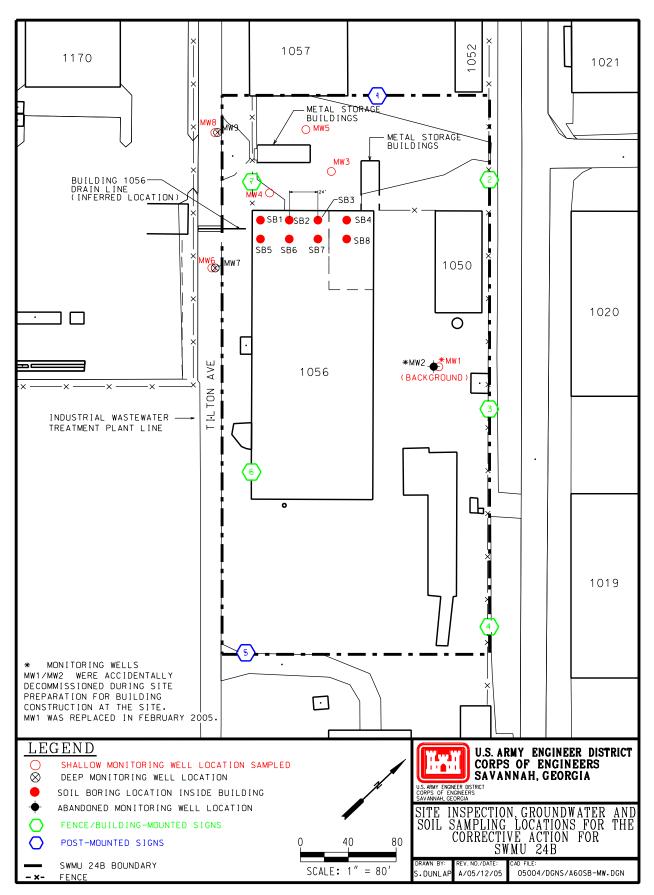


Figure 2-1. Locations of Soil Samples in Building 1056 of SWMU 24B

Table 2-1. Summary of Analytical Results for Surface Soil Collected under Building 1056 of SWMU 24B

Station	EPA				SB1	SB2	SB3	SB4	SB5	SB6	SB7	SB8
Sample ID	Region 3		Ref.	Res.	241181	241281	241381	241481	241581	241681	241781	241881
Date	Res. Soil RBC		Bkgd.	RBC	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04
Depth (ft)	$(HQ = 1.10E-6)^{a}$	GSSL ^b	Conc.	Туре	0.5 to 2.0	0.5 to 1.9	0.5 to 2.2	0.5 to 2.0	0.5 to 2.2	0.5 to 2.2	0.5 to 1.9	0.5 to 1.9
	Volatile Organic Compounds (mg/kg)											
Tetrachloroethene	1.183	0.06	0	С	<0.0013 U	0.0022	0.0051	0.0086	0.0016	0.0034	0.01	0.0042
Toluene	1564	12	0	Ν	<0.0013 U	<0.0011 U	<0.0012 U	<0.001 U	<0.0011 U	<0.0011 U	0.00041 J	<0.0012 U
				Sem	ivolatile Org	anic Compo	unds (mg/kg)				
Benzoic Acid	31,290	400	0	Ν	<0.703 U	<0.701 U	0.0366 J	<0.71 U	<0.72 U	0.0396 J	0.0495 J	0.057 J
					Me	tals (mg/kg)						
Arsenic	0.4258	1	2.1	С	<0.216 U	<0.215 U	<0.225 U	0.37 J	<0.222 U	<0.214 U	<0.223 U	<0.22 U
Barium	547.5	82	14.7	Ν	3.33	2.35	2.77	2.43	3.24	2.49	3.79	2.81
Chromium	23.46	2	6.21	Ν	2.5 J	3.2 J	3.02 J	2.55 J	3.62 J	2 J	3.07 J	1.97 J
Lead	400	400	8.81	Т	1.5	1.32	2.32	1.64	2.01	1.47	2.11	1.8
Mercury	2.346	0.1	0.0342	Ν	0.019	0.017	0.031	0.035	0.029	0.016	0.023	0.019
Selenium	39.11	0.3	0.406	Ν	<0.17 U	<0.169 U	2.52	<0.171 U	<0.175 U	<0.168 U	<0.175 U	<0.173 U

2-3

^{*a*}EPA Region 3 residential soil RBCs were updated as of April 2005 from the EPA Mid-Atlantic Hazardous Site Cleanup Web site (http://www.epa.gov/reg3hwmd/risk/index.htm). ^{*b*}No remedial level was established in the Phase II Resource Conservation and Recovery Act facility investigation because the human health baseline risk assessment indicated that the calculated risk was below the incremental lifetime cancer risk of 1×10^{-6} and the hazard index of 1.0; therefore, the constituent was not a risk driver and was dismissed. C = Cancer.

EPA = U. S. Environmental Protection Agency.

GSSL = Generic soil screening level.

HQ = Hazard quotient.

J = Estimated value.

N = Noncancer.

Ref. = Reference.

Res. = Residential.

RBC = Risk-based concentration.

SWMU = Solid waste management unit.

T = Technology-based.

U = Undetected value.

Bold indicates concentrations above the reference background criteria.

Table 2-2. Summary of Analytical Results for Subsurface Soil Collected under Building 1056 of SWMU 24B

Station					SB1	SB2	SB3	SB4	SB5	SB6	SB7	SB8
Sample ID	EPA Region 3		Ref.	Res.	241182	241282	241382	241482	241582	241682	241782	241882
Date	Res. Soil RBC		Bkgd.	RBC	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04	08/24/04
Depth (ft) BGS	$(HQ=1.10E-6)^{a}$	GSSL ^b	Conc.	Туре	3.0 to 4.8	3.0 to 4.6	3.0 to 4.5	3.0 to 4.8	3.0 to 4.8	3.0 to 4.9	3.0 to 5.0	3.0 to 4.8
	Volatile Organics Compounds (mg/kg)											
Acetone	7,039	16	0	Ν	<0.0058 U	<0.0068 U	<0.0049 U	0.0058 J	<0.0053 U	0.0087	<0.0059 U	0.0052 J
Tetrachloroethene	1.183	0.06	0	С	<0.0012 U	<0.0014 U	<0.00098 U	0.00077 J	0.0018	0.0014	0.00058 J	<0.0013 U
				Ser	nivolatile Oı	ganic Comp	ounds (mg/kg	<u>z)</u>				
No constituents det	tected.											
					M	letals (mg/kg	r)					
Arsenic	0.4258	1	8.04	С	<0.221 U	<0.229 U	0.293 J	0.569	<0.214 U	<0.218 U	<0.224 U	<0.217 U
Barium	547.5	82	17	Ν	5.5	3.3	7.91	6.51	5.91	6.72	7.27	3.04
Chromium	23.46	2	11.6	Ν	5.33 J	7.09 J	5.68 J	3.83 J	3.47 J	4.45 J	5.8 J	2.41 J
Lead	400	400	11.1	Т	3.2	3.98	3.01 J	2.42	2.34	2.14	4.07	1.38
Mercury	2.346	0.1	0.048	Ν	0.032	0.048	0.017	0.021	0.008 J	0.014	0.056	0.012

^{*a*}EPA Region 3 residential soil RBCs were updated as of April 2005 from the EPA Mid-Atlantic Hazardous Site Cleanup Web site (http://www.epa.gov/reg3hwmd/risk/index.htm). ^{*b*}No remedial level was established in the Phase II Resource Conservation and Recovery Act facility investigation because the human health baseline risk assessment indicated that

the calculated risk was below the incremental lifetime cancer risk of 1×10^{-6} and the hazard index of 1.0; therefore, the constituent was not a risk driver and was dismissed.

BGS = Below ground surface.

C = Cancer.

EPA = U. S. Environmental Protection Agency.

GSSL = Generic soil screening level.

HQ = Hazard quotient.

J = Estimated value.

N = Noncancer.

Ref. = Reference.

Res. = Residential.

RBC = Risk-based concentration.

SWMU = Solid waste management unit.

T = Technology-based.

U = Undetected value.

Bold indicates concentrations above the reference background criteria.

RCRA Metals. Six RCRA metals (arsenic, barium, chromium, lead, mercury, and selenium) were detected or estimated in surface soil (Table 2-1). Of these six, only two, mercury and selenium, were detected above reference background criteria. Mercury was detected in eight of eight surface soil samples at concentrations ranging from 0.016 to 0.035 mg/kg. Only one of the detections of mercury (0.035 mg/kg) was slightly above the reference background concentration (0.0342 mg/kg). Selenium was detected in one of eight surface soil samples at a concentration of 2.52 mg/kg, which was above the reference background concentration of 0.406 mg/kg. The remaining metals were not detected above reference background criteria. Mercury and selenium are considered SRCs in surface soil from the CY 2004 sampling event.

2.1.2 Subsurface Soil

The subsurface soil interval was the second interval collected and ranged from approximately 3 to 5 ft BGS so as to be aligned with the depth of the building drain.

VOCs. Two VOCs (acetone and PCE) were detected in subsurface soil (Table 2-2). Acetone was detected in three of eight subsurface soil samples at concentrations ranging from 0.0052J to 0.0087 mg/kg. PCE was detected in four of eight subsurface soil samples at concentrations ranging from 0.00058J to 0.0018 mg/kg. Acetone and PCE are considered SRCs in subsurface soil from the CY 2004 sampling event.

SVOCs. No SVOCs were detected in subsurface soil (Table 2-2).

RCRA Metals. Five RCRA metals (arsenic, barium, chromium, lead, and mercury) were detected in subsurface soil (Table 2-2). Of these five, only mercury was detected above reference background criteria. Mercury was detected in eight of eight surface soil samples at concentrations ranging from 0.008J to 0.056 mg/kg. Only one of the detections of mercury (0.056 mg/kg) was slightly above the reference background concentration (0.048 mg/kg). The remaining metals were not detected above reference background criteria. Mercury is considered an SRC in subsurface soil from the CY 2004 sampling.

2.1.3 Soil Data Evaluation

A protocol and a decision flowchart for evaluating concentrations of SRCs identified in groundwater collected after the establishment of remedial levels through either an RFI report and/or a CAP were approved by GA EPD in an e-mail dated May 4, 2001 (Appendix C). This protocol is also applicable for soil if the screening criteria are adjusted accordingly. For soil, the maximum concentration detected during the August 2004 sampling event was compared to: (1) the maximum concentration detected in surface and subsurface soil in the Phase II RFI, (2) the EPA Region 3 residential soil risk-based concentration (RBC; EPA 2005) to determine whether the constituent is a potential COC requiring further evaluation, and (3) the EPA generic soil screening levels (GSSLs; EPA 1996) to determine whether the constituent might leach to groundwater (i.e., is a contaminant migration COPC). The EPA Region 3 RBC and GSSL were developed using protocols established in the *Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia* (SAIC 2000). The following sections present the data evaluation for surface and subsurface soil.

2.1.3.1 Surface soil

Table 2-3 presents the SRCs (PCE, toluene, benzoic acid, mercury, and selenium) identified in surface soil during the August 2004 sampling event, which were evaluated in accordance with the protocol established for evaluating concentrations of SRCs identified in media collected after the establishment of

5_074/E\/082405		Previous	EPA Region 3	EPA Soil Screening Levels	Maximum Detected	Station at Maximum Detected	Present		
0	Analyte	Maximum Detected	Residential RBC ^a	$(DAF = 20 \text{ organics}, DAF = 1 \text{ metals})^{b}$	August 2004	August 2004	Remedial Level ^c	New COPC?	Justification
	v		I	,	te-Related C	onstituents (mg/kg)	I	
	Tetrachloroethene	ND	1.183	0.06	0.01	SB7	None	No	Concentration exceeds concentration presented in the Phase II RFI report (not detected). Concentra- tion below EPA Region 3 residential soil RBC and GSSL; therefore, no further action required
	Toluene	0.142	1,564	12	0.00041J	SB7	None	No	Concentration does not exceed maximum concentration indicated in RFI; therefore, no further evaluation required (Appendix C)
	Benzoic Acid	ND	31,290	400	0.057J	SB8	None	No	Concentration exceeds concentration presented in the Phase II RFI report (not detected). Concentration significantly below EPA Region 3 residential soil RBC and GSSL; therefore, no further action required (Appendix C)
y_c	Mercury	0.13	2.346	0.1	0.035	SB4	None	No	Concentration does not exceed maximum concentration indicated in RFI; therefore, no further evaluation required (Appendix C)
	Selenium	0.6	39.11	0.3	2.52	SB3	None	No	Concentration exceeds concentration presented in the Phase II RFI report. Concentration below EPA Region 3 residential soil RBC by an order of magnitude. Maximum concentration above GSSL; however, given only one detection of selenium and that modeling in the Phase II RFI indicated selenium was unlikely to migrate to groundwater; no further action required

^aEPA Region 3 residential soil RBCs were updated as of April 2005 from the EPA Mid-Atlantic Hazardous Site Cleanup Web site (http://www.epa.gov/reg3hwmd/risk/index.htm). ^bGSSL = EPA GSSL with a DAF of 1 for inorganics and a DAF of 20 for volatile and semivolatile organics. A DAF of 1 for inorganics was used because the average pH of groundwater is less than 5; unless otherwise indicated, GSSL was taken from *Soil Screening Guidance: Technical Background Document* (EPA 1996).

^cNo remedial level was established in the Phase II RFI because the human health baseline risk assessment indicated that the calculated risk was below the incremental lifetime cancer risk of 1×10^{-6} and the hazard index of 1.0; therefore, the constituent was not a risk driver and was dismissed.

ND = Not detected.

COPC = Constituent of potential concern.

DAF = Dilution attenuation factor.

EPA = U. S. Environmental Protection Agency.

GSSL = Generic soil screening level.

RBC = Risk-based concentration. RFI = Resource Conservation and Recovery Act facility investigation.

SWMU = Solid waste management unit.

J = Estimated value.

remedial levels through either an RFI report and/or a CAP (Appendix C). Each SRC is discussed below. PCE was detected at a maximum concentration of 0.01 mg/kg, which was above the maximum concentration (nondetect) presented in the Phase II RFI report; however, the maximum concentration was below the EPA Region 3 residential soil RBC (1.183 mg/kg) and GSSL (0.06 mg/kg). Therefore, no further evaluation is required.

The maximum concentration of toluene (0.00041J mg/kg) estimated during August 2004 was below the maximum concentration (0.142 mg/kg) detected during the Phase II RFI; therefore, in accordance with the protocol for evaluating constituents in media after approval of the RFI report or CAP (Appendix C), no further evaluation is required.

Benzoic acid was estimated at a maximum concentration of 0.057J mg/kg during the August 2004 sampling event. Benzoic acid had previously not been detected (nondetect in Phase II RFI). The maximum concentration of benzoic acid was below the EPA Region 3 residential soil RBC (31,290 mg/kg) and GSSL (400 mg/kg). No further evaluation is required for benzoic acid in surface soil.

The maximum concentration of mercury (0.035 mg/kg) detected during the August 2004 sampling was below the maximum concentration (0.13 mg/kg) detected during the Phase II RFI; therefore, in accordance with the protocol for evaluating constituents in media after approval of the RFI report or CAP (Appendix C), no further evaluation is required.

Selenium was detected at a maximum concentration of 2.52 mg/kg during the August 2004 sampling event, which was above the maximum concentration (0.6 mg/kg) detected in the Phase II RFI. The maximum concentration of selenium (2.52 mg/kg) was significantly below (one order of magnitude) the EPA Region 3 residential soil RBC (39.11 mg/kg). However, the maximum concentration of selenium exceeded the GSSL (0.3 mg/kg). Given that there was only one detection of selenium in surface soil and that modeling in the Phase II RFI (SAIC 2001) indicated that selenium was unlikely to migrate to groundwater at levels above its maximum contaminant level (MCL), no further action is required.

2.1.3.2 Subsurface soil

Table 2-4 presents the SRCs (acetone, PCE, and mercury) identified in subsurface soil during the August 2004 sampling event, which were evaluated in accordance with the protocol established for evaluating concentrations of SRCs identified in media collected after the establishment of remedial levels through either an RFI report and/or a CAP (Appendix C). Each SRC is discussed below.

Acetone was detected at a maximum concentration of 0.0087 mg/kg. Acetone was detected above the maximum concentration (nondetect) presented in the Phase II RFI report; however, the maximum concentration was below the EPA Region 3 residential soil RBC (7,039 mg/kg) and GSSL (16 mg/kg). Therefore, no further evaluation is required.

The maximum concentration of PCE (0.0018 mg/kg) detected during August 2004 was below the maximum concentration (0.004 mg/kg) detected during the Phase II RFI; therefore, in accordance with the protocol for evaluating constituents in media after approval of the RFI report or CAP (Appendix C), no further evaluation is required.

The maximum concentration of mercury (0.056 mg/kg) detected during August 2004 was below the maximum concentration (0.24 mg/kg) detected during the Phase II RFI; therefore, in accordance with the protocol for evaluating constituents in media after approval of the RFI report or CAP (Appendix C), no further evaluation is required.

Table 2-4. Evaluation of Site-Related Constituents in Subsurface Soil (August 2004), SWMU 24B

Analyte	Previous Maximum Detected	EPA Region 3 Residential RBC ^a	EPA Soil Screening Levels (DAF = 20 organics, DAF=1 metals) ^b	Maximum Detected August 2004	Station at Maximum Detected August 2004		New COPC?	Justification
			<i>S</i>	ite-Related C	<u>'onstituents (</u>	(mg/kg)		
Acetone	ND	7,039	16	0.0087	SB6	None	No	Acetone was not detected in subsurface soil previously. Concentration below EPA Region 3 residential soil RBC and GSSL; therefore, no further action required
Tetrachloroethene	0.004	1.183	0.06	0.0018	SB5	None	No	Concentration does not exceed maximum concentration indicated in RFI; therefore, no further evaluation is required (Appendix C)
Mercury	0.24	2.346	0.1	0.056	SB7	None	No	Concentration does not exceed maximum concentration indicated in RFI; therefore, no further evaluation is required (Appendix C)

^aEPA Region 3 residential soil RBCs were updated as of April 2005 from the EPA Mid-Atlantic Hazardous Site Cleanup Website (http://www.epa.gov/reg3hwmd/risk/index.htm).

 $\stackrel{b}{\sim}$ GSSL = EPA GSSL with a DAF of 1 for inorganics and a DAF of 20 for volatile and semivolatile organics. A DAF of 1 for inorganics was used because average pH of groundwater is less than 5; unless otherwise indicated, GSSL was taken from *Soil Screening Guidance: Technical Background Document* (EPA 1996).

^cNo remedial level was established in the Phase II RFI because the human health baseline risk assessment indicated that the calculated risk was below the incremental lifetime cancer risk of 1×10^{-6} and the hazard index of 1.0; therefore, the constituent was not a risk driver and was dismissed.

COPC = Constituent of potential concern.

DAF = Dilution attenuation factor.

EPA = U. S. Environmental Protection Agency.

GSSL = Generic soil screening level.

ND = Not detected.

RBC = Risk-based concentration.

RFI = Resource Conservation and Recovery Act facility investigation.

SWMU = Solid waste management unit.

2.2 GROUNDWATER

In accordance with the corrective action recommended in the CAP, groundwater samples were collected from six shallow monitoring wells at SWMU 24B in March 2005. The following sections present the results of the groundwater sampling.

2.2.1 Replacement of Monitoring Well 1

Monitoring wells MW1 and MW2, the shallow and deep surficial background groundwater wells at SWMU 24B, were inadvertently abandoned during construction activities occurring in the area. Monitoring well MW1 was replaced in February 2005 to perform the biannual groundwater sampling of the shallow surficial groundwater. The well was installed using hollow-stem auger techniques and in accordance with the requirements outlined in the SAP for 16 SWMUs (SAIC 1997). The soil boring log and well construction diagram for the replacement MW1 are presented in Appendix A.

2.2.2 Groundwater Sampling (March 2005)

All six shallow surficial groundwater monitoring wells (MW1-R, MW3, MW4, MW5, MW6, and MW8) were sampled using low-flow techniques. Groundwater samples were collected for VOCs, SVOCs, and RCRA metals. Summaries of the groundwater analytical results are presented in Figure 2-2 and Table 2-5. The complete groundwater analytical results and chain-of-custody forms are presented in Appendix B.

Dissolved oxygen, pH, turbidity, temperature, oxidation-reduction potential, and conductivity were measured in the field during sampling, and the results are presented in Table 2-6.

Measurements of water levels were taken at all existing shallow wells at SWMU 24B to develop a water level map. Water levels were measured upon opening of the well. Water level measurements and groundwater elevations for the baseline sampling are presented in Table 2-7.

2.2.3 Groundwater Flow and Direction

The water level measurements (see Table 2-7) from the monitoring wells were used to develop a shallow groundwater potentiometric map for SWMU 24B. The groundwater elevations and the potentiometric map for the shallow surficial groundwater are presented in Figure 2-3. The shallow surficial groundwater flow direction across the site is generally to the west, with an average hydraulic gradient of 0.0053ft/ft.

2.2.4 Analytical Results

Groundwater samples were collected from six shallow groundwater monitoring wells (MW1, MW3, MW4, MW5, MW6, and MW8) and analyzed for VOCs, SVOCs, and RCRA metals. The results of the groundwater analysis are presented in Table 2-5 and Figure 2-2.

VOCs. Seven VOCs (1,1,2-trichloroethane; acetone; carbon disulfide; ethylbenzene; PCE; TCE; and total xylenes) were estimated or detected in groundwater at SWMU 24B (Table 2-5). Four of the VOCs (1,1,2-tetrachloroethane; carbon disulfide; ethylbenzene; and total xylenes) were only detected at the site-specific background location, MW1-R. 1,1,2-Tetrachloroethane; carbon disulfide; ethylbenzene; and total xylenes were detected at concentrations of 1.7, 2J, 0.64J, and 1.5 μ g/L, respectively, at MW1-R, the site-specific background location. Acetone was estimated at a concentration of 2.6J μ g/L at MW1-R, 2.8J μ g/L at MW5. PCE and TCE were estimated at a concentration of 0.8J and

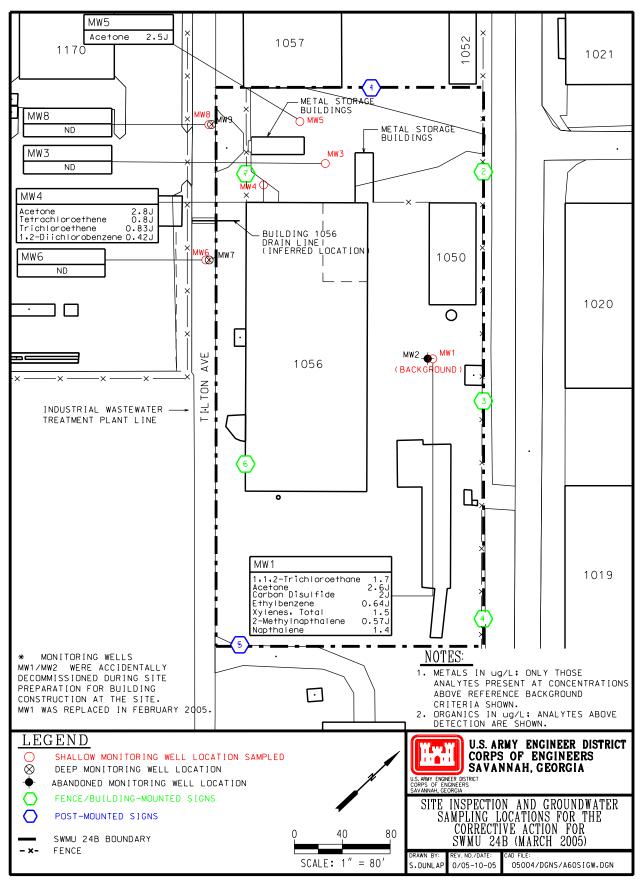


Figure 2-2. Site Inspection and Groundwater Sampling Locations for the Corrective Action for SWMU 24B (March 2005)

Station	Site-Specific	EPA Region 3		MW1 ^b	MW3	MW4	MW5	MW6	MW8
Sample ID	Background	Tap Water RBC ^a	Federal	244114	244314	244414	244514	244614	244814
Date	Criteria	(HQ = 0.1, 10E-6)	MCL	03/15/05	03/15/05	03/15/05	03/15/05	03/15/05	03/15/05
		Volatile	e Organics	Compounds	(µg/L)				
1,1,2-Trichloroethane	0.00	0.1878 ca	5	1.7	<1 U	<1 U	<1 U	<1 U	<1 U
Acetone	0.00	547.5 nc		2.6 J	<5 U	2.8 J	2.5 J	<5 U	<5 U
Carbon Disulfide	0.00	104.3 nc		2 J	<5 U	<5 U	<5 U	<5 U	<5 U
Ethylbenzene	0.00	134 nc	700	0.64 J	<1 U	<1 U	<1 U	<1 U	<1 U
Tetrachloroethene	0.00	0.1035 ca	5	<1 U	<1 U	0.8 J	<1 U	<1 U	<1 U
Trichloroethene	0.00	0.02637 ca	5	<1 U	<1 U	0.83 J	<1 U	<1 U	<1 U
Xylenes, Total	0.00	21.26 nc	10,000	1.5	<1 U	<1 U	<1 U	<1 U	<1 U
		Semivola	tile Organi	cs Compoun	ds (µg/L)				
1,2-Dichlorobenzene	0.00	26.82 nc	600	<9.9 U	<11 U	0.42 J	<10.5 U	<10.2 U	<10.4 U
2-Methylnaphthalene	0.00	2.433 nc		0.57 J	<1.1 U	<1 U	<1 U	<1 U	<1 U
Naphthalene	0.00	0.6511 nc		1.4	<1.1 U	<1 U	<1 U	<1 U	<1 U
			RCRA Me	etals (µg/L)					
Barium	71.72	255.5 nc	2,000	15.3	10	12	15.5	14.6	4.2
Cadmium	0.43	1.825 nc	5	<0.18 U	0.41 J	<0.043 U	<0.16 U	<0.049 U	<0.1 U
Lead	4.69	15 t	15	1.3 J	0.4 J	0.48 J	0.71 J	0.53 J	1.2 J

Table 2-5. Summary of Analytes Detected in Groundwater (March 2005), SWMU 24B

^aEPA Region 3 tap water RBCs were updated as of April 2005, from the EPA Mid-Atlantic Hazardous Site Cleanup Website

(http://www.epa.gov/reg3hwmd/risk/index.htm).

^bSite-specific background location.

ca = Tap water PRG is based on carcinogenic factor.

EPA = U. S. Environmental Protection Agency.

HQ = Hazard quotient.

J = Estimated value.

MCL = Maximum contaminant level.

nc = Tap water PRG is 0.1 times the PRG based on noncarcinogenic toxicity.

RBC = Risk-based concentration.

RCRA = Resource Conservation and Recovery Act.

SWMU = Solid waste management unit.

t = Lead value is technology-based.

U = Undetected value.

	Field Reading at Monitoring Well										
Location	Date	рН (s.u.)	Conductivity (mS/cm)	Temperature (°C)	Turbidity (NTUs)	DO (mg/L)	Redox (mV)				
MW1	03/15/05	4.61	0.110	18.47	9.8	1.35	115				
MW3	03/15/05	4.36	0.057	17.88	9.7	2.80	249				
MW4	03/15/05	4.50	0.130	18.15	3.9	2.16	215				
MW5	03/15/05	4.11	0.053	19.28	9.7	0.62	249				
MW6	03/15/05	4.46	0.099	18.36	9.8	3.81	246				
MW8	03/15/05	4.71	0.074	18.25	17.3	1.05	248				

Table 2-6. Field Parameter Measurements during Groundwater Sampling (March 2005), SWMU 24B

DO = Dissolved oxygen. NTU = Nephelometric turbidity unit.

Redox = Oxidation-reduction potential.

s.u. = Standard units.

SWMU = Solid waste management unit.

Table 2 7 Water	I aval Data far	Monitoring	Walla	SWMIT 24D
Table 2-7. Water	Level Data Ior	wonnormg	wens,	SWNU 24D

Well	Date	Screened Interval (ft BGS)	Depth to Water (ft below MP)	Elevation of Measuring Point (ft AMSL)	Elevation of Potentiometric Surface (ft AMSL)
MW1	03/15/05	4.5 to 14.5	5.96	а	а
MW3	03/15/05	3.4 to 13.4	6.46	86.19	79.73
MW4	03/15/05	3.6 to 13.6	6.52	86.20	79.68
MW5	03/15/05	2.8 to 12.8	5.97	85.48	79.51
MW6	03/15/05	3.9 to 13.9	7.12	86.82	79.70
MW8	03/15/05	3.75 to 13.75	7.32	86.42	79.10

"MW1-R has not been surveyed as of the draft report; however, it will be surveyed prior to submittal of the final report.AMSL = Above mean sea level.MP = Measuring point (top of casing).BGS = Below ground surface.SWMU = Solid waste management unit.

 $0.83J \mu g/L$, respectively, at MW4. 1,1,2-Tetrachloroethane; carbon disulfide; ethylbenzene, and total xylenes are not considered SRCs because they were detected at only the site-specific background location. Acetone, PCE, and TCE are considered SRCs in groundwater from the March 2005 sampling event.

SVOCs. Three SVOCs (1,2-dichlorobenzene; 2-methylnaphthalene; and naphthalene) were detected or estimated in groundwater at SWMU 24B (Table 2-5). 1,2-Dichlorobenzene was estimated below the detection level at a concentration of 0.42J μ g/L at MW4. 2-Methylnaphthalene and naphthalene were detected only at the shallow site-specific background location (MW1-R) at a concentration of 0.57J and 1.4 μ g/L, respectively. 2-Methylnaphthalene and naphthalene are not considered SRCs because they were only detected at the site-specific background location. 1,2-Dichlorobenzene is considered an SRC in groundwater from the March 2005 sampling event.

RCRA Metals. Three RCRA metals (barium, cadmium, and lead) were detected or estimated in the groundwater at SWMU 24B (Table 2-5); however, none were identified above the site-wide background criteria established for Fort Stewart in the Phase II RFI for 16 SWMUs (SAIC 2000). Barium was detected at all six groundwater locations at concentrations ranging from 4.2 μ g/L at MW8 to 15.5 μ g/L at MW5. None of the detected barium concentrations were above the site-wide background criterion of

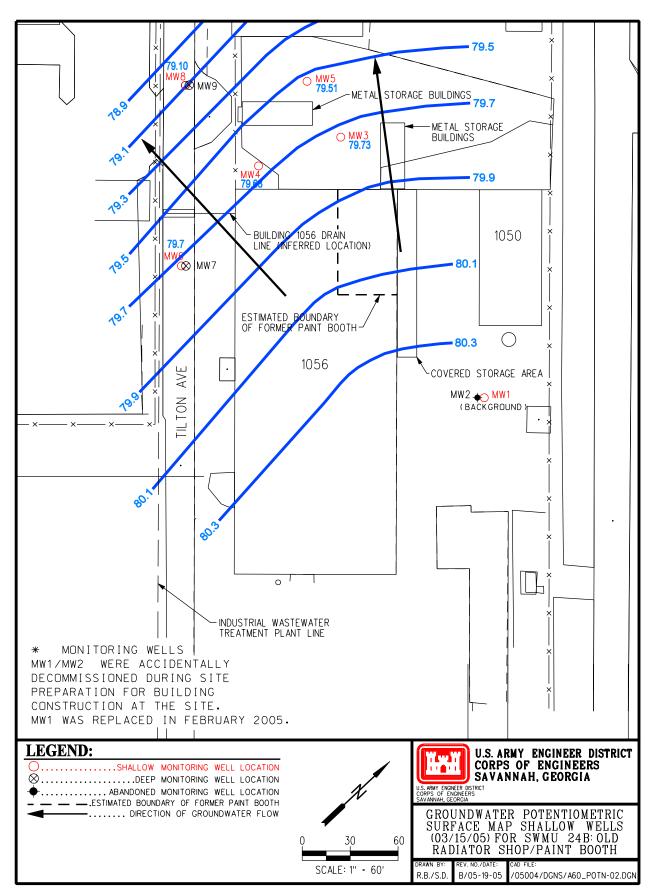


Figure 2-3. Shallow Groundwater Potentiometric Surface Map of SWMU 24B (March 15, 2005)

71.72 μ g/L. Cadmium was estimated at a concentration of 0.41J μ g/L at MW3. Lead was estimated at all six groundwater locations at concentrations ranging from 0.4J μ g/L at MW3 to 1.3J μ g/L at MW1, the site-specific background location. None of the metals were considered SRCs at SWMU 24B during the March 2005 sampling event because they were not detected above site-wide background criteria.

2.2.5 Groundwater Data Evaluation (CY 2005)

A protocol and a decision flowchart for evaluating concentrations of SRCs identified in media collected after the establishment of remedial levels through either an RFI report and/or a CAP were approved by GA EPD in an e-mail dated May 4, 2001 (Appendix C). This protocol was used to evaluate the groundwater data collected in March 2005.

Table 2-8 presents the SRCs (acetone; PCE; TCE; and 1,2-dichlorobenzene) identified in groundwater during the March 2005 sampling event. These compounds were evaluated in accordance with the above-referenced protocol. Each SRC is discussed below.

Acetone. Acetone was estimated at a concentration of 2.6J μ g/L at MW1-R, 2.8J μ g/L at MW4, and 2.5J μ g/L at MW5. Acetone exceeded the maximum concentration (not detected) in the RFI/CAP. The estimated concentrations were two orders of magnitude below the EPA Region 3 RBC. Acetone is a common laboratory contaminant. Therefore, no further evaluation is required.

PCE. The groundwater evaluation for the CAP Progress Report for CY 2003 (SAIC 2004b) identified concentrations of PCE that had inadvertently been indicated as nondetect in the Addendum for SWMU 24B (SAIC 2001). Table D-1 in Appendix D presents a summary of all analytes detected in groundwater collected from shallow surficial groundwater wells between October 1999 and March 2005. The low detection rules developed for the Phase II RFI for 16 SWMUs were inadvertently applied to the November 2000 groundwater data; therefore, three detections of PCE were not included in the data set. PCE was actually detected at three locations—MW4, MW6, and MW8—at concentrations of 1.4, 1.4, and 0.53J μ g/L, respectively, in November 2000. The maximum concentration of PCE was below the MCL of 5 μ g/L (remedial level that would have been proposed); therefore, corrective action would not have been required for PCE in groundwater, and the recommended corrective action would have been the same. For the data evaluation against the protocol, PCE was considered not detected (most conservative) during previous sampling endeavors. The CAP Progress Report for CY 2003 recommended confirmatory sampling for PCE.

PCE was estimated at a concentration below the method detection limit (1 μ g/L) of 0.8J μ g/L in MW4 (CY 2005). PCE was detected above the EPA Region 3 RBC for tap water (0.1035 μ g/L). However, the concentration of PCE is not above its MCL (5 μ g/L), the remedial level that would be proposed for cleanup. PCE has been sporadically detected or estimated at low concentrations (below the MCL) in the shallow surficial groundwater, including upgradient (MW1-R). Therefore, no further evaluation of PCE is required.

TCE. The maximum concentration of TCE (0.8J μ g/L) estimated during March 2005 was below the maximum concentration (2.6 μ g/L) detected during the Phase II RFI; therefore, in accordance with the established protocol, no further evaluation is required.

1,2-Dichlorobenzene. 1,2-Dichlorobenzene was estimated at a concentration of 0.42J μ g/L at MW4. 1,2-Dichlorobenzene was not detected during the RFI. The estimated concentration was two orders of magnitude below the EPA Region 3 RBC for tap water (26.82 μ g/L) and three orders of magnitude below its MCL (600 μ g/L). Therefore, no further evaluation is required.

Analyte	Previous Maximum Detected	Maximum Detected March 2005	Station at Maximum Detected March 2005	EPA Region 3 Tap Water ^a	MCL	Present Remedial Level	New COPC?	Justification
				Site-Related	Constitu	ents (µg/L)		
Acetone	ND (<5U)	2.8J	MW4	547.5		С	No	Concentration exceeds maximum concentration (ND) indicated in the RFI; however, acetone, a common laboratory contaminant, was detected two orders of magnitude below the EPA Region 3 RBC. Therefore, no further evaluation is required.
Tetrachloroethene	ND ^b	0.8J	MW4	0.1035	5	С	No	Concentration exceeds concentration presented in the Phase II RFI report (Appendix C) and the EPA Region 3 RBC for tap water; however, estimated concentration is an order of magnitude below the MCL.
Trichloroethene	2.6	0.83J	MW4	0.02637	5	С	No	Concentration does not exceed maximum concentration indicated in the RFI; therefore, no further evaluation is required.
1,2-Dichlorobenzene	ND (<10U)	0.42J	MW4	26.82	600	С	No	Concentration exceeds maximum concentration (ND) indicated in the RFI; however, it was detected one order of magnitude below the EPA Region 3 RBC. Therefore, no further evaluation is required.

^aEPA Region 3 tap water RBCs were updated as of October 16, 2003, from the EPA Mid-Atlantic Hazardous Site Cleanup Website (http://www.epa.gov/reg3hwmd/risk/index.htm).

^bConcentration of tetrachloroethene was inadvertently indicated as nondetect in the *Addendum for SWMU 24B: Old Radiator Shop/Paint Booth to the Revised Final Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia* (SAIC 2001) because of application of the low detection rules developed for the Phase II RFI for 16 SWMUs. Tetrachloroethene was actually detected at three locations—MW4, MW6, and MW8—at concentrations of 1.4, 1.4, and 0.53J µg/L, respectively. The maximum concentration was below the maximum contaminant level of 5 µg/L (remedial level that would have been proposed); therefore, corrective action would not have been required for tetrachloroethene in groundwater. The recommended corrective action would have been the same. Table D-1 in Appendix D presents a summary of all analytes detected in groundwater collected from shallow surficial groundwater wells between October 1999 and July 2003.

^cNo remedial level was established in the Phase II RFI because the human health baseline risk assessment indicated that the calculated risk was below the incremental lifetime cancer risk of 1×10^{-6} and the hazard index of 1.0; therefore, the constituent was not a risk driver and was dismissed.

RCRA = Resource Conservation and Recovery Act.

RBC = Risk-based concentration.

RFI =RCRA facility investigation.

SWMU = Solid waste management unit.

EPA = U. S. Environmental Protection Agency.

COPC = Constituent of potential concern.

J = Estimated value.

MCL = Maximum contaminant level.

ND = Not detected.

2.2.6 Resolution of CY 2003 Recommendations

As discussed in Section 1.4, two constituents (PCE and cadmium) were detected above maximum concentrations in the RFI during the first biannual groundwater sampling event. In accordance with the established protocol, it was recommended that the next biannual sampling event be used to confirm that these constituents were COPCs requiring the development of remedial levels. Table 2-5 presents a summary of the evaluation of each one of these constituents. Each of these constituents is discussed below.

PCE. During the CY 2003 biannual sampling, PCE was detected above the EPA Region 3 PRG, but not the maximum concentration detected during the Phase II RFI. However, the maximum concentration of PCE was not specifically evaluated because it was screened out by the application of validation rules developed for the Phase II RFI for 16 SWMUs. It was recommended that the next biannual sampling be used to confirm that PCE was a COPC in groundwater at SWMU 24B. During the CY 2005 biannual groundwater sampling, PCE was estimated at a concentration of 0.8J μ g/L (Table 2-9). This concentration was also above EPA Region 3 tap water RBC; however, the concentration is not above its MCL (5 μ g/L). The concentration of PCE has never exceeded its MCL (Appendix D). Confirmation sampling indicated that PCE continues to be sporadically (no trends) detected at low concentrations (below the MCL) at SWMU 24B. The concentration is below its MCL, the remedial level that would be selected for PCE. The CY 2005 groundwater sampling confirmed that PCE is sporadically present at very low concentrations (<MCL) at SWMU 24B.

Cadmium. During the CY 2003 biannual groundwater sampling, cadmium was detected above the EPA Region 3 tap water PRG and the maximum concentration detected during the Phase II RFI, and it was recommended that the next biannual sampling be used to confirm whether cadmium was a COPC. During the CY 2005 biannual groundwater sampling, cadmium was estimated in one of six groundwater samples at concentrations below site-specific background criteria, thus indicating that cadmium was not an SRC at SWMU 24B (Table 2-9). In addition, the lone estimated concentration was below the EPA Region 3 tap water RBC. Therefore, confirmation sampling (CY 2005) indicated that cadmium is not a new COPC and does not required further evaluation.

Table 2-9. Resolution of Recommendations from	Biannual Sampling (July 2003) Presented in t	the CAP Progress Report for CY 2003, SWMU 24B

Analyte	Maximum Detected July 2003	Station at Maximum Detected July 2003	Maximum Detected March 2005	Station at Maximum Detected March 2005	EPA Region 3 Tap Water RBC	Recommendation from CAP Progress Report for CY 2003	Resolution	New COPC?
				(Concentration	n (μg/L)		
Tetrachloroethene	0.53	MW4	0.8J	MW4	0.1035	Concentration exceeded concentration presented in the Phase II RFI report and EPA Region 3 RBC for tap water; therefore, confirmation sampling recommended in the CAP Progress Report for CY 2003 (SAIC 2004b)	Tetrachloroethene was estimated at a concentration of 0.8J µg/L in the CY 2005 sampling, which is above EPA Region 3 tap water RBC; however, the concentration was not above its MCL (5 µg/L). Concentration of tetrachloroethene has never exceeded its MCL (Appendix D). Confirmation sampling indicated that tetrachloroethene continues to be sporadically (no trends) detected at low concentrations (below MCL) at SWMU 24B. The concentration is below its MCL, the remedial level that would be proposed for tetrachloroethene	No
Cadmium CAP = Corrective Ac	3.43	MW4	0.41J	MW3	1.825	Elevated concentration indicated only once during groundwater sampling; therefore, confirmation sampling recommended in the CAP Progress Report for CY 2003 (SAIC 2004b)	Cadmium was estimated in 1 of 6 groundwater samples at a concentration below site- specific background criteria (4.69 μ g/L) and EPA Region 3 tap water RBC in the CY 2005 sampling. Cadmium was not indicated as an SRC. Therefore, confirmation sampling (CY 2005) indicated that cadmium is not a new COPC	No Act.

EPA = U.S. Environmental Protection Agency.

SWMU = Solid waste management unit.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Surface and subsurface soil was collected in August 2004 from eight locations inside Building 1056 at SWMU 24B, and groundwater was collected in March 2005 from six surficial groundwater monitoring wells to meet the requirements of the corrective action for SWMU 24B. The soil and groundwater were analyzed for VOCs, SVOCs, and RCRA metals. The sampling was conducted in accordance with the selected remedial alternative recommended in the CAP for SWMU 24B (SAIC 2002), Addendum #4 to the SAP (SAIC 2004b), and the SAP for 16 SWMUs (SAIC 1997), which were developed in accordance with USACE Guidance EM 200-1-3 (USACE 2001). The conclusions and recommendations resulting from this sampling are presented in following sections.

3.1 CONCLUSIONS

3.1.1 Soil

Five constituents were identified as SRCs (PCE, toluene, benzoic acid, mercury, and selenium) in surface soil. Toluene and mercury were not detected above the maximum concentrations previously detected in surface soil. PCE was detected above the previous maximum concentration (nondetect in the Phase II RFI); however, the maximum concentration was below the EPA Region 3 residential soil RBC and GSSL. Benzoic acid was estimated above the previous maximum concentration (nondetect in Phase II RFI); however, the maximum concentration of benzoic acid was below the EPA Region 3 residential soil RBC and GSSL. Selenium was detected above the maximum concentration detected in the Phase II RFI. The maximum concentration of selenium was significantly below (one order of magnitude) the EPA Region 3 residential soil RBC (39.11 mg/kg), but exceeded the GSSL. Modeling in the Phase II RFI (SAIC 2000) indicated that selenium was unlikely to migrate to groundwater at levels above its MCL. In addition, selenium was detected in only one surface soil sample during the August 2004 sampling. PCE, toluene, benzoic acid, mercury, and selenium are not COPCs in surface soil requiring further evaluation.

Three constituents (acetone, PCE, and mercury) were identified as SRCs in subsurface soil during the August 2004 sampling event. PCE and mercury were not detected above the maximum concentration previously detected in subsurface soil. Acetone was detected at a maximum concentration of 0.0087 mg/kg, which was above the maximum concentration (nondetect) presented in the Phase II RFI report; however, the maximum concentration was below the EPA Region 3 residential soil RBC and GSSL. Acetone, PCE, and mercury are not COPCs in subsurface soil requiring further evaluation.

In summary, no COPCs or contaminant migration COPCs were identified in surface or subsurface soil collected from underneath the concrete slab of Building 1056 from the August 2004 soil sampling event. The RFI (SAIC 2000) indicated the presence of SVOCs in the surface soil surrounding Building 1056 at concentrations exceeding the risk-based levels. The RFI concluded that these SVOCs were not believed to be from an industrial process that resulted in systematic and routine releases from SWMU 24B but to activities occurring in the general area. The results from the soil sampling from underneath the slab at Building 1056 further confirm this hypothesis. SVOCs are a common soil constituent in heavily industrialized areas because of the large number of activities that can generate them. These activities include asphalt paving, equipment lubricants, dust suppression, and combustion processes. SVOC COCs in surface soil identified around Building 1056 are not detected in soil collected beneath the slab.

3.1.2 Groundwater

Four constituents (acetone; TCE; PCE; and 1,2-dichloroethene) were identified as SRCs in groundwater from the March 2005 sampling. In addition, the results from the March 2005 biannual sampling were to be used to confirm whether PCE and cadmium represented COPCs identified during the CY 2003 biannual groundwater sampling.

Acetone and 1,2-dichloroethene were estimated below their respective EPA Region 3 tap water RBCs; therefore, no further evaluation is required.

PCE was detected above the EPA Region 3 PRG during both the CY 2003 and CY 2005 biannual sampling events. PCE has been sporadically detected with no discernible trends at concentrations below its MCL at SWMU 24B. Because the concentration of PCE is below its MCL, (the remedial level that would be established for PCE), PCE is not a COPC and does not require corrective action because it is below its remedial level.

TCE was detected below the maximum concentration from the previous sampling endeavor (Phase II RFI); therefore, no further evaluation is required.

During the CY 2005 biannual sampling, cadmium was estimated in one groundwater sample at a concentration below the site-specific background criteria; therefore, cadmium is not an SRC. In addition, it was not above the EPA Region 3 tap water RBC in the CY 2005 sampling. Therefore, confirmation sampling (CY 2005) indicated that cadmium is not a new COPC requiring further evaluation.

In summary, the CY 2005 biannual groundwater sampling results do not indicate any new COPCs and confirmed that potential COPCs from the CY 2003 biannual groundwater sampling were not COPCs. Therefore, the development of remedial levels or corrective action for constituents is not required.

3.2 **RECOMMENDATIONS**

Building 1056 is scheduled to be demolished in the 2005/2006 timeframe. At present, an addendum to the CAP for SWMU 24B is to be developed incorporating the soil sampling results from inside Building 1056 and the groundwater results from CY 2003 and CY 2005.

The COCs identified in surface soil in the RFI (SAIC 2000) were unchanged by the results of the August 2004 sampling event. The remedial alternatives developed for surface soil in the CAP (SAIC 2002) remain applicable. As discussed in Section 1.3, the following three corrective action alternatives were evaluated for surface soil contamination at SWMU 24B:

- Alternative 1: Institutional Controls and Groundwater Monitoring,
- Alternative 2: Concrete Cap with Institutional Controls and Groundwater Monitoring, and
- Alternative 3: Excavation with Institutional Controls and Groundwater Monitoring.

Alternative 1 is presently being implemented. The soil underneath Building 1056 has been sampled and two biannual groundwater sampling events have been completed (the subject of this report), and the impacts of these results on the conceptual design and selection of the remedial alternative can be evaluated. In accordance with the CAP, an addendum to the CAP will be prepared recommending specific actions and/or monitoring based on the new data (soil and groundwater) and coordinating these actions with the final construction design and schedule for Building 1056.

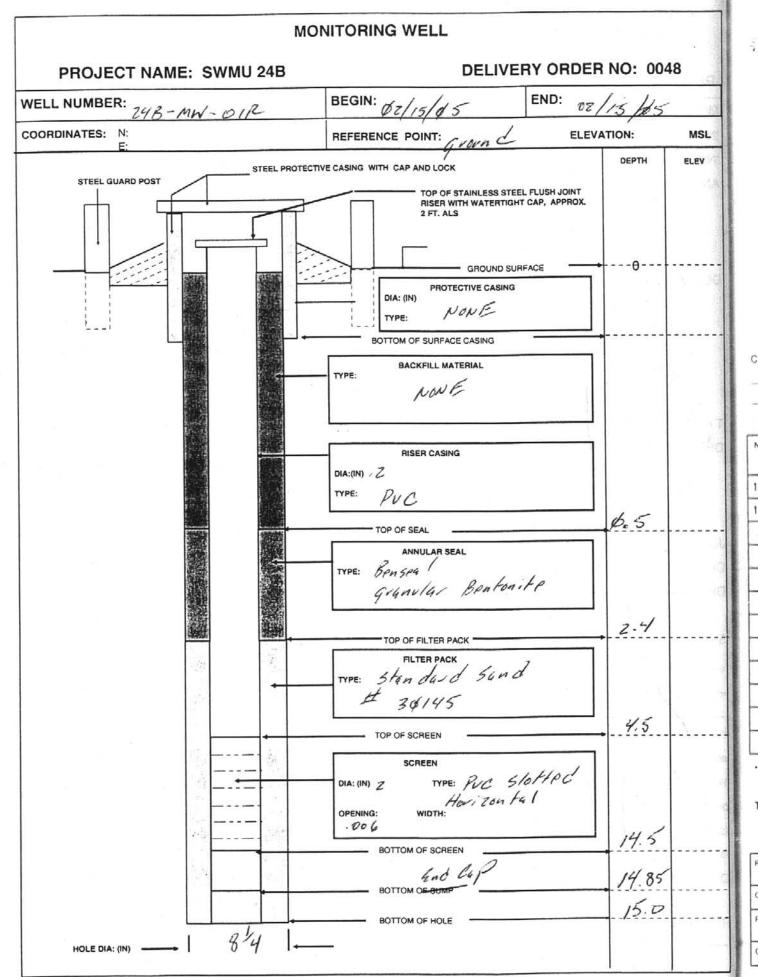
The addendum to the CAP will recommend that the concrete or asphalt cap (parking lot or building foundation) be constructed over the contaminated surface soil and that the groundwater monitoring program at SWMU 24B be discontinued and the monitoring wells abandoned upon approval of the addendum to the CAP.

4.0 **REFERENCES**

- EPA (U. S. Environmental Protection Agency) 1996. Soil Screening Guidance: Technical Background Document.
- EPA. 2005. EPA Mid-Atlantic Hazardous Site Cleanup Web site (http://www.epa.gov/reg3hwmd/risk/index.htm.), April.
- Geraghty and Miller, Inc. 1992. RCRA Facility Investigation Final Work Plan, Fort Stewart, Georgia, June.
- SAIC (Science Applications International Corporation) 1997. Sampling and Analysis Plan for the Phase II RCRA Facility Investigation of 16 Solid Waste Management Units at Fort Stewart, Georgia (Revised Final), October.
- SAIC 2000. Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia (Revised Final), April.
- SAIC 2001. Addendum for SWMU 24B: Old Radiator Shop/Paint Booth to the Revised Final Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia (Revised Final), June.
- SAIC 2002. Corrective Action Plan for the Old Radiator Shop/Paint Booth (Solid Waste Management Unit 24B) at Fort Stewart Military Reservation, Fort Stewart, Georgia (Final), July.
- SAIC 2004a. Addendum #4 to the Sampling and Analysis Plan for Phase II RCRA Facility Investigations of 16 Solid Waste Management Units at Fort Stewart, Georgia (Draft), July.
- SAIC 2004b. Corrective Action Plan Progress Report for Calendar Year 2003.
- USACE (U. S. Army Corps of Engineers) 2001. *Requirements for the Preparation of Sampling and Analysis Plans*, EM 200-1-3, Department of the Army, Washington, DC, February.

APPENDIX A

SOIL BORING LOGS AND WELL CONSTRUCTION DIAGRAM FOR MW1-R


TRW DRILLING LOG		DISTRICT: U	SACE Sava	nnah		HOLE NUMBER 24B-MW-0		
COMPANY NAME: SAIC		2. DRILL SUB	CONTRACTOR:			SHEET _ COF _ 3		
PROJECT: Fort Stewart/Hunter			4. LOCATION: SWMU Z4B					
NAME OF DRILLER: Raymond	Lebron		6. MANUFA	CTURERS DESIGNATION		opile		
SIZES AND TYPES OF DRILLING	1	low	8. HOLE LO	CATION:				
Stem Augors	wood p	They	9. SURFAC	E ELEVATION:				
		/	10. DATE S	TARTED: \$ 2/15/0	S 11. DATE CO	DMPLETED: 2/15/05		
OVERBURDEN THICKNESS	Inknown		15. DEPTH	GROUNDWATER ENCOUN	TERED:			
2. OVERBURDEN THICKNESS Unline on A			16. DEPTH	TO WATER AND ELAPSED		LING COMPLETED:		
TOTAL DEPTH OF HOLE	1		17. OTHER	WATER LEVEL MEASURE	1			
	15.4		1		NA			
8. GEOTECHNICAL SAMPLES	DISTURBED	UNDIST	URBED	19. TOTAL NUMBER OF C		A		
SAMPLES FOR CHEMICAL ANALYSIS	NA	NA	IDW	M OTHER (SPECIM	OTHER (SP	ECIFY 21. TOTAL CORE RECOVERY %		
DISPOSITION OF HOLE	BACKFILLED	VP3	OTHER (SPEC		tapH.1	2		
OCATION SKETCH/COMMENTS	NA	7/2 1	NIP		ALE: /"	= 40'		
OCATION SKETCH/COMMENTS								
			<u> </u>	<u>' ' ' ' ' ' ' ' '</u>				
2	×	1057		1052	ř III			
1170			1	2		1021		
	ĭ		<u> </u>	اس ا۔ ــ ـ ـ ــ ــــــــــــــــــــــــــ	Î			
	× MW8 Mrs		AL STORAGE		! \			
	ý or			METAL STORAGE				
	× 248-5	-021	°""3		<u> </u> _			
BUILDING 1056- DRAIN LINE (INFERRED LOCA		2-	. –	(
(INFERRED LOCA	× 248-56	-01	248-58-	58-04 ×	*			
	248-58-05		• 24B-5					
	X WWG LUW7	Ī	V	1050	×			
	24B-	SB-06	248-58-0	and a second sec				
	×							
				0		1020		
	× I			24B-MW-PIR				
				MW2 MW1				
	111111	100	-	(BACKGROUND)	1	I		
		105	•	BACKGROUND .	<u>¥ </u>			
		105	0	BACKGROUND	3			
x x x >		105		BACKGROUND	X 1 3 3 3 4			
x x x >		105			3			
		_			X + ()			
		_						
		_						

HOLE NUMBERMN - AR R 4 HTRW DRILLING LOG SHEET Z OF VarAl INSPECTOR PROJECT: Fort Stewart/Hunter REMARKS (G) HEADSPACE SCREENING RESULTS GEOTECH ANALYTICAL SAMPLE NO. DESCRIPTION OF MATERIALS ELEV. DEPTH SAMPLE OR CORE BOX (B) (C) (A) (F) 0-0.6 Distripton Ause cuttings Oil sand 0.6-5.5 Poorly graded Sand with Clay (SP-SC) fine grained Subangular Dry to moist Firm, Light Brown 5.5 - 7.5 Claypy Sanchec) 25% Fines fine Grained Subangular, Moist To wet Firm, Brownish Black 1-2% Arganics organics A-4

		HTRW DRILL	ING LOG	, 1,	HOLE NUMBER MW - VIR		
PROJEC	T: Fort Stev		SPECTOR	NWIT	m	SHEET 3 OF 3	1
ELEV. (A)	DEPTH (B)	DESCRIPTION OF MATERIALS (C)	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMARKS (G)	
ELEV.	DEPTH (B)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	SAMPLE	SAMPLE NO.	REMARKS	
	19 19 (20		A-5	5			

MONITORING WELL INSTALLATION LOG

PROJECT: SWMU 24B DELIVERY ORDEF	R: 0048
MONITORING WELL ID: 24B-MW-01P	
INSTALLATION START: DATE: 92/15/05 TIME: 105	
INSTALLATION FINISH: DATE: TIME:	
ANNULAR SPACE MATERIALS INVENTORY:	
GRANULAR FILTER PACK: TYPE: Standard 30145 QUANTITY: -205 25816	
BENTONITE SEAL: TYPE: BANSPAL GRAN QUANTITY: 58165	
GROUT: TYPE: NONE QUANTITY: NONE	
DESCRIPTION OF WELL SCREEN:	
SLOT SIZE (inches): OO 6 SLOT CONFIGURATION: _ 5/0/40 Horizonty 1	
TOTAL OPEN AREA PER FOOT OF SCREEN:	
OUTSIDE DIAMETER:	
SCHEDULE/THICKNESS: 40 COMPOSITION: PUC	
MANUFACTURER:	
TYPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREEN: filter Sca C	
DESCRIPTION OF WELL CASING:	
OUTSIDE DIAMETER:	
SCHEDULE/THICKNESS: COMPOSITION:	
MANUFACTURER: Johnson	
JOINT DESIGN AND COMPOSITION: Flush Threade C	
CENTRALIZERS DESIGN AND COMPOSITION: NONE	
DESCRIPTION OF PROTECTIVE CASING: NONE	
NOMINAL INSIDE DIAMETER: COMPOSITION:	
SPECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCTION AND THEIR RESOLUTION:	
Was all well screen and casing material used for construction free of foreign matter (e.g., adhesive tape, labels, soil	l, grease,
etc.)? YES [NO []	
Was all well screen and casing material used for construction free of unsecured couplings, ruptures, and other physical screen and casing material used for construction free of unsecured couplings, ruptures, and other physical screen and casing material used for construction free of unsecured couplings, ruptures, and other physical screen and casing material used for construction free of unsecured couplings, ruptures, and other physical screen and casing material used for construction free of unsecured couplings, ruptures, and other physical screen and sc	sical
breakage and/or defects? YES [+ NO []	
is deformation or bending of the installed well screen and casing minimized to the point of allowing the insertion and	d
retrieval of a 1.0-inch bailer throughout the entire length of the completed well? YES [NO []	
QUANTITY OF APPROVED WATER USED FOR FILTER PACK ENPLACEMENT:	
RECORDED BY: (Signature & Date) QA CHECK BY: (Signature & Date) (Signature & Date)	
(Signature & Date) (Signature & Date)	

т

81

C

RI

C

APPENDIX B

ANALYTICAL DATA AND CHAIN-OF-CUSTODY FORMS

STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

Name of Laboratory:	General Engineering Laboratories, Inc.
Address:	P.O. Box 30712
	2040 Savage Road
	Charleston, SC 29407
Contact:	Bob Pullano
Telephone number:	(843) 556-8171
Fax number:	(843) 766-1178
Accrediting Authority:	State of South Carolina
Accreditation Number:	SC-10120001
Effective Date: Extension g	granted while recertification in process; January 27, 2003
Expiration Date:	March 26, 2005
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA
Accrediting Authority:	State of Florida
Accreditation Number:	E-87156
Effective Date: July 1, 200	1 (initial and reaccredited on July 1 each year thereafter)
Expiration Date:	June 30, 2005

Accreditation Scope: SDWA, CWA, RCRA, CERCLA

#1

#2

ANALYTICAL DATA AND CHAIN-OF-CUSTODY FORMS FOR GROUNDWATER FOR MARCH 2005

Station:	24B-MW-01
Sample ID:	244114
Date Collected:	03/15/2005

Media: Groundwater Field Sample Type: Grab

Analysis	Chemical	Result	Units	Qual 0	Qual	Code	Limit	Dilution	
norganics	General Engineering Laboratory								
SW846 3005/6020	Arsenic	1.6	UG/L	В	U	F01,F06	0.81	1	
	Barium	15.3	UG/L		=		0.008	1	
	Cadmium		UG/L	В	U	F01,F06	0.013	1	
	Chromium		UG/L		U	F01,F07	0.27	1	
	Lead		UG/L	В	J	30.701 8 .0702	0.004	1	
SW846 7470	Mercury		UG/L	U	U		0.022	1	
SW846 3005/6020	Selenium		UG/L	B	Ŭ	F01,F06	0.92	1	
500040 5005/0020	Silver		UG/L	В	Ŭ	F01,F06	0.002	1	
Semi-Volatile Organics	General Engineering Laboratory								
SW846 8270C	1,2,4-Trichlorobenzene	9.9	UG/L	U	U		9.9	1	
011010 02100	1,2-Dichlorobenzene		UG/L	Ū	U		9.9	1	
	1,3-Dichlorobenzene		UG/L	ū	Ŭ		9.9	1	
	1,4-Dichlorobenzene		UG/L	Ŭ	U		9.9	1	
			UG/L	Ŭ	Ŭ		9.9	1	
	2,4,5-Trichlorophenol		UG/L	U	ŭ		9.9	1	
	2,4,6-Trichlorophenol				U			1	
	2,4-Dichlorophenol		UG/L	U			9.9		
	2,4-Dimethylphenol		UG/L	U	U		9.9		
	2,4-Dinitrophenol		UG/L	U	U		19.8	1	
	2,4-Dinitrotoluene		UG/L	U	U		9.9	1	
	2,6-Dinitrotoluene		UG/L	U	U		9.9	1	
	2-Chloronaphthalene		UG/L	U	U		0.99	1	
	2-Chlorophenol		UG/L	U	U		9.9	1	
	2-Methyl-4,6-dinitrophenol	9.9	UG/L	U	U		9.9	1	
	2-Methylnaphthalene	0.57	UG/L	J	J		0.99	1	
	2-Methylphenol	9.9	UG/L	U	U		9.9	1	
	2-Nitroaniline	9.9	UG/L	U	U		9.9	1	
	2-Nitrophenol	9.9	UG/L	U	U		9.9	1	
	3,3'-Dichlorobenzidine		UG/L	U	U		9.9	1	
	3-Nitroaniline		UG/L	U	U		9.9	1	
	4-Bromophenyl phenyl ether		UG/L	Ū	Ū		9.9	1	
	4-Chloro-3-methylphenol		UG/L	Ŭ	ŭ		9.9	1	
	4-Chloroaniline		UG/L	Ŭ	Ŭ		9.9	1	
	4-Chlorophenyl phenyl ether		UG/L	Ŭ	Ŭ		9.9		
			UG/L	U	U		9.9	4	
	4-Methylphenol			U	U		9.9	1	
	4-Nitroaniline		UG/L	0.72					
	4-Nitrophenol		UG/L	U	U		9.9	1	
	Acenaphthene		UG/L	U	U		0.99	1	
	Acenaphthylene		UG/L	U	U		0.99]	
	Anthracene) UG/L	U	U		0.99	1	
	Benz(a)anthracene		UG/L	U	U		0.99	1	
	Benzenemethanol		UG/L	U	U		9.9	1	
	Benzo(a)pyrene) UG/L	U	U		0.99	1	
	Benzo(b)fluoranthene		UG/L	U	U		0.99	1	
	Benzo(ghi)perylene	0.99	UG/L	U	U		0.99	1	
	Benzo(k)fluoranthene	0.99	UG/L	U	U		0.99	1	
	Benzoic acid	19.8	B UG/L	U	U		19.8	1	
	Bis(2-chloroethoxy)methane		UG/L	U	U		9.9	1	
	Bis(2-chloroethyl) ether		UG/L	U	U		9.9	1	
	Bis(2-Chloroisopropyl)Ether		UG/L	Ŭ	Ŭ		9.9	1	
	Bis(2-ethylhexyl)phthalate		UG/L	Ű	Ŭ		9.9	1	
	Butyl benzyl phthalate		UG/L	U	U		9.9	1	
	Carbazole		UG/L	U	U		9.9	1	
			UG/L	U	U		0.99	1	
					U		0.99		
	Chrysene Di-n-butyl phthalate		UG/L	Ŭ	U		9.9	1	

Page 1

Station: 24B-MW-01 Sample ID: 244114 Date Collected: 03/15/2005

Media: Groundwater Field Sample Type: Grab

Analysis	Chemical	Result U	nits	Qual C		Code	Detection Limit	Dilution	
Semi-Volatile Organics	General Engineering Laboratory			4					
SW846 8270C	Dibenz(a,h)anthracene	0.99 U	IG/L	U	U		0.99	1	
	Dibenzofuran	9.9 L		U	U		9.9	1	
	Diethyl phthalate	9.9 U	IG/L	U	U		9.9	1	
	Dimethyl phthalate	9.9 L		U	U		9.9	1	
	Diphenylamine	9.9 U		U	U		9.9	1	
	Fluoranthene	0.99 L	JG/L	U	U		0.99	1	
	Fluorene	0.99 L	JG/L	U	U		0.99	1	
	Hexachlorobenzene	9.9 L		U	U		9.9	1	
	Hexachlorobutadiene	9.9 L		U	U		9.9	1	
	Hexachlorocyclopentadiene	9.9 L		U	U		9.9	1	
	Hexachloroethane	9.9 L		U	υ		9.9	1	
	Indeno(1,2,3-cd)pyrene	0.99 L		U	U		0.99	1	
	Isophorone	9.9 L	JG/L	U	U		9.9	1	
	N-Nitroso-di-n-propylamine	9.9 L	JG/L	U	U		9.9	1	
	Naphthalene	1.4 L	JG/L		=		0.99	1	
	Nitrobenzene	9.9 L		U	U		9.9	1	
	Pentachlorophenol	9.9 L	JG/L	U	U		9.9	1	
	Phenanthrene	0.99 L	JG/L	U	U		0.99	1	
	Phenol	9.9 L	JG/L	U	υ		9.9	1	
	Pyrene	0.99 L	JG/L	U	U		0.99	1	
Volatile Organics	General Engineering Laboratory								
SW846 8260B	1,1,1-Trichloroethane		JG/L	U	υ		1	1	
	1,1,2,2-Tetrachloroethane		JG/L	U	U		1	1	
	1,1,2-Trichloroethane	1.7 L			=		1	1	
	1,1-Dichloroethane		JG/L	U	U		1	1	
	1,1-Dichloroethene	1 เ	JG/L	U	U		1	1	
	1,2-Dibromoethane	1 (JG/L	U	U		1	1	
	1,2-Dichloroethane	1 (JG/L	U	U		1	1	
	1,2-Dichloroethene	1 เ	JG/L	U	U		1	1	
	1,2-Dichloropropane	1 ไ	JG/L	U	U		1	1	
	2-Butanone	5 (JG/L	U	U		5	1	
	2-Hexanone	5 (JG/L	U	U		5	1	
	4-Methyl-2-pentanone	5 (JG/L	U	U		5	1	
	Acetone	2.6 1	JG/L	J	J		5	1	
	Benzene		JG/L	U	U		1	1	
	Bromochloromethane	1 (UG/L	U	U		1	1	
	Bromodichloromethane		UG/L	U	U		1	1	
	Bromoform		UG/L	U	υ		1	1	
	Bromomethane		UG/L	U	U		1	1	
	Carbon disulfide		UG/L	J	J		5	1	
	Carbon tetrachloride		UG/L	Ŭ	Ū		1	1	
	Chlorobenzene		UG/L	Ŭ	U		1	1	
	Chloroethane		UG/L	Ŭ	U		1	1	
	Chloroform		UG/L	Ŭ	Ŭ		1	1	
	Chloromethane		UG/L	Ŭ	Ŭ		1	i	
	cis-1,3-Dichloropropene		UG/L	Ŭ	ŭ		1	i	
	Dibromochloromethane		UG/L	Ŭ	ŭ		1	1	
	Ethylbenzene	0.64		J	J		1	1	
	Methylene chloride		UG/L	Ű	Ű		5	1	
	Styrene		UG/L	U	U		1	1	
	Tetrachloroethene		UG/L	U	ŭ		-	1	
	Toluene		UG/L	U	U		1	1	
	trans-1,3-Dichloropropene		UG/L	U	U		1	1	
	한 그가 있는 것을 잘 못 했다. 여러 집에 걸 때 가지 않는 것을 가지 않는 것을 다 가지 않는 것을 하는 것이다.								
	Trichloroothono	4							
	Trichloroethene Vinyl chloride		UG/L UG/L	U	U		1	1	

Station: Sample ID: Date Collected:			Media: Groundwater Field Sample Type: Grab				Detection	
Analysis	Chemical	200 - 200	Result Units	Lab Qual		Validation Code	Detection Limit	Dilution
Inorganics	General Engi	neering Laboratory						
SW846 8260B	Xylenes, Tota		1.5 UG/L		=		1	1

Page 3

Station: 24B-MW-03

Amelia	Chemical	Result	Unite		Dat I Qui	a Validation	Limit	Dilution	
Analysis		Result	Units	Que	il Gai		Ennix	Diración	-
Inorganics	General Engineering Laboratory	4.7	UG/L			J F01,F06	0.81	1	
	Arsenic		UG/L			J F01,F06 =	0.008	1	
SW846 3005/6020	Barium		UG/L			J	0.008	i	
	Cadmium		UG/L			U F01,F06		1	
	Chromium		UG/L			J F01,F00	0.004	1	
014/046 7470	Lead		UG/L			U	0.022	1	
SW846 7470	Mercury		UG/L			U F01,F06		1	
SW846 3005/6020	Selenium		UG/L			U F01,F06		1	
Semi-Volatile	Silver General Engineering Laboratory	0.003	00/L			0 101,100	0.002		
Organics									
SW846 8270C	1,2,4-Trichlorobenzene		UG/L			U	11	1	
	1,2-Dichlorobenzene		UG/L			U	11	1	
	1,3-Dichlorobenzene		UG/L			U	11	1	
	1,4-Dichlorobenzene		UG/L			U	11	1	
	2,4,5-Trichlorophenol		UG/L			U	11	1	
	2,4,6-Trichlorophenol		UG/L			U	11	1	
	2,4-Dichlorophenol		UG/L			U	11	1	
	2,4-Dimethylphenol		UG/L		1.1	U	11	1	
	2,4-Dinitrophenol		2 UG/L		-	U	22	1	
	2,4-Dinitrotoluene		I UG/L		U	U	11	1	
	2,6-Dinitrotoluene		I UG/L		S	U	11	1	
	2-Chloronaphthalene		UG/L		U	U	1.1	1	
	2-Chlorophenol		I UG/L		U	U	11	1	
	2-Methyl-4,6-dinitrophenol		1 UG/L		U	U	11	1	
	2-Methylnaphthalene		UG/L		U	U	1.1	1	
	2-Methylphenol		1 UG/L		U	U	11	1	
	2-Nitroaniline		1 UG/L		U	U	11	1	
	2-Nitrophenol		1 UG/L		U	U	11	1	
	3,3'-Dichlorobenzidine		1 UG/L		U	U	11	1	
	3-Nitroaniline		1 UG/L		U	U	11	1	
	4-Bromophenyl phenyl ether		1 UG/L		U	U	11	1	
	4-Chloro-3-methylphenol		1 UG/L		U	U	11	1	
	4-Chloroaniline		1 UG/L		U	U	11	1	
	4-Chlorophenyl phenyl ether		1 UG/L		U	U	11	1	
	4-Methylphenol		1 UG/L	1	U	U	11	1	
	4-Nitroaniline		1 UG/L		U	U	11	1	
	4-Nitrophenol		1 UG/L		U	U	11	1	
	Acenaphthene		1 UG/L		U	U	1.1	1	
	Acenaphthylene		1 UG/L		U	U	1.1	1	
	Anthracene		1 UG/L		U	U	1.1	1	
	Benz(a)anthracene		1 UG/L		U	U	1.1	1	
	Benzenemethanol		1 UG/L		U	U	11	1	
	Benzo(a)pyrene		1 UG/L		U	U	1.1	1	
	Benzo(b)fluoranthene		1 UG/L		U	U	1.1	1	
	Benzo(ghi)perylene		1 UG/L		U	U	1.1	1	
	Benzo(k)fluoranthene		1 UG/L		U	U	1.1	1	
	Benzoic acid		2 UG/L		U	U	22	1	
	Bis(2-chloroethoxy)methane		1 UG/L		U	U	11	1	
	Bis(2-chloroethyl) ether		1 UG/L		U	U	11	1	
	Bis(2-Chloroisopropyl)Ether		1 UG/L		U	U	11	1	
	Bis(2-ethylhexyl)phthalate		1 UG/L		U	U	11	1	
	Butyl benzyl phthalate		1 UG/L		U	U	11	1	
	Carbazole		1 UG/L		U	U	11	1	
	Chrysene		1 UG/L		U	U	1.1	1	
	Di-n-butyl phthalate		1 UG/L		U	U	11	1	
	Di-n-octylphthalate	1	1 UG/L		U	U	11	1	

Page 4

 Station:
 24B-MW-03

 Sample ID:
 244314

 Date Collected:
 03/15/2005

Media: Groundwater Field Sample Type: Grab

Analysis	Chemical	Result Units	Lab Data Validati Qual Qual Code		Dilution	
Semi-Volatile	General Engineering Laboratory					
Organics SW846 8270C	Dibenz(a,h)anthracene	1.1 UG/L	υυ	1.1	1	
	Dibenzofuran	11 UG/L	υu	11	1	
	Diethyl phthalate	11 UG/L	υu	11	1	
	Dimethyl phthalate	11 UG/L	υυ	11	1	
	Diphenylamine	11 UG/L	υŪ	11	1	
	Fluoranthene	1.1 UG/L	υŪ	1.1	1	
	Fluorene	1.1 UG/L	υŪ	1.1	1	
	Hexachlorobenzene	11 UG/L	Ū Ū	11	1	
	Hexachlorobutadiene	11 UG/L	υυ	11	1	
	Hexachlorocyclopentadiene	11 UG/L	υŬ	11	1	
	Hexachloroethane	11 UG/L	υŭ	11	1	
	Indeno(1,2,3-cd)pyrene	1.1 UG/L	υŬ	1.1	1	
		11 UG/L	υυ	11	1	
	Isophorone N-Nitroso-di-n-propylamine	11 UG/L	υυ	11	1	
		1.1 UG/L	υυ	1.1	1	
	Naphthalene	11 UG/L	U U	11	1	
	Nitrobenzene	11 UG/L		11	1	
	Pentachlorophenol			1.1	1	
	Phenanthrene	1.1 UG/L		1.1	1	
	Phenol	11 UG/L			1	
Veletile Orecales	Pyrene Constal Engineering Laboratory	1.1 UG/L	0 0	1.1	1	
Volatile Organics	General Engineering Laboratory	1 UG/L	υυ	1	1	
SW846 8260B	1,1,1-Trichloroethane	1 UG/L	υυ	1	1	
	1,1,2,2-Tetrachloroethane	1 UG/L		-	4	
	1,1,2-Trichloroethane		U U	-	1	
	1,1-Dichloroethane	1 UG/L		-	4	
	1,1-Dichloroethene	1 UG/L	U U	1	1	
	1,2-Dibromoethane	1 UG/L	U U	1	1	
	1,2-Dichloroethane	1 UG/L	UU	1	1	
	1,2-Dichloroethene	1 UG/L	UU	1	1	
	1,2-Dichloropropane	1 UG/L	υu	1	1	
	2-Butanone	5 UG/L	υυ	5	1	
	2-Hexanone	5 UG/L	U U	5	1	
	4-Methyl-2-pentanone	5 UG/L	υu	5	1	
	Acetone	5 UG/L	υu	5	1	
	Benzene	1 UG/L	U U	1	1	
	Bromochloromethane	1 UG/L	υu	1	1	
	Bromodichloromethane	1 UG/L	υU	1	1	
	Bromoform	1 UG/L	υu	1	1	
	Bromomethane	1 UG/L	υυ	1	1	
	Carbon disulfide	5 UG/L	υu	5	1	
	Carbon tetrachloride	1 UG/L	υυ	1	1	
	Chlorobenzene	1 UG/L	υυ	1	1	
	Chloroethane	1 UG/L	υυ	1	1	
	Chloroform	1 UG/L	υυ	1	1	
	Chloromethane	1 UG/L	υu	1	1	
	cis-1,3-Dichloropropene	1 UG/L	υυ	1	1	
	Dibromochloromethane	1 UG/L	υu	1	1	
	Ethylbenzene	1 UG/L	υu	1	1	
	Methylene chloride	5 UG/L	υυ	5	1	
	Styrene	1 UG/L	υυ	1	1	
	Tetrachloroethene	1 UG/L	υυ	1	1	
	Toluene	1 UG/L	U U	1	1	
	trans-1,3-Dichloropropene	1 UG/L	υυ	1	1	
		1 UG/L	υŪ	1	1	
	Trichloroethene	I UG/L	0 0		1	

Station: Sample ID:	24B-MW-03	Media	Groundwater						
Date Collected:		Field Sample Type:		2.020					
Analysis	Chemical		Result Units	Lab Qual		Validation Code	Detection Limit	Dilution	
Inorganics	General Engi	neering Laboratory							
SW846 8260B	Xylenes, Tota	l.	1 UG/L	U	U		1	1	

Sample ID: 2444	NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO	lia: Ground	water						
Date Collected: 03/1	5/2005 Field Sample Ty	pe: Grab		Lab	Data	Validation	Detection		
nalysis	Chemical	Result	Units		Qual	Code	Limit	Dilution	
norganics	General Engineering Laboratory								
	Arsenic	2.3	UG/L	В	U	F01,F06	0.81	1	
SW846 3005/6020	Barium		UG/L		=		0.008	1	
	Cadmium	0.043	UG/L	В	U	F01,F06	0.013	1	
	Chromium		UG/L	В	U	F01,F06	0.27	1	
	Lead	0.48	UG/L	В	J		0.004	1	
SW846 7470	Mercury	0.022	UG/L	U	U		0.022	1	
SW846 3005/6020	Selenium		UG/L	В	U	F01,F06	0.92	1	
	Silver	0.004	UG/L	В	U	F01,F06	0.002	1	
Semi-Volatile Organics	General Engineering Laboratory								
SW846 8270C	1,2,4-Trichlorobenzene	10.1	UG/L	U	U		10.1	1	
	1,2-Dichlorobenzene		UG/L	J	J		10.1	1	
	1,3-Dichlorobenzene	10.1	UG/L	U	U		10.1	1	
	1,4-Dichlorobenzene	10.1	UG/L	U	U		10.1	1	
	2,4,5-Trichlorophenol	10.1	UG/L	U	U		10.1	1	
	2,4,6-Trichlorophenol	10.1	UG/L	U	U		10.1	1	
	2,4-Dichlorophenol	10.1	UG/L	U	U		10.1	1	
	2,4-Dimethylphenol	10.1	UG/L	U	U		10.1	1	
	2,4-Dinitrophenol	20.2	UG/L	U	U		20.2	1	
	2,4-Dinitrotoluene	10.1	UG/L	U	U		10.1	1	
	2,6-Dinitrotoluene	10.1	UG/L	U	U		10.1	1	
	2-Chloronaphthalene	1	UG/L	U	U		1	1	
	2-Chlorophenol	10.1	UG/L	U	U		10.1	1	
	2-Methyl-4,6-dinitrophenol	10.1	UG/L	U	U		10.1	1	
	2-Methylnaphthalene	1	UG/L	U	U		1	1	
	2-Methylphenol	10.1	UG/L	U	U		10.1	1	
	2-Nitroaniline	10.1	UG/L	U	U		10.1	1	
	2-Nitrophenol	10.1	UG/L	U	U		10.1	1	
	3,3'-Dichlorobenzidine	10.1	UG/L	U	U		10.1	1	
	3-Nitroaniline	10.1	UG/L	U	U		10.1	1	
	4-Bromophenyl phenyl ether	10.1	UG/L	U	U		10.1	1	
	4-Chloro-3-methylphenol	10.1	UG/L	L	U		10.1	1	
	4-Chloroaniline	10.1	UG/L	L	U U		10.1	1	
	4-Chlorophenyl phenyl ether	10.1	UG/L	U	U U		10.1	1	
	4-Methylphenol	10.1	UG/L	L L	U U		10.1	1	
	4-Nitroaniline	10.1	UG/L	L	J U		10.1	1	
	4-Nitrophenol	10.1	UG/L	L	J U		10.1	1	
	Acenaphthene	1	UG/L	L	J U		1	1	
	Acenaphthylene		UG/L	ι	J U		1	1	
	Anthracene		UG/L	L			1	1	
	Benz(a)anthracene		UG/L	L	J U	ĺ	1	1	
	Benzenemethanol		UG/L	L			10.1	1	
	Benzo(a)pyrene		UG/L	L			1	1	
	Benzo(b)fluoranthene		UG/L	ι			1	1	
	Benzo(ghi)perylene		UG/L	ι			1	1	
	Benzo(k)fluoranthene		UG/L	i			1	1	
	Benzoic acid		2 UG/L	i			20.2	1	
	Bis(2-chloroethoxy)methane		UG/L	L.			10.1	1	
	Bis(2-chloroethyl) ether		UG/L	i			10.1	1	
	Bis(2-Chloroisopropyl)Ether		I UG/L	i			10.1	1	
	Bis(2-ethylhexyl)phthalate		UG/L		JU		10.1	1	
	Butyl benzyl phthalate		1 UG/L		ĴŪ		10.1	1	
	Carbazole		1 UG/L		JU		10.1	1	
	Chrysene		1 UG/L		JU		1	1	
	Di-n-butyl phthalate		1 UG/L		Ĵ		10.1	1	
	Di-n-octylphthalate		1 UG/L	27	JU		10.1	1	

Station: 24B-MW-04 Sample ID: 244414 Date Collected: 03/15/2005

Media: Groundwater

Analysis Semi-Volatile Organics SW846 8270C Volatile Organics SW846 8260B	Chemical General Engineering Laboratory Dibenzofuran Diethyl phthalate Dimethyl phthalate Diphenylamine Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Qual 0 U U U U U U U U U U U U U U U U U U U		Code	1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
VB46 8270C	Dibenz(a,h)anthracene Dibenzofuran Diethyl phthalate Dimethyl phthalate Diphenylamine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				10.1 10.1 10.1 10.1 1 10.1 10.1 10.1 10	1 1 1 1 1 1 1 1 1 1	
/olatile Organics	Dibenzofuran Diethyl phthalate Dimethyl phthalate Diphenylamine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				10.1 10.1 10.1 10.1 1 10.1 10.1 10.1 10	1 1 1 1 1 1 1 1 1 1	
olatile Organics	Dibenzofuran Diethyl phthalate Dimethyl phthalate Diphenylamine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1 1 1 1 1 1 1	
	Dimethyl phthalate Diphenylamine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 1 10.1 10.1 10.1 10.1 10.1 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		000000000000000000000000000000000000000		10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1 1 1 1 1 1 1 1	
	Dimethyl phthalate Diphenylamine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 1 10.1 10.1 10.1 10.1 10.1 10.1 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		U U U U U U U U U U U U U U U U U U U		10.1 1 10.1 10.1 10.1 10.1 10.1 10.1	1 1 1 1 1 1 1	
	Diphenylamine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				1 10.1 10.1 10.1 10.1 10.1 10.1	1 1 1 1 1 1	
	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				1 10.1 10.1 10.1 10.1 10.1 10.1	1 1 1 1 1	
	Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	0 0 0 0 0 0 0 0 0 0 0	U U U U U U U U U		10.1 10.1 10.1 10.1 10.1 10.1	1 1 1	
	Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				10.1 10.1 10.1 1 10.1	1 1 1	
	Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L				10.1 10.1 1 10.1	1 1 1	
	Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L UG/L		บ บ บ		10.1 1 10.1	1	
	Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L	U U U U	U U U		1 10.1	1	
	Indeno(1,2,3-cd)pyrene Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L UG/L	U U U	U U		10.1	1 1	
	Isophorone N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 10.1 10.1 10.1 10.1	UG/L UG/L UG/L UG/L	U U	U			1	
	N-Nitroso-di-n-propylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	10.1 1 10.1 10.1 10.1	UG/L UG/L UG/L	U					
	Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene	1 10.1 10.1 1	UG/L UG/L	10.5			10.1	1	
	Nitrobenzene Pentachlorophenol Phenanthrene	10.1 10.1 1	UG/L	10.5			1	1	
	Pentachlorophenol Phenanthrene	10.1 1			U		10.1	1	
	Phenanthrene			U	U		10.1	1	
	Phenol	50,000,000	UG/L	U	U		1	1	
		10.1	UG/L	U	U		10.1	1	
	Pyrene	1	UG/L	U	U		1	1	
SW846 8260B	General Engineering Laboratory								
	1,1,1-Trichloroethane		UG/L	U	U		1	1	
	1,1,2,2-Tetrachloroethane	1	UG/L	U	U		1	1	
	1,1,2-Trichloroethane	1	UG/L	U	U		1	1	
	1,1-Dichloroethane	1	UG/L	U	U		1	1	
	1,1-Dichloroethene	1	UG/L	U	U		1	1	
	1,2-Dibromoethane	1	UG/L	U	U		1	1	
	1,2-Dichloroethane	1	UG/L	U	U		1	1	
	1,2-Dichloroethene	1	UG/L	U	U		1	1	
	1,2-Dichloropropane	1	UG/L	U	U		1	1	
	2-Butanone		UG/L	U	U		5	1	
	2-Hexanone		UG/L	U	U		5	1	
	4-Methyl-2-pentanone		UG/L	U	U		5	1	
	Acetone		UG/L	J	J		5	1	
	Benzene		UG/L	U	U		1	1	
	Bromochloromethane		UG/L	U	U		1	1	
	Bromodichloromethane		UG/L	U	U		1	1	
	Bromoform		UG/L	U	U		1	1	
	Bromomethane		UG/L	U	U		1	1	
	Carbon disulfide		5 UG/L	U	U		5	1	
	Carbon tetrachloride		UG/L	U	U		1	1	
	Chlorobenzene		UG/L	U	U		1	1	
	Chloroethane		UG/L	U	U		1	1	
	Chloroform		UG/L	U	U		1	1	
	Chloromethane		UG/L	U	U]	1	
	cis-1,3-Dichloropropene		UG/L	U	U		1	1	
	Dibromochloromethane		UG/L	U	U		1	1	
	Ethylbenzene		UG/L	U	U		1		
	Methylene chloride		5 UG/L	U	U		5	1	
	Styrene		UG/L	U	U		1	1	
	Tetrachloroethene		B UG/L	J	J		1	1	
	Toluene		1 UG/L	U	U		1	1	
	trans-1,3-Dichloropropene		1 UG/L	U	U		1	1	
	Trichloroethene		3 UG/L 1 UG/L	J	J		1	1	

1

Station: 24B-MW-04 Sample ID: 244414 Date Collected: 03/15/2005		Media:	Media: Groundwater					
		Field Sample Type:	Field Sample Type: Grab		Data	Validation	Detection	
Analysis	Chemical		Result Units	Qual		Code	Limit	Dilution
Inorganics	General Eng	ineering Laboratory						
SW846 8260B	Xylenes, Tota	1	1 UG/L	U	U		1	1

Station: 24B-MW-05

Date Collected: 03/1				Lab	Data	a Validation		5
Analysis	Chemical	Result	Units	Qual	Qual	Code	Limit	Dilution
norganics	General Engineering Laboratory		The second s					
	Arsenic		UG/L	В	U	F01,F06	0.81	1
SW846 3005/6020	Barium	15.5	UG/L		=		0.008	1
	Cadmium	0.16	UG/L	В	U	F01,F06	0.013	1
	Chromium	1.7	UG/L	В	U	F01,F06	0.27	1
	Lead	0.71	UG/L	В	J		0.004	1
SW846 7470	Mercury	0.022	UG/L	U	U		0.022	1
SW846 3005/6020	Selenium	1.3	UG/L	в	U	F01,F06	0.92	1
	Silver	0.002	UG/L	U	U		0.002	1
Semi-Volatile Organics	General Engineering Laboratory							
SW846 8270C	1,2,4-Trichlorobenzene	10.5	UG/L	U	U		10.5	1
	1,2-Dichlorobenzene	10.5	UG/L	U	U		10.5	1
	1,3-Dichlorobenzene		UG/L	U	U		10.5	1
	1,4-Dichlorobenzene		UG/L	U	U		10.5	1
	2,4,5-Trichlorophenol		UG/L	U	U		10.5	1
	2,4,6-Trichlorophenol	- 127/17	UG/L	U	10.000		10.5	1
	2,4-Dichlorophenol		UG/L	Ŭ			10.5	1
	2,4-Dimethylphenol		UG/L	Ŭ	Ŭ		10.5	1
	2,4-Dinitrophenol		UG/L	ŭ			21	1
	2,4-Dinitrotoluene		UG/L	Ŭ			10.5	1
	2,6-Dinitrotoluene		UG/L	ŭ	Ŭ		10.5	1
	2-Chloronaphthalene		UG/L	U			10.0	1
	2-Chlorophenol		UG/L	Ŭ			10.5	1
			UG/L	U U			10.5	1
	2-Methyl-4,6-dinitrophenol		UG/L	U			10.5	1
	2-Methylnaphthalene		UG/L	U			10.5	1
	2-Methylphenol							
	2-Nitroaniline		UG/L	U			10.5	1
	2-Nitrophenol		UG/L	U	Q - 276		10.5	1
	3,3'-Dichlorobenzidine		UG/L	U			10.5	1
	3-Nitroaniline		UG/L	U	9 ITA		10.5	1
	4-Bromophenyl phenyl ether		UG/L	U			10.5	1
	4-Chloro-3-methylphenol		UG/L	U			10.5	1
	4-Chloroaniline		UG/L	U	2 - 33		10.5	1
	4-Chlorophenyl phenyl ether		i UG/L	U	_		10.5	1
	4-Methylphenol		i UG/L	U			10.5	1
	4-Nitroaniline		5 UG/L	U			10.5	1
	4-Nitrophenol		5 UG/L	U	_		10.5	1
	Acenaphthene		UG/L	U			1	1
	Acenaphthylene		UG/L	U	U		1	1
	Anthracene		UG/L	U			1	1
	Benz(a)anthracene		UG/L	U			1	1
	Benzenemethanol	10.5	5 UG/L	U	U U		10.5	1
	Benzo(a)pyrene	1	UG/L	U	U U		1	1
	Benzo(b)fluoranthene	1	UG/L	U	J U		1	1
	Benzo(ghi)perylene		UG/L	L			1	1
	Benzo(k)fluoranthene	1	UG/L	U	U U	1	1	1
	Benzoic acid		1 UG/L	Ū			21	1
	Bis(2-chloroethoxy)methane		5 UG/L	ŭ			10.5	1
	Bis(2-chloroethyl) ether		5 UG/L	ũ			10.5	1
	Bis(2-Chloroisopropyl)Ether		5 UG/L	Ľ	St - 375		10.5	i
	Bis(2-ethylhexyl)phthalate		5 UG/L	L			10.5	1
	Butyl benzyl phthalate		5 UG/L	ŭ			10.5	1
	Carbazole		5 UG/L	L L			10.5	1
	Chrysene		1 UG/L	L L			10.5	1
	Gillysono							
	Di-n-butyl phthalate	10.0	5 UG/L	L	JL	1	10.5	1

Page 10

Station: 24B-MW-05 Sample ID: 244514 Date Collected: 03/15/2005

Media: Groundwater

Date Collected: 03/1	5/2005 Field Sample Type				
Analysis	Chemical	Result Units	Lab Data Validation Qual Qual Code	Detection Limit	Dilution
Semi-Volatile Organics	General Engineering Laboratory				
SW846 8270C	Dibenz(a,h)anthracene	1 UG/L	υυ	1	1
	Dibenzofuran	10.5 UG/L	υu	10.5	1
	Diethyl phthalate	10.5 UG/L	υυ	10.5	1
	Dimethyl phthalate	10.5 UG/L	υυ	10.5	1
	Diphenylamine	10.5 UG/L	υu	10.5	1
	Fluoranthene	1 UG/L	υυ	1	1
	Fluorene	1 UG/L	υu	1	1
	Hexachlorobenzene	10.5 UG/L	υυ	10.5	1
	Hexachlorobutadiene	10.5 UG/L	υυ	10.5	1
	Hexachlorocyclopentadiene	10.5 UG/L	U U	10.5	1
	Hexachloroethane	10.5 UG/L	υŪ	10.5	1
	Indeno(1,2,3-cd)pyrene	1 UG/L	υŬ	1	1
	Isophorone	10.5 UG/L	υÜ	10.5	1
	N-Nitroso-di-n-propylamine	10.5 UG/L	υυ	10.5	i
	Naphthalene	1 UG/L	υü	10.5	1
		10.5 UG/L	υυ	10.5	1
	Nitrobenzene		U U	10.5	1
	Pentachlorophenol	10.5 UG/L		10.5	1
	Phenanthrene	1 UG/L		110000	1
	Phenol	10.5 UG/L	UU	10.5	1
(1.11)	Pyrene	1 UG/L	UU	1	1
/olatile Organics	General Engineering Laboratory	4.110.1		1	1
SW846 8260B	1,1,1-Trichloroethane	1 UG/L	U U	1	
	1,1,2,2-Tetrachloroethane	1 UG/L	U U	1	1
	1,1,2-Trichloroethane	1 UG/L	U U	1	1
	1,1-Dichloroethane	1 UG/L	U U	1	1
	1,1-Dichloroethene	1 UG/L	υυ	1	1
	1,2-Dibromoethane	1 UG/L	υυ	1	1
	1,2-Dichloroethane	1 UG/L	υυ	1	1
	1,2-Dichloroethene	1 UG/L	υυ	1	1
	1,2-Dichloropropane	1 UG/L	υυ	1	1
	2-Butanone	5 UG/L	υu	5	1
	2-Hexanone	5 UG/L	U U	5	1
	4-Methyl-2-pentanone	5 UG/L	υυ	5	1
	Acetone	2.5 UG/L	JJ	5	1
	Benzene	1 UG/L	υυ	1	1
	Bromochloromethane	1 UG/L	υυ	1	1
	Bromodichloromethane	1 UG/L	UU	1	1
	Bromoform	1 UG/L	ŪŪ	1	1
	Bromomethane	1 UG/L	ŬŬ	1	1
	Carbon disulfide	5 UG/L	υυ	5	1
	Carbon tetrachloride	1 UG/L	υŬ	1	1
	Chlorobenzene	1 UG/L	υü	1	1
	Chloroethane	1 UG/L	υυ	1	1
	Chloroform	1 UG/L	υυ		1
	Chloromethane	1 UG/L	υυ	1	i i
		1 UG/L	υυ	1	1
	cis-1,3-Dichloropropene	1 UG/L	U U	1	1
	Dibromochloromethane			1	-
	Ethylbenzene	1 UG/L	U U	1	4
	Methylene chloride	5 UG/L	υu	5	1
	Styrene	1 UG/L	U U	1]
	Tetrachloroethene	1 UG/L	U U	1	1
	Toluene	1 UG/L	υυ	1	1
	trans-1,3-Dichloropropene	1 UG/L	υυ	1	1
				4	1
	Trichloroethene Vinyl chloride	1 UG/L 1 UG/L		1	1

.

Station: Sample ID: Date Collected:		and the second	Media: Groundwater Field Sample Type: Grab						
Analysis	Chemical	Result Units			Data Validatio Qual Code		Detection Limit	Dilution	
Inorganics	General Engi	ineering Laboratory							
SW846 8260B	Xylenes, Tota	1	1 UG/L	U	U		1	1	

Date Collected: 03/1	5/2005 Field Sample Ty			Lab I	Data '	Validation	Detection	
Analysis	Chemical	Result	Units	Qual (Qual	Code	Limit	Dilution
norganics	General Engineering Laboratory							
	Arsenic		UG/L	В	U	F01,F06	0.81	1
SW846 3005/6020	Barium		UG/L		=		0.008	1
	Cadmium	0.049		В	U	F01,F06	0.013	1
	Chromium		UG/L	В	U	F01,F06	0.27	1
	Lead		UG/L	В	J		0.004	1
SW846 7470	Mercury		UG/L	U	U		0.022	1
SW846 3005/6020	Selenium		UG/L	В	U	F01,F06	0.92	1
	Silver	0.002	UG/L	U	U		0.002	1
Semi-Volatile Organics	General Engineering Laboratory							
SW846 8270C	1,2,4-Trichlorobenzene	10.2	UG/L	U	U		10.2	1
011040 02100	1,2-Dichlorobenzene		UG/L	Ŭ	Ū		10.2	1
	1,3-Dichlorobenzene		UG/L	Ū	Ū		10.2	1
	1,4-Dichlorobenzene		UG/L	Ŭ	Ŭ		10.2	1
	2,4,5-Trichlorophenol		UG/L	ŭ	ŭ		10.2	1
	2,4,6-Trichlorophenol		UG/L	Ŭ	ŭ		10.2	1
	2,4-Dichlorophenol		UG/L	Ŭ	Ŭ		10.2	1
	2,4-Dimethylphenol		UG/L	Ŭ	Ŭ		10.2	1
	2,4-Dinitrophenol		UG/L	Ū	Ū		20.4	1
	2,4-Dinitrotoluene		UG/L	Ū	Ū		10.2	1
	2,6-Dinitrotoluene		UG/L	U	U		10.2	1
	2-Chloronaphthalene		UG/L	Ŭ	Ŭ		1	1
	2-Chlorophenol		UG/L	Ŭ	Ū		10.2	1
	2-Methyl-4,6-dinitrophenol		UG/L	U	U		10.2	1
	2-Methylnaphthalene		UG/L	Ŭ	Ū		1	1
	2-Methylphenol		UG/L	U	U		10.2	1
	2-Nitroaniline		UG/L	U	U		10.2	1
	2-Nitrophenol		UG/L	Ū	Ū		10.2	1
	3,3'-Dichlorobenzidine		UG/L	U	U		10.2	1
	3-Nitroaniline		UG/L	U	U		10.2	1
	4-Bromophenyl phenyl ether		UG/L	Ū	Ū		10.2	1
	4-Chloro-3-methylphenol		UG/L	U	U		10.2	1
	4-Chloroaniline		UG/L	U	U		10.2	1
	4-Chlorophenyl phenyl ether		UG/L	U	U		10.2	1
	4-Methylphenol	10.2	UG/L	U	U		10.2	1
	4-Nitroaniline		UG/L	Ū	Ū		10.2	1
	4-Nitrophenol		UG/L	U	U		10.2	1
	Acenaphthene		UG/L	Ū	U		1	1
	Acenaphthylene		UG/L	U	U		1	1
	Anthracene		UG/L	U	U		1	1
	Benz(a)anthracene		UG/L	U	U		1	1
	Benzenemethanol	10.2	UG/L	U	U		10.2	1
	Benzo(a)pyrene		UG/L	U	U		1	1
	Benzo(b)fluoranthene	1	UG/L	U	U		1	1
	Benzo(ghi)perylene	1	UG/L	U	U		1	1
	Benzo(k)fluoranthene	1	UG/L	U	U		1	1
	Benzoic acid		UG/L	U	U		20.4	1
	Bis(2-chloroethoxy)methane		UG/L	U	U		10.2	1
	Bis(2-chloroethyl) ether		UG/L	U	U		10.2	1
	Bis(2-Chloroisopropyl)Ether		UG/L	U	U		10.2	1
	Bis(2-ethylhexyl)phthalate		UG/L	U	U		10.2	1
	Butyl benzyl phthalate		UG/L	U	U		10.2	1
	Carbazole		2 UG/L	U	U		10.2	1
	Chrysene	1	UG/L	U	U		1	1
	Di-n-butyl phthalate	10.2	2 UG/L	U	U		10.2	1
	Di-n-octylphthalate	40.0	2 UG/L	U	U		10.2	1

Page 13

 Station:
 24B-MW-06

 Sample ID:
 244614

 Date Collected:
 03/15/2005

Media: Groundwater Field Sample Type: Grab

Analysis	5/2005 Field Sample Type Chemical	Result Units	Lab I Qual (Validation Detection Code Limit	Dilution	
Semi-Volatile Organics	General Engineering Laboratory						
SW846 8270C	Dibenz(a,h)anthracene	1 UG/L	U	U	1	1	
	Dibenzofuran	10.2 UG/L	U	U	10.2	1	
	Diethyl phthalate	10.2 UG/L	U	U	10.2	1	
	Dimethyl phthalate	10.2 UG/L	U	U	10.2	1	
	Diphenylamine	10.2 UG/L	U	U	10.2	1	
	Fluoranthene	1 UG/L	Ŭ	Ŭ	1	1	
	Fluorene	1 UG/L	ŭ	ŭ	i	4	
	Hexachlorobenzene	10.2 UG/L	U	Ŭ	10.2	1	
	Hexachlorobutadiene	10.2 UG/L	Ŭ	U	10.2	i	
	Hexachlorocyclopentadiene	10.2 UG/L	Ŭ	Ŭ	10.2	1	
			Ŭ	U		1	
	Hexachloroethane	10.2 UG/L			10.2		
	Indeno(1,2,3-cd)pyrene	1 UG/L	U	U	1	1	
	Isophorone	10.2 UG/L	U	U	10.2	1	
	N-Nitroso-di-n-propylamine	10.2 UG/L	U	U	10.2	1	
	Naphthalene	1 UG/L	U	U	1	1	
	Nitrobenzene	10.2 UG/L	U	U	10.2	1	
	Pentachlorophenol	10.2 UG/L	U	U	10.2	1	
	Phenanthrene	1 UG/L	U	U	1	1	
	Phenol	10.2 UG/L	U	U	10.2	1	
	Pyrene	1 UG/L	U	U	1	1	
Volatile Organics	General Engineering Laboratory						
SW846 8260B	1,1,1-Trichloroethane	1 UG/L	U	U	1	1	
	1,1,2,2-Tetrachloroethane	1 UG/L	U	U	1	1	
	1,1,2-Trichloroethane	1 UG/L	U	U	1	1	
	1,1-Dichloroethane	1 UG/L	U	U	1	1	
	1,1-Dichloroethene	1 UG/L	U	U	1	1	
	1,2-Dibromoethane	1 UG/L	U	Ū	1	1	
	1,2-Dichloroethane	1 UG/L	Ŭ	Ŭ		1	
	1,2-Dichloroethene	1 UG/L	Ŭ	ŭ	4	1	
		1 UG/L	Ŭ	Ŭ		1	
	1,2-Dichloropropane	5 UG/L	Ŭ	ŭ	5	1	
	2-Butanone						
	2-Hexanone	5 UG/L	U	U	5	1	
	4-Methyl-2-pentanone	5 UG/L	U	U	5	1	
	Acetone	5 UG/L	U	U	5	1	
	Benzene	1 UG/L	U	U	1	1	
	Bromochloromethane	1 UG/L	U	U	1	1	
	Bromodichloromethane	1 UG/L	U	U	1	1	
	Bromoform	1 UG/L	U	U	1	1	
	Bromomethane	1 UG/L	U	U	1	1	
	Carbon disulfide	5 UG/L	U	U	5	1	
	Carbon tetrachloride	1 UG/L	U	U	1	1	
	Chlorobenzene	1 UG/L	U	U	1	1	
	Chloroethane	1 UG/L	U	U	1	1	
	Chloroform	1 UG/L	U	U		1	
	Chloromethane	1 UG/L	Ū	U		1	
	cis-1,3-Dichloropropene	1 UG/L	Ŭ	Ŭ		1	
	Dibromochloromethane	1 UG/L	Ŭ	Ŭ		-	
	Ethylbenzene	1 UG/L	Ŭ	U		1	
	Methylene chloride	5 UG/L	U	U			
	Styrene	1 UG/L	U	U			
	Tetrachloroethene	1 UG/L	U	U			
	Toluene	1 UG/L	-	U		1	
			U			1	
	trans-1,3-Dichloropropene	1 UG/L	U	U		1	
	Trichloroethene	1 UG/L	U	U	1	1	
	Vinyl chloride	1 UG/L	U	U		1	

Page 14

Sample ID: Date Collected:		Media: Field Sample Type:	Groundwater Grab				Detection		
Analysis	Chemical	A	Result Units	Lab Qual		Validation Code	Detection Limit	Dilution	
Inorganics	General Engi	neering Laboratory							
SW846 8260B	Xylenes, Total		1 UG/L	U	U		1	1	

	5/2005 Field Sample Ty					Validation		Dilution
Analysis	Chemical	Result	Units	Qual	Qual	Code	Limit	Dilution
norganics	General Engineering Laboratory							
	Arsenic		UG/L	В	U	F01,F06	0.81	1
SW846 3005/6020	Barium		UG/L	-	=		0.008	1
	Cadmium		UG/L	В	U	F01,F06	0.013	1
	Chromium		UG/L	12	U	F01,F07	0.27	1
	Lead		UG/L	B	J		0.004	1
SW846 7470	Mercury		UG/L	U	U	504 500	0.022	1
SW846 3005/6020	Selenium		UG/L	В	U	F01,F06	0.92	1
	Silver		UG/L	В	U	F01,F06	0.002	1
Semi-Volatile Organics	General Engineering Laboratory							
SW846 8270C	1,2,4-Trichlorobenzene	10.4	UG/L	U	U		10.4	1
	1,2-Dichlorobenzene	10.4	UG/L	U	U		10.4	1
	1,3-Dichlorobenzene	10.4	UG/L	U	U		10.4	1
	1,4-Dichlorobenzene	10.4	UG/L	U	U		10.4	1
	2,4,5-Trichlorophenol	10.4	UG/L	U	R	G03	10.4	1
	2,4,6-Trichlorophenol	10.4	UG/L	U	R	G03	10.4	1
	2,4-Dichlorophenol	10.4	UG/L	U	R	G03	10.4	1
	2,4-Dimethylphenol	10.4	UG/L	U	R	G03	10.4	1
	2,4-Dinitrophenol	20.8	UG/L	U	R	G03	20.8	1
	2,4-Dinitrotoluene	10.4	UG/L	U	U		10.4	1
	2,6-Dinitrotoluene	10.4	UG/L	U	U		10.4	1
	2-Chloronaphthalene	1	UG/L	U	U		1	1
	2-Chlorophenol	10.4	UG/L	U	R	G03	10.4	1
	2-Methyl-4,6-dinitrophenol	10.4	UG/L	U	R	G03	10.4	1
	2-Methylnaphthalene	1	UG/L	U	U		1	1
	2-Methylphenol	10.4	UG/L	U	R	G03	10.4	1
	2-Nitroaniline	10.4	UG/L	U	U		10.4	1
	2-Nitrophenol	10.4	UG/L	U	R	G03	10.4	1
	3,3'-Dichlorobenzidine	10.4	UG/L	U	U		10.4	1
	3-Nitroaniline	10.4	UG/L	U	U		10.4	1
	4-Bromophenyl phenyl ether	10.4	UG/L	U	U		10.4	1
	4-Chloro-3-methylphenol	10.4	UG/L	U	R	G03	10.4	1
	4-Chloroaniline	10.4	UG/L	U	U		10.4	1
	4-Chlorophenyl phenyl ether	10.4	UG/L	U	U		10.4	1
	4-Methylphenol	10.4	UG/L	U	R	G03	10.4	1
	4-Nitroaniline	10.4	UG/L	U	U		10.4	1
	4-Nitrophenol	10.4	UG/L	U	R	G03	10.4	1
	Acenaphthene	1	UG/L	U	U		1	1
	Acenaphthylene	1	UG/L	U			1	1
	Anthracene		UG/L	U			1	1
	Benz(a)anthracene		UG/L	u			1	1
	Benzenemethanol	10.4	UG/L	U		G03	10.4	1
	Benzo(a)pyrene		UG/L	U			1	1
	Benzo(b)fluoranthene		UG/L	u			1	1
	Benzo(ghi)perylene		UG/L	U			1	1
	Benzo(k)fluoranthene		UG/L	U	9 - 19 7 0		1	1
	Benzoic acid		UG/L	u			20.8	1
	Bis(2-chloroethoxy)methane		UG/L	U			10.4	1
	Bis(2-chloroethyl) ether		UG/L	L			10.4	1
	Bis(2-Chloroisopropyl)Ether		UG/L	L			10.4	1
	Bis(2-ethylhexyl)phthalate		UG/L	ι	2 3.74		10.4	1
	Butyl benzyl phthalate		UG/L	L			10.4	1
	Carbazole		UG/L	L			10.4	1
	Chrysene		UG/L	L			1	1
	Di-n-butyl phthalate		UG/L	L	C 1173		10.4	1
	Di-n-octylphthalate	10.4	UG/L	L	U U		10.4	1

Page 16

 Station:
 24B-MW-08

 Sample ID:
 244814

 Date Collected:
 03/15/2005

Media: Groundwater Field Sample Type: Grab

Date Collected: 03/1	15/2005 Field Sample Type	: Grab	54 J.S.S. 1	_				
Analysis	Chemical	Result Units		Data Qual		Detection Limit	Dilution	
Semi-Volatile Organics	General Engineering Laboratory							
SW846 8270C	Dibenz(a,h)anthracene	1 UG/L	U	U		1	1	
	Dibenzofuran	10.4 UG/L	U	U		10.4	1	
	Diethyl phthalate	10.4 UG/L	U	U		10.4	1	
	Dimethyl phthalate	10.4 UG/L	U	U		10.4	1	
	Diphenylamine	10.4 UG/L	U	U		10.4	1	
	Fluoranthene	1 UG/L	U	U		1	1	
	Fluorene	1 UG/L		U		1	1	
	Hexachlorobenzene	10.4 UG/L		U		10.4	1	
	Hexachlorobutadiene	10.4 UG/L		U		10.4	1	
	Hexachlorocyclopentadiene	10.4 UG/L	·	U		10.4	1	
	Hexachloroethane	10.4 UG/L		U		10.4	1	
	Indeno(1,2,3-cd)pyrene	1 UG/L	-	Ŭ		1	i	
	Isophorone	10.4 UG/L		Ŭ		10.4	1	
	N-Nitroso-di-n-propylamine	10.4 UG/L		Ŭ		10.4		
		1 UG/L				10.4	-	
	Naphthalene					1000	4	
	Nitrobenzene	10.4 UG/L				10.4	4	
	Pentachlorophenol	10.4 UG/L				10.4	1	
	Phenanthrene	1 UG/L				1	1	
	Phenol	10.4 UG/L				10.4	1	
	Pyrene	1 UG/L	U	U		1	1	
Volatile Organics	General Engineering Laboratory					67.55		
SW846 8260B	1,1,1-Trichloroethane	1 UG/L				1	1	
	1,1,2,2-Tetrachloroethane	1 UG/L	U			1	1	
	1,1,2-Trichloroethane	1 UG/L	. U	U		1	1	
	1,1-Dichloroethane	1 UG/L	. U	U		1	1	
	1,1-Dichloroethene	1 UG/L	. U	U	6	1	1	
	1,2-Dibromoethane	1 UG/L	. U	U	í.	1	1	
	1,2-Dichloroethane	1 UG/L	. U	U	E.	1	1	
	1,2-Dichloroethene	1 UG/L	. U	U		1	1	
	1,2-Dichloropropane	1 UG/L	. U	U	É.	1	1	
	2-Butanone	5 UG/L	. U	U	Ē	5	1	
	2-Hexanone	5 UG/L		U	i i i i i i i i i i i i i i i i i i i	5	1	
	4-Methyl-2-pentanone	5 UG/L				5	1	
	Acetone	5 UG/L				5	1	
	Benzene	1 UG/L				1	1	
	Bromochloromethane	1 UG/L					1	
	Bromodichloromethane	1 UG/L				-		
						1	1	
	Bromoform	1 UG/L				1		
	Bromomethane	1 UG/L				1	1	
	Carbon disulfide	5 UG/L				5	1	
	Carbon tetrachloride	1 UG/L				1	1	
	Chlorobenzene	1 UG/L				1	1	
	Chloroethane	1 UG/L				1	1	
	Chloroform	1 UG/L		8 15		1	1	
	Chloromethane	1 UG/L		S 87		1	1	
	cis-1,3-Dichloropropene	1 UG/L	. U	J U	l.	1	1	
	Dibromochloromethane	1 UG/L	. U	J U	J	1	1	
	Ethylbenzene	1 UG/L	. U	J U	J	1	1	
	Methylene chloride	5 UG/L		JU	J	5	1	
	Styrene	1 UG/L				1	1	
		1 UG/L				1	1	
	Tetrachloroethene				(1)		(7)	
	Tetrachloroethene Toluene		, u	1 L	1	1	1	
	Toluene	1 UG/L				1	1	
			. U	JU	J	1	1 1 1	

Station: 248 Sample ID: 244		Media:	Groundwater						
Date Collected: 03/		Field Sample Type:		Lah	Data	Validation	Detection		
Analysis	Chemical		Result Units	1 To	Qual	Code	Limit	Dilution	
Volatile Organics	General Engi	neering Laboratory							
SW846 8260B	Xylenes, Tota	1	1 UG/L	U	U		1	1	

	Acceponies 1737(865) 487-4600 Iewart - SWMU 24B 1055-04-6425-700 Jeff Longaker IPrinted Name) Jeff Longaker 1243 Jeff Longaker 1245 Jeff Longaker 1245 Jeff Longaker 1243 Jeff Longaker 1243 Jeff Longaker 1244 Date Collected Time Colle Ø3/15/05 1725 Ø3/16/05 0 Date/Time P Date/Time P			CHAIN OF CHAIN	NOF CUS POUC RE Date/Time Date/Time Date/Time	CHAIN OF CUSTODY RECORD 3/2 6/06/ REQUESTED PARAMETERS 3/2 6/06/ RECORSTED PARAMETERS 1/2 7 1 1/2 7 1 2/2 6/06/ 10 2/2 7 1 Date/Time Date/Time Date/Time	A D D D D D D D D D D D D D D D D D D D		COC NO.: J. S.W.M.UD ABORATORY NAME: eneral Engineering Laboratory ABORATORY ADDRESS: 040 Savage Road iharleston, SC 29407 HONE NO: (843) 556-8171 HONE NO: (843) 556-8171 Scheening Scheening Scheening Special INSTRUCTIONS Scheening Special INSTRUCTIONS Scheening Scheening Special INSTRUCTIONS Scheening Special INSTRUCTIONS Scheening
COMPANY NAME: COMPANY NAME:	1525	COMPANY NAME:	Y NAME:					11 · 77 ·	

B-25

BOLIECT MARE: FL Stownt - SWU 248 POLIECT WINBER: 01-1055-04-0435-700 PPOLIECT WINBER: 01-1055-04-0435-700 PPOLIECT WINBER: 01-1055-04-0435-700 PPOLIECT WINBER: 01-1055-04-0435-700 PPOLIECT WINDER:	An Engloyee Science Applications International Corporation 151 Layfayette Drilve, Oak Ridge, Tenness	Science Application International Company Science Application International Corporation 151 Layfayatta Drive, Oak Ridge, Tennessee 37831(865) 461 4600	1481-4600			CH	AIN OF CU	CHAIN OF CUSTODY RECORD			COC NO.:	COC NO .: GSWMUE
Rb. John Concerte Time Conce Time Concerte Time C	PROJECT NAME: F	t. Stewart - SWMU 24B				3		EQUESTED PARAMETERS			LABORATORY NAME:	JAME:
PROJECT МАМАСЕР: Juff Longiter PROJECT МАМАСЕР: Juff Longiter PROJECT MAMACER: Juff Longiter	PROJECT NUMBER	01-1055-04-6425-700			Τ						General Engineering Laboratory	ring Laboratory
Вилени (Вигадили) Пилен (Вигадили) Пилен (Вигадили) Пилен (Вигадили) 2.14.11.4 0.31/5/195 7.35 N 2 </td <td>PROJECT MANAGE</td> <td>ER: Jeff Longaker</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>VDDRESS: ad</td>	PROJECT MANAGE	ER: Jeff Longaker										VDDRESS: ad
Валинии (Плиник) (Плиник) (Плиник) (Плиник) 2 2 4 4 4 3 4 4 1 4 2 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4												2048
41.1.4.1. Шаловие Шаловны Шаловны Шаловны Шаловны Шаловны Шаловны Шаловны Шаловны Цаловны Цаловны <td>Sampler (Signature)</td> <td>(Prin</td> <td>ited Name)</td> <td>ç</td> <td>0</td> <td></td> <td>SIRTON</td> <td>•</td> <td></td> <td></td> <td>PHONE NO: (843) 556-8171</td> <td>3) 556-8171</td>	Sampler (Signature)	(Prin	ited Name)	ç	0		SIRTON	•			PHONE NO: (843) 556-8171	3) 556-8171
244114 2315/165 735/ N Z N Z 244314 14315/165 733 N Z N Z 244414 1315/165 733 N Z N Z 2444124 1315/165 726 N Z Z 244424 1316/165 726 N Z Z 244424 141 141 141 141 Z 141 141 141 141 141 Z 141 141 141 141 Z 141	114	Date Collected	TIME Coll	HIARKE ected Mai		SVOC					SCREENING	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
3.14 13.15 15.15 7-34 N Z 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.1	15	135			N						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	244	1	173			N						
244424 ゆ3/5445 ひとゆ N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2444	03/15/105	172	N N		N						
RELINOUISHED BY: DaterTime RECEIVED BY: DaterTime RELINOUISHED BY: DaterTime RELINOUISHED BY: DaterTime RELINOUISHED BY: DaterTime RECEIVED BY: DaterTime		03/15/05	122	W		2					0	
RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time TOTAL NUMBER OF CONTAINERS: 8 RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time TOTAL NUMBER OF CONTAINERS: 8 RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time TOTAL NUMBER OF CONTAINERS: 8 RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time TOTAL NUMBER OF CONTAINERS: 8 RECEIVED BY: Date/Time RECEIVED BY: Date/Time TOTAL NUMBER OF CONTAINERS: 8 RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time TOTAL NUMBER OF CONTAINERS: 8 RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINDUISHED BY: Date/Time RELINDUISHED BY: Date/Time RELINDUISHED BY: Date/Time RELINDUISHED BY: Date/Time RELINDUISHED BY: Date/Time Date/Time RELINDUISHED BY: Date/Time RELINDUISHED BY: Date/Time RELINDUISHED RELINDUISHED BY: Date/Time RELINDUISHED BY: Date/Time RELINDUISHED RELINDUISHED BY: Date/Time		1 1 1		_								
RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECONTAINERS: 8 RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECONTAINERS: 8 RELINOUISHED BY: Date/Time RECONTAINERS: 7/14 (K); 0.016 (L); 7 7 RELINOUISHED BY: Date/Time RECONTAINERS: 7/14 (K); 0.000 (L); 7 7 RECEIVED BY: Date/Time RECINCED BY: Date/Time RECINCED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINDUSHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINDUSHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time									1			
RELINQUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINQUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINQUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINQUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RECINCOURPARY NAME: //// 2// Cooler ID: /// 2// SAFC Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RECIVED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RECIVED BY: Date/Time RELINOUISHED BY: Date/Time RECIVED BY: Date/Time RECIVED BY: Date/Time RELINOUISHED BY: Date/Time RECIVED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RECIVED BY: Date/Time RECIVED BY: Date/Time RELINOUISHED BY: Date/Time RECIVED BY: Date/Time RECIVED BY: Date/Time							14					
RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: ALL 0 3/14/25 COMPANY NAME: ///25 Cooler ID: H SALC 0 3/14/25 COMPANY NAME: //25 Cooler ID: H SALC Date/Time RECEIVED BY: Date/Time RECEIVED BY: R RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time R Z RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time R Z RECEIVED BY: Date/Time RECEIVED BY: Date/Time R Z RECEIVED BY: Date/Time RECEIVED BY: Date/Time R RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time	B-2				0 1	2	1 50				r.	
Mater Time Dater Time TOTAL NUMBER OF CONTAINERS: 9 Mater Time RECEIVED BY: Dater Time TOTAL NUMBER OF CONTAINERS: 9 Mater Time RECEIVED BY: 3:16:DS Cooler ID: 27 9 Mater Time RELINOUISHED BY: Dater Time TOTAL NUMBER OF CONTAINERS: 9 Mater Time RELINOUISHED BY: Jater Time TOTAL NUMBER OF CONTAINERS: 9 Mater Time RELINOUISHED BY: Dater Time Dater Time Mater Time RELINOUISHED BY: Dater Time Mater Time RECEIVED BY: Dater Time Mater Time RECEIVED BY: Dater Time Mater Time RECEIVED BY: Dater Time	6			JH.	t	Ī					×	
Date/Time RECEIVED BY Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY:				4							/	
The patertime RECEIVED BY Datertime RECEIVED BY Datertime RECEIVED BY Datertime RECEIVED BY Datertime RECEIVED BY 3.16°DS Cooler ID: The 3/14/05 Company NAME: 15.35 Cooler ID: The 3/14/05 Company NAME: 15.35 Cooler ID: The 3/14/05 Datertime RELINQUISHED BY: Datertime Datertime RECIVED BY: Datertime Datertime Total 11/10 COMPANY NAME: Datertime 3/14/05 COMPANY NAME: Datertime											/	
\mathcal{T} Date/Time RECEIVED BY \mathcal{T} \mathcal{D} \mathcal{T}											/	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						_				_	/	
The partition Date/Time RELINOUISHED BY: Date/Time Cooler ID: The difference Date/Time RELINOUISHED BY: Date/Time Z <z< td=""> The difference RELINOUISHED BY: Date/Time Date/Time The difference RELINOUISHED BY: Date/Time The difference RECEIVED BY: Date/Time The difference RECEIVED BY: Date/Time The difference RECEIVED BY: Date/Time To display RECEIVED BY: Date/Time</z<>	RELINQUISHED BY			RECEIVED BY	1-1-1-	4	Date/Time		NTAINERS:	90	Cooler Temperature:	ure: 4°C
Date/Time RELINOUISHED BY: Alter 3/14/65 COMPANY NAME: COMPANY NAME: Bate/Time RECEIVED BY: 1<525	COMPANY NAME:	bika		SOMPANY NA	ME		1525	Cooler ID:	Ч		FEDEX NUMBER	
Date/Time RECEIVED BY:	RECEIVED BY:	This 3/14/00		JELINQUISHE	ED BY:		Date/Time			4		
3/it/o5 COMPANY NAME:	COMPANY NAME:		0	COMPANY NA	ME:		1				ž	
1525	BELINQUISHED BY			RECEIVED BY			Date/Time	л 3/				
	COMPANY NAME:			COMPANY NA	WE:							

Stewart - SWMU 24B 1.326.06 ··· RECO 01-1055-04-6425-700 01-1055-04-6425-700 01-1055-04-6425-700 01-1055-04-6425-700 01-1055-04-6425-700 01-101 01-1055-04-6425-700 01-101 01-1055-04-6425-700 02-10 01-1055-04-6425-700 02-10 01-1055-04-6425-700 02-10 01-1055-04-6425-700 02-10 01-105 02-10 01-105 02-10 01-105 02-10 01-105 02-10 01-105 02-10 01-105 02-10 01-105 02-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 01-105 00-10 </th <th>CHAIN OF CUSTODY RECORD</th> <th>COC NO.: 63 SWARD</th>	CHAIN OF CUSTODY RECORD	COC NO.: 63 SWARD
PROJECT NUMBER: 01-1055-046425-700 PROJECT NUMBER: 01-1055-046425-700 PROJECT NUMBER: 01-1055-046425-700 PROJECT MANAGER: Jeff Longaker Sampler (Signature) (Pinted Name) Sampler (Signature) (Pinted Name) Mary // Longaker 2 2 474 5/14 (23/55/15) 2 474 5/14 (2	1326067 REQUESTED PARAMETERS	LABORATORY NAME: General Enclinearing I aboration
PROJECT MANAGER: Jeft Longaker PROJECT MANAGER: Jeft Longaker Sampler (Signature) (Printed Name) Printe (Printed Name)		B
Sampler (Signature) (Pilnted Name) Rander (Signature) Date Collected Time Collected Matrix 00 0000000000000000000000000000000000		LABORATORY ADDRESS: 2040 Savage Road Charleston, SC 29407
Illerty W.A.W.E. H. P. H. L. F. No. Collected Matrix So B. R. So A. R. 2445/4 12/5/45 1540 2 2 1 2 2445/4 12/5/45 1540 2 2 1 2 2445/4 12/5/45 1/245 1/24 2 1 2 2445/4 1/2/5/45 545 1 2 1 2 1 2445/4 1/2/5/45 545 1 2 1 2 1 1 2 1 1 2 1 1 2 1	5(830)	PHONE NO: (843) 556-8171
2 44 5 14 は 31/5 165 11 26 W 2 2 1 1 26 W 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1	VOC SVOC	DVA OBSERVATIONS, COMMENTS, SCREENING SPECIAL INSTRUCTIONS
2 ササ レドサ (13)(5/165 112位 112位 11 22 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1		2
244 814 43/15/05 545 W 2 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2
RELINOUISHED BY Date/Time RECEVED BY RECEIVED BY Date/Time RELINOUISHED BY RECEIVED BY Date/Time RELINOUISHED BY RECEIVED BY Date/Time RELINOUISHED BY RELINOUISHED BY Date/Time RECEIVED BY	2	2
RELINOUISHED BY: Date/Time RECEVED BY: Date/Time RELINOUISHED BY: Date/Time RECEVED BY: Date/Time RELINOUISHED BY: Date/Time RECEVED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RECEVED BY: Date/Time RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time		
RELINQUISHED BY Date/Timp RECEWED BY SALE Date/Timp RECEWED BY SALE Date/Timp RELINQUISHED BY RELINQUISHED BY Date/Timp RECEWED BY RECEIVED BY Date/Timp RELINQUISHED BY RECEIVED BY Date/Timp RELINQUISHED BY RECEIVED BY Date/Timp RELINQUISHED BY RECEIVED BY Date/Timp RECEIVED BY RELINQUISHED BY Date/Timp RECEIVED BY		~
RELINOUISHED BY DaterTimp RECEWED BY RELINOUISHED BY DaterTimp RECEWED BY SATURE DaterTimp RECEIVED BY DaterTimp RECEIVED BY DaterTimp RECEIVED BY DaterTimp RELINOUISHED BY DaterTimp RELINOUISHED BY DaterTimp		
RELINOUISHED BY: Date/Time RECEWED BY: Date/Time RELINOUISHED BY: Date/Time RECEWED BY: Date/Time RELINOUISHED BY: Date/Time RECEWED BY: Date/Time RELINOUISHED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY: Date/Time RELINOUISHED BY: Date/Time RECEIVED BY: Date/Time		X
RELINOUISHED BY Date/Timp RECEIVED BY RECEIVED BY Date/Timp RELINOUISHED BY RECEIVED BY Date/Timp RELINOUISHED BY RECEIVED BY Date/Time RELINOUISHED BY RECEIVED BY Date/Time RELINOUISHED BY RECEIVED BY Date/Time RELINOUISHED BY	5	M.
Date/Time RECEIVED BY Mate/Time Date/Time Mate/Time RECEIVED BY Mate/Time RECEIVED BY Mate/Time RELINQUISHED BY: Date/Time RECEIVED BY:		
Date/Time RECEVED/BY: Date/Time Date/Time Date/Time RECEVED/BY: Date/Time RECEVED/BY: Date/Time RECEVED/BY: Date/Time RECEVED/BY: Date/Time RECEVED/BY: Date/Time RECEVED/BY: Date/Time RECEVED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY:		
Date/Time RECEVED BY: Date/Time Date/Time Date/Time RECEVED BY: Date/Time RELEVED BY: Date/Time RELINCUISHED BY: Date/Time RELINCUISHED BY: Date/Time RELINCUISHED BY: Date/Time RECEIVED BY: Date/Time RECEIVED BY:		
Date/Time RECEIVED/BY Date/Time RECEIVED/BY Date/Time RECEIVED/BY Date/Time RECEIVED/BY Date/Time RECEIVED/BY Date/Time RECEIVED BY Date/Time RELINQUISHED BY		
Date/Time RECEVENDBY: 03/14/05 1.000 03/14/05 1.000 03/14/05 000 01 1.000		_
The second and and second and second and second and second and second a	Dale/Time	
THOUSHED BY: 3/1465 1/1/D COMPANY NAME: Date/Time RECEIVED BY:	1525	FEDEX NUMBER:
Date/Time RECEIVED BY:		
Date/Time RECEIVED BY:		
5		
	NY NAME:	

THIS PAGE INTENTIONALLY LEFT BLANK.

ANALYTICAL DATA AND CHAIN-OF-CUSTODY FORMS FOR SOIL FOR MARCH 2005

THIS PAGE INTENTIONALLY LEFT BLANK.

ate Collected: 0		dia: Soil			Dehr	h: 0.5 - 2 F		
Analysis	Chemical	Result	Unite	Lab Qual		Validation Code	Detection Limit	Dilution
norganics	General Engineering Laboratory	115-222-61-5223	Units	Qual	Quai	Code	SDG No:	
SW846 6010	Arsenic		MG/KG	U	U		0.216	1
	Barium		MG/KG		=		0.07	i
	Cadmium		MG/KG	U	U		0.05	1
	Chromium		MG/KG	*	J	J01,J02	0.169	1
	Lead		MG/KG	*	=	001,002	0.297	1
SW846 7470	Mercury		MG/KG		=		0.001	1
SW846 6010	Selenium	그 집에 가 있는 것	MG/KG	U	U		0.001	1
	Silver		MG/KG	Ŭ	Ŭ		0.095	1
Semi-Volatile	General Engineering Laboratory		monto	0	0		SDG No:	
Organics	,						000 110	110000
SW846 8270C	1,2,4-Trichlorobenzene	351	UG/KG	U	U		351	1
	1,2-Dichlorobenzene	351	UG/KG	U	U		351	1
	1,3-Dichlorobenzene	351	UG/KG	U	U		351	1
	1,4-Dichlorobenzene	351	UG/KG	U	U		351	1
	2,4,5-Trichlorophenol	351	UG/KG	U	U		351	1
	2,4,6-Trichlorophenol	351	UG/KG	U	U		351	1
	2,4-Dichlorophenol	351	UG/KG	U	U		351	1
	2,4-Dimethylphenol	351	UG/KG	U	U		351	1
	2,4-Dinitrophenol	703	UG/KG	U	U		703	1
	2,4-Dinitrotoluene	351	UG/KG	U	U		351	1
	2,6-Dinitrotoluene	351	UG/KG	U	U		351	1
	2-Chloronaphthalene	35.1	UG/KG	U	U		35.1	1
	2-Chlorophenol	351	UG/KG	U	U		351	1
	2-Methyl-4,6-dinitrophenol	351	UG/KG	U	U		351	1
	2-Methylnaphthalene	35.1	UG/KG	U	U		35.1	1
	2-Methylphenol	351	UG/KG	U	U		351	1
	2-Nitroaniline	351	UG/KG	U	U		351	1
	2-Nitrophenol	351	UG/KG	U	U		351	1
	3,3'-Dichlorobenzidine	351	UG/KG	U	U		351	1
	3-Nitroaniline	351	UG/KG	U	U		351	1
	4-Bromophenyl phenyl ether	351	UG/KG	U	U		351	1
	4-Chloro-3-methylphenol	351	UG/KG	U	U		351	1
	4-Chloroaniline	351	UG/KG	U	U		351	1
	4-Chlorophenyl phenyl ether	351	UG/KG	U	U		351	1
	4-Methylphenol	351	UG/KG	U	U		351	1
	4-Nitroaniline		UG/KG	U	U		351	1
	4-Nitrophenol		UG/KG	U	U		351	1
	Acenaphthene	35.1	UG/KG	U	U		35.1	1
	Acenaphthylene		UG/KG	U	U		35.1	1
	Anthracene		UG/KG	U	U		35.1	1
	Benz(a)anthracene		UG/KG	U	U		35.1	1
	Benzenemethanol		UG/KG	U	U		351	1
	Benzo(a)pyrene		UG/KG	U	U		35.1	1
	Benzo(b)fluoranthene		UG/KG	U	U		35.1	1
	Benzo(ghi)perylene		UG/KG	U	U		35.1	1
	Benzo(k)fluoranthene		UG/KG	U	U		35.1	1
	Benzoic acid		UG/KG	U	U		703	1
	Bis(2-chloroethoxy)methane		UG/KG	U	U		351	1
	Bis(2-chloroethyl) ether		UG/KG	U	U		351	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U		351	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JB	U	F01,F06	351	1
	Butyl benzyl phthalate		UG/KG	U	U		351	1
	Carbazole		UG/KG	U	U		351	1
	Chrysene		UG/KG	U	U		35.1	1
	Di-n-butyl phthalate		UG/KG	U	U		351	1
	Di-n-octylphthalate	351	UG/KG	U	U		351	1

Page 1

Sample ID: 3		Media: Soil			Dep	th: 0.5 - 2 F	т	
ate Collected:	08/24/2004 Field San	ple Type: Grab		1.45				
Analysis	Chemical	Result	Units		Qual	Validation Code	Limit	Dilution
SW846 8270C	Dibenz(a,h)anthracene	35.1	UG/KG	U	U		35.1	1
	Dibenzofuran	351	UG/KG	U	U		351	1
	Diethyl phthalate	351	UG/KG	JB	U	F01,F06	351	1
	Dimethyl phthalate	351	UG/KG	U	U		351	1
	Diphenylamine	351	UG/KG	U	U		351	1
	Fluoranthene	35.1	UG/KG	U	U		35.1	1
	Fluorene	35.1	UG/KG	U	U		35.1	1
	Hexachlorobenzene	351	UG/KG	U	U		351	1
	Hexachlorobutadiene	351	UG/KG	U	U		351	1
	Hexachlorocyclopentadiene	351	UG/KG	U	U		351	1
	Hexachloroethane	351	UG/KG	U	U		351	1
	Indeno(1,2,3-cd)pyrene	35.1	UG/KG	U	U		35.1	1
	Isophorone	351	UG/KG	U	U		351	1
	N-Nitroso-di-n-propylamine	351	UG/KG	U	U		351	1
	Naphthalene	35.1	UG/KG	U	U		35.1	1
	Nitrobenzene	351	UG/KG	U	U		351	1
	Pentachlorophenol	351	UG/KG	U	U		351	1
	Phenanthrene	35.1	UG/KG	U	U		35.1	1
	Phenol	351	UG/KG	U	U		351	1
	Pyrene	35.1	UG/KG	U	U	[35.1	1
olatile Organics	s General Engineering Labo	oratory					SDG No	: 119838
SW846 8260B	1,1,1-Trichloroethane	1.3	UG/KG	U	U	3	1.3	1
	1,1,2,2-Tetrachloroethane	1.3	UG/KG	U	U		1.3	1
	1,1,2-Trichloroethane	1.3	UG/KG	U	U		1.3	1
	1,1-Dichloroethane		UG/KG	U	U		1.3	1
	1,1-Dichloroethene	1.3	UG/KG	U	U		1.3	1
	1,2-Dibromoethane	1.3	UG/KG	U	U		1.3	1
	1,2-Dichloroethane	1.3	UG/KG	U	U		1.3	1
	1,2-Dichloroethene	1.3	UG/KG	U	U		1.3	1
	1,2-Dichloropropane	1.3	UG/KG	U	U		1.3	1
	2-Butanone	6.4	UG/KG	U	U		6.4	1
	2-Hexanone	6.4	UG/KG	U	U		6.4	1
	4-Methyl-2-pentanone	6.4	UG/KG	U	U		6.4	1
	Acetone	6.4	UG/KG	U	U		6.4	1
	Benzene	1.3	UG/KG	U	U		1.3	1
	Bromochloromethane	1.3	UG/KG	U	U		1.3	1
	Bromodichloromethane	1.3	UG/KG	U	U		1.3	1
	Bromoform	1.3	UG/KG	U	U		1.3	1
	Bromomethane	1.3	UG/KG	U	U		1.3	1
	Carbon disulfide		UG/KG	U			6.4	1
	Carbon tetrachloride		UG/KG	U			1.3	1
	Chlorobenzene		UG/KG	U			1.3	1
	Chloroethane		UG/KG	U	- 100		1.3	1
	Chloroform		UG/KG	U			1.3	1
	Chloromethane		UG/KG	U			1.3	1
	cis-1,3-Dichloropropene		UG/KG	U	1. 1873		1.3	1
	Dibromochloromethane		UG/KG	U			1.3	1
	Ethylbenzene		UG/KG	U	U		1.3	1
	Methylene chloride		UG/KG	U	7 17		6.4	1
	Styrene	1.3	UG/KG	U	U		1.3	1
	Tetrachloroethene		UG/KG	U	U		1.3	1
	Toluene	1.3	UG/KG	U	U		1.3	1
	trans-1,3-Dichloropropene	1.3	UG/KG	U	U		1.3	1
	Trichloroethene		UG/KG	U	1		1.3	1
	Vinyl chloride	1.3	UG/KG	U	U		1.3	1

		dia: Soil			Dept	h: 3 - 4.8 F	· 1,	
Date Collected: 08	/24/2004 Field Sample T	ype: Grab		lab	Data	Validation	Detection	
Analysis	Chemical	Result	Units		Qual	Code	Limit	Dilution
Inorganics	General Engineering Laboratory	/					SDG No:	119838
SW846 6010	Arsenic	0.221	MG/KG	U	U		0.221	1
	Barium	5.5	MG/KG		=		0.072	1
	Cadmium	0.051	MG/KG	U	U		0.051	1
	Chromium	5.33	MG/KG	*	J	J01,J02	0.173	1
	Lead	3.2	MG/KG	•	=		0.304	1
SW846 7470	Mercury	0.032	MG/KG		=		0.001	1
SW846 6010	Selenium	0.174	MG/KG	U	U		0.174	1
	Silver		MG/KG	U	U		0.097	1
Semi-Volatile Organics	General Engineering Laboratory	/					SDG No:	119838
SW846 8270C	1,2,4-Trichlorobenzene	360	UG/KG	U	U		360	1
	1,2-Dichlorobenzene		UG/KG	Ŭ	Ū		360	i
	1,3-Dichlorobenzene		UG/KG	Ŭ	Ū		360	1
	1,4-Dichlorobenzene		UG/KG	U	U		360	1
	2,4,5-Trichlorophenol	360	UG/KG	U	U		360	1
	2,4,6-Trichlorophenol	360	UG/KG	U	U		360	1
	2,4-Dichlorophenol	360	UG/KG	U	U		360	1
	2,4-Dimethylphenol	360	UG/KG	U	U		360	1
	2,4-Dinitrophenol	721	UG/KG	U	U		721	1
	2,4-Dinitrotoluene		UG/KG	U	U		360	1
	2,6-Dinitrotoluene	1902,61	UG/KG	U	U		360	1
	2-Chloronaphthalene		UG/KG	U	U		36	1
	2-Chlorophenol		UG/KG	U	U		360	1
	2-Methyl-4,6-dinitrophenol		UG/KG	U	U		360	1
	2-Methylnaphthalene		UG/KG	U	U		36	1
	2-Methylphenol		UG/KG	U	U		360	1
	2-Nitroaniline		UG/KG	U	U		360	1
	2-Nitrophenol		UG/KG	U	U		360	1
	3,3'-Dichlorobenzidine		UG/KG	U	U		360	1
	3-Nitroaniline		UG/KG	U	U		360	1
	4-Bromophenyl phenyl ether		UG/KG	U	U		360	1
	4-Chloro-3-methylphenol		UG/KG	U	U		360	1
	4-Chloroaniline		UG/KG	U	U		360	1
	4-Chlorophenyl phenyl ether		UG/KG	U	U		360	1
	4-Methylphenol 4-Nitroaniline		UG/KG	U	U		360	1
	4-Nitrophenol		UG/KG UG/KG	U	U		360	1
	Acenaphthene		UG/KG	U	U		360	1
	Acenaphthylene		UG/KG	U	U		36 36	4
	Anthracene		UG/KG	U	U		36	1
	Benz(a)anthracene		UG/KG	Ű	U		36	1
	Benzenemethanol		UG/KG	U	U		360	1
	Benzo(a)pyrene		UG/KG	Ŭ	Ŭ		36	1
	Benzo(b)fluoranthene		UG/KG	ŭ	ŭ		36	1
	Benzo(ghi)perylene		UG/KG	Ŭ	Ŭ		36	1
	Benzo(k)fluoranthene		UG/KG	Ū	Ū		36	1
	Benzoic acid		UG/KG	U	Ū		721	1
	Bis(2-chloroethoxy)methane		UG/KG	Ū	Ū		360	1
	Bis(2-chloroethyl) ether		UG/KG	U	U		360	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U		360	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JB		F01,F06	360	1
	Butyl benzyl phthalate	360	UG/KG	U	U	<u>.</u>	360	1
	Carbazole	360	UG/KG	U	U		360	1
	Chrysene	36	UG/KG	U	U		36	1
	Di-n-butyl phthalate	360	UG/KG	U	U		360	1
	Di-n-octylphthalate		UG/KG	U	U		360	1
	Dibenz(a,h)anthracene	26	UG/KG	U	U		36	1

Sample ID: 241		edia: Soil			Dept	th: 3 - 4.8 F	-T		
Date Collected: 08/	24/2004 Field Sample 1	ype: Grab							
Analysis	Chemical	Result		Qual	Data Qual	Validation Code	Detection Limit	Dilution	
SW846 8270C	Dibenzofuran		UG/KG	U	U		360	1	
	Diethyl phthalate		UG/KG	JB		F01,F06	360	1	
	Dimethyl phthalate	360	UG/KG	U	U		360	1	
	Diphenylamine	360	UG/KG	U	U		360	1	
	Fluoranthene	36	UG/KG	U	U		36	1	
	Fluorene	36	UG/KG	U	U		36	1	
	Hexachlorobenzene	360	UG/KG	U	U		360	1	
	Hexachlorobutadiene	360	UG/KG	U	U		360	1	
	Hexachlorocyclopentadiene	360	UG/KG	U	U		360	1	
	Hexachloroethane	360	UG/KG	U	U		360	1	
	Indeno(1,2,3-cd)pyrene	36	UG/KG	U	U		36	1	
	Isophorone	360	UG/KG	U	U		360	1	
	N-Nitroso-di-n-propylamine	360	UG/KG	U	U		360	1	
	Naphthalene	36	UG/KG	U	U		36	1	
	Nitrobenzene	360	UG/KG	U	U		360	1	
	Pentachlorophenol		UG/KG	Ŭ	Ŭ		360	1	
	Phenanthrene		UG/KG	ũ	Ŭ		36	1	
	Phenol		UG/KG	U	Ŭ		360	1	
	Pyrene		UG/KG	Ŭ	Ŭ		36	1	
Volatile Organics	General Engineering Laborator				-		SDG No		_
SW846 8260B	1,1,1-Trichloroethane		UG/KG	U	U		1.2	1	_
	1,1,2,2-Tetrachloroethane		UG/KG	Ŭ			1.2	1	
	1,1,2-Trichloroethane		UG/KG	Ŭ	Ŭ		1.2	1	
	1,1-Dichloroethane		UG/KG	Ŭ	U		1.2	1	
	1,1-Dichloroethene		UG/KG	Ŭ	Ŭ		1.2	1	
	1,2-Dibromoethane		UG/KG	Ű	Ŭ		1.2	1	
	1,2-Dichloroethane		UG/KG	Ŭ	Ŭ		1.2		
	1,2-Dichloroethene			-	-			1	
			UG/KG	U	U		1.2	1	
	1,2-Dichloropropane		UG/KG	U	U		1.2	1	
	2-Butanone		UG/KG	U	U		5.8	1	
	2-Hexanone		UG/KG	U	U		5.8	1	
	4-Methyl-2-pentanone		UG/KG	U	U		5.8	1	
	Acetone		UG/KG	U	U		5.8	1	
	Benzene		UG/KG	U	U		1.2	1	
	Bromochloromethane		UG/KG	U	U		1.2	1	
	Bromodichloromethane		UG/KG	U	U		1.2	1	
	Bromoform		UG/KG	U	U		1.2	1	
	Bromomethane		UG/KG	U	U		1.2	1	
	Carbon disulfide		UG/KG	U	U		5.8	1	
	Carbon tetrachloride		UG/KG	U	U		1.2	1	
	Chlorobenzene		UG/KG	U	U		1.2	1	
	Chloroethane		UG/KG	U	U		1.2	1	
	Chloroform	1.2	UG/KG	U	U		1.2	1	
	Chloromethane		UG/KG	U	U		1.2	1	
	cis-1,3-Dichloropropene	1.2	UG/KG	U	U		1.2	1	
	Dibromochloromethane	1.2	UG/KG	U	U		1.2	1	
	Ethylbenzene		UG/KG	U			1.2	1	
	Methylene chloride		UG/KG	U			5.8	1	
	Styrene		UG/KG	U	Ŭ		1.2	1	
	Tetrachloroethene		UG/KG	Ŭ			1.2	1	
	Toluene		UG/KG	U			1.2	1	
	trans-1,3-Dichloropropene		UG/KG	Ŭ			1.2	1	
	Trichloroethene		UG/KG	Ŭ			1.2	1	
							1.2		
	Vinyl chloride	12	UG/KG	U	U		1.7	1	

	41281 Media	: Soil			Dopt	h: 0.5 - 1.9		
Date Collected: 08	B/24/2004 Field Sample Type	e: Grab		1.46	Dete	Validation	Detection	
Analysis	Chemical	Result	Units		Qual	Code	Detection Limit	Dilution
Inorganics	General Engineering Laboratory						SDG No:	119838
SW846 6010	Arsenic	0.215	MG/KG	U	U		0.215	1
	Barium	2.35	MG/KG		=		0.07	1
	Cadmium	0.05	MG/KG	U	U		0.05	1
	Chromium	3.2	MG/KG	*	J	J01,J02	0.168	1
	Lead	1.32	MG/KG	*	=		0.296	1
SW846 7470	Mercury	0.017	MG/KG		=		0.001	1
SW846 6010	Selenium	0.169	MG/KG	U	U		0.169	1
201 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Silver	0.094	MG/KG	U	U		0.094	1
Semi-Volatile Organics	General Engineering Laboratory						SDG No:	119838
SW846 8270C	1,2,4-Trichlorobenzene	351	UG/KG	U	U		351	1
	1,2-Dichlorobenzene		UG/KG	Ŭ	Ŭ		351	1
	1,3-Dichlorobenzene		UG/KG	Ŭ	Ū		351	1
	1,4-Dichlorobenzene		UG/KG	Ŭ	ŭ		351	1
	2,4,5-Trichlorophenol		UG/KG	ŭ	Ū		351	1
	2,4,6-Trichlorophenol		UG/KG	Ŭ	Ŭ		351	1
	2,4-Dichlorophenol		UG/KG	Ŭ	Ŭ		351	1
	2,4-Dimethylphenol		UG/KG	Ŭ	Ū		351	1
	2,4-Dinitrophenol		UG/KG	Ŭ	Ŭ		701	i
	2,4-Dinitrotoluene	351	UG/KG	U	U		351	1
	2,6-Dinitrotoluene	351	UG/KG	U	U		351	1
	2-Chloronaphthalene	35.1	UG/KG	U	U		35.1	1
	2-Chlorophenol	351	UG/KG	U	U		351	1
	2-Methyl-4,6-dinitrophenol	351	UG/KG	U	U		351	1
	2-Methylnaphthalene	35.1	UG/KG	U	U		35.1	1
	2-Methylphenol	351	UG/KG	U	U		351	1
	2-Nitroaniline	351	UG/KG	U	U		351	1
	2-Nitrophenol	351	UG/KG	U	U		351	1
	3,3'-Dichlorobenzidine	351	UG/KG	U	U		351	1
	3-Nitroaniline	351	UG/KG	U	U		351	1
	4-Bromophenyl phenyl ether	351	UG/KG	U	U		351	1
	4-Chloro-3-methylphenol	351	UG/KG	U	U		351	1
	4-Chloroaniline	351	UG/KG	U	U		351	1
	4-Chlorophenyl phenyl ether	351	UG/KG	U	U		351	1
	4-Methylphenol	351	UG/KG	U	U		351	1
	4-Nitroaniline	351	UG/KG	U	U		351	1
	4-Nitrophenol	351	UG/KG	U	U		351	1
	Acenaphthene	35.1	UG/KG	U	U		35.1	1
	Acenaphthylene		UG/KG	U			35.1	1
	Anthracene		UG/KG	U	U		35.1	1
	Benz(a)anthracene		UG/KG	U	U		35.1	1
	Benzenemethanol	351	UG/KG	U			351	1
	Benzo(a)pyrene	35.1	UG/KG	U	U		35.1	1
	Benzo(b)fluoranthene		UG/KG	U	U		35.1	1
	Benzo(ghi)perylene	35.1	UG/KG	U	U		35.1	1
	Benzo(k)fluoranthene		UG/KG	υ			35.1	1
	Benzoic acid	701	UG/KG	U	U		701	1
	Bis(2-chloroethoxy)methane		UG/KG	U			351	1
	Bis(2-chloroethyl) ether		UG/KG	U			351	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U			351	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JE		F01,F06	351	1
	Butyl benzyl phthalate		UG/KG	U			351	1
	Carbazole		UG/KG	U			351	1
	Chrysene		UG/KG	U	5 0750		35.1	1
	Di-n-butyl phthalate		UG/KG	U			351	1
	Di-n-octylphthalate		UG/KG	U	2. 273		351	1
	Dibenz(a,h)anthracene	35.1	UG/KG	U	U		35.1	1

Data Collected. 00/2		dia: Soil			Dept	h: 0.5 - 1.9		
Date Collected: 08/2	4/2004 Field Sample T	ype: Grab		Lab	Data	Validation	Detection	
Analysis	Chemical	Result	Units	Qual		Code	Limit	Dilution
SW846 8270C	Dibenzofuran	351	UG/KG	U	U		351	1
	Diethyl phthalate	351	UG/KG	JB	U	F01,F06	351	1
	Dimethyl phthalate	351	UG/KG	U	U		351	1
	Diphenylamine	351	UG/KG	U	U		351	1
	Fluoranthene	35.1	UG/KG	U	U		35.1	1
	Fluorene	35.1	UG/KG	U	U		35.1	1
	Hexachlorobenzene	351	UG/KG	U	U		351	1
	Hexachlorobutadiene	351	UG/KG	U	U		351	1
	Hexachlorocyclopentadiene	351	UG/KG	U	U		351	1
	Hexachloroethane	351	UG/KG	U	U		351	1
	Indeno(1,2,3-cd)pyrene	35.1	UG/KG	U	U		35.1	1
	Isophorone	351	UG/KG	U	U		351	1
	N-Nitroso-di-n-propylamine	351	UG/KG	U	U		351	1
	Naphthalene	35.1	UG/KG	U	υ		35.1	1
	Nitrobenzene	351	UG/KG	U	U		351	1
	Pentachlorophenol	351	UG/KG	U	U		351	1
	Phenanthrene	35.1	UG/KG	U	U		35.1	1
	Phenol	351	UG/KG	U	U		351	1
	Pyrene	35.1	UG/KG	U	U		35.1	1
Volatile Organics	General Engineering Laborator	y					SDG No	: 119838
SW846 8260B	1,1,1-Trichloroethane		UG/KG	U	U		1.1	1
	1,1,2,2-Tetrachloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dibromoethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloropropane		UG/KG	U	U		1.1	1
	2-Butanone	5.3	UG/KG	U	U		5.3	1
	2-Hexanone		UG/KG	U	U		5.3	1
	4-Methyl-2-pentanone		UG/KG	Ū	U		5.3	1
	Acetone		UG/KG	Ŭ	Ŭ		5.3	1
	Benzene		UG/KG	Ū	Ū		1.1	1
	Bromochloromethane		UG/KG	Ű	ŭ		1.1	1
	Bromodichloromethane		UG/KG	Ŭ	Ŭ		1.1	i
	Bromoform		UG/KG	Ŭ	ŭ		1.1	1
	Bromomethane		UG/KG	U	Ŭ		1.1	1
	Carbon disulfide		UG/KG	Ŭ	Ŭ		5.3	i
	Carbon tetrachloride		UG/KG	Ŭ	ŭ		1.1	1
	Chlorobenzene		UG/KG	U	U		1.1	1
	Chloroethane		UG/KG	Ŭ	Ŭ		1.1	1
	Chloroform		UG/KG	Ŭ	ŭ		1.1	1
	Chloromethane		UG/KG	Ŭ	Ŭ		1.1	1
	cis-1,3-Dichloropropene		UG/KG	Ŭ	Ŭ		1.1	1
	Dibromochloromethane		UG/KG	U	U		1.1	1
	Ethylbenzene		UG/KG	U	U		1.1	1
	Methylene chloride		UG/KG	U	U		5.3	1
				U	U			1
	Styrene Tetrachloroethene		UG/KG	0	=		1.1	2
			UG/KG				1.1	1
	Toluene		UG/KG	U			1.1	1
	trans-1,3-Dichloropropene		UG/KG	U			1.1	1
	Trichloroethene		UG/KG	U			1.1	1
	Vinyl chloride		UG/KG UG/KG	U			1.1	1
	Xylenes, Total	11		U	U		1.1	1

Date Collected: 08	B/24/2004 Field Sample Ty	pe: Grab				h: 3 - 4.6 F		
Analysis	Chemical	Result	Units		Data Qual	Validation Code		Dilution
Inorganics	General Engineering Laboratory						SDG No:	119838
SW846 6010	Arsenic		MG/KG	U	U		0.229	1
	Barium	3.3	MG/KG		=		0.074	1
	Cadmium	0.053	MG/KG	U	U		0.053	1
	Chromium	7.09	MG/KG	•	J	J01,J02	0.179	1
	Lead	3.98	MG/KG	*	=		0.315	1
SW846 7470	Mercury	0.048	MG/KG		=		0.001	1
SW846 6010	Selenium	0.9	MG/KG	U	U		0.9	5
	Silver	0.1	MG/KG	U	U		0.1	1
Semi-Volatile	General Engineering Laboratory	6					SDG No:	119838
Organics								
SW846 8270C	1,2,4-Trichlorobenzene	373	UG/KG	U	U		373	1
	1,2-Dichlorobenzene	373	UG/KG	U	U		373	1
	1,3-Dichlorobenzene	373	UG/KG	U	U		373	1
	1,4-Dichlorobenzene	373	UG/KG	U	U		373	1
	2,4,5-Trichlorophenol	373	UG/KG	U	U		373	1
	2,4,6-Trichlorophenol	373	UG/KG	U	U		373	1
	2,4-Dichlorophenol		UG/KG	U	U		373	1
	2,4-Dimethylphenol	373	UG/KG	U	U		373	1
	2,4-Dinitrophenol		UG/KG	ũ	Ŭ		747	1
	2,4-Dinitrotoluene		UG/KG	Ŭ	Ŭ		373	1
	2,6-Dinitrotoluene		UG/KG	Ŭ	Ŭ		373	1
	2-Chloronaphthalene	1000	UG/KG	ŭ	Ŭ		37.3	i
	2-Chlorophenol		UG/KG	ŭ	Ŭ		373	1
	2-Methyl-4,6-dinitrophenol		UG/KG	Ŭ	Ŭ		373	1
	2-Methylnaphthalene		UG/KG	ŭ	Ŭ		37.3	1
	2-Methylphenol		UG/KG	U	Ŭ		373	1
	2-Nitroaniline		UG/KG	Ŭ	U		373	1
	2-Nitrophenol		UG/KG	U	U		373	1
	3,3'-Dichlorobenzidine		UG/KG	U	U		373	1
	3-Nitroaniline		UG/KG	Ű	U		373	1
£	4-Bromophenyl phenyl ether		UG/KG	U	U		373	1
	4-Chloro-3-methylphenol		UG/KG	U	U		373	1
	4-Chloroaniline		UG/KG	U	U		373	1
	4-Chlorophenyl phenyl ether		UG/KG	U	U			
	4-Oniorophenyl phenyl ether 4-Methylphenol			U	U		373	1
	4-Nitroaniline		UG/KG UG/KG	U	U		373	1
	4-Nitrophenol			U			373	1
			UG/KG	1.25	U		373	1
	Acenaphthene Acenaphthylene		UG/KG	U	U		37.3	1
			UG/KG	U	U		37.3	1
	Anthracene Benz(a)anthracene		UG/KG	U	-		37.3	1
	Benz(a)anthracene		UG/KG	U	U		37.3	1
	Benzenemethanol		UG/KG	U	U		373	1
	Benzo(a)pyrene		UG/KG	U	U		37.3	1
	Benzo(b)fluoranthene		UG/KG	U	U		37.3	1
	Benzo(ghi)perylene		UG/KG	U	U		37.3	1
	Benzo(k)fluoranthene		UG/KG	U	U		37.3	1
	Benzoic acid		UG/KG	U	U		747	1
	Bis(2-chloroethoxy)methane		UG/KG	U	U		373	1
	Bis(2-chloroethyl) ether		UG/KG	U	U		373	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U	E TRACK IN PROVIDE TRACK	373	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JB		F01,F06	373	1
	Butyl benzyl phthalate		UG/KG	U			373	1
	Carbazole		UG/KG	U	U		373	1
	Chrysene		UG/KG	U	U		37.3	1
	Di-n-butyl phthalate		UG/KG	U	U		373	1
	Di-n-octylphthalate		UG/KG	U	U		373	1
	Dibenz(a,h)anthracene		UG/KG	U	U		37.3	1

Sample ID: 241		edia: Soil		Dept	th: 3 - 4.6 F	T .	
Date Collected: 08/2	24/2004 Field Sample T	ype: Grab	l ab	Data	Validation	Detection	
Analysis	Chemical	Result Uni		Qual		Limit	Dilution
SW846 8270C	Dibenzofuran	373 UG	KG U	U		373	1
	Diethyl phthalate	373 UG	KG JE	3 U	F01,F06	373	1
	Dimethyl phthalate	373 UG	KG U	U		373	1
	Diphenylamine	373 UG	KG U	U		373	1
	Fluoranthene	37.3 UG	KG U	U		37.3	1
	Fluorene	37.3 UG	KG U	U		37.3	1
	Hexachlorobenzene	373 UG	KG U	U		373	1
	Hexachlorobutadiene	373 UG	KG U	U		373	1
	Hexachlorocyclopentadiene	373 UG	KG U	U		373	1
	Hexachloroethane	373 UG	KG U	U		373	1
	Indeno(1,2,3-cd)pyrene	37.3 UG	KG U	U		37.3	1
	Isophorone	373 UG	KG U	U		373	1
	N-Nitroso-di-n-propylamine	373 UG	KG U	U		373	1
	Naphthalene	37.3 UG	KG U	U		37.3	1
	Nitrobenzene	373 UG	KG U	U		373	1
	Pentachlorophenol	373 UG	KG U			373	1
	Phenanthrene	37.3 UG	KG U			37.3	1
	Phenol	373 UG	KG U			373	1
	Pyrene	37.3 UG	KG U			37.3	1
Volatile Organics	General Engineering Laborator	у				SDG No	: 119838
SW846 8260B	1,1,1-Trichloroethane	1.4 UG	KG U	U		1.4	1
	1,1,2,2-Tetrachloroethane	1.4 UG	KG U	U		1.4	1
	1,1,2-Trichloroethane	1.4 UG	KG U	U		1.4	1
	1,1-Dichloroethane	1.4 UG	KG U	U		1.4	1
	1,1-Dichloroethene	1.4 UG	KG U	U		1.4	1
	1,2-Dibromoethane	1.4 UG	KG U	U		1.4	1
	1,2-Dichloroethane	1.4 UG	KG U	U		1.4	1
	1,2-Dichloroethene	1.4 UG	KG U	U		1.4	1
	1,2-Dichloropropane	1.4 UG	1010500 - T.	6 - KR		1.4	1
	2-Butanone	6.8 UG				6.8	1
	2-Hexanone	6.8 UG	S. S. T. S.	9 - IDA		6.8	1
	4-Methyl-2-pentanone	6.8 UG				6.8	1
	Acetone	6.8 UG				6.8	1
	Benzene	1.4 UG	1977) (T	A 1773		1.4	1
	Bromochloromethane	1.4 UG				1.4	1
	Bromodichloromethane	1.4 UG	1222C) (7			1.4	1
	Bromoform	1.4 UG	1977년 - 전	1		1.4	1
	Bromomethane	1.4 UG				1.4	1
	Carbon disulfide	6.8 UG				6.8	1
	Carbon tetrachloride	1.4 UG				1.4	i
	Chlorobenzene	1.4 UG				1.4	1
	Chloroethane	1.4 UG				1.4	1
	Chloroform	1.4 UG				1.4	1
	Chloromethane	1.4 UG				1.4	1
	cis-1,3-Dichloropropene	1.4 UG				1.4	1
	Dibromochloromethane	1.4 UG				1.4	1
	Ethylbenzene	1.4 UG				1.4	1
	Methylene chloride	6.8 UG				6.8	1
	Styrene	1.4 UG				1.4	1
	Tetrachloroethene	1.4 UG				1.4	1
	Toluene	1.4 UG				1.4	1
	trans-1,3-Dichloropropene	1.4 UG					
	Trichloroethene	1.4 UG				1.4 1.4	1
			N 222 C				
	Vinyl chloride	1.4 UG	KG U	U		1.4	1

Sample ID:		dia: Soil			Dept	h: 0.5 - 2.2	FT	
Date Collected:	08/24/2004 Field Sample Ty Chemical	-	Unite				Detection	Dilution
Analysis		Result	Units	Qual	Qual	Code	Limit	Dilution
Inorganics	General Engineering Laboratory		MONO				SDG No:	
SW846 6010	Arsenic Barium		MG/KG MG/KG	U	U =		0.225	1
	Cadmium		MG/KG				0.073	1
	Chromium		MG/KG	U	U	101 102	0.052	1
	Lead		MG/KG		J =	J01,J02	0.176	1
SW846 7470	Mercury		MG/KG		-		0.309 0.001	1
SW846 6010	Selenium		MG/KG	в	=		0.884	5
011010 0010	Silver		MG/KG	U	U		0.004	1
Semi-Volatile	General Engineering Laboratory		Monto	0			SDG No:	
Organics SW846 8270C	1 2 4 Trichlesshermone	000	110/1/0				000	
50040 02/00	1,2,4-Trichlorobenzene		UG/KG	U	U U		363	1
	1,2-Dichlorobenzene 1,3-Dichlorobenzene	2007.03	UG/KG UG/KG	U U	U		363 363	1
	1,4-Dichlorobenzene		UG/KG	U	U			1
	2,4,5-Trichlorophenol		UG/KG	U	U		363 363	1
	2,4,6-Trichlorophenol		UG/KG	U	U		363	1
	2,4-Dichlorophenol		UG/KG	U	U		363	1
	2,4-Dimethylphenol		UG/KG	Ŭ	U		363	1
	2,4-Dinitrophenol		UG/KG	ŭ	Ŭ		727	1
	2,4-Dinitrotoluene		UG/KG	Ŭ	Ŭ		363	1
	2,6-Dinitrotoluene		UG/KG	ŭ	Ŭ		363	i
	2-Chloronaphthalene		UG/KG	Ŭ	Ŭ		36.3	1
	2-Chlorophenol		UG/KG	Ŭ	Ŭ		363	1
	2-Methyl-4,6-dinitrophenol	6.292.274.251	UG/KG	Ū	Ū		363	1
	2-Methylnaphthalene		UG/KG	Ū	Ū		36.3	i
	2-Methylphenol		UG/KG	ū	U		363	1
	2-Nitroaniline	363	UG/KG	U	U		363	1
	2-Nitrophenol	363	UG/KG	U	U		363	1
	3,3'-Dichlorobenzidine	363	UG/KG	U	U		363	1
	3-Nitroaniline	363	UG/KG	U	υ		363	1
	4-Bromophenyl phenyl ether	363	UG/KG	U	U		363	1
	4-Chloro-3-methylphenol	363	UG/KG	U	U		363	1
	4-Chloroaniline	363	UG/KG	U	U		363	1
	4-Chlorophenyl phenyl ether	363	UG/KG	U	U		363	1
	4-Methylphenol	363	UG/KG	U	U		363	1
	4-Nitroaniline	363	UG/KG	U	U		363	1
	4-Nitrophenol	363	UG/KG	U	U		363	1
	Acenaphthene		UG/KG	U	U		36.3	1
	Acenaphthylene		UG/KG	U			36.3	1
	Anthracene		UG/KG	U	U		36.3	1
	Benz(a)anthracene		UG/KG	U	U		36.3	1
	Benzenemethanol		UG/KG	U	U		363	1
	Benzo(a)pyrene		UG/KG	U	U		36.3	1
	Benzo(b)fluoranthene		UG/KG	U	U		36.3	1
	Benzo(ghi)perylene		UG/KG	U	U		36.3	1
	Benzo(k)fluoranthene		UG/KG	U	U		36.3	1
	Benzoic acid		UG/KG	J	J		727	1
	Bis(2-chloroethoxy)methane		UG/KG	U	U		363	1
	Bis(2-chloroethyl) ether		UG/KG	U	U		363	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U	E04 E02	363	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JB		F01,F06	363	1
	Butyl benzyl phthalate Carbazole		UG/KG UG/KG	U U	U U		363	1
	Chrysene		UG/KG	U	U		363 36.3	1
	Di-n-butyl phthalate		UG/KG	U	U		36.3	1
	Diffeourientialate	303	JONO	0	0		303	
	Di-n-octylphthalate	363	UG/KG	U	U		363	1

Date Collected:		ledia: Soil			Dept	h: 0.5 - 2.2	FT		
ate Collected:	08/24/2004 Field Sample	Type: Grab		Lab	Data	Validation	Detection		
nalysis	Chemical	Result	Units		Qual	Code	Limit	Dilution	
W846 8270C	Dibenzofuran		UG/KG	U			363	1	
	Diethyl phthalate		UG/KG	JB		F01,F06	363	1	
	Dimethyl phthalate	363	UG/KG	U			363	1	
	Diphenylamine		UG/KG	U	U		363	1	
	Fluoranthene	36.3	UG/KG	U	U		36.3	1	
	Fluorene	36.3	UG/KG	U	U		36.3	1	
	Hexachlorobenzene	363	UG/KG	U	U		363	1	
	Hexachlorobutadiene	363	UG/KG	U	U		363	1	
	Hexachlorocyclopentadiene	363	UG/KG	U	U		363	1	
	Hexachloroethane	363	UG/KG	U	U		363	1	
	Indeno(1,2,3-cd)pyrene	36.3	UG/KG	U	U		36.3	1	
	Isophorone	363	UG/KG	U	U		363	1	
	N-Nitroso-di-n-propylamine	363	UG/KG	U	U		363	1	
	Naphthalene	36.3	UG/KG	U	U		36.3	1	
	Nitrobenzene	363	UG/KG	U	U		363	1	
	Pentachlorophenol	363	UG/KG	U	U		363	1	
	Phenanthrene		UG/KG	U	U		36.3	1	
	Phenol	363	UG/KG	U	U		363	1	
	Pyrene	36.3	UG/KG	U			36.3	1	
/olatile Organic:	General Engineering Laborato	ry					SDG No	: 119838	
SW846 8260B	1,1,1-Trichloroethane	1.2	UG/KG	U	U		1.2	1	
	1,1,2,2-Tetrachloroethane	1.2	UG/KG	U	U		1.2	1	
	1,1,2-Trichloroethane		UG/KG	U	U		1.2	1	
	1,1-Dichloroethane	1.2	UG/KG	U	U		1.2	1	
	1,1-Dichloroethene	1.2	UG/KG	U	U		1.2	1	
	1,2-Dibromoethane	1.2	UG/KG	U	U		1.2	1	
	1,2-Dichloroethane	1.2	UG/KG	U	U		1.2	1	
	1,2-Dichloroethene	1.2	UG/KG	U	U		1.2	1	
	1,2-Dichloropropane	1.2	UG/KG	U	U		1.2	1	
	2-Butanone	5.8	UG/KG	U	U		5.8	1	
	2-Hexanone	5.8	UG/KG	U	U		5.8	1	
	4-Methyl-2-pentanone	5.8	UG/KG	U	U		5.8	1	
	Acetone	5.8	UG/KG	U	U		5.8	1	
	Benzene	1.2	UG/KG	U			1.2	1	
	Bromochloromethane		UG/KG	U	U		1.2	1	
	Bromodichloromethane		UG/KG	Ŭ			1.2	1	
	Bromoform		UG/KG	ŭ	1 173		1.2	1	
	Bromomethane		UG/KG	Ŭ	-		1.2	i	
	Carbon disulfide		UG/KG	Ŭ			5.8	1	
	Carbon tetrachloride		UG/KG	U U			1.2	1	
	Chlorobenzene		UG/KG	U				1	
	Chloroethane		UG/KG	U			1.2 1.2	1	
	Chloroform		UG/KG	U			1.2	1	
	Chloromethane		UG/KG	U			1.2	1	
	cis-1,3-Dichloropropene		UG/KG	U			1.2		
	Dibromochloromethane							1	
			UG/KG	U	S		1.2	1	
	Ethylbenzene Methylene ebleride		UG/KG	U			1.2	1	
	Methylene chloride		UG/KG	U			5.8	1	
	Styrene		UG/KG	U	1000		1.2	1	
	Tetrachloroethene		UG/KG		=		1.2	1	
	Toluene		UG/KG	U			1.2	1	
	trans-1,3-Dichloropropene		UG/KG	U			1.2	1	
	Trichloroethene		UG/KG	U			1.2	1	
	Vinut ablasida		LIC/KC	U	U		1.2	1	
	Vinyl chloride Xylenes, Total		UG/KG UG/KG	U U			1.2	1	

ate Collected: 08	3/24/2004 Field Sample Ty	pe: Grab						
nalysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
norganics	General Engineering Laboratory						SDG No:	119838
W846 6010	Arsenic		MG/KG	В	J		0.222	1
	Barium	7.91	MG/KG		=		0.072	1
	Cadmium	0.051	MG/KG	U	U		0.051	1
	Chromium	5.68	MG/KG	•	J	J01, J02	0.173	1
	Lead	3.01	MG/KG	*	J		0.304	1
SW846 7470	Mercury	0.017	MG/KG		=		0.001	1
SW846 6010	Selenium	0.174	MG/KG	U	U		0.174	1
	Silver	0.097	MG/KG	U	U		0.097	1
Semi-Volatile	General Engineering Laboratory						SDG No:	119838
Organics SW846 8270C	1,2,4-Trichlorobenzene	250	UG/KG		11		250	
111040 02100	1,2-Dichlorobenzene		UG/KG	U	U		359	1
	1,3-Dichlorobenzene		UG/KG				359	1
	1,4-Dichlorobenzene			U	U		359	1
	2,4,5-Trichlorophenol		UG/KG UG/KG	U	U		359	1
	2,4,5-Trichlorophenol		UG/KG	U	U		359	1
	2,4,0-1 Inchiorophenol		UG/KG	U	U		359	1
	2,4-Dimethylphenol						359	1
	2,4-Dinitrophenol		UG/KG UG/KG	U U	U		359	1
	2,4-Dinitrophenoi 2,4-Dinitrotoluene		UG/KG	U	U		719	1
	2,6-Dinitrotoluene			1776	100		359	1
			UG/KG	U	U		359	1
	2-Chloronaphthalene		UG/KG	U	U		35.9	1
	2-Chlorophenol		UG/KG	U	U		359	1
	2-Methyl-4,6-dinitrophenol		UG/KG	U	U		359	1
	2-Methylnaphthalene		UG/KG	U	U		35.9	1
	2-Methylphenol		UG/KG	U	U		359	1
	2-Nitroaniline		UG/KG	U	U		359	1
	2-Nitrophenol		UG/KG	U	U		359	1
	3,3'-Dichlorobenzidine		UG/KG	U	U		359	1
	3-Nitroaniline		UG/KG	U	U		359	1
	4-Bromophenyl phenyl ether		UG/KG	U	U		359	1
	4-Chloro-3-methylphenol		UG/KG	U	U		359	1
	4-Chloroaniline		UG/KG	U	U		359	1
	4-Chlorophenyl phenyl ether		UG/KG	U	U		359	1
	4-Methylphenol		UG/KG	U	U		359	1
	4-Nitroaniline		UG/KG	U	U		359	1
	4-Nitrophenol		UG/KG	U	U		359	1
	Acenaphthene		UG/KG	U	U		35.9	1
	Acenaphthylene	0.7.12	UG/KG	U	U		35.9	1
	Anthracene		UG/KG	U	U		35.9	1
	Benz(a)anthracene		UG/KG	U	U		35.9	1
	Benzenemethanol		UG/KG	U	U		359	1
	Benzo(a)pyrene		UG/KG	U	U		35.9	1
	Benzo(b)fluoranthene		UG/KG	U	U		35.9	1
	Benzo(ghi)perylene		UG/KG	U	U		35.9	1
	Benzo(k)fluoranthene		UG/KG	U	U		35.9	1
	Benzoic acid		UG/KG	U	U		719	1
	Bis(2-chloroethoxy)methane		UG/KG	U	U		359	1
	Bis(2-chloroethyl) ether		UG/KG	U	U		359	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U		359	1
	Bis(2-ethylhexyl)phthalate	359	UG/KG	JB	U	F01,F06	359	1
	Butyl benzyl phthalate	359	UG/KG	U	U		359	1
	Carbazole	359	UG/KG	U	U		359	1
	Chrysene	35.9	UG/KG	U	U		35.9	1
	Di-n-butyl phthalate	359	UG/KG	U	U		359	1
	Di-n-octylphthalate	359	UG/KG	U	U		359	1
	Dibenz(a,h)anthracene	25.0	UG/KG	U	U		35.9	1

ate Collected: 08/2	24/2004 Field Sample Ty	pe: Grab				h: 3 - 4.5 F		
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran		UG/KG	U	U	ooue	359	1
	Diethyl phthalate		UG/KG	JB	202	F01,F06	359	1
	Dimethyl phthalate		UG/KG	U	Ŭ		359	1
	Diphenylamine		UG/KG	Ŭ	Ŭ		359	1
	Fluoranthene		UG/KG	ŭ	Ŭ		35.9	i
	Fluorene		UG/KG	Ŭ	Ŭ		35.9	1
	Hexachlorobenzene		UG/KG	Ū	Ŭ		359	i
	Hexachlorobutadiene		UG/KG	Ū	Ū		359	1
	Hexachlorocyclopentadiene		UG/KG	U	U		359	1
	Hexachloroethane	359	UG/KG	U	U		359	1
	Indeno(1,2,3-cd)pyrene		UG/KG	U	U		35.9	1
	Isophorone		UG/KG	U	Ŭ		359	1
	N-Nitroso-di-n-propylamine		UG/KG	ŭ	Ŭ		359	1
	Naphthalene		UG/KG	Ŭ	Ŭ		35.9	i
	Nitrobenzene		UG/KG	Ŭ	Ŭ		359	1
	Pentachlorophenol		UG/KG	ŭ	Ŭ		359	1
	Phenanthrene		UG/KG	Ŭ	Ŭ		35.9	1
	Phenol		UG/KG	ŭ	Ŭ		359	1
	Pyrene		UG/KG	ŭ	ŭ		35.9	1
Volatile Organics	General Engineering Laboratory						SDG No	
SW846 8260B	1,1,1-Trichloroethane	0.98	UG/KG	U	U		0.98	1
	1,1,2,2-Tetrachloroethane	0.98	UG/KG	U	U		0.98	1
	1,1,2-Trichloroethane	0.98	UG/KG	U	U		0.98	1
	1,1-Dichloroethane	0.98	UG/KG	U	U		0.98	1
	1,1-Dichloroethene	0.98	UG/KG	U	U		0.98	1
	1,2-Dibromoethane	0.98	UG/KG	U	U		0.98	1
	1,2-Dichloroethane	0.98	UG/KG	U	U		0.98	1
	1,2-Dichloroethene	0.98	UG/KG	U	U		0.98	1
	1,2-Dichloropropane	0.98	UG/KG	U	U		0.98	1
	2-Butanone	4.9	UG/KG	U	U		4.9	1
	2-Hexanone	4.9	UG/KG	U	U		4.9	1
	4-Methyl-2-pentanone	4.9	UG/KG	U	U		4.9	1
	Acetone	4.9	UG/KG	U	U		4.9	1
	Benzene	0.98	UG/KG	U	U		0.98	1
	Bromochloromethane	0.98	UG/KG	U	U		0.98	1
	Bromodichloromethane	0.98	UG/KG	U	U		0.98	1
	Bromoform		UG/KG	U	Ŭ		0.98	1
	Bromomethane		UG/KG	Ū	Ū		0.98	1
	Carbon disulfide		UG/KG	U	U		4.9	1
	Carbon tetrachloride		UG/KG	Ŭ	U		0.98	1
	Chlorobenzene		UG/KG	Ű	1000		0.98	1
	Chloroethane		UG/KG	U	U		0.98	1
	Chloroform		UG/KG	Ū	Ū		0.98	1
	Chloromethane		UG/KG	U	U		0.98	1
	cis-1,3-Dichloropropene		UG/KG	U	Ū		0.98	1
	Dibromochloromethane		UG/KG	Ū	U		0.98	1
	Ethylbenzene		UG/KG	U	U		0.98	1
	Methylene chloride		UG/KG	Ũ	Ŭ		4.9	1
	Styrene		UG/KG	Ŭ	Ū		0.98	1
	Tetrachloroethene		UG/KG	U	U		0.98	1
	Toluene		UG/KG	Ŭ	Ŭ		0.98	1
	trans-1,3-Dichloropropene		UG/KG	ŭ	Ŭ		0.98	1
	Trichloroethene		UG/KG	Ŭ	Ŭ		0.98	1
	Vinyl chloride		UG/KG	Ű	Ŭ		0.98	1
		0.00		0	-		0.00	

Sample ID: 241 ate Collected: 08/		lia: Soil						
ate Collected: 08/	24/2004 Field Sample Ty	pe: Grab		Lab	Data	Validation	Detection	
nalysis	Chemical	Result	Units	Qual	Qual	Code	Limit	Dilution
norganics	General Engineering Laboratory						SDG No:	119838
W846 6010	Arsenic		MG/KG	В	J		0.218	1
	Barium		MG/KG		=		0.07	1
	Cadmium		MG/KG	U	U		0.05	1
	Chromium		MG/KG	1	J	J01,J02	0.17	1
	Lead		MG/KG		=		0.299	1
W846 7470	Mercury		MG/KG		=		0.001	1
W846 6010	Selenium		MG/KG	U	U		0.171	1
	Silver	Contraction of the local division of the loc	MG/KG	В	U	F01,F06	0.095	1
iemi-Volatile Organics	General Engineering Laboratory						SDG No:	119838
W846 8270C	1,2,4-Trichlorobenzene	355	UG/KG	U	U		355	1
	1,2-Dichlorobenzene		UG/KG	U	U		355	1
	1,3-Dichlorobenzene	355	UG/KG	U	U		355	1
	1,4-Dichlorobenzene	355	UG/KG	U	U		355	1
	2,4,5-Trichlorophenol	355	UG/KG	U	υ		355	1
	2,4,6-Trichlorophenol	355	UG/KG	U	U		355	1
	2,4-Dichlorophenol	355	UG/KG	U	U		355	1
	2,4-Dimethylphenol	355	UG/KG	U	U		355	1
	2,4-Dinitrophenol	710	UG/KG	U	U		710	1
	2,4-Dinitrotoluene	355	UG/KG	U	U		355	1
	2,6-Dinitrotoluene	355	UG/KG	U	U		355	1
	2-Chloronaphthalene	35.5	UG/KG	U	U		35.5	1
	2-Chlorophenol	355	UG/KG	U	U		355	1
	2-Methyl-4,6-dinitrophenol	355	UG/KG	U	U		355	1
	2-Methylnaphthalene	35.5	UG/KG	U	U		35.5	1
	2-Methylphenol	355	UG/KG	U	U		355	1
	2-Nitroaniline	355	UG/KG	U	U		355	1
	2-Nitrophenol	355	UG/KG	U	U		355	1
	3,3'-Dichlorobenzidine	355	UG/KG	U	U		355	1
	3-Nitroaniline	355	UG/KG	U	U		355	1
	4-Bromophenyl phenyl ether	355	UG/KG	U	U		355	1
	4-Chloro-3-methylphenol	355	UG/KG	U	U		355	1
	4-Chloroaniline	355	UG/KG	U			355	1
	4-Chlorophenyl phenyl ether	355	UG/KG	U			355	1
	4-Methylphenol	355	UG/KG	U	11.25		355	1
	4-Nitroaniline		UG/KG	U			355	1
	4-Nitrophenol		UG/KG	U			355	1
	Acenaphthene	00076787	UG/KG	U	1.1 C.C.		35.5	1
	Acenaphthylene		UG/KG	U			35.5	1
	Anthracene		UG/KG	U			35.5	1
	Benz(a)anthracene		UG/KG	U			35.5	1
	Benzenemethanol		UG/KG	U			355	1
	Benzo(a)pyrene		UG/KG	U	100		35.5	1
	Benzo(b)fluoranthene		UG/KG	U			35.5	1
	Benzo(ghi)perylene		UG/KG	U			35.5	1
	Benzo(k)fluoranthene		UG/KG	U			35.5	1
	Benzoic acid		UG/KG	U			710	1
	Bis(2-chloroethoxy)methane		UG/KG	U			355	1
	Bis(2-chloroethyl) ether		UG/KG	U			355	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U			355	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JB			355	1
	Butyl benzyl phthalate		UG/KG	U			355	1
	Carbazole		UG/KG	U			355	1
	Chrysene		UG/KG	U			35.5	1
	Dischard a bab in the							
	Di-n-butyl phthalate Di-n-octylphthalate		UG/KG UG/KG	U			355 355	1

	24/2004 Field Sample Type	. Grab		1410 Carlos - 1	-		2010/01/02/02/02/02	
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran		UG/KG	U		0000	355	1
	Diethyl phthalate		UG/KG	JB		F01,F06	355	1
	Dimethyl phthalate		UG/KG	U			355	1
	Diphenylamine		UG/KG	Ū			355	1
	Fluoranthene		UG/KG	Ū			35.5	1
	Fluorene		UG/KG	Ŭ	Ū		35.5	1
	Hexachlorobenzene		UG/KG	U	_		355	1
	Hexachlorobutadiene		UG/KG	Ŭ			355	i i
	Hexachlorocyclopentadiene		UG/KG	ū	Ū		355	1
	Hexachloroethane		UG/KG	Ŭ			355	1
	Indeno(1,2,3-cd)pyrene		UG/KG	Ŭ			35.5	1
	Isophorone		UG/KG	ŭ			355	1
	N-Nitroso-di-n-propylamine		UG/KG	ŭ			355	i
	Naphthalene		UG/KG	Ŭ	S - 1956.		35.5	i
	Nitrobenzene		UG/KG	ŭ	Ŭ		355	1
	Pentachlorophenol		UG/KG	Ű			355	1
	Phenanthrene		UG/KG	Ŭ			35.5	1
	Phenol		UG/KG	Ű	U		355	1
	Pyrene		UG/KG	U			35.5	1
Volatile Organics	General Engineering Laboratory	00.0	00/10				SDG No:	119838
SW846 8260B	1,1,1-Trichloroethane	1	UG/KG	U	U		1	1
	1,1,2,2-Tetrachloroethane	1	UG/KG	U	U		1	1
	1,1,2-Trichloroethane	1	UG/KG	U	U		1	1
	1,1-Dichloroethane	1	UG/KG	U	U		1	1
	1,1-Dichloroethene	1	UG/KG	U	U		1	1
	1,2-Dibromoethane	1	UG/KG	U	U		1	1
	1,2-Dichloroethane		UG/KG	U	1		1	1
	1.2-Dichloroethene		UG/KG	U			1	1
	1,2-Dichloropropane		UG/KG	U	U		1	1
	2-Butanone		UG/KG	Ŭ			5.2	1
	2-Hexanone		UG/KG	Ũ	1 1771		5.2	1
	4-Methyl-2-pentanone		UG/KG	Ū	1.11		5.2	1
	Acetone		UG/KG	Ŭ			5.2	1
	Benzene		UG/KG	Ŭ			1	1
	Bromochloromethane		UG/KG	Ŭ	2 25.		1	1
	Bromodichloromethane		UG/KG	Ŭ			1	1
	Bromoform		UG/KG	U			1	1
	Bromomethane		UG/KG	Ŭ	-		1	1
	Carbon disulfide		UG/KG	ŭ	1000		5.2	1
	Carbon tetrachloride		UG/KG	ŭ			1	1
	Chlorobenzene		UG/KG	U	-		1	1
	Chloroethane		UG/KG	Ŭ			1	1
	Chloroform		UG/KG	U			1	1
	Chloromethane		UG/KG	ŭ	c 1054		1	1
	cis-1,3-Dichloropropene		UG/KG	Ű			1	1
	Dibromochloromethane		UG/KG	U			1	1
	Ethylbenzene		UG/KG	U			1	1
	Methylene chloride		UG/KG	U			5.2	1
	Styrene		UG/KG	U			5.2	1
	Tetrachloroethene		UG/KG	0	=		1	- C
	Toluene		UG/KG					1
				U			1	1
	trans-1,3-Dichloropropene		UG/KG UG/KG	U	2 656		1	1
	Trichloroethene			U			1	1
	Vinyl chloride Xylenes, Total		UG/KG UG/KG	U U			1	1
							1	

Sample ID:	241482 Me						Depth: 3 - 4.8 FT					
Date Collected:	08/24/2004 Field Sample T	ype: Grab		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution				
norganics	General Engineering Laborator			400	quai	0000	SDG No:	119838	-			
SW846 6010	Arsenic	0.569	MG/KG		=		0.222	1				
	Barium	6.51	MG/KG		=		0.072	1				
	Cadmium	0.051	MG/KG	U	U		0.051	1				
	Chromium	3.83	MG/KG		J	J01,J02	0.173	1				
	Lead	2.42	MG/KG	*	=		0.305	1				
SW846 7470	Mercury	0.021	MG/KG		=		0.001	1				
SW846 6010	Selenium	0.174	MG/KG	U	U		0.174	1				
	Silver	0.122	MG/KG	В	U	F01,F06	0.097	1				
Semi-Volatile Organics	General Engineering Laboratory	/					SDG No:	119838				
SW846 8270C	1,2,4-Trichlorobenzene	360	UG/KG	U	U		360	1				
	1,2-Dichlorobenzene	360	UG/KG	U			360	1				
	1,3-Dichlorobenzene	360	UG/KG	U	U		360	1				
	1,4-Dichlorobenzene	360	UG/KG	U	U		360	1				
	2,4,5-Trichlorophenol		UG/KG	U			360	1				
	2,4,6-Trichlorophenol	360	UG/KG	U	U		360	1				
	2,4-Dichlorophenol	360	UG/KG	U	U		360	1				
	2,4-Dimethylphenol	360	UG/KG	U	1.2.1		360	1				
	2,4-Dinitrophenol	720	UG/KG	U	U		720	1				
	2,4-Dinitrotoluene	360	UG/KG	U	U		360	1				
	2,6-Dinitrotoluene	360	UG/KG	U	U		360	1				
	2-Chloronaphthalene	36	UG/KG	U	U		36	1				
	2-Chlorophenol	360	UG/KG	U	U		360	1				
	2-Methyl-4,6-dinitrophenol	360	UG/KG	U	U		360	1				
	2-Methylnaphthalene	36	UG/KG	U	U		36	1				
	2-Methylphenol	360	UG/KG	U	U		360	1				
	2-Nitroaniline	360	UG/KG	U	U		360	1				
	2-Nitrophenol	360	UG/KG	U	U		360	1				
	3,3'-Dichlorobenzidine	360	UG/KG	U	U		360	1				
	3-Nitroaniline	360	UG/KG	U	U		360	1				
	4-Bromophenyl phenyl ether	360	UG/KG	U	U		360	1				
	4-Chloro-3-methylphenol	360	UG/KG	U	U		360	1				
	4-Chloroaniline	360	UG/KG	U	U		360	1				
	4-Chlorophenyl phenyl ether	360	UG/KG	U	U		360	1				
	4-Methylphenol	360	UG/KG	U	U		360	1				
	4-Nitroaniline	360	UG/KG	U	U		360	1				
	4-Nitrophenol	360	UG/KG	U	U		360	1				
	Acenaphthene	36	UG/KG	U	U		36	1				
	Acenaphthylene	36	UG/KG	U	U		36	1				
	Anthracene		UG/KG	U	U		36	1				
	Benz(a)anthracene	36	UG/KG	U	U		36	1				
	Benzenemethanol		UG/KG	U	U		360	1				
	Benzo(a)pyrene	36	UG/KG	U	U		36	1				
	Benzo(b)fluoranthene	36	UG/KG	U	U		36	1				
	Benzo(ghi)perylene	36	UG/KG	U	U		36	1				
	Benzo(k)fluoranthene	36	UG/KG	U	U		36	1				
	Benzoic acid	720	UG/KG	U	U		720	1				
	Bis(2-chloroethoxy)methane	360	UG/KG	U	U		360	1				
	Bis(2-chloroethyl) ether	360	UG/KG	U	U		360	1				
	Bis(2-Chloroisopropyl)Ether	360	UG/KG	U	U		360	1				
	Bis(2-ethylhexyl)phthalate	360	UG/KG	JB	U	F01,F06	360	1				
	Butyl benzyl phthalate	360	UG/KG	U	U	-	360	1				
	Carbazole	360	UG/KG	U	U		360	1				
	Chrysene	36	UG/KG	U	U		36	1				
	Di-n-butyl phthalate	360	UG/KG	U	U		360	1				
	Di-n-octylphthalate	360	UG/KG	U	U		360	1				
	Dibenz(a,h)anthracene	36	UG/KG	U	U		36	1				

Sample ID: 2414		edia: Soil			Depth: 3 - 4.8 FT					
Date Collected: 08/2	4/2004 Field Sample	ype: Grab		l ab	Data	Validation	Detection			
Analysis	Chemical	Result	Units		Qual	Code	Limit	Dilution		
SW846 8270C	Dibenzofuran	360	UG/KG	U	U		360	1		
	Diethyl phthalate	360	UG/KG	JB	U	F01,F06	360	1		
	Dimethyl phthalate	360	UG/KG	U	U		360	1		
	Diphenylamine	360	UG/KG	U	U		360	1		
	Fluoranthene	36	UG/KG	U	U		36	1		
	Fluorene	36	UG/KG	U	U		36	1		
	Hexachlorobenzene	360	UG/KG	U	U		360	1		
	Hexachlorobutadiene	360	UG/KG	U	U		360	1		
	Hexachlorocyclopentadiene	360	UG/KG	U	U		360	1		
	Hexachloroethane	360	UG/KG	U	U		360	1		
	Indeno(1,2,3-cd)pyrene	36	UG/KG	U	U		36	1		
	Isophorone		UG/KG	Ŭ	Ū		360	1		
	N-Nitroso-di-n-propylamine		UG/KG	Ŭ	Ū		360	1		
	Naphthalene		UG/KG	Ŭ	U		36	1		
	Nitrobenzene		UG/KG	Ű	U		360	1		
	Pentachlorophenol		UG/KG	Ű	Ŭ		360	1		
	Phenanthrene		UG/KG	U	U		36	1		
	Phenol		UG/KG	U	U			1		
				U	U		360			
Valatila Organian	Pyrene Concerned Englissering Laborate		UG/KG	U	0		36	1		
Volatile Organics SW846 8260B	General Engineering Laborato		110/1/0				SDG No:			
SW840 8200B	1,1,1-Trichloroethane		UG/KG	U			1.2	1		
	1,1,2,2-Tetrachloroethane	10 TT	UG/KG	U			1.2	1		
	1,1,2-Trichloroethane		UG/KG	U	U		1.2	1		
	1,1-Dichloroethane		UG/KG	U	U		1.2	1		
	1,1-Dichloroethene		UG/KG	U	1.121		1.2	1		
	1,2-Dibromoethane		UG/KG	U	U		1.2	1		
	1,2-Dichloroethane	1.2	UG/KG	U	U		1.2	1		
	1,2-Dichloroethene	1.2	UG/KG	U			1.2	1		
	1,2-Dichloropropane	1.2	UG/KG	U	U		1.2	1		
	2-Butanone	5.9	UG/KG	U	U		5.9	1		
	2-Hexanone	5.9	UG/KG	U	U		5.9	1		
	4-Methyl-2-pentanone	5.9	UG/KG	U	U		5.9	1		
	Acetone	5.8	UG/KG	J	J		5.9	1		
	Benzene	1.2	UG/KG	U	U		1.2	1		
	Bromochloromethane		UG/KG	U			1.2	1		
	Bromodichloromethane		UG/KG	Ŭ	Ŭ		1.2	1		
	Bromoform		UG/KG	Ŭ	Ŭ		1.2	1		
	Bromomethane		UG/KG	Ŭ			1.2	1		
	Carbon disulfide		UG/KG	Ŭ	Ŭ		5.9	i		
	Carbon tetrachloride		UG/KG	Ŭ	100		1.2	1		
	Chlorobenzene		UG/KG	U			1.2	1		
	Chloroethane		UG/KG	U			1.2	1		
	Chloroform		UG/KG	U				1		
							1.2	4		
	Chloromethane		UG/KG	U			1.2			
	cis-1,3-Dichloropropene		UG/KG	U	-		1.2	1		
	Dibromochloromethane		UG/KG	U			1.2	1		
	Ethylbenzene		UG/KG	U			1.2	1		
	Methylene chloride		UG/KG	U	1.10		5.9	1		
	Styrene		UG/KG	U	1.75		1.2	1		
	Tetrachloroethene	0.77	UG/KG	J	J		1.2	1		
	Toluene	1.2	UG/KG	U	U		1.2	1		
	trans-1,3-Dichloropropene	1.2	UG/KG	U	U		1.2	1		
	Trichloroethene	1.2	UG/KG	U	U		1.2	1		
	Vinyl chloride		UG/KG	U			1.2	1		

Station: 24 Sample ID: 24		. Soil		Depth: 0.5 - 2.2 FT					
Date Collected: 08/					Debr	1. 0.3 - 2.2			
							Detection	BUILDE	
Analysis	Chemical	Result	Units	Qual	Qual	Code	Limit	Dilution	
norganics	General Engineering Laboratory	0.000	MOIKO	U	U		SDG No: 0.222		
SW846 6010	Arsenic Barium		MG/KG MG/KG	0	=		0.222	1	
	Cadmium		MG/KG	U	- U		0.072	1	
	Chromium		MG/KG		J	J01,J02	0.174	1	
	Lead		MG/KG		=	301,302	0.306	i	
SW846 7470	Mercury		MG/KG		=		0.001	1	
SW846 6010	Selenium		MG/KG	U			0.175	1	
5000000000	Silver		MG/KG	Ŭ			0.097	1	
Semi-Volatile	General Engineering Laboratory	0.007	monto				SDG No:		
Organics									
SW846 8270C	1,2,4-Trichlorobenzene	360	UG/KG	U	U		360	1	
	1,2-Dichlorobenzene	360	UG/KG	U	U		360	1	
	1,3-Dichlorobenzene	360	UG/KG	U	U		360	1	
	1,4-Dichlorobenzene	360	UG/KG	U	U		360	1	
	2,4,5-Trichlorophenol	360	UG/KG	U	U		360	1	
	2,4,6-Trichlorophenol		UG/KG	U	U		360	1	
	2,4-Dichlorophenol		UG/KG	U	U		360	1	
	2,4-Dimethylphenol		UG/KG	U	U		360	1	
	2,4-Dinitrophenol		UG/KG	U	U		720	1	
	2,4-Dinitrotoluene		UG/KG	U			360	1	
	2,6-Dinitrotoluene		UG/KG	U			360	1	
	2-Chloronaphthalene		UG/KG	U			36	1	
	2-Chlorophenol		UG/KG	U			360	1	
	2-Methyl-4,6-dinitrophenol		UG/KG	U			360	1	
	2-Methylnaphthalene		UG/KG	U	a (17)		36	1	
	2-Methylphenol		UG/KG	U			360	1	
	2-Nitroaniline		UG/KG	U			360	1	
	2-Nitrophenol	55E(5)27	UG/KG	U	2		360	1	
	3,3'-Dichlorobenzidine		UG/KG UG/KG	U			360 360	1	
	3-Nitroaniline		UG/KG	U			360	1	
	4-Bromophenyl phenyl ether		UG/KG	U	8 859		360	1	
	4-Chloro-3-methylphenol 4-Chloroaniline		UG/KG	U			360	1	
	4-Chlorophenyl phenyl ether		UG/KG	U U			360	1	
	4-Methylphenol		UG/KG	U			360	1	
	4-Metrophenol		UG/KG	U			360	1	
	4-Nitrophenol		UG/KG	U U			360	-	
	Acenaphthene		UG/KG	U	1.055		36	1	
	Acenaphthylene		UG/KG	ŭ			36	1	
	Anthracene		UG/KG	ŭ			36	1	
	Benz(a)anthracene		UG/KG	ŭ			36	1	
	Benzenemethanol		UG/KG	ŭ			360	1	
	Benzo(a)pyrene		UG/KG	ŭ			36	1	
	Benzo(b)fluoranthene		UG/KG	Ū			36	1	
	Benzo(ghi)perylene		UG/KG	ū			36	1	
	Benzo(k)fluoranthene		UG/KG	Ū.			36	1	
	Benzoic acid		UG/KG	L			720	1	
	Bis(2-chloroethoxy)methane		UG/KG	L			360	1	
	Bis(2-chloroethyl) ether		UG/KG	U			360	1	
	Bis(2-Chloroisopropyl)Ether		UG/KG	Ĺ			360	1	
	Bis(2-ethylhexyl)phthalate		UG/KG	JE		F01,F06	360	1	
	Butyl benzyl phthalate		UG/KG	ι			360	1	
	Carbazole		UG/KG	L			360	1	
	Chrysene	36	UG/KG	L	J U		36	1	
	Di-n-butyl phthalate	360	UG/KG	L	U U		360	1	
	Di-n-octylphthalate	360	UG/KG	ι	J U		360	1	
	Dibenz(a,h)anthracene		UG/KG		J U		36	1	

Date Collected: 08/2	4/2004 Field Sample Typ	e: Grab				v		
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran	360	UG/KG	U			360	1
	Diethyl phthalate		UG/KG	JB		F01,F06	360	1
	Dimethyl phthalate		UG/KG	U	U	10000	360	1
	Diphenylamine		UG/KG	U	U		360	1
	Fluoranthene		UG/KG	U	Ū		36	1
	Fluorene		UG/KG	U	U		36	1
	Hexachlorobenzene		UG/KG	U	U		360	1
	Hexachlorobutadiene		UG/KG	U	U		360	1
	Hexachlorocyclopentadiene	360	UG/KG	U	U		360	1
	Hexachloroethane	360	UG/KG	U	U		360	1
	Indeno(1,2,3-cd)pyrene	36	UG/KG	U	U		36	1
	Isophorone	360	UG/KG	U	U		360	1
	N-Nitroso-di-n-propylamine	360	UG/KG	U	U		360	1
	Naphthalene	36	UG/KG	U	U		36	1
	Nitrobenzene		UG/KG	U	Ŭ		360	1
	Pentachlorophenol		UG/KG	Ŭ	Ū		360	1
	Phenanthrene		UG/KG	U	Ū		36	1
	Phenol		UG/KG	Ŭ	Ŭ		360	1
	Pyrene		UG/KG	U			36	1
Volatile Organics	General Engineering Laboratory						SDG No	
SW846 8260B	1,1,1-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2,2-Tetrachloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dibromoethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloropropane	1.1	UG/KG	U	U		1.1	1
	2-Butanone	5.6	UG/KG	U	U		5.6	1
	2-Hexanone	5.6	UG/KG	U	U		5.6	1
	4-Methyl-2-pentanone	5.6	UG/KG	U	U		5.6	1
	Acetone	5.6	UG/KG	U	U		5.6	1
	Benzene	1.1	UG/KG	U	U		1.1	1
	Bromochloromethane	1.1	UG/KG	U	U		1.1	1
	Bromodichloromethane	1.1	UG/KG	U			1.1	1
	Bromoform		UG/KG	U	U		1.1	1
	Bromomethane		UG/KG	Ū			1.1	1
	Carbon disulfide		UG/KG	U	U		5.6	1
	Carbon tetrachloride		UG/KG	U	U		1.1	1
	Chlorobenzene	1.1	UG/KG	U	U		1.1	1
	Chloroethane		UG/KG	U	U		1.1	1
	Chloroform		UG/KG	Ŭ			1.1	1
	Chloromethane		UG/KG	U			1.1	1
	cis-1,3-Dichloropropene		UG/KG	U			1.1	1
	Dibromochloromethane		UG/KG	Ŭ			1.1	î
	Ethylbenzene		UG/KG	U			1.1	1
	Methylene chloride		UG/KG	U			5.6	1
	Styrene		UG/KG	ŭ			1.1	1
	Tetrachloroethene		UG/KG	U	=		1.1	1
	Toluene		UG/KG	U			1.1	1
	trans-1,3-Dichloropropene		UG/KG	Ŭ			1.1	1
	Trichloroethene		UG/KG	U			1.1	1
	Vinyl chloride		UG/KG	U			1.1	i

Date Collected: 08/	/24/2004 Field Sample Type	: Grab						
Analysis	Chemical	Result	Units		Data Qual	Validation Code		Dilution
norganics	General Engineering Laboratory	riccuit	Unito	Qual	utual	ooue	SDG No:	119838
SW846 6010	Arsenic	0.214	MG/KG	U	U		0.214	1
	Barium		MG/KG		=		0.069	i
	Cadmium		MG/KG	U	U		0.05	i
	Chromium		MG/KG	÷	J	J01, J02	0.167	i
	Lead		MG/KG	*	=	001,002	0.294	i
SW846 7470	Mercury		MG/KG	в	J		0.001	1
SW846 6010	Selenium		MG/KG	Ŭ	Ŭ		0.168	1
	Silver		MG/KG	Ŭ	Ŭ		0.094	i
Semi-Volatile	General Engineering Laboratory	0.004	MORTO		0		SDG No:	
Organics							000 110.	110000
SW846 8270C	1,2,4-Trichlorobenzene	352	UG/KG	U	U		352	1
	1,2-Dichlorobenzene	352	UG/KG	U	U		352	1
	1,3-Dichlorobenzene	352	UG/KG	U	U		352	1
	1,4-Dichlorobenzene	352	UG/KG	U	U		352	1
	2,4,5-Trichlorophenol	352	UG/KG	U	U		352	1
	2,4,6-Trichlorophenol	352	UG/KG	U	U		352	1
	2,4-Dichlorophenol	352	UG/KG	U	U		352	1
	2,4-Dimethylphenol	352	UG/KG	U	U		352	1
	2,4-Dinitrophenol		UG/KG	U	U		705	1
	2,4-Dinitrotoluene	352	UG/KG	U	U		352	1
	2,6-Dinitrotoluene	352	UG/KG	U	U		352	1
	2-Chloronaphthalene	35.2	UG/KG	U	U		35.2	1
	2-Chlorophenol	352	UG/KG	U	U		352	1
	2-Methyl-4,6-dinitrophenol	352	UG/KG	U	U		352	1
	2-Methylnaphthalene	35.2	UG/KG	U	U		35.2	1
	2-Methylphenol	352	UG/KG	U	U		352	1
	2-Nitroaniline	352	UG/KG	U	U		352	1
	2-Nitrophenol		UG/KG	U	U		352	1
	3,3'-Dichlorobenzidine		UG/KG	U	U		352	1
	3-Nitroaniline		UG/KG	U	Ū		352	1
	4-Bromophenyl phenyl ether		UG/KG	U	U		352	1
	4-Chloro-3-methylphenol		UG/KG	Ŭ	Ū		352	1
	4-Chloroaniline		UG/KG	Ŭ	U		352	1
	4-Chlorophenyl phenyl ether		UG/KG	ŭ	Ŭ		352	1
	4-Methylphenol		UG/KG	Ŭ	Ŭ		352	i
	4-Nitroaniline		UG/KG	Ŭ	Ŭ		352	1
	4-Nitrophenol		UG/KG	Ū	Ū		352	1
	Acenaphthene		UG/KG	U	Ŭ		35.2	i
	Acenaphthylene		UG/KG	ŭ	Ŭ		35.2	1
	Anthracene		UG/KG	ŭ	1000		35.2	1
	Benz(a)anthracene		UG/KG	Ŭ	Ŭ		35.2	1
	Benzenemethanol		UG/KG	Ű	U		352	1
	Benzo(a)pyrene		UG/KG	U	U		35.2	1
	Benzo(b)fluoranthene		UG/KG	Ű	Ű		35.2	1
	Benzo(ghi)perylene		UG/KG	U	U		35.2	1
	Benzo(k)fluoranthene		UG/KG	U	U		35.2	1
	Benzoic acid		UG/KG	U	U		705	1
	Bis(2-chloroethoxy)methane		UG/KG	U	U		352	
	Bis(2-chloroethyl) ether		UG/KG	U	U			1
	Bis(2-Chloroisopropyl)Ether			U			352	1
	Bis(2-ethylhexyl)phthalate		UG/KG UG/KG	JB		F01,F06	352	1
	Butyl benzyl phthalate		UG/KG	JB		F01,F00	352	
	Carbazole		UG/KG	U	U		352 352	1
	Chrysene		UG/KG	U	U		352	1
			UG/KG	U	U		35.2	1
	Di-n-butyl phthalate Di-n-octylphthalate		UG/KG	Ŭ	Ū		352	1

Sample ID: 2415		lia: Soil			Dept	h: 3 - 4.8 F	T	
Date Collected: 08/2	4/2004 Field Sample Ty	pe: Grab		Lab	Data	Validation	Detection	
Analysis	Chemical	Result	Units		Qual	Code	Limit	Dilution
SW846 8270C	Dibenzofuran	352	UG/KG	U	U		352	1
	Diethyl phthalate	352	UG/KG	JB	U	F01,F06	352	1
	Dimethyl phthalate	352	UG/KG	U	U		352	1
	Diphenylamine	352	UG/KG	U	U		352	1
	Fluoranthene	35.2	UG/KG	U	U		35.2	1
	Fluorene	35.2	UG/KG	U	U		35.2	1
	Hexachlorobenzene	352	UG/KG	U	U		352	1
	Hexachlorobutadiene	352	UG/KG	U	U		352	1
	Hexachlorocyclopentadiene	352	UG/KG	U	U		352	1
	Hexachloroethane	352	UG/KG	U	U		352	1
	Indeno(1,2,3-cd)pyrene	35.2	UG/KG	U	U		35.2	1
	Isophorone	352	UG/KG	U	U		352	1
	N-Nitroso-di-n-propylamine	352	UG/KG	U	U		352	1
	Naphthalene	35.2	UG/KG	U	U		35.2	1
	Nitrobenzene	352	UG/KG	U	U		352	1
	Pentachlorophenol	352	UG/KG	U	U		352	1
	Phenanthrene	35.2	UG/KG	U	U		35.2	1
	Phenol	352	UG/KG	U	U		352	1
	Pyrene	35.2	UG/KG	U	U		35.2	1
Volatile Organics	General Engineering Laboratory	0					SDG No	: 119838
SW846 8260B	1,1,1-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2,2-Tetrachloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dibromoethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloropropane	1.1	UG/KG	U	U		1.1	1
	2-Butanone	5.3	UG/KG	U	U		5.3	1
	2-Hexanone	5.3	UG/KG	U	U		5.3	1
	4-Methyl-2-pentanone	5.3	UG/KG	U	U		5.3	1
	Acetone	5.3	UG/KG	U	U		5.3	1
	Benzene	1.1	UG/KG	U			1.1	1
	Bromochloromethane		UG/KG	U			1.1	1
	Bromodichloromethane	1.1	UG/KG	U			1.1	1
	Bromoform		UG/KG	U			1.1	1
	Bromomethane		UG/KG	Ū			1.1	1
	Carbon disulfide		UG/KG	U			5.3	1
	Carbon tetrachloride		UG/KG	Ŭ			1.1	1
	Chlorobenzene		UG/KG	Ŭ			1.1	1
	Chloroethane		UG/KG	Ŭ			1.1	1
	Chloroform		UG/KG	Ŭ			1.1	1
	Chloromethane		UG/KG	ŭ			1.1	1
	cis-1,3-Dichloropropene		UG/KG	Ŭ			1.1	1
	Dibromochloromethane		UG/KG	ŭ	1 1073		1.1	1
	Ethylbenzene		UG/KG	ŭ			1.1	1
	Methylene chloride		UG/KG	U			5.3	1
	Styrene		UG/KG	Ŭ	2 RS		1.1	1
	Tetrachloroethene		UG/KG	0	=		1.1	1
	Toluene		UG/KG	U			1.1	1
	trans-1,3-Dichloropropene		UG/KG	U			1.1	1
				U			1.1	-
	Trichloroothong							
	Trichloroethene Vinyl chloride		UG/KG UG/KG	U			1.1	1

A Contractor de la contractor de					Depth: 0.5 - 2.2 FT				
Jate Collected:	08/24/2004 Field Sample Type	: Grab		h	Data 1	Validation	Detection		
Analysis	Chemical	Result	Units		Qual	Code		Dilution	
Inorganics	General Engineering Laboratory						SDG No:	119838	
SW846 6010	Arsenic	0.214	MG/KG	U	U		0.214	1	
	Barium	2.49	MG/KG		=		0.069	1	
	Cadmium	0.05	MG/KG	U	U		0.05	1	
	Chromium	2	MG/KG	٠	J	J01,J02	0.167	1	
	Lead	1.47	MG/KG	٠	=		0.295	1	
SW846 7470	Mercury	0.016	MG/KG		=		0.001	1	
SW846 6010	Selenium	0.168	MG/KG	υ	U		0.168	1	
	Silver	0.094	MG/KG	U	U		0.094	1	
Semi-Volatile Organics	General Engineering Laboratory						SDG No:	119838	
SW846 8270C	1,2,4-Trichlorobenzene	351	UG/KG	U	U		351	1	
	1,2-Dichlorobenzene	351	UG/KG	U	U		351	1	
	1,3-Dichlorobenzene	351	UG/KG	U	U		351	1	
	1,4-Dichlorobenzene	351	UG/KG	U	U		351	1	
	2,4,5-Trichlorophenol	351	UG/KG	U	U		351	1	
	2,4,6-Trichlorophenol	351	UG/KG	U	U		351	1	
	2,4-Dichlorophenol	351	UG/KG	υ	U		351	1	
	2,4-Dimethylphenol	351	UG/KG	υ	U		351	1	
	2,4-Dinitrophenol	702	UG/KG	υ	U		702	1	
	2,4-Dinitrotoluene	351	UG/KG	U	U		351	1	
	2,6-Dinitrotoluene	351	UG/KG	U	U		351	1	
	2-Chloronaphthalene	35.1	UG/KG	U	U		35.1	1	
	2-Chlorophenol	351	UG/KG	U	U		351	1	
	2-Methyl-4,6-dinitrophenol	351	UG/KG	U	U		351	1	
	2-Methylnaphthalene	35.1	UG/KG	U	U		35.1	1	
	2-Methylphenol	351	UG/KG	U	U		351	1	
	2-Nitroaniline	351	UG/KG	U	U		351	1	
	2-Nitrophenol	351	UG/KG	U	U		351	1	
	3,3'-Dichlorobenzidine	351	UG/KG	U	U		351	1	
	3-Nitroaniline		UG/KG	U	U		351	1	
	4-Bromophenyl phenyl ether	351	UG/KG	U	U		351	1	
	4-Chloro-3-methylphenol	351	UG/KG	U	U		351	1	
	4-Chloroaniline	351	UG/KG	U	U		351	1	
	4-Chlorophenyl phenyl ether	351	UG/KG	U	U		351	1	
	4-Methylphenol		UG/KG	U	U		351	1	
	4-Nitroaniline		UG/KG	U	U		351	1	
	4-Nitrophenol		UG/KG	U	U		351	1	
	Acenaphthene		UG/KG	υ	U		35.1	1	
	Acenaphthylene		UG/KG	U	U		35.1	1	
	Anthracene		UG/KG	U	U		35.1	1	
	Benz(a)anthracene		UG/KG	U	U		35.1	1	
	Benzenemethanol		UG/KG	U	U		351	1	
	Benzo(a)pyrene		UG/KG	U	U		35.1	1	
	Benzo(b)fluoranthene		UG/KG	U	U		35.1	1	
	Benzo(ghi)perylene		UG/KG	U	U		35.1	1	
	Benzo(k)fluoranthene		UG/KG	U	U		35.1	1	
	Benzoic acid		UG/KG	J	J		702	1	
	Bis(2-chloroethoxy)methane		UG/KG	U	U		351	1	
	Bis(2-chloroethyl) ether		UG/KG	U	U		351	1	
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U		351	1	
	Bis(2-ethylhexyl)phthalate		UG/KG	JB		F01,F06		1	
	Butyl benzyl phthalate		UG/KG	U	U		351	1	
	Carbazole		UG/KG	U	U		351	1	
	Chrysene		UG/KG	U	U		35.1	1	
	Di-n-butyl phthalate		UG/KG	U	U		351	1	
	Di-n-octylphthalate		UG/KG	U	U		351	1	
	Dibenz(a,h)anthracene	35.1	UG/KG	υ	U		35.1	1	

Date Collected: 08	/24/2004 Field Sample Typ	e: Grab				h: 0.5 - 2.2		
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran	351	UG/KG	U	U		351	1
	Diethyl phthalate	351	UG/KG	JB	U	F01,F06	351	1
	Dimethyl phthalate	351	UG/KG	U	U		351	1
	Diphenylamine	351	UG/KG	U	U		351	1
	Fluoranthene	35.1	UG/KG	U	U		35.1	1
	Fluorene	35.1	UG/KG	U	U		35.1	1
	Hexachlorobenzene	351	UG/KG	U	U		351	1
	Hexachlorobutadiene	351	UG/KG	U	U		351	1
	Hexachlorocyclopentadiene	351	UG/KG	U	U		351	1
	Hexachloroethane	351	UG/KG	U	U		351	1
	Indeno(1,2,3-cd)pyrene	35.1	UG/KG	U	U		35.1	1
	Isophorone	351	UG/KG	U	U		351	1
	N-Nitroso-di-n-propylamine	351	UG/KG	U	U		351	1
	Naphthalene	35.1	UG/KG	U	U		35.1	1
	Nitrobenzene	351	UG/KG	U	U		351	1
	Pentachlorophenol		UG/KG	Ū	U		351	1
	Phenanthrene		UG/KG	U	U		35.1	1
	Phenol		UG/KG	U	U		351	1
	Pyrene		UG/KG	U			35.1	1
Volatile Organics	General Engineering Laboratory						SDG No	: 119838
SW846 8260B	1,1,1-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2,2-Tetrachloroethane	1.1	UG/KG	U	U		1.1	1
	1,1,2-Trichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,1-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dibromoethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloropropane		UG/KG	U	U		1.1	1
	2-Butanone	5.7	UG/KG	U	U		5.7	1
	2-Hexanone	5.7	UG/KG	U	U		5.7	1
	4-Methyl-2-pentanone		UG/KG	U	Ū		5.7	1
	Acetone		UG/KG	Ŭ	Ŭ		5.7	1
	Benzene		UG/KG	Ŭ	Ŭ		1.1	1
	Bromochloromethane		UG/KG	ũ	U		1.1	1
	Bromodichloromethane		UG/KG	Ŭ	U		1.1	1
	Bromoform		UG/KG	Ŭ	Ŭ		1.1	1
	Bromomethane		UG/KG	Ŭ	Ŭ		1.1	1
	Carbon disulfide		UG/KG	Ű	U		5.7	1
	Carbon tetrachloride		UG/KG	Ű	Ű		1.1	1
	Chlorobenzene		UG/KG	U	1. 100		1.1	1
	Chloroethane		UG/KG	U	U		1.1	1
	Chloroform		UG/KG	U	U		1.1	1
	Chloromethane		UG/KG	U	Ű		1.1	1
	cis-1,3-Dichloropropene		UG/KG	U	U			
	Dibromochloromethane		UG/KG	17.1	U		1.1	1
	Ethylbenzene		UG/KG	U			1.1	1
	Methylene chloride		UG/KG	U	U		1.1	1
				U	U		5.7	1
	Styrene Tetrachloroethene		UG/KG	U	U		1.1	1
			UG/KG		=		1.1	1
	Toluene		UG/KG	U	U		1.1	1
	trans-1,3-Dichloropropene		UG/KG	U			1.1	1
	Trichloroethene		UG/KG	U	U		1.1	1
	Vinyl chloride Xylenes, Total		UG/KG	U	U		1.1	1
			UG/KG	U			1.1	1

Sample ID: 24 Date Collected: 08/	1413/1710 were wellen	Media: Soil le Type: Grab			Depth: 3 - 4.9 FT					
		pe. Grab		Lab	Data	Validation	Detection			
Analysis	Chemical	Result	Units		Qual	Code	Limit	Dilution		
Inorganics	General Engineering Laboratory						SDG No:	119838		
SW846 6010	Arsenic		MG/KG	U	U		0.218	1		
	Barium		MG/KG		=		0.071	1		
	Cadmium		MG/KG	U	U		0.051	1		
	Chromium		MG/KG		J	J01,J02	0.17	1		
0.410 10 7 170	Lead		MG/KG	•	=		0.3	1		
SW846 7470	Mercury		MG/KG		=		0.001	1		
SW846 6010	Selenium		MG/KG	U	U		0.171	1		
Carrel Malatilla	Silver		MG/KG	U	U		0.095	1		
Semi-Volatile Organics	General Engineering Laboratory						SDG No:	119838		
SW846 8270C	1,2,4-Trichlorobenzene	358	UG/KG	U	U		358	1		
	1,2-Dichlorobenzene		UG/KG	Ŭ	U		358	1		
	1,3-Dichlorobenzene		UG/KG	ŭ	ŭ		358	1		
	1,4-Dichlorobenzene		UG/KG	Ŭ	Ŭ		358	1		
	2,4,5-Trichlorophenol		UG/KG	Ŭ	Ŭ		358	1		
	2,4,6-Trichlorophenol		UG/KG	Ŭ	ŭ		358	1		
	2,4-Dichlorophenol		UG/KG	Ŭ	U		358	1		
	2,4-Dimethylphenol		UG/KG	Ŭ	Ŭ		358	1		
	2,4-Dinitrophenol		UG/KG	Ŭ	Ŭ		716	1		
	2,4-Dinitrotoluene		UG/KG	U	U		358	i		
	2,6-Dinitrotoluene		UG/KG	U	U		358	1		
	2-Chloronaphthalene		UG/KG	Ū	U		35.8	1		
	2-Chlorophenol		UG/KG	U	U		358	1		
	2-Methyl-4,6-dinitrophenol		UG/KG	Ũ	Ū		358	1		
	2-Methylnaphthalene	35.8	UG/KG	U	U		35.8	1		
	2-Methylphenol	358	UG/KG	U	U		358	1		
	2-Nitroaniline		UG/KG	Ŭ	U		358	1		
	2-Nitrophenol		UG/KG	Ŭ	Ū		358	1		
	3,3'-Dichlorobenzidine		UG/KG	Ŭ	Ū		358	1		
0	3-Nitroaniline		UG/KG	U	U		358	1		
	4-Bromophenyl phenyl ether		UG/KG	Ū	Ū		358	1		
	4-Chloro-3-methylphenol		UG/KG	Ū	U		358	1		
	4-Chloroaniline		UG/KG	U	U		358	1		
	4-Chlorophenyl phenyl ether	358	UG/KG	U	U		358	1		
	4-Methylphenol	358	UG/KG	U	U		358	1		
	4-Nitroaniline	358	UG/KG	U	U		358	1		
	4-Nitrophenol		UG/KG	Ŭ	Ū		358	1		
	Acenaphthene	35.8	UG/KG	U	Ū		35.8	1		
	Acenaphthylene		UG/KG	U	U		35.8	1		
	Anthracene		UG/KG	Ű	Ū		35.8	1		
	Benz(a)anthracene		UG/KG	U	Ū		35.8	1		
	Benzenemethanol	358	UG/KG	U	U		358	1		
	Benzo(a)pyrene		UG/KG	Ū	U		35.8	1		
	Benzo(b)fluoranthene		UG/KG	Ū	U		35.8	1		
	Benzo(ghi)perylene		UG/KG	Ŭ	Ŭ		35.8	1		
	Benzo(k)fluoranthene		UG/KG	U	Ū		35.8	1		
	Benzoic acid		UG/KG	U	Ū		716	1		
	Bis(2-chloroethoxy)methane		UG/KG	Ŭ	U		358	1		
	Bis(2-chloroethyl) ether		UG/KG	U	Ū		358	1		
	Bis(2-Chloroisopropyl)Ether		UG/KG	Ū	Ŭ		358	1		
	Bis(2-ethylhexyl)phthalate		UG/KG	JB		F01,F06	358	1		
	Butyl benzyl phthalate		UG/KG	U	U		358	1		
	Carbazole		UG/KG	U	U		358	1		
	Chrysene		UG/KG	U	U		35.8	1		
	Di-n-butyl phthalate		UG/KG	U	U		358	1		
	Di-n-octylphthalate	358	UG/KG	U	U		358	1		
	Dibenz(a,h)anthracene		UG/KG	U	U		35.8	1		

	24/2004 Field Sample Typ	Je. Orau						
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran	358	UG/KG	U	U		358	1
	Diethyl phthalate		UG/KG	JB		F01,F06	358	i
	Dimethyl phthalate	358	UG/KG	U	U		358	1
	Diphenylamine	358	UG/KG	Ū	Ū		358	1
	Fluoranthene		UG/KG	Ŭ	Ŭ		35.8	i
	Fluorene		UG/KG	ŭ	Ŭ		35.8	1
	Hexachlorobenzene		UG/KG	Ŭ	Ŭ		358	1
	Hexachlorobutadiene		UG/KG	U	Ŭ		358	1
	Hexachlorocyclopentadiene		UG/KG	ŭ	ŭ		358	1
	Hexachloroethane		UG/KG	U	U		358	1
	Indeno(1,2,3-cd)pyrene		UG/KG	Ŭ	U			
	Isophorone		UG/KG	Ű	U		35.8	1
	N-Nitroso-di-n-propylamine		UG/KG	U			358	1
	Naphthalene				U		358	1
	Nitrobenzene		UG/KG	U			35.8	1
			UG/KG	U	U		358	1
	Pentachlorophenol		UG/KG	U	U		358	1
	Phenanthrene		UG/KG	U	U		35.8	1
	Phenol		UG/KG	U	U		358	1
Volatila Ormaniar	Pyrene Conserved Empire and a based on the	35.8	UG/KG	U	U		35.8	1
Volatile Organics SW846 8260B	General Engineering Laboratory	11	110/1/0				SDG No:	
SVV040 0200B	1,1,1-Trichloroethane		UG/KG	U	U		1.1	1
	1,1,2,2-Tetrachloroethane		UG/KG	U	U		1.1	1
	1,1,2-Trichloroethane		UG/KG	U	U		1.1	1
	1,1-Dichloroethane		UG/KG	U	U		1.1	1
	1,1-Dichloroethene		UG/KG	U	U		1.1	1
	1,2-Dibromoethane		UG/KG	U	U		1.1	1
	1,2-Dichloroethane	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dichloropropane	1.1	UG/KG	U	U		1.1	1
	2-Butanone	5.5	UG/KG	U	U		5.5	1
	2-Hexanone	5.5	UG/KG	U	U		5.5	1
	4-Methyl-2-pentanone	5.5	UG/KG	U	U		5.5	1
	Acetone	8.7	UG/KG		=		5.5	1
	Benzene	1.1	UG/KG	U	U		1.1	1
	Bromochloromethane	1.1	UG/KG	U	U		1.1	1
	Bromodichloromethane	1.1	UG/KG	Ŭ	Ū		1.1	1
	Bromoform		UG/KG	ŭ	ŭ		1.1	1
	Bromomethane		UG/KG	Ŭ	Ŭ		1.1	1
	Carbon disulfide		UG/KG	Ŭ	ŭ		5.5	1
	Carbon tetrachloride		UG/KG	Ŭ	ŭ		1.1	1
	Chlorobenzene		UG/KG	U	U			1
	Chloroethane		UG/KG	U	U		1.1	1
	Chloroform		UG/KG	U			1.1	1
	Chloromethane			0.053	U		1.1	1
	cis-1,3-Dichloropropene		UG/KG	U	U		1.1	1
			UG/KG	U	U		1.1	1
	Dibromochloromethane		UG/KG	U	U		1.1	1
	Ethylbenzene		UG/KG	U	U		1.1	1
	Methylene chloride		UG/KG	U	U		5.5	1
	Styrene		UG/KG	U	U		1.1	1
	Tetrachloroethene		UG/KG		=		1.1	1
	Toluene		UG/KG	U	U		1.1	1
	trans-1,3-Dichloropropene		UG/KG	U	U		1.1	1
	Trichloroethene	1.1	UG/KG	U	U		1.1	1
	Vinyl chloride		UG/KG	U	U		1.1	1
	Xylenes, Total		UG/KG	U	U		1.1	1,577

ate Collected: 08	3/24/2004 Field Sample Ty	pe: Grab						
nalysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
norganics	General Engineering Laboratory	1.00.0000000000000000000000000000000000		quui	quui	oout	SDG No:	119838
W846 6010	Arsenic	the second s	MG/KG	U	U		0.223	1
	Barium	3.79	MG/KG	2	=		0.072	1
	Cadmium	0.052	MG/KG	U	U		0.052	1
	Chromium	3.07	MG/KG		J	J01,J02	0.174	1
	Lead	2.11	MG/KG		=		0.307	1
W846 7470	Mercury	0.023	MG/KG		=		0.001	1
W846 6010	Selenium	0.175	MG/KG	U	U		0.175	1
	Silver	0.098	MG/KG	U	U		0.098	1
emi-Volatile	General Engineering Laboratory						SDG No:	119838
rganics		000	HOKO				000	
W846 8270C	1,2,4-Trichlorobenzene		UG/KG	U	U		362	1
	1,2-Dichlorobenzene		UG/KG	U	U		362	1
	1,3-Dichlorobenzene		UG/KG	U	U		362	1
	1,4-Dichlorobenzene		UG/KG	U	U		362	1
	2,4,5-Trichlorophenol		UG/KG	U	U		362	1
	2,4,6-Trichlorophenol		UG/KG	U	U		362	1
	2,4-Dichlorophenol		UG/KG	U	U		362	1
	2,4-Dimethylphenol		UG/KG	U	U		362	1
	2,4-Dinitrophenol		UG/KG	U	U		724	1
	2,4-Dinitrotoluene		UG/KG	U	U		362	1
	2,6-Dinitrotoluene		UG/KG	U	U		362	1
	2-Chloronaphthalene		UG/KG	U	U		36.2	1
	2-Chlorophenol	1000	UG/KG	U	U		362	1
	2-Methyl-4,6-dinitrophenol		UG/KG	U	U		362	1
	2-Methylnaphthalene		UG/KG	U	υ		36.2	1
	2-Methylphenol		UG/KG	U	U		362	1
	2-Nitroaniline		UG/KG	U	U		362	1
	2-Nitrophenol	362	UG/KG	U	U		362	1
	3,3'-Dichlorobenzidine	362	UG/KG	U	U		362	1
	3-Nitroaniline	362	UG/KG	U	U		362	1
	4-Bromophenyl phenyl ether	362	UG/KG	U	U		362	1
	4-Chloro-3-methylphenol	362	UG/KG	U	U		362	1
	4-Chloroaniline	362	UG/KG	U	U		362	1
	4-Chlorophenyl phenyl ether	362	UG/KG	U	U		362	1
	4-Methylphenol	362	UG/KG	U	U		362	1
	4-Nitroaniline	362	UG/KG	U	U		362	1
	4-Nitrophenol	362	UG/KG	U	U		362	1
	Acenaphthene	36.2	UG/KG	U	U		36.2	1
	Acenaphthylene		UG/KG	U			36.2	1
	Anthracene	36.2	UG/KG	U			36.2	1
	Benz(a)anthracene		UG/KG	U			36.2	1
	Benzenemethanol		UG/KG	U			362	1
	Benzo(a)pyrene		UG/KG	U			36.2	1
	Benzo(b)fluoranthene		UG/KG	U	U		36.2	1
	Benzo(ghi)perylene		UG/KG	U	1.171		36.2	1
	Benzo(k)fluoranthene		UG/KG	U	U		36.2	1
	Benzoic acid	49.5	UG/KG	J	J		724	1
	Bis(2-chloroethoxy)methane		UG/KG	U	- 3753		362	1
	Bis(2-chloroethyl) ether		UG/KG	U			362	1
	Bis(2-Chloroisopropyl)Ether	362	UG/KG	U	U		362	1
	Bis(2-ethylhexyl)phthalate	362	UG/KG	JB		F01,F06	362	1
	Butyl benzyl phthalate	362	UG/KG	U	U		362	1
	Carbazole	362	UG/KG	U	U		362	1
	Chrysene	36.2	UG/KG	U	U		36.2	1
	Di-n-butyl phthalate	362	UG/KG	U	U		362	1
	Di-n-octylphthalate	362	UG/KG	U	U		362	1
	Dibenz(a,h)anthracene	00.0	UG/KG	U	U		36.2	1

Sample ID: 241	781 Me	edia: Soil			Dept	h: 0.5 - 1.9	FT	
Date Collected: 08/2	24/2004 Field Sample T	ype: Grab			_			
Analysis	Chemical	Result	Units	Lab Qual		Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran	362	UG/KG	U	U		362	1
	Diethyl phthalate	362	UG/KG	JB	U	F01,F06	362	1
	Dimethyl phthalate	362	UG/KG	U	U		362	1
	Diphenylamine	362	UG/KG	U	U		362	1
	Fluoranthene	36.2	UG/KG	U	U		36.2	1
	Fluorene	36.2	UG/KG	U	U		36.2	1
	Hexachlorobenzene	362	UG/KG	U	U		362	1
	Hexachlorobutadiene	362	UG/KG	U	U		362	1
	Hexachlorocyclopentadiene	362	UG/KG	U	U		362	1
	Hexachloroethane	362	UG/KG	U	U		362	1
	Indeno(1,2,3-cd)pyrene	36.2	UG/KG	U	U		36.2	1
	Isophorone		UG/KG	U	Ŭ		362	1
	N-Nitroso-di-n-propylamine		UG/KG	U	U		362	1
	Naphthalene		UG/KG	U	U		36.2	1
	Nitrobenzene		UG/KG	Ŭ	Ū		362	1
	Pentachlorophenol		UG/KG	Ŭ	Ū		362	1
	Phenanthrene		UG/KG	Ū	Ū		36.2	1
	Phenol		UG/KG	Ŭ	Ŭ		362	i
	Pyrene		UG/KG	ŭ	Ŭ		36.2	1
Volatile Organics	General Engineering Laborator						SDG No	
SW846 8260B	1,1,1-Trichloroethane		UG/KG	U	U		1.1	1
	1,1,2,2-Tetrachloroethane		UG/KG	Ū	U		1.1	1
	1,1,2-Trichloroethane		UG/KG	U	Ű		1.1	1
	1,1-Dichloroethane		UG/KG	U	U		1.1	1
	1,1-Dichloroethene	1.1	UG/KG	U	U		1.1	1
	1,2-Dibromoethane		UG/KG	Ŭ	U		1.1	1
	1,2-Dichloroethane		UG/KG	Ŭ	U		1.1	1
	1,2-Dichloroethene		UG/KG	Ū	Ū		1.1	1
	1,2-Dichloropropane		UG/KG	Ŭ	Ŭ		1.1	i
	2-Butanone		UG/KG	ŭ	Ŭ		5.7	i
	2-Hexanone		UG/KG	Ŭ	Ŭ		5.7	1
	4-Methyl-2-pentanone		UG/KG	Ŭ	Ŭ		5.7	1
	Acetone		UG/KG	ŭ	ŭ		5.7	1
	Benzene		UG/KG	ŭ	U		1.1	1
	Bromochloromethane		UG/KG	Ŭ	Ŭ		1.1	1
	Bromodichloromethane		UG/KG	Ŭ	ŭ		1.1	1
	Bromoform		UG/KG	U	Ŭ		1.1	1
	Bromomethane		UG/KG	Ű	ŭ		1.1	1
	Carbon disulfide		UG/KG	Ű	U		5.7	1
	Carbon tetrachloride		UG/KG	Ŭ				i
	Chlorobenzene		UG/KG	U	U		1.1	1
	Chloroethane		UG/KG	U	U		1.1	1
	Chloroform		UG/KG	U	U		1.1	1
	Chloromethane		UG/KG	U	U		1.1	1
	cis-1,3-Dichloropropene		UG/KG	U	U		1.1	1
	Dibromochloromethane		UG/KG	U	U		1.1	1
	Ethylbenzene		UG/KG	U	U		1.1	1
			UG/KG					1
	Methylene chloride		UG/KG	U	U		5.7	
	Styrene			0	-		1.1	1
	Tetrachloroethene		UG/KG		=		1.1	
	Toluene		UG/KG	J	J		1.1	1
	trans-1,3-Dichloropropene		UG/KG	U			1.1	1
	Trichloroethene		UG/KG	U			1.1	1
	Vinyl chloride Xylenes, Total		UG/KG UG/KG	U U			1.1	1
					- 11		1.1	-

Date Collected: 08	Field Sample Type	n Grub		1.46	ab Data Validation Detection			
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
Inorganics	General Engineering Laboratory						SDG No:	
SW846 6010	Arsenic	0.224	MG/KG	U	U		0.224	1
	Barium	7.27	MG/KG		=		0.072	1
	Cadmium	0.052	MG/KG	U	U		0.052	1
	Chromium	5.8	MG/KG	•	J	J01, J02	0.175	1
	Lead	4.07	MG/KG		=		0.308	1
SW846 7470	Mercury	0.056	MG/KG		=		0.001	1
SW846 6010	Selenium	0.176	MG/KG	U	U		0.176	1
	Silver	0.098	MG/KG	U	U		0.098	1
Semi-Volatile Organics	General Engineering Laboratory						SDG No:	119838
SW846 8270C	1,2,4-Trichlorobenzene	368	UG/KG	U	U		368	1
	1,2-Dichlorobenzene	368	UG/KG	U	U		368	1
	1,3-Dichlorobenzene	368	UG/KG	U	U		368	1
	1,4-Dichlorobenzene	1.0000	UG/KG	Ū	U		368	i
	2,4,5-Trichlorophenol		UG/KG	Ŭ	Ŭ		368	1
	2,4,6-Trichlorophenol		UG/KG	Ŭ	Ū		368	1
	2,4-Dichlorophenol		UG/KG	Ŭ	U		368	i
	2,4-Dimethylphenol		UG/KG	Ŭ	Ŭ		368	i
	2,4-Dinitrophenol		UG/KG	ŭ	Ŭ		737	1
	2,4-Dinitrotoluene	368	UG/KG	Ū	U		368	1
	2,6-Dinitrotoluene		UG/KG	U	U		368	1
	2-Chloronaphthalene		UG/KG	U	U		36.8	1
	2-Chlorophenol	368	UG/KG	Ŭ	Ŭ		368	1
	2-Methyl-4,6-dinitrophenol		UG/KG	Ŭ	Ŭ		368	i
	2-Methylnaphthalene		UG/KG	Ŭ	Ŭ		36.8	i
	2-Methylphenol		UG/KG	ŭ	Ŭ		368	1
	2-Nitroaniline		UG/KG	ŭ	Ŭ		368	i
	2-Nitrophenol		UG/KG	Ŭ	Ŭ		368	i
	3,3'-Dichlorobenzidine		UG/KG	ŭ	Ŭ		368	-i
	3-Nitroaniline		UG/KG	Ŭ	Ŭ		368	1
	4-Bromophenyl phenyl ether		UG/KG	Ŭ	Ŭ		368	i
	4-Chloro-3-methylphenol		UG/KG	ŭ	Ŭ		368	i
	4-Chloroaniline		UG/KG	Ŭ	Ŭ		368	1
	4-Chlorophenyl phenyl ether		UG/KG	ŭ	ŭ		368	i
	4-Methylphenol		UG/KG	Ŭ	Ŭ		368	1
	4-Nitroaniline	2000	UG/KG	Ű	Ŭ		368	1
	4-Nitrophenol		UG/KG	Ű	U		368	1
	Acenaphthene		UG/KG	Ű	U		36.8	-
	Acenaphthylene		UG/KG	U	Ŭ		36.8	1
	Anthracene		UG/KG	Ŭ	U		36.8	1
	Benz(a)anthracene		UG/KG	U	Ű		36.8	1
	Benzenemethanol		UG/KG	Ű	Ŭ		368	1
	Benzo(a)pyrene		UG/KG	Ű	U		36.8	1
	Benzo(b)fluoranthene		UG/KG	U	U		36.8	1
	Benzo(ghi)perylene		UG/KG	U	U		36.8	i
	Benzo(k)fluoranthene		UG/KG	Ű	U		36.8	1
	Benzoic acid		UG/KG	U	U		737	1
	Bis(2-chloroethoxy)methane		UG/KG	U	U			1
	Bis(2-chloroethyl) ether		UG/KG	U	U		368	1
	Bis(2-Chloroisopropyl)Ether		UG/KG	U	U		368	1
	Bis(2-ethylhexyl)phthalate		UG/KG			E01 E00	368	1
	Butyl benzyl phthalate		UG/KG	JB U		F01,F06	368	1
	Carbazole		UG/KG	U	UU		368	1
	Chrysene		UG/KG	U	U		368	
	Di-n-butyl phthalate		UG/KG	U	U		36.8	1
	Di-n-octylphthalate		UG/KG	U			368	1
	Dibenz(a,h)anthracene	36.8		U	U		368	1

Fort Stewart - SWMU 24B

	24/2004 Field Sample Ty	0.00011200000000			D			
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
SW846 8270C	Dibenzofuran	368	UG/KG	U	U		368	1
	Diethyl phthalate	368	UG/KG	JB	U	F01,F06	368	1
	Dimethyl phthalate	368	UG/KG	U	U		368	1
	Diphenylamine		UG/KG	Ū	U		368	1
	Fluoranthene		UG/KG	U	Ū		36.8	1
	Fluorene	36.8	UG/KG	Ū	U		36.8	1
	Hexachlorobenzene	368	UG/KG	U	U		368	i
	Hexachlorobutadiene		UG/KG	U	U		368	1
	Hexachlorocyclopentadiene	368	UG/KG	Ū	Ū		368	1
	Hexachloroethane	368	UG/KG	U	U		368	1
	Indeno(1,2,3-cd)pyrene	36.8	UG/KG	U	U		36.8	1
	Isophorone	368	UG/KG	U	U		368	1
	N-Nitroso-di-n-propylamine	368	UG/KG	U	U		368	1
	Naphthalene	36.8	UG/KG	U	U		36.8	1
	Nitrobenzene		UG/KG	Ū	Ū		368	i
	Pentachlorophenol		UG/KG	Ŭ	Ŭ		368	1
	Phenanthrene		UG/KG	Ŭ	ū		36.8	i
	Phenol	368	UG/KG	U	U		368	1
	Pyrene	36.8	UG/KG	U	U		36.8	1
Volatile Organics	General Engineering Laboratory						SDG No:	119838
SW846 8260B	1,1,1-Trichloroethane	1.2	UG/KG	υ	U		1.2	1
	1,1,2,2-Tetrachloroethane	1.2	UG/KG	U	U		1.2	1
	1,1,2-Trichloroethane	1.2	UG/KG	U	U		1.2	1
	1,1-Dichloroethane	1.2	UG/KG	U	U		1.2	1
	1,1-Dichloroethene	1.2	UG/KG	U	U		1.2	1
	1,2-Dibromoethane	1.2	UG/KG	υ	U		1.2	1
	1,2-Dichloroethane	1.2	UG/KG	U	U		1.2	1
	1,2-Dichloroethene	1.2	UG/KG	U	U		1.2	1
	1,2-Dichloropropane	1.2	UG/KG	U	U		1.2	1
	2-Butanone	5.9	UG/KG	U	U		5.9	1
	2-Hexanone	5.9	UG/KG	U	U		5.9	1
	4-Methyl-2-pentanone	5.9	UG/KG	U	U		5.9	1
	Acetone	5.9	UG/KG	U	U		5.9	1
	Benzene	1.2	UG/KG	U	U		1.2	1
	Bromochloromethane	1.2	UG/KG	U	U		1.2	1
	Bromodichloromethane	1.2	UG/KG	U	U		1.2	1
	Bromoform	1.2	UG/KG	U	υ		1.2	1
	Bromomethane	1.2	UG/KG	U	U		1.2	1
	Carbon disulfide	5.9	UG/KG	U	U		5.9	1
	Carbon tetrachloride	1.2	UG/KG	U	U		1.2	1
	Chlorobenzene	1.2	UG/KG	U	U		1.2	1
	Chloroethane	1.2	UG/KG	U	υ		1.2	1
	Chloroform	1.2	UG/KG	U	U		1.2	1
	Chloromethane	1.2	UG/KG	U	U		1.2	1
	cis-1,3-Dichloropropene	1.2	UG/KG	U	U		1.2	1
	Dibromochloromethane	1.2	UG/KG	U	U		1.2	1
	Ethylbenzene		UG/KG	U	U		1.2	1
	Methylene chloride		UG/KG	U	U		5.9	1
	Styrene	1.2	UG/KG	U	U		1.2	1
	Tetrachloroethene		UG/KG	J	J		1.2	1
	Toluene		UG/KG	U	U		1.2	1
	trans-1,3-Dichloropropene	1.2	UG/KG	U	U		1.2	1
	Trichloroethene		UG/KG	U	U		1.2	1
	Vinyl chloride	1.2	UG/KG	U	U		1.2	1
	Xylenes, Total		UG/KG	U	U			

	3/24/2004 Field Sample Type	: Grad		Q				
Analysis	Chemical	Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
Inorganics	General Engineering Laboratory	nooun	onno	quai	quai	coue	SDG No:	
SW846 6010	Arsenic	0.22	MG/KG	U	U		0.22	1
	Barium		MG/KG	0	=		0.071	1
	Cadmium		MG/KG	U	U		0.051	1
	Chromium		MG/KG	÷	J	J01,J02	0.172	i
	Lead		MG/KG		=	301,302	0.303	1
SW846 7470	Mercury		MG/KG		=			
SW846 6010	Selenium		MG/KG	U	Ū		0.001	1
	Silver		MG/KG	U	U		0.173	1
Semi-Volatile	General Engineering Laboratory	0.050	WG/KG	0	0		SDG No:	
Organics							300 NO.	119030
SW846 8270C	1,2,4-Trichlorobenzene	362	UG/KG	U	U		362	1
	1,2-Dichlorobenzene	362	UG/KG	U	U		362	1
	1,3-Dichlorobenzene	362	UG/KG	U	U		362	1
	1,4-Dichlorobenzene	362	UG/KG	U	U		362	1
	2,4,5-Trichlorophenol	362	UG/KG	U	U		362	1
	2,4,6-Trichlorophenol		UG/KG	Ŭ	Ŭ		362	i
	2,4-Dichlorophenol	0.553.637	UG/KG	Ŭ	ŭ		362	1
	2,4-Dimethylphenol		UG/KG	ŭ	Ŭ		362	1
	2,4-Dinitrophenol		UG/KG	Ŭ	Ŭ		723	1
	2,4-Dinitrotoluene		UG/KG	ŭ	Ŭ		362	1
	2,6-Dinitrotoluene		UG/KG	Ŭ	U		362	1
	2-Chloronaphthalene		UG/KG	U	U		36.2	1
	2-Chlorophenol		UG/KG	U	U		362	
	2-Methyl-4,6-dinitrophenol							1
			UG/KG	U	U		362	1
	2-Methylnaphthalene		UG/KG	U	U		36.2	1
	2-Methylphenol		UG/KG	U	U		362	1
	2-Nitroaniline		UG/KG	U	U		362	1
	2-Nitrophenol		UG/KG	U	U		362	1
	3,3'-Dichlorobenzidine		UG/KG	U	U		362	1
	3-Nitroaniline		UG/KG	U	U		362	1
	4-Bromophenyl phenyl ether	362	UG/KG	U	U		362	1
	4-Chloro-3-methylphenol	362	UG/KG	U	U		362	1
	4-Chloroaniline	362	UG/KG	U	U		362	1
	4-Chlorophenyl phenyl ether	362	UG/KG	U	U		362	1
	4-Methylphenol	362	UG/KG	U	U		362	1
	4-Nitroaniline	362	UG/KG	U	U		362	1
	4-Nitrophenol	362	UG/KG	U	U		362	1
	Acenaphthene	36.2	UG/KG	U	U		36.2	1
	Acenaphthylene	36.2	UG/KG	U	U		36.2	1
	Anthracene	36.2	UG/KG	U	U		36.2	1
	Benz(a)anthracene		UG/KG	U	Ũ		36.2	1
	Benzenemethanol		UG/KG	ŭ	Ŭ		362	1
	Benzo(a)pyrene		UG/KG	Ŭ	U		36.2	i
	Benzo(b)fluoranthene		UG/KG	U	Ŭ		36.2	1
	Benzo(ghi)perylene		UG/KG	ŭ	Ŭ		36.2	1
	Benzo(k)fluoranthene		UG/KG	Ŭ	Ŭ		36.2	1
	Benzoic acid		UG/KG	J	J		723	1
	Bis(2-chloroethoxy)methane		UG/KG	U U	U		362	
	Bis(2-chloroethyl) ether		UG/KG	U	U			1
	Bis(2-Chloroisopropyl)Ether			U			362	1
			UG/KG		U	E04 505	362	1
	Bis(2-ethylhexyl)phthalate		UG/KG	JB		F01,F06	362	1
	Butyl benzyl phthalate		UG/KG	U	U		362	1
	Carbazole		UG/KG	U	U		362	1
	Chrysene		UG/KG	U	U		36.2	1
	Di-n-butyl phthalate		UG/KG	U	U		362	1
	Di-n-octylphthalate		UG/KG	U	U		362	1
	Dibenz(a,h)anthracene	36.2	UG/KG	U	U		36.2	1

Sample ID: 2 Date Collected: (REALIZED CONTRACTOR CONTRACTOR AND A CONTRACT OF A CONTRACT.	ledia: Soil			Dept	h: 0.5 - 1.9	FT	
nen en				Lab	Data	Validation	Detection	
Analysis	Chemical	Result		Qual	Qual	Code	Limit	Dilution
SW846 8270C	Dibenzofuran	362	UG/KG	U	U		362	1
	Diethyl phthalate	362	UG/KG	JB	U	F01,F06	362	1
	Dimethyl phthalate	362	UG/KG	U	U		362	1
	Diphenylamine	362	UG/KG	U	U		362	1
	Fluoranthene	36.2	UG/KG	U	U		36.2	1
	Fluorene	36.2	UG/KG	U	U		36.2	1
	Hexachlorobenzene	362	UG/KG	U	U		362	1
	Hexachlorobutadiene	362	UG/KG	U	U		362	1
	Hexachlorocyclopentadiene	362	UG/KG	U	U		362	1
	Hexachloroethane	362	UG/KG	U	U		362	1
	Indeno(1,2,3-cd)pyrene	36.2	UG/KG	U	U		36.2	1
	Isophorone	362	UG/KG	U	U		362	1
	N-Nitroso-di-n-propylamine	362	UG/KG	U	U		362	1
	Naphthalene	36.2	UG/KG	U	U		36.2	1
	Nitrobenzene	362	UG/KG	U	U		362	1
	Pentachlorophenol	362	UG/KG	U	U		362	1
	Phenanthrene		UG/KG	U	U		36.2	1
	Phenol	362	UG/KG	U	U		362	1
	Pyrene	36.2	UG/KG	U	U		36.2	1
Volatile Organics	General Engineering Laborato	ry					SDG No:	119838
SW846 8260B	1,1,1-Trichloroethane	1.2	UG/KG	U	U		1.2	1
	1,1,2,2-Tetrachloroethane	1.2	UG/KG	U	U		1.2	1
	1,1,2-Trichloroethane	1.2	UG/KG	U	U		1.2	1
	1,1-Dichloroethane	1.2	UG/KG	U	U		1.2	1
	1,1-Dichloroethene	1.2	UG/KG	U	U		1.2	1
	1,2-Dibromoethane	1.2	UG/KG	U	U		1.2	1
	1,2-Dichloroethane	1.2	UG/KG	U	U		1.2	1
	1,2-Dichloroethene	1.2	UG/KG	U	U		1.2	1
	1,2-Dichloropropane	1.2	UG/KG	U	U		1.2	1
	2-Butanone	5.9	UG/KG	U	U		5.9	1
	2-Hexanone	5.9	UG/KG	U	U		5.9	1
	4-Methyl-2-pentanone	5.9	UG/KG	U	U		5.9	1
	Acetone	5.9	UG/KG	U	U		5.9	1
	Benzene	1.2	UG/KG	U	U		1.2	1
	Bromochloromethane	1.2	UG/KG	U	U		1.2	1
	Bromodichloromethane		UG/KG	U	U		1.2	1
	Bromoform		UG/KG	U	U		1.2	1
	Bromomethane		UG/KG	U	U		1.2	1
	Carbon disulfide		UG/KG	Ŭ	Ū		5.9	1
	Carbon tetrachloride		UG/KG	Ŭ	Ŭ		1.2	1
	Chlorobenzene		UG/KG	Ŭ	1 (Q)		1.2	i
	Chloroethane		UG/KG	Ŭ	Ŭ		1.2	1
	Chloroform		UG/KG	Ŭ			1.2	i i
	Chloromethane		UG/KG	Ŭ	Ŭ		1.2	1
	cis-1,3-Dichloropropene		UG/KG	Ŭ	Ŭ		1.2	1
	Dibromochloromethane		UG/KG	Ŭ	Ŭ		1.2	i
	Ethylbenzene		UG/KG	ŭ	Ŭ		1.2	1
	Methylene chloride		UG/KG	U	U		5.9	
	Styrene		UG/KG	Ű			1.2	1
	Tetrachloroethene		UG/KG	U	=		1.2	1
	Toluene		UG/KG	U			1.2	1
	trans-1,3-Dichloropropene		UG/KG	U				
	Trichloroethene		UG/KG	U	U		1.2	1
	Vinyl chloride		UG/KG	U	U		1.2	1
	· · · · · · · · · · · · · · · · · · ·			-			1.2	1
	Xylenes, Total	1.2	UG/KG	U	U		1.2	1

	S/24/2004 Field Sample Type			Lab	Data	Validation	Detection	
Analysis	Chemical	Result	Units		Qual	Code	Limit	Dilution
Inorganics	General Engineering Laboratory						SDG No:	119838
SW846 6010	Arsenic	0.217	MG/KG	U	U		0.217	1
	Barium	3.04	MG/KG		=		0.07	1
	Cadmium	0.05	MG/KG	U	U		0.05	1
	Chromium	2.41	MG/KG	•	J	J01,J02	0.169	1
	Lead	1.38	MG/KG		=		0.298	1
SW846 7470	Mercury	0.012	MG/KG		=		0.001	1
SW846 6010	Selenium	0.853	MG/KG	U	U		0.853	5
	Silver	0.095	MG/KG	U	U		0.095	1
Semi-Volatile	General Engineering Laboratory						SDG No:	119838
Organics SW846 8270C	1,2,4-Trichlorobenzene	353	UG/KG	U	U		353	1
	1,2-Dichlorobenzene		UG/KG	ŭ	ŭ		353	1
	1,3-Dichlorobenzene		UG/KG	Ŭ	Ŭ		353	1
	1,4-Dichlorobenzene		UG/KG	Ŭ	Ŭ		353	
	2,4,5-Trichlorophenol		UG/KG	U	U		353	1
	2,4,6-Trichlorophenol		UG/KG	U	U		353	1
	2,4-Dichlorophenol		UG/KG	U	U			
	2,4-Dimethylphenol		UG/KG		U		353	1
	2,4-Dinitrophenol		UG/KG	U	U		353	1
	2,4-Dinitrotoluene		UG/KG	Ű	U		706	1
	2,6-Dinitrotoluene		UG/KG	U	U		353 353	1
	2-Chloronaphthalene		UG/KG		U		61547578	1
	2-Chlorophenol		UG/KG	U			35.3	1
	이 같은 것 같은 것 같은 것 같은 이 것 같은 것 같은 것 같은 것 같		UG/KG	27.1	U		353	1
	2-Methyl-4,6-dinitrophenol			U	U		353	1
	2-Methylnaphthalene		UG/KG	U	U		35.3	1
	2-Methylphenol		UG/KG	U	U		353	1
	2-Nitroaniline		UG/KG	U	U		353	1
	2-Nitrophenol		UG/KG	U	U		353	1
	3,3'-Dichlorobenzidine		UG/KG	U	U		353	1
	3-Nitroaniline		UG/KG	U	U		353	1
	4-Bromophenyl phenyl ether		UG/KG	U	U		353	1
	4-Chloro-3-methylphenol		UG/KG	U	U		353	1
	4-Chloroaniline		UG/KG	U	U		353	1
	4-Chlorophenyl phenyl ether		UG/KG	U	U		353	1
	4-Methylphenol		UG/KG	U	U		353	1
	4-Nitroaniline		UG/KG	U	U		353	1
	4-Nitrophenol		UG/KG	U	U		353	1
	Acenaphthene		UG/KG	U	U		35.3	1
	Acenaphthylene		UG/KG	U	U		35.3	1
	Anthracene		UG/KG	U			35.3	1
	Benz(a)anthracene		UG/KG	U	U		35.3	1
	Benzenemethanol		UG/KG	U	U		353	1
	Benzo(a)pyrene		UG/KG	U			35.3	1
	Benzo(b)fluoranthene		UG/KG	U	U		35.3	1
	Benzo(ghi)perylene		UG/KG	U	U		35.3	1
	Benzo(k)fluoranthene		UG/KG	U	U		35.3	1
	Benzoic acid		UG/KG	U	U		706	1
	Bis(2-chloroethoxy)methane	353	UG/KG	U	U		353	1
	Bis(2-chloroethyl) ether	353	UG/KG	U			353	1
	Bis(2-Chloroisopropyl)Ether	353	UG/KG	U	U		353	1
	Bis(2-ethylhexyl)phthalate	353	UG/KG	JB	U	F01,F06	353	1
	Butyl benzyl phthalate	353	UG/KG	U	U		353	1
	Carbazole	353	UG/KG	U	U		353	1
	Chrysene	35.3	UG/KG	U	U		35.3	1
	Di-n-butyl phthalate	353	UG/KG	U	U		353	1
	Di-n-octylphthalate	353	UG/KG	U	U		353	1
	Dibenz(a,h)anthracene	25 2	UG/KG	U	U		35.3	1

Fort Stewart - SWMU 24B

Date Collected: 08/2	882 Me 24/2004 Field Sample T			Depth: 3 - 4.8 FT							
Date Conected. 08/2	Field Sample I	ype: Grab		Lab	Data	Validation	Detection				
Analysis	Chemical	Result	Units	Qual			Limit	Dilution			
SW846 8270C	Dibenzofuran	353	UG/KG	U	U		353	1			
	Diethyl phthalate	353	UG/KG	JB	U	F01,F06	353	1			
	Dimethyl phthalate	353	UG/KG	U	U		353	1			
	Diphenylamine	353	UG/KG	U	U		353	1			
	Fluoranthene	35.3	UG/KG	U	U		35.3	1			
	Fluorene	35.3	UG/KG	U	U		35.3	1			
	Hexachlorobenzene	353	UG/KG	U	U		353	1			
	Hexachlorobutadiene	353	UG/KG	U	U		353	1			
	Hexachlorocyclopentadiene	353	UG/KG	U	U		353	1			
	Hexachloroethane	353	UG/KG	U	U		353	1			
	Indeno(1,2,3-cd)pyrene	35.3	UG/KG	U	U		35.3	1			
	Isophorone	353	UG/KG	U	U		353	1			
	N-Nitroso-di-n-propylamine	353	UG/KG	U	U		353	1			
	Naphthalene	35.3	UG/KG	U	U		35.3	1			
	Nitrobenzene	353	UG/KG	U	U		353	1			
	Pentachlorophenol	353	UG/KG	U	U		353	1			
	Phenanthrene	35.3	UG/KG	U	U		35.3	1			
	Phenol	353	UG/KG	U	U		353	1			
	Pyrene	35.3	UG/KG	U	U		35.3	1			
Volatile Organics	General Engineering Laborator	/					SDG No:	119838			
SW846 8260B	1,1,1-Trichloroethane	1.3	UG/KG	U	U		1.3	1			
	1,1,2,2-Tetrachloroethane	1.3	UG/KG	U	U		1.3	1			
	1,1,2-Trichloroethane	1.3	UG/KG	U	U		1.3	1			
	1,1-Dichloroethane	1.3	UG/KG	U	U		1.3	1			
	1,1-Dichloroethene	1.3	UG/KG	U	U		1.3	1			
	1,2-Dibromoethane	1.3	UG/KG	U	U		1.3	1			
	1,2-Dichloroethane	1.3	UG/KG	U	U		1.3	1			
	1,2-Dichloroethene	1.3	UG/KG	U	U		1.3	1			
	1,2-Dichloropropane		UG/KG	U	U		1.3	1			
	2-Butanone		UG/KG	Ŭ	Ŭ		6.3	1			
	2-Hexanone		UG/KG	Ŭ	Ŭ		6.3	1			
	4-Methyl-2-pentanone		UG/KG	ŭ	ŭ		6.3	1			
	Acetone		UG/KG	J	J		6.3	1			
	Benzene		UG/KG	Ŭ	ŭ		1.3	1			
	Bromochloromethane		UG/KG	Ŭ	ŭ		1.3	1			
	Bromodichloromethane		UG/KG	Ŭ	U		1.3	1			
	Bromoform		UG/KG	Ŭ	U		1.3	1			
	Bromomethane		UG/KG	Ŭ	ŭ		1.3	1			
	Carbon disulfide		UG/KG	U	U		6.3	1			
	Carbon tetrachloride		UG/KG	U	U			1			
	Chlorobenzene		UG/KG	Ű	U		1.3	4			
	Chloroethane		UG/KG	U	U		1.3	1			
	Chloroform		UG/KG	U	U		1.3	4			
	Chloromethane		UG/KG	U	U		1.3				
	cis-1,3-Dichloropropene		UG/KG	U	U		1.3	1			
	Dibromochloromethane		UG/KG	U	U		1.3	1			
	Ethylbenzene		UG/KG				1.3	1			
	Methylene chloride			U	U		1.3	1			
			UG/KG	U	U		6.3	1			
	Styrene		UG/KG	U	U		1.3	1			
	Tetrachloroethene		UG/KG	U	U		1.3	1			
	Toluene		UG/KG	U	U		1.3	1			
	trans-1,3-Dichloropropene		UG/KG	U	U		1.3	1			
	Trichloroethene		UG/KG	U	U		1.3	1			
	Vinyl chloride		UG/KG	U	U		1.3	1			
	Xylenes, Total	1 2	UG/KG	U	U		1.3	1			

Science Applicational International Corporation 	unal Corporation TN 37831 (423)	481-4600			C	HAI	NOF	CHAIN OF CUSTODY RECORD		REC	L BO	_				COC NO.:	COC NO .: CSUMUR
DOO IEOT HANT		0	110 1110	0	Ĺ					2							
C PHOJECT NAME: SWMU35- PHOLStudy SUMU 24 B	MU-98-1 HIGH	The Parts	かたかい	D	t	F	F	BE	REQUESTED PARAMETERS	D PAR	AMETE	RS	F	F	ł	LABORATORY NAME	VAME:
PROJECT NUMBER: 01-1055-04-6598=400	01-1055-04-64	598-400-									_		(a.)			General Engineering Laboratory	ring Laboratory
	9	002-9249	00		2/15	· ·										LABORATORY ADDRESS:	ADDRESS:
PROJECT MANAGER: Jeff Longaker	: Jeff Longak	(er			,	2726									:slsi/	2040 Savage Haod Charleston, SC 29407	od 29407
Sampler (Signature)	D.	Printed Name)	ame) A C	Part		1 6993									V \aeitto8	PHONE NO: (843) 556-8171	3) 556-8171
Sample ID	Date Collected		Time Collected	Matrix	xate	_				N. E					to .oN	OVA	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
241881	8/24/04	4 1115	5	2011	-	-	30	199		District	1.198		Lation Prime		N		24hr turn
241882	_	1120	0	-	-	-	· 公司	1.489	153	in der	821				N		
241781		1100	0		1	-		版	100	-	1.55	ţ¢	3. j.	1.45	N		
241782		0/11	0	_	1	~	đ		1	rt,	gar.	94E	25		2		
241681		1045	15		1	-	-25	御	100	1.76	鄭	a star		耀	2		
241682		10.	1050		1	~			-	1.00	64	1	÷.,	12	N		
241581		0	1030		1	1	E.	1000	de la	1.4	識語	动	N.	1	4		
285172 B-6		Q	1035		-	~	14.5				32	120	195	38	2		
241481		100	1005		-	-		114 114	192	4.		No.	- Care	服	N		
241482		0/01	10		1	1	야구한		- 34		2月1月	戀		22	N		
241381		06	0945		1	-	62	法法		1400	et vi				N		
241382		0950	50		1	~	1947 1947		eser Tické	1754.5	18				2		
241281	7	60	09.30	ž	~	~	100	1.43	100	1612	Here's	靈	10218	14.10	N		>
RELINGUISHED BY:	U//	Date/Time	RECEIVED				Date	Date/Time		TOTAL NUMBER OF CONTAINERS:	ER OF	CONT	AINER		32.	Cooler Temperature:	ure: 4°C
COMPANY NAME:		1300 /		COMPANY NAME:	2		tok.	withkakok	Cooler ID:	ë	3	213				FEDEX NUMBER:	FEDEX NUMBER: 0431-2138-1394
RECEIVED BY: 8431-2138-	1394	Date/Time	RELÍNQ	яегі́ма∪ізнер ву:			Date	Date/Time									
COMPANY NAME:		1300	COMPAI	COMPANY NAME:													
RELINQUISHED BY:		Date/Time	RECEIVED BY:	ED BY:			Date	Date/Time									
COMPANY NAME:			COMPAI	COMPANY NAME:												140	7

0

>

9.858LII

An Englayee Owned Company

Seisone Application International Company	Owned Company									1 2		P			
15) Latavette Dr., Oak Ridge, TN 37831 (423) 481-4600				C	HAIN	CHAIN OF CUSTODY RECORD	ΰsτc	DYR	ECO	ê				COC NO.:	COC NO .: GUUMUB
PROJECT NAME: SWMU 35- Pliot Study	No -yputs toll	EINS UMARS	ŝ				REQU	REQUESTED PARAMETERS	ARAME	TERS				LABORATORY NAME:	AME:
PHOJECT NUMBER: 01-1055-04-6698-400-	4-6698-400-				æл									General Engineering Laboratory	ing Laboratory
30	6426-200	00		_	5/								_	LABORATORY ADDRESS:	DDRESS:
PROJECT MANAGER: Jeff Longaker	gaker			tu	579								:sle	2040 Savage Raod Charleston, SC 29407	od
Sampler (Signature)	(Printed Name)	tme)		30									!Λ /sq		
KH CUMI	PATAICIA	2 A.C	794										Bottle	PHONE NO: (843) 556-8171) 556-8171
$\left \right $	Date Collected Time (Time Collected	Matrix	A DTEX					â				lo .ol	OVA SCREENING	OBSERVATIONS, COMMENTS, SPECIAL INSTRUCTIONS
241282 8/24/04	_	2 2530	2015	-	1.50		同時	1 Alert					N		
24/18/	8	09/00	_	1		1973 1973		- ABS				100 m 100 m 100 m	2		
241182	1 09	5060	7	1	1		10, 10 10, 10 10, 10 10, 10		62		1870		2		
				國語			1						A		
				1	1.55	381	$=\frac{1}{2} \sum_{j=1}^{n}$		3142) 2064		$\left \right $	127			
	_				Xgr.	24		190	1		152		F		
				14		Ind	U	$\left(\right)$		(小) (東朝)	1000	98) (19)			
B-6			·		×	3		and the second s			10.0				
54			0	-). /	\overline{f}					141 141 141	12			
			Z	2		$\frac{2\pi}{2}$	10	15	N.S.			Mar Tur			
	_		7	-14		No.	- AB	1	THE.		No.				
		X		Series -	34.		<u>A</u> f		35	345		治 :			
	_		Q	51	(G)		15	<u>.</u> 197		潮	- A				
REAMONISHEDBY.	Date/Time	REGEIVE	UAK O			Date/Time	DE TO	TOTAL NUMBER OF CONTAINERS:	MBER (DF CON	TAINER		32	Cooler Temperature:	re: 4 oc
COMPANY NAME:	1300	COMPANY	WY NAME:			S/23/12/ 91, 20 Cooler ID:	212	ooler ID:	×		213			FEDEX NUMBER: 8-93 - 2	ен: 2138-1394
RECEIVED BY: 8431-2138-1344 8/24/04	Date/Time 8/24/04	RELINQUI	RELINQUISHED BY:			Date/Time	e								
COMPANY NAME:	1300	COMPANY NAME:	/ NAME:												
RELINQUISHED BY:	Date/Time	RECEIVED BY:) BY:			Date/Time	e								
COMPANY NAME:		COMPANY NAME:	NAME:		Τ										
							1								

APPENDIX C

PROTOCOL FOR ESTABLISHING REMEDIAL LEVELS

Longaker, Jeff

From: Sent: To: Subject: Brent Rabon [brent_rabon@mail.dnr.state.ga.us] Friday, May 04, 2001 3:06 PM LittleDERA@aol.com Re: Written Description which accompanies flowchart

Protocol.doc

Melanie, GA EPD has reviewed the Protocol proposed by Fort Stewart in your e-mail and facsimile (Little to Rabon) dated 30 April 2001 and 2 May 2001, respectively. Based upon that review and in order to expedite resolution of this issue, I have modified your version of the Written Description to accompany the flowchart (See attachment) and propose that some text be added (in bold) and deleted (struck out). Please note that modification of the hazardous constituents definition in the Written Description will also require modification of the one (1) applicable block in the flowchart.

The majority of the requested modifications are an attempt to make the proposal more generic for SWMUs which are not addressed by the Phase II RFI Report for 16 SWMUs dated April 2000 (e.g., SWMU 13). I do realize, however, that Fort Stewart may elect to modify the text in order to be more SWMU-specific when including this Protocol into a Corrective Action Plan.

Please do not hesitate to contact me should you have any questions concerning this e-mail.

Thank you, Brent

>>> <LittleDERA@aol.com> 04/30/01 04:39PM >>> See attached. Thanks, Melanie

PROTOCOL FOR EVALUATING ADDITIONALLY DETECTED CONSTITUENTS IN GROUNDWATER AFTER APPROVAL OF A RESOURCE CONSERVATION AND RECOVERY ACT FACILITY INVESTIGATION REPORT

C.1 INTRODUCTION

Groundwater monitoring is typically suggested for solid waste management units (SWMUs) that have been recommended for a corrective action other than institutional controls to determine either the groundwater characteristics before development of the Corrective Action Plan (CAP) and/or as part of the remedial alternative [e.g., monitored natural attenuation (MNA)] recommended in the CAP. Additional groundwater monitoring might result in more constituents being detected in groundwater and/or at concentrations higher than those evaluated in the Georgia Environmental Protection Division (GEPD)– approved Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) report. Constituents identified as constituents of potential concern (COPCs) in the RFI report are evaluated in human health and ecological risk assessments, and their risk is quantified. COPCs determined to present a risk to human health and/or the environment are identified as constituents of concern (COCs), and remedial levels are developed. COCs indicated at concentrations above remedial levels (and the source media of the COCs) are identified in the CAP as constituents requiring remedial action. The following presents the potential methodology for evaluating additional constituents and/or constituents detected at concentrations higher than those previously detected and that might not have indicated risk or for which a remedial level might not have been developed in the Phase II RFI.

C.2 PROTOCOL

Groundwater sampling and monitoring results will be evaluated to determine whether significant changes are occurring in the types and concentrations of constituents present in the groundwater. An evaluation protocol has been developed to assess the potential increases in the groundwater concentrations of constituents not identified as COCs in the GEPD–approved RFI report. The accompanying decision chart (Figure C-1) presents the decision points required in the evaluation.

Identification. Initially the data will be evaluated to determine what constituents, if any, have increased concentrations in groundwater but were not addressed as COCs in the RFI, which would include constituents that were not detected during the RFI groundwater sampling. The maximum detected concentration from the monitoring data will be compared to the maximum detected concentration listed in the RFI. If the concentration is elevated (i.e., greater than the maximum detected concentration reported in the RFI), further evaluation will be required to determine whether this constituent should be addressed under the remedial action. All constituents not previously detected will be evaluated further.

Confirmation. Given that groundwater concentrations are likely to fluctuate, a single elevated value does not indicate that the concentration of the constituent is increasing over time. The value might be a statistical aberration or the result of a temporary change in environmental conditions. If the elevated concentration represents a single event, confirmation of the results is required, and no further evaluation of the constituent should be undertaken until the sampling results have been confirmed during the next groundwater monitoring sampling event.

Screening. Upon confirmation of the sampling results, the maximum concentration will be screened using the U. S. Environmental Protection Agency Region 3 risk-based concentrations (RBCs) for tap

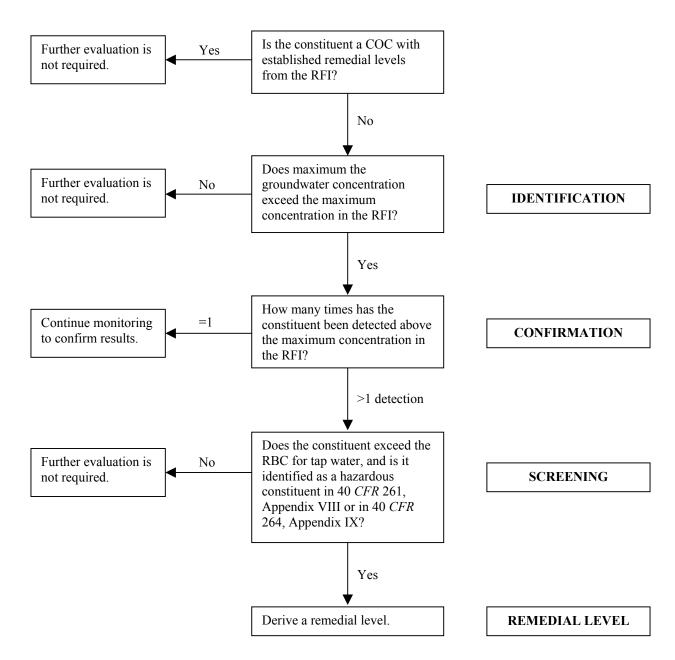


Figure C-1. Protocol for Developing a Remedial Level

water as described in Section 7.3.2 ("Screening Values for Groundwater") of the revised final Phase II RFI report for 16 SWMUs at Fort Stewart, Georgia (SAIC 2000). These screening values were used in the Phase II RFI to identify human health COPCs in groundwater and will identify those constituents that might have an adverse effect on human health. In addition, if the constituent is not listed in Title 40, *Code of Federal Regulations (CFR)*, Part 261, Appendix VIII or in 40 *CFR* 264, Appendix IX [see the definition of hazardous constituents in Section I.E of the Fort Stewart Hazardous Waste Facility Permit #HW-045(S&T)], then it will not be considered a hazardous constituent and will be eliminated.

Remedial Level Development. A remedial level will be derived for each constituent with a maximum concentration that exceeds the RBC. The remedial level will be derived using the protocols established for that site in the Phase II RFI. If a risk-based remedial level is derived for the constituent, the total risk for exposure to groundwater constituent concentrations equal to the remedial levels should not exceed a hazard index of 3 or an incremental lifetime cancer risk of 1×10^{-4} (GEPD 1996).

Documentation. Groundwater monitoring data collected to determine present characteristics before development of the CAP will be evaluated in the CAP under the section "Supplemental Data Evaluation." The supplemental data evaluation will be presented as an appendix and summarized in Chapter 2.0 of the CAP. The evaluation of potential additional constituents and/or the detection of constituents at concentrations greater than previously reported and potential level development will be presented in the SAP.

Groundwater monitoring data collected as part of the selected and implemented remedial alternative will be reported to GEPD in CAP progress reports. The reporting period will be dictated by the remedial alternative being implemented. For example, MNA typically has an annual reporting schedule, while active remedial action alternatives (e.g., in situ chemical oxidation) may be reported after the performance of the remedial alternative and at subsequent intervals thereafter. The reports to be issued and the reporting schedule will be documented in the CAP. The evaluation of potential additional constituents and/or the detection of constituents at concentrations greater than previously reported and potential remedial level development will be presented in the CAP progress reports. This protocol will be presented and established in the operations and maintenance plan and MNA checklist (if MNA is selected), both of which will be appendices to the CAP.

C.3 REFERENCES

- GEPD (Georgia Environmental Protection Division) 1996. Guidance for Selecting Media Remediation Levels at RCRA Solid Waste Management Units, Atlanta, Georgia, November.
- SAIC (Science Applications International Corporation) 2000. Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia (Revised Final), Oak Ridge, Tennessee, April.

APPENDIX D

GROUNDWATER DATA FROM MONITORING WELLS

Table D-1. Summary of Analytes Detected in Shallow Surficial Groundwater Wells (October 1999 to March 2005), SWMU 24B

Station	EPA Region 3			MV	V1 ^b			М	W3			MV	V4	
Sample ID	Tap Water RBC ^a	Federal	244171	244172	244113	244114	244371	244372	244313	244314	244471	244472	244413	244414
Date	(HQ = 0.1, 10E-6)	MCL	10/31/99	11/01/00	07/17/03	03/15/05	11/01/99	10/31/00	07/21/03	03/15/05	11/01/99	11/01/00	07/19/03	03/15/05
				Volati	ile Organi	cs Compoi	ınds (µg/L)						
1,1,2-Trichloroethane	0.1878 ca	5				1.7								
Acetone	547.5 nc					2.6 J								2.8 J
Carbon disulfide	104.3 nc					2 J								
Ethylbenzene	134 nc	700				0.64 J								
Methylene chloride	4.102 ca	5		1.5 J										
Tetrachloroethene	0.1035 ca	5			0.93 J				0.39 J			1.4	0.53 J	0.8 J
Trichloroethene	0.02637 ca	5										2.6	0.39 J	0.83 J
Xylenes, Total	21.26 nc	10,000				1.5								
				Semivol	atile Orga	nics Comp	ounds (µg	y/L)						
1,2-Dichlorobenzene	26.82 nc	600												0.42 J
2-Methylnaphthalene	2.433 nc					0.57 J								
Carbazole	3.349 ca				1.2 J									
Naphthalene	0.6511 nc					1.4								
					RCRA I	Metals (µg	/L)							
Barium	255.5 nc	2,000	10.7	NA	35.5	15.3	17.2	NA	12.4	10	27.8	NA	24.2	12
Cadmium	1.825 nc	5	0.43 J	NA				NA	1.53 J	0.41 J		NA	3.43 J	
Chromium	10.95 nc	100		NA				NA				NA		
Lead	15 nc	15	1.6 J	NA		1.3 J		NA		0.4 J	2 J	NA		0.48 J
Mercury	1.095 nc	2		NA				NA				NA		

Table D-1. Summary of Analytes Detected in Shallow Surficial Groundwater Wells (October 1999 to March 2005), SWMU 24B (continued)

Station	EPA Region 3			M	W5			М	W6			M	W8	
Sample ID	Tap Water RBC ^a	Federal	244571	244572	244513	244514	244671	244672	244613	244614	244871	244872	244813	244814
Date	(HQ = 0.1, 10E-6)	MCL	11/01/99	10/31/00	07/22/03	03/15/05	10/31/99	10/31/00	07/17/03	03/15/05	10/30/99	11/01/00	07/21/03	03/15/05
				Vola	tile Organ	ics Comp	ounds (µg/	/L)						
1,1,2-Trichloroethane	0.1878 ca	5												
Acetone	547.5 nc					2.5 J								
Carbon disulfide	104.3 nc													
Ethylbenzene	134 nc	700												
Methylene chloride	4.102 ca	5												
Tetrachloroethene	0.1035 ca	5						1.4				0.53 J		
Trichloroethene	0.02637 ca	5												
Xylenes, Total	21.26 nc	10,000												
			-	Semive	olatile Org	anics Con	ipounds (J	ug/L)	-					-
1,2-Dichlorobenzene	26.82 nc	600												
2-Methylnaphthalene	2.433 nc													
Carbazole	3.349 ca													
Naphthalene	0.6511 nc													
					RCRA	Metals (µ	lg/L)							
Barium	255.5 nc	2,000	21.7	NA	24.8	15.5	29.1	NA	8.56	14.6		NA	6.42	4.2
Cadmium	1.825 nc	5		NA	0.816 J			NA	1.46 J			NA		
Chromium	10.95 nc	100		NA			7.5	NA				NA		
Lead	15 nc	15	1.6 J	NA		0.71 J		NA		0.53 J		NA		1.2 J
Mercury	1.095 nc	2		NA				NA				NA	0.15 J	

^{*a*}EPA Region 3 tap water RBCs were updated as of October 16, 2003, from the EPA Mid-Atlantic Hazardous Site Cleanup Website (http://www.epa.gov/reg3hwmd/risk/index.htm). ^{*b*}Site-specific background location.

ca = Tap water PRG is based on carcinogenic factor.

EPA = U. S. Environmental Protection Agency.

J = Estimated value.

MCL = Maximum contaminant level.

NA = Not analyzed.

nc = Tap water PRG is 0.1 times the PRG based on noncarcinogenic toxicity.

RCRA = Resource Conservation and Recovery Act.

SWMU = Solid waste management unit.