REVISED FINAL

CORRECTIVE **ACTION PLAN**

for the

3d Inf Div (Mech)

FORMER FIRE TRAINING AREA (FTA) **AT WRIGHT ARMY AIRFIELD** (SOLID WASTE MANAGEMENT UNIT 13) at FORT STEWART MILITARY RESERVATION FORT STEWART, GEORGIA

Prepared for

U.S. ARMY CORPS OF ENGINEERS SAVANNAH DISTRICT

Contract No. DACA21-95-D-0022 **Delivery Order 0049**

January 2006

REVISED FINAL

CORRECTIVE ACTION PLAN FOR THE FORMER FIRE TRAINING AREA (FTA) AT WRIGHT ARMY AIRFIELD (SOLID WASTE MANAGEMENT UNIT 13) AT FORT STEWART MILITARY RESERVATION FORT STEWART, GEORGIA

REGULATORY AUTHORITY Resource Conservation and Recovery Act Title II, Subtitle C, Section 3004; 42 USC 6901 et seq; 40 *CFR* 264

Prepared for U.S. Army Corps of Engineers Savannah District Under Contract DACA21-95-D-0022 Delivery Order Number 0049

Prepared by Science Applications International Corporation 151 Lafayette Drive Oak Ridge, Tennessee 37830

January 2006

The undersigned certifies that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, to enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by myself or by a subordinate working under my direction.

Patricia Stoll, P.E. Technical Manager Science Applications International Corporation

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

contributed to the preparation of this document and should not be considered an eligible contractor for its review.

FIGU	JRES	V
TAB	LES	vii
ACR	ONYN	1Six
		'E SUMMARYxi
1.0	INTR	ODUCTION1-1
	1.1	SCOPE OF THE CORRECTIVE ACTION PLAN 1-1
	1.2	SITE BACKGROUND
	1.3	REGULATORY BACKGROUND1-3
	1.4	REPORT ORGANIZATION
2.0	SITE	CHARACTERIZATION
	2.1	SITE LOCATION AND HISTORY
	2.2	TOPOGRAPHY/PHYSIOGRAPHY/CLIMATE
	2.3	SITE GEOLOGY
	2.4	SITE SOILS
	2.5	SITE HYDROLOGY
		2.5.1 Groundwater Hydrology
		2.5.2Surface Water Hydrology
	2.6	SITE ECOLOGY
	2.7	CONTAMINANT NATURE AND EXTENT
	2.,	2.7.1 Summary of the RFI Results
		2.7.2 Summary of the Results of Supplemental Investigations
	2.8	INTERIM ACTIONS
	2.0	2.8.1 October 1997 Interim Measures
		2.8.1December 2001/February 2002 Interim Removal Action2-202.8.2December 2001/February 2002 Interim Removal Action2-24
	2.9	SUPPLEMENTAL SOIL SAMPLING (JULY 2005)
	2.10	SITE-RELATED CONTAMINANTS AND UPDATED NATURE AND EXTENT
	2.10	OF CONTAMINATION
		2.10.1 Site-Related Contaminants
	2.11	2.10.1 She-Kelated Containinants
	2.11	2.11.1 Generic Soil Screening Analysis 2-33
	2.12	2.11.2Fate and Transport Modeling2-40PRELIMINARY RISK EVALUATION2-40
	2.12	
		2.12.1 Human Health Preliminary Risk Evaluation
	0.12	2.12.2 Ecological Preliminary Risk Evaluation
	2.13	BASELINE HUMAN HEALTH RISK ASSESSMENT
	2.14	MODELING FOR EVALUATING CONTAMINANT NATURAL
		ATTENUATION
2.0	HIOT	
3.0		IFICATION AND PURPOSE OF CORRECTIVE ACTION
	3.1	PURPOSE
	3.2	REMEDIAL RESPONSE OBJECTIVES
	3.3	IDENTIFICATION OF REMEDIAL LEVELS

4.0	SCR	EENING	OF CORRECTIVE ACTIONS	4-1
	4.1	SCREE	ENING CRITERIA	4-1
		4.1.1	Effectiveness	4-1
		4.1.2	Implementability	4-1
		4.1.3	Cost	
	4.2	EVALU	UATION OF CORRECTIVE ACTION TECHNOLOGIES	4-5
	4.3	CORRI	ECTIVE ACTION ALTERNATIVES	4-5
		4.3.1	Evaluation Factors	4-5
		4.3.2	Evaluation of Corrective Action Alternatives	4-6
5.0	CON	CEPTUA	AL DESIGN AND IMPLEMENTATION PLAN	5-1
	5.1	SELEC	TED CORRECTIVE ACTION	5-1
		5.1.1	Justification for Selection of Corrective Action	5-1
	5.2	CONC	EPTUAL DESIGN	5-2
		5.2.1	Establishment of Institutional Controls	5-2
		5.2.2	Groundwater Monitoring During Natural Attenuation for Groundwater COCs	s 5-3
		5.2.3	Well Abandonment	5-3
	5.3	OPER A	ATION AND MAINTENANCE PLAN	5-4
	5.4	LIFE-C	CYCLE COST ESTIMATE	5-4
	5.5	IMPLE	MENTATION SCHEDULE	5-4
	5.6	REPOF	RTS	5-9
		5.6.1	Corrective Action Plan Progress Report	5-9
		5.6.2	Corrective Action Completion Report	
	5.7	IMPLE	MENTATION PLAN	
6.0	REFI	ERENCE	S	6-1

APPENDICES

А	DECEMBER 2000 SUPPLEMENTAL GROUNDWATER CHARACTERIZATION	A-1
В	GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS	B-1
С	FATE AND TRANSPORT MODELING	C-1
D	COST ESTIMATE SUMMARIES FOR CORRECTIVE ACTION ALTERNATIVES	D-1
E	OPERATIONS AND MAINTENANCE PLAN	E-1
F	IMPLEMENTATION CHECKLIST FOR MONITORED NATURAL ATTENUATION	
	OF CONSTITUENTS OF CONCERN	F-1
G	COMPLETE ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY FOR SOIL	
	SAMPLING, JULY 2005	G-1

FIGURES

2-1	Location Map for Fort Stewart Military Reservation, Georgia	2-2
2-2	Location of the Former Fire Training Area (SWMU 13)	2-3
2-3	Layout of the Former Fire Training Area (SWMU 13)	2-5
2-4	RFI Sampling Locations at the Former Fire Training Area (SWMU 13) (January 1999)	2-11
2-5	Groundwater Contamination at the Former Fire Training Area (SWMU 13) Based on	
	January 1999 RFI Data	2-13
2-6	Groundwater Contamination at the Former Fire Training Area (SWMU 13) Based on	
	December 2000 Results	2-15
2-7	Groundwater Monitoring Well Locations at the Former Fire Training Area (SWMU 13)	
	(April 2001)	2-16
2-8	Groundwater Results from June 5, 2002 Sampling Endeavor at the Former Fire Training	
	Area (SWMU 13)	2-23
2-9	Soil Sampling Locations for Interim Measures (1997), IRA (2001/2002) and RFI at the	
	Former Fire Training Area (SWMU 13)	2-25
2-10	IRA Confirmation Soil Sampling Results at the Former Fire Training Area (SWMU 13)	
	(2001/2002)	2-27
2-11	Results of Soil Sampling for Hexavalent Chromium at SWMU 13	2-31
2-12	Organic and Metal Contamination Remaining in Surface Soil at the Former Fire Training	
	Area (SWMU 13)	2-37
2-13	Remaining Organic Contamination in Subsurface Soil at the Former Fire Training Area	
	(SWMU 13)	2-38
2-14	Remaining Metal Contamination in Subsurface Soil at the Former Fire Training Area	
	(SWMU 13)	2-39
5-1	Corrective Action Schedule for the Former Fire Training Area (SWMU 13)	5-5

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLES

ES-1	Remedial Levels for COCs in Surface Soil at the Former Fire Training Area (SWMU 13)	xvii
	Remedial Levels for CMCOCs in Subsurface Soil at the Former Fire Training Area	
	(SWMU 13)	xvii
ES-3	Remedial Levels for COCs in Groundwater at the Former Fire Training Area (SWMU 13)	
2-1	Summary of Analytical Results in Groundwater at the Former Fire Training Area	
	(SWMU 13) (December 2000)	2-14
2-2	Monitoring Well Construction Summary for the Former Fire Training Area (SWMU 13)	
2-3	Well Development Summary for the Former Fire Training Area (SWMU 13)	
2-4	Summary of Analytical Results in Subsurface Soil at the Former Fire Training Area	
	(SWMU 13) (April 2001)	2-18
2-5	Summary of Analytical Results in Groundwater at the Former Fire Training Area (SWMU	
	13)	2-21
2-6	IRA Confirmation Sample Results at the Former Fire Training Area (SWMU 13) for	
	2001/2002	2-28
2-7	Summary of Analytes Detected in Subsurface Soil at SWMU 13 (July 2005)	
2-8	Summary of Site-Related Contaminants at the Former Fire Training Area, SWMU 13	
2-9	GSSL Screening of Site-Related Contaminants in Soil at the Former Fire Training Area	
- /	(SWMU 13)	2-35
2-10	Summary of Leachate Modeling Results at the Former Fire Training Area (SWMU 13)	
2-11	Selection of Chemicals of Potential Concern in Surface Soil at the Former Fire Training	
	Area (SWMU 13)	2-43
2-12	Selection of Chemicals of Potential Concern in Subsurface Soil at the Former Fire Training	
	Area (SWMU 13)	2-44
2-13	Selection of Chemicals of Potential Concern in Groundwater at the Former Fire Training	
-	Area (SWMU 13)	2-46
2-14	Remedial Levels Derived in the Revised Final RFI Report for Surface Soil and	
	Groundwater at the Former Fire Training Area (SWMU 13)	2-49
2-15	Remedial Levels Derived in the Revised Final RFI Report and in the CAP for CMCOCs at	
	the Former Fire Training Area (SWMU 13)	2-50
3-1	Remedial Levels for COCs in Surface Soil at the Former Fire Training Area (SWMU 13)	
3-2	Remedial Levels for CMCOCs in Subsurface Soil at the Former Fire Training Area	
	(SWMU 13)	3-2
3-3	Remedial Levels for COCs in Groundwater at the Former Fire Training Area (SWMU 13)	
4-1	Evaluation of Corrective Actions/Technologies at the Former Fire Training Area (SWMU	
	13)	4-2
4-2	Corrective Action Alternatives for the Former Fire Training Area (SWMU 13)	
4-3	Corrective Action Alternative Design Parameters for the Former Fire Training Area	
-	(SWMU 13)	4-9
5-1	Estimated Cost for Selected Alternative for the Former Fire Training Area (SWMU 13)	

THIS PAGE INTENTIONALLY LEFT BLANK.

ACRONYMS

amsl	above mean sea level
AST	aboveground storage tank
AT123D	Analytical Transient 1-, 2-, 3-Dimensional
bgs	below ground surface
BHHRA	baseline human health risk assessment
BTEX	benzene, toluene, ethylbenzene, and total xylenes
CAP	Corrective Action Plan
CFR	Code of Federal Regulations
CMCOC	contaminant migration constituent of concern
CMCOPC	contaminant migration constituent of potential concern
COC	constituent of concern
COPC	constituent of potential concern
CY	calendar year
DAF	dilution attenuation factor
DPW	Directorate of Public Works
DPT	direct-push technology
ECOPC	ecological constituent of potential concern
EPA	U. S. Environmental Protection Agency
EPC	exposure point concentration
EPRE	ecological preliminary risk evaluation
ESV	ecological screening value
FSMR	Fort Stewart Military Reservation
FTA	Fire Training Area
GEPD	Georgia Environmental Protection Division
GSSL	generic soil screening level
HHCOPC	human health constituent of potential concern
HHPRE	human health preliminary risk evaluation
IM	interim measure
IRA	interim removal action
JP	jet propellant
MCL	maximum contaminant level
O&M	operations and maintenance
OSWER	Office of Solid Waste and Emergency Response
PAH	polynuclear aromatic hydrocarbon
PCT	Preliminary Cleanup Target
PRG	preliminary remediation goal
RBC	risk-based concentration
RCRA	Resource Conservation and Recovery Act
RFA	RCRA facility assessment
RFI	RCRA facility investigation
RI	facility investigation
SAIC	Science Applications International Corporation
SESOIL	Seasonal Soil Compartment
SRC	site-related contaminant
SSL	soil screening level

SVOC	semivolatile organic compound
SWMU	solid waste management unit
UCL	upper confidence limit
VOC	volatile organic compound
WAAF	Wright Army Airfield

EXECUTIVE SUMMARY

This report presents the Corrective Action Plan (CAP) for remediation of the former Fire Training Area (FTA) at Wright Army Airfield (WAAF), solid waste management unit (SWMU) 13, at Fort Stewart, Georgia. This CAP Report has been prepared by Science Applications International Corporation for the U. S. Army Corps of Engineers, Savannah District under Contract DACA21-95-D-0022, Delivery Order No. 0049.

Corrective action is required at SWMU 13 pursuant to Title 40, *Code of Federal Regulations*, Part 264.101(a), as referenced by the Rules of the Georgia Department of Natural Resources, Georgia Environmental Protection Division (GEPD), Chapter 391-3-11, Section 10. This CAP has been prepared in accordance with the recommendations in Section 9.5 of the revised final *Phase II Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Report for the FTA at WAAF (SWMU 13)* (SAIC 2000). This CAP addresses the requirements contained in the Fort Stewart Hazardous Waste Permit HW-045, as renewed August 1997.

Fort Stewart is located approximately 40 miles west-southwest of Savannah, Georgia, in portions of Liberty, Long, Bryan, Tattnall, and Evans counties and covers approximately 280,000 acres. FTA was located on the western edge of the WAAF runway system, which is in the southern portion of the Fort Stewart Military Reservation (FSMR). The FTA consisted of a 5,000-square-foot concrete pad with an integral berm that was used by fire-fighting personnel for training. An oil/water separator sump, underground piping, and an aboveground fuel [jet propellant (JP)-4] storage tank adjoined the main concrete pad and combined to make up the entire FTA. All of these structures and appurtenances were removed during an interim measure (IM) conducted in 1997 by CAPE Environmental. Also, as part of the IM, the top 4 feet of contaminated soil were excavated, removed, and replaced with clean soil. The IM was summarized in the *Final Interim Measures Report for SWMU 13*, dated May 1998, submitted to GEPD in August 1998.

Prior to the IM, three field investigations had been conducted at SWMU 13. Based on the analytical results obtained from these studies and confirmatory sampling done as part of the IM, the GEPD instructed the Fort Stewart Directorate of Public Works to conduct an RFI at the site.

Subsequent to the RFI, supplemental field investigations were performed in 2001/2002 and an interim removal action was conducted. During the interim removal action, a 20 feet by 8 feet, 8-inch-thick concrete pad was removed, along with 337 tons of soil and the groundwater monitoring well MW12.

The revised final Phase II RFI Report (SAIC 2000) concluded that surface soil was contaminated with benzo(*a*)pyrene; groundwater was contaminated with benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene; and arsenic and chromium were listed as contaminant migration constituents of concern (CMCOCs) based on their potential to migrate (leach) to groundwater. Upon evaluation of new data from the supplemental investigations, benzene was also identified as a CMCOC.

This CAP evaluates the constituents of concern (COCs) and alternatives for achieving the remedial levels presented in this report for the COCs. The feasibility of applicable remedial technologies is analyzed, and then a conceptual design and implementation plan for the selected corrective action are presented.

RESULTS OF THE RFI

The RFI field investigations were conducted at the former FTA from November 2, 1998, through January 26, 1999. Chapter 5.0 of the revised final Phase II RFI Report (SAIC 2000) summarizes the results.

Contaminant Nature and Extent

Contamination is present in both soil and groundwater at SWMU 13. Site-related constituents (SRCs) were identified by comparing inorganic chemical concentrations to reference background concentrations. All organic chemicals that were detected were considered site-related.

SRCs for surface soil are benzo(*a*)anthracene, benzo(*b*)fluoranthene, benzo(*k*)fluoranthene, benzo(*a*)pyrene, chrysene, fluoranthene, pyrene, and barium. These chemicals were identified in only one of three surface soil samples taken during the Phase II RFI sampling. The location of this sample was adjacent to an area of weathered and corroded asphalt pavement. SRCs for subsurface soil identified as part of this RFI sampling include those listed above for surface soils plus anthracene, benzo(*g*,*h*,*i*)perylene, indeno(1,2,3-*cd*)pyrene, phenanthrene, chromium, and lead. Additional subsurface soil SRCs were identified from samples taken as part of the IM confirmatory sampling. These are acenaphthene, fluorene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, arsenic, and mercury. SRCs for groundwater are benzene, toluene, ethylbenzene, and total xylenes (BTEX), fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene.

The areal extent of groundwater contamination determined during the RFI was limited to approximately 1 acre, and there was evidence that contaminant biodegradation is taking place in groundwater at the site.

Contaminant Fate and Transport

SRCs identified in surface and subsurface soil were compared to their respective U. S. Environmental Protection Agency (EPA) generic soil screening levels (GSSLs) to assess their potential migration pathways and transport mechanisms (i.e., the leachability of contaminants from soil to groundwater). Based on the soil screening analysis, benzene, 4-methyl-2-pentanone, benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, 2-methylnaphthalene, and arsenic exceeded their respective EPA GSSLs and were indicated as contaminant migration constituents of potential concern (CMCOPCs) in soil.

Fate and transport modeling was performed to quantitatively assess the risks associated with exposure to the CMCOPCs in soil. Only groundwater modeling was performed, as surface water is not present at this site and the nearest surface water receptor is located 2,500 feet from the site.

The Seasonal Soil Compartment (SESOIL) Model was used to predict the maximum groundwater concentration of the CMCOPCs based on contaminant migration from the site soil.

The following summarizes the conclusions from the SESOIL modeling:

- The five preliminary organic CMCOPCs identified in the revised final RFI [4-methyl-2-pentanone, benzo(*a*)anthracene, benzo(*b*)fluoranthene, dibenzo(*a*,*h*)anthracene, and 2-methylnaphthalene] either naturally attenuate before reaching the water table or the predicted groundwater concentrations do not exceed their respective risk-based concentrations (RBCs). However, benzene, an additional preliminary CMCOPC identified based on supplemental data, is predicted to reach the water table with concentrations exceeding its maximum contaminant level (MCL)/RBC. Therefore, benzene is identified as a CMCOC.
- Arsenic was identified as a CMCOC as its maximum predicted concentration at the surface of the groundwater table of 0.21 mg/L exceeded its groundwater target concentration (0.05 mg/L). The maximum groundwater concentration of arsenic is predicted to be reached after 135 years. Based on the groundwater velocity of 14 feet/year, arsenic will take over 15,000 years to migrate to the nearest potential surface water receptor (Peacock Creek).

SUPPLEMENTAL SOIL AND GROUNDWATER CHARACTERIZATION

December 2000

Based on the results of the revised final RFI report, supplemental characterization of the groundwater at the former FTA (SWMU 13) was performed in December 2000 in support of this CAP. The scope of work included sampling of the eight existing on-site monitoring wells (MW3, MW4, MW8, MW9, MW10, MW11, MW12, and MW13) and analyzing the samples for BTEX and PAHs.

The results of the supplemental groundwater investigation were as follows:

- 1. Benzene (9.5 μ g/L in MW11 and 418 μ g/L in MW12) and ethylbenzene (952 μ g/L in MW12) were the only BTEX compounds that continued to exceed their respective MCLs of 5 μ g/L and 700 μ g/L, respectively, in the shallow aquifer near the source. The presence of benzene and the other BTEX compounds is consistent with the results of the November 1998 sampling event. The December 2000 sampling event indicated that the dissolved benzene groundwater plume covers an area of approximately 10,992 square feet, which is smaller than the 30,225-square-foot area observed in November 1998.
- 2. Naphthalene continued to be detected in MW11, MW12, and MW13. The naphthalene concentration of 304J μg/L in MW12 exceeded the remedial level of 149 μg/L. Other PAHs, including fluorene and phenanthrene, were also reported during the December 2000 sampling event.

April 2001

Six groundwater monitoring wells (MW14 through MW19) were installed at the former FTA in April 2001. During well installation activities, subsurface soil samples were collected from each of the six well locations and were analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs). None of the VOCs or SVOCs detected exceeded EPA's Region III Industrial or Residential risk-based criteria.

June 2002

In June 2002, SAIC sampled five groundwater monitoring wells (MW13, MW15, MW16, MW18, and MW19) to determine the current concentrations of benzene. The groundwater samples were analyzed for BTEX parameters. Benzene concentrations ranged from 3.6 μ g/L at MW13 (compared to 120 μ g/L detected during the RFI) to 120 μ g/L at MW16, a new groundwater monitoring well.

July 2005

To address GEPD's comments on the final CAP for the Former Fire Training Area at Wright Army Airfield (SWMU13), Fort Stewart Military Reservation, Fort Stewart, Georgia (SAIC 2002), subsurface soil samples were collected and analyzed for hexavalent chromium in the vicinity of the two locations where the highest concentrations of chromium had been observed (SA-21.3 and SA-4.2) during the RFI.

Hexavalent chromium was estimated in five of eight subsurface soil samples at concentrations less than 1 mg/kg. None of the estimated hexavalent chromium values were above the GSSL, thus indicating that the hexavalent chromium is not going to migrate to groundwater at levels that present a risk to human health. In addition, these results indicate that hexavalent chromium in subsurface soil is less than 1 percent of the total chromium concentrations detected at the SWMU 13 site.

INTERIM ACTIONS

In 1997, CAPE Environmental performed interim measures (IMs) at the former FTA (SWMU 13). The intent of the IM was to remove and properly dispose of the fire training facilities, which included the aboveground storage tank (AST), the mock aircraft with associated foundations and piping, the concrete fire training pad and cover soils, the concrete oil/water separator sump and appurtenances, and soil and sediments which exceeded the Preliminary Cleanup Targets (PCTs). Approximately 2,450 tons of contaminated soil was excavated. After removing the fire training facilities and contaminated soil [to approximately 4 feet below ground surface (bgs)] and completing the confirmatory sampling, the excavated area was backfilled with clean soil and seeded.

In December 2001/February 2002, Earth Tech, Inc., conducted an interim removal action (IRA) at SWMU 13. The purpose of the IRA was to remove an 8-inch concrete pad, which covered a 20 feet by 8 feet area. The IRA also included the removal of approximately 337 tons of soil and the removal of monitoring well MW12.

HUMAN HEALTH RISK ASSESSMENT

The human health risk assessment performed during the Phase II RFI included a human health preliminary risk evaluation (HHPRE) and a baseline human health risk assessment (BHHRA).

The HHPRE in the revised final Phase II RFI Report (SAIC 2000) identified human health constituents of potential concern (HHCOPCs) as those constituents present at concentrations higher than their reference background criteria and higher than their respective risk-based or applicable or relevant and appropriate requirement-based screening criteria. New data have become available as a result of supplemental investigations since the RFI; therefore, the selection of HHCOPCs was conducted for this CAP using the same method and screening criteria presented in the RFI. Based on this screening, the following HHCOPCs were identified for SWMU 13:

Surface Soil COPCs	Subsurface Soil COPCs	Soil CMCOPCs	Groundwater COPCs
Benzo(<i>a</i>)pyrene	Arsenic	Arsenic	Benzene
	Benzo(<i>a</i>)anthracene	enzo(<i>a</i>)anthracene Benzene	
	Benzo(<i>a</i>)pyrene		Toluene
	Benzo(<i>b</i>)fluoranthene		Xylenes, total
	Benzo(g,h,i)perylene		2-Methylnaphthalene
	Dibenzo(a,h)anthracene		Naphthalene
	Phenanthrene		Phenanthrene

COPC = Constituent of potential concern.

A BHHRA was performed to assess the HHCOPCs in soil and groundwater and CMCOPCs in soil in the revised final Phase II RFI Report (SAIC 2000). Benzo(*a*)pyrene was identified as a COC in surface soil with a remedial level of 0.98 mg/kg. Arsenic, benzo(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, benzo(*g*,*h*,*i*)perylene, and dibenzo(*a*,*h*)anthracene were identified in the revised final RFI Report as constituents of potential concern in subsurface soil; however, SESOIL modeling results indicate that most of the constituents [benzo(*a*)anthracene, benzo(*a*)pyrene, benzo(*b*)fluoranthene, and dibenzo(*a*,*h*)anthracene] will naturally attenuate before reaching the water table. Toxicity data were not available for benzo(*g*,*h*,*i*)perylene; therefore, it was not included in the BHHRA.

Of the HHCOPCs in groundwater, benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene in groundwater were identified as human health constituents of concern. The MCLs for benzene and ethylbenzene of 0.005 mg/L and 0.7 mg/L, respectively, were recommended as the remedial levels for these constituents. MCLs were not available for 2-methylnaphthalene or naphthalene; therefore, remedial levels

for these constituents were recommended based on risk-based criteria ($142 \mu g/L$ and $149 \mu g/L$, respectively). (Refer to Section 7.0, of the revised final Phase II RFI report.)

Arsenic was identified as a CMCOC in the revised final RFI Report and a remedial level for soil for protection of groundwater was developed. Based upon a review of supplemental data, benzene was added as a CMCOC, and remedial levels for soil for protection of groundwater are developed in this CAP. The remedial levels for CMCOCs were developed based on the soil concentration that was unlikely to leach into groundwater or migrate to surface water in concentrations that would present a significant threat to human health. Because there are no surface water bodies at SWMU 13, the remedial levels in soil were based on target groundwater concentrations. These target groundwater concentrations are the concentrations of a CMCOC in groundwater, as a result of leaching from soil, that would present a defined risk (carcinogenic and/or noncarcinogenic) to the most sensitive receptor (e.g., on-site resident or resident child). For arsenic, the preliminary remedial level calculated was below the reference background concentration (8.04 mg/kg); therefore, the reference background concentration for arsenic was recommended as the remedial level. The remedial level for benzene in soil (0.014 mg/kg) was back-calculated based on the groundwater MCL for benzene.

ECOLOGICAL RISK ASSESSMENT

An ecological preliminary risk evaluation was conducted during the Phase II RFI. Barium was detected above reference background criteria in surface soil at SWMU 13 but was below the ecological screening values (ESVs) and was, therefore, not retained as an ecological constituent of potential concern (ECOPC) in surface soil. Benzo(*a*)anthracene, benzo(*b*)fluoranthene, benzo(*k*)fluoranthene, chrysene, fluoranthene, and pyrene were detected in surface soil above reference background criteria. However, there is uncertainty as to whether these six polynuclear aromatic hydrocarbons (PAHs) are ECOPCs in surface soil, because toxicity data specific to these constituents were not available. These six PAHs were detected in only one surface soil sample that was adjacent to weathered and eroded asphalt. It is likely that this lone sample incorporated some of the asphalt, which resulted in the reported concentrations. All PAHs detected were at low concentrations and are unlikely to pose a risk to ecological receptors given the low concentrations relative to their proposed toxicity reference values (TRVs), which are one-tenth the TRV for benzo(*a*)pyrene. Therefore, no organic ECOPCs were identified in surface soil.

Based on preliminary risk calculations, ethylbenzene, total xylenes, and naphthalene were identified as ECOPCs in groundwater. The risk to ecological receptors from ECOPCs in groundwater at SWMU 13 are overestimated by the ESV comparison and preliminary risk calculations. The nearest surface water to SWMU 13 is Peacock Creek, which is 2,500 feet away. If dilution and degradation, before or after discharge, reduces the concentration of ECOPCs by a factor of 10, none of the maximum concentrations would exceed the ESVs for surface water. Supplemental risk calculations performed to evaluate ecological receptors exposed to ethylbenzene, total xylenes, and naphthalene in groundwater showed that these constituents are unlikely to pose a risk to wildlife receptors. The revised final Phase II RFI Report (SAIC 2000) concluded that there was no present ecological risk at SWMU 13 and that the site was unlikely to pose an ecological risk in the future.

SUPPLEMENTAL MODELING FOR EVALUATING NATURAL ATTENUATION MODELING

Fate and transport modeling was performed for the identified COCs to predict their concentration with distance from the source and also the time to achieve the remedial levels.

Benzene was selected as the surrogate chemical from the COCs benzene and ethylbenzene in groundwater because benzene has a slower degradation rate and higher mobility than ethylbenzene. The results of this modeling indicate that the benzene concentration in groundwater does not exceed its remedial level of 5 μ g/L beyond 100 feet from the source. Therefore, benzene from the SWMU 13 site is not expected to be of potential concern at the nearest receptor location [i.e., Peacock Creek (2,500 feet from the source)]. In addition, the modeling shows that benzene concentrations at the source will be reduced to less than its remedial level by natural attenuation processes within 5 years from the time of sampling (June 2002).

The modeling shows that the time frame for natural attenuation of benzene to the MCL decreases from approximately 5 years to less than 3 years if the benzene source in the groundwater is reduced to $50 \mu g/L$.

The other groundwater COC, ethylbenzene, could be remediated by natural attenuation alone. The benzene (considered as the surrogate chemical for ethylbenzene) concentration is expected to be reduced to half of its original concentration in 2 years. If ethylbenzene were reduced to half of its maximum detected concentration of 952 μ g/L, it would be below its remedial level of 700 μ g/L within 2 years (from June 2002). Therefore, monitoring alone is recommended for ethylbenzene.

Modeling results for naphthalene (considered as the surrogate chemical for 2-methylnaphthalene) indicate that the concentration in groundwater is not expected to exceed its remedial level (149 μ g/L) beyond 55 feet of the source. Additionally, the source will be reduced to its remedial level within 3 years from December 2000 (or 1.5 years from June 2002).

JUSTIFICATION AND PURPOSE OF CORRECTIVE ACTION

The purpose of corrective action is to (1) protect human health and the environment, (2) attain remedial levels, (3) control the source of the releases, (4) comply with any applicable waste management standards, and (5) address other factors.

COCs were identified in the revised final RFI Report for surface soil, subsurface soil, and groundwater (SAIC 2000). New data have become available as a result of supplemental investigations performed after the RFI. One new CMCOC in soil (benzene) was identified as a result of the supplemental investigations. The remedial levels presented in the RFI remain applicable; however, an additional remedial level has been derived in this CAP for the new CMCOC, benzene. The COCs and their respective remedial levels are discussed in the following paragraphs and are shown in Tables ES-1 through ES-3.

Surface Soil

Benzo(*a*)pyrene was identified as a COC for surface soil based on direct exposure. Benzo(*a*)pyrene was detected in only one sample at a concentration of $390 \,\mu\text{g/kg}$. This sample was collected from an area adjacent to weathered and eroded asphalt pavement. It is reasonable to expect that some asphalt fragments eroded from the weathered pavement could have been incorporated into the sample during the collection and, thus, biased the sample results. Based on the low frequency of detection of benzo(*a*)pyrene in surface soil, the likely biased nature of the one detectable result, and the fact that the maximum detected concentration of benzo(*a*)pyrene in surface soil is less than the remedial level (Table ES-1), no remediation for surface soil is recommended.

Analyte	Surface Soil Remedial Level (µg/kg)	Maximum Soil Concentration (µg/kg)	Recommendation
Benzo(<i>a</i>)pyrene	980	390	No further investigation/action is required as the maximum concentration is less than the remedial level.

Table ES-1. Remedial Levels for COCs in Surface Soil at the Former Fire Training Area (SWMU 13)

Table ES-2. Remedial Levels for CMCOCs in Subsurface Soil at the Former Fire Training Area (SWMU 13)

Analyte	Subsurface Soil Remedial Level (mg/kg)	Maximum Soil Concentration (mg/kg)	Recommendation
Arsenic	8.04	10.4	No further investigation/remedial action is recommended due to its ubiquitous nature at this site and the fact that none of the RFI samples had concentrations exceeding the remedial level (background concentration).
Benzene	0.014	0.24	No further investigation/remedial action is recommended. Based on the modeling results, it can be concluded that the concentration of benzene in the subsurface soil will be reduced to its soil remedial level through natural attenuation before the groundwater concentration is reduced to its groundwater remedial level for benzene.

Subsurface Soil

Arsenic was identified as a CMCOC based on the exposure of the future on-site groundskeeper, future off-site installation worker, future on-site resident child, and future on-site resident adult being exposed to leaching from soils to groundwater.

Arsenic was detected in 40 of 61 samples ranging from 1.1 mg/kg to 10.4 mg/kg with an average result of 2.46 mg/kg. The reference background concentration of 8.04 mg/kg exceeded the RBC of 3.8 mg/kg and indicates that arsenic naturally occurs at levels greater than its RBC throughout the FSMR. None of the RFI samples had arsenic concentrations that exceeded its remedial level. From the IM data, two samples from the same borehole exceeded the remedial level [location SA-21 at 2 feet bgs (10.4 mg/kg) and at 3 feet bgs (9 mg/kg)]. At this location, soils to a depth of 2 feet bgs were excavated during the IM. Due to the ubiquitousness of arsenic at the FSMR, and the fact that none of the RFI samples exceeded the reference background concentration, remediation of subsurface soil for arsenic is not recommended.

Table ES-3. Remedial Levels for COCs in Groundwater at the Former Fire Training Area (SWMU 13)

Analyte	Groundwater Remedial Level (µg/L)	Maximum Concentration in RFI Sampling (μg/L)	Maximum Concentration in December 2000 Sampling (µg/L)	Maximum Concentration in June 2002 Sampling (µg/L)	Recommendation
Benzene	5	440	418	120	Corrective measures are recommended
Ethylbenzene	700	940	952	486	Corrective measures are recommended
2-Methylnaphthalene	142	72	NA	NA	No further investigation/remedial action is recommended as the maximum detected concentration is below the remedial level
Naphthalene	149	140	304 J	NA	Corrective measures are recommended

J = Indicates compound was positively identified; the numerical value is the approximate concentration of the compound in the sample.

COC = Constituent of concern.

NA = Not analyzed.

RCRA = Resource Conservation and Recovery Act.

RFI = RCRA facility investigation.

SWMU = Solid waste management unit.

Based on a review of data generated from supplemental investigations, benzene was also identified as a CMCOC as it is predicted to reach the water table with concentrations exceeding its respective MCL. The maximum predicted concentration of benzene based on leaching to groundwater will be reduced to its MCL within 4 years from January 2002 (i.e., 3.5 years from June 2002). Therefore, it may be concluded that the soil concentration of benzene will be reduced to its soil remedial level before the groundwater concentration is reduced to its groundwater remedial level at the site. Based on this information, no remediation of subsurface soil for benzene is recommended.

Groundwater

Remedial levels were developed in the revised final RFI Report for four groundwater COCs. These remedial levels are based on MCLs and RBCs, which take into consideration both human health and technological limitations. No new COCs for groundwater were identified as a result of the supplemental investigations; therefore, the remedial levels derived in the revised final RFI remain applicable. These remedial levels shown in Table ES-3 are protective of direct exposure to residents by hazardous constituents in groundwater. However, it is recognized that groundwater is not used at this site as a source of drinking water and that it will take approximately 178 years for groundwater to reach the nearest receptor at Peacock Creek, which is 2,500 feet from SWMU 13. These constituents will naturally attenuate in groundwater through retardation and biodegradation before reaching Peacock Creek. As the maximum detected concentration of 2-methylnaphthalene in the RFI samples was below the recommended remedial level; no further investigation or study is required to address this constituent in groundwater.

The remedial response objectives for SWMU 13 are to reduce the present concentrations of the site COCs (benzene, ethylbenzene, and naphthalene) in groundwater to the remedial levels presented in this CAP.

The corrective action is to provide the technology necessary to minimize levels of contamination and to achieve the best overall results with respect to such factors as effectiveness, implementability, and cost.

SCREENING OF CORRECTIVE ACTION ALTERNATIVES

Several technologies for remediating petroleum-related contamination in groundwater were identified and screened. Technologies applicable to general response actions (no action, institutional controls, monitored natural attenuation, and active source remediation) were identified and evaluated with respect to their suitability in meeting the remedial response objectives. Technologies were screened using three evaluation criteria: effectiveness, implementability, and cost.

The "no action" alternative was not considered to be viable due to the need to ensure that the remedial levels for the site are being met. Institutional controls were not considered further as the sole remedial alternative because they are appropriate for this site only when combined with other technologies such as monitored natural attenuation.

Each of the following alternatives for petroleum-contaminated groundwater was considered to be applicable to the site, cost-effective, and implementable; therefore, two primary evaluation factors were used in the selection of the preferred corrective action alternative: time to implement and life-cycle cost. The time required to implement the action was an important evaluation factor for this site; the alternative would remediate the COCs to below the remedial levels in a reasonable time compared to the other alternatives. Life-cycle cost estimates are budget estimates based on conceptual design and are not adjusted to present worth costs or for escalation.

The following five corrective action alternatives were evaluated for the groundwater contamination at SWMU 13:

- Alternative 1: monitored natural attenuation,
- Alternative 2: air sparging,
- Alternative 3: oxygen injection,
- Alternative 4: air sparging and monitored natural attenuation, and
- Alternative 5: oxygen injection and monitored natural attenuation.

CONCEPTUAL DESIGN AND IMPLEMENTATION PLAN

Justification of Selection

Monitored natural attenuation, has been selected as the most appropriate corrective action for the groundwater COCs at SWMU 13 based on its reasonable time frame to achieve remedial levels (less than 7 years) and cost effectiveness. Historical groundwater results at the site show that concentrations of benzene in groundwater are decreasing. The site will be monitored during the 6-year natural attenuation period to ensure that concentrations of benzene and other COCs in the groundwater meet the remedial levels.

Conceptual Design

Baseline groundwater sampling would be conducted at the start of the remediation period and would consist of sampling seven monitoring wells (MW3, MW9, MW10, MW15, MW16, MW17, MW18, and MW19). The groundwater monitoring wells will be sampled and analyzed for VOCs, SVOCs, and natural

attenuation parameters (nitrate/nitrite, sulfate/sulfide, total iron, total phosphorous, carbon dioxide, and methane).

Performance monitoring will be performed annually during the natural attenuation period. Performance monitoring will involve sampling of seven existing groundwater monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19). The groundwater samples will be analyzed for VOCs, SVOCs, and natural attenuation parameters.

One year following the completion of the monitored natural attenuation period, confirmatory groundwater sampling will be conducted to verify that the remedial levels for benzene and other COCs have been met and maintained. The confirmatory groundwater sampling will be the same as the baseline groundwater sampling, and the same seven existing monitoring wells will be sampled.

The life-cycle cost to implement monitored natural attenuation is approximately \$244,000. The alternative will take approximately 7 years to complete from the baseline sampling through the confirmatory sampling.

Implementation Plan

Upon approval of this CAP by GEPD, the Installation will request funding, procure a contractor to implement the corrective action, and implement the specified action. A Corrective Action Work Plan will be prepared to guide implementation of the corrective action but will not require GEPD review or approval. Any revisions required to the Operation and Maintenance Plan or the implementation schedule that become apparent during preparation of the Work Plan will be submitted to GEPD for concurrence. Substantive changes in the remediation approach or schedule will require that the public be provided with an opportunity for review and comment in accordance with the Fort Stewart Hazardous Waste Facility Permit. No other submittals will need to be provided to GEPD prior to implementation of the selected corrective action.

During the corrective action, Corrective Action Plan Progress Reports will be prepared and submitted to GEPD for review and approval. Upon completion of the corrective action, a Corrective Action Completion Report will be prepared and submitted to GEPD for review and approval.

1.0 INTRODUCTION

1.1 SCOPE OF THE CORRECTIVE ACTION PLAN

A Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) has been completed for the former Fire Training Area (FTA) at Wright Army Airfield (WAAF), solid waste management unit (SWMU) 13, at Fort Stewart, Georgia. The revised final RFI Report (SAIC 2000) submitted to the Georgia Environmental Protection Division (GEPD) on May 22, 2000, recommended submittal of a Corrective Action Plan (CAP) for this site.

The following conclusions and recommendations were made based on the results of the Phase II RFI:

- 1. No perennial surface water bodies are located within 2,500 feet of SWMU 13.
- 2. No ecological constituents of concern (COCs) were identified.
- 3. Benzo(*a*)pyrene was identified as a COC in surface soil with a remedial level of 0.98 mg/kg.
- 4. Groundwater at this site is not currently being used for any purpose, and groundwater does not discharge to any nearby surface waters. Benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene are considered to be COCs in groundwater. The maximum contaminant levels (MCLs) for benzene and ethylbenzene of 0.005 mg/L and 0.7 mg/L, respectively, were set as the remedial levels for these constituents. MCLs were not available for 2-methylnaphthalene or naphthalene; therefore, remedial levels for these constituents were recommended based on risk-based criteria (142 μ g/L and 149 μ g/L, respectively).
- 5. Remedial levels were derived for the contaminant migration constituents of concern (CMCOCs) in soil (arsenic and chromium) based on the protection of groundwater from potential leaching from soil. The remedial level for a CMCOC represents a soil concentration that is unlikely to leach into groundwater or migrate to surface water in concentrations that would present a significant threat to human health. The potential risk associated with the CMCOCs is not direct exposure to soil, but exposure to the constituents in groundwater; therefore, the soil remedial levels were based on target groundwater concentrations. Soil remedial levels for CMCOCs are derived based on the concentration of the constituents in soil that will not leach into the groundwater at unacceptable levels. The preliminary remedial levels calculated were below the reference background concentrations for these two metals (8.04 mg/kg for arsenic and 40.4 mg/kg for chromium); therefore, the reference background concentration for each constituent was recommended as the remedial level.
- 6. The nature and extent of groundwater contamination at this site was determined during the Phase II RFI activities, and the information gathered is sufficient for development of a CAP.
- 7. A CAP is required to evaluate remedial measures to mitigate the COCs at SWMU 13.

This CAP report utilizes information from the RFI and the supplemental soil and groundwater data (see Section 2.11.1) to evaluate institutional controls and various remedial actions for achieving the remedial levels proposed in the revised final RFI Report (SAIC 2000) and in this CAP. This report analyzes the feasibility of applicable remedial actions and monitored natural attenuation on a site-specific basis while addressing the requirements contained in the Fort Stewart Hazardous Waste Facility Permit (Georgia Environmental Division Permit No. HW-045), as renewed in August 1997.

This report has been prepared by Science Applications International Corporation (SAIC) for the U. S. Army Corps of Engineers, Savannah District, under Contract No. DACA21-95-D-0022, Delivery Order 0049.

1.2 SITE BACKGROUND

A RCRA facility assessment (RFA) was submitted to the GEPD in June 1990 that listed 24 SWMUs, including SWMU 13, as requiring further investigation (Geraghty and Miller 1992). SWMU 13 is located in the northwest periphery of WAAF, which is in the southern portion of the Fort Stewart Military Reservation (FSMR). SWMU 13 was used as a training area for the airfield's firefighters. SWMU 13 was not included in the Final Phase I RFI Report prepared in response to the RFA. Thus, Fort Stewart contracted with Rust Environmental (now Earth Tech) to perform an RFI at SWMU 13. The RFI report was submitted to GEPD in September 1999. Comments on the RFI report were received from GEPD in correspondence dated February 4, 2000. The RFI report was revised to incorporate GEPD comments, and the revised final RFI Report was submitted to the GEPD in May 2000.

In 1997, CAPE Environmental performed interim measures (IMs) at the former FTA (SWMU 13). The intent of the IM was to remove and properly dispose of the fire training facilities, which included the aboveground storage tank (AST), the mock aircraft with associated foundations and piping, the concrete fire training pad and cover soils, the concrete oil/water separator sump and appurtenances, and soil and sediments which exceeded the Preliminary Cleanup Targets (PCTs). Approximately 2,450 tons of contaminated soil was excavated. After removing the fire training facilities and contaminated soil [to approximately 4 feet below ground surface (bgs)] and completing the confirmatory sampling, the excavated area was backfilled with clean soil and seeded. The IM is described in the *Final Interim Measures Report for SWMU 13*, dated April 1998, submitted to GEPD in August 1998 (CAPE 1998). The activities performed during the IM and the results of the sampling and analysis are summarized in Section 2.8.1.

Prior to the IM, three site investigations had been conducted at SWMU 13. Based on the analytical results obtained from these studies and the confirmatory sampling done as part of the IM, the GEPD instructed the Fort Stewart Directorate of Public Works (DPW) to conduct an RFI at the site. The objectives of the RFI for SWMU 13, as defined in the Work Plan approved by GEPD in April 1998, were as follows:

- determine the horizontal and vertical extent of contamination,
- determine whether contaminants present a threat to human health or the environment,
- determine the need for future action and/or no further action, and
- gather necessary data to support development of a CAP, if warranted.

The scope of the RFI fieldwork included the following activities:

- Collection of soil samples using direct-push technology (DPT) at 12 locations. Soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and RCRA metals.
- Collection of groundwater screening samples using DPT at 23 locations, including three vertical profile probes. Direct-push groundwater samples were analyzed for VOCs and SVOCs.

- Installation of six permanent groundwater monitoring wells, both cross-gradient and downgradient of the site. One soil sample was collected from each well borehole and analyzed for VOCs, SVOCs, and RCRA metals.
- Collection of groundwater samples from each of the new and existing monitoring wells for a total of 10 groundwater samples. Groundwater samples were analyzed for VOCs, SVOCs, and RCRA metals.
- Collection of surface soil samples at a total of three locations at the site for VOCs, SVOCs, and RCRA metals.

The results of the RFI fieldwork are discussed in Chapter 2.0.

Additional investigations have been conducted at SWMU 13 since the RFI was published. Supplemental groundwater sampling was conducted in December 2000, to support the development of this CAP. The scope of work for the supplemental characterization included sampling eight on-site groundwater monitoring wells (MW3, MW4, and MW8 through MW13) and analyzing the samples for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and polynuclear aromatic hydrocarbon (PAH) parameters. Results of the December 2000 sampling and analysis are presented in Section 2.7.2.1.

Additional soil sampling was conducted in April 2001 during the installation of six new groundwater monitoring wells (MW14 through MW19). During this sampling event, subsurface soil samples were collected from the six locations and analyzed for VOCs and SVOCs. Results of the April 2001 sampling and analysis are presented in Section 2.7.2.2.

In December 2001/February 2002, Earth Tech, Inc., conducted an interim removal action (IRA) at SWMU 13. The purpose of the IRA was to remove an 8-inch concrete pad, which covered a 20 feet by 8 feet area. The IRA also included the removal of approximately 337 tons of soil and the removal of monitoring well MW12. Six confirmatory samples were collected following removal activities and analyzed for VOCs and SVOCs. The IRA is described in the *Final Interim Action Report, Former Fire Training Area at WAAF (SWMU 13) at Fort Stewart, Georgia* (Earth Tech 2002) The activities performed during the IRA and the results of the sampling and analysis are summarized in Section 2.8.2.

In June 2002, SAIC sampled five groundwater monitoring wells (MW13, MW15, MW16, MW18, and MW19) to determine the current concentrations of benzene. The groundwater samples were analyzed for BTEX parameters. The results of the June 2002 sampling and analyses are presented in Section 2.7.2.3.

1.3 REGULATORY BACKGROUND

The regulatory authority governing the action at SWMU 13 is the RCRA, Title II, Subtitle C, Section 3004, 42 U.S. Code 6901 et seq., 40 *Code of Federal Regulations (CFR)* 264. With the promulgation of RCRA and the subsequent approval of the Georgia Hazardous Waste Management Act by the U. S. Environmental Protection Agency (EPA), the State was granted RCRA permitting authority. In accordance with RCRA, the State issued to Fort Stewart, in August 1987, a Hazardous Waste Facility Permit (Georgia Environmental Division Permit No. HW-045). This permit was renewed in August 1997.

The former FTA at WAAF (SWMU 13) is a listed SWMU in Fort Stewart's Subpart B Permit and, therefore, is subject to investigation according to Title 40, *CFR* Part 264.101(c) and to corrective action (the subject of this CAP), if necessary.

1.4 REPORT ORGANIZATION

This CAP consists of six sections. Chapter 1.0 summarizes the scope of the CAP, describes the background of the site and regulatory authority, and gives the report organization. Chapter 2.0 discusses the site characterization and remedial investigation (RI) results and summarizes the supplemental sampling and the natural attenuation modeling results. Chapter 3.0 describes the justification and purpose of the corrective action and presents the remedial response objectives and remedial levels developed in the RFI and in this CAP. Chapter 4.0 presents the screening of the corrective actions. Chapter 5.0 summarizes the report conclusions and recommendations for the corrective action. The references are presented in Chapter 6.0.

This report also contains five appendices. Appendix A provides the results of the supplemental sampling performed in December 2000. Appendix B contains groundwater monitoring well construction details for six wells that were installed in April 2001. Appendix C presents the detailed results of the fate and transport modeling. Appendix D contains the cost estimate summaries for the corrective action alternatives. Appendix E is an Operation and Maintenance (O&M) Plan for the selected corrective action for natural attenuation. Appendix F lists considerations for the selection of monitored natural attenuation for the groundwater contaminant plume, following the guidance of the Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4-17P (EPA 1999a). Appendix G presents the complete analytical results and chain of custodies for soil samples collected July 2005 to address GEPD comments on the final version of this CAP.

2.0 SITE CHARACTERIZATION

Fort Stewart (then known as Camp Stewart) was established in June 1940 as an anti-aircraft artillery training center. Between January and September 1945, the Installation operated as a prisoner-of-war camp. The Installation was deactivated in September 1945. In August 1950, Fort Stewart was reactivated to train anti-aircraft artillery units for the Korean Conflict. The training mission was expanded to include armor training in 1953. Fort Stewart was designated a permanent Army Installation in 1956, and became a flight training center in 1966. Aviation training at the Fort Stewart facilities was phased out in 1973. In January 1974, the 1st Battalion, 75th Infantry was activated at Fort Stewart. Fort Stewart then became a training and maneuver area, providing tank, field artillery, helicopter gunnery, and small arms training for regular Army and National Guard units. The 24th Infantry Division, which was reflagged as the 3rd Infantry Division in May 1996, was permanently stationed at Fort Stewart in 1975. These activities comprise the Installation's primary mission today.

The FSMR is located in portions of Liberty, Bryan, Long, Tattnall, and Evans Counties, Georgia, approximately 40 miles west–southwest of Savannah, Georgia (Figure 2-1). The cantonment, or garrison area, of the FSMR is located within the Liberty County portion of the FSMR on the southern boundary of the reservation. Hinesville, Georgia, is the nearest city to the garrison area and is located immediately outside of the reservation boundary.

2.1 SITE LOCATION AND HISTORY

WAAF is located in Liberty County, Georgia, within the confines of Fort Stewart, Georgia. The former FTA (now known as SWMU 13) is located on the northwest periphery of WAAF (see Figure 2-2), approximately 3,000 feet northwest of the control tower.

The former FTA consisted of a 5,000-square-feet concrete pad with an integral berm that was used by firefighting personnel for training. An oil/water separator sump, underground piping, and an aboveground fuel (JP-4) storage tank combined to make up the entire former FTA. All of these structures and appurtenances were removed during the IM conducted in 1997 by CAPE Environmental (Figure 2-3). The area is also mostly enclosed by a series of drainage swales. An asphalt roadway adjoins the former FTA to the south and east. The former FTA was used as a training area for the airfield's firefighters from its construction, prior to 1982, until 1992. During training exercises, fuel [water-contaminated jet fuel (JP-4), diesel fuel, or waste oil] was pumped onto the surface of a simulated aircraft and ignited. The fires were then extinguished with water and foam. The former FTA was constructed such that water and foam used during the training would be drained into the oil/water separator. Effluent water flowed to the western drainage swale, and the lighter-than-water portion (oil) was reportedly pumped by vacuum truck and disposed of at the Fort Stewart Industrial Wastewater Treatment Plant. Occasionally, some of the water (and fuel) would either be splashed onto adjacent soil or it would run over the concrete berm onto the adjacent soil.

During a training exercise, the fuel was pumped via a small pump brought on-site; thus, the system was not pressurized and there was no need for venting. It is suspected that the former FTA was constructed just like all others in the Army at the time (i.e., with the fuel risers); however, the fuel risers were not required for operation of the facility and were never used.

Figure 2.1. Regional Location Map for Fort Stewart Military Reservation, Georgia

Figure 2-2. Location of the Former Fire Training Area (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

Figure 2-3. Layout of the Former Fire Training Area (SWMU 13)

2.2 TOPOGRAPHY/PHYSIOGRAPHY/CLIMATE

The FSMR occupies a low-lying, flat region in the coastal plain of Georgia. Surface elevations range from approximately 20 feet to 100 feet above mean sea level (amsl) within the FSMR and generally decrease from northeast to southeast across the Installation. Terraces dissected by surface water drainages dominate the topography. The terraces are remnants of sea level fluctuations. The four terraces present within the FSMR are the Wicomico, Penholoway, Talbot, and Pamlico (Metcalf and Eddy 1996).

The elevation of the former FTA site is approximately 45 feet amsl. The nearest surface water stream to the former FTA is Peacock Creek, which is located approximately 2,500 feet southeast (i.e., downgradient) of the site (SAIC 2000). The site has four shallow drainage swales located around it (north, south, east, and west). These swales are not connected to Peacock Creek or its tributaries. Standing water is present in these swales only after rain events, and the swales are dry during much of the year.

Fort Stewart has a humid, subtropical climate with long, hot summers. Average temperatures range from 50°F in the winter to 80°F in the summer. Average annual precipitation is 48 inches, with slightly more than half falling from June through September. Prolonged drought is rare in the area, but severe local storms (tornadoes and hurricanes) do occur. Under normal conditions wind speeds rarely exceed 5 knots, but gusty winds of more than 25 knots may occur during the summer thunderstorms (Geraghty and Miller 1992).

2.3 SITE GEOLOGY

The FSMR is located within the coastal plain physiographic province. The province is typified by nine southeastward-dipping strata that increase in thickness from zero feet at the fall line (located approximately 160 miles inland from the Atlantic coast) to approximately 4,200 feet at the coast. State geologic records describe a probable petroleum exploration well (the No. 1 Jelks-Rogers) located in the region as encountering crystalline basement rocks at a depth of 4,254 feet bgs. This well provides the most complete record for Cretaceous, Tertiary, and Quaternary sedimentary strata.

The Cretaceous section is approximately 1,970 feet in thickness and dominated by clastics. The Tertiary section is approximately 2,170 feet in thickness and dominated by limestone with a 175-foot-thick cap of dark green phosphatic clay. This clay is regionally extensive and is known as the Hawthorn Group. The interval from approximately 110 feet to the surface is Quaternary in age and composed primarily of sand with interbeds of clay or silt. This section is undifferentiated (Metcalf and Eddy 1996).

State geologic records contain information regarding a well drilled in October 1942, 1.8 miles north of Flemington at Liberty Field of Camp Stewart (now known as Fort Stewart). This well is believed to be an artesian well located approximately one-quarter mile north of the runway at WAAF within the FSMR. The log for this well describes a 410-foot section, the lowermost 110 feet of which consisted predominantly of limestone above which 245 feet of dark green phosphatic clay typical of the Hawthorn Group were encountered. The uppermost 55-foot interval was Quaternary-age interbedded sands and clays. The top 15 feet of these sediments were described as sandy clay (Metcalf and Eddy 1996).

2.4 SITE SOILS

The surficial soils at the site are generally a dark yellowish-orange to light brown silty sand interbedded with sandy clay and clayey silty sand layers up to 20 feet to 25 feet thick. A pale yellowish-orange to light brown clay layer was encountered in boreholes MW10, MW11, and MW12 at 3 feet to 7 feet bgs. A greenish-gray silty sand was encountered at 27 feet bgs in MW7 and extended to the completion depth of 55 feet bgs. Geological cross-sections of the site depicting the lithology and stratigraphy of the unconsolidated soil deposits beneath the site, as inferred from the soil boring logs, are shown in Chapter 4.0 of the revised final RFI Report (SAIC 2000). Results of geotechnical analyses indicated that the soils tested are generally non-plastic silty sands. Soil from the screened intervals in monitoring wells MW9 and MW10 are non-plastic silty sands with permeability ranging from 1.17×10^{-3} cm/sec to 6.9117×10^{-4} cm/sec. Results of aquifer (slug) tests indicated hydraulic conductivities of 1.12×10^{-3} to 4.06×10^{-5} cm/sec in MW7, respectively (ESE 1993).

2.5 SITE HYDROLOGY

2.5.1 Groundwater Hydrology

The uppermost hydrogeologic unit is the surficial aquifer, which ranges from 55 feet to 150 feet in thickness at the FSMR. Water levels measured during the RFI field activities for well development and sampling varied from the shallowest (3 feet) at MW1, to the deepest (10 feet) at MW5 located near the center of the former FTA. Groundwater flow within the water table varies from east–southeast to southeast, ultimately discharging to Peacock Creek approximately 2,500 feet from the site. The hydraulic gradient is approximately 0.004 foot/foot at the site. The calculated groundwater flow velocity averages approximately 14 feet/year toward Peacock Creek (SAIC 2000). (See Section 2.7 and Appendix A for additional details regarding groundwater flow and direction.)

2.5.2 Surface Water Hydrology

Peacock Creek is the nearest surface water stream to SWMU 13 and is located approximately 2,500 feet southeast of the site. The site has four shallow drainage swales located around it (north, south, east, and west). These swales are not connected to Peacock Creek or its tributaries. Standing water is present in these swales only after rain events and the water most likely infiltrates into the soil or evaporates. The drainage swales are dry during much of the year.

2.6 SITE ECOLOGY

Approximately 7.8 square miles of the 436.8 square miles at FSMR comprise the garrison area. The remainder is used for ranges and training areas (approximately 11 percent) or held as non-use areas.

Eighty-four percent of the land is forested (approximately 367.2 square miles). Sixty-six percent of the forest area is pine with the major species including the slash pine, loblolly pine, and longleaf pine. Thirty-four percent of the forest is composed of river bottom lands and swamps whose major species include the tupelo, other gum trees, water oak, and bald cypress trees. The open range and training areas comprise eleven percent of the Installation and consist of grasses, shrubs, and scrub tree (oak) growth.

Aquatic habitats on FSMR include a number of natural or man-made ponds and lakes, the Canoochee River, Canoochee Creek and tributaries, and a number of bottomland swamps and pools. The Ogeechee River borders the installation along its northeast boundary. Organic detritus content is high, and dark

coloring of the water is not unusual. Dense growths of aquatic vegetation are also typical, especially during the summer months.

Both terrestrial and aquatic fauna are abundant in the unimproved areas of FSMR. Major game species found on the Installation include white-tailed deer, feral hog, wild turkey, rabbit, squirrel, and bobwhite in addition to numerous other mammal, bird, reptile, and amphibian species (ESE 1982). Dominant fish include bluegill, largemouth bass, crappie, sunfish, channel catfish, minnows, and shiners. Three federally listed threatened or endangered species reside at FSMR: the American bald eagle, Eastern indigo snake, and the red-cockaded woodpecker (SAIC 2000).

2.7 CONTAMINANT NATURE AND EXTENT

Several site investigations have been conducted at SWMU 13. These investigations include a Phase I and Phase II RFI, three supplemental investigations, an IM action, and an IRA. The following sections summarize the results of these investigations and activities.

2.7.1 Summary of the RFI Results

Results of chemical analyses performed during the Phase I and Phase II RFIs indicated that the soil and groundwater at the site contain organic and metal contaminants at concentrations greater than their reference background concentrations. No surface water is present at the site.

The referenced background criteria for SWMU 13 were developed based on data from background samples collected across the FSMR for SWMUs under the Phase I and/or Phase II RFIs. In general, reference background samples were collected in each medium at locations upgradient or upstream of each site so as to be representative of naturally occurring conditions at the SWMUs under investigation. In addition, soil samples collected during the Phase I RFI were included in the background data set if they were determined to come from upgradient of the site and to be of sufficient quality to be representative of natural background conditions at the FSMR. A summary of the reference background sample locations by medium at each SWMU and the source of data (Phase I and Phase II RFI analytical data) are presented in Appendix F, Table F.1 of the revised final RFI Report (SAIC 2000).

EPA Region IV methodology (EPA 1995a) was used as guidance for the development of the background data set for screening metals data. In cases in which enough samples (e.g., more than 20) are collected to define background, a background upper tolerance level can be calculated. In cases in which too few samples (e.g., fewer than 20) are collected to define background, background can be calculated as two times the mean background concentration (EPA 1995a). Given that fewer than 20 background samples were collected for the FSMR, the latter method was used for calculating reference background concentrations.

The reference background concentrations for surface soil, subsurface soil, and groundwater were calculated as two times the average concentration of all of the locations selected to be in the background data set. If a chemical was not detected at a site, then one-half the detection limit was used as the concentration when calculating the reference mean background concentration.

Appendix F of the revised final RFI Report (SAIC 2000) presents a summary of the background data as well as the two-times-mean background concentrations. Given the limited background data, the mean concentration established by the U.S. Geological Survey for soil in the eastern United States (USGS 1984) is also presented for comparative purposes. Because of the limited number of background

samples, the screening value for background may be heavily skewed as a result of an outlier in the sampling data.

The nature and extent of contamination based on the Phase I and Phase II RFI data is summarized below. RFI sample locations are shown on Figure 2-4.

2.7.1.1 Surface Soil

Contamination present in surface soil was dominated by PAH contaminants and one RCRA metal (barium). Maximum PAH concentrations reported in surface soil include $benzo(a)anthracene (430 \ \mu g/kg)$, $benzo(b)fluoranthene (560 \ \mu g/kg)$, $benzo(k)fluoranthene (490 \ \mu g/kg)$, $benzo(a)pyrene (390 \ \mu g/kg)$, $chrysene (430 \ \mu g/kg)$, fluoranthene (720 \ \mu g/kg), and pyrene (620 \ \mu g/kg). The PAH contamination was limited to the surface soil sample (B-GP-17) located south of the former fire training pad (see Figure 2-4). Barium (20 mg/kg) at A-GP-9 (see Figure 2-4) was the only RCRA metal detected in surface soil at a concentration exceeding its reference background criteria.

2.7.1.2 Subsurface Soil

Contamination present in subsurface soils was dominated by BTEX, PAH contaminants, and RCRA metals. Maximum BTEX concentrations reported in subsurface soil include ethylbenzene (1,100 µg/kg at MW12) and total xylenes (4,100 µg/kg at MW12). BTEX contamination in soil was limited to MW12, which was located adjacent to the former fuel tank piping. Maximum PAH concentrations reported in subsurface soil include anthracene (510 μ g/kg), benzo(*a*)anthracene (1,500 μ g/kg), benzo(*a*)pyrene benzo(*b*)fluoranthene $(1.100 \, \mu g/kg)$. (1.800)μg/kg), benzo(g,h,i)perylene (770 ug/kg). benzo(k)fluoranthene (1,000 µg/kg), chrysene (1,400 µg/kg), fluoranthene (4,200 µg/kg), indeno(1,2,3cd)pyrene (730 µg/kg), phenanthrene, (2,200 µg/kg), and pyrene (2,800 µg/kg). The majority of these maximum PAH concentrations were from soil samples collected from the 6-foot to 8-foot interval at MW9. PAH compounds were also detected in soil samples from monitoring wells MW8, MW12, and MW13 and direct-push soil sample C-GP-24-6s. Barium (22 mg/kg), chromium (24 mg/kg), and lead (17 mg/kg) were detected in subsurface soil at concentrations exceeding their respective reference background criteria. Other subsurface soil samples had metal concentrations below laboratory detection limits, or below their respective reference background criteria.

2.7.1.3 Groundwater

The nature and extent of groundwater contamination of the RFI was determined from 31 DPT groundwater samples (20 shallow DPT locations and 3 vertical-profile locations) collected November 1998 and 10 monitoring wells (MW1, MW3, MW4, MW6, and MW8 through MW13) collected January 12 and 13, 1999. BTEX contamination in groundwater extended to a depth of approximately 40 feet below the water table. Maximum concentrations were found at the water table in a direct-push groundwater probe (GP-4) and included benzene ($400 \mu g/L$), toluene ($320 \mu g/L$), ethylbenzene ($800 \mu g/L$), and total xylenes ($4,600 \mu g/L$). These concentrations exceeded their respective MCLs for each constituent except toluene. Acetone was detected at a maximum concentration of $330 \mu g/L$ in a direct-push groundwater sample (GP-7) at a depth of 38 feet to 39 feet (but was not found in any monitoring well sample). The maximum naphthalene ($490 \mu g/L$) and 2-methylnaphthalene ($430 \mu g/L$) concentrations were detected in a direct-push groundwater sample (GP-4) at a depth of 10 feet to 13 feet. [Direct-push groundwater samples were used for screening and were not used in determining site-related contaminants (SRCs) due to the fact that the data are not reproducible.]

THIS PAGE INTENTIONALLY LEFT BLANK.

Figure 2-4. RFI Sampling at the Former Fire Training Area (SWMU 13) (January 1999)
Maximum contaminant concentrations found in a monitoring well (MW12) were similar and included benzene (440 μ g/L), toluene (520 μ g/L), ethylbenzene (940 μ g/L), and total xylenes (5300 μ g/L) (see Figure 2-5). Based on the RFI data, the BTEX contamination covered a plume area approximately 150 feet wide by 300 feet long, extending from the former FTA facilities to the south. Peacock Creek was noted to be more than 2,500 feet from the leading edge of the groundwater plume and is, therefore, not being impacted by the contamination.

2.7.2 Summary of the Results of Supplemental Investigations

2.7.2.1 December 2000 groundwater results

Groundwater samples were collected from eight on-site monitoring wells (MW3, MW4, and MW8 through MW13) in December 2000 and analyzed for BTEX and PAHs (see Table 2-1).

Benzene was detected in five of eight samples at concentrations ranging from 0.33J μ g/L to 418 μ g/L, with the concentrations in MW11 (9.5 μ g/L) and MW12 (418 μ g/L) exceeding the benzene MCL of 5 μ g/L (see Figure 2-6). Toluene was detected in four of eight samples at concentrations ranging from 0.26J μ g/L to 391 μ g/L; however, none of the concentrations exceeded the toluene MCL of 1,000 μ g/L. Ethylbenzene was detected in six of eight samples at concentrations ranging from 0.14J μ g/L to 952 μ g/L, with the concentration in MW12 exceeding the ethylbenzene MCL of 700 μ g/L. Total xylenes were detected in six of eight samples at concentrations ranging from 0.40J μ g/L to 4,930 μ g/L and none of the concentrations exceeded the total xylenes MCL of 10,000 μ g/L. The highest BTEX concentrations were detected in the samples collected from MW12.

Three PAH compounds were detected in groundwater. Naphthalene was detected in three of eight samples at concentrations ranging from 4.0J μ g/L to 304J μ g/L, with the concentration in MW12 exceeding the RFI remedial level of 149 μ g/L for naphthalene.

With the exception of MW12, the PAH concentrations detected in the supplemental characterization samples were lower than the PAH concentrations detected in the RFI samples. At MW12, naphthalene exceeded its respective remedial level (149 μ g/L) in one supplemental sample; however, naphthalene was below the remedial level in the RFI samples. In addition, two PAH compounds (fluorene at 2.6J μ g/L and phenanthrene at 1.8J μ g/L) were detected in groundwater at MW12 during the December 2000 sampling, but not during the RFI sampling event.

Additional details on the December 2000 groundwater sampling event are described in Appendix A.

2.7.2.2 April 2001 soil results

Six groundwater monitoring wells (MW14 through MW19) were installed at the former FTA in April 2001 (see Figure 2-7). The wells were constructed of ³/₄-inch diameter Schedule 40 polyvinyl chloride with flush threaded couplings. Well screens were constructed of factory-slotted pipe in 10-foot-long sections, with a slot size of 0.01-inches (No. 10 slot). Wells were installed to depths of approximately 15 feet bgs. Monitoring well construction details and well development information are summarized in Tables 2-2 and 2-3, respectively. Monitoring well construction diagrams are presented in Appendix B.

Figure 2-5. Groundwater Contamination at the Former Fire Training Area (SWMU 13) Based on January 1999 RFI Data

	Maximum	MW3	MW4	MW8	MW9	MW10	MW11	MW12	MW13
Contaminant	Contaminant	FT0312	FT0412	FT0812	FT0912	FT1012	FT1112	FT1212	FT1312
of Concern	Level	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00
			Volatile Or	ganic Comp	ounds (µg/l	L)			
Benzene	5			0.33 J		2.7	9.5	418	2.8
Toluene	1,000		0.26 J		0.30 J			391	0.42 J
Ethylbenzene	700	0.14 J			0.36 J	0.17 J	1.6	952	11.0
Xylenes, total	10,000	0.45 J			1.6 J	0.40 J	1.4 J	4,930	11.4
		Pol	lynuclear A	romatic Hyd	lrocarbons ($\mu g/L$			
Naphthalene	0						4.0 J	304 J	42.2 J
Fluorene	0							2.6 J	
Phenanthrene	0							1.8 J	

Table 2-1. Summary of Analytical Results in Groundwater at the Former Fire Training Area (SWMU 13) (December 2000)

Bold type indicates concentration above the maximum contaminant level (MCL).

Blank indicates analyte not detected.

MW2, MW5, and MW7 were abandoned during the Interim Measures. MW1 and MW6 were damaged following the Resource Conservation and Recovery Act (RCRA) facility investigation activities.

J = Indicates compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample. SWMU = Solid waste management unit.

Figure 2-6. Groundwater Contamination at the Former Fire Training Area (SWMU 13) Based on December 2000 Results

Figure 2-7. Groundwater Monitoring Well Locations at the Former Fire Training Area (SWMU 13) (April 2001)

Well No.	Date Installed	Size/Type	Coordinates	Total Depth (feet bgs)	Screen Interval Elevation (feet bgs)	Top of Filter Pack Elevation (feet bgs)	Top of Casing Elevation (feet below sea level)
			N688436.9				
MW14	04/04/2001	3/4-inch PVC	E841611.9	15.0	4.5 to 14.5	3.0	46.53
			N688418.5				
MW15	04/04/2001	3/4-inch PVC	E841605.4	15.0	4.5 to 14.5	3.0	47.31
			N688417.5				
MW16	04/05/2001	3/4-inch PVC	E841627.6	14.0	3.0 to 13.0	1.5	47.39
			N688438.1				
MW17	04/04/2001	3/4-inch PVC	E841628.2	14.0	4.0 to 14.0	2.0	47.14
			N688449.1				
MW18	04/04/2001	3/4-inch PVC	E841641.5	14.0	2.6 to 12.6	1.5	46.79
			N688448.0				
MW19	04/04/2001	3/4-inch PVC	E841602.4	14.0	2.8 to 12.8	1.0	46.26

 Table 2-2. Monitoring Well Construction Summary for the Former Fire Training Area (SWMU 13)

Note: All elevations are NAVD 1988.

Note: Groundwater monitoring well construction details are presented in Appendix B.

bgs = Below ground surface.

PVC = Polyvinyl chloride.

SWMU = Solid waste management unit.

Well No.	Date	Total Development Time (hours)	Total Volume Removed (gallons)	Final Turbidity Reading (NTU)
MW14	04/09/2001	0.92	9	5
MW15	04/09/2001	1.08	8.5	5
MW16	04/10/2001	5.25	8	NR
MW17	04/09/2001	1.83	9	30
MW18	04/10/2001	0.92	12	NR
MW19	04/10/2001	1.75	10	NR

Table 2-3. Well Development Summary for theFormer Fire Training Area (SWMU 13)

NR = Not reported.

NTU = Nephelometric turbidity unit.

SWMU = Solid waste management unit.

During well installation activities, subsurface soil samples were collected from each of the six well locations and were analyzed for VOCs and SVOCs (see Table 2-4). Detected analytes were screened against EPA's Region III Industrial and Residential risk-based criteria and against EPA's soil screening level (SSL), which is the level at which a contaminant in soil migrates to groundwater [based on a dilution attenuation factor (DAF) of 1]. Four VOCs (benzene, ethylbenzene, toluene, and total xylenes) were detected above one or more of their respective screening criteria. Benzene was detected above the EPA SSL at concentrations ranging from 0.0014 mg/kg at MW15 (10 feet to 12 feet) to 0.0211 mg/kg at MW16 (10 feet to 11 feet). Ethylbenzene was detected above the EPA SSL at concentrations ranging from 0.0107 mg/kg at MW15 (6 feet to 8 feet) to 7.44 mg/kg at MW14 (6 feet to 8 feet).

Station			13-MW14	13-MW14	13-MW15	13-MW15	13-MW16	13-MW16
Sample ID	EPA	EPA	FT1411	FT1421	FT1511	FT1521	FT1611	FT1621
Date	Region III	Region III	04/04/01	04/04/01	04/04/01	04/04/01	04/05/01	04/05/01
Depth (feet)	Residential	Industrial	6 - 8	10 - 12	6 - 8	10 - 12	6 - 8	10 - 11
Sample Type	(mg/kg)	(mg/kg)	Grab	Grab	Grab	Grab	Grab	Grab
		Volatile O	rganic Com	pounds (mg	/ kg)			
Acetone	782	20,400			0.0344			
Benzene	11.6	104		0.0128		0.0014	0.0019 J	0.0211
Carbon disulfide	782	20,400		0.0031 J		0.00071 J		
Ethylbenzene	782	20,400	7.44	0.085	0.0107	0.139	0.366	0.0969
Toluene	1,560	40,900	0.444	0.0102		0.0263		0.0174
Xylenes, total	15,600	409,000	43.8	0.566	0.0656	0.812	0.639	0.4
	•	Semivolatile	Organic Co	mpounds (n	ng/kg)			
2-Methylnaphthalene	156	4,090	3.88	8.85	1.07	0.182	0.0938	0.172
Benzo(k)fluoranthene	8.75	78.4						
Bis(2-ethylhexyl)phthalate	45.6	409					0.0261 J	
Butyl benzyl phthalate	1,560	40,900						
Chrysene	87.5	784						
Diphenylamine	196	5,110			0.237 J			
Fluoranthene	313	8,180						
Fluorene	313	8,180	0.194		0.147	0.014 J	0.0126 J	
Naphthalene	156	4,090	2.87	6.48		0.123		0.0407
Phenanthrene			0.345	0.727	0.302	0.0278 J		
Pyrene	235	6,130	0.0402		0.0397 J			

 Table 2-4. Summary of Analytical Results in Subsurface Soil at the Former Fire Training Area (SWMU 13) (April 2001)

Station			13-MW17	13-MW17	13-MW18	13-MW18	13-MW19	13-MW19
Sample ID	EPA	EPA	FT1711	FT1721	FT1811	FT1821	FT1911	FT1921
Date	Region III	Region III	04/04/01	04/04/01	04/04/01	04/04/01	04/04/01	04/04/01
Depth (feet)	Residential	Industrial	6 - 8	8 - 11	8 - 11	11 - 12	6 - 8	8 - 11
Sample Type	(mg/kg)	(mg/kg)	Grab	Grab	Grab	Grab	Grab	Grab
		Volatile O	rganic Com	pounds (mg	/kg)			
Acetone	782	20,400						
Benzene	11.6	104			0.0146			
Carbon disulfide	782	20,400						
Ethylbenzene	782	20,400	1.75	5.36	1.13	4.4 J	0.0162	0.0359 J
Toluene	1,560	40,900		0.2 J	0.0103			0.0071 J
Xylenes, total	15,600	409,000	4.55	30.3	5.38	13.1 J	0.0976	0.174 J
		Semivolatile	Organic Co	ompounds (n	ng/kg)			
2-Methylnaphthalene	156	4,090	5.82	2.57	1.5	0.639	0.301	0.0627
Benzo(k)fluoranthene	8.75	78.4				0.0089 J		
Bis(2-ethylhexyl)phthalate	45.6	409						
Butyl benzyl phthalate	1,560	40,900						0.272 J
Chrysene	87.5	784				0.0119 J		
Diphenylamine	196	5,110	0.263 J					
Fluoranthene	313	8,180				0.0206 J		
Fluorene	313	8,180	0.253	0.133	0.0856	0.0441	0.026 J	0.0054 J
Naphthalene	156	4,090	3.71	1.7	0.793	0.309	0.0754	0.0268 J
Phenanthrene			0.45	0.234	0.151	0.0803	0.051	0.0131 J
Pyrene	235	6,130	0.0432	0.0277 J	0.0235 J	0.0235 J		

Table 2-4. Summary of Analytical Results in Subsurface Soil at the Former Fire Training Area (SWMU 13) (April 2001) (continued)

Note: Only detected constituents are included. EPA = U.S. Environmental Protection Agency.

J = Estimated value.

U = Undetected value.

SWMU = Solid waste management unit.

Toluene was detected above the EPA SSL at concentrations ranging from 0.0071 mg/kg at MW19 (8 feet to 11 feet) to 0.444 mg/kg at MW 14 (6 feet to 8 feet). Total xylenes were detected above the EPA SSL at concentrations ranging from 0.0656 mg/kg at MW15 (6 feet to 8 feet) to 43.8 mg/kg at MW14 (6 feet to 8 feet). However, none of the VOCs detected exceeded the EPA Region III Residential or Industrial risk-based screening levels.

Three SVOCs (2-methylnaphthalene, naphthalene, and phenanthrene) were detected above one or more of their respective screening criteria in the subsurface soil samples collected at SWMU 13. 2-Methylnaphthalene was detected above the EPA SSL (1.11 mg/kg) at concentrations ranging from 0.639 mg/kg at MW18 to 8.85 mg/kg at MW14. Naphthalene was detected above the EPA SSLs (0.00769 mg/kg and 0.154 mg/kg) at concentrations ranging from 0.0268J mg/kg at MW19 (8 feet to 11 feet) to 6.48 mg/kg at MW14 (10 feet to 12 feet). However, none of the SVOCs detected exceeded the EPA Region III Residential or Industrial risk-based screening levels.

2.7.2.3 June 2002 groundwater results

Groundwater samples were collected from five monitoring wells (MW13, MW15, MW16, MW18, and MW19) during June 2002 and were analyzed for BTEX constituents. Benzene was detected above EPA's Region III risk-based criteria for Tap Water (0.32 μ g/L) in four of five samples at concentrations ranging from 1.9 μ g/L at MW15 to 120 μ g/L at MW16. Ethylbenzene was detected above EPA's Region III risk-based criteria for Tap Water (3.25 μ g/L) in all five samples at concentrations ranging from 44.9 μ g/L at MW13 to 486 μ g/L at MW18. Toluene was detected above EPA's Region III risk-based criteria for Tap Water (74.70 μ g/L) in four out of five samples at concentrations ranging from 6.4 μ g/L at MW19 to 78.3 μ g/L at MW16. Total xylenes were detected above EPA's Region III risk-based criteria for Tap Water (1220 μ g/L) in all five samples at concentrations ranging from 1.9 μ g/L at MW16.

A comparison of the June 2002 groundwater results to historical groundwater results is shown in Table 2-5. The results are presented in Figure 2-8.

Results in Table 2-5 indicate that, in most cases, the COCs exhibit a downward trend (with the exceptions of MW12 and MW13). Naphthalene and ethylbenzene concentrations detected in MW 12 were higher in December 2000 than concentrations detected during the RFI. MW12 was removed during the 2001/2002 IRA. Based on modeling results, the current estimated concentration of benzene at MW12 is 211 μ g/kg (see Appendix C). The detected concentrations in MW13 (the only monitoring well sampled during all three events) were lower in December 2000 than concentrations detected during the RFI. Concentrations detected in June 2002 were higher than the December 2000 concentrations; however, the elevated concentrations are suspected to be caused by the disturbance of the site during the IRA.

2.8 INTERIM ACTIONS

Two interim actions have been performed at the former FTA (SWMU 13) to remove suspected source materials. The removal activities conducted and results of the sampling and analysis are described below.

2.8.1 October 1997 Interim Measures

In 1997, CAPE Environmental performed an IM at SWMU 13. The intent of the IM was to remove and properly dispose of the fire training facilities, which included the AST, the mock aircraft with foundations and piping, the concrete fire training pad and cover soils, the concrete oil/water separator sump and

	MW1	MW3	MW3	MW4	MW4	MW6	MW8	MW8	MW9	MW9	MW10	MW10
	- 1000	Jan.	Dec.		Dec.	- 1000		Dec.		Dec.	- 1000	Dec.
Analyte	Jan. 1999	1999	2000	Jan. 1999	2000	Jan. 1999	Jan. 1999	2000	Jan. 1999	2000	Jan. 1999	2000
				Volatile	Organic C	ompounds	$(\mu g/L)$					
Benzene	6.2	<5	<1 U	<5	<1 U	<5	<5	0.33 J	<5	<1 U	24	2.7
Ethylbenzene	<5	<5	0.14 J	<5	<1 U	<5	<5	<1 U	<5	0.36 J	<5	0.17 J
Toluene	<5	<5	<1 U	<5	0.26 J	<5	<5	<1 U	<5	0.3 J	<5	<1 U
Xylenes, total	<5	<5	0.45 J	<5	<3 U	<5	<5	<3 U	<5	1.6 J	<5	0.4 J
				Semivolatil	le Organic	Compoun	ds (µg/L)					
2-Methylnaphthalene	<10	<10	NA	<10	NA	<10	<10	NA	<10	NA	<10	NA
Naphthalene	<10	<10	<0.95 U	<10	<0.95 U	<10	<10	<0.95 U	<10	<0.95 U	<10	<0.95 U
Phenanthrene	NA	NA	<0.95 U	NA	<0.95 U	NA	NA	<0.95 U	NA	<0.95 U	NA	<0.95 U

 Table 2-5. Summary of Analytical Results in Groundwater at the Former Fire Training Area (SWMU 13)

	MW11	MW11	MW12	MW12	MW13	MW13	MW13	MW15	MW16	MW18	MW19
		Dec.		Dec.		Dec.	June	June	June	June	June
Analyte	Jan. 1999	2000	Jan. 1999	2000	Jan. 1999	2000	2002	2002	2002	2002	2002
			Vol	atile Orga	nic Compo	unds (µg/I	L)				
Benzene	260	9.5	440	418	120	2.8	3.6	1.9	120	95	<1
Ethylbenzene	45	1.6	940	952	310	11	44.9	257	385	486	201
Toluene	<25	<1 U	520	391	<25	0.42 J	<1	30.3	78.3	49.7	6.4
Xylenes, total	<25	1.4 J	5,300	4,930	350	11.4	11.9	1,380	2,170	1,840	1,040
			Semiv	olatile Or	ganic Com	pounds (µ	g/L)				
2-Methylnaphthalene	21	NA	72	NA	62	NA	NA	NA	NA	NA	NA
Naphthalene	27	4 J	140	304 J	98	42.2 J	NA	NA	NA	NA	NA
Phenanthrene	NA	<0.96 UJ	NA	1.8 J	NA	<0.69 UJ	NA	NA	NA	NA	NA

NA = Not analyzed. SWMU = Solid waste management unit.

J = Estimated value.

U = Undetected value

UJ = Estimated undetected value.

THIS PAGE INTENTIONALLY LEFT BLANK.

Figure 2-8. Groundwater Results from June 5, 2002 Sampling Endeavor at the Former Fire Training Area (SWMU 13)

appurtenances, and soil and sediments which exceeded the PCTs. Approximately 2,450 tons of contaminated soil was excavated. After removing the fire training facilities and contaminated soil (to approximately 4 feet bgs) and completing the confirmatory sampling, the excavated area was backfilled with clean soil and seeded.

Confirmation soil samples were collected from borings at 29 locations (SA-1.1 through SA-29.1). Of these 29 locations, seven locations were beneath the western swale, 15 locations were beneath the fire training pad area and seven locations were beneath the AST area and product piping. The soil samples were analyzed for VOCs, SVOCs, and RCRA metals. The locations of these samples are shown in Figure 2-9 of this CAP report.

The following VOCs were detected with respective maximum concentrations: 4-methyl-2-pentanone (MIBK) at 3,800 μ g/L (SA-2.1); acetone at 110 μ g/L (SA-18.3.5); benzene at 21 μ g/L (SA-4.3); carbon disulfide at 13 μ g/L (SA-10.4.5); chlorobenzene at 930 μ g/L (SA-2.1); ethylbenzene at 1,600 μ g/L (SA-2.1); toluene at 980 μ g/L (SA-2.1); and total xylenes at 61,000 μ g/L (SA-2.1). The detected VOCs were identified in the area where the aboveground fuel tank was formerly located, with some detections in the vicinity of the former fuel line from the tank.

The highest concentrations of SVOCs (with the exceptions of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) were detected in samples taken from the swale just west of the former FTA. The following SVOCs were detected with respective maximum concentrations: acenaphthene at 4,500 µg/L (SA-1.1); anthracene at 1,100 µg/L (SA-25.1); benzo(*a*)pyrene at 3,700 µg/L (SA-25.1); benzo(*g*,*h*,*i*)perylene at 2,400 µg/L (SA-25.1); benzo(*b*)fluoranthene at 8,200 µg/L (SA-25.1); benzo(*a*)pyrene at 10,000 µg/L (SA-25.1); chrysene at 10,000 µg/L (SA-25.1); fluoranthene at 9,100 µg/L (SA-25.1); fluorene at 4,400 µg/L (SA-25.1); indeno(*1*,*2*,*3*-*cd*)pyrene at 4,500 µg/L (SA-25.1); dibenzo(*a*,*h*)anthracene at 4,500 µg/L (SA-25.1); phenanthrene at 1,100 µg/L (SA-25.1); pyrene at 8,100 µg/L (SA-25.1); 1-methylnaphthalene at 18,000 µg/L (SA-2.1); 2-methylnaphthalene at 24,000 µg/L (SA-2.1); and naphthalene at 1,800 µg/L (SA-5.2).

Confirmation results indicate that, in most cases, the maximum concentrations were detected in confirmation samples SA-2.1 and SA-25.1. Confirmation sample SA-2.1 was collected in the area of the AST. Confirmation sample SA-25.1 was collected from the drainage swale, just west of the former FTA. Confirmation samples SA-2.1 and SA-25.1 were collected at intervals of 0 to 6 inches below the base of the excavation.

The following RCRA metals were detected at concentrations exceeding their reference background criteria with respective maximum concentrations: arsenic at 10.4 μ g/L (SA-21.2); barium at 26.6 μ g/L (SA-8.2); chromium at 40.4 μ g/L (SA-21.3); lead at 11.4 μ g/L (SA-4.2); and mercury at 0.097 μ g/L (SA-23.1).

2.8.2 December 2001/February 2002 Interim Removal Action

Based on the findings of the RFI and supplemental investigations and with the concurrence of GEPD, Fort Stewart performed an IRA at SWMU 13, from December 18, 2001 to February 15, 2002. The IRA was conducted by Earth Tech, Inc., and included the removal of an approximate 8-inch concrete pad that was an estimated 20 feet by 8 feet area, removal of approximately 337 tons of soil, and removal of monitoring well MW12 (Earth Tech 2002).

Figure 2-9. Soil Sampling Locations for Interim Measures (1997), IRA (2001/2002) and RFI at the Former Fire Training Area (SWMU 13)

After the concrete pad was removed, an excavation area of approximately 20 feet by 27 feet was created. The site was excavated to an estimated depth of 12 feet bgs. Six confirmatory soil samples were collected; four from the side walls (FTS-SWMU13-S-1-08, FTS-SWMU13-S-2-08, FTS-SWMU13-S-3-08, and FTS-SWMU13-S-4-08) at a depth of 8 feet bgs and two from the floor (FTS-SWMU13-S-5-12 and FTS-SWMU13-S-6-12) of the excavation. Soil samples were analyzed for VOCs and SVOCs (see Figure 2-10). The site was backfilled upon completion of excavation activities. Approximately 342 cubic yards of soil and 68 tons of crush and run gravel were used to backfill the excavation.

Benzene was detected in five of six confirmatory samples at concentrations ranging from 0.005 mg/kg at FTS-SWMU13-S-1-08 to 0.24 mg/kg at FTS-SWMU13-S-2-08. Toluene was detected in all six samples with a maximum concentration of 1.8 mg/kg at FTS-SWMU13-S-2-08. Ethylbenzene was detected in all six samples at concentrations ranging from 0.047 mg/kg at FTS-SWMU13-S-2-08 to 4.4 mg/kg at FTS-SWMU13-S-5-12. Total xylenes were detected in all six samples at concentrations ranging from 1.2 mg/kg at FTS-SWMU13-S-2-08. None of the detected VOCs exceeded their respective EPA Region III Residential or Industrial risk-based screening levels.

Naphthalene was detected in all six samples at concentrations ranging from 0.25 mg/kg at FTS-SWMU13-S-5-12 to 9.4 mg/kg at FTS-SWMU13-S-2-08. None of the detected concentrations exceeded the EPA Region III Residential or Industrial risk-based screening levels. The results of the confirmatory sampling are presented in Table 2-6 and Figure 2-10.

2.9 SUPPLEMENTAL SOIL SAMPLING (JULY 2005)

As recommended in comment responses to GEPD's comments on the final CAP for the Former Fire Training Area at Wright Army Airfield (SWMU13), Fort Stewart Military Reservation, Fort Stewart, Georgia (SAIC 2005), subsurface soil samples were collected in the vicinity of the two locations where the highest concentrations of chromium have been observed (SA-21.3 and SA-4.2) (Figure 2-9). The historical soil samples were analyzed for total chromium and no speciation for trivalent and hexavalent chromium was conducted as part of the RFI. The initial generic soil screening level (GSSL) interpretation for chromium was based on hexavalent chromium, the more toxic and mobile form of chromium.

To rule out chromium as a CMCOC, subsurface soil samples were collected in July 2005 around the two locations (SA-21.3 and SA-4.2) indicating elevated concentrations of chromium in the RFI (SAIC 2000). SB-01 and SB-02 were installed around SA-4.2, and SB-03 and SB-04 were installed around SA-21.3 (Figure 2-11). Two subsurface soil samples were collected from each location at depths of 2 feet and 3 feet bgs. The soil samples were analyzed for hexavalent chromium to determine the speciation of chromium. Table 2-7 presents a summary of the subsurface soil results. The complete analytical results and chain of custodies are presented in Appendix G.

Hexavalent chromium was estimated in five of eight subsurface soil samples at concentrations ranging from 0.0326J mg/kg at SB-03 (3 feet bgs) to 0.707J mg/kg at SB-01 (3 feet bgs). None of the estimated hexavalent chromium values were above the GSSL (DAF = 1) of 2 mg/kg for hexavalent chromium, thus indicating that hexavalent chromium is not going to migrate to groundwater at levels that present a risk to human health.

In addition, these results indicate that chromium measured in subsurface soil is predominantly Cr+3. The total chromium concentrations detected at SA-21.3 and SA-4-2 were 40.4 mg/kg and 39.7 mg/kg, respectively. The concentration of hexavalent chromium measured (July 2005) at these locations was 0.707J mg/kg and 0.0339J mg/kg, respectively. Therefore, the concentration of hexavalent chromium is less than 1 percent of the total chromium concentrations detected at the SWMU 13 site.

Figure 2-10. IRA Confirmation Soil Sampling Results at the Former Fire Training Area (SWMU 13) (2001/2002)

Station			F-SWMU13-S-1	F-SWMU13-S-2	F-SWMU13-S-3	F-SWMU13-S-4	F-SWMU13-S-5	F-SWMU13-S-6
			FTS-	FTS-	FTS-	FTS-	FTS-	FTS-
			SWMU13-	SWMU13-	SWMU13-	SWMU13-	SWMU13-	SWMU13-
Sample ID	EPA	EPA	S-1-08	S-2-08	S-3-08	S-4-08	S-5-12	S-6-12
Date	Region III	Region III	01/09/02	01/09/02	01/09/02	01/09/02	01/09/02	01/09/02
Depth (feet)	Residential	Industrial	8 - 8	8 - 8	8 - 8	8 - 8	12 - 12	12 – 12
Sample Type	(mg/kg)	(mg/kg)	Grab	Grab	Grab	Grab	Grab	Grab
			Volatile Or	ganic Compound	s (mg/kg)			
4-Methyl-2-pentanone	626	16,400						
Acetone	782	20,400	0.033			0.04	0.018	
Benzene	11.6	104	0.005 J	0.21 E	0.064		0.036	0.094
Bromomethane	11	286	0.004 BJ	0.005 B	0.004 BJ	0.003 BJ	0.003 BJ	0.003 BJ
Carbon disulfide	782	20,400	0.003 J	0.02	0.007	0.004 J	0.003	0.007
Chlorobenzene	156	4,090						
Chloroform	78.2	2,040			0.068		0.005 J	0.032
Chloromethane	49.1	440		0.001 J				
Ethylbenzene	782	20,400	3.2	0.047	0.18 J	2.3	4.4	0.99
Methylene chloride	85.2	763	0.011 B			0.005 BJ	0.004 BJ	0.009 B
Toluene	1,560	40,900	0.15	1.8	0.4 E	0.018	0.077	0.12
Xylenes, total	15,600	409,000	23	41	1.2	12	25	5.8
			Semivolatile	Organic Compour	nds (mg/kg)			
2-Methylnaphthalene	156	4,090	13	17	22	1.7	0.53	5.5
Acenaphthene	469	12,300						
Anthracene	2,350	61,300						
Benzo(<i>a</i>)anthracene	0.875	7.84						
Benzo(<i>a</i>)pyrene	0.0875	0.784						
Benzo(b)fluoranthene	0.875	7.84						
Benzo(g,h,I)perylene								
Benzo(k)fluoranthene	8.75	78.4						
Bis(2-ethylhexyl)phthalate	45.6	409						0.097 J
Butyl benzyl phthalate	1,560	40,900						
Chrysene	87.5	784		0.027 J	0.025 J			
Di-N-octylphthalate	156	4090					0.21 J	
Dibenzo(<i>a</i> , <i>h</i>)anthracene	0.0875	0.784						

Table 2-6. IRA Confirmation Sample Results at the Former Fire Training Area (SWMU 13) for 2001/2002

Station			F-SWMU13-S-1	F-SWMU13-S-2	F-SWMU13-S-1 F-SWMU13-S-2 F-SWMU13-S-3 F-SWMU13-S-4 F-SWMU13-S-5 F-SWMU13-S-6	F-SWMU13-S-4	F-SWMU13-S-5	F-SWMU13-S-6
	ſ		-STF	FTS-	FTS-	FTS-	-STF	FTS-
			SWMU13-	SWMU13-	SWMU13-	SWMU13-	SWMU13-	SWMU13-
Sample ID	EPA	EPA	S-1-08	S-2-08	S-3-08	S-4-08	S-5-12	S-6-12
Date	Region III	Region III	01/09/02	01/09/02	01/09/02	01/09/02	01/09/02	01/09/02
Depth (feet)	Residential	Industrial	8 - 8	8 - 8	8 - 8	8 - 8	12 - 12	12 - 12
Sample Type	(mg/kg)	(mg/kg)	Grab	Grab	Grab	Grab	Grab	Grab
Dibenzofuran	31.3	818						0.15 J
Diphenylamine	196	5110	ΥN	ΝΑ	ΥN	NA	VN	NA
Fluoranthene	313	8180						
Fluorene	313	8180	0.68	1.2	1.3	0.092 J		0.37 J
Indeno(1,2,3-cd)pyrene	0.875	7.84						
Naphthalene	156	4090	6.3	7.6	15	1	0.25 J	3.6
Phenanthrene			1.2	2	2.1	0.15 J	0.062 J	0.63
Pyrene	235	6130			0.2 J			
Note: Non-detects not reported	.pc							

Table 2-6. IRA Confirmation Sample Results at the Former Fire Training Area (SWMU 13) for 2001/2002 (continued)

Note: Non-detects not reported. B = Analyte found in associated blank, possible blank contamination. E = Concentration exceeded the calibration range of the instrument for the specific analysis. EPA = U.S. Environmental Protection Agency.

FTA = Fire Training Area. IRA = Interim removal action. J = Estimated value below the quantitation limit.

NA = Not analyzed. SSL = Soil screening level. SWMU = Solid waste management unit.

THIS PAGE INTENTIONALLY LEFT BLANK.

Station		13-SB-01	13-SB-01	13-SB-02	13-SB-02	13-SB-03	13-SB-03	13-SB-04	13-SB-04
Sample ID		FT0111	FT0121	FT0211	FT0221	FT0311	FT0321	FT0411	FT0421
Date		07/19/05	07/19/05	07/19/05	07/19/05	07/19/05	07/19/05	07/19/05	07/19/05
Depth (ft bgs)	GSSL	2	3	2	3	2	3	2	3
Units	$\mathbf{DAF} = 1$	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Chromium, hexavalent (mg/kg)	2	0.707 J	0.166 J	<0.102 UJ	0.0682 J	<0.0932 UJ	0.0326 J	<0.0198 UJ	0.0339 J

Table 2-7. Summary of Analytes Detected in Subsurface Soil at SWMU 13 (July 2005)

bgs = Below ground surface. DAF = Dilution attenuation factor.

GSSL = Generic soil screening level. SWMU = Solid waste management unit.

 $\frac{\text{Data Validation Qualifiers:}}{\text{J} = \text{Estimated value.}}$

U = Undetected value.

2.10 SITE-RELATED CONTAMINANTS AND UPDATED NATURE AND EXTENT OF CONTAMINATION

2.10.1 Site-Related Contaminants

The soil and groundwater data from the RI and the supplemental investigations were screened to identify SRCs. Inorganics were considered to be SRCs if their concentrations were above the reference background concentration. Organics were considered to be SRCs if they were simply detected because organic constituents are considered anthropomorphic in nature. A tabular summary of SRCs by medium for SWMU 13 is presented in Table 2-8.

Based on this evaluation, four VOCs and four SVOCs were identified as SRCs in groundwater. Twelve VOCs, 22 SVOCs, and 5 metals were identified as SRCs in soil. These SRCs are carried through for evaluation under fate and transport (Section 2.11), human health preliminary risk evaluation (HHPRE) (Section 2.12), and ecological preliminary risk evaluation (EPRE) (Section 2.13).

Figure 2-12 presents a revised extent of surface soil based on soil remaining after the two interim removal actions (1997 and 2001/2002). Figures 2-13 and 2-14 present a revised extent of organic and metal contamination, respectively, in subsurface soil based on soil remaining after the two interim removal actions (1997 and 2001/2002). Figure 2-8 presents the most current extent of groundwater contamination.

2.11 CONTAMINANT FATE AND TRANSPORT

This section presents the site-specific components of the conceptual site model developed for the former FTA (SWMU 13) and describes the contaminant release mechanisms through the primary transport medium (groundwater). This section also discusses the fate and transport of contaminants at the site with respect to their leachability and natural attenuation. Additional details regarding the contaminant fate and transport evaluation is located in Chapter 6.0 and Appendix G of the revised final RFI Report (SAIC 2000).

2.11.1 Generic Soil Screening Analysis

Contaminant fate and transport analysis provided an assessment of the potential migration pathways and transport mechanisms affecting the chemicals at the site. In particular, the leachability of contaminants from soil to groundwater and their natural attenuation in groundwater were evaluated.

The site characterization identified organic and inorganic SRCs in surface and subsurface soil and in groundwater (only organic SRCs identified in groundwater). These constituents were compared to the EPA GSSLs (EPA 1996a) to determine if these constituents might leach from soil into groundwater at concentrations that exceed groundwater standards [i.e., concentrations that exceed the MCL or, in the absence of an MCL, the risk-based concentration (RBC) for drinking water (EPA 1996b)].

The GSSL selected for total chromium was based on Cr^{+3} because the results of the subsurface soil sampling conducted in July 2005 indicated that chromium was predominantly (<1 percent) present in the subsurface soil as Cr^{+3} . The mobility of Cr^{+3} is significantly less than the mobility of Cr^{+6} . The soil-water partition coefficient of Cr^{+3} reported in the soil screening guidance document (EPA 1996a) ranges from 1,200 L/kg at pH = 4.9 to 4,300,000 L/kg at pH = 8.0, as compared to a range for Cr^{+6} from 14 L/kg to 31 L/kg. Therefore, the minimum GSSL value for Cr with a DAF = 1, calculated based on Cr^{+3} , is 120 mg/kg. This value is 60 times greater than the GSSL of 2.0 mg/kg calculated based on Cr^{+6} .

The results of the comparison to GSSLs are shown in Table 2-9.

Analyte	Surface Soil (mg/kg)	Station at Max Detect and Sampling Endeavor	Subsurface Soil (mg/kg)	Station at Max Detect and Sampling Endeavor	Groundwater (µg/L)	Station at Max Detect and Sampling Endeavor
	-	V	olatile Organi	c Compounds		
4-Methyl-2-pentanone	ND	NA	3.800	SA-2.1, 10/29/97	ND	NA
Acetone	ND	NA	0.110	SA-18.3.5, 10/30/97	ND	NA
Benzene	ND	NA	0.240	F-SWMU13-S-2, 1/9/02	440	MW12, 01/99
Bromomethane	ND	NA	0.005	F-SWMU13-S-2, 1/9/02	ND	NA
Carbon Disulfide	ND	NA	0.020	F-SWMU13-S-2, 1/9/02	ND	NA
Chlorobenzene	ND	NA	0.930	SA-2.1, 10/29/97	ND	NA
Chloroform	ND	NA	0.068	F-SWMU13-S-3, 1/09/02	ND	NA
Chloromethane	ND	NA	0.001	F-SWMU13-S-2, 1/9/02	ND	NA
Ethylbenzene	ND	NA	7.440	13-MW-14, , 4/04/01	952	MW12, 01/99
Methylene Chloride	ND	NA	0.011	F-SWMU13-S-1	ND	NA
Toluene	ND	NA	1.800	F-SWMU13-S-2, 1/9/02	520	MW12, 01/99
Xylenes, Total	ND	NA	61.000	SA-2.1, 10/29/97	5300	MW12, 01/99
		Sen	nivolatile Orga	nic Compounds	-	·
1-Methylnaphthalene	ND	NA	18.000	SA-2.1, 10/29/97	ND	NA
2-Methylnaphthalene	ND	NA	24.000	SA-2.1, 10/29/97	72	MW12, 01/99
Acenaphthene	ND	NA	4.500	SA-1.1, 10/29/97	ND	NA
Anthracene	ND	NA	1.100	SA-25.1, 11/14/97	ND	NA
Benz(<i>a</i>)anthracene	430	B-GP-17, 11/05/98	10.000	SA-25.1, 11/14/97	ND	NA
Benzo(<i>a</i>)pyrene	390	B-GP-17, 11/05/98	3.700	SA-25.1, 11/14/97	ND	NA
Benzo(<i>b</i>)fluoranthene	560	B-GP-17, 11/05/98	8.200	SA-25.1, 11/14/97	ND	NA
Benzo(ghi)perylene	ND	NA	2.400	SA-25.1, 11/14/97	ND	NA
Denzo(gm)perytene	ND	B-GP-17,	2.400	5A-25.1, 11/14/57	IND .	1174
Benzo(k)fluoranthene	490	11/05/98	8.200	SA-25.1, 11/14/97	ND	NA
Bis(2-ethylhexyl)phthalate	ND	NA	0.097	F-SWMU13-S-6, 1/09/02	ND	NA
Butyl benzyl phthalate	ND	NA	0.272	13-MW-19, 4/04/01	ND	NA
Chrysene	430	B-GP-17, 11/05/98	10.000	SA-25.1, 11/14/97	ND	NA
Di-n-octylphthalate	ND	NA	0.210	F-SWMU13-S-5, 1/09/02	ND	NA
Dibenz (a,h) anthracene	ND	NA	4.500	SA-25.1, 11/14/97	ND	NA
Dibenzofuran	ND	NA	0.150	F-SWMU13-S-6, 1/09/02	ND	NA
Diphenylamine	ND	NA	0.150	13-MW-17, 4/04/01	ND	NA
Fluoranthene	720	B-GP-17, 11/05/98	9.100		ND	NA
Fluorene	ND	NA		SA-25.1, 11/14/97 SA-2.1, 10/29/97	2.6	MW12, 12/00
Indeno(1,2,3-cd)pyrene	ND	NA	4.400	SA-25.1, 11/14/97	ND	NA
Naphthalene	ND	NA	15.000	F-SWMU13-S-3, 1/09/02	304	MW12, 12/00
Phenanthrene	ND	NA	2.200	13-MW-09, 12/08/98	1.8	MW12, 12/00 MW12, 12/00
		B-GP-17,				WIW 12, 12/00
Pyrene	620	11/05/98	8.100 Meta	SA-25.1, 11/14/97	ND	
Arsonic	ND	NA	10.400	SA-21.2, 11/04/97	BRBC	NA
Arsenic		NA A-GP-9, 11/04/98				
Barium Chromium	20 PPPC	A-GP-9, 11/04/98 NA	26.600 40.400	SA-8.2, 10/29/97 SA-21.3, 11/04/97	BRBC BRBC	NA NA
Chromium, hexavalent	BRBC					
· · · · · · · · · · · · · · · · · · ·	NA	NA	0.707	SB-01, 7/19/05	NA	NA
Lead	BRBC	NA	17.000	B-GP-11, 11/06/98	BRBC	NA
Mercury	BRBC	NA	0.097	SA-23.1, 11/14/97	BRBC	NA

Table 2-8. Summary of Site-Related Contaminants at the Former Fire Training Area, SWMU 13

BRBC = Maximum concentration below reference background concentration

NA = Not analyzed.

ND = Not detected.

SRCs	Maximum Concentration in Surface or Subsurface Soil	GSSL ^a	Preliminary MCOPC?
Volatile Organic Compounds	(µg/kg)	(µ g/kg)	
4-methyl-2-pentanone ^c	3,800	1,300	Yes
Acetone	110	16,000	No
Benzene	240	30	Yes
Bromomethane	5	250	No
Carbon disulfide	20	32,000	No
Chlorobenzene	930	1,000	No
Chloroform	68	600	No
Chloromethane	1	40	No
Ethylbenzene	7,440	13,000	No
Methylene Chloride	11	20	No
Toluene	980	12,000	No
Xylenes, total	61,000	190,000	No
Semivolatile Organic Compounds	(µg/kg)	$(\mu g/kg)$	
Acenaphthene	4,500	570,000	No
Anthracene	1,100	12,000,000	No
Benzo(a)anthracene	10,000	2,000	Yes
Benzo(b)fluoranthene	8,200	5,000	Yes
Benzo(k)fluoranthene	8,200	49,000	No
Benzo(g,h,i)perylene ^{b,d}	2,400	394,000	No
Benzo(<i>a</i>)pyrene	3,700	8,000	No
Bis(2-ethylhexyl)phthalate	97	3,600,000	No
Butyl benzyl phthalate	272	930,000	No
Chrysene	10,000	160,000	No
Dibenzo(a,h)anthracene	4,500	2,000	Yes
Di-n-octylphthalte	210	9,900,000,000	No
Dibenzofuran	150	48,000	No
Diphenylamine	263	100,000	No
Fluoranthene	9,100	4,300,000	No
Fluorene	4,400	560,000	No
Indeno(1,2,3-cd)pyrene	4,500	14,000	No
1-Methylnaphthalene ^{c,e}	18,000	22,231	No
2-Methylnaphthalene ^c	24,000	22,231	Yes
Naphthalene	15,000	150	Yes
Phenanthrene ^{b,f}	2,200	80,400	No
Pyrene	8,100	4,200,000	No
Metals	(mg/kg)	(mg/kg)	
Arsenic	10.4	1	Yes
Barium	26.6	82	No
Chromium	40.4	120 ^{<i>h</i>}	No
Chromium, hexavalent	0.707	2	No
Lead ^g	17	400	No
Mercury	0.097	0.1	No

Table 2-9. GSSL Screening of Site-Related Contaminants in Soil at the Former Fire Training Area (SWMU 13)

Bold indicates CMCOPC.

^aGeneric soil screening level (GSSL) = U.S. Environmental Protection Agency (EPA) GSSL with a dilution attenuation factor (DAF) of 1 for inorganics and a DAF of 20 for volatile and semivolatile organics. A DAF of 1 for inorganics was used because average pH of groundwater is less than 5; unless otherwise indicated, GSSL is taken from *Soil Screening Guidance: Technical Background Document* (EPA 1996a). ^bEPA-suggested GSSL is not available; GSSL is calculated following *Soil Screening Guidance: Technical Background Document* (EPA 1996a).

GSSLs are back-calculated from maximum contaminant level, if available; otherwise, GSSLs are back-calculated based on EPA Region III riskbased concentrations (RBCs) corresponding to 10^{-6} risk or hazard quotient = 1 (SAIC 1999).

'GSSL taken from EPA Region III suggested soil screening level for groundwater migration (EPA 1999b).

^{*d*}To develop GSSL, RBC is taken from benzo(b) fluoranthene with a TEF = 0.01.

^eGSSL is taken from the GSSL of 2-methylnaphthalene.

^fRBC to develop GSSL is taken from the surrogate pyrene.

^gA screening level of 400 mg/kg is used for lead based on *Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities* (EPA 1994b).

^{*h*} The GSSL for chromium is based on Cr^{+3} because less than 1 percent of concentration of total chromium is attributed to hexavalent chromium.CMCOPC = Contaminant migration contaminant of potential concern.

 $\mu g/kg = Micrograms per kilogram.$

mg/kg = Milligrams per kilogram.

SRC = Site-related contaminant.

SWMU = Solid waste management unit.

THIS PAGE INTENTIONALLY LEFT BLANK.

Figure 2-12. Organic and Metal Contamination Remaining in Surface Soil at the Former Fire Training Area (SWMU 13)

	LEGEND:
	Image: A state of the stat
	LIMITS OF EXCAVATION — FOR 1997 INTERIM MEASURES LIMITS OF EXCAVATION FOR 2001/2002 INTERIM REMOVAL ACTION MW*8 MONITORING WELL MONITORING WELL (DAMAGED MW*2OR NO LONGER EXISTING A SA-8.2 SURFACE SOIL SAMPLE S-1 SUBSURFACE SOIL SAMPLE
12 3.6 3.3	● B-GP-11 GEOPROBE SAMPLE AsARSENIC BaBARIUM CrCHROMIUM PbLEAD HgMERCURY
NICS)	NOTES:
	 FIGURE SHOWS SITE LAYOUT AND AREAS REMOVED BY CAPE ENVIRONMENTAL DURING 1997 INTERIM MEASURES AND BY EARTH TECH DURING 2001/2002 INTERIM REMOVAL ACTION.
TALS) SS	2.) MW*1 AND MW*6 WERE DESTROYED BY HEAVY EQUIPMENT BACKING OVER THEM AND WERE NOT SAMPLED IN DEC 2000.
3.6 3.2	3.) MW*12 WAS REMOVED AND MW*14 WAS DAMAGED DURING THE 2001/2002 INTERIM REMOVAL ACTION.
C _C	4.)MW#15 - MW#19 WERE INSTALLED IN APRIL 2001.
BANICS) BGS	5.) CONCENTRATIONS IN mg/Kg
	SCALE: 1" = 60'
	CORPS OF ENGINEERS SAVANNAH, GEORGIA
	U.S. ARMY ENGNER DISTRICT CORPS OF ENGNEERS SAVANNAH, GEORGIA FORMER FIRE TRAINING AREA
	SURFACE SOIL RESULTS AT WAAF (SWMU 13) FORT STEWART, GEORGIA
	DRAWN BY: REV. NO./DATE: CAD FILE: R.BEELER 0/01-05-06 /96016/DGNS/U07_CHRT-05

Figure 2-13. Remaining Organic Contamination in Subsurface Soil at the Former Fire Training Area (SWMU 13)

	LEGEND:
SA-1.2 2 FT BGS 0.044 WNAPH 8.3 PH 2.8	LIMITS OF EXCAVATION —FOR 1997 INTERIM MEASURES LIMITS OF EXCAVATION FOR 2001/2002 INTERIM REMOVAL ACTION MWW*8MONITORING WELL MONITORING WELL (DAMAGED MWW*2OR NO LONGER EXISTING) ASA-8.2SURFACE SOIL SAMPLE S-1SUBSURFACE SOIL SAMPLE
S-4 8 FT BGS AC 0.04 BRME 0.003 CDI 0.004 CDI 0.003 CHF 0.003 CHF 0.003 CHLF 0.009 MCL 0.004 T 0.077 X 25 2-MNAPH 0.21 FLE 0.092 NAPH 1 PHATH 0.15 S-5 12 FT BGS AC 0.018 B 0.036 BRME 0.003 CHLF 0.032 CHLF 0.032 CHLF 0.032 E 0.99 T 0.12 X 5.8 BIS(2-E)PH 0.097 DIBZF DIBZF 0.15	B -GP-11 GEOPROBE SAMPLE 4-M-2-P
PHATH 0.062 S-3 8 FT BGS 0.064 MCL 0.005 //E 0.004 T 0.018 0.007 X 12	FLEFluorene I(1,2,3-cd)PYIndeno(1,2,3-cd)pyrene NAPHPhenonthrene PHATHPhenonthrene PYPyrene NOTES:
F 0.068 2-MNAPH 1.7 0.18 PHATH 2.1 4.4 PY 0.2 2.3 GP-14	1.) FIGURE SHOWS SITE LAYOUT AND AREAS REMOVED BY CAPE ENVIRONMENTAL DURING 1997 INTERIM MEASURES AND BY EARTH TECH DURING 2001/2002 INTERIM REMOVAL ACTION.
FT BGS	2.) MW*1 AND MW*6 WERE DESTROYED BY HEAVY EQUIPMENT BACKING OVER THEM AND WERE NOT SAMPLED IN DEC 2000.
P-9 TBGS	3.) MW*12 WAS REMOVED AND MW*14 WAS DAMAGED DURING THE 2001/2002 INTERIM REMOVAL ACTION.
MW-16 BGS 10 - 11 FT BGS 0.0019 JB 0.0211 0.366 0.0969 0.639 T 0.0174 0.0174 .0938 X 0.4 0.0261 J2 -MNAPH 0.172 0.0126 JNAPH 0.0407	4.) MW#15 - MW#19 WERE INSTALLED IN APRIL 2001. 5.) CONCENTRATIONS IN mg/Kg 0 30 60 120 SCALE: 1'' = 60'
	U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS SAVANNAH, GEORGIA
	FORMER FIRE TRAINING AREA SUBSURFACE SOIL ORGANIC RESULTS AT WAAF (SWMU 13) FORT STEWART, GEORGIA
	DRAWN BY: REV. NO./DATE: CAD FILE: R.BEELER 0/01-05-06 /96016/DGNS/U07_CHRT-03

Figure 2-14. Remaining Metal Contamination in Subsurface Soil at the Former Fire Training Area (SWMU 13)

Based on the soil screening analysis, benzene, 4-methyl-2-pentanone, benzo(a)anthracene, benzo(b)flouranthene, dibenzo(a,h)anthracene, 2-methylnaphthalene, naphthalene, and arsenic exceeded their respective GSSLs and were indicated as preliminary contaminant migration constituent of potential concern (CMCOPCs) in soil. Of the preliminary CMCOPCs, only benzene, naphthalene, and 2-methylnaphthalene were detected in groundwater above their reference background concentration. These inorganic and organic CMCOPCs were further evaluated using the Seasonal Soil Compartment (SESOIL) Model as discussed in the following section.

2.11.2 Fate and Transport Modeling

Fate and transport modeling was performed to quantitatively assess the risks associated with exposure to the CMCOPCs in soil. Only groundwater modeling was performed. Surface water is not present at this site and the nearest surface water receptor is located 2,500 feet from the site. Based on the estimated groundwater velocity of 14 feet/year, it would take approximately 178 years for the groundwater in the surficial aquifer to reach the nearest surface water receptor (SAIC 2000).

The SESOIL model was used to predict the maximum groundwater concentration of the CMCOPCs in the soil. A description of the SESOIL model and a summary of the results of the modeling are presented in Appendix G of the revised final RFI Report (SAIC 2000).

The following summarizes the conclusions from the SESOIL modeling:

• The five preliminary organic CMCOPCs identified in the revised final RFI [4-methyl-2-pentanone, benzo(*a*)anthracene, benzo(*b*)fluoranthene, dibenzo(*a*,*h*)anthracene, 2-methylnaphthalene, and naphthalene] either naturally attenuate before reaching the water table or the predicted groundwater concentrations do not exceed their respective RBCs. However, benzene, an additional preliminary CMCOPC based on the supplemental data, is predicted to reach the water table with concentrations exceeding its respective MCL/RBC. Therefore, benzene was identified as a CMCOPC (see Table 2-10).

Arsenic was identified as a CMCOPC because its maximum predicted concentration at the surface of the groundwater table of 0.21 mg/L exceeded its respective groundwater target concentration (0.05 mg/L) (see Table 2-10). This maximum groundwater concentration of arsenic is predicted to be reached after 135 years. Based on the groundwater velocity of 14 feet/year, arsenic will take over 15,000 years to migrate to the nearest potential surface water receptor (Peacock Creek).

The modeled concentrations were used in the human health risk assessment to quantify risk from these constituents, unless measured groundwater concentrations were higher than the modeled concentrations.

2.12 PRELIMINARY RISK EVALUATION

2.12.1 Human Health Preliminary Risk Evaluation

The HHPRE conducted during the RFI included a Step 1 risk evaluation to determine potential human health risks associated with the contaminants present at the site. Human health constituents of potential concern (HHCOPCs) were defined as those constituents present at concentrations higher than their

Table 2-10. Summary of Leachate Modeling Results at the Former Fire Training Area (SWMU 13)

Preliminary CMCOPCs ^a	Maximum Concentration (mg/kg)	Predicted C _{leachate,max} Beneath the Source (mg/L)	Predicted T _{max} (years)	Predicted C _{gw,max} at the Source ^b (mg/L)	Maximum Observed Groundwater Concentration (mg/L)	Groundwater Target Concentration (mg/L)	Source ^c	CMCOPC?
			Inorga	nics				
Arsenic	1.04E+01	2.50E-01	135	2.10E-01	ND	1.00E-02	М	Yes
			Orgai	nics				
2-Methylnaphthalene	2.40E+01	9.10E-04	51	7.65E-04	7.20E-02	1.20E-02	R	No
4-Methyl-2-pentanone	3.80E+00	4.70E-03	< 1	3.95E-03	ND	1.40E-02	R	No
Benzene	0.24E+00	9.98E-02	1	8.38E-02	4.40E-01	5.00E-03	М	Yes
Benzo(<i>a</i>)anthracene	1.00E+01	0.00E+00	NA	0.00E+00	ND	9.20E-05	R	No
Benzo(b)fluoranthene	8.20E+00	0.00E+00	NA	0.00E+00	ND	9.20E-05	R	No
Dibenzo (a,h) anthracene	4.50E+00	0.00E+00	NA	0.00E+00	ND	9.20E-06	R	No
Naphthalene	0.15E+02	9.70E-02	4	8.15E-02	3.04E-01	1.49E-01	R	No

^aThese constituents were selected for Seasonal Soil Compartment (SESOIL) modeling from this site. ^bThe predicted maximum concentration in groundwater ($C_{gw,max}$) at the source was calculated by applying a dilution factor to the predicted maximum leachate concentration (C_{leachate,max}).

^cM = maximum contaminant level, R = U. Environmental Protection Agency Region III suggested risk based concentration corresponding to hazard index = 0.1 or 10-6 risk (GA EPD 1999).

NA = Not applicable; constituents naturally attenuates before reaching the water table.

ND = Not detected.

SWMU = Solid waste management unit.

reference background criteria and higher than their respective EPA Region III risk-based screening criteria (SAIC 2000). Risk-based screening criteria were as follows:

- Surface soil: the most current residential preliminary remediation goals (PRGs) published by EPA Region III (available at http://www.epa.gov/reg3h/risk/index.html) using one-tenth of the noncarcinogenic PRG (equating to a screening level of 0.1) and the full carcinogenic PRG (equating to a screening level of 10⁻⁶) as screening values.
- Subsurface soil: the most current industrial PRGs published by EPA Region III using one-tenth of the noncarcinogenic PRG (equating to a screening level of 0.1) and the full carcinogenic PRG (equating to a screening level of 10⁻⁶) as screening values.
- Groundwater: the EPA Region III Tap Water PRGs and federal drinking water MCLs. (Drinking water MCLs available at http://www.epa.gov/ost/drinking/standards/dwstandards.pdf) using one-tenth of the noncarcinogenic PRG (equating to a screening level of 0.1) and the full carcinogenic PRG (equating to a screening level of 10⁻⁶) as screening values.

New data have become available as a result of supplemental investigations conducted since the revised final RFI (see Section 2.7.2); therefore, the step 1 risk evaluation is conducted for this CAP using the same method and screening criteria presented in the revised final RFI. The step 1 screening results are provided in Tables 2-11 (surface soil), 2-12 (subsurface soil), and 2-13 (groundwater).

Based on the results of the screening, one HHCOPC was identified in surface soil, seven HHCOPCs in subsurface soils, and seven HHCOPCs in groundwater.

Benzo(a)pyrene was detected above its RBC in surface soil at one location. This one location was adjacent to weathered asphalt, and it is likely that this lone sample incorporated some of the asphalt, which resulted in the reported concentration. To be conservative, benzo(a)pyrene was identified as a HHCOPC for surface soil.

In subsurface soils: six PAHs [benzo(*a*)pyrene, benzo(*a*)anthracene, benzo(*b*)flouranthene, benzo(*g*,*h*,*i*)perylene, dibenzo(*a*,*h*)anthracene, and phenanthrene] and one metal (arsenic) were detected at concentrations above their respective RBCs (or had no RBCs) and were identified as HHCOPCs for subsurface soil. Arsenic was detected in 41 of 62 samples, and its reference background concentration of 8.04 mg/kg indicates it is prevalent throughout the FSMR. The reference background concentration for arsenic exceeds its RBC of 3.8 mg/kg. None of the RFI data had arsenic concentrations that exceeded the reference background concentration. From the 1997 IM data, two samples that were from the same borehole exceeded the reference background concentration.

The HHCOPCs identified in groundwater were BTEX, naphthalene, 2-methylnaphthalene, and phenanthrene. These constituents were found to present a potential threat to human health as a result of using groundwater as a source of drinking water. Given the shallow depth of the surficial aquifer and the presence of the deeper Principal Artesian Aquifer (a common source of drinking water throughout the region), the use of the surficial aquifer at this site for drinking water is highly unlikely. However, drinking water screening values (i.e., EPA Region III tap water criteria and federal MCLs) were used in the absence of more appropriate values.

A Baseline Human Health Risk Assessment (BHHRA) was performed as part of the revised final RFI to quantitatively assess the risks associated with exposure to the HHCOPCs in the soil and groundwater. The results of the BHHRA are summarized in Section 2.11 and are presented in Appendix H of the revised final RFI Report (SAIC 2000).

			ected Itration				EPA Region III			
	Frequency of	Minimum	Maximum		Background Criteria ^a	Maximum Detect >	Residential PRG ^b	Maximum Detect		
Analyte	Detection	(mg/kg)	(mg/kg)	(mg/kg)		Background?			COPC?	Justification
					volatile Organ	ic Compounds				
Benzo(a)anthracene	1/3	4.30E-01	4.30E-01	5.08E-01	NA	NA	8.75E-01	No	No	Max Detect < Risk Criterion
Benzo(a)pyrene	1/3	3.90E-01	3.90E-01	4.56E-01	NA	NA	8.75E-02	Yes	Yes	Max Detect > Risk Criterion
Benzo(b)fluoranthene	1/3	5.60E-01	5.60E-01	6.78E-01	NA	NA	8.75E-01	No	No	Max Detect < Risk Criterion
Benzo(k)fluoranthene	1/3	4.90E-01	4.90E-01	5.87E-01	NA	NA	8.75E+00	No	No	Max Detect < Risk Criterion
Chrysene	1/3	4.30E-01	4.30E-01	5.08E-01	NA	NA	8.75E+01	No	No	Max Detect < Risk Criterion
Fluoranthene	1/3	7.20E-01	7.20E-01	8.87E-01	NA	NA	3.13E+02	No	No	Max Detect < Risk Criterion
Pyrene	1/3	6.20E-01	6.20E-01	7.57E-01	NA	NA	2.35E+02	No	No	Max Detect < Risk Criterion
					Metal	S				
Barium	3/3	1.00E+01	2.00E+01	2.29E+01	1.47E+01	Yes	5.48E+02	No	No	Max Detect < Risk Criterion
Chromium	3/3	2.20E+00	3.60E+00	4.50E+00	6.21E+00	No	2.35E+01	No	No	Max Detect < Background and Risk Criteria
Lead	3/3	2.90E+00	3.30E+00	3.48E+00	8.81E+00	No	4.0E+02 ^c	No	No	Max Detect < Background and Risk Criteria
Mercury	1/3	1.50E-02	1.50E-02	1.81E-02	3.42E-02	No	2.35E+00	No	No	Max Detect < Background and Risk Criteria

Table 2-11. Selection of Chemicals of Potential Concern in Surface Soil at the Former Fire Training Area (SWMU 13)

^aSAIC 2000.

^bAvailable at http://www.epa.gov/reg3hwmd/risk/index.htm; noncarcinogenic screening values shown are one-tenth of the preliminary remedial goal.

'Federal standard for lead in bare soil in children's play areas (available at http://www.epa.gov/lead).

95% UCL = 95% upper confidence limit on the mean.

NA = Not applicable, background criteria are only applied to inorganic chemicals.

ND = No value is available.

RBC = Risk based criteria.

			ected Itration				EPA Region III			
Analyte	Frequency of Detection			95% UCL of Mean (mg/kg)	Background Criteria ^a (mg/kg)	Maximum Detect > Background?	Residential PRG ^b (mg/kg)	Maximum Detect > RBC?	COPC?	Justification
				Vola	tile Organic C	ompounds				
4-Methyl-2-pentanone	2/80	6.90E-02	3.80E+00	1.65E-01	NA	NA	1.64E+04	No	No	Max Detect < Risk Criterion
Acetone	8/79	1.80E-02	1.10E-01	1.80E-01	NA	NA	2.04E+04	No	No	Max Detect < Risk Criterion
Benzene	11/80	1.40E-03	2.40E-01	2.76E-02	NA	NA	1.04E+02	No	No	Max Detect < Risk Criterion
Bromomethane	6/17	3.00E-03	5.00E-03	3.50E-02	NA	NA	2.86E+02	No	No	Max Detect < Risk Criterion
Carbon disulfide	11/79	7.10E-04	2.00E-02	4.69E-02	NA	NA	2.04E+04	No	No	Max Detect < Risk Criterion
Chlorobenzene	1/80	9.30E-01	9.30E-01	3.87E-02	NA	NA	4.09E+03	No	No	Max Detect < Risk Criterion
Chloroform	3/17	5.00E-03	6.80E-02	4.09E-02	NA	NA	2.04E+03	No	No	Max Detect < Risk Criterion
Chloromethane	1/17	1.00E-03	1.00E-03	3.46E-02	NA	NA	4.40E+02	No	No	Max Detect < Risk Criterion
Ethylbenzene	23/80	1.00E-02	7.44E+00	8.05E-01	NA	NA	2.04E+04	No	No	Max Detect < Risk Criterion
Methylene chloride	4/79	4.00E-03	1.10E-02	4.65E-02	NA	NA	7.63E+02	No	No	Max Detect < Risk Criterion
Toluene	16/80	7.10E-03	1.80E+00	1.04E-01	NA	NA	4.09E+04	No	No	Max Detect < Risk Criterion
Xylenes, total	25/80	6.40E-03	6.10E+01	5.40E+00	NA	NA	4.09E+05	No	No	Max Detect < Risk Criterion
	<u>.</u>			Semivo	latile Organic	Compounds				·
1-Methylnaphthalene	5/48	7.20E-01	1.80E+01	1.64E+00	NA	NA	4.09E+03 ^c	No	No	Max Detect < Risk Criterion
2-Methylnaphthalene	21/80	6.27E-02	2.40E+01	2.38E+00	NA	NA	4.09E+03	No	No	Max Detect < Risk Criterion
Acenaphthene	2/80	2.80E+00	4.50E+00	3.70E-01	NA	NA	1.23E+04	No	No	Max Detect < Risk Criterion
Anthracene	2/80	5.10E-01	1.10E+00	2.46E-01	NA	NA	6.13E+04	No	No	Max Detect < Risk Criterion
Benzo(<i>a</i>)anthracene	5/80	4.70E-01	1.00E+01	5.95E-01	NA	NA	7.84E+00	Yes	Yes	Max Detect > Risk Criterion
Benzo(<i>a</i>)pyrene	7/80	4.40E-01	3.70E+00	3.71E-01	NA	NA	7.84E-01	Yes	Yes	Max Detect > Risk Criterion
Benzo(b)fluoranthene	6/80	5.50E-01	8.20E+00	5.24E-01	NA	NA	7.84E+00	Yes	Yes	Max Detect > Risk Criterion
Benzo(g,h,i)perylene	6/80	4.20E-01	2.40E+00	3.16E-01	NA	NA	ND	None	Yes	No Screening Criteria
Benzo(k)fluoranthene	5/80	8.90E-03	8.20E+00	4.95E-01	NA	NA	7.84E+01	No	No	Max Detect < Risk Criterion
Bis(2-ethylhexyl)phthalate	2/18	2.61E-02	9.70E-02	1.94E-01	NA	NA	4.09E+02	No	No	Max Detect < Risk Criterion
Butyl benzyl phthalate	1/18	2.72E-01	2.72E-01	2.07E-01	NA	NA	4.09E+04	No	No	Max Detect < Risk Criterion
Chrysene	8/80	1.19E-02	1.00E+01	5.91E-01	NA	NA	7.84E+02	No	No	Max Detect < Risk Criterion
Di-N-octylphthalate	1/18	2.10E-01	2.10E-01	1.98E-01	NA	NA	4.09E+03	No	No	Max Detect < Risk Criterion

Table 2-12. Selection of Chemicals of Potential Concern in Subsurface Soil at the Former Fire Training Area (SWMU 13)

		Detected	cted				EPA			
		Concentration					Region III			
	Frequency			95% UCL	95% UCL Background	Maximum	Residential	Maximum		
	of	Minimum	Maximum	of Mean	Criteria ^a	Detect >	PRG^{b}	Detect		
Analyte	Detection	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Background?	(mg/kg)	> RBC?	COPC?	Justification
Dibenzo (a, h) anthracene	4/80	6.80E-01	4.50E+00	3.91E-01	ΝA	NA	7.84E-01	Yes	Yes	Max Detect > Risk Criterion
Dibenzofuran	1/18	1.50E-01	1.50E-01	1.97E-01	ΥN	ΝA	8.18E+02	oN	oNo	Max Detect < Risk Criterion
Diphenylamine	2/12	2.37E-01	2.63E-01	2.17E-01	ΥN	ΝA	5.11E+03	oN	οN	Max Detect < Risk Criterion
Fluoranthene	10/80	2.06E-02	9.10E + 00	6.71E-01	ΝA	NA	8.18E + 03	oN	N_0	Max Detect < Risk Criterion
Fluorene	19/80	5.40E-03	4.40E+00	4.13E-01	NA	NA	8.18E+03	No	N_{O}	Max Detect < Risk Criterion
Indeno(1,2,3-cd)pyrene	6/80	6.80E-01	4.50E+00	4.05E-01	ΝA	NA	7.84E+00	oN	N_0	Max Detect < Risk Criterion
Naphthalene	17/80	2.68E-02	1.50E+01	1.31E+00	NA	NA	4.09E+03	No	N_{O}	Max Detect < Risk Criterion
Phenanthrene	21/80	1.31E-02	2.20E+00	4.13E-01	NA	NA	ND	None	Yes	No Screening Criteria
Pyrene	16/80	2.35E-02	8.10E+00	5.91E-01	NA	NA	6.13E+03	No	N_{O}	Max Detect < Risk Criterion
					Metals					
Arsenic	41/62	1.10E+00	1.10E+00 1.04E+01 2.92E+00	2.92E+00	8.04E+00	Yes	3.82E+00	Yes	Yes	Max Detect > Risk Criterion
Barium	62/62	5.60E+00	2.66E+01	1.52E+01	1.70E+01	Yes	1.43E+04	No	N_{O}	Max Detect < Risk Criterion
Chromium	62/62	2.70E+00 4.04E+0	4.04E+01	1.62E+01	1.16E+01	Yes	6.13E+02	No	No	Max Detect < Risk Criterion
Lead	62/62	2.20E+00	1.70E+01	7.69E+00	1.11E+01	Yes	$1.2E+03^{d}$	No	No	Max Detect < Risk Criterion
Mercury	33/62	1.30E-02	9.70E-02	1.85E-02	4.80E-02	Yes	6.13E+01	No	N_{O}	Max Detect < Risk Criterion

Table 2-12. Selection of Chemicals of Potential Concern in Subsurface Soil at the Former Fire Training Area (SWMU 13) (continued)

²SAIC 2000.

^bAvailable at http://www.epa.gov/reg3hwmd/risk/index.htm.

^cValue for 2-methyl naphthalene.

^dFederal standard for lead in bare soil in children's play areas (available at http://www.epa.gov/lead).

95% UCL = 95% upper confidence limit on the mean. NA = Not applicable, background criteria are only applied to inorganic chemicals. ND = No value is available. RBC = Risk based criteria.

		Detected Co	oncentration				EPA					
Analyte	Frequency of Detection	Minimum (µg/L)	Maximum (µg/L)	95% UCL of Mean (µg/L)	Bckgrnd Criteria ^a (µg/L)	Max. Detect > Bckgrnd?	Region III Tap Water Criteria ^b (µg/L)	Max. Detect > Tap Water Criteria?	Max. Detect > MCL?	Max. Detect > MCL?	COPC?	Justification
Analyte	Dettetion	(µg/L)	(µg/L)	(µg/L)	(µg/L)	BTEX	(µg/L)	Cincila:	MCL:	WICL:	core.	Justification
Benzene	14/23	3.30E-01	4.40E+02	1.13E+02	NA	NA	3.19E-01	Yes	5.00E+00	Yes	Yes	Max Detect > Region III Criterion and MCL
Ethylbenzene	14/23	1.40E-01	9.52E+02	2.61E+02	NA	NA	3.25E+00	Yes	7.00E+02	Yes	Yes	Max Detect > Region III Criterion and MCL
Toluene	9/23	2.60E-01	5.20E+02	9.57E+01	NA	NA	7.47E+01	Yes	1.00E+03	No	Yes	Max Detect > Region III Criterion
Xylenes, total	13/23	4.00E-01	5.30E+03	1.29E+03	NA	NA	1.22E+03	Yes	1.00E+04	No	Yes	Max Detect > Region III Criterion
					Semivolat	ile Organic (Compounds					
2-Methylnaphthalene	3/10	2.10E+01	7.20E+01	3.40E+01	NA	NA	1.22E+01	Yes	ND	None	Yes	Max Detect > Region III Criterion
Fluorene	1/8	2.60E+00	2.60E+00	1.23E+00	NA	NA	2.43E+01	No	ND	None	No	Max Detect < Risk Criteria
Naphthalene	6/18	4.00E+00	3.04E+02	6.78E+01	NA	NA	6.51E-01	Yes	ND	None	Yes	Max Detect > Region III Criterion
Phenanthrene	1/8	1.80E+00	1.80E+00	9.55E-01	NA	NA	ND	None	ND	None	Yes	No Screening Criteria
						Metals						
Barium	9/10	1.50E+01	2.40E+01	2.11E+01	7.17E+01	No	2.56E+02	No	2.00E+03	No	No	Max Detect < Background and Risk Criteria
Ferric Iron	3/4	2.20E+02	7.10E+02	6.35E+02	ND	None	ND	None	ND	None	No	Essential Nutrient
Iron	4/4	5.20E+01	7.10E+02	6.35E+02	4.38E+03	No	1.10E+03	No	ND	None	No	Max Detect < Background and Risk Criteria

Table 2-13. Selection of Chemicals of Potential Concern in Groundwater at the Former Fire Training Area (SWMU 13)

^aSAIC 2000.

^bAvailable at http://www.epa.gov/reg3hwmd/risk/index.htm; noncarcinogenic screening values shown are one-tenth of the preliminary remedial goal. ^cAvailable at http://www.epa.gov/ost/drinking/standards/dwstandards.pdf.

95% UCL = 95% upper confidence limit on the mean.
NA = Not applicable, background criteria are only applied to inorganic chemicals.

ND = No value is available.

2.12.2 Ecological Preliminary Risk Evaluation

The revised final RFI Report (SAIC 2000) provided an EPRE for potential terrestrial receptors at the site [see Chapter 8 of the revised final RFI Report (SAIC 2000)]. The media of concern to ecological receptors are surface soil, sediment, and surface water, because these media can be contacted directly by ecological receptors, and contaminants present in these media can accumulate in plants and animals, causing exposure to ecological receptors ingesting them. At SWMU 13, the nearest perennial surface water body, Peacock Creek, is 2,500 feet from the site and there are no other features nearby to receive groundwater discharges. Therefore, sediment and surface water samples were not collected. The media evaluated during the EPRE are surface soil and groundwater.

The EPRE provided a Phase I PRE for potential terrestrial receptors at the site. Preliminary risk calculations identified potential ecological constituents of potential concern (ECOPCs) in surface soil and groundwater, based on a comparison of detected concentrations to toxicity reference values (TRVs) for surrogate species representing ecological receptors.

Barium was detected above reference background criteria in surface soil at SWMU 13 but was below the ecological screening values (ESVs) and was, therefore, not retained as an ECOPC in surface soil. Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, fluoranthene, and pyrene were detected in surface soil above reference background criteria. However, there is uncertainty as to whether these six PAHs are ECOPCs in surface soil, because toxicity data specific to these constituents were not available. These six PAHs were detected in only one surface soil sample that was adjacent to weathered and eroded asphalt. It is likely that this lone sample incorporated some of the asphalt, which resulted in the reported concentrations. All PAHs detected were at low concentrations and are unlikely to pose a risk to ecological receptors given the low concentrations relative to their proposed TRVs, which are one-tenth the TRV for benzo(a)pyrene. Therefore, no organic ECOPCs were identified in surface soil.

Based on preliminary risk calculations, ethylbenzene, total xylenes, and naphthalene were identified as ECOPCs in groundwater. The risk to ecological receptors from ECOPCs in groundwater at SWMU 13 are overestimated by the ESV comparison and preliminary risk calculations. The nearest surface water to SWMU 13 is Peacock Creek, which is 2,500 feet away. If dilution and degradation, before or after discharge, reduces the concentration of ECOPCs by a factor of 10, none of the maximum concentrations would exceed the ESVs for surface water. Supplemental risk calculations (see Section 8.0 of the revised final RFI report) performed to evaluate ecological receptors exposed to ethylbenzene, total xylenes, and naphthalene in groundwater showed that these constituents are unlikely to pose a risk to wildlife receptors.

Based on this EPRE, no ECOPCs were identified in surface soil or groundwater at SWMU 13.

2.13 BASELINE HUMAN HEALTH RISK ASSESSMENT

A BHHRA was performed to assess HHCOPCs in soil and groundwater and CMCOPCs in soil around SWMU 13. The HHCOPCs in soil addressed in the baseline risk assessment included the following constituents: arsenic (subsurface soil), benzo(*a*)pyrene (surface and subsurface soil), benzo(*a*)anthracene (subsurface soil), benzo(*b*)fluoranthene (subsurface soil), and dibenzo(*a*,*h*)anthracene (subsurface soil). The HHCOPCs in groundwater that were evaluated in the BHHRA were BTEX, 2-methylnaphthalene, and naphthalene. Benzo(*g*,*h*,*i*)perylene and phenanthrene were also identified as HHCOPCs in soil and/or groundwater; however, these constituents cannot be included in the quantitative BHHRA because appropriate toxicity data are not available.
Potential groundwater concentrations resulting from leaching of the CMCOPCs benzene, naphthalene, 4-methyl-2-pentanone, benzo(a)anthracene, benzo(b)flouranthene, dibenzo(a,h)anthracene, 2-methylnaphthalene, and arsenic were estimated using the SESOIL leachate model (see Section 2.14). The modeled groundwater concentrations were screened using the respective groundwater screening values to determine which constituents should be evaluated further in the baseline risk assessment. The maximum modeled groundwater concentrations show that benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene naturally attenuate before reaching the water table, and the predicted groundwater concentrations of 2-methylnaphthalene and 4-methyl-2-pentanone do not exceed their respective RBCs. Therefore, these organic constituents are not considered to be CMCOCs and were not addressed in the BHHRA. The CMCOCs benzene and arsenic exceeded their respective screening values; therefore, the BHHRA are discussed below.

Benzo(*a*)pyrene in surface soil was identified as a COC based on the exposure scenario of the future on-site resident child and adult. Therefore, a remedial level was derived for benzo(a)pyrene. The exposure point concentration (EPC) used for surface soil exposures to benzo(a)pyrene in the BHHRA was the maximum detected concentration of this chemical. The maximum detected concentration of benzo(a)pyrene in soil did not change as a result of the supplemental investigations; therefore, the results of the BHHRA do not change and the remedial level derived in the RFI and presented in Table 2-14 remains applicable.

None of the estimated risks from exposure to constituents of potential concern (COPCs) in subsurface soil exceeded screening criteria;, therefore, no COCs were identified for this medium. The EPCs used for subsurface soil exposures in the BHHRA were the 95% upper concentration limit (UCL) of the mean concentration of each (COPC). The 95% UCL concentrations of all organic COPCs decreased as a result of the supplemental investigation. The 95% UCL concentration of arsenic increased slightly (from 2.89 mg/kg to 2.92 mg/kg), and the estimated risk results for arsenic were almost an order of magnitude below screening criteria. Therefore, no new COCs were identified as a result of the supplemental investigation.

BTEX, 2-methylnaphthalene, naphthalene, and phenanthrene were identified as HHCOPCs in groundwater. Groundwater at this site is not currently used for any purpose, and groundwater does not discharge to any nearby surface waters. Therefore, no current receptors are being exposed to HHCOPCs at this site. Potential future receptors include an on-site and off-site worker and a resident. The potential risks associated with exposure of the receptor populations to toluene and total xylenes in groundwater were below the target risk values; therefore, no adverse risks to human health are expected as a result of exposure to these constituents. Benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene are considered to be COCs in groundwater. Benzene is considered to be a COC in groundwater based on the exposure of the future on-site worker, future off-site worker, future on-site resident child, and future on-site resident adult. Ethylbenzene, 2-methylnaphthalene, and naphthalene are COCs based on the exposure scenario for the future on-site resident child. No toxicity data are available to quantitatively evaluate phenanthrene. Remedial levels were derived for benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene. The EPCs used for groundwater exposures in the BHHRA were the 95% UCL of the mean concentration of each COPC. The 95% UCL concentrations of BTEX all decreased as a result of the supplemental investigation, while the 95% UCL concentration of naphthalene rose slightly (from 58.1 µg/L to 67.8 µg/L). The 95% UCL concentration of 2-methylnaphthalene was unchanged. Therefore, no new COCs were identified as a result of the supplemental investigations and the remedial levels derived in the revised final RFI and presented in Table 2-14 remain applicable.

As discussed above, arsenic and benzene were identified as CMCOCs.

Table 2-14. Remedial Levels Derived in the Revised Final RFI Report for Surface Soil and Groundwater at the Former Fire Training Area (SWMU 13)

							Risk-Ba	sed Remedia	al Levels	
			Maximum	Reference	Maximum	T				al Lifetime
Constituent of	Environmental		Detected	Background	Contaminant	1	lazard Inde	X	Cance	r Risk
Concern	Medium	Units	Concentration	Concentration	Level	0.1	0.5	1	1×10^{-6}	1×10^{-5}
Benzo(a)pyrene	Surface Soil	mg/kg	0.39	NA ^c	NA^b	2.32E-02	1.16E-01	2.32E-01	9.8E-02	9.8E-01
2-Methylnaphthalene	Groundwater	mg/L	0.072	NA^{c}	NA^{e}	2.83E-02	1.42E-01	2.83E-01	NA^{a}	NA^{a}
Benzene	Groundwater	mg/L	0.44	NA ^c	5.00E-03	NA^d	NA^d	NA^d	NA^d	NA^d
Ethylbenzene	Groundwater	mg/L	0.94	NA ^c	7.00E-01	NA^d	NA^d	NA^d	NA^d	NA^d
Naphthalene	Groundwater	mg/L	0.304	NA^{c}	NA^{e}	2.98E-02	1.49E-01	2.98E-01	NA ^a	NA^{a}

Bold indicates values that are the recommended remedial values.

 NA^{a} = Not applicable; constituent of concern based on systemic risk only.

NA = Not applicable; constituent of concern based on systemic fisk only. $<math>NA^b = Not applicable; maximum contaminant level is not applicable for this environmental medium.$ $<math>NA^c = Not applicable; reference background concentrations are not available for organic constituents.$ $NA^d = Not applicable; this constituent has a maximum contaminant level.$ $NA^e = Not applicable; a maximum contaminant level is not available for this constituent.$

RCRA = Resource Conservation and Recovery Act.

RFI = RCRA facility investigation.

SWMU = Solid waste management unit.

Remedial levels were derived in the revised final RFI for benzo(*a*)pyrene in surface soil and benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene in groundwater. These remedial levels remain applicable. Remedial levels for CMCOCs in soils were derived in the revised final RFI for arsenic and in this CAP for benzene based on the protection of groundwater.

Human Health Constituents of Concern. Remedial levels were derived in the revised final RFI report and in this CAP for the HHCOCs and CMCOCs and are shown in Tables 2-14 and 2-15. The selection of the recommended remedial levels for soil and groundwater takes into consideration regulatory levels (such as MCLs), risk-based remedial levels, and reference background concentrations of inorganics.

 Table 2-15. Remedial Levels Derived in the Revised Final RFI Report and in the CAP for

 CMCOCs at the Former Fire Training Area (SWMU 13)

			Risk-bas	ed Remedial	Levels (mg/	kg)	-	
	H	Hazard Ind	ex		ILCR		Soil	Reference
							Concentrati on Based	Background Concentration
CMCOC	0.1	0.5	1	1.00E-06	1.00E-05	1.00E-04	on MCL	(mg/kg)
Arsenic	2.32E-02	1.16E-01	2.32E-01	2.80E-03	2.80E-02	2.80E-01	2.48E+00	8.04
Benzene							1.40E-02	

CMCOC = Contaminant migration constituent of concern.

ILCR = Incremental lifetime cancer risk.

MCL = Maximum contaminant level.

NA = Not applicable; a cancer slope factor is not available for this constituent.

RCRA = Resource Conservation and Recovery Act.

RFI = RCRA facility investigation.

SWMU = Solid waste management unit.

Values appearing in **bold** print are the recommended remedial levels.

Benzo(*a*)pyrene was the only COC identified in soil. The remedial level for this constituent addresses the potential risk to a hypothetical future resident (adult and child) exposed to constituents in surface soil via ingestion, inhalation, and dermal contact. The remedial level recommended for benzo(*a*)pyrene in surface soil is 0.98 mg/kg, which corresponds to a total residential cancer risk of 1×10^{-5} . This remedial level takes into account the potential contributions of carcinogens present in groundwater in addition to surface soil.

The MCLs for benzene (5 μ g/L) and ethylbenzene (700 μ g/L) are the recommended remedial levels for these constituents in groundwater. The remedial levels for 2-methylnaphthalene and naphthalene of 142 μ g/L and 149 μ g/L, respectively, were based on risk concentrations. The EPC (34 μ g/L) and maximum concentrations of 2-methylnaphthalene (72 μ g/L) detected in the RFI groundwater samples were below the recommended remedial level. The EPC (67.8 μ g/L) of naphthalene was below the recommended remedial level. The maximum detected concentration of naphthalene (304 μ g/L) was above the recommended remedial level.

Figure 2-5 presents the estimated area of groundwater contamination at SWMU 13 based on these remedial levels.

CMCOCs. Remedial levels for the CMCOCs in soils (arsenic and benzene) were derived based on the protection of groundwater from potential leaching from soil. The remedial level for CMCOCs represents that soil concentration that is unlikely to leach into groundwater or migrate to surface water in concentrations that present a significant threat to human health. The potential risk associated with CMCOCs is not direct exposure to soil, but exposure to the constituents in groundwater; therefore, the

remedial levels in soils were based upon target groundwater concentrations (see Table 2-15). These values are the concentrations of CMCOCs in groundwater, as a result of leaching from soil, that present a defined risk (carcinogenic and/or noncarcinogenic) to the most sensitive receptor (on-site resident). For SWMU 13 the potential remedial levels based on the target groundwater concentrations were below the reference background concentration for arsenic (8.04 mg/kg); therefore, the background concentration for arsenic was recommended as the remedial level. For the CMCOC benzene, the subsurface soil remedial level of 0.014 mg/kg was calculated based on the groundwater MCL of 0.005 mg/L.

2.14 MODELING FOR EVALUATING CONTAMINANT NATURAL ATTENUATION

The following fate and transport was based on soil and groundwater data collected as of calendar year (CY) 2002. Groundwater sampling has been conducted annually since the issuance of the final CAP report in CY 2002 and the fate and transport model has been updated based on the annual groundwater results. Please see CAP Progress Report for CY 2003 (SAIC 2003) and CAP Progress Report for CY 2004 (SAIC 2004).

Fate and transport modeling was performed to develop specific DAFs for the identified COCs (benzene, ethylbenzene, and naphthalene) and CMCOC (benzene). However, modeling was not performed for the CMCOC arsenic, as arsenic was not expected to migrate to the nearest surface water receptor. (See discussion in Section 3.3 for additional information regarding this CMCOC.) A general discussion of the modeling effort is presented in Chapter 6.0 and Appendix G of the revised final RFI Report (SAIC 2000), and the site-specific model parameters and results are discussed in Appendix C of this CAP. Using the measured concentrations in groundwater (as the measured concentration is greater than the predicted concentration based on leaching from contaminated soil from the site), the AT123D model was used to predict the concentration with distance from the source and also the time to achieve the remedial levels.

Benzene was selected as the surrogate chemical from the COCs benzene and ethylbenzene because benzene has a slower degradation rate and higher mobility than ethylbenzene. A steady-state AT123D model was developed by calibrating the model against observed maximum concentrations of benzene in the groundwater beneath SWMU 13. Benzene concentrations in groundwater at monitoring wells MW12, MW13, MW16, and MW18 in two different time frames (December 2000 and June 2002) were used to calibrate the model in order to simulate natural attenuation process. The results of this modeling indicate that the benzene concentration in groundwater is not expected to exceed its remedial level of 5 μ g/L beyond 100 feet from the source. Therefore, benzene from the SWMU 13 site is not expected to be of potential concern at the nearest receptor location [i.e., Peacock Creek (2,500 feet from the source)], as groundwater will be completely free of benzene by the time it reaches the creek. In addition, the modeling shows that benzene concentrations at the source will be reduced to less than its remedial level by natural attenuation processes within 5 years from the time of the last sampling event (June 2002). The time period necessary to attain a concentration of 71.28 μ g/L for benzene, which is the Georgia instate water quality standard, through natural attenuation is predicted to be less than 1.5 years from June 2002.

To further evaluate monitored natural attenuation as a remedial alternative, fate and transport modeling was performed in conjunction with active remediation measures. Multiple AT123D modeling runs were performed by reducing the concentration of benzene at the source. The modeling, presented in Appendix C, shows that the time frame for natural attenuation of benzene to the remedial level reduces to less than 3 years, if the benzene source in the groundwater is reduced to $50 \mu g/L$.

To evaluate the SVOC COCs, a steady-state AT123D model was developed by calibrating the model against observed maximum concentrations of naphthalene [considered as a surrogate chemical for 2-methylnaphthalene and benzo(*a*)pyrene] in the groundwater beneath SWMU 13. During the December 2000 sampling event, a maximum concentration of naphthalene (304 μ g/L) was observed in groundwater at SWMU 13. In order to simulate the natural attenuation process, the data from the

December 2000 sampling event was used to calibrate the naphthalene model. Modeling results indicate that the naphthalene concentration in groundwater is not expected to exceed its remedial level after 3 years from December 2000 (less than 1.5 years from June 2002).

3.0 JUSTIFICATION AND PURPOSE OF CORRECTIVE ACTION

3.1 PURPOSE

EPA has established corrective action standards that reflect the major technical components that should be included with a selected remedy (EPA 1994a). These include the following: (1) protect human health and the environment; (2) attain media cleanup standards set by the implementing agency; (3) control the source of the releases so as to reduce or eliminate, to the extent practicable, further releases that may pose a threat to human health and the environment; (4) comply with any applicable standards for management of wastes; and (5) other factors.

3.2 REMEDIAL RESPONSE OBJECTIVES

Due to the presence of benzene, ethylbenzene, and naphthalene in groundwater at concentrations above remedial levels, corrective action is warranted at SWMU 13. The remedial response objectives for SWMU 13 are to reduce the present concentrations of benzene, ethylbenzene, and naphthalene in groundwater to the remedial levels presented in the revised final RFI Report (SAIC 2000) and in this CAP. The selected remedy would provide the technology necessary to minimize contaminant concentrations in the groundwater and achieve the best overall result with respect to such factors as effectiveness, implementability, and cost.

3.3 IDENTIFICATION OF REMEDIAL LEVELS

COCs were identified in the revised final RFI Report for surface soil, subsurface soil, and groundwater (SAIC 2000). New data have become available as a result of supplemental investigations since the RFI. One new CMCOC in soil (benzene) was identified as a result of the supplemental investigations. The remedial level presented in the RFI remains applicable; however, an additional remedial level has been derived in this CAP for the new CMCOC, benzene. The COCs and their respective remedial levels are discussed in Sections 2.10 and 2.11, in the following paragraphs, and are shown on Tables 3-1 through 3-3.

Analyte	Surface Soil Remedial Level (µg/kg)	Maximum Soil Concentration (µg/kg)	Recommendation
Benzo(<i>a</i>)pyrene	980	390	No further investigation/action is required as the maximum concentration is less than the remedial level.

Surface Soil. Benzo(*a*)pyrene was identified as a COC for surface soil based on direct exposure. Benzo(*a*)pyrene was detected in only one sample at a concentration of $390 \,\mu$ g/kg. This sample was collected from an area adjacent to weathered and eroded asphalt pavement. It is reasonable to expect that some asphalt fragments eroded from the weathered pavement could have been incorporated into the sample during the collection and, thus, biased the sample results. Based on the low frequency of detection of benzo(*a*)pyrene in surface soil, the likely biased nature of the one detectable result, and the fact that the maximum detected concentration of benzo(*a*)pyrene in surface soil is less than the remedial level (Table 3-1), no remediation for surface soil is recommended.

Table 3-2. Remedial Levels for	CMCOCs in Subsurface Soil at the Form	ner Fire Training Area (SWMU 13)

Analyte	Subsurface Soil Remedial Level (mg/kg)	Maximum Soil Concentration (mg/kg)	Recommendation
Arsenic	8.04	10.4	No further investigation/remedial action is required due to its ubiquitous nature at this site and the fact that only 2 of the 62 samples exceeded the remedial level (background).
Benzene	0.014	0.24	No further investigation/remedial action is required. Based on the modeling results (see Appendix C, Section C.5), it can be concluded that the soil concentration of benzene will be reduced to its soil remedial level through natural attenuation before the groundwater concentration is reduced to its groundwater remedial level for benzene.

CMCOC = Contaminant migration constituent of concern. RCRA = Resource Conservation and Recovery Act.

RFI = RCRA facility investigation.

Table 3-3. Remedial Levels for COCs in Groundwater at the Former Fire Training Area (SWMU 13)

Analyte	Groundwater Remedial Level (µg/L)	Maximum Concentration in RFI Sampling (µg/L)	Maximum Concentration in December 2000 Sampling (μg/L)	Maximum Concentration in June 2002 Sampling (μg/L)	Recommendation
Benzene	5	440	418	120	Corrective action recommended.
Ethylbenzene	700	940	952	486	Corrective action recommended.
2- Methylnaphthalene	142	72	NA	NA	No further investigation/ remedial action is required as the maximum detected concentrations is below the remedial level.
Naphthalene	149	140	304 J	NA	Corrective action recommended.

J = Indicates compound was positively identified; numerical value is approximate concentration of the compound in the sample.

 $\dot{COC} = Constituent of concern.$

NA = Not analyzed.

RFI = RCRA facility investigation. SWMU = Solid waste management unit.

RCRA = Resource Conservation and Recovery Act.

Subsurface Soil. Arsenic and chromium were identified as CMCOCs based on the exposure of the future on-site groundskeeper, future off-site installation worker, future on-site resident child, and future on-site resident adult being exposed to leaching from soils to groundwater.

Arsenic was detected in 40 of 61 samples ranging from 1.1 mg/kg to 10.4 mg/kg with an average result of 2.46 mg/kg (see Table 3-2). The reference background concentration of 8.04 mg/kg exceeded the RBC of 3.8 mg/kg and indicates that arsenic naturally occurs at levels greater than its RBC throughout the FSMR. None of the RFI samples had arsenic concentrations that exceeded its remedial level. From the IM data, two samples from the same borehole exceeded the remedial level [location SA-21 at 2 feet bgs (10.4 mg/kg) and at 3 feet bgs (9 mg/kg)]. At this location, soils to a depth of 2 feet bgs were excavated during the IM. Due to the ubiquitousness of arsenic at the FSMR, and the fact that none of the RFI samples exceeded the reference background concentration, remediation of subsurface soil for arsenic is not recommended.

Based on a review of data generated from supplemental investigations, benzene was identified as a CMCOC as it is predicted to reach the water table with concentrations exceeding its respective MCL. Based on modeling results, the maximum predicted concentration of benzene based on leaching to groundwater will be reduced to its MCL within 4 years from January 2002 (i.e., 3.5 years from June 2002). Therefore, it may be concluded that the soil concentration of benzene will be reduced to its soil remedial level before the groundwater concentration is reduced to its groundwater remedial level at the site. Based on this information, no remediation of subsurface soil for benzene is recommended.

Groundwater. Remedial levels were developed in the revised final RFI Report for four groundwater COCs. These remedial levels are based on MCLs and RBCs, which take into consideration both human health and technological limitations. No new COCs for groundwater were identified as a result of the supplemental investigations; therefore, the remedial levels derived in the revised final RFI remain applicable. These remedial levels shown in Table 3-3 are protective of direct exposure to residents by hazardous constituents in groundwater. However, it is recognized that groundwater is not used at this site as a source of drinking water and that it will take approximately 178 years for groundwater to reach the nearest receptor at Peacock Creek, which is 2,500 feet from SWMU 13. These constituents will naturally attenuate in groundwater through retardation and biodegradation before reaching Peacock Creek. As the maximum detected concentration of 2-methylnaphthalene in the RFI samples was below the recommended remedial level; no further investigation or study is required to address this constituent in groundwater.

THIS PAGE INTENTIONALLY LEFT BLANK.

4.0 SCREENING OF CORRECTIVE ACTIONS

This chapter presents the identification of technologies applicable for the remediation of the SWMU 13 site and screens the technologies with respect to effectiveness, implementability, and cost. The technologies that are retained following screening are then combined into corrective action alternatives that address the COCs at SWMU 13. These alternatives are then evaluated with respect to time implementation and total life-cycle cost.

4.1 SCREENING CRITERIA

The first step in the development of corrective action alternatives involves the identification and screening of technologies applicable to the site. The purpose of this step is to list and evaluate the general suitability of remedial technologies for meeting the stated remedial response objectives. The technologies are evaluated for their general ability to protect human health and the environment. Technologies that pass the initial screening phase will be retained for subsequent evaluation as corrective actions.

The technologies are compared using three general criteria: effectiveness, implementability, and cost. The explanation of each criterion is described below.

4.1.1 Effectiveness

This criterion evaluates the extent to which a corrective action reduces overall risk to human health and the environment. It also considers the degree to which the action provides sufficient long-term controls and reliability to prevent exposures that exceed levels protective of human and environmental receptors. Factors considered include performance characteristics and the ability to reduce contaminant concentration.

4.1.2 Implementability

This criterion evaluates the technical and administrative factors affecting implementation of a corrective action and considers the availability of services and materials required during implementation. Technical factors assessed include ease and reliability of initiating construction and operations, prospects for implementing any additional future actions, and adequacy of monitoring systems to detect failures. Technical feasibility considers the performance history of the technologies in direct applications or the expected performance for similar applications. Uncertainties associated with construction, operation, and performance monitoring are also considered.

Service and material considerations include equipment and operator availability and applicability or development requirements for prospective technologies. The availability of services and materials is addressed by considering the material components of the proposed technologies and the locations and quantities of those materials. Administrative factors include ease of obtaining permits, enforcing deed restrictions, or maintaining long-term control of the site.

Potentially applicable technologies are identified in Table 4-1.

Table 4-1. Evaluation of Corrective Actions/Technologies at the Former Fire Training Area (SWMU 13)

Action/ Technology	Description	Effectiveness	Implementability	Costs
No Action	The "No Action" alternative provides a baseline against which other actions can be compared. Under the No Action alternative, any remaining source and the groundwater would be left "as is," without implementing any removal, treatment, or other mitigating actions to reduce existing or potential future exposure.	This alternative would not meet the remedial response objectives. This alternative does not provide protection of human health or the environment because attainment of remedial levels would not be confirmed.	There is no impediment to implementation of this alternative because no action is taken.	There would be no cost associated with the No Action alternative.
Institutional Controls	Technologies associated with institutional controls would reduce potential hazards by limiting exposure of humans to contaminated groundwater. Groundwater use restrictions would prohibit the use of groundwater as a drinking water supply. Excavation permit restrictions would prohibit any construction at the site that might disturb the soil or allow contact with the groundwater.	This technology alone would not meet the remedial response objectives. Assuming compliance with groundwater use restrictions, this technology would be effective and provide reliability with respect to eliminating human exposure to contaminated groundwater within the boundaries of the site. However, use of surficial groundwater at this site for drinking water is unlikely.	Very few factors limit implementability of institutional controls. The property is not expected to be developed in the near future and will remain under federal ownership. Therefore, this alternative is readily implementable.	Low; would require establishing groundwater use and excavation restrictions.
Monitored Natural Attenuation	This action would require monitoring the contaminant levels to ensure that the mass of contamination is being reduced over time in accordance with OSWER Directive 9200.4-17P. A total of seven wells would be sampled annually for approximately 6 years (includes 1-year contingency) and analyzed for BTEX and natural attenuation parameters (e.g., methane, NO ₂ /NO ₃). Additionally, one-time sampling events would initially be performed as a baseline and 1 year after the final annual event for confirmation sampling to determine if remedial levels were met.	Two interim actions have been conducted at this site to remove suspected source materials, and concentrations of BTEX constituents in groundwater are lower than previously observed. Therefore, natural attenuation of BTEX constituents would be effective. Remedial levels for groundwater would be achieved in 6 years (includes a 1-year contingency period).	This alternative is readily implementable and would require monitoring a total of seven wells at the site for approximately 6 years (includes a 1-year contingency period). In addition, baseline and confirmatory (1 year after the completion of annual monitoring) groundwater sampling would be required.	Low; would require annual sampling/ monitoring of seven wells for approximately 6 years (includes a 1-year contingency period). In addition, baseline and confirmatory (1 year after the completion of annual monitoring) groundwater sampling would be required.

Action/ Technology	Description	Effectiveness	Implementability	Costs
Air Sparging	Air sparging involves injecting a gas, usually air, under pressure, into the subsurface to volatilize groundwater contaminants and to promote biodegradation by increasing subsurface oxygen concentrations. Groundwater sampling would be performed at the completion of the treatment to confirm that remedial levels had been achieved.	This technology has been proven to be effective for the COCs found at this site.	The equipment is readily available. Compressors and other air injection system components would be operated for up to 2 years (includes a 6-month contingency period). Up to seven injection wells would have to be installed. Monitoring and maintenance of the wells would be required. A UIC permit would be required for the injection of air.	Moderate; \$20 to \$50 per ton of saturated soil (EPA 1995b).
Enhanced Bioremediation (Pure Oxygen Injection)	Enhanced bioremediation is the enhancement of one aspect of natural attenuation. The activity of naturally occurring microbes is stimulated by injecting 98 percent pure oxygen to enhance in situ biological degradation of organic contaminants. Nutrients or other additives may be used to encourage the natural biodegradation processes. Groundwater sampling would be performed at the completion of the treatment to confirm that remedial levels had been achieved.	This technology has been proven to be effective for the volatile organic chemicals found at this site (benzene and ethylbenzene).	The equipment is readily available, and the treatment applicable to a small site. Up to 13 injection points would have to be installed. The bioremediation process may require continuous monitoring and maintenance to prevent plugging of injection wells by microbial growth or mineral precipitation. A UIC permit would be required for the injection of oxygen or nutrients.	Moderate; similar to air sparging based on quote from manufacturer.

Table 4-1. Evaluation of Corrective Actions/Technologies at the Former Fire Training Area (SWMU 13) (continued)

Action/				Ċ
Enhanced Bioremediation (PHOSter® II)	Similar to pure oxygen injection, the PHOSter® II technology enhances natural attenuation through injection of vapor-phase phosphorous, nitrogen, and air. Groundwater sampling would be performed at the completion of the treatment to confirm that remedial levels had been achieved.	PHOSter® II is an innovative technology that has been demonstrated in limited applications to be effective for fuels and related BTEX components. Technical performance is highly uncertain due to limited full-scale implementation.	Equipment readily available and applicable to a small site. Because this technology is innovative and relatively new, there is a high degree of uncertainty regarding the radius of influence and treatment time required. Longer-term operations may require monitoring to prevent plugging of injection wells by microbial growth or mineral precipitation.	Losus Moderate to high; similar to air sparging; costs dependent on required treatment time.
Geo-Cleanse®	The Geo-Cleanse® Process is an aggressive, pressurized injection of concentrated hydrogen peroxide and ferrous iron catalyst (together known as Fenton's reagent) that generates a hydroxyl free radical that acts as the active oxidizing agent. Oxidation of an organic compound by Fenton's reagent is a rapid and exothermic (heat-producing) reaction. Groundwater sampling would be performed at the completion of the treatment to confirm that remedial levels had been achieved.	Shallow depth to groundwater at the site may limit effectiveness. Multiple applications might be required to achieve remedial levels. Chemical oxidation would temporarily destroy any natural bioremediation processes ongoing at the site.	Equipment is readily available. There is uncertainty regarding the treatment time and number of reapplications required for this site. A UIC permit would be required for the injection of hydrogen peroxide and a catalyst.	High; \$100 to \$200 per ton of saturated soil; cost would be based on bid price and number of reapplications required.
BTEX = Benzene, toluene, eth. COC = Constituent of concern. EPA = U.S. Environmental Prc OSWER = Office of Solid Was UIC = Underground Injection I	BTEX = Benzene, toluene, ethylbenzene, and total xylenes. COC = Constituent of concern. EPA = U.S. Environmental Protection Agency. OSWER = Office of Solid Waste and Emergency Response. UIC = Underground Injection Permit.			

Table 4-1. Evaluation of Corrective Actions/Technologies at the Former Fire Training Area (SWMU 13) (continued)

4.1.3 Cost

Relative costs are included for each corrective action technology to facilitate evaluation and comparison among the alternatives. Detailed cost estimates are not prepared at this screening stage. Typical cost estimating contingencies have been excluded from the relative costs.

4.2 EVALUATION OF CORRECTIVE ACTION TECHNOLOGIES

Four general categories of corrective actions were identified. These include (1) no action, (2) institutional controls, (3) monitored natural attenuation, and/or (4) active remediation. Various corrective action technologies were identified for the active remediation of benzene, ethylbenzene, and naphthalene in groundwater including air sparging, enhanced bioremediation (pure oxygen injection), and chemical oxidation (Geo-Cleanse®). The technologies are described in Table 4-1. The technologies were evaluated using the screening criteria of effectiveness, implementability, and cost. The results of the technology screening are also shown on Table 4-1.

The "No Action" alternative was not considered to be viable due to the need to ensure that benzene, ethylbenzene, and naphthalene concentrations reach the remedial levels. Institutional controls were not considered further since they are appropriate for this site only when combined with other technologies, such as monitored natural attenuation. Enhanced bioremediation using the PHOSter® technology was eliminated from further consideration as more conventional technologies (like pure oxygen injection) are likely to be less expensive and would result in the same effectiveness for the contaminants. In situ chemical oxidation (the Geo-Cleanse® process) was also excluded from further consideration because of its very high cost, the uncertainty of its effectiveness, and because it would likely destroy any natural biodegradation processes that have been observed at the site.

The technologies that were retained for further evaluation include monitored natural attenuation, air sparging, and oxygen injection.

4.3 CORRECTIVE ACTION ALTERNATIVES

The technologies retained following the screening step were used in various combinations to meet the remedial response objectives for groundwater. The five alternatives identified, and subsequently evaluated, for the remediation of benzene, ethylbenzene, and naphthalene in groundwater are as follows:

- Alternative 1: Monitored natural attenuation,
- Alternative 2: Air sparging,
- Alternative 3: Oxygen injection,
- Alternative 4: Air sparging and monitored natural attenuation, and
- Alternative 5: Oxygen injection and monitored natural attenuation.

4.3.1 Evaluation Factors

Based on the results of the technology screening, each of the retained technologies is considered applicable to the site, implementable, and cost-effective. Therefore, two primary evaluation factors were used in the selection of the preferred corrective action alternative: time to implement and life-cycle cost.

Time to Implement

Time to implement the action is an important evaluation factor for this site. Preferably, the site would be remediated to meet remedial levels for groundwater in the shortest possible time. For each alternative, an estimate was made of the duration of any active remediation system, or the duration of any natural attenuation period. For the purposes of estimating costs for the alternatives, a contingency time period was added to the remediation time and is identified separately. For all alternatives, confirmatory groundwater sampling would be performed following the remediation/attenuation period to verify that remedial levels in groundwater have been met.

Life-Cycle Cost

The life-cycle cost estimates are budget estimates based on conceptual designs and are to be used for comparison purposes only. Costs are estimated for capital construction and for operation and maintenance. Cost estimates are derived from current information including vendor quotes, conventional cost estimating guides (e.g., Means 1999 and ECHOS 1998), and costs associated with similar projects. The actual costs of the project would depend on labor and material costs, site conditions, competitive market conditions, final project scope, and implementation schedule at the time that the corrective action is initiated. The life-cycle cost estimates have not been adjusted to present worth costs, and no escalation factors have been applied. Appendix D presents a summary of the life-cycle cost estimates for each alternative.

4.3.2 Evaluation of Corrective Action Alternatives

The five corrective action alternatives for COCs at the site are summarized in Tables 4-2 and 4-3, along with the associated time to reach remedial levels and life-cycle costs. All of the alternatives would include the common features listed below.

- Pre-remediation baseline groundwater sampling (VOC and SVOC analysis) to confirm the present groundwater concentrations.
- The use of benzene as a surrogate parameter to track the effectiveness of the corrective action.
- Groundwater monitoring to track the effectiveness of the corrective action. As noted in the revised final RFI Report, groundwater monitoring wells MW2, MW5, and MW7 were properly abandoned during the 1997 IM activities. Groundwater monitoring wells MW1 and MW6 were destroyed following the RFI activities. During the 2001/2002 IRA, groundwater monitoring well MW12 was removed and MW14 was damaged. The monitoring well network proposed for sampling during the baseline, remediation, and confirmation sampling events consists of the following wells:
 - —MW3 will monitor upgradient conditions;
 - —MW9 will monitor cross-gradient/lateral conditions;
 - ---MW10 will monitor downgradient conditions; and
 - ---MW15, MW16, MW18, and MW19 will monitor conditions within the contaminated groundwater plume.

Thus, a total of seven wells will be used to monitor the groundwater at this site.

• Post-remediation confirmatory groundwater sampling (VOC and SVOC analysis) to verify that the groundwater remedial levels have been achieved.

Table 4-2. Corrective Action	Alternatives for the Form	er Fire Training Area (SWMU 13)
------------------------------	---------------------------	---------------------------------

Corrective Action	Description	Time to Implement	Cost	Comments
Alternative 1.	The action would require	The estimated time to reach the remedial level for	Approximately \$244,000 (baseline	Least expensive,
Monitored Natural	the monitoring of	benzene and ethylbenzene is approximately	groundwater sampling and annual	but longest
Attenuation	contaminant levels to	6 years (including a 1-year contingency period)	monitoring of seven wells during	implementation time.
	ensure the reduction of	for a total implementation time of 7 years.	the attenuation period, and	-
	contaminants through	(Naphthalene is expected to reach its remedial	confirmatory groundwater	
	biodegradation and	level in approximately 1.5 years.)	sampling of seven wells at 1 year	
	dispersion.		after remedial action completion).	
Alternative 2.	Air sparging of ground	Air sparging treatment would require	Approximately \$671,000 (baseline	Moderately expensive
Air Sparging	water to below the	approximately 23 months (including a 6-month	groundwater sampling at seven	to implement and
	remedial levels.	contingency period) to reduce the estimated	wells, monthly sampling of seven	moderately short time
		maximum concentration of benzene at the former	wells for 4 months and bimonthly	frame.
	Treatment using	location of MW12 from 210 µg/L to the remedial	sampling thereafter during	
	seven injection wells	level of 5 µg/L. Confirmatory groundwater	treatment, treatment, and	
	operated at 10 scfm each	sampling would be performed 1 year after air	confirmatory groundwater	
	(70 scfm total).	sparging treatment is complete, for a total	sampling of seven wells at 1 year	
		implementation time of slightly less than 3 years.	after remedial action completion).	
Alternative 3.	Enhanced bioremediation	Oxygen injection treatment would require	Approximately \$873,000 (baseline	More costly than
Enhanced	of groundwater to below	approximately 34 months (including a 6-month	groundwater sampling at seven	Alternative 2 with
Bioremediation	the remedial levels.	contingency period) to reduce the estimated	wells, monthly sampling of seven	longer implementation
(Pure Oxygen		maximum concentration of benzene at the former	wells for 4 months and bimonthly	time.
Injection)	Treatment using	location of MW12 from 210 μ g/L to the remedial	sampling thereafter during	
5	13 injection points	level of 5 µg/L. Confirmatory groundwater	treatment, treatment, and	
	operated at 0.7 scfm each	sampling would be performed 1 year after oxygen	confirmatory groundwater	
	(9 scfm total).	injection treatment is complete, for a total	sampling of seven wells at 1 year	
		implementation time of slightly less than 4 years.	after remedial action completion).	
Alternative 4.	Air sparging of	Air sparging treatment would require	Approximately \$522,000 (baseline	Less costly than
Air Sparging and	groundwater to 50 µg/L	approximately 10 months (including a 3-month	groundwater sampling at seven	Alternative 2 with
Monitored Natural	followed by monitored	contingency period) to reduce benzene to $50 \mu g/L$.	wells, monthly sampling of seven	more than twice the
Attenuation	natural attenuation of	Natural attenuation would require an additional	wells for 4 months and bimonthly	length of time needed
	residual contamination in	3.5 years (including a 6-month contingency	sampling thereafter during	to implement.
	groundwater.	period) to reach the remedial level for benzene of	treatment, treatment, annual	-
		5μ g/L. Confirmatory groundwater sampling	monitoring of seven wells during	
	Treatment using	would be performed 1 year after the natural	the attenuation period, and	
	three injection wells	attenuation period, for a total implementation time	confirmatory groundwater	
	operated at 10 scfm each	of approximately 7 years.	sampling of seven wells at 1 year	
	(30 scfm total).		after remedial action completion).	

Corrective Action	Description	Time to Implement	Cost	Comments
Alternative 5.	Enhanced bioremediation	Oxygen injection treatment would require	Approximately \$594,000 (baseline	Less costly than
Enhanced	of groundwater to $50 \mu g/L$	approximately 13 months (including a 3-month	groundwater sampling at seven	Alternative 3 with over
Bioremediation	followed by monitored	contingency period) to reduce benzene to $50 \mu g/L$.	wells, monthly sampling of seven	twice the length
and Monitored	natural attenuation of	Natural attenuation would require an additional	wells for 4 months and bimonthly	of time needed to
Natural Attenuation	residual contamination	3.5 years (including a 6-month contingency	sampling thereafter during	implement.
	in groundwater.	period) to reach the remedial level for benzene of	treatment, treatment, annual	_
	_	5 µg/L. Confirmatory groundwater sampling	monitoring of seven wells during	
	Treatment using	would be performed 1 year after the natural	the attenuation period, and	
	five injection points	attenuation period, for a total implementation time	confirmatory groundwater	
	operated at 0.7 scfm each	of over 7 years.	sampling of seven wells at 1 year	
	(3.5 scfm total).		after remedial action completion).	

Table 4-2. Corrective Action Alternatives (continued)

Note: Cost estimates have been rounded to the nearest thousand dollars.

scfm = Standard cubic feet per minute.

Table 4-3. Corrective Action Alternative Design Parameters for the Former Fire Training Area (SWMU 13)

Design Parameter	Alternative 1, Monitored Natural Attenuation	Alternative 2, Air Sparging	Alternative 3, Oxygen Injection	Alternative 4, Air Sparging (to 50 µg/L) with Monitored Natural Attenuation	Alternative 5, Oxygen Injection (to 50 µg/L) with Monitored Natural Attenuation
Total remediation	7	3	4	5.5	5.5
time period (years) ^{a}	7	5	-	5.5	5.5
Cost (\$)	244,000	671,000	873,000	522,000	594,000
	211,000	Active Rei	,	322,000	571,000
Active remediation	0	17	28	7	10
time period (months)	Ū	17	-0	,	10
Contingency time period (months)	NA	6	6	3	3
Number of injection wells installed	0	7	13	3	5
Number of groundwater wells sampled during active remediation period	NA	7	7	7	7
Frequency of	NA	Monthly for	Monthly for	Monthly for first	Monthly for first 4
groundwater		first 4 months	first 4 months	4 months and	months and
sampling during		and bimonthly	and bimonthly	bimonthly	bimonthly
active remediation		thereafter	thereafter	thereafter	thereafter
	-	Natural At	tenuation		
Natural attenuation time period (years)	5	0	0	3	3
Contingency time period (years)	1	0	0	0.5	0.5
Number of groundwater wells sampled during natural attenuation period	7	NA	NA	7	7
Frequency of groundwater sampling during natural attenuation period	Annually	NA	NA	Annually	Annually

^aTotal remediation time periods for all alternatives includes one additional year to perform the confirmation groundwater sampling. Total remediation times are rounded to the nearest 1/2 of a year.

Note: Cost estimates have been rounded to the nearest thousand dollars.

NA = Not applicable.

The paragraphs that follow summarize the evaluation of the five corrective action alternatives with respect to the primary evaluation factors of time to implement and life-cycle cost.

Alternative 1: Monitored Natural Attenuation

Monitored natural attenuation would involve initial baseline groundwater sampling of seven monitoring wells (existing wells MW3, MW9, MW10, MW15, MW16, MW18, and MW19). Following the baseline sampling, these seven groundwater monitoring wells would be sampled annually for approximately 6 years (time period includes 1-year contingency) and the samples analyzed for VOCs, SVOCs, and natural attenuation parameters (nitrate/nitrite, sulfate/sulfide, total iron, total phosphorous, carbon dioxide, and methane). During that time, benzene concentrations in groundwater are predicted to decline below the remedial level of 5 μ g/L. Annual sampling is appropriate for long-term monitoring at SWMU 13 because historical sampling events conducted since 1993 have defined baseline conditions, and an additional pre-remediation baseline sampling event would confirm those conditions still exist. Confirmatory groundwater sampling of all seven monitoring wells would be performed 1 year after the natural attenuation period to verify that the remedial levels for all COCs have been met. This is the least expensive alternative with a life-cycle cost of approximately \$244,000, but it is also the longest to implement, at 7 years (5 years for natural attenuation, 1-year contingency period, and 1 year for the confirmatory sampling).

Alternative 2: Air Sparging

Initial baseline groundwater sampling would be performed to determine the present nature of the contamination and to establish parameters for the air sparging design. Baseline groundwater samples would be collected from seven existing monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19).

Approximately seven air injection wells would be installed to treat the contaminated groundwater. Treatment would continue until the concentration of benzene has declined to below its remedial level of $5 \mu g/L$, estimated to require approximately 23 months (including a 6-month contingency period). The other COCs should not exceed their remedial levels during the remediation period. The groundwater monitoring network would be the same as that discussed under natural attenuation and would include sampling of seven existing monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19) to verify that treatment is progressing. Samples would be collected monthly for the first 4 months and bimonthly thereafter until treatment operations were completed. The groundwater samples would be analyzed for VOCs and SVOCs. This active treatment period would be followed by confirmation groundwater sampling (once after 1 year) to verify that the remedial levels for all COCs have been met and maintained. This alternative is moderately expensive, with a life-cycle cost of approximately \$671,000. The total time to implement would be approximately 3 years (17 months for air sparging, a 6-month contingency period, and 1 year for confirmatory sampling).

Alternative 3: Enhanced Bioremediation (Pure Oxygen Injection)

Initial baseline groundwater sampling would be performed to determine the present nature of the contamination and to establish parameters for the oxygen injection design. Baseline groundwater samples would be collected from seven existing monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19).

Approximately 13 oxygen injection points would be installed to treat the contaminated groundwater. Treatment would consist of enhancing bioremediation by injecting 98 percent pure oxygen and would continue until the concentration of benzene has declined to below its remedial level of 5 μ g/L, estimated

to require approximately 28 months (includes a 6-month contingency period). The other COCs should not exceed their remedial levels during the remediation period. The groundwater monitoring network would be the same as that discussed under natural attenuation and would include sampling of seven existing monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19) to verify that treatment is progressing. Samples would be collected monthly for the first 4 months and bimonthly thereafter until treatment operations were completed. The groundwater samples would be analyzed for VOCs and SVOCs. This active treatment period would be followed by confirmation groundwater sampling (once after 1 year) to verify that the remedial levels for all COCs have been met and maintained. This alternative is more expensive than Alternative 2, with a life-cycle cost of approximately \$873,000. The implementation time (approximately 4 years, which includes 28 months of oxygen injection, a 6-month contingency period, and 1 year for confirmatory sampling) is slightly longer than Alternative 2.

Alternative 4: Air Sparging and Monitored Natural Attenuation

Initial baseline groundwater sampling would be performed to determine the present nature of the contamination and to establish parameters for the air sparging design. Baseline groundwater samples would be collected from seven existing monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19).

Under this alternative, air sparging in groundwater would be shut down once benzene concentrations in groundwater declined below 50 μ g/L. Three or more air injection wells would be installed. Treatment would continue for approximately 10 months (includes a 3-month contingency period). During the air sparging operations, seven monitoring wells would be sampled monthly for the first 4 months of operation, then sampled bimonthly thereafter during the active treatment period. The samples would be analyzed for VOCs and SVOCs. Following this active treatment period, benzene concentrations in groundwater would continue to decline due to natural attenuation. Monitored natural attenuation with annual groundwater sampling would be provided for approximately 3.5 years (includes a 6-month contingency period) following active treatment. Confirmatory groundwater sampling of the eight monitoring wells would be performed 1 year after the natural attenuation period to verify that the remedial levels for all COCs have been met. The estimated life-cycle cost for this alternative, \$522,000, is less than Alternative 2; however, the alternative would require approximately 5.5 years to implement (7 months of active remediation, 3 years for natural attenuation, a 9-month total contingency period, and 1 year for confirmatory sampling), which is longer than twice the time needed for Alternative 2 or Alternative 3.

Alternative 5: Enhanced Bioremediation and Monitored Natural Attenuation

Initial baseline groundwater sampling would be performed to determine the present nature of the contamination and to establish parameters for the oxygen injection design. Baseline groundwater samples would be collected from seven existing monitoring wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19).

This alternative is similar to Alternative 4 in that groundwater treatment using enhanced bioremediation (pure oxygen injection) would be shut down once benzene concentrations in groundwater decline below $50 \ \mu g/L$. Five or more oxygen injection points would be installed. Treatment would continue for approximately 10 months (includes a 3-month contingency period) followed by approximately 3.5 years (includes a 6-month contingency period) of monitored natural attenuation. During the oxygen injection operations, seven monitoring wells would be sampled monthly for the first 4 months of operation, then sampled bimonthly thereafter during the active treatment period. The samples would be analyzed for VOCs and SVOCs. Monitored natural attenuation with annual groundwater sampling would be provided

for approximately 3.5 years following active treatment. Confirmatory groundwater sampling would be conducted 1 year later to verify that the remedial levels for all COCs have been met. The estimated life-cycle cost for this alternative, \$594,000, is less than both Alternative 2 and Alternative3, but higher than Alternative 4. The alternative would require approximately 5.5 years to implement (10 months of active remediation, 3 years for natural attenuation, a 9-month total contingency period, and 1 year for confirmatory sampling), similar to Alternative 4, but longer than the time needed for Alternative 2 or Alternative 3.

5.0 CONCEPTUAL DESIGN AND IMPLEMENTATION PLAN

This section presents a conceptual design and plan for implementation of the selected corrective action alternative. Based on the available groundwater data and modeling results, a cost-effective corrective action has been selected that will reduce the COCs in groundwater to the required remedial levels. The technology evaluation presented in Chapter 4.0 considered five different corrective action alternatives for the groundwater based on the time needed to implement them and their life-cycle costs. Based on that evaluation, Alternative 1, monitored natural attenuation, has been selected for remediation of the groundwater at the former FTA because of its acceptable implementation time and cost-effectiveness. An O&M Plan for this alternative is presented in Appendix E.

5.1 SELECTED CORRECTIVE ACTION

The selected corrective action alternative for treatment of the groundwater is monitored natural attenuation. In addition, implementation of institutional controls (i.e., land use controls) would be required for the duration of the monitored natural attenuation alternative to establish the activities that are permitted at the site during the natural attenuation period (i.e., until site remedial levels have been achieved).

5.1.1 Justification for Selection of Corrective Action

Monitored natural attenuation has been selected for remediation of the groundwater because it will effectively achieve the remedial levels in a reasonable period of time and will do so cost effectively. Monitored natural attenuation is expected to achieve the groundwater remedial levels in less than 6 years (includes a 1-year contingency period); however, confirmatory groundwater sampling and analysis will be conducted 1 year after completion of the monitored attenuation period to provide additional assurance that concentrations of COCs do not exceed their remedial levels. Other corrective action alternatives evaluated would be more costly to implement.

Monitored natural attenuation is appropriate for addressing the site COCs in groundwater at SWMU 13. Appendix F lists considerations for the selection of monitored natural attenuation for the contaminated groundwater plume in accordance with the guidance of OSWER Directive 9200.4-17P (EPA 1999a).

Justification for the selection of this corrective action alternative is provided in the following evaluations of effectiveness, implementability, and cost.

Effectiveness. The selected corrective action will be effective in protecting human health and the environment. Based on the conclusions of the Phase II RFI, there is no current human health or ecological risk associated with contaminants at SWMU 13. Two interim actions have been completed at the site and the suspected sources removed (see Section 2.8). Potential exposure to groundwater is extremely unlikely because the shallow groundwater is not a viable source of drinking water, and because there is no discharge to surface water at the site. Based on modeling results, the benzene concentration in groundwater is expected to drop the MCL of 5 μ g/L to within 100 feet of the source area (near former groundwater monitoring well MW12). The selected alternative will achieve the remedial level within a reasonable time frame (7 years), thereby effectively eliminating any potential future risk. The selected alternative will not require long-term O&M beyond the natural attenuation monitoring period and 1-year confirmatory sampling period; therefore, it will provide long-term reliability. Short-term risks to human health or the environment will be minimal because attenuation will occur in situ. As no active remediation will be performed, there will be no air emissions Minimal exposure could result during monitoring well

sampling; however, any exposure will be minimized and kept below acceptable levels through the use of proper protective clothing and strict adherence to the project-specific health and safety plan.

The time required to achieve remedial levels has been estimated as 7 years (5 years of natural attenuation, 1 year for contingency, and 1 year for post remediation sampling). This time was determined through modeling using benzene as the primary COC and assuming a degradation half-life of 730 days.

Implementability. The selected corrective action is readily implementable. The remedial levels for the COCs will be achieved in a reasonable time period. Confirmatory sampling will be performed 1 year after the natural attenuation period, resulting in a total of 7 years to complete the alternative. The selected corrective action will use annual monitoring of COC concentrations to ensure that the remedial levels for the site are being met.

Cost. The estimated total life-cycle cost of confirmatory sampling and project reporting for the selected corrective action is \$244,000. Monitored natural attenuation is the least expensive of the remediation alternatives and will require 7 years to achieve the remedial levels. Costs estimated for the active remediation alternatives are higher than those for monitored natural attenuation and range from \$522,000 to \$873,000.

5.2 CONCEPTUAL DESIGN

The conceptual design and cost estimate presented in this section are based on the subsurface stratigraphy information presented on the drilling logs, the contaminant chemistry for the soil and groundwater, and past experience with similar remediation systems.

5.2.1 Establishment of Institutional Controls

Land-use requirements will be implemented and enforced by Fort Stewart DPW at SWMU 13 as part of the corrective action. The land-use restrictions will prohibit the following within the identified boundaries of SWMU 13:

- use of groundwater beneath the subject property except for the installation of groundwater monitoring wells and/or potentially wells required for remediation of the groundwater (i.e., extraction or injection wells);
- hunting and recreational activities; and
- all construction within the property boundaries except for those activities associated with maintenance of the facility, soil and/or groundwater sampling, implementation of the selected alternative, or potential abandonment and/or demolition of the facility.

These land-use restrictions will be enforced at SWMU 13 until remedial levels are achieved and SWMU 13 is formally closed under RCRA.

FSMR has no plans for transferring the SWMU 13 area from federal ownership; however, if in the future (i.e., prior to remedial levels being achieved) the SWMU 13 site is to be released from federal ownership, GEPD will be notified, and the CAP will be amended. Appropriate land-use controls (if any) related to the future property transfer will be evaluated and documented in the amended CAP. The purchase agreement(s) and deed recordation or lease agreement will reference this CAP and other environmental documents that contain the rationale for the restrictions. As required by the U.S. Department of Defense policy "Responsibility for Additional Environmental Cleanup after Transfer of Property," the property disposal agent will ensure that the

transfer documents for real property reflect the land-use controls. All applicable and appropriate state land-use control management systems in effect at the time of transfer will also be implemented.

5.2.2 Groundwater Monitoring During Natural Attenuation for Groundwater COCs

The conceptual design includes groundwater sampling as part of the baseline to determine the initial groundwater characteristics, annual sampling to monitor the performance of natural attenuation, and confirmatory sampling to confirm that remedial levels have been achieved in groundwater.

The baseline groundwater sampling would be conducted at the start of the remediation period and would consist of sampling seven monitoring wells. The groundwater monitoring wells would be sampled and analyzed for VOCs, SVOCs, and natural attenuation parameters (methane, carbon dioxide, nitrate/nitrite, sulfate/sulfide, and total iron). Field measurements to be made would include dissolved oxygen, temperature, Redox, conductivity, pH, and ferrous iron. If results of the baseline sampling indicated that benzene concentrations were less than the remedial level (5 μ g/L) and that other COCs had not been detected, then monitored natural attenuation would be continued to ensure that benzene and other COCs did not leach to groundwater at concentrations above remedial levels for a minimum of two annual sampling events. GEPD would be advised by e-mail and/or facsimile of the analytical results of the baseline groundwater sampling. Any revisions to the recommendations in this CAP would be summarized in the first annual compliance monitoring progress report (see Section 5.6).

During the natural attenuation time period, seven groundwater monitoring wells would be sampled annually to verify that COC concentrations continue to decline. Samples would be analyzed at an off-site laboratory for VOCs, SVOCs, and for natural attenuation parameters (methane, carbon dioxide, nitrate/nitrite, sulfate/sulfide, and total iron).

Based upon the results of groundwater modeling, monitored natural attenuation period is expected to be 5 years in duration. A 1-year contingency period has been assumed for this alternative. If groundwater monitoring over two consecutive sampling periods indicates that benzene and the other COCs in groundwater are at concentrations below remedial levels or nondetect, Fort Stewart could elect to request approval from GEPD for the discontinuation of the routine sampling and for groundwater confirmatory sampling to be performed 1 year from the date of the last routine groundwater sampling. With the concurrence of GEPD, the confirmatory sampling would then be performed and the results used to determine if monitored natural attenuation had achieved the remedial levels in groundwater.

Completion Criteria. Although monitored natural attenuation would be considered complete upon attaining a maximum COC concentration in groundwater in each of the wells below the remedial levels, as measured during the routine groundwater monitoring events, monitoring might continue to ensure that the groundwater remedial levels were maintained. As discussed above, if groundwater monitoring over two consecutive sampling periods indicated that the COCs in groundwater are at concentrations below its remedial level and the other potential COCs in groundwater were nondetects, Fort Stewart could elect to request from GEPD that the routine sampling be discontinued and that groundwater confirmatory sampling be performed 1 year from the date of the last routine groundwater sampling event. With the concurrence of GEPD, the confirmatory sampling would then be performed and the results used to determine if monitored natural attenuation had achieved the remedial goals in groundwater.

5.2.3 Well Abandonment

With the concurrence of GEPD, the groundwater monitoring wells would be abandoned when the completion criteria indicated that groundwater concentrations were below remedial levels.

Upon approval by GEPD, the 10 monitoring wells would be properly abandoned. The abandonment of monitoring wells would include removal of the protective guard posts, concrete pad, and surface casing and grouting of the wells to the ground surface. The debris from the abandonment of the monitoring wells would be disposed of at the Fort Stewart Sanitary Landfill.

5.3 OPERATION AND MAINTENANCE PLAN

Appendix E presents the O&M Plan for the selected remedial alternative. O&M activities would include annual monitoring during the 6-year monitored natural attenuation period (includes a 1-year contingency period) plus one confirmatory sampling event 1 year following completion.

5.4 LIFE-CYCLE COST ESTIMATE

The total life-cycle cost estimate for the selected alternative—monitored natural attenuation alternative—is \$244,000 (see Appendix D for the cost components). Table 5-1 summarizes the life-cycle costs estimated for remediation of the groundwater. Capital costs, including indirect costs, are estimated to be \$32,000 and include engineering services (Work Plan, Site Safety and Health Plan, contracting/procurement, permitting, and baseline monitoring). The O&M costs, including indirect costs, are estimated to be approximately \$125,000.

Table 5-1. Estimated Cost for Selected Alternative for the
Former Fire Training Area (SWMU 13)

Site	Capital Costs	O&M	Other ^a	Total
SWMU 13	\$32,000	\$125,000	\$87,000	\$244,000

^{*a*}Includes construction management, contingency, health and safety, and contractor profit. O&M = Operations and maintenance.

SWMU = Solid waste management unit.

5.5 IMPLEMENTATION SCHEDULE

Implementation of the corrective action will begin once approval of this CAP is received from GEPD. It is anticipated that the final Corrective Action Work Plan (including appropriate reviews by the Army) will be completed within 3 months after the approval of the CAP.

Based on the groundwater modeling results presented in Appendix C, the required monitoring time for monitored natural attenuation of groundwater is expected to be approximately 6 years. Confirmatory sampling will be conducted 1 year following monitored natural attenuation to verify that remedial levels have been achieved and maintained in groundwater. Remediation should, therefore, be complete within approximately 7 years. A Corrective Action Completion Report will be prepared and submitted to GEPD for review within 4 months of the completion of the confirmatory sampling. FSMR will then abandon the monitoring wells within 90 days of GEPD approval of the Corrective Action Completion Report. The anticipated implementation schedule is presented in Figure 5-1.

	<u> </u>		
	ORIG	Days	MONTHS 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120
ACTIVITY ID	DUR	from NTP	<u>1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120</u>
			CONTRACT NEGOTIATIONS
FA000 000	0	0	◆ NTP-CAF Approved
	0 60	60	Contract Negotiations
FA000_010	00		
			WORK PLAN
FA100 100	90	150	Green Work Plan
		90	Unit Workplan
· ·	0		Submit Draft Workplan
	30	120	Review by Fort Stewart & USACE of Draft WorkPlan
	30	150	
1	0	150	Submit Final Workplan
			FIELD WORK
FA100 220	15	165	Baseline Sampling
			MONITORED NATURAL ATTENUATION
FA300 110	3	168	Ist Annual Sampling
FA300 120	3	534	2nd Annual Sampling
FA300 130	3		3rd Annual Sampling
FA300 140	3		4th Annual Sampling
FA300_150	3		Sth Annual Sampling
FA300_160	3		6th Annual Sampling
FA300 190	5		Confirmatory Sampling
			ANNUAL COMPLIANCE MONITORING
FA400 000	2418	2948	Annual Compliance
FA400 110	226	756	1st Annual Compliance Monitoring Report (CMR)
FA400_115	60	590	Draft CMR Report
FA400 120	0	590	Submit Draft CMR Report
FA400_125	31	621	Review by Ft Stewart & USACE of Draft CMR Report
Plot Date 18JUL	10 Z I 🖂		
Data Date 1FEB Project Start 31JAN	101	Q / Bujearone/	CORRECTIVE ACTION SCHEDULE Pate Pate Pate Pate Checked Approved Pate Pate Pate Pate Pate Pate Pate Pate
Project Finish 26FEB	10.9		FORT STEWART, GEORGIA
(c) Primavera Systems,	Inc.		

Figure 5-1. Corrective Action Schedule for the Former Fire Training Area (SWMU 13)

ς γ Figure 5-1. Corrective Action Schedule, SWMU 13 (continued)

Figure 5-1. Corrective Action Schedule, SWMU 13 (continued)

Figure 5-1. Corrective Action Schedule, SWMU 13 (continued)

5.6 REPORTS

5.6.1 Corrective Action Plan Progress Report

A Corrective Action Plan Progress Report will be prepared annually during the 7-year remediation time period. These reports will summarize the sampling and analytical results of the groundwater monitoring over 1 year. The results of the baseline sampling will be presented in the first annual Corrective Action Plan Progress Report. An analysis of trends and effectiveness of the corrective action will be presented. The need for any contingent action will also be discussed, as required.

A checklist is presented in the O&M Plan (Appendix E) that summarizes the items to be addressed in each Corrective Action Plan Progress Report.

5.6.2 Corrective Action Completion Report

A final Corrective Action Completion Report will be prepared following the completion of the corrective action and confirmatory sampling (1 year after the natural attenuation period). The Corrective Action Completion Report will summarize the corrective measures taken at the site, provide a summary of sampling data, and give results of the confirmation groundwater sampling.

5.7 IMPLEMENTATION PLAN

Upon approval of this CAP by GEPD, Fort Stewart will request funding, procure a contractor for implementing the corrective actions, and implement the specified actions. A Corrective Action Work Plan will be prepared to guide implementation of the corrective action but will not require GEPD review or approval. Any revisions required to the O&M Plan (Appendix E) or the implementation schedule (Figure 5-1) that become apparent during preparation of the Work Plan will be submitted to GEPD for concurrence. Substantive changes in the remediation approach or schedule will require that the public be provided with an opportunity for review and comment, in accordance with the Fort Stewart Hazardous Waste Facility Permit. No other submittals will need to be provided to GEPD prior to implementation of the selected corrective action.

As discussed in Section 5.6, progress reports will be prepared during the corrective action and submitted to GEPD for review and approval. Upon completion of the corrective action, a Corrective Action Completion Report will be prepared and submitted to GEPD for review and approval.

THIS PAGE INTENTIONALLY LEFT BLANK.

6.0 REFERENCES

- CAPE (CAPE Environmental Management, Inc.) 1998. Final Interim Measures Report, SWMU FST-013, Fort Stewart Fire Training Pit Site, April.
- Earth Tech 2002. Final Interim Removal Action Report, Former Fire Training Area at WAAF (SWMU 13) at Fort Stewart, Georgia, April.
- ECHOS 1998. Soft Books, Version 1.1, Environmental Restoration Cost Books.
- ESE (Environmental Science and Engineering, Inc.) 1982. Fort Stewart Military Reservation RCRA Studies: Final Engineering Report.
- ESE 1993. Significance of Contamination Report, Wright Army Airfield Fire Training Area, Fort Stewart, Savannah, Georgia, April.
- EPA (U.S. Environmental Protection Agency) 1994a. *RCRA Corrective Action Plan* (Final), OSWER Directive 9902.3-2A, Office of Waste Programs Enforcement, Office of Solid Waste and Emergency Response, May.
- EPA 1994b. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities.
- EPA 1995a. Supplemental Guidance to RAGS: Region IV Bulletin, Human Health Risk Assessment (Draft), Nos. 1–5, EPA Region IV, Office of Health Assessment, November.
- EPA 1995b. *Bioventing Principles and Practice Manual*, EPA/540/R-95/534A/001, Office of Research and Development, September.
- EPA 1996a. Soil Screening Guidance: Technical Background Document, EPA/540/R-95/128, Office of Solid Waste and Emergency Response, May.
- EPA 1996b. *Risk-based Concentration Table*, January–June 1996, EPA Region III, Office of RCRA Technical and Program Support Branch, April.
- EPA 1999a. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, OSWER Directive 9200.4-17P, Office of Solid Waste and Emergency Response, April.
- EPA 1999b. EPA Region III Risk-based Concentration Table, <http://www.epa.gov/reg3hwmd/risk/techdoc.pdf>.

Geraghty and Miller 1992. RCRA Facility Investigation Final Work Plan, Fort Stewart, Georgia, June.

Means (R. S. Means) 1999. ECHOS Environmental Remediation Assemblies Cost Book.

Metcalf & Eddy 1996. Final Work Plan for RCRA Facility Investigation at Bulk Fuel Storage Systems, Wright Army Airfield, Fort Stewart, Georgia.

- SAIC (Science Applications International Corporation) 2000. *Revised Final RCRA Facility Investigation Report for the Fire Training Area at Wright Army Airfield (SWMU 13), Fort Stewart, Georgia,* prepared by SAIC and Earth Tech, May.
- Corrective Action Plan Progress Report for Calendar Year 2003 for the Former Fire Training Area at Wright Army Airfield (Solid Waste Management Unit 13) at Fort Stewart Military Reservation, Fort Stewart, Georgia, prepared for U.S. Army Corps of Engineers, Savannah District, December.
- Corrective Action Plan Progress Report for Calendar Year 2004 for the Former Fire Training Area at Wright Army Airfield (Solid Waste Management Unit 13) at Fort Stewart Military Reservation, Fort Stewart, Georgia, prepared for U.S. Army Corps of Engineers, Savannah District, May.
- SAIC 2005. CAP for the Former Fire Training Area at Wright Army Airfield (SWMU13), Fort Stewart Military Reservation, Fort Stewart, Georgia.
- USGS (U.S. Geological Survey) 1984. "Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States," by H. T. Shacklette and J. G. Boerngen, U.S. Geological Survey Professional Paper 1270.

APPENDIX A

DECEMBER 2000 SUPPLEMENTAL GROUNDWATER CHARACTERIZATION AT THE FORMER FIRE TRAINING AREA (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

A.1. INTRODUCTION

This letter report summarizes the results of the supplemental characterization of groundwater at the former Fire Training Area (FTA) at Wright Army Airfield at Fort Stewart, Georgia. This characterization was conducted to support preparation of a Corrective Action Plan, augmenting the results of the *Revised Final Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Report for the Fire Training Area at Wright Army Airfield [Solid Waste Management Unit (SWMU) 13]* (SAIC 2000). This report has been prepared by Science Applications International Corporation for the U.S. Army Corps of Engineers (USACE), Savannah District, under Contract DACA21-95-D-0022, Delivery Order No. 0049. The supplemental sampling was conducted in accordance with USACE guidance EM200-1-3 and the procedures described in the original Phase II RFI Work Plan for 16 SWMUs (SAIC 1997).

The purpose of this supplemental characterization is to provide further evidence that natural attenuation of volatile organic compounds is occurring. The scope of work included sampling of the eight existing onsite monitoring wells (MW3, MW4, MW8, MW9, MW10, MW11, MW12, and MW13) and analyzing the samples for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAHs). The eight wells were previously installed during the RFI for monitoring the following aquifer units:

MW3: Shallow water table, upgradient;

MW4: Shallow water table, near southern drainage swale, cross-gradient;

MW8: Shallow water table, south of former effluent piping;

MW9: Shallow water table, south of MW8, cross-gradient;

MW10: Shallow water table, plume perimeter, downgradient;

MW11: Shallow water table, southeast corner of former fire training pad;

MW12: Shallow water table, source area near former fuel pipe line; and

MW13: Shallow water table, plume perimeter, downgradient.

A.2. SUMMARY OF INVESTIGATION ACTIVITIES

A.2.1 SAMPLING METHODOLOGY

The supplemental groundwater sampling at the FTA was conducted on December 2 and 3, 2000, using micropurging sampling techniques. Prior to installing the sampling pump, the static water level was recorded. Monitoring wells were sampled using low-flow micropurging techniques to minimize the volume of purge water and to minimize disturbance of the aquifer. Field parameters (pH, conductivity, temperature, dissolved oxygen, and oxidation-reduction potential) were monitored during micropurging. The purge rate was adjusted, as necessary, to avoid purging any well to dryness and to equal the recharge of the aquifer. Purging was considered complete when the field parameters stabilized within plus or minus 10 percent over a minimum of three readings at 5-minute intervals. Purging times varied, requiring from
10 minutes to 28 minutes to purge. Results of field parameter measurements made at the end of purging in each well are listed in Table A-1.

Sampling of each monitoring well began immediately after completion of purging, using the same micropurging pump. Groundwater samples were transferred directly into laboratory sample containers, with the portion designated for volatile organic analysis taken first. Groundwater samples were then sent off-site for laboratory analysis for BTEX and PAHs.

	Purging Time	Volume Purged	Temperature	Conductivity	DO	рН	Eh
Well	(min)	(Liters)	(°C)	(µmho/cm)	(mg/L)	(s.u.)	(MV)
MW3	15	1.5	14.91	2.00	0.17	4.72	273.1
MW4	10	1.10	13.74	3.00	2.04	4.60	226.7
MW8	20	2.0	14.58	3.00	0.55	4.33	289.7
MW9	15	1.55	15.17	4.00	0.05	4.31	331.1
MW10	15	1.5	14.86	4.00	0.13	4.29	316.3
MW11	23	4.0	13.91	2.00	0.03	4.26	319.3
MW12	28	2.8	17.68	3.00	0.08	4.70	171.1
MW13	19	1.9	20.99	2.00	0.05	4.61	261.7

Table A-1. Field Parameter Measurements During Groundwater Sampling (December 2000) at theFormer Fire Training Area (SWMU 13)

DO = Dissolved oxygen.

Eh = Oxidation-reduction potential.

s.u. = Standard unit.

SWMU = Solid waste management unit.

A.2.2 DATA QUALITY ASSESSMENT

Quality assurance/quality control (QC) activities to achieve the desired data quality were as described in the Phase II RFI Work Plan for 16 SWMUs. One field QC trip blank was analyzed. The project produced acceptable results for over 99 percent of the data. The overall quality of the laboratory data meets the established project objectives and the data are acceptable for use.

A.3. SUMMARY OF INVESTIGATION RESULTS

A.3.1 POTENTIOMETRIC MAP

Water table measurements were taken in each of the eight wells on December 2, 2000, prior to sampling. Table A-2 lists the measured depth below top of casing and the corresponding water elevation. The potentiometric map is shown in Figure A-1. Water table elevations in December 2000 were approximately 2 feet deeper than those measured in January 1999. Groundwater flow is to the southeast toward Peacock Creek, with a measured gradient of 0.0026 foot/foot.

Well Number ^a	Date Measured	Top of Casing Elevation (feet MSL)	Depth of Screened Interval (feet BGS)	Depth of Free Product (feet BTOC)	Water Depth (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet MSL)
MW3	12/02/2000	50.74		NA	12.74	0	38.00
MW4	12/02/2000	48.91		NA	10.82	0	38.09
MW8	12/02/2000	50.51	5.0 to 15.0	NA	12.42	0	38.09
MW9	12/02/2000	49.68	5.0 to 15.0	NA	11.54	0	38.14
MW10	12/02/2000	50.79	4.7 to 14.7	NA	13.15	0	37.64
MW11	12/02/2000	50.51	5.1 to 15.1	NA	12.68	0	37.83
MW12	12/02/2000	51.40	5.0 to 15.0	NA	13.52	0	37.88
MW13	12/02/2000	50.94	5.4 to 15.4	NA	13.22	0	37.72

Table A-2. Water Level Measurements During Groundwater Sampling (December 2000) at the
Former Fire Training Area (SWMU 13)

^aWells MW2, MW5, and MW7 were abandoned in October 1997 during interim corrective measures, and wells MW1 and MW6 were destroyed after the Resource Conservation and Recovery Act (RCRA) facility investigation activities by heavy equipment backing over the wells.

BGS = Below ground surface. BTOC = Below top of casing. MSL = Mean sea level. NA = Not applicable. SWMU = Solid waste management unit.

-- = Data not available.

A.3.2 RESULTS OF GROUNDWATER ANALYSES

Analytical results for groundwater samples from the eight monitoring wells are summarized in Table A-3 for those parameters detected in at least one sample. Figure A-2 shows the distribution of the detected constituents at SWMU 13 during the December 2000 sampling.

BTEX. Benzene was detected in five of eight samples at concentrations ranging from 0.33J μ g/L to 418 μ g/L, with the concentrations in MW11 and MW12 exceeding the benzene maximum contaminant level (MCL) of 5 μ g/L. Toluene was detected in four of eight samples at concentrations ranging from 0.26J μ g/L to 391 μ g/L and none of the concentrations exceeding the toluene MCL of 1,000 μ g/L. Ethylbenzene was detected in six of eight samples at concentrations ranging from 0.14J μ g/L to 952 μ g/L, with the concentration in MW12 exceeding the ethylbenzene MCL of 700 μ g/L. Total xylenes were detected in six of eight samples at concentrations ranging from 0.40J μ g/L to 4,930 μ g/L and none of the concentrations ranging from 0.40J μ g/L to 4,930 μ g/L and none of the concentrations exceeding the total xylenes MCL of 10,000 μ g/L. The highest BTEX concentrations were located in well MW12.

PAHs. Three PAH compounds were detected in groundwater. Naphthalene was detected in three of eight samples at concentrations ranging from 4.0J μ g/L to 304J μ g/L, with the concentration in MW12 exceeding the remedial level for naphthalene of 149 μ g/L. Other PAHs found at MW12 during the current sampling include fluorene (2.6J μ g/L) and phenanthrene (1.8J μ g/L).

THIS PAGE INTENTIONALLY LEFT BLANK.

Figure A-1. Potentiometric Map (December 2000) at the Former Fire Training Area (SWMU 13) (April 2001)

Well Sample ID	Remedial	MW3 FT0312	MW4 FT0412	MW8 FT0812	MW9 FT0912	MW10 FT1012	MW11 FT1112	MW12 FT1212	MW13 FT1312
Date Sampled	Level	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00	12/3/00
			Volatile	Organic Cor	mpounds (µg	r/L)			
Benzene	5			0.33 J		2.7	9.5	418	2.8
Toluene	a		0.26 J		0.30 J			391	0.42 J
Ethylbenzene	700	0.14 J			0.36 J	0.17 J	1.6	952	11.0
Xylenes, total	a	0.45 J			1.6 J	0.40 J	1.4 J	4,930	11.4
			Polynuclear	Aromatic H	ydrocarbons	(μ g/L)			
Naphthalene	149						4.0 J	304 J	42.2 J
Fluorene	a							2.6 J	
Phenanthrene	а							1.8 J	

Table A-3. Summary of Analytical Results in Groundwater (December 2000) at the Former Fire Training Area (SWMU 13)

^aRemedial levels were not developed for these compounds during the Resource Conservation and Recovery Act (RCRA) facility investigation report, because they were not identified as constituents of concern.

Bold type indicates concentration above the remedial level.

Blank indicates analyte not detected.

J = Indicates that the compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample.

A.4. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were made based on the results of the supplemental groundwater investigation:

- Benzene (9.5 µg/L in MW11 and 418 µg/L in MW12) and ethylbenzene (952 µg/L in MW12) are the only BTEX compounds that continued to exceed their MCLs of 5 µg/L and 700 µg/L, respectively, in the shallow water table aquifer near the source. The presence of benzene and the other BTEX compounds is consistent with the results of the November 1998 sampling event. The December 2000 sampling event indicated that the dissolved benzene groundwater plume covered an area of approximately 30,225 square feet, which is smaller than the 10,092 square foot area observed in November 1998.
- Naphthalene continued to be detected in MW11, MW12, and MW13. The naphthalene concentration
 of 304J μg/L in MW12 exceeded the remedial level of 149 μg/L. Other PAHs, including fluorene and
 phenanthrene, were also reported during the current sampling.

A.5. ATTACHMENTS

Attached are the chain-of-custody forms and the laboratory analytical results for the groundwater samples analyzed during the December 2000 sampling.

A.6. REFERENCES

- SAIC (Science Applications International Corporation) 1997. Sampling and Analysis Plan for the Phase II RCRA Facility Investigations of 16 Solid Waste Management Units at Fort Stewart, Georgia, October.
- SAIC 2000. RCRA Facility Investigation Report for the Fire Training Area at Wright Army Airfield (SWMU 13), Fort Stewart, Georgia, May.

ATTACHMENTS

ANALYTICAL RESULTS FOR GROUNDWATER SUPPLEMENTAL SAMPLING (DECEMBER 2000) AT THE FORMER FIRE TRAINING AREA (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

State of Georgia

Environmental Laboratory Accreditation

Name of Laboratory:	General Engineering Laboratories, Inc.
Address:	P.O. Box 30712 2040 Savage Road Charleston, SC 29417
Contact: Telephone number: Fax number:	Bob Pullano or Wendy Dimmick (843) 556-8171 (843) 766-1178
Accrediting Authority:	State of South Carolina
Accreditation Number:	SC-10120001
Effective Date:	Extension granted while re-certification in process
Expiration Date:	_
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA
Accrediting Authority:	State of Florida
Accreditation Number:	E-87156
Effective Date:	July 1, 2001
Expiration Date:	June 30, 2002
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA

#1

#2

THIS PAGE INTENTIONALLY LEFT BLANK.

Г

800 Oak Ridge Tumpike, Oak Ridge, TN 37831 (423) 481-4600

CHAIN OF CUSTODY RECORD

PROJECT NAME: Ft.	Stewart USTs D.(), #55 Swmu	-13						REQUE	STED F	ARAM	ETERS				LABORATORY N	JAME:
PROJECT NUMBER:)1-1624-04-2352	-2 00 - - Z.(O														General Enginee	ring Laboratory
PROJECT MANAGER:	Patty Stoll Debbie B															LABORATORY A 2040 Savage Ra Charleston, SC	bod
Sampler (Signature)		Printed Name)													/ Vials		
fourseling		uralun	\e			ved Im		BTEX	Part						Bottles/	PHONE NO: (80	3) 556-8171
Sample ID	Date Collected	Time Collected	Matrix	BTEX	HA A	Dissol	Hat	TCLP			Ì				No. of	OVA	OBSERVATIONS, COMMENTS SPECIAL INSTRUCTIONS
FTØ312	12/3/00	1117	water		Z										2	34923001	···· · · · · · · · · · · · · · · · · ·
FTØ412	12/3/00				Ż				瀫						2		
FTIØIZ	12/3/00	1440			2			龖							Z	+	
FTIBIZ	12 3/00	1346		ž	2	Ð		×.							2	<u> / @></u>	<u> </u>
FTOSIZ	12/3/00	1025		X N N N	2			翰	1	28					2		
$FT\phi 912$	12/3/0C	1650		1	2	Ţ.			N.							$-7, \alpha_2$	
				đ		Ê							- 3633		2	V 206	
						Ŕ		and a			137 137				-}		
			r		;)	ų.									–		
											一節						
					۶D	1	5			一計	識				+		
							1		<u>8</u>								<u> </u>
				X		 作		318. 他			秘						
RELINQUISHED BY:	Date	e/Tilme REØEÑ	ED BY:	<u></u>	u	-		<u>।∭</u> ∕Time	·····				\$		1		
Jamo Jun	Den 12		tricia /)n	w			(100			MBER		ITAINER	s: 12	_	Cooler Temperatu	ire:
COMPANY NAME:		-	ANY NAME:						Coc	ler ID:	#-	25	-			FEDEX NUMBER:	
SAIC	1 13	15 COMP	<u>Gel</u>			/	9:0	ØÐ			4	20)				
RECEIVED BY:	<		UISHED BY:				Date/	/Time				- <u></u>					
1 Mar Viera	-1 12-	4.00			<u> </u>					X= i	- 11 <i>F</i>	5am	ales	14	Do	y Turn	×
COMPANY NAME:	- N	15 COMPA	ANY NAME:							ţ						(,
REUNYOUSHED BY:	Date	/Time RECEIV		·		-	Date/	Time	-								
1 The horts	12-4	-00	<u></u>						1								
OMPANY NAME		СОМРА	NY NAME:			1											
000	$\leq 1/S$	15															

Г

800 Oak Ridge Tumpike, Oak Ridge, TN 37831 (423) 481-4600

CHAIN OF CUSTODY RECORD

COC NO .: FTA dd Z

PROJECT NAME: Ft.	Stewart USTS D.().#55 చయిగా	u-13					T · · · · ·	RE	QUES	TED	PARA	MET	ERS						LABORATORY N	AME:
PROJECT NUMBER: (- <u>200</u>																		General Engineer	ing Laboratory
PROJECT MANAGER:																			ĺ	LABORATORY A 2040 Savage Ra Charleston, SC	od
Sampler (Signature)	(P	rinted Name)			1	ed Iron		ТЕХ Т	Lead										s/ Vie	PHONE NO: (803	
Sample ID	Date Collected	Time Collected	Matrix	BTEX	PAH	Dissolved	TH	TCLP BTEX	TCLP L									'	5	OVA	OBSERVATIONS, COMMENTS
FTIIIZ	12/3/00	1545	water	Z	Z		<u> </u>	L L	–						1000				ź	SCREENING	SPECIAL INSTRUCTIONS
FTIZIZ	12/3/00	1z35		Z	2	100.00													$\frac{1}{1}$		+14-DayTurr
FTØ31Z	12/3/00	1117		Z					100						14. 15 15 15 15 15 15 15 15 15 15 15 15 15				<u> </u>	008	
FT0412	12/3/00	0911		Z														2		010	
FTOGIZ	12/3/00	1025		Z								1	22		Catch S			2		010	
FT\$912	12/3/00	1650		Z	100 miles	1000 - 1000 - 10												12		012	·····
ETIO/Z	12/3/00	1440		2		1997 2014			2. 7.11			我						7		013	
FT1312	12/3/00	1346	<u> </u>	2					100 March 100 Ma			121 A			and the			7	2	014	
	12/3/00	0750		2														Z	2	015	
	 								\mathcal{A}												
					+/-	Ŋ	4	$\underline{\mathcal{A}}$	A	a			1		1						
			\searrow				_	4							-						
RECTINQUISHED BY;	Date		/ <u>F</u> D_BY: /															\rightarrow			
Danca Su	~ Qo, 12/4		hiera) OU	1L			/Tim	e A	TOT	AL NU	MBEI	R OF	CON		RS:	27	2	c	Cooler Temperatu	e:
COMPANY NAME:	CN -		ANY NAME:	0414	21		• •	10		Coole	er ID:	#	ス	75	7				F	EDEX NUMBER:	
			GEL			/	9."	00		• <u>•</u> •••••			~	1	ر						
RECEIVED BY:	Date.		UISHED BY:			(Date/	/Time	e	r	、 、					,					······································
COMPANY NAME:			NY NAME:							×	÷	£()		5a.	~ P	es	- -	14	ľ	Day Tu	sn k
RELINGUISHED BY:	Date/	Time RECEIV	ED BY:	<u> </u>		$\frac{1}{1}$		— Time	_												
1 ru locks	12-4	-00																			
COMPANY NAME:	- 10	СОМРА	NY NAME:]															
	18	13																			

1A EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET FT0312 Lab Name: GENERAL ENGINEERING LABOR Contract: N/A Case No.: N/A SAS No.: N/A SDG No.: 34923 Lab Code: N/A Matrix: (soil/water) WATER Lab Sample ID: 34923009 Sample wt/vol: 5.000 (g/ml) ML Lab File ID: 8M342 Level: (low/med) LOW Date Received: 12/05/00 % Moisture: not dec. Date Analyzed: 12/07/00 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: _____(uL) Soil Aliquot Volume: _____(uL

 CAS NO.
 COMPOUND
 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L
 Q

 71-43-2-----Benzene
 1.0
 U
 U

 108-88-3-----Toluene
 1.0
 U
 U

 100-41-4-----Ethylbenzene
 0.14
 J
 J

 1330-20-7-----Xylenes (total)
 0.45
 J
 J

OLM03.0

FORM I VOA

EPA SAMPLE NO. 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET FT0312 Lab Name: GENERAL ENGINEERING LABOR Contract: N/A Lab Code: N/A Case No.: N/A SAS No.: N/A SDG No.: 34923 Lab Sample ID: 34923001 Matrix: (soil/water) WATER Sample wt/vol: 1050 (g/mL) ML Lab File ID: 5X512 Date Received: 12/04/00 Level: (low/med) LOW % Moisture: _____ decanted: (Y/N) ____ Date Extracted:12/07/00 Concentrated Extract Volume: 1.00(mL) Date Analyzed: 12/08/00 Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N

CAS NO.		ug/L or ug/Kg)		Q	
	Naphthalene 2-Chloronaphthalen		0.95		И
208-96-8	Acenaphthylene	ے۔۔۔۔۔	0.95	Ū	
86-73-7	Acenaphthene		0.95	υ	
120-12-7	Phenanthrene	·	0.95	υ	
129-00-0			0.95	ט	
218-01-9	Benzo(a) anthracene		0.95	υ U	Ì
207-08-9	Benzo(b)fluoranthe Benzo(k)fluoranthe		0.95	υ	
193-39-5	Benzo (a) pyrene Indeno (1, 2, 3-cd) py		0.95	υ	
	Dibenz(a,h)anthrac Benzo(g,h,i)peryle		0.95 0.95	/ /	ł
				<u> </u>	~

CONCENTRATION UNITS:

FORM I SV-1

DATA VALIDATION OLM03.0 COPY

1A VOLATILE ORGANICS ANALYSIS	EPA SAMPLE NO.
Lab Name: GENERAL ENGINEERING LABOR	Contract: N/A FT0412
Lab Code: N/A Case No.: N/A	SAS No.: N/A SDG No.: 34923
Matrix: (soil/water) WATER	Lab Sample ID: 34923010
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8M343
Level: (low/med) LOW	Date Received: 12/05/00
<pre>% Moisture: not dec</pre>	Date Analyzed: 12/07/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L		Q
108-88-3	Benzene Toluene Ethylbenzene Xylenes (total		1.0 U 0.26 J 1.0 U 3.0 U	4 1 1 1 1 1

DATA VALIDATION COPY

FORM I VOA

OLM03.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: GENERAL ENG	GINEERING LABOR Contract:	FT0412
Lab Code: N/A	Case No.: N/A SAS No.:	N/A SDG No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID: 34923002
Sample wt/vol:	1050 (g/mL) ML	Lab File ID: 5X513
Level: (low/med)	LOW	Date Received: 12/04/00
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Extracted:12/07/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 12/08/00
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N	

CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	
91-58-7 208-96-8 83-32-9 85-01-8 120-12-7 206-44-0 129-00-0 56-55-3 218-01-9 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3	Naphthalene 2-Chloronapht Acenaphthylen Fluorene Fluorene Fluoranthene Fluoranthene Fluoranthene 	e	0.95 U 0.95 U

FORM I SV-1

DATA VALIDATICHMO3.0 COPY

VOLATILE	EPA SAMPLE NO.		
Lab Name: GENERAL ENG	GINEERING LABOR Contract	t: N/A	FT0812
Lab Code: N/A	Case No.: N/A SAS No	.: N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID:	34923011
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8M344
Level: (low/med)	LOW	Date Received:	12/05/00
% Moisture: not dec.		Date Analyzed:	12/07/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL

CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/		Q	
71-43-2 108-88-3 100-41-4 1330-20-7		al)	1.	3 J 0 U 0 U 0 U	JU-1

DATA VALIDATION COPY

FORM I VOA

OLM03.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: GENERAL ENG	SINEERING LABOR Contract:	: N/A	FT0812
Lab Code: N/A	Case No.: N/A SAS No.:	N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID:	34923005
Sample wt/vol:	1050 (g/mL) ML	Lab File ID:	5X516
Level: (low/med)	LOW	Date Received:	12/04/00
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Extracted	1:12/07/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	12/08/00
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N		

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene	0.95	υ
91-58-72-Chloronaphthalene	0.95	σ
208-96-8Acenaphthylene	0.95	υ
33-32-9Acenaphthène	0.95	<u></u> דו
36-73-7Fluorene	0.95	υ
35-01-8Phenanthrene	0.95	U
120-12-7Anthracene	0.95	ι σ
206-44-0Fluoranthene	0.95	ι υ
L29-00-0Pyrene	0.95	Ū I
56-55-3Benzo (a) anthracene	0.95	-
218-01-9Chrysene	0.95	-
205-99-2Benzo(b) fluoranthene	0.95	
207-08-9Benzo(k) fluoranthene	0.95	
50-32-8Benzo (a) pyrene	0.95	
-93-39-5Indeno (1, 2, 3-cd) pyrene	0,95	
3-70-3Dibenz(a,h)anthracene	0.95	-
.91-24-2Benzo(g,h,i)perylene	0.95	

FORM I SV-1

DATA VALIDATICIOLMO3.0 COPY

VOLATILE	1A ORGANICS ANALYSIS	5 DATA SHEET	EPA SAMPLE NO.
Lab Name: GENERAL ENG	SINEERING LABOR (Contract: N/A	FT0912
Lab Code: N/A	Case No.: N/A	SAS No.: N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID	: 34923012
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8M345
Level: (low/med)	LOW	Date Received	: 12/05/00
% Moisture: not dec.		Date Analyzed	: 12/07/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
			ततन्य त

DATA VALIDATION COPY

FORM I VOA

.

OLM03.0

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-----

Lab Name: GENERAL EN	GINEERING LABOR Contract	: N/A
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID: 34923006
Sample wt/vol:	1050 (g/mL) ML	Lab File ID: 5X517
Level: (low/med)	LOW	Date Received: 12/04/00
% Moisture:	decanted: (Y/N)	Date Extracted:12/07/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 12/08/00
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N	

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

91-20-3Naphthalene 91-58-72-Chloronaphthalene 208-96-8Acenaphthylene 83-32-9Acenaphthene 86-73-7Acenaphthene 86-73-7Acenaphthene 85-01-8Acenaphthene 85-01-8	0.95 0.95 U
--	---

FORM I SV-1

DATA VALL PATTAL COPY

VOLATILE	1A ORGANICS ANALYSIS DATA S	HEET	EPA SAMPLE NO.
Lab Name: GENERAL EN	GINEERING LABOR Contract	: N/A	FT1012
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID:	34923013
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8M346
Level: (low/med)	LOW	Date Received:	12/05/00
% Moisture: not dec.		Date Analyzed:	12/07/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

Q

71-43-2Benzene 108-88-3Toluene 100-41-4Ethylbenzene 1330-20-7Xylenes (total)	2.7 1.0 0.17 0.40	-	11377
---	----------------------------	---	-------

DATA VALIDATION COPY OLMO3.0

FORM I VOA

FORM I SV-1

OLM03.0

DATA VALENCE COLTY

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: GENERAL ENGINEERING LABOR Contract: N/A Case No.: N/A SAS No.: N/A Lab Code: N/A Lab Sample ID: 34923003 Matrix: (soil/water) WATER Lab File ID: 5X514 Sample wt/vol: 1050 (g/mL) ML Date Received: 12/04/00 Level: (low/med) LOW % Moisture: _____ decanted: (Y/N)____ Date Extracted:12/07/00 Concentrated Extract Volume: 1.00(mL) Date Analyzed: 12/08/00 Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

		,	
91-20-3Naphthalene 91-58-72-Chloronaphthalene 208-96-8Acenaphthylene 83-32-9Acenaphthene 86-73-7Fluorene 85-01-8Phenanthrene 120-12-7Anthracene 206-44-0Fluoranthene 129-00-0Pyrene 56-55-3Benzo(a) anthracene 218-01-9Benzo(b) fluoranthene 205-99-2Benzo(b) fluoranthene 207-08-9Benzo(a) pyrene 193-39-5	·95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.		n,F06
193-39-3Dibenz(a,h) anthracene 191-24-2Benzo(g,h,i) perylene		υ	
	·	· ¥	

SDG No.: 34923

EPA SAMPLE NO.

Q

1A VOLATILE ORGANICS ANALYSIS DATA SI	EPA SAMPLE NO. HEET
Lab Name: GENERAL ENGINEERING LABOR Contract	FT1112
Lab Code: N/A Case No.: N/A SAS No.	
Matrix: (soil/water) WATER	Lab Sample ID: 34923007
Sample wt/vol: 5.000 (g/ml) ML	Lab File ID: 8M341
Level: (low/med) LOW	Date Received: 12/05/00
% Moisture: not dec.	Date Analyzed: 12/07/00
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q	
108-88-3	Benzene Toluene Ethylbenzene Xylenes (tota	al)	9.5 1.0 1.6 1.4 J	113114

1B

COMPOUND

CAS NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: GENERAL EN	GINEERING LABOR Contract	: N/A	FT1112RE
Lab Code: N/A	Case No.: N/A SAS No.	: N/A SDG No	0.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID: :	34923007
Sample wt/vol:	1040 (g/mL) ML	Lab File ID:	
Level: (low/med)	LOW	Date Received: :	12/04/00
% Moisture:	decanted: (Y/N)	Date Extracted:	
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed: 1	
Injection Volume:	1.0(uL)	Dilution Factor:	
GPC Cleanup: (Y/N)			11

USQ Q

5 AOI

US AOI

CONCE	ז כוידיז/	TT CAT	TTAT	Tma
	1710	TT TON	UN.	IIS:
(ug/L	or	1100/20	r) 1	
(49) 0	<u> </u>	- agy ag	;/ I	UG/L

Содина . о Содина . о

FORM I SV-1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET		EPA SAMPLE NO.	
Lab Name: GENERAL ENG	GINEERING LABOR (Contract: N/A	FT1212
Lab Code: N/A	Case No.: N/A	SAS NO.: N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID:	34923008
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8M511
Level: (low/med)	LOW	Date Received:	12/04/00
% Moisture: not dec.		Date Analyzed:	12/08/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 25.0
Soil Extract Volume:	(uL)	Soil Aliquot N	Volume:(uL

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
100-41-4	Benzene Toluene Ethylbenzene Xylenes (total)		418 391 952 4930

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. 1-

Lab Name: GENERAL EN	GINEERING LABOR Contra	ct: N/A	FT1212RE
Lab Code: N/A	Case No.: N/A SAS No	D.: N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID	: 34923008
Sample wt/vol:	1040 (g/mL) ML	Lab File ID:	5Y316
Level: (low/med)	LOW	Date Received:	12/04/00
% Moisture:	decanted: (Y/N)	Date Extracted	1:12/12/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	12/13/00
Injection Volume:	1.0 (uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N		1) St
CAS NO.		ENTRATION UNITS: L or ug/Kg) UG/I	

91-20-3Naphthalene	304 238 ED 3
91-58-72-Chloronaphthalene	304 238 ED 3 0.96 U U
208-96-8Acenaphthylene	0.96 U
33-32-9Acenaphthene	0.96 U
36-73-7Fluorene	2.6
35-01-8Phenanthrene	1.8
L20-12-7Anthracene	
206-44-0Fluoranthene	0.96 0
L29-00-0Pvrene	0.96 0
56-55-3Benzo (a) anthracene	0.96 U
218-01-9Chrvsene	
205-99-2Benzo (b) fluoranthene	0.96 0
07-08-9Benzo(k) fluoranthene	0.96 U
0-32-8Benzo (a) pyrene	0.96 U
.93-39-5Indeno (1, 2, 3-cd) pyrene	0.96 U
3-70-3Dibenz (a, h) anthracene	0.96 0
.91-24-2Benzo (g, h, i) perylene	0.96 U
benzo(g,n,1)perytene	0.96 U

OLM03.0

DATA VALIFACTION

FORM I SV-1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET		ÆET	EPA SAMPLE NO.
Lab Name: GENERAL ENG	SINEERING LABOR Contract	N/A	FT1312
Lab Code: N/A	Case No.: N/A SAS No.	N/A SDG I	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID:	34923014
Sample wt/vol:	5.000 (g/ml) ML	Lab File ID:	8M347
Level: (low/med)	LOW	Date Received:	12/05/00
% Moisture: not dec.		Date Analyzed:	12/07/00
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto:	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Ve	olume:(uL

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

·	<u>г</u>	·	1
71-43-2Benzene	2.8		=
108-88-3Toluene	0.42	J	5
100-41-4Ethylbenzene	11.0		=
1330-20-7Xylenes (total)	11.4		=

CAS NO. COMPOUND

DATA VALIDATION COPY OLMO3.0

FORM I VOA

	1B			
SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

EPA SAMPLE NO.

Lab Name: GENERAL ENG	GINEERING LABOR Contrac	t. N/A	FT1312RE
Lab Code: N/A	Case No.: N/A SAS No	.: N/A SDG	No.: 34923
Matrix: (soil/water)	WATER	Lab Sample ID:	34923004
Sample wt/vol:	1040 (g/mL) ML	Lab File ID:	5Y314
Level: (low/med)	LOW	Date Received:	12/04/00
% Moisture:	decanted: (Y/N)	Date Extracted	1:12/12/00
Concentrated Extract	Volume: 1.00(mL)	Date Analyzed:	12/13/00
Injection Volume:	1.0(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N		1SL
CAS NO.		ENTRATION UNITS: L or ug/Kg) UG/I	

CAS NO. COMPOUND

Q 42.2 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 J ADI VJ ADI 50 0.96 U

FORM I SV-1

129

DALMARCH GARY

FT0312

Sample	BTEX Compounds					
Туре	BTEX Compounds	Result	Units	Qual Lab	ifiers Data	Validation Code
REG	Benzene	1.0	UG/L	υ	U	
REG	Ethylbenzene	.14	UG/L	J	J	
REG	Toluene	1.0	UG/L	U	U	
REG	Xylenes, Total	.45	UG/L	J	J	
Sample Type	Polynuclear Aromatic Hydrocarbons	Result	Units	Quai Lab	ifiers Data	Validation Code
REG	2-Chloronaphthalene	0.95	UG/L	υ	U	
REG	Acenaphthene	0.95	UG/L	υ	U	
REG	Acenaphthylene	0.95	UG/L	υ	U	
REG	Anthracene	0.95	UG/L	υ	U	
REG	Benzo(a)anthracene	0.95	UG/L	U	U	
REG	Benzo(a)pyrene	0.95	UG/L	U	U	
REG	Benzo(b)fluoranthene	0.95	UG/L	U	U	
REG	Benzo(g,h,i)perylene	0.95	UG/L	U	U	
REG	Benzo(k)fluoranthene	0.95	UG/L	U	U	
REG	Chrysene	0.95	UG/L	U	U	
REG	Dibenzo(a,h)anthracene	0.95	UG/L	U	ບ	
REG	Fluoranthene	0.95	UG/L	U	U	
REG	Fluorene	0.95	UG/L	υ	υ	
REG	Indeno(1,2,3-cd)pyrene	0.95	UG/L	U	U	
REG	Naphthalene	0.95	UG/L	U	υ	
REG	Phenanthrene	0.95	UG/L	U	U	
REG	Pyrene	0.95	UG/L	U	υ	

Location: FIRE TRAINING (SWMU 13) Station : FT-MW-04

FT0412

	Collected: 12/03/2000						
Sample Type	BTEX Compounds	Result	Units	Qual Lab	lifiers Data	Validation Code	
REG	Benzene	1.0	UG/L	U	υ		_
REG	Ethylbenzene	1.0	UG/L	U	U		
REG	Toluene	.26	UG/L	J	J		
REG	Xylenes, Total	3.0	UG/L	U	U		
Sample				Qual	lifiers	Validation	
Туре	Polynuclear Aromatic Hydrocarbons	Result	Units	Lab	Data	Code	
REG	2-Chloronaphthalene	0.95	UG/L	U	U		<u> </u>
REG	Acenaphthene	0.95	UG/L	U	U		
REG	Acenaphthylene	0.95	UG/L	U	U		
REG	Anthracene	0.95	UG/L	U	U		

0.95 UG/L

U

U

U

υ

υ

υ

υ

υ

υ

υ

υ

Ų

υ

U

U

U

υ

υ

υ

υ

υ

υ

υ

U

υ

υ

Location: FIRE TRAINING (SWMU 13) Station : FT-MW-08

REG

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Benzo(a)pyrene

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

FT0812

		Field Sample Type: Gra	b M	atrix: Groundwater			Collected: 12/03/2000	
Sample Type BTEX Compounds			Qual Lab	ifiers Data	Validation Code			
REG	Benzene	.33	UG/L	J		*	_	
REG	Ethylbenzene	1.0	UG/L	Ų	υ			
REG	Toluene	1.0	UG/L	U	U			
REG	Xylenes, Total	3.0	UG/L	U	U			

Collected: 12/03/2000

	D a such	1 1 - 14 -			Validation
	Result	Units	Lab	Data	Code
2-Chloronaphthalene	0.95	UG/L	U	U	
Acenaphthene	0.95	UG/L	Ų	U	
Acenaphthylene	0.95	UG/L	U	U	
Anthracene	0.95	UG/L	Ų	υ	
Benzo(a)anthracene	0.95	UG/L	U	บ	
Benzo(a)pyrene	0.95	UG/L	U	υ	
Benzo(b)fluoranthene	0.95	UG/L	U	U	
Benzo(g,h,i)perylene	0.95	UG/L	U	U	
Benzo(k)fluoranthene	0.95	UG/L	υ	U	
Chrysene	0.95	UG/L	U	U	
Dibenzo(a,h)anthracene	0.95	UG/L	U	U	
Fluoranthene	0,95	UG/L	U	U	
Fluorene	0.95	UG/L	U	U	
Indeno(1,2,3-cd)pyrene	0.95	UG/L	U	U	
Naphthalene	0.95	UG/L	U	U	
Phenanthrene	0,95	UG/L	U	U	
Pyrene	0.95	UG/L	U	U	
	Polynuclear Aromatic Hydrocarbons 2-Chloronaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	Polynuclear Aromatic HydrocarbonsResult2-Chloronaphthalene0.95Acenaphthene0.95Acenaphthylene0.95Anthracene0.95Benzo(a)anthracene0.95Benzo(a)anthracene0.95Benzo(a)pyrene0.95Benzo(b)fluoranthene0.95Benzo(g,h,i)perylene0.95Benzo(a,h)anthracene0.95Benzo(a,h)anthracene0.95Benzo(a,h)anthracene0.95Fluoranthene0.95Fluoranthene0.95Fluoranthene0.95Fluorene0.95Indeno(1,2,3-cd)pyrene0.95Naphthalene0.95Phenanthrene0.95	Polynuclear Aromatic Hydrocarbons Result Units 2-Chloronaphthalene 0.95 UG/L Acenaphthene 0.95 UG/L Acenaphthylene 0.95 UG/L Anthracene 0.95 UG/L Benzo(a)anthracene 0.95 UG/L Benzo(a)anthracene 0.95 UG/L Benzo(a)pyrene 0.95 UG/L Benzo(a)pyrene 0.95 UG/L Benzo(a)pyrene 0.95 UG/L Benzo(b)fluoranthene 0.95 UG/L Benzo(g,h,i)perylene 0.95 UG/L Benzo(g,h,i)perylene 0.95 UG/L Dibenzo(a,h)anthracene 0.95 UG/L Fluoranthene 0.95 UG/L Fluoranthene 0.95 UG/L Indeno(1,2,3-cd)pyrene 0.95 UG/L Naphthalene 0.95 UG/L	Polynuclear Aromatic Hydrocarbons Result Units Lab 2-Chloronaphthalene 0.95 UG/L U Acenaphthene 0.95 UG/L U Acenaphthylene 0.95 UG/L U Anthracene 0.95 UG/L U Anthracene 0.95 UG/L U Benzo(a)anthracene 0.95 UG/L U Benzo(a)apyrene 0.95 UG/L U Benzo(a)pyrene 0.95 UG/L U Benzo(b)fluoranthene 0.95 UG/L U Benzo(g,h,i)perylene 0.95 UG/L U Benzo(g,h,i)perylene 0.95 UG/L U Benzo(g,h,i)nthracene 0.95 UG/L U Dibenzo(a,h)anthracene 0.95 UG/L U Fluoranthene 0.95 UG/L U Fluorene 0.95 UG/L U Indeno(1,2,3-cd)pyrene 0.95 UG/L U Naphthalene <td< td=""><td>Polynuclear Aromatic HydrocarbonsResultUnitsLabData2-Chloronaphthalene0.95UG/LUUAcenaphthene0.95UG/LUUAcenaphthylene0.95UG/LUUAnthracene0.95UG/LUUBenzo(a)anthracene0.95UG/LUUBenzo(a)apyrene0.95UG/LUUBenzo(a)pyrene0.95UG/LUUBenzo(b)fluoranthene0.95UG/LUUBenzo(k)fluoranthene0.95UG/LUUBenzo(k)fluoranthene0.95UG/LUUBenzo(a,h)anthracene0.95UG/LUUChrysene0.95UG/LUUDibenzo(a,h)anthracene0.95UG/LUUFluoranthene0.95UG/LUUFluoranthene0.95UG/LUUPluorene0.95UG/LUUIndeno(1,2,3-cd)pyrene0.95UG/LUUNaphthalene0.95UG/LUUPhenanthrene0.95UG/LUU</td></td<>	Polynuclear Aromatic HydrocarbonsResultUnitsLabData2-Chloronaphthalene0.95UG/LUUAcenaphthene0.95UG/LUUAcenaphthylene0.95UG/LUUAnthracene0.95UG/LUUBenzo(a)anthracene0.95UG/LUUBenzo(a)apyrene0.95UG/LUUBenzo(a)pyrene0.95UG/LUUBenzo(b)fluoranthene0.95UG/LUUBenzo(k)fluoranthene0.95UG/LUUBenzo(k)fluoranthene0.95UG/LUUBenzo(a,h)anthracene0.95UG/LUUChrysene0.95UG/LUUDibenzo(a,h)anthracene0.95UG/LUUFluoranthene0.95UG/LUUFluoranthene0.95UG/LUUPluorene0.95UG/LUUIndeno(1,2,3-cd)pyrene0.95UG/LUUNaphthalene0.95UG/LUUPhenanthrene0.95UG/LUU

Location: FIRE TRAINING (SWMU 13) Station : FT-MW-09

FT0912

Sample				Qual	ifiers	Validation	
Туре	BTEX Compounds	Result	Units	Lab	Data	Code	
REG	Benzene	1.0	UG/L	U	U		_
REG	Ethylbenzene	.36	UG/L	J	J		
REG	Toluene	.3	UG/L	J	J		
REG	Xylenes, Total	1.6	UG/L	J	J		
Sample				Qual	ifiers	Validation	
Туре	Polynuclear Aromatic Hydrocarbons	Result	Units	Lab	Data	Code	
REG	2-Chloronaphthalene	0.95	UG/L	υ	U		_
REG	Acenaphthene	0.95	UG/L	U	U		
REG	Acenaphthylene	0.95	UG/L	U	U		
REG	Anthracene	0.95	UG/L	U	U		
REG	Benzo(a)anthracene	0.95	UG/L	U	U		
REG	Benzo(a)pyrene	0.95	UG/L	U	U		
REG	Benzo(b)fluoranthene	0.95	UG/L	U	υ		
REG	Benzo(g,h,i)perylene	0.95	UG/L	U	U		
REG	Benzo(k)fluoranthene	0.95	UG/L	U	U		
REG	Chrysene	0.95	UG/L	U	U		
REG	Dibenzo(a,h)anthracene	0.95	UG/L	U	U		
REG	Fluoranthene	0,95	UG/L	U	U		
REG	Fluorene	0.95	UG/L	U	U		
REG	Indeno(1,2,3-cd)pyrene	0.95	UG/L	U	U		
REG	Naphthalene	0.95	UG/L	U	U		
REG	Phenanthrene	0.95	UG/L	U	U		
REG	Pyrene	0.95	UG/L	U	υ		

Location: FIRE TRAINING (SWMU 13) Station : FT-MW-10

	Field San	ple Type: Gra	b M	atrix: Gr	oundwat	er	Collected: 12/03/200
Sample Type	BTEX Compounds	Result	Units	Qual Lab	ifiers Data	Validation Code	
REG	Benzene	2.7	UG/L		=		
REG	Ethylbenzene	.17	UG/L	J	J		
REG	Toluene	1.0	UG/L	U	Ŭ		
REG	Xylenes, Total	.4	UG/L	J	J		
Sample				Qual	ifiers	Validation	
Туре	Polynuclear Aromatic Hydrocarbons	Result	Units	Lab	Data	Code	
REG	2-Chloronaphthalene	0.95	UG/L	U	U	.	
REG	Acenaphthene	0.95	UG/L	U	U		
REG	Acenaphthylene	0.95	UG/L	U	U		
REG	Anthracene	0.95	UG/L	υ	υ		
REG	Benzo(a)anthracene	0.95	UG/L	U	U		
REG	Benzo(a)pyrene	0.95	UG/L	υ	U		
REG	Benzo(b)fluoranthene	0.95	UG/L	U	U		

FT1012

	Field Sample Type: Grab Matrix: Groundwater										
Sample Typ e	Polynuclear Aromatic Hydrocarbons	Result	Units	Qual Lab	ifiers Data	Validation Code					
REG	Benzo(k)fluoranthene	0.95	UG/L	υ	υ		_				
REG	Chrysene	0.95	UG/L	U	U						
REG	Dibenzo(a,h)anthracene	0.95	UG/L	υ	U						
REG	Fluoranthene	0.95	UG/L	U	U						
REG	Fluorene	0.95	UG/L	U	U						
REG	Inderio(1,2,3-cd)pyrene	0.95	UG/L	U	Ų						
REG	Naphthalene	0.95	UG/L	JB	U	F01,F06					
REG	Phenanthrene	0.95	UG/L	U	U						
REG	Pyrene	0.95	UG/L	U	υ						

Location: FIRE TRAINING (SWMU 13) Station : FT-MW-11

FT1112

Sample				Qual	ifiers	Validation	
Туре	BTEX Compounds	Result	Units	Lab	Data	Code	
REG	Benzene	9.5	UG/L		=	·	<u> </u>
REG	Ethylbenzene	1.6	UG/L		=		
REG	Toluene	1.0	UG/L	U	U		
REG	Xylenes, Total	1.4	UG/L	J	L		
Sample				Qual	ifiers	Validation	
Type	Polynuclear Aromatic Hydrocarbons	Result	Units	Lab	Data	Code	
REA	2-Chloronaphthalene	0.96	UG/L	U	UJ	A01	_
REA	Acenaphthene	0.96	UG/L	U	UJ	A01	
REA	Acenaphthylene	0.96	UG/L	U	UJ	A01	
REA	Anthracene	0.96	UG/L	U	UJ	A01	
REA	Benzo(a)anthracene	0.96	UG/L	U	UJ	A01	
REA	Benzo(a)pyrene	0.96	UG/L	U	UJ	A01	
REA	Benzo(b)fluoranthene	0.96	UG/L	U	UJ	A01	
REA	Benzo(g,h,i)perylene	0.96	UG/L	υ	UJ	A01	
REA	Benzo(k)fluoranthene	0.96	UG/L	υ	UJ	A01	
REA	Chrysene	0.96	UG/L	υ	UJ	A01	
REA	Dibenzo(a,h)anthracene	0.96	UG/L	U	UJ	A01	
REA	Fluoranthene	0.96	UG/L	υ	UJ	A01	
REA	Fluorene	0.96	UG/L	U	UJ	A01	
REA	Indeno(1,2,3-cd)pyrene	0.96	UG/L	U	UJ	A01	
REA	Naphthalene	4	UG/L		J	A01	
REA	Phenanthrene	0.96	UG/L	υ	ŬJ	A01	
REA	Pyrene	0.96	UG/L	ū	ŪJ	A01	

Location: FIRE TRAINING (SWMU 13) Station: FT-MW-12

	Field Sample Type: Grab Matrix: Groundwater								
Sample Type	BTEX Compounds	Result	Units	Qual Lab	ifiers Data	Validation Code			
REG	Benzene	418	UG/L		=	·	_		
REG	Ethylbenzene	952	UG/L		=				
REG	Toluene	391	UG/L		=				
REG	Xylenes, Total	4930	UG/L		=				
Sample Type	Polynuclear Aromatic Hydrocarbons	Result	Units	Qual Lab	ifiers Data	Validation Code			
REA									
	2-Chloronaphthalene		UG/L	U	UJ	A01			
REA	Acenaphthene		UG/L	U	UJ	A01			
REA	Acenaphthylene		UG/L	U	UJ	A01			
REA	Anthracene		UG/L	U	UJ	A01			
REA	Benzo(a)anthracene		UG/L	U	UJ	A01			
REA	Benzo(a)pyrene		UG/L	Ų	UJ	A01			
REA	Benzo(b)fluoranthene		UG/L	U	θJ	A01			
REA	Benzo(g,h,i)perylene		UG/L	U	UJ	A01			
REA	Benzo(k)fluoranthene	0.96	UG/L	U	UJ	A01			
REA	Chrysene	0.96	UG/L	U	IJ	A01			
REA	Dibenzo(a,h)anthracene	0.96	UG/L	U	UJ	A01			

FT1212

	Field Sa	mple Type: Gra	b M	atrix: Groundwater			Collected: 12/03/2000
Sample Type	Polynuclear Aromatic Hydrocarbons	Result	Units	Qual Lab	ifiers Data	Validation Code	······································
REA	Fluoranthene	0.96	 UG/L	U	UJ	A01	_
REA	Fluorene	2.6	UG/L		J	A01	
REA	Indeno(1,2,3-cd)pyrene	0.96	UG/L	U	UJ	A01	
REA	Naphthalene	304	UG/L	D	J	A01	
REA	Phenanthrene	1.8	UG/L		J	A01	
REA	Pyrene	0.96	UG/L	U	UJ	A01	

Location: FIRE TRAINING (SWMU 13) Station : FT-MW-13

Sample				Qual	ifiers	Validation	
Туре	BTEX Compounds	Result	Units	Lab	Data	Code	
REG	Benzene	2.8	UG/L	• •• ••	=	·	_
REG	Ethylbenzene	11	UG/L		=		
REG	Toluene	.42	UG/L	J	J		
REG	Xylenes, Total	11.4	UG/L		=		
Sample					ifiers	Validation	
Туре	Polynuclear Aromatic Hydrocarbons	Result	Units	Lab	Data	Code	
REA	2-Chloronaphthalene	0.96	UG/L	U	UJ	A01	
REA	Acenaphthene	0.96	UG/L	U	UJ	A01	
REA	Acenaphthylene	0.96	UG/L	U	UJ	A01	
REA	Anthracene	0.96	UG/L	U	UJ	A01	
REA	Benzo(a)anthracene	0.96	UG/L	U	UJ	A01	
REA	Benzo(a)pyrene	0.96	UG/L	U	UJ	A01	
REA	Benzo(b)fluoranthene	0.96	UG/L	Ų	UJ	A01	
REA	Benzo(g,h,i)perylene	0,96	UG/L	U	ΟJ	A01	
REA	Benzo(k)fluoranthene	0.96	UG/L	U	IJ	A01	
REA	Chrysene	0.96	UG/L	υ	UJ	A01	
REA	Dibenzo(a,h)anthracene	0.96	UG/L	υ	UJ	A01	
REA	Fluoranthene	0.96	UG/L	U	UJ	A01	
REA	Fluorene	.69	UG/L	J	ŬĴ	A01	
REA	Indeno(1,2,3-cd)pyrene		UG/L	Ū	UJ	A01	
REA	Naphthalene	42.2	UG/L	-	J	A01	
REA	Phenanthrene		UG/L	U	ůJ	A01	
REA	Pyrene		UG/L	Ŭ	IJ	A01	

A. ANALYTICAL LABORATORY DATA

DEFINITIONS OF ACRONYMS AND ABBREVIATIONS

REG — Regular analysis

- TCLP Toxicity Characteristic Leachate Procedure (analytes listed in that procedure)
- **BGS** Below ground surface (depth in feet)

QUALIFIERS FOR ORGANIC ANALYTICAL DATA

Laboratory Flags

- U Indicates that the compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution. For a soil/sediment sample, the value must also be corrected for percent moisture.
- **J** Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is used only for TICs, where the identification is based on a mass spectral library search.
- **P** Used for pesticide/Aroclor target analytes when there is greater than 25 percent difference for detected concentrations between the two gas chromatography (GC) columns.
- C Applies to pesticide results where the identification has been confirmed by GC/mass spectrometry (MS). If GC/MS confirmation was attempted but was unsuccessful, do not apply this flag; instead use a laboratory-defined flag.
- **B** Used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. This flag must be used for TICs as well as for positively identified target compounds.
- E Identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analysis.
- **D** Identifies all compounds identified in an analysis at a secondary dilution factor. This flag alerts data users that any discrepancies between the concentrations reported may be due to dilution of the sample or extract.
- A Indicates that a TIC is a suspected aldol-condensation product.
- X Other specific flags may be required to properly define the results. If used, they must be fully described and such description must be attached to the Sample Data Summary Package and the standard delivery group narrative.

Validation Flags

- U Indicates that the compound was analyzed for, but was not detected above, the reported sample quantitation limit.
- **UJ** Indicates that the compound was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the compound in the sample.
- J Indicates that the compound was positively identified; the associated numerical value is the approximate concentration of the compound in the sample.
- **N** The analysis indicates the presence of a compound for which there is presumptive evidence to make a "tentative identification."
- NJ Indicates that the analysis indicates the presence of a compound that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- **R** Indicates that the sample results for the compound are rejected or unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the compound cannot be verified.
- = Indicates that the value has been validated and that the compound has been positively identified and the associated concentration value is accurate.

DATA QUALIFIER FLAGS FOR INORGANIC ANALYTICAL DATA

Laboratory Flags

- **B** Indicates that the reported value was obtained from a reading that was less than the Contract-Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates that the analyte was analyzed for but not detected.
- \mathbf{E} Used when the reported value is estimated because of the presence of interference.
- M —Indicates that the duplicate injection precision was not met.
- N Indicates that the spiked sample recovery is not within control limits.
- S Indicates that the reported value was determined by the method of standard additions (MSA).
- W Used when the post-digestion spike for furnace atomic absorption analysis is not within control limits (85 percent to 115 percent), while sample absorbance is less than 50 percent of spike absorbance.
- * Indicates that the duplicate analysis is not within control limits.
- + Indicates that the correlation coefficient for the MSA is less than 0.995.

Validation Flags

- U Indicates that the analyte was analyzed for, but was not detected above, the reported sample quantitation limit.
- **UJ** Indicates that the compound was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the compound in the sample.
- J Indicates that the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **R** Indicates that the sample results for the analyte are rejected or unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- = Indicates that the value has been validated and that the analyte has been positively identified and the associated concentration value is accurate.

DATA QUALIFIER FLAGS FOR RADIOCHEMICAL ANALYTICAL DATA

Laboratory Flags

- < The numerical value reported is less than the minimum detectable activity.
- N The sample results are flagged to denote poor spike recovery.
- * The sample results are flagged to denote poor duplicate results.

Validation Flags

- U Indicates that the radionuclide was analyzed for, but was not detected above, the reported sample quantitation limit.
- J Indicates that the radionuclide was positively identified; the associated numerical value is the approximate concentration of the radionuclide in the sample.
- N The analysis indicates the presence of a radionuclide for which there is presumptive evidence to make a "tentative identification."
- **DL** The detection limit requirements were not met. The data quality objectives may not be met.
- **UI** Indicates that there is uncertain identification for gamma spectroscopy. The radionuclide peaks are detected but fail to meet the positive identification criteria.
- **R** Indicates that the sample results for the radionuclide are rejected or unusable due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the radionuclide cannot be verified.
= — Indicates that the value has been validated and that the radionuclide has been positively identified and the associated concentration value is accurate.

ANALYTICAL DATA VALIDATION FLAGGING CODES

Holding Times

- A01 Extraction holding times were exceeded.
- A02 Extraction holding times were grossly exceeded.
- A03 Analysis holding times were exceeded.
- A04 Analysis holding times were grossly exceeded.
- A05 Samples were not preserved properly.
- A06 Professional judgment was used to qualify the data.

GC/MS Tuning

- B01 Mass calibration was in error, even after applying expanded criteria.
- B02 Mass calibration was not performed every 12 hours.
- B03 Mass calibration did not meet ion abundance criteria.
- B04 Professional judgment was used to qualify the data.

Initial/Continuing Calibration - Organics

- C01 Initial calibration relative response factor (RRF) was <0.05.
- C02 Initial calibration relative standard deviation (RSD) was >30 percent.
- C03 Initial calibration sequence was not followed as required.
- C04 Continuing calibration RRF was <0.05.
- C05 Continuing calibration %D was >25 percent.
- C06 Continuing calibration was not performed at the required frequency.
- C07 Resolution criteria were not met.
- C08 Relative percent difference (RPD) criteria were not met.
- C09 RSD criteria were not met.
- C10 Retention time of compounds was outside windows.
- C11 Compounds were not adequately resolved.
- C12 Breakdown of endrin or dichlorodiphenyl-trichloroethane (DDT) was >20 percent.
- C13 Combined breakdown of endrin/DDT was >30 percent.
- C14 Professional judgment was used to qualify the data.

Initial/Continuing Calibration - Inorganics

- D01 Initial calibration verification (ICV) or continuing calibration verification (CCV) were not performed for every analyte.
- D02 ICV recovery was above the upper control limit.
- D03 ICV recovery was below the lower control limit.
- D04 CCV recovery was above the upper control limit.
- D05 CCV recovery was below the lower control limit.
- D06 Standard curve was not established with the minimum number of standards.
- D07 Instrument was not calibrated daily or each time the instrument was set up.
- D08 Correlation coefficient was <0.995.
- D09 Mid-range cyanide standard was not distilled.
- D10 Professional judgment was used to qualify the data.

ICP and Furnace Requirements

- E01 Interference check sample recovery was outside the control limit.
- E02 Duplicate injections were outside the control limit.
- E03 Post digestion spike recovery was outside the control limit.
- E04 MSA was required but not performed.
- E05 Correlation coefficient was <0.995.
- E06 MSA spikes were not at the correct concentration.
- E07 Serial dilution criteria were not met.
- E08 Professional judgment was used to qualify the data.

<u>Blanks</u>

- F01 Sample data were qualified as a result of the method blank.
- F02 Sample data were qualified as a result of the field blank.
- F03 Sample data were qualified as a result of the equipment rinsate.
- F04 Sample data were qualified as a result of the trip blank.
- F05 Gross contamination exists.
- F06 Concentration of the contaminant was detected at a level below the CRQL.
- F07 Concentration of the contaminant was detected at a level less than the action limit, but greater than the CRQL.
- F08 Concentration of the contaminant was detected at a level that exceeds the action level.
- F09 No laboratory blanks were analyzed.
- F10 Blank had a negative value >2 times the IDL.
- F11 Blanks were not analyzed at required frequency.
- F12 Professional judgment was used to qualify the data.

Surrogate/Radiological Chemical Recovery

- G01 Surrogate/radiological chemical recovery was above the upper control limit.
- G02 Surrogate/radiological chemical recovery was below the lower control limit.
- G03 Surrogate recovery was <10 percent.
- G04 Surrogate/radiological chemical recovery was zero.
- G05 Surrogate/radiological chemical recovery was not present.
- G06 Professional judgment was used to qualify the data.
- G07 Radiological chemical recovery was <20 percent.
- G08 Radiological chemical recovery was >150 percent.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

- H01 MS/MSD recovery was above the upper control limit.
- H02 MS/MSD recovery was below the lower control limit.
- H03 MS/MSD recovery was <10 percent.
- H04 MS/MSD pairs exceed the RPD limit.
- H05 No action was taken on MS/MSD results.
- H06 Professional judgment was used to qualify the data.
- H07 Radiological MS/MSD recovery was <20 percent.
- H08 Radiological MS/MSD recovery was >160 percent.
- H09 Radiological MS/MSD samples were not analyzed at the required frequency.

Matrix Spike (MS)

- I01 MS recovery was above the upper control limit.
- I02 MS recovery was below the lower control limit.
- IO3 MS recovery was <30 percent.
- IO4 No action was taken on MS data.
- I05 Professional judgment was used to qualify the data.

Laboratory Duplicate

- J01 Duplicate RPD/radiological duplicate error ration (DER) was outside the control limit.
- J02 Duplicate sample results were >5 times the CRDL.
- J03 Duplicate sample results were <5 times the CRDL.
- J04 Professional judgment was used to qualify the data.
- J05 Duplicate was not analyzed at the required frequency.

Internal Area Summary

- K01 Area counts were outside the control limits.
- K02 Extremely low area counts or performance was exhibited by a major drop off.
- K03 Internal standard retention time varied by more than 30 seconds.
- K04 Professional judgment was used to qualify the data.

Pesticide Cleanup Checks

- L01 10 Percent recovery was obtained during either check.
- L02 Recoveries during either check were >120 percent.
- L03 Gel permeation chromatography cleanup recoveries were outside the control limits.
- L04 Florisil cartridge cleanup recoveries were outside the control limits.
- L05 Professional judgment was used to qualify the data.

Target Compound Identification

- M01 Incorrect identifications were made.
- M02 Qualitative criteria were not met.
- M03 Cross-contamination occurred.
- M04 Confirmatory analysis was not performed.
- M05 No results were provided.
- M06 Analysis occurred outside the 12-hour GC/MS window.
- M07 Professional judgment was used to qualify the data.
- M08 The %D between the two pesticide/polychlorinated biphenyl column checks was >25 percent.

Compound Quantitation and Reported CRQLs

- N01 Quantitation limits were affected by large off-scale peaks.
- N02 Method detection limits reported by the laboratory exceeded corresponding CRQLs.
- N03 Professional judgment was used to qualify the data.

Tentatively Identified Compounds (TICs)

- O01 Compound was suspected laboratory contaminant and was not detected in the blank.
- O02 TIC result was not above 10 times the level found in the blank.
- O03 Professional judgment was used to qualify analytical data.

Laboratory Control Samples (LCSs)

- P01 LCS recovery was above upper control limit.
- P02 LCS recovery was below lower control limit.
- P03 LCS recovery was <50 percent.
- P04 No action was taken on the LCS data.
- P05 LCS was not analyzed at required frequency.
- P06 Radiological LCS recovery was <50 percent for aqueous samples; <40 percent for solid samples.
- P07 Radiological LCS recovery was >150 percent for aqueous samples; >160 percent for solid samples.
- P08 Professional judgment was used to qualify the data.

Field Duplicate

- Q01 No action was taken on the basis of field duplicate RPDs.
- Q02 Radiological field duplicate error ratio (DER) was outside the control limit.
- Q03 Duplicate sample results were >5 times the CRDL.
- Q04 Duplicate sample results were <5 times the CRDL.

Radiological Calibration

- R01 Efficiency calibration criteria were not met.
- R02 Energy calibration criteria were not met.
- R03 Resolution calibration criteria were not met
- R04 Background determination criteria were not met.
- R05 Quench curve criteria were not met.
- R06 Absorption curve criteria were not met.
- R07 Plateau curve criteria were not met.
- R08 Professional judgment was used to qualify the data.

Radiological Calibration Verification

- S01 Efficiency verification criteria were not met.
- S02 Energy verification criteria were not met.
- S03 Resolution verification criteria were not met
- S04 Background verification criteria were not met.
- S05 Cross-talk verification criteria were not met.
- S06 Professional judgment was used to qualify the data.

Radionuclide Quantitation

- T01 Detection limits were not met.
- T02 Analytical uncertainties were not met and/or not reported.
- T03 Inappropriate aliquot sizes were used.
- T04 Professional judgment was used to qualify the data.

System Performance

- V01 High background levels or a shift in the energy calibration were observed.
- V02 Extraneous peaks were observed.
- V03 Loss of resolution was observed.
- V04 Peak-tailing or peak splitting that may result in inaccurate quantitation were observed.
- V05 Professional judgment was used to qualify the data.

APPENDIX B

GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS

THIS PAGE INTENTIONALLY LEFT BLANK.

HTRI	N DRI	LLING	G LO	G			OISTRICT	USA	<u> </u>	Sau	ar	ah			HOLENI FT-M	имвея <u>ПШ-1</u> -
1. COMPA	NY NAME	SAIC					L CRILL SU			AIC	~				२-१६१ _	Lor L
	_						, . <u></u> _,				/		۸ · (.		•	
	DF ORILLER:	<u>smu</u>	<u>13</u> 2007					1. LOCATION: Wright Army Airfield 1. MANUFACTURERS DESIGNATION OF DRILL GEOPTO								
	TYPES OF D		[, SA				A HOLE LOCATION: CLUB D D						φφ		
2/2	NO COUPLEN	т		rods	2. 1540	<u>, </u>	ft,	i				Sketc	n Bel	<u>.ou</u>		
					•···				JRFACE EL	·						
								10.0	ATE STAR	TED: Ø-	1/04	Ιøι	11 GAF	E COMPLET	^{=⊃} øч/	1 <u>44 /4</u>
2. OVER	BURCEN TH	CXNESS	N.	A				15. :						201		
13. OEPT)	, DEFINIORILLED INTO ROCK					16. (01 אדקפי		NO ELA			:RILLING C:				
14 TOTAL	. DEPTH CF	HOLE	15	.Ø				17.5	AW SHITE	TER CEV	EL MEA	SUREMEN	TS (SPEC	:F1.		
18. GEOTECHNICAL SAMPLES NA DISTURBED						NCIS	TURBED	19		JMBER	OF CORE	BCXES	NA			
72 SAVALES FOR CHEMICAL ANALYSIS VOC						42-263		0 <i>C's</i>	- <u>-</u>	746 <u>8 (</u> 58	250:M	27467	speciem	11 TOX 1 45COV	FAL JORE TERY N	
				<u>५</u> ८५	X (3/4		R ISPECIEM			te or respec		bbott				
LOCAT	ION SKE	TCH/CO	MMEN	TS			/****	-			J.			vare		F+
<u> </u>	7			71				(14			171			1/		
\checkmark		\uparrow				-/-			.		X	1				
1			∇		1001	ha	tete	P	ad							
	7									/ .			/		X	$\downarrow \downarrow$
									0.0							
	<u>(B)</u>				0		·		NW 12			\oslash		<u> </u>		
			_							1				1		
					<u> </u>	 	<u> </u>	<u> </u>					_			
_									+					+		
										<u> </u>	 					
						<u> </u>			Θ	<u> </u>						
							i i i i				<u> </u>					
															i	
				 							-					
	 			<u> </u>			· · ·				<u> </u>					
		<u> </u> -						<u> </u>								
	<u> </u>					 	; ;		(1)) 		+ +			
								<u> </u>								
										 ;_					 	
												· · ·				
						1				1	:					1
				+	i	-+						·				

* NOTE TYPE OF MONITORING (i.e., borehole cuttings, monitoring well atmosphere, soil core, breathing zone, working control of the second secon

QA CHECK BY:

·		HTRW DRILLI	NGLOG		1.1 -57	HOLE NUMBERFT MW 14
DECT:	13.5	wmu's c'umu	SPECTOR Cym		NALYTICAL	SHEET OF 2
rv. C	1015 (10)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	SAMPLE NO.	(୦)
		Organic debris † top seil Silty Clay. Moist Firm. Non-plastic. 10 YR 4/8 brownish yellow	7. Oppon	NА		Run: 4.0° Recover: 3.5
		Clay, Hard, Dry. Crumbios lopiasticity. Mottled. 10R 1/4 INR 7/, 10 VR 7/.	8.5ppm			
		No Recovery	NA			Run 4.0
		Clay. Hard Same as above. Mottled. lor.44 Red. 104R 7/1 Light gray: 104R 7/6 Vellowish brown.	2263.bbu			fecorer 40
	, , , , , , , , , , , , , , , , , , ,		72500ppm		FTAIL	
	 	Same as above.	72500			

. <u>.</u> .		NILINGLOG			HOLE NUMBER FTMW	
T: 13	Swime 'ခ	INSPECTOR Cym	thia L. Or	tott	SHEET 2 OF 2	
DEPTH (B)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING RESULTS	CEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARES (5)	
-						
_		72500				
		10		FT1421		
11						
-						
11						
	Same clay as above. except fully saturated.					
	above are of				Water encountered @ 12.0'	
	hilly seturated				@ 12.0'	
<u>د</u>	- many saturations.			Į		
_						
· · · ·	-					
	-					
ļ						
15 -	- 				$TD = (-5, 0)^{\prime} BGS$	
	-				10-13.0. Das	
-						
14 -						
17 -						
	-					
-		1				
18						
	-					
-						
19	-					
	-					
-	-					

MONITORING WELL INSTA	LLATION LOG
PROJECT: Fire Training Area (SWMU 13)	DELIVERY ORDER NO: 00
IONITORING WELL ID: FT-MW-14	
NSTALLATION START: DATE: 04/04/01	TIME: 1350
NSTALLATION FINISH: DATE: 04/04/01	TIME: 1455
NNULAR SPACE MATERIALS INVENTORY:	
GRANULAR FILTER PACK: TYPE: $DDFILE$	
BENTONITE SEAL: TYPE: Granul	ar QUANTITY: ~ 5 165
GROUT: TYPE:	QUANTITY:
ESCRIPTION OF WELL SCREEN:	
SLOT SIZE (inches): 0.010 SLOT CONFIG	SURATION: Horizontal
TOTAL OPEN AREA PER FOOT OF SCREEN:	
OUTSIDE DIAMETER: NOMINAL INS	
SCHEDULE/THICKNESS: 46	COMPOSITION: PVC
MANUFACTURER: DSI	
YPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREE	EN: <u>NA</u>
ESCRIPTION OF WELL CASING:	
OUTSIDE DIAMETER: 7/8" NOMINAL INS	
SCHEDULE/THICKNESS: 40	COMPOSITION:
MANUFACTURER: DSI	
OINT DESIGN AND COMPOSITION: Threaded	······
ENTRALIZERS DESIGN AND COMPOSITION: NA	
ESCRIPTION OF PROTECTIVE CASING:	
NOMINAL INSIDE DIAMETER: CO	OMPOSITION:
PECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCT	
	-
las all well screen and casing material used for construction free of fore	ign matter (e.g., adhesive tape, labels, soil, grease,
c.J? YES X NO []	
las all well screen and casing material used for construction free of unse	ecured couplings, ruptures, and other physical
reakage and/or defects? YESX1 NO	
deformation or bending of the installed well screen and casing minimize	
trieval of a 1.0-inch bailer throughout the entire length of the completed	d well? YES[] NOjX - 3/4" well
UANTITY OF APPROVED WATER USED FOR FILTER PACK ENPL	ACEMENT: NONE
ECORDED BY: Cynthia J. Robott 44, (Signature & Date)	TOTAL OA CHECK BY

¢.

TRW DRILLING LOG	· · · · · · · · · · · · · · · · · · ·		Ace-So	wa	rra	L			HOLE NU	12-15
		L CRILL SUBCO							2467 L	ar
COMPANY NAME SAIC		MA	1	<u>)</u>						
	· · · · ·		4. LOCATION	Sab	Ske	tch F	age	, 3		
PROJECT SWAU 13			S. MANUFACTU						e 54	QO .
NAME OF DRILLER: NI ROOT	5AIC 102, 4' 2'4"	- CD Steel			_	page	_			
ALES AND TYPES OF DRILLING GOUPE O	Sample SIE		1			1-ver				
		10. DATE STAF	πeo:φ	<u>ач/фч</u>	ψι	I DATE	COMPLE	⁼⁼⁼ ४५	10410	
OVERBURGEN THICKNESS MA			15. CEPTH GR					<u>a.a</u>		
			18. CEPTH TO	WATE		SEO TIME	AFTER C		CMPLETE	3:
3. DEPTH OHICLED INTO ROCK			<u> </u>		11 @				<u>v.</u>	<u> </u>
			17. OTHER W	ATERL	evel Mea:					
15'			RBED 19	TOTAL	NUMBER	OF CORE 3	CXE5	NA		
B. GEOTECHNICAL SAMPLES		• <i>≓</i> ⊥رغ			OTHER (SP	i€ci∕M	37465	SPECIEM		NERY S
	<u> </u>	AGAITORING WELL	SYOC'S		3. SIGNATURE OF INSPECTOR					
2. DISPOSITION OF HOLE	BACKFILLED	X (1/4")			Cynt	hia d	.uu	∞w		
LOCATION SKETCH/COMMENTS						SCALE.			<u>.</u>	
				<u> </u>			ļ į 	<u> </u>		
						<u> </u>	1 1		<u></u>	
					<u> </u>		+ +			
						$\frac{1}{1}$			<u></u>	
								<u> </u>		
						<u></u>				
										1
						+				
					 				Ī	
		Page				 				
	520			<u> </u>						
				1		1	1			
				1						
		· · ·		Ī			ļ		[]	
				1						
										<u> </u>
				!						· !
┝ ──╞──}				1					!	

* NOTE TYPE OF MONITORING (i.e., borehole cuttings, monitoring

QA CHECK BY:

	<u> </u>	HTRW DRILL	NGLOG			 HOLE NUMBER MWJS	ゴハ
PROJEC	r. 13 5	SwmU's	SPECTOR CU	nthia d. C.	lbbott	SHEET OF 2	
ELEV.	DEPTH (8)	DESCRIPTION OF MATERIALS (C)	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (5)	 REMARKS (G)	
		Silty Clay. Dry. Joff Loose. Non plastic. 10yr 5/4	Q.299m				
			30.4				
		Clay Damp. Mod. Firm Mod. Plasticity.					
	5	10 YR 5% Clay w/silt. Firm to hand. Damp. Lo plasticity. Mottled 10 R 1/8 Red, 10 yR 7/1 Light gray, 10 VR 5% Yellowish brown.	70.840m				<u>uuluuluul</u>
			2385 pp		FT 1511		muhunhunh
	,	Same as above	834ppm				<u>uuluuluu</u>

-

	<u></u>	HTRW DRILL	INGLOG	<u> </u>		HOLE NUMBER MWIT
ECT:	_		NSPECTOR C	nthe of a	bbott	SHEET LOF 2
OEP (B)		DESCRIPTION OF MATERIALS (C)	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS (C)
	= 50	me Mottled Clay				
	100	before.				
			1835pm		FTISRI	
11			1000			
	-					
12		A ADORE.				· · · · · · · · · · · · · · · · · · ·
		ame As Above. aturated throughout	+			
	Ξà	aturated throughus.				
13						
						V Water Encountered @
14					ł	12.2-14.5
	-					
	_					
15		1				
		Jug and Very CEArse Sau yr 7/3 Very Pale Brown.	iner			Wellelj.o
	- Ver	y hard. No plasticity.				
	- I Cia I No	thed IOVR73 with NYR % prownish Vellow				
14	FIO	yR % prownish Yellow				
						TD= 16.0'
. 17					-	
iar.						
			ł			
			:			
19						

MONITORING WELL INSTALLATI	ION LOG
PROJECT: Fire Training Area (SWMU 13)	DELIVERY ORDER NO: 00
ADNITORING WELL ID: $\underline{TT-MW-15}$ NSTALLATION START: DATE: $\underline{OH}/\underline{OH}/\underline{OH}$ NSTALLATION FINISH: DATE: $\underline{OH}/\underline{OH}/\underline{OH}$ NSTALLATION FINISH: DATE: $\underline{OH}/\underline{OH}/\underline{OH}$ NSTALLATION FINISH: DATE: $\underline{OH}/\underline{OH}/\underline{OH}$ NNULAR SPACE MATERIALS INVENTORY: GRANULAR FILTER PACK: TYPE: \underline{OH} GRANULAR FILTER PACK: TYPE: \underline{OH} BENTONITE SEAL: TYPE: \underline{OH} GROUT: TYPE: \underline{OH} GROUT: TYPE: \underline{OH} OESCRIPTION OF WELL SCREEN: SLOT SIZE (inches): \underline{O} . \underline{OH} SLOT CONFIGURAT TOTAL OPEN AREA PER FOOT OF SCREEN: \underline{OH} OUTSIDE DIAMETER: $\underline{1/8}^{"}$ NOMINAL INSIDE D SCHEDULE/THICKNESS: $\underline{SCHedUleH}$ MANUFACTURER: \underline{OST} TYPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREEN: \underline{OH} DESCRIPTION OF WELL CASING: OUTSIDE DIAMETER: $\underline{1/8}^{"}$ NOMINAL INSIDE I SCHEDULE/THICKNESS: $\underline{SCHedUleH}$ MANUFACTURER: \underline{SST} JOINT DESIGN AND COMPOSITION: \underline{MA}	TIME: 130 TIME: 130 1300 0UANTITY: S1bs $0UANTITY: 51bs 0UANTITY: 51bs0UANTITY: 1000000000000000000000000000000000000$
DESCRIPTION OF PROTECTIVE CASING: NOMINAL INSIDE DIAMETER: <u>S</u> COMP SPECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCTION Was all well screen and casing material used for construction free of foreign etc.?? YES X NO [] Was all well screen and casing material used for construction free of unsecu breakage and/or defects? YESX [NO [] Is deformation or bending of the installed well screen and casing minimized.	N AND THEIR RESOLUTION:
Is deformation or bending of the installed well screen and casing minimized is retrieval of a 1.0-inch bailer throughout the entire length of the completed is QUANTITY OF APPROVED WATER USED FOR FILTER PACK ENPLA RECORDED BY:	

TRW DRILLING LOG	CISTR	"ISACE-	Savan	nal		T-MW-16			
		LL SUBCONTRACTO				HET L or L			
SAIC	,	NA							
HOUECT 13 SWMU'S		4. LOCA	<u> </u>	cetch b	elas				
IN SWILLER: AI ROOT	SAIC	a. MANUFACTURERS CESIGNATION OF CRILL GLOPY OBE CHE							
		A HOLE LOCATION S I - I							
Samplers	00. 5400, 4 f+, 3/a	9. SURF	ACE ELEVATION						
			E STARTED:	11 0	ATE COMPLETE	2/05/01			
			E STARTED: 04K		11.5	<u>-10 5/01</u>			
OVERBURCEN THICKNESS NA				FLAPSED TIME AFTE	R DRILLING CON	APLETED:			
OEPTH ORILLED INTO ROCX			9.2' an	d Rising of	ter lo r	ninutes			
TOTAL DEPTH OF HOLE		17 07-	ER WATER LEVEL	MEASUREMENTS (SP	ECIEN.				
<u> </u>				BER OF CORE BOXES					
GEOTECHNICAL SAMPLES NA					-ER - SPECIEM	21 TOTAL CORS			
	X 1	WELL OTHER IS	PECIPO 1 31, 90	NATURE OF INSPECTOR					
	BACKFILLED 4CHIPEING		(ynthia J.	abbott				
OCATION SKETCH/COMMENTS				SCALE:					
			<u> </u>		1 1/1				
		10							
	- w								
						<u> </u>			
	£ / I I	Pag							
		oa							
		(++)-							
		F I C	$\bigcirc _ $						
		-41a)	<u>↓</u>						

			HTRW DRI	LINGLOG				MOER FTAN
_		umu's		INSPECTOR (1)			SHEET	OF Z
	08FTH (B)	DESCRIPTION O		HEADSPACE	GEOTECH SAMPLE	ANALYTICAL SAMPLE NO.	RENA (9)	
		0 to		RESULTS	OR CORE BOX		Run 1: 0.	5.4
		Concrete			AU			
							Recover:	3.0
	1	Silty Clay. S	oft. Dam					
	. =	No plasticity.		1.1ppm				
	'							
	7							
	. 7							
	\exists							
	-			12			1	
	'			1.3ppm				
	-	Clay. Suft. E	samp.					
	Ξ	IOVE % Yello	wish Brew					
		No Recovery						
	1							A 0
	7						Rund	
							Recover	4 '
	_							
	, <u> </u>							
		(CH) Fat Cla	y. Hard	109 per				
		Danp. Mod	to high					
		plasticity. H		A				
	1	10 YR 7/ Light	5. 10P4	k.				•
	• –				+		4	
	-	Red 10 YR 7	4 Yellowish					
		Brown.						
	Ξ							
				783ppm		FTIGII		
	'					FIN		
	-						1	
		Same As	Abore		1	4	Run 3	8-11
	TL							
				325 pm			Recover	100 (6
				$\int 2^{\alpha}$				
	'							
							8	
			λ					
				1.		+	-r	
				425	1	FT 1621		

	+					
		HTRW DRILL	NGLOG			HOLE NUMBER FT MW 16
PROJECT	T: 13 54	SMC's IN	SPECTOR CUN	thind at	2011	SHEET OF Z
ELEV. (A)	06 61 14 (B)	DESCRIPTION OF MATERIALS	HEADSPACE J SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS (C)
		Same (CH) askabore	425pm		FTIG21	
		Same (CH) clay as above, however				Water @~11.5
	12 <u>-</u>	color change to 10 R:44 Red.				
		Coarse grained GTZ Sand.				Well@13.0
						TD = 14.0
	15					
	14					
				- - - - - - - 		
			B-15			

MONITORING WELL I	NSTALLATION LOG
-------------------	-----------------

PROJECT: Tire Training Area (SWMU 13)	DELIVERY ORDER NO: 00
ET Multip	
	TIME: 1800
INSTALLATION START: DATE: $04/05/01$	TIME: 1840
ANNULAR SPACE MATERIALS INVENTORY:	
GRANULAR FILTER PACK: TYPE: # 200 Sand	QUANTITY: 5155
BENTONITE SEAL: TYPE: Granulay	QUANTITY: 2000
	QUANTITY:
THE WELL SCREEN:	
SLOT SIZE (inches): \cancel{O} , \cancel{O} (\cancel{O} SLOT CONFIGURA	ITION: Horizontal
TOTAL OPEN AREA PER FOOT OF SCREEN:	
OUTSIDE DIAMETER: 78 NOMINAL INSIDE	DIAMETER: _3/4 "
SCHEDULE/THICKNESS: Schedule 40	
MANUFACTURER:	
TYPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREEN:	
A CONDITION OF WELL CASING:	
OUTSIDE DIAMETER: 70 NOMINAL INSIDE	DIAMETER:
SCHEDULEITHICKNESS: 40	
MANUFACTURER: DSI	
JUINT DESIGN AND COMPOSITION: Threaded	
CENTRALIZERS DESIGN AND COMPOSITION: NA	
DESCRIPTION OF PROTECTIVE CASING:	
	POSITION: <u>Steel Flush Mount</u>
SPECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCTION	
tes all well screen and casing material used for construction free of foreign	matter (e.g., adhesive tape, labels, soil, grease,
re ?? YESTX NO[]	
y as all well screen and casing material used for construction free of unsecut	red couplings, ruptures, and other physical
reakage and/or defects? YES [X] NO []	
deformation or bending of the installed well screen and casing minimized to	o the point of allowing the insertion and
reverse of a 1.0-inch bailer throughout the entire length of the completed we	
QUANTITY OF APPROVED WATER USED FOR FILTER PACK ENPLAC	1
ECORDED BY: Cysthiet albett \$4/05/01 (Signature & Date)	QA CHECK BY:
J (Signature & Date)	(Signature & Date)

B-16

Γ	 нті	RW	DR		IN	GL	.og					0	ISTRIC	 DS	AC		Sa	Jar	n	h							ивея <u>W- [</u>
												:	CRILL		ONTRACT										246	r t	. or
3	1. CO	APANY		Al	IC.									<u>A N</u>	<u>(</u> [<u>S</u>	ALC	_)_							!			
	1 PR	 ນ€ເຫັ			_	nv's									4, LOC		<u>F+</u>	51	24	art	(<u>-14</u>					
				<u>.</u>	<u></u> MĽ	Her	منعب	AL	hor	 	, St	410			d. MAI		TURER	S CESI	GNAT		ORILL						
				DELL		<u> </u>					<u>,</u>				. તે. મળા	E LOC	ATION.	2	هد_	Pa	90	3	·				
	10 DAL														- 2. SUF	FACE	ELEVA				<u>.</u>						
-															ים . סי	ाह डार	ARTED	ſбЧ	104	101		1 34	r= c0:	MPLET (CH)	Тфч	10	<u>61</u>
-			RCEN			 5	\mathcal{N}_{1}	Δ										CWATE					<u>)</u> a.(
ŀ	_														:e. Ci	етн 7 2 нт93	o wat M	ея ам 5 '	a ela Af	psed -tea	пме а 		CRILL	ing co	MPLE	itea:	
				CF HO)LE		_N I					· <u>-</u> · · · ·			17.0	rher v	VATER	LEVE									
							14	$ \cdot \emptyset$								t	9. TOT		ABER	0F 60	RE 30	XES					
}	_	EOTEC						1	ा ज	sт., яе ж			- در ز			ISPECIF	\sim	or					et 57	0	+		AL CORE
ļ								2	>	_		<u> </u>	<u>X</u>	<u></u>		(SPEC:P	~			E OF IN	SPECTO	;A					
ł	<u></u>	spasme	CF H	OLE				1	SACXI	11150	1			3/4"1				<u> </u>	m	trà	X.	ar	<u>500</u>	<u>M_</u>			
Í	LO(N SI	KETC	:H/C	ОММ	IENT	S										,		SCA	LE.						
		<u> </u>									1					1							ļ				<u> </u>
			+											ļ										<u> </u>			<u> </u>
						 				5	20	β	at	re	B								<u> </u>	1		ļ 	
			†						ļ	1		ļ	Ì	σ_{\parallel}				<u> </u>					<u> </u>		 	<u> </u>	<u> </u>
							1	1	1				į	1							 	 	<u> </u>	 		<u> </u>	
			i	_			1		1	1	1					1	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>
		†			·	1		1	Ì			!					 		<u> </u>	ļ	[<u> </u>	<u> </u>	 		1	1
	<u> </u>			_	 	Ì	<u> </u>	Ī			1		1									<u>}</u>		<u>i</u>		<u> </u>	
						Ì	<u>†</u>	1		1			İ	İ		1				<u> </u>					 	<u> </u>	1
:						<u> </u>		Ì	i					ļ				Į			ļ				<u> </u>	 	
	}						<u> </u>	<u> </u>	<u>;-</u>	1				ĺ							_			i	<u> </u>		
ł	-					 	<u> </u>	÷		İ.		1						ļ		1				[
1						+	<u> </u>	<u>.</u>		1	+		÷			1			1		1			!			
1		<u> </u> '			<u> </u>	+		1						_ 							Ī						
	<u> </u>				<u> </u>	<u> </u>	+	<u> </u>							<u> </u>	+	1		1				1	į			İ
					<u> </u>		<u> </u>											1	1		<u> </u>						i
					ļ	<u> </u>			<u> </u>										-	1			_ <u>_</u>		1		
					1			İ)						-											
			_		1					1		i	1	i I	1	1							÷.	i i		1	
			_		<u> </u>								 												1		
Andre andre i al antre					 	+	<u> </u> 		 		<u> </u>		 			-											
									 		 !		 					 									
ar na marana a ser mara											 ! 		 														

l

		HTRW DRILLI	NGLOG			HOLE NUMBER AN17	
 201ECT	: 13 S	NI 2. UCNEW	SPECTOR Ceri			SHEET I OF Z	0
(A)	0EFTH (8)	DESCRIPTION OF MATERIALS (C)	HENDSPACE SCREENING AESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	RENARKS (G)	
		Organic Debris				Run 4' Recover 41	E
	_	Softy Clay. Damp. 10 yr 5/4 yellowish brown. soft. no plasticity.				Recover 41	F
		INVE 5/4 VEILOWISH brown.					
		suct. no plasticity.	10 (0.00				E
	1		10. Oppm				E
	=	1					F
]					
ĺ)				E
	, –	1					E
							F
		4	29.0100				E
		4					E
	=	3					F
	,						E
	=	4	ļ				E
		1					
	-	Clay)(Brawn). Damp.					E
	· _	Moderate firmness Lo to mod plasticity.	-			Pur 41' a	— F
	-	Lotomod plassicity.				Run 4' Record 4.0	
	_	10 YR 5/3 Brown.				Neura I	E
							E
	5		1353ppm				H
			12 11				F
		-					E
		Clay. Firm. Moist. (CH)					. -
		Mod Plaotic HI. Mottled					þ
	· -	Mod. Plasticity. Mottled 10/14/4 Red, 10/9/R 7/1	i	-			
	-	T R A IGEO, IO MAIN					
	-	Light gray					F
			>2500ppm				F
	, _	4					Ē
		4					L L
		3					ŀ
							t C
		=					
	-	Same as above				Recover 3'	ŀ
		E Junie ma no ove			ļ	ROCOVER 3'	
	-	1		1			ļ
		╡	(F		FTITI	l	
	· _	7	72500				}
		3	1				
			l 1				
		11					
		_,	B-19				

		HTRW DRI	LINGLOG			HOLE NUMBER MW17
PROJECT	: 13	SMMU 1	INSPECTOR Q	nthe I	aubort -	SHEET 2 OF 2
ELEV. (A)	OEPTH (B)	DESCRIPTION OF MATERIALS (C)	HEADSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS (U)
		Same CH clay as				Run # 3 (4.0)
		abore.	>32006im		FT 1721	Recover 3.0'
	"	No Recovery	NA			
	12					
						Nater level Q 12.0' BGS
	- - 					
		Very Coarse Sand. Oense Moist. 10				
	- - - - -	- Moist, 10				$TD = 14.0^{\circ}$
	ti 					
	17					
	-					
	""					

-

MONITORING WELL INSTALLATION LOG

		DELIVERY ORDER NO: 00
NONITORING WELL ID: _+	7-MW-17	
NSTALLATION START:	DATE: 04/04/01	TIME: 15 30
NSTALLATION FINISH:	DATE: 0+/34/01	TIME: $\int C_{\alpha} Q \beta$
INNULAR SPACE MATERI	ALS INVENTORY:	
	PACK: TYPE: [#] (bxp)	
		QUANTITY: <u>3165</u>
GROUT:		QUANTITY:
DESCRIPTION OF WELL SC		
	SLOT CONFIGURAT	
TOTAL OPEN ARE	A PER FOOT OF SCREEN:	3/,"
	ER: <u>7/2."</u> NOMINAL INSIDE D	
	NESS: 40	
		-
	EEN BOTTOM OF BORING AND SCREEN: _	
ESCRIPTION OF WELL CA	SING: ER: <u>76</u> " Nominal Inside I	3/1"
	USI 05I	COMPOSITION: PYC
ESCRIPTION OF PROTEC		
		DSITION: Steel flyshmount
	UNTERED DURING WELL CONSTRUCTION	
PEGIAL FRODLEWIS ENGL		
	······································	
Yas all well screen and casing	material used for construction free of foreign m	natter (e.g., adhesive tape, labels, soil, grease,
1.2.7 YES (X) NO[]		
Yas all well screen and casing	material used for construction free of unsecure	d couplings, ruptures, and other physical
rearage and/or defects? YE	STAL NOTI	
deformation or bending of th	he installed well screen and casing minimized to a	the point of allowing the insertion and
	proughout the entire length of the completed well	19 YESI I NOXI 34" well
etrieval of a 1.0-inch bailer ti		
	WATER USED FOR FILTER PACK ENPLACE	$MENT: \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$

TRW DRILLING LOG			HCE - 50	rand		HTMWI8					
COMPANY NAME 541C			INTRACTOR:)		SHEET LOF L					
PHONECT 13 SUNNU'S	······		LOCATION H.Stewart GA								
NAME OF DBILLER: AL RO	D+		A. MANUFACTURERS DESIGNATION OF DRILL GOD DODE 5400								
STEL MO TYPES OF DRILLING GULCO	rupe JUCO, 4 Sus Eamolero	F+, 9730	5. HOLE LOCATION	"See Page	3						
			3. SURFACE ELEV	апон: U							
	· · · · · · · · · · · · · · · · · · ·		10. DATE STARTE	04/04/01	11 DATE COMPLE	101/04/01					
OVERBURCEN THICKNESS NA	· · · · · · · · · · · · · · · · · · ·		15. CEPTH GROUN		,						
I, DEPTH ORILLED INTO ROCK			18. CEPTH TO WA	TER AND ELAPSED TIME	E AFTER ORILLING (IOMPLETED:					
NA				R LEVEL MEASUREMEN	TS (SPEC:P1.						
14.0	<u> </u>		NA.								
L GEOTECHNICAL SAMPLES NA	DISTURBED		OTHER (SPECIFY)	TAL NUMBER OF CORE	BOXES NA	E IT FOTAL DORS					
SAMPLES FOR OPENICAL MALYSIS	19 X 15			I		AECOVERY 100					
3JCH ND MOTHOLE	ACXFILLED	$\frac{\sqrt{\sqrt{1}}}{\chi} \frac{\sqrt{\sqrt{1}}}{\chi} \frac{\sqrt{1}}{\chi} $	OTHER (SPECIPM	i Cynth	iad asso	<u>vt.</u>					
OCATION SKETCH/COMMENTS	5			SCALE.							
			<u> </u>								
			2-								
		ant									
	-29										

well atmosphate, son cote, breathing zone, venning compressed an, etc.)

Control of Cignature and Date)

		HTRW DRILL	INGLOG			HOLE NUMBER FT MWI	
	r: 13 Ju	umu's	SPECTOR Cyr	this I a	hbov	SHEET OF 2	J
ELEV. (A)	067TH (B)	DESCRIPTION OF MATERIALS (C)	HEAOSPACE SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO. (F)	REMURKS (G)	
		Organic debris/topso.1 Silty Clay. Soft. Damp. Non-plastic. 10 VR=74 Vellowish brown with occassional mottling of 10 VR 5% Vellowish brown	32. BRM			Run 1: Ø-4 Recover: 4'	
		clay. Damp. Firm. Moderate plasnicity. 10 VR 5/8 Vellowi brown.	111.0 ppm				
	s	(CH) CLAY. Hard. Damp Moderate to high plashic. Mottled with 10 R 4/4 Red, 10 YR 7/1 Light Gray 10 YE \$/6 Yellows Brown	19- 1785ppm			lun 2: 4-8 Recover: 4.0	
	, 111111111111111111111111111111111111		1382 pm				
	, , , , , , , , , , , , , , , , , , , ,	Same as above	2355Apm		F718[1	Run 3: 8-11	

.

ROJECT: Fire Training Area (SWMU 13)	DELIVERY ORDER NO: 00
INITOLING WELL ID: FT MUIN	
STALLATION START: DATE: US (OH /OT	」」 (しろう
STALLATION FINISH: DATE: 04/04/04	TIME: 1715
NNULAR SPACE MATERIALS INVENTORY:	
	- WW Sund QUANTITY: 6 1 CS
BENTONITE SEAL: TYPE: <u>Chanulan</u>	Lichtopite QUANTITY: 2:05
GROUT: TYPE: <u>N</u>	۸
ESCRIPTION OF WELL SCREEN:	
SLOT SIZE (inches): <u> </u>	URATION: Horicontal
TOTAL OPEN AREA PER FOOT OF SCREEN:	
OUTSIDE DIAMETER: $\frac{\gamma_8}{3}$ Nominal Ins	
SCHEDULE/THICKNESS: 40	COMPOSITION: PVC
MANUFACTURER: DSI	
YPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SCREE	N: = 00 filter Sand
SCRIPTION OF WELL CASING:	
OUTSIDE DIAMETER: $\frac{7}{8}$ Nominal Insi	
SCHEDULE/THICKNESS: <u>40</u>	COMPOSITION: PVC
MANUFACTURER: DSI	
INT DESIGN AND COMPOSITION: Threaded	
NTRALIZERS DESIGN AND COMPOSITION:	
SCRIPTION OF PROTECTIVE CASING:	
NOMINAL INSIDE DIAMETER: <u>8</u> ° co	IMPOSITION: Steel Fluch Mount.
ECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTRUCT	
s all well screen and casing material used for construction free of foreig	gn matter (e.g., adhesive tape, labels, soil, grease,
J? YESV NOII	
s all well screen and casing material used for construction free of unseq	cured couplings, ruptures, and other physical
akage and/or defects? YES 🔀 NO []	
•	d to the point of allowing the insertion and
leformation or bending of the installed well screen and casing minimized	5 /
leformation or bending of the installed well screen and casing minimized rieval of a 1.0-inch bailer throughout the entire length of the completed ANTITY OF APPROVED WATER USED FOR FILTER PACK ENPLA	well? YESI NO IX 34" well
ieval of a 1.0-inch bailer throughout the entire length of the completed	Well? YEST NOT 34 well ACEMENT: 2

HTRW DRILLING LOG			5 A C G	5	Jann	an			FT M	
		2 CRILL SUBCO			<u>u ca n s</u>	<u></u>				<u></u>
COMPANY NAME SAIC			<u>A (</u>)				>रहा]	_ or!
I PROJECT 13 SWMU'S			4. LOCATIO	Tra	ning,	Fł,	Stor	vart	<u></u>	(
A NAME OF ORTLER: AT ROOT, SA	10								•	
	<u>5400 4'</u>	2:1:100	8. HOLE L		C	pag	~	,		
Stal codo, tello Sur			9. SURFA	e eleva		10.0				
	-		10. DATE	STARTED	(D4/0	74/01	11 DAT	ECOMPLE	<u>ч///у</u> ч	1 = 1
12. OVERBURCEN THICKNESS NA			15.05277	GROUN	WATER EN			1.5	9/129	_11/
13. DEPTH DRILLED INTO ROCK			18. CEPTA	ETO WAT	ER AND ELA	PSED TIME	AFTER		COMPLETED	
NA			 			SUBEMEN	TS /SP60			
14 TOTAL DEPTH OF HOLE 14.0						BGS		1840	!	
18. GEOTECHNICAL SAMPLES NA	DISTURGED	UNCISTUR						NA.		4L 2085
TO SAMPLES FOR CHEMICAL AMALYSIS	X (2)	45363	SVD	<u>سم</u> <u>د:</u> دک	STHER (S			1 075027	11:01	
	ACXFILLED VID	X (3/4")	OTHER ISPE	<u>c:m</u>	H. SCUTU Cy	ne of inspec		Дю	bott	
LOCATION SKETCH/COMMENTS	. <u></u>	<u></u>			0	SCALE.				
			i i			!			i i	
								1		
				1	1					
							<u> </u>			
	······································									
									<u></u>	
								1		
				12						
				<u> </u>	<u></u>					
			Dol	<u>¥</u>		<u> </u>				
		500					 	· · · · · ·		
		-)								
					<u></u>		1			
								:		
						i	ļ			
							i 1		· · ·	
				 	i 					
			<u> </u>		<u> </u>			: : 		
\mathbf{X}	1					_ <u>+</u>		<u>.</u>	~~ <i></i> ~	

.

QA CHECK BY-

				·		HOLE NUMBER FTMW19	
PROJEC	T: 13	Swmu's HTRW DRILL	VSPECTOR CIT	This & an	bott	SHEET OF 7-	44
ELEV. (A)	нтчэо (в)	DESCRIPTION OF MATERIALS	HEADSPACE SCREENING AESULTS	GEOTECH SAMPLE OR CORE BOX	ANALYTICAL SAMPLE NO.	REMARKS (G)	
		Organic SiltyClay Clay 10 VR 5/4	25.3ppm			Run 1 0-4 Keciva 3.5	
		No Recovery	21. Oppm				
	s	Same Clay as above (CH) Clay. Hard. Damp. Moderate to high plasticity Mottled: 10R4/4 Red, 10YR 7/1 light gray, 109 YR 5/6 yellowish brown.	- 331ppm			Run 2 4-8 fecover 4	
	,		562pm		FT1913		
	· · · · · · · · · · · · · · · · · · ·	Same as abore with abbence of mottling.	835pm			Run 3 = 8 - 11 Record 100%	

ЧŚ

		<u> </u>	·····	
MONITORING WELL INST	ALLATION LOG			
	DELIN		• 00	
pROJECT: Fire Training Area (SWMU 13)		ERY ORDER NO	. 00	
VONITORING WELL ID: FT- MW-19				
INSTALLATION START: DATE: 04/04/01	TIME:	1750		
INSTALLATION FINISH: DATE: 04/04/01	TIME:	1815		
WILLAR SPACE MATERIALS INVENTORY:				
GRANULAR FILTER PACK: TYPE: #100 11	H2r Sand	QUANTITY:	TRS	
BENTONITE SEAL: TYPE: Granular	L	QUANTITY:	16-	
GROUT: TYPE:		QUANTI	TY:	
DESCRIPTION OF WELL SCREEN:		-		
SLOT SIZE (inches): Ø.Ø.Ø	IFIGURATION: Hor	rzontal		
TOTAL OPEN AREA PER FOOT OF SCREEN:		2, 1		
OUTSIDE DIAMETER: 78" NOMINAL	INSIDE DIAMETER:	<u> </u>		
SCHEDULE/THICKNESS: -100	COMPOS	ITION: <u>PVC</u>		
MANUFACTURER: DST				
TYPE OF MATERIAL BETWEEN BOTTOM OF BORING AND SC	REEN: NA			
DESCRIPTION OF WELL CASING:		- 7 , 14		
OUTSIDE DIAMETER: <u>76</u> NOMINAL	INSIDE DIAMETER:	<u> </u>		
SCHEDULE/THICKNESS: 40	COMPOS	ITION: <u>PVC</u>	,	
MANUFACTURER: DSI				
JOINT DESIGN AND COMPOSITION: Threaded	<u> </u>			
CENTRALIZERS DESIGN AND COMPOSITION: NA				
DESCRIPTION OF PROTECTIVE CASING:				
NOMINAL INSIDE DIAMETER: 8	COMPOSITION:	Steel-Fler	a Mount	
SPECIAL PROBLEMS ENCOUNTERED DURING WELL CONSTR	RUCTION AND THEIF	RESOLUTION:		
Was all well screen and casing material used for construction free o	nf foreign matter (e.g., a	ndhesive tape, labels, :	soil, grease,	
etc.)? YES 🕅 NO[]				
Was all well screen and casing material used for construction free o	of unsecured couplings,	ruptures, and other pl	hysical	
breakage and/or defects? YES N NO []				
is deformation or bending of the installed well screen and casing mil	inimized to the point of	allowing the insertion	and	
retrieval of a 1.0-inch bailer throughout the entire length of the com	npleted well? YES[]	NO 1X 3/4" W	vell	
QUANTITY OF APPROVED WATER USED FOR FILTER PACK	ENPLACEMENT:	Ø		
		/		
RECORDED BY: Cynthia & aboott 04 (Signature & Date)	1/04/01 a	A CHECK BY:		
(Signature & Date)	B-31		(Signature & Date)	

мен редеюрнисти

APPENDIX C

FATE AND TRANSPORT MODELING AT THE FORMER FIRE TRAINING AREA (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

C.1. INTRODUCTION

Monitored natural attenuation is an appropriate remedial approach only if it can be demonstrated that a site's remedial objectives can be reached within a reasonable time frame. Fate and transport modeling is performed for a given site to show whether contaminants present in soils and groundwater can be effectively remediated by natural attenuation processes. The following sections summarize the modeling performed in order to evaluate natural attenuation as a remedial action for the Corrective Action Plan for the former Fire Training Area at Wright Army Airfield [solid waste management unit (SWMU) 13], Fort Stewart, Georgia.

C.2. MODELING APPROACH

A brief summary of the modeling approach is presented below:

- 1. Develop the conceptual model for each distinct flow path, which includes the contaminated soils and groundwater plume, the flow path direction and characteristics, and the receptor location.
- 2. Identify the constituents of concern (COCs) and select a surrogate chemical to represent the chemical group with conservatism.
- 3. Perform leachate modeling using the Seasonal Soil (SESOIL) Compartment Model (if there is a source of COCs in soils), and calculate the soil to leachate dilution attenuation factor (DAF) [i.e., $DAF_{S-L} = C_S/C_L$, where C_S is the maximum soil concentration at the source and C_L is the predicted maximum leachate concentration].
- 4. Perform steady-state saturated flow and contaminant transport modeling using the Analytical Transient 1-,2-,3-Dimensional (AT123D) Model to predict the maximum concentration at the receptor location of the surrogate chemical representing the COCs, using either the existing groundwater plume (if $C_{GWS,O} > C_{GWS,P}$) or the predicted concentration at the source (if $C_{GWS,O} < C_{GWS,P}$), and calculate the lateral flow and transport DAF [e.g., DAF_{GWS-GWR} = C_{GWS}/C_{GWR} , where C_{GWS} is the observed ($C_{GWS,O}$) or predicted ($C_{GWS,P}$) concentration of groundwater at the source and C_{GWR} is the predicted maximum concentration at the receptor location].
- 5. Perform saturated flow and contaminant transport modeling using AT123D to predict the maximum concentration over time in conjunction with source remediation in order to identify a reasonable timeframe for the monitored natural attenuation alternative.

C.3. MODELS SELECTED

C.3.1 SESOIL

SESOIL is an acronym for Seasonal Soil Compartment Model and is a one-dimensional, vertical transport code for the unsaturated soil zone designed to simultaneously model water transport and pollutant fate. The program was originally developed by the U.S. Environmental Protection Agency (EPA 1984) and has

been extensively modified to enhance its capabilities (Hetrick et al. 1989, Hetrick et al. 1986, and Hetrick and Travis 1988).

The SESOIL Model defines the "soil compartment" as a soil column extending from the ground surface through the unsaturated zone to the water table. Processes will be simulated in SESOIL in both the hydrologic cycle and the pollutant cycle, each of which is a separate sub-module in the SESOIL code. The hydrologic cycle includes rainfall, surface runoff, infiltration, soil water content, evapotranspiration, and groundwater recharge. The pollutant cycle includes convective transport, volatilization, adsorption/desorption, and degradation/decay. A contaminant in SESOIL can partition in up to four phases (liquid, adsorbed, air, and pure).

SESOIL is well recognized and accepted by the scientific community utilizing soil-chemical fate models. Some of the attributes of SESOIL that make it particularly attractive and suitable for the vadose zone soil leaching at this site are as follows:

- SESOIL has been extensively validated and shown to work under a number of scenarios. It has also been used for similar applications in other parts of the country and is capable of providing the information required from this study (Bonazountas, Wagner, and Goodwin 1982; Hetrick 1984; Watson and Brown 1985; Hetrick et al. 1986; Melancol, Pollard, and Hern 1986; Hetrick and Travis 1988; Hetrick et al. 1989; Hetrick, Luxmoore, and Tharp 1993).
- SESOIL has the advantage of fewer input requirements and faster run times than more complex unsaturated zone models, while still maintaining considerable resolution of the pollutant front in both time and space.

The model can be divided into as few as two layers and as many as four layers, with as many as 10 sub-layers in each of the layers. This compartmental nature of the model allows for user-specified tailoring to suit a particular site.

C.3.2 AT123D

The AT123D is a well-known and commonly used analytical groundwater pollutant fate and transport model. This model was developed by Yeh (1981) and has since been updated by General Sciences Corporation (1996). The model computes the spatial-temporal concentration distribution of chemicals in the aquifer system and predicts the transient spread of a chemical plume through a groundwater aquifer. The fate and transport processes accounted for in AT123D are advection, dispersion, adsorption/retardation, and decay. This model can be used as a tool for estimating the dissolved concentration of a chemical in three dimensions in the groundwater resulting from a mass release (either continuous or instant or depleting source) over a source area (i.e., point, line, area, or volume source).

C.4. PARAMETERS

The hydrologic parameters used in the modeling are based on findings from previous investigations. The parameters are selected such that they are representative values and account for the variability in the hydraulic system and the most likely conditions within that variability. Time-varying model runs are performed using the representative values. The chemical-specific model parameters include solubility in water, organic carbon partition coefficient, Henry's Law constant, soil-water distribution coefficient, diffusion coefficients in air and water, and first-order decay constant. These are literature-based parameters, and a conservative approach was utilized for selecting the values of these parameters. The

chemical parameters used in the modeling were presented in Table 6-2 of the SWMU 13 revised final Phase II RFI Report (SAIC 2000). The input parameters for a sample AT123D file are presented in the attachment to this appendix.

C.5. MODEL APPLICATION AND RESULTS

SESOIL was used to simulate the vertical transport of leachate from the source areas down through the vadose zone to the shallow groundwater (water table). Benzene, among the volatile organic COCs (e.g., benzene and ethylbenzene), and naphthalene, among the semivolatile organic COCs (2-methylnaphthalene and naphthalene), were selected as the surrogate chemicals for natural attenuation modeling using SESOIL and AT123D. Because benzene has a slower degradation rate and higher mobility than ethylbenzene, natural attenuation modeling results for benzene can be used for ethylbenzene with conservatism. Similarly, natural attenuation modeling results for naphthalene can be applied to the remaining semivolatile organic COCs with conservatism. SESOIL modeling results (Figures C-1 and C-2) based on soil data from the supplemental investigation indicated that the predicted maximum leachate concentrations. Therefore, saturated flow and contaminant transport modeling, using the AT123D Model to predict the maximum concentration at the receptor location, was performed based on the existing groundwater plume.

A steady-state AT123D Model was developed by calibrating the model against observed maximum concentrations of benzene in the groundwater beneath the site. Benzene concentrations in groundwater at monitoring wells MW12, MW13, MW16, and MW18, in two different time frames (December 2000 and June 2002), were used to calibrate the model, in order to simulate the natural attenuation process. MW12 had the highest concentration based on the December 2000 sampling event. However, this well was destroyed during the interim removal action before the June 2002 sampling event. Therefore, for June 2002, the maximum concentration of 211 µg/L at this location (MW12) was predicted by the calibrated AT123D model. Modeling results presented in Figure C-3 indicate that the benzene concentration in groundwater is not expected to exceed its remedial level [also the maximum contaminant level (MCL)] of 5 µg/L beyond 100 feet from the source. Benzene from the SWMU 13 site is not expected to be of potential concern at the nearest receptor location [i.e., Peacock Creek (2,500 feet from the source)] as groundwater will be completely free of benzene by the time it reaches the creek. Figure C-4 indicates that the concentration of benzene at the source will be reduced to less than its remedial level by natural attenuation processes within 5 years from the time of the last sampling event (June 2002). However, the time period necessary to attain a benzene concentration of 71.28 µg/L, which is the Georgia In-stream Water Quality Standard through natural attenuation, is predicted to be less than 1.5 years from June 2002. Figure C-4 also presents benzene concentrations over time at distances 10 meters and 15 meters from the source, respectively. Table C-1 presents the predicted concentrations of benzene in the monitoring wells for 2 years in the future, since June 2002, by 6-month intervals.

It should be noted that the SESOIL predicted maximum concentration of benzene based on leaching to groundwater will be reduced to its MCL within 4 years from January 2002 (i.e., 3.5 years from June 2002). Therefore, it may be concluded that the soil concentration of benzene will be reduced to its soil remedial level before the groundwater concentration is reduced to its groundwater remedial level at the site.

Site-specific DAFs between the source and the receptor locations were developed. DAF is a numerical value that represents the attempt to mathematically quantify the natural, physical, chemical, and

biological processes (e.g., advection-dispersion, sorption-retardation, biodegradation, and volatilization) that result in the decrease of a chemical concentration in an environmental medium. In simple terms, the DAF is the ratio of chemical concentration at the source (or the point of origin) to the concentration at the receptor (exposure point). The DAFs reflect the natural attenuation concepts outlined in the American Society for Testing and Material's risk-based corrective action protocol (ASTM 1995). Based on modeling results, the estimated DAF for benzene at Peacock Creek (2,500 feet from the source) is infinite. There is no downgradient water supply well that is screened in the surficial groundwater (above the Hawthorn Layer) near SWMU 13. However, a deep water supply well is located more than 2,500 feet southeast from SWMU 13. The well is approximately 450 feet deep and draws groundwater from the Principal Artesian (also known as the Floridian) aquifer. The modeling results indicate that the DAF (Table C-2) of benzene within 500 feet of the well (2,000 feet from the source) is infinite. The confining layer for the Principal Artesian aquifer is phosphatic clay of the upper Hawthorn group with a very low permeability (10^{-8} cm/sec). The confining layer ranges from 60 feet to 80 feet in thickness at Fort Stewart. It is improbable that benzene would reach the Principal Artesian aquifer from SWMU 13. The DAFs developed for benzene (Table C-2) can be used for the other COC (ethylbenzene), conservatively, since benzene has a higher mobility and a slower degradation rate than ethylbenzene.

To further investigate time frames for monitored natural attenuation as a corrective action, fate and transport modeling was performed in conjunction with active remediation measures. Multiple AT123D modeling runs were performed by reducing the concentration of benzene at the source. Figure C-5 represents concentration versus time plots at different distances from the source when the source concentration decreases from 5 years (Figure C-4) to less than 4 years (Figure C-5) based on source reduction to 100 μ g/L. Figure C-6 represents concentration versus time plots at different distances from the source distances from the source concentration is reduced to 50 μ g/L. The time for natural attenuation of benzene to the remedial level reduces to less than 3 years (Figure C-6), if the benzene source in groundwater is reduced to 50 μ g/L. In summary, if an active remediation technique is used to reduce the source concentration to 100 μ g/L, the monitored natural attenuation time frame is reduced by 1 year (i.e., from 5 years to 4 years), and if an active remediation technique is used to reduce the source concentration to 50 μ g/L, the monitored natural attenuation time frame is reduced by 1 years (3 years).

To evaluate naphthalene, a steady-state AT123D Model was developed by calibrating the model against observed maximum concentrations of naphthalene in the groundwater beneath the site. Because the maximum naphthalene concentration in groundwater ($304 \mu g/L$) was observed in the December 2000 sampling event, the data from this sampling event were used to calibrate the naphthalene model, to simulate the natural attenuation process. Modeling results presented in Figure C-7 indicate that the naphthalene concentration in groundwater is not expected to exceed its remedial level ($149 \mu g/L$) beyond 55 feet from the source, and the source will be reduced to its remedial level within 3 years from December 2000 (i.e., in less than 1.5 years from now). Because benzene is more mobile than naphthalene, and because the natural attenuation time predicted for naphthalene is significantly less than that of benzene, the DAFs (Table C-2) developed for benzene also can be used for the semivolatile organic COCs (e.g., 2-methylnaphthalene and naphthalene), conservatively.

C.5.1 DISCUSSION

Fate and transport modeling results indicate that monitored natural attenuation without active remediation could be used as an option for the remediation of the COCs in groundwater at SWMU 13. As shown in Figure C-4, the benzene (considered as the surrogate chemical for ethylbenzene) concentration is

expected to be reduced to its remedial level within 5 years from June 2002, and also from Figure C-7, naphthalene (considered as the surrogate chemical for 2-methylnaphthalene) concentration in groundwater is expected to be reduced to its remedial level within 3 years from December 2000 or 1.5 years from June 2002.

C.6. LIMITATIONS/ASSUMPTIONS

Based upon the data available, a conservative approach was used that may overestimate the contaminant concentration in the groundwater. Listed below are important assumptions used in this analysis.

- The use of a distribution co-efficient (K_d) to describe the reaction term of the transport equation assumes that an equilibrium relationship exists between the solid- and solution-phase concentrations and that the relationship is linear and reversible.
- The most conservative biodegradation rates for benzene and naphthalene from available literature were used.
- Flow and transport in the vadose zone are one-dimensional (i.e., only in the vertical direction).
- Initial condition is disregarded in the vadose zone modeling.
- Flow and transport are not affected by density variations.
- Liquid-phase dispersion in the vadose zone is neglected.
- The aquifer is homogenous and isotropic.
- Areal distribution of soil contamination in the vadose zone is not considered; instead, the maximum concentration is used throughout the soil column.
- During the contaminant loading period, a steady-state source was assumed for lateral transport.

The inherent uncertainties associated with using these assumptions must be recognized. It is also important to note that the major geochemistry of the plume will change over time and be affected by multiple solutes that are present at the site. Projected organic concentrations in the aquifer are expected to be highly conservative due to the use of a steady-state source and a conservative literature-based decay rate.

C.7. REFERENCES

ASTM (American Society for Testing and Materials) 1995. *Standard Guide for Risk-based Corrective Action Applied at Petroleum Release Sites*, ASTM E-1739-95, Philadelphia, Pennsylvania.

Bonazountas, M., J. Wagner, and B. Goodwin. 1982. *Evaluation of Seasonal Soil/Groundwater Pollutant Pathways*, prepared for the U.S. Environmental Protection Agency, Contract No. 68-01-5949(9), Arthur D. Little, Inc., Cambridge, Massachusetts.

- EPA (U.S. Environmental Protection Agency) 1984. *SESOIL: A Seasonal Soil Compartment Model*, developed by Bonazountas, M. and J. Wagner of Arthur D. Little, Inc., Cambridge, MA, prepared for EPA, Office of Toxic Substances.
- GSC (General Sciences Corporation) 1996. *RISKPRO®'s SESOIL for Windows*, General Sciences Corporation, Laurel, Maryland, June.
- Hetrick, D. M. 1984. *Simulation of Hydrologic Cycle for Watersheds*, paper presented at the Ninth IASTED International Conference on Energy, Power, and Environmental Systems, San Francisco, California.
- Hetrick, D. M., and C. C. Travis 1988. "Model Predictions of Watershed Erosion Components," *Water Res. Bull.*, pp. 413–419.
- Hetrick, D. M., C. C. Travis, S. K. Leonard, and R. S. Kinerson 1989. Qualitative Validation of Pollutant Transport Components of an Unsaturated Soil Zone Model (SESOIL), ORNL/TM-10672, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Hetrick, D. M., R. J. Luxmoore, and M. L. Tharp 1993. "Latin Hypercube Sampling with the SESOIL Model," *Proceedings, Eighth Annual Conference on Contaminated Soils*, University of Massachusetts at Amherst, September.
- Melancol, S. M., J. E. Pollard, and S. C. Hern 1986. "Evaluation of SESOIL, PRZM, and PESTAN in a Laboratory Column Leaching Experiment," *Environ. Toxicol. Chem.* **5**(10): 865–878.
- SAIC (Science Applications International Corporation) 2000. Revised Final RCRA Facility Investigation Report for the Fire Training Area at Wright Army Airfield (SWMU 13), Fort Stewart, Georgia, prepared by SAIC and Earth Tech, May.
- Watson, D. B., and S. M. Brown. 1985. *Testing and Evaluation of the SESOIL Model*, Anderson-Nichols and Co., Inc., Palo Alto, California, p. 155.
- Yeh, G. T. 1981. AT123D: Analytical Transient One-, Two-, and Three-Dimensional Simulation of Waste Transport in the Aquifer System, Publication No. 1439, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

	Observed	Predicte	Predicted Maximum Concentration of Benzene				
Monitoring Wells	Concentration June 2002 (µg/L)	December 2002 (µg/L)	June 2003 (µg/L)	December 2003 (µg/L)	June 2004 (µg/L)	MCL/RL (µg/L)	
MW3	-	0.1	0.07	0.05	0.03	5	
MW4	_	0	0	0	0	5	
MW8	_	0	0	0	0	5	
MW9	_	0	0	0	0	5	
MW10	_	0.01	0.01	0.008	0.007	5	
MW11	_	0.9	1.1	1.3	1.4	5	
MW12	211 ^{<i>a</i>}	72.6	48.4	32.6	22.1	5	
MW13	3.6	0.63	0.46	0.33	0.23	5	
MW14	_	22.1	14.8	10	6.8	5	
MW15	1.9	23.6	16.2	11.2	7.7	5	
MW16	120	92.6	62.7	42.6	29.2	5	
MW17	_	125	81.7	54.4	26.6	5	
MW18	95	60	40.2	27.1	18.4	5	
MW19	_	1.1	0.75	0.54	0.36	5	

Table C-1. Predicted Concentrations of Benzene at the Former Fire Training Area (SWMU 13)

^{*a*}MW12, where the maximum concentration of benzene (440 $\mu\mu g/L$) was observed in the past, was removed as part of the 2001/2002 interim removal action. Based on the calibrated model, the concentration of benzene at this location is predicted to be 211 $\mu g/L$ for the June 2002 sampling event.

MCL = Maximum contaminant level.

RL = Remedial level.

SWMU = Solid waste management unit.

Distance to Receptor	Predicted Maximum Concentration of Benzene in	
(feet)	Groundwater (µg/L)	DAF
0.0	211	1.00
3.3	212	1.00
6.6	211	1.00
9.8	206	1.02
13.1	197	1.07
23.0	165	1.28
32.8	122	1.73
36.1	107	1.97
39.4	93.7	2.25
42.6	80	2.64
45.9	69.1	3.05
49.2	58.4	3.61
55.8	42.4	4.98
65.6	26.2	8.05
72.2	19.4	10.88
82.0	12.2	17.30
88.6	9	23.44
91.9	7.7	27.40
95.1	6	35.17
98.4	5.7	37.02
101.7	4.88	43.24
105.0	4.2	50.24
121.4	2	105.50
137.8	0.94	224.47
170.6	0.218	967.89
334.6	4.90E-05	>1E+06
1647.0	0	>1E+06
2000.0	0	>1E+06
2500.0	0	>1E+06

Table C-2. DAF Versus Distance at the Former Fire Training Area (SWMU 13)

Note: Predicted concentrations represent the maximum concentrations since June 2002 predicted by the model.

DAF = Dilution attenuation factor.

SWMU = Solid waste management unit.

Figure C-2. Predicted Concentration of Naphthalene in Leachate

Figure C-3. AT123D Modeled Maximum Concentration of Benzene in the Groundwater Versus Downgradient Distance from the Source, SWMU 13

Figure C-4. AT123D Modeled Maximum Concentration of Benzene in the Groundwater Without Any Source Reduction, SWMU 13 (Time 0 = June 2002)

Figure C-5. AT123D Modeled Maximum Concentration of Benzene in the Groundwater for Source Reduced to 100 μg/L, SWMU 13 (Time 0 = June 2002)

THIS PAGE INTENTIONALLY LEFT BLANK.

AT123D OUTPUT FILE FOR SWMU 13

THIS PAGE INTENTIONALLY LEFT BLANK.

NO. OF POINTS IN X-DIRECTION	15
NO. OF POINTS IN Y-DIRECTION	6
NO. OF POINTS IN Z-DIRECTION	2
NO. OF ROOTS: NO. OF SERIES TERMS	400
NO. OF BEGINNING TIME STEP	163
NO. OF ENDING TIME STEP	277
NO. OF TIME INTERVALS FOR PRINTED OUT SOLUTION	6
INSTANTANEOUS SOURCE CONTROL = 0 FOR INSTANT SOURCE	1
SOURCE CONDITION CONTROL = 0 FOR STEADY SOURCE	0
INTERMITTENT OUTPUT CONTROL = 0 NO SUCH OUTPUT	1
CASE CONTROL =1 THERMAL, = 2 FOR CHEMICAL, = 3 RAD	2

AQUIFER DEPTH, = 0.0 FOR INFINITE DEEP (METERS)	0.1680E+02
AQUIFER WIDTH, = 0.0 FOR INFINITE WIDE (METERS)	0.0000E+00
BEGIN POINT OF X-SOURCE LOCATION (METERS)	-0.7000E+01
END POINT OF X-SOURCE LOCATION (METERS)	-0.2000E+01
BEGIN POINT OF Y-SOURCE LOCATION (METERS)	-0.2000E+01
END POINT OF Y-SOURCE LOCATION (METERS)	0.2000E+01
BEGIN POINT OF Z-SOURCE LOCATION (METERS)	0.0000E+00
END POINT OF Z-SOURCE LOCATION (METERS)	0.0000E+00

	HYDRAULIC GRADIENTLONGITUDINAL DISPERSIVITY (METER)LATERAL DISPERSIVITY (METER)VERTICAL DISPERSIVITY (METER)DISTRIBUTION COEFFICIENT, KD (M**3/KG)	0.3800E-01 0.4000E-02 0.1000E+02 0.3000E+01 0.1000E+01 0.3155E-03
HEAI EXCHANGE COEFFICIENI (KCAL/HR-M^^2-DEGREE C) 0.0000E+00	HEAT EXCHANGE COEFFICIENT (KCAL/HR-M**2-DEGREE C)	0.0000E+00

MOLECULAR DIFFUSION MULTIPLY BY POROSITY (M**2/HR)	0.3530E-05
DECAY CONSTANT (PER HOUR)	0.7000E-04
BULK DENSITY OF THE SOIL (KG/M**3)	0.1660E+04
ACCURACY TOLERANCE FOR REACHING STEADY STATE	0.1000E-02
DENSITY OF WATER (KG/M**3)	0.1000E+04
TIME INTERVAL SIZE FOR THE DESIRED SOLUTION (HR)	0.7300E+03
DISCHARGE TIME (HR)	0.1051E+06
WASTE RELEASE RATE (KCAL/HR), (KG/HR), OR (CI/HR) .	0.8000E-05

RETARDATION FACTOR	0.3619E+01
RETARDED DARCY VELOCITY (M/HR)	0.2100E-03
RETARDED LONGITUDINAL DISPERSION COEF. (M**2/HR)	0.2105E-02
RETARDED LATERAL DISPERSION COEFFICIENT (M**2/HR) .	0.6349E-03
RETARDED VERTICAL DISPERSION COEFFICIENT (M**2/HR).	0.2149E-03

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.0000E+00 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	0.00			
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	х -1.	0.
13. 0.000E-	0.000E+00 +00 0.000E+	0.000E+00 +00 0.000E+	0.000E+00 -00 0.000E-	0.000E+00	0.000E+00	0.000E+00
0.000E- 2. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E 0. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-2. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-5. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-11.	0.000E+00 +00 0.000E+	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
				CONT		
Y	10.	15.	35.	39.	X 55.	
13. 2. 0. -2. -5. -11.	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
		Z = 2	2.00			
Y	-9.	-5.	-3.	-2.	Х -1.	0.
1.	2.	5.	9.			
13. 0.000E-	0.000E+00 +00 0.000E+	0.000E+00 +00 0.000E+	0.000E+00 -00 0.000E-	0.000E+00	0.000E+00	0.000E+00
2. 0.000E-	0.000E+00	0.000E+00 +00 0.000E+	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-2. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-5. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-11. 0.000E-	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
					INUE	
Y	10.	15.	35.	39.	X 55.	
13. 2. 0.	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00	

-2.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-5.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-11.	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1183E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = C	.00			
Y	-9.	-5.	-3.	-2.	х -1.	0.
1.	2.	5.	9.			
13. 0.923E-			0.828E-03 03 0.876E-0		0.883E-03	0.905E-03
2. 0.138E+	0.907E-01	0.129E+00	0.137E+00	0.140E+00	0.141E+00	0.140E+00
0. 0.206E+	0.136E+00	0.195E+00		0.211E+00	0.212E+00	0.211E+00
-2.	0.907E-01	0.129E+00	0.137E+00 00 0.752E-0	0.140E+00	0.141E+00	0.140E+00
	0.227E-01		0.336E-01	0.344E-01	0.349E-01	0.352E-01
-11.	0.122E-02	0.161E-02	0.174E-02 02 0.174E-0	0.180E-02	0.185E-02	0.189E-02
				CONT		
Y	10.	15.	35.	39.	X 55.	
T	10.	± J .	55.	52.	55.	
13.	0.849E-03	0.675E-03		0.650E-04		
2.	0.662E-01			0.345E-03		
0.	0.937E-01			0.363E-03	0.247E-04	
-2.	0.662E-01	0.305E-01	0.694E-03	0.345E-03	0.239E-04	
-5.	0.217E-01	0.124E-01	0.541E-03	0.281E-03	0.211E-04	
-11.	0.167E-02	0.127E-02	0.162E-03	0.961E-04	0.101E-04	
		Z = 2	2.00			
					Х	
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
13. 0 764E-			0.684E-03		0.730E-03	0.749E-03
2. 0.392E-	0.254E-01	0.350E-01	0.376E-01 01 0.265E-0	0.385E-01	0.391E-01	0.394E-01
0.	0.311E-01	0.430E-01	0.461E-01 01 0.316E-0	0.472E-01	0.479E-01	0.481E-01
-2. 0.392E-			0.376E-01 01 0.265E-0		0.391E-01	0.394E-01
-5.	0.121E-01		0.178E-01 01 0.139E-0		0.186E-01	0.188E-01
			0.139E-02 02 0.141E-0		0.148E-02	0.151E-02

				CONT	INUE
					Х
Y	10.	15.	35.	39.	55.
13.	0.712E-03	0.572E-03	0.945E-04	0.585E-04	0.698E-05
2.	0.243E-01	0.138E-01	0.578E-03	0.297E-03	0.219E-04
Ο.	0.288E-01	0.160E-01	0.611E-03	0.312E-03	0.225E-04
-2.	0.243E-01	0.138E-01	0.578E-03	0.297E-03	0.219E-04
-5.	0.129E-01	0.803E-02	0.459E-03	0.244E-03	0.193E-04
-11.	0.136E-02	0.105E-02	0.143E-03	0.859E-04	0.930E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1226E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
					Х	
Y	-9.	5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.399E-03	0.524E-03	0.565E-03	0.585E-03	0.605E-03	0.622E-03
	-03 0.647E-				010002 00	0.0111 00
2.	0.600E-01	0.829E-01	0.888E-01	0.910E-01	0.925E-01	0.931E-01
0.926E-	-01 0.912E-	01 0.836E-	01 0.617E-	-01		
0.		0.125E+00			0.139E+00	0.139E+00
	+00 0.136E+					
	0.600E-01				0.925E-01	0.931E-01
	-01 0.912E-					
	0.152E-01				0.233E-01	0.236E-01
	-01 0.236E-					
	0.832E-03				0.126E-02	0.130E-02
0.132E-	-02 0.134E-	02 0.136E-	02 0.127E-			
				CONT		
					X	
Y	10.	15.	35.	39.	55.	
13.	0.618E-03	0.514E-03	0.961E-04	0.605E-04	0.753E-05	
2.	0.561E-01			0.401E-03	0.264E-04	
0.	0.808E-01		0.911E-03	0.429E-03	0.273E-04	
-2.	0.561E-01			0.401E-03		
	0.171E-01			0.309E-03		
	0.123E-02		0.152E-03			
	0.1231 02	0.9031 03	0.1321 03	0.9222 01	0.1001 01	
		Z = 2	.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.331E-03	0.433E-03		0.484E-03	0.501E-03	0.515E-03
0.527E-						
2.	0.170E-01				0.261E-01	0.264E-01
0.266E-	-01 0.265E-	01 0.252E-	01 0.205E-	-01		

0. 0.208E-01 0.282E-01 0.303E-01 0.312E-01 0.318E-01 0.323E-01 0.324E-01 0.322E-01 0.306E-01 0.245E-01 -2. 0.170E-01 0.231E-01 0.248E-01 0.255E-01 0.261E-01 0.264E-01 0.266E-01 0.265E-01 0.252E-01 0.205E-01 -5. 0.817E-02 0.110E-01 0.118E-01 0.122E-01 0.125E-01 0.127E-01 0.128E-01 0.128E-01 0.124E-01 0.105E-01 -11. 0.665E-03 0.875E-03 0.945E-03 0.977E-03 0.101E-02 0.104E-02 0.106E-02 0.107E-02 0.109E-02 0.103E-02 CONTINUE

37	1.0	1 Г	25	20	х Г Г
Y	10.	15.	35.	39.	55.
13.	0.518E-03	0.434E-03	0.852E-04	0.541E-04	0.693E-05
2.	0.191E-01	0.122E-01	0.641E-03	0.329E-03	0.238E-04
0.	0.228E-01	0.143E-01	0.688E-03	0.349E-03	0.246E-04
-2.	0.191E-01	0.122E-01	0.641E-03	0.329E-03	0.238E-04
-5.	0.993E-02	0.677E-02	0.486E-03	0.261E-03	0.207E-04
-11.	0.999E-03	0.809E-03	0.133E-03	0.817E-04	0.941E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1270E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

	Z	Z = 0.0	00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			

13. 0.275E-03 0.359	E-03 0.388E-03	0.402E-03	0.417E-03	0.429E-03
0.440E-03 0.449E-03 C	.463E-03 0.455E	-03		
2. 0.402E-01 0.545	E-01 0.585E-01	0.602E-01	0.615E-01	0.624E-01
0.627E-01 0.624E-01 C	0.593E-01 0.476E	-01		
0. 0.601E-01 0.817	'E-01 0.878E-01	0.902E-01	0.922E-01	0.933E-01
0.936E-01 0.931E-01 0	0.879E-01 0.696E	-01		
-2. 0.402E-01 0.545	E-01 0.585E-01	0.602E-01	0.615E-01	0.624E-01
0.627E-01 0.624E-01 C	.593E-01 0.476E	-01		
-5. 0.103E-01 0.137	'E-01 0.148E-01	0.152E-01	0.157E-01	0.160E-01
0.161E-01 0.162E-01 0	0.158E-01 0.136E	-01		
-11. 0.572E-03 0.749	E-03 0.809E-03	0.838E-03	0.866E-03	0.891E-03
0.912E-03 0.929E-03 C	0.950E-03 0.914E	-03		

CONTINUE	
	v

Y	10.	15.	35.	39.	x 55.
13. 2. 0. -2. -5. -11.	0.447E-03 0.443E-01 0.645E-01 0.443E-01 0.129E-01 0.894E-03	0.386E-03 0.275E-01 0.389E-01 0.275E-01 0.903E-02 0.747E-03	0.853E-04 0.101E-02 0.117E-02 0.101E-02 0.644E-03 0.139E-03	0.552E-04 0.480E-03 0.533E-03 0.480E-03 0.338E-03 0.865E-04	0.742E-05 0.293E-04 0.304E-04 0.293E-04 0.249E-04 0.103E-04

Z = 2.00

Х

Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
				0.333E-03	0.345E-03	0.356E-03
		-03 0.385E-				
				0.171E-01	0.175E-01	0.179E-01
		-01 0.177E-				
				0.208E-01	0.214E-01	0.218E-01
0.220E-	-01 0.221E-	-01 0.215E-	-01 0.184E	-01		
-2.	0.115E-01	0.154E-01	0.166E-01	0.171E-01	0.175E-01	0.179E-01
0.181E-	-01 0.182E-	-01 0.177E-	-01 0.153E	-01		
-5.	0.554E-02	0.738E-02	0.795E-02	0.821E-02	0.844E-02	0.863E-02
0.876E-	-02 0.883E-	-02 0.874E-	-02 0.776E	-02		
-11.	0.458E-03	0.599E-03	0.647E-03	0.670E-03	0.693E-03	0.714E-03
0.731E-	-03 0.745E-	-03 0.764E-	-03 0.740E	-03		
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
13.	0.374E-03	0.325E-03	0.751E-04	0.490E-04	0.679E-05	
2.	0.145E-01	0.101E-01	0.701E-03	0.364E-03	0.260E-04	
0.	0.174E-01	0.120E-01	0.764E-03	0.391E-03	0.270E-04	
-2.	0.145E-01	0.101E-01	0.701E-03	0.364E-03	0.260E-04	
-5.	0.743E-02	0.545E-02	0.503E-03	0.275E-03	0.222E-04	
		0 610- 00		0 == 0 = 0 4	0 0 0 0 - 0 -	

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1314E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

-11. 0.725E-03 0.612E-03 0.120E-03 0.759E-04 0.940E-05

		Z = 0	0.00			
					Х	
Y	-9.	-5.		-2.	-1.	0.
1.	2.	5.	9.			
	0.190E-03 -03 0.313E-			0.278E-03	0.288E-03	0.297E-03
2.		0.363E-01	0.391E-01	0.403E-01	0.414E-01	0.422E-01
0.	0.405E-01	0.544E-01	0.585E-01	0.603E-01	0.619E-01	0.630E-01
-2.		0.363E-01	0.391E-01	0.403E-01	0.414E-01	0.422E-01
	-01 0.428E- 0.698E-02			-01 0.103E-01	0.106E-01	0.109E-01
-11.		0.514E-03	0.556E-03	0.576E-03	0.597E-03	0.615E-03
0.631E-	-03 0.645E-	-03 0.666E-	-03 0.656E	-03		
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
2.	0.322E-03 0.337E-01 0.494E-01	0.230E-01	0.121E-02		0.329E-04	

-2.	0.337E-01	0.230E-01	0.121E-02	0.580E-03	0.329E-04
-5.	0.962E-02	0.719E-02	0.675E-03	0.363E-03	0.271E-04
-11.	0.646E-03	0.559E-03	0.124E-03	0.794E-04	0.103E-04

7. =	2.00
ப –	2.00

	2	- 2	.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.158E-03 0	.205E-03	0.222E-03	0.230E-03	0.239E-03	0.247E-03
0.253E-0	3 0.259E-03	0.270E-0	03 0.272E-	-03		
2.	0.782E-02 0	.104E-01	0.112E-01	0.115E-01	0.119E-01	0.122E-01
0.124E-0	1 0.125E-01	0.125E-0	01 0.112E-	01		
0.	0.953E-02 0	.127E-01	0.136E-01	0.141E-01	0.145E-01	0.148E-01
0.151E-0	1 0.152E-01	0.151E-0	01 0.135E-	01		
-2.	0.782E-02 0	.104E-01	0.112E-01	0.115E-01	0.119E-01	0.122E-01
0.124E-0	1 0.125E-01	0.125E-0	01 0.112E-	01		
-5.	0.379E-02 0	.500E-02	0.539E-02	0.558E-02	0.575E-02	0.590E-02
0.601E-0	2 0.609E-02	0.613E-0	02 0.566E-	02		
-11.	0.316E-03 0	.412E-03	0.445E-03	0.461E-03	0.478E-03	0.493E-03
0.506E-0	3 0.517E-03	0.536E-0	03 0.530E-	03		
				CONTI	INUE	
					Х	
Y	10.	15.	35.	39.	55.	

13.	0.269E-03	0.241E-03	0.647E-04	0.435E-04	0.655E-05
2.	0.108E-01	0.805E-02	0.740E-03	0.395E-03	0.286E-04
0.	0.130E-01	0.958E-02	0.821E-03	0.431E-03	0.299E-04
-2.	0.108E-01	0.805E-02	0.740E-03	0.395E-03	0.286E-04
-5.	0.547E-02	0.426E-02	0.503E-03	0.283E-03	0.238E-04
-11.	0.523E-03	0.457E-03	0.106E-03	0.690E-04	0.928E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1358E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.132E-03	0.171E-03	0.185E-03	0.192E-03	0.200E-03	0.206E-03
0.212E-0	03 0.218E-0	3 0.228E-	03 0.232E-	03		
2.	0.184E-01	0.245E-01	0.264E-01	0.272E-01	0.281E-01	0.287E-01
0.292E-0	01 0.294E-0	1 0.293E-	01 0.262E-	01		
0.	0.275E-01	0.366E-01	0.394E-01	0.407E-01	0.419E-01	0.428E-01
0.435E-0	01 0.438E-0	1 0.434E-	01 0.386E-	01		
-2.	0.184E-01	0.245E-01	0.264E-01	0.272E-01	0.281E-01	0.287E-01
0.292E-0	01 0.294E-0	1 0.293E-	01 0.262E-	01		
-5.	0.478E-02	0.629E-02	0.679E-02	0.702E-02	0.725E-02	0.744E-02
0.760E-0	02 0.771E-0	2 0.779E-	02 0.727E-	02		
-11.	0.273E-03	0.355E-03	0.384E-03	0.398E-03	0.413E-03	0.426E-03
0.438E-0	03 0.449E-0	3 0.467E-	03 0.469E-	03		

				CONT		
Y	10.	15.	35.	39.	X 55.	
13. 2. 0. -2. -5. -11.	0.231E-03 0.251E-01 0.369E-01 0.251E-01 0.705E-02 0.464E-03	0.211E-03 0.185E-01 0.267E-01 0.185E-01 0.558E-02 0.415E-03	0.629E-04 0.138E-02 0.175E-02 0.138E-02 0.680E-03 0.107E-03	0.431E-04 0.683E-03 0.834E-03 0.683E-03 0.378E-03 0.711E-04	0.296E-04	
		Z = 2	.00			
					Х	
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
13. 0.176E-	0.110E-03 -03 0.181E-	0.142E-03 03 0.190E-			0.166E-03	0.171E-03
2. 0.851E-	0.535E-02	0.705E-02	0.761E-02	0.787E-02	0.812E-02	0.834E-02
0. 0.104E-	0.652E-02 -01 0.105E-	0.859E-02 01 0.106E-			0.989E-02	0.102E-01
0.851E-		02 0.872E-	02 0.814E-	02	0.812E-02	0.834E-02
0.414E-	0.260E-02 -02 0.421E-	02 0.429E-	02 0.408E-	02	0.394E-02	0.405E-02
	0.219E-03 -03 0.360E-				0.331E-03	0.342E-03
				CONT		
Y	10.	15.	35.	39.	X 55.	
13.	0.193E-03	0.177E-03		0.378E-04		
2.	0.789E-02	0.624E-02		0.414E-03 0.459E-03	0.314E-04	
0.	0.952E-02 0.789E-02	0.746E-02		0.459E-03 0.414E-03	0.331E-04	
-2.		0.624E-02			0.314E-04	
-5.	0.398E-02 0.376E-03	0.325E-02	0.486E-03 0.917E-04	0.283E-03	0.254E-04 0.902E-05	
DIS	STRIBUTION OF	DISSOLVED C	HEMICALS IN	PPM AT 0.14	402E+06 HRS	CONC.)
		Z = 0	0.0			
		<u> </u>	.00		х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			

13.0.920E-040.119E-030.129E-030.134E-030.139E-030.144E-030.148E-030.152E-030.160E-030.166E-030.126E-010.126E-010.191E-010.196E-010.200E-010.203E-010.205E-010.190E-010.190E-010.190E-010.191E-010.196E-01

	0.188E-01				0.285E-01	0.293E-01
	E-01 0.302E- 0.126E-01				0.191E-01	0.196E-01
	E-01 0.203E-					
	0.328E-02				0.498E-02	0.512E-02
0.524			-02 0.524E		00000000	0.0122 02
	0.190E-03				0 286E-03	0 296E-03
	E-03 0.313E-				0.2001 05	0.2902 03
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.		
13.	0.165E-03	0.155E-03	0.525E-04	0.369E-04	0.648E-05	
2.				0.767E-03		
0.				0.973E-03		
		0.144E-01	0.147E-02			
	0.512E-02					
	0.333E-03					
		Z = 2	2.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.764E-04	0.986E-04	0.107E-03	0.111E-03	0.115E-03	0.119E-03
0.123	E-03 0.126E-	-03 0.133E-	-03 0.138E	-03		
2.	0.368E-02	0.482E-02	0.520E-02	0.539E-02	0.557E-02	0.573E-02
0.587E	E-02 0.597E-	-02 0.611E-	-02 0.587E	-02		
0.	0.448E-02	0.587E-02	0.634E-02	0.656E-02	0.678E-02	0.698E-02
0.714E	E-02 0.726E-	-02 0.742E-	-02 0.709E-	-02		
-2.	0.368E-02	0.482E-02	0.520E-02	0.539E-02	0.557E-02	0.573E-02
0.587E	E-02 0.597E-	-02 0.611E-	-02 0.587E	-02		
-5.	0.179E-02	0.234E-02	0.253E-02	0.262E-02	0.271E-02	0.279E-02
	E-02 0.292E-					
-11.	0.152E-03	0.197E-03	0.213E-03	0.221E-03	0.230E-03	0.238E-03
0.245	E-03 0.251E-	-03 0.264E-	-03 0.270E	-03		
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
13.	0.138E-03	0.130E-03	0.454E-04	0.322E-04	0.583E-05	
2.	0.573E-02	0.474E-02	0.725E-03	0.418E-03	0.344E-04	
0.	0.692E-02	0.568E-02	0.826E-03	0.470E-03	0.367E-04	
-2.	0.573E-02	0.474E-02	0.725E-03	0.418E-03	0.344E-04	
-5.	0.288E-02	0.245E-02	0.451E-03	0.273E-03	0.269E-04	
-11.	0.269E-03	0.249E-03	0.775E-04	0.534E-04	0.863E-05	

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1445E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

Z = 0.00

Х

Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
13. 0.103E-	0.641E-04		0.895E-04)3 0.118E-0		0.967E-04	0.100E-03
2.		0.114E-01	0.123E-01	0.127E-01	0.131E-01	0.135E-01
	0.129E-01	0.169E-01	0.183E-01 0.202E-0	0.189E-01	0.196E-01	0.201E-01
	0.866E-02	0.114E-01	0.123E-01	0.127E-01	0.131E-01	0.135E-01
-5. 0.363E-	0.227E-02	0.296E-02	0.319E-02	0.331E-02	0.343E-02	0.353E-02
-11.		0.170E-03	0.185E-03	0.192E-03	0.199E-03	0.206E-03
				CONT	INUE	
		. –	^ -		X	
Y	10.	15.	35.	39.	55.	
13.	0.118E-03	0.113E-03	0.430E-04	0.311E-04	0.600E-05	
2.	0.134E-01	0.110E-01			0.518E-04	
0.	0.197E-01	0.160E-01			0.592E-04	
-2.		0.110E-01			0.518E-04	
	0.370E-02					
	0.238E-03				0.918E-05	
±±•	0.2501 05	0.2256 05	0.7021 04	0.5555 04	0.910E 05	
		Z = 2.	. 0 0			
					х	
Y	-9.	-5.	-3.	-2.	X -1.	0.
¥ 1.	-9. 2.			-2.		0.
1. 13.	2. 0.533E-04	-5. 5. 0.686E-04	-3. 9. 0.743E-04	0.772E-04	-1.	
1. 13. 0.859E-	2. 0.533E-04 -04 0.884E-0	-5. 5. 0.686E-04 04 0.938E-0	-3. 9. 0.743E-04 04 0.983E-0	0.772E-04)4	-1. 0.803E-04	0.832E-04
1. 13. 0.859E- 2.	2. 0.533E-04 -04 0.884E-0 0.254E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02	0.772E-04)4 0.371E-02	-1.	0.832E-04
1. 13. 0.859E- 2. 0.406E-	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-0	0.772E-04)4 0.371E-02)2	-1. 0.803E-04 0.384E-02	0.832E-04 0.396E-02
1. 13. 0.859E- 2. 0.406E- 0.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.435E-02	0.772E-04)4 0.371E-02)2 0.451E-02	-1. 0.803E-04 0.384E-02	0.832E-04 0.396E-02
1. 13. 0.859E- 2. 0.406E- 0. 0.494E-	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.435E-02 02 0.509E-0	0.772E-04)4 0.371E-02)2 0.451E-02)2	-1. 0.803E-04 0.384E-02 0.467E-02	0.832E-04 0.396E-02 0.481E-02
1. 13. 0.859E- 2. 0.406E- 0. 0.494E- -2.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0 0.254E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-0 0.435E-02 02 0.509E-0 0.358E-02	0.772E-04)4 0.371E-02)2 0.451E-02)2 0.371E-02	-1. 0.803E-04 0.384E-02 0.467E-02	0.832E-04 0.396E-02
1. 13. 0.859E- 2. 0.406E- 0. 0.494E- -2. 0.406E-	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0 0.254E-02 -02 0.415E-0	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 0.435E-02 02 0.509E-0 0.358E-02 02 0.421E-0	0.772E-04)4 0.371E-02)2 0.451E-02)2 0.371E-02	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02	0.832E-04 0.396E-02 0.481E-02 0.396E-02
1. 13. 0.859E- 2. 0.406E- 0. 0.494E- -2. 0.406E- -5.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0 0.254E-02 -02 0.415E-0 0.124E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 0.435E-02 0.358E-02 0.358E-02 0.358E-02 0.358E-02 0.174E-02	0.772E-04)4 0.371E-02)2 0.451E-02)2 0.371E-02)2 0.181E-02	-1. 0.803E-04 0.384E-02 0.467E-02	0.832E-04 0.396E-02 0.481E-02 0.396E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E-	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.415E-02 -02 0.203E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.358E-02 0.358E-02 02 0.421E-02 0.174E-02 02 0.210E-0	0.772E-04)4 0.371E-02)2 0.451E-02)2 0.371E-02)2 0.181E-02)2	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.496E- -5. 0.199E- -11.	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.415E-02 -02 0.203E-02 -02 0.203E-03	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.358E-02 02 0.509E-02 02 0.421E-02 0.174E-02 0.174E-02 0.148E-03	0.772E-04 4 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.496E- -5. 0.199E- -11.	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.415E-02 -02 0.203E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.358E-02 02 0.509E-02 02 0.421E-02 0.174E-02 0.174E-02 0.148E-03	0.772E-04 4 0.371E-02 0.451E-02 0.371E-02 0.181E-02 0.154E-03 03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.496E- -5. 0.199E- -11.	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.415E-02 -02 0.203E-02 -02 0.203E-03	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.358E-02 02 0.509E-02 02 0.421E-02 0.174E-02 0.174E-02 0.148E-03	0.772E-04 4 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E-	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.415E-02 -02 0.415E-02 -02 0.203E-02 -02 0.203E-02 -03 0.176E-03	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03 03 0.185E-0	-3. 9. 0.743E-04 04 0.983E-02 02 0.421E-02 02 0.509E-02 02 0.509E-02 02 0.421E-02 02 0.421E-02 0.174E-02 02 0.210E-02 0.148E-03 03 0.193E-02	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 0. CONT	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.496E- -5. 0.199E- -11.	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.415E-02 -02 0.203E-02 -02 0.203E-03	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.358E-02 02 0.509E-02 02 0.421E-02 0.174E-02 0.174E-02 0.148E-03	0.772E-04 4 0.371E-02 0.451E-02 0.371E-02 0.181E-02 0.154E-03 03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E- Y	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0 0.254E-02 -02 0.415E-0 0.124E-02 -02 0.203E-0 0.106E-03 -03 0.176E-0 10.	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 0.161E-02 0.137E-03 03 0.185E-0 15.	-3. 9. 0.743E-04 04 0.983E-02 02 0.421E-02 02 0.509E-02 02 0.509E-02 02 0.421E-02 02 0.421E-02 02 0.421E-02 0.174E-02 02 0.210E-02 0.148E-03 03 0.193E-02 35.	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 3 CONT 39.	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE X 55.	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E- Y 13.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0 0.254E-02 -02 0.415E-0 0.124E-02 -02 0.203E-0 0.106E-03 -03 0.176E-0 10. 0.985E-04	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 0.161E-02 0.137E-03 03 0.185E-04	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 02 0.509E-02 02 0.421E-02 02 0.421E-02 02 0.421E-02 02 0.210E-02 0.174E-03 03 0.193E-04	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 3 CONT 39. 0.270E-04	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE X 55. 0.536E-05	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E- Y 13. 2.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-0 0.254E-02 -02 0.415E-0 0.124E-02 -02 0.203E-0 0.106E-03 -03 0.176E-0 10. 0.985E-04 0.414E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03 03 0.185E-0 15. 0.945E-04 0.356E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.358E-02 02 0.509E-02 0.358E-02 02 0.421E-02 0.174E-02 02 0.210E-02 0.148E-03 03 0.193E-04 35. 0.371E-04 0.674E-03	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 0.154E-03 39. 0.270E-04 0.406E-03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE X 55. 0.536E-05 0.373E-04	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E- Y 13. 2. 0.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-02 -02 0.415E-0 0.124E-02 -02 0.203E-0 0.106E-03 -03 0.176E-0 10. 0.985E-04 0.414E-02 0.500E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03 03 0.185E-0 15. 0.945E-04 0.356E-02 0.427E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 02 0.435E-02 02 0.421E-02 02 0.421E-02 0.174E-02 02 0.210E-02 0.148E-03 03 0.193E-03 35. 0.371E-04 0.674E-03 0.775E-03	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 0.154E-03 0.270E-04 0.406E-03 0.462E-03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE X 55. 0.536E-05 0.373E-04 0.402E-04	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E- Y 13. 2. 0. -2.	2. 0.533E-04 -04 0.884E-02 -02 0.415E-02 -02 0.504E-02 -02 0.504E-02 -02 0.415E-02 -02 0.254E-02 -02 0.203E-02 0.106E-03 -03 0.176E-02 10. 0.985E-04 0.414E-02 0.500E-02 0.414E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03 03 0.185E-0 15. 0.945E-04 0.356E-02 0.427E-02 0.356E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 0.435E-02 02 0.509E-02 0.358E-02 02 0.421E-02 0.174E-02 0.174E-03 0.193E-04 0.371E-04 0.674E-03 0.775E-03 0.674E-03	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 0.270E-04 0.406E-03 0.462E-03 0.406E-03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE X 55. 0.536E-05 0.373E-04 0.402E-04 0.373E-04	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02
1. 13. 0.859E- 2. 0.406E- 0.494E- -2. 0.406E- -5. 0.199E- -11. 0.171E- Y 13. 2. 0.	2. 0.533E-04 -04 0.884E-0 0.254E-02 -02 0.415E-0 0.309E-02 -02 0.504E-02 -02 0.415E-0 0.124E-02 -02 0.203E-0 0.106E-03 -03 0.176E-0 10. 0.985E-04 0.414E-02 0.500E-02	-5. 5. 0.686E-04 04 0.938E-0 0.331E-02 02 0.428E-0 0.403E-02 02 0.520E-0 0.331E-02 02 0.428E-0 0.161E-02 02 0.211E-0 0.137E-03 03 0.185E-0 15. 0.945E-04 0.356E-02 0.427E-02	-3. 9. 0.743E-04 04 0.983E-02 0.358E-02 02 0.421E-02 02 0.435E-02 02 0.421E-02 02 0.421E-02 0.174E-02 02 0.210E-02 0.148E-03 03 0.193E-03 35. 0.371E-04 0.674E-03 0.775E-03	0.772E-04 0.371E-02 0.451E-02 0.371E-02 0.371E-02 0.181E-02 0.154E-03 0.154E-03 0.270E-04 0.406E-03 0.462E-03	-1. 0.803E-04 0.384E-02 0.467E-02 0.384E-02 0.187E-02 0.160E-03 INUE X 55. 0.536E-05 0.373E-04 0.402E-04	0.832E-04 0.396E-02 0.481E-02 0.396E-02 0.193E-02

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1489E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	0.00			
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	x -1.	0.
		0.576E-04			0.675E-04	0.700E-04
0.723E- 2.	0.597E-02	0.779E-02	0.842E-02	0.873E-02	0.904E-02	0.931E-02
0.955E- 0. 0.142E-	0.889E-02	0.116E-01	0.125E-01	0.130E-01	0.135E-01	0.139E-01
-2.	0.597E-02		0.842E-02	0.873E-02	0.904E-02	0.931E-02
-5.	0.157E-02	0.204E-02 -02 0.268E-	0.220E-02	0.229E-02	0.237E-02	0.245E-02
-11.	0.921E-04	0.119E-03 -03 0.162E-	0.128E-03	0.133E-03	0.139E-03	0.144E-03
0.1198	05 0.1551	05 0.1028	05 0.1708	CONT	INUE	
Y	10.	15.	35.	39.	X 55.	
Ţ	10.	15.	35.	59.	55.	
13.	0.842E-04	0.819E-04	0.348E-04	0.257E-04		
2.	0.966E-02	0.824E-02	0.142E-02	0.822E-03		
0.	0.143E-01	0.1010 01	0.194E-02	0.110E-02	0.713E-04	
	0.966E-02			0.822E-03		
	0.266E-02	0.236E-02	0.545E-03	0.343E-03	0.366E-04	
-11.	0.170E-03	0.163E-03	0.625E-04	0.451E-04	0.854E-05	
		Z = 2	2.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.		0.478E-04			0.561E-04	0.582E-04
0.601E- 2.		-04 0.660E- 0.228E-02		-04 0.256E-02	0.265E-02	0.274E-02
		-02 0.300E-			0.2056-02	0.2/46-02
		0.278E-02			0.323E-02	0.333E-02
		-02 0.364E-			0.5252 02	0.0001 01
-2.		0.228E-02			0.265E-02	0.274E-02
0.282E-		-02 0.300E-				
-5.		0.111E-02			0.130E-02	0.134E-02
0.138E-	-02 0.141E-	-02 0.148E-	-02 0.150E-	-02		
-11.	0.740E-04	0.952E-04	0.103E-03	0.107E-03	0.111E-03	0.116E-03
0.119E-	-03 0.123E-	-03 0.130E-	-03 0.137E-	-03		
				CONT		
					X	
Y	10.	15.	35.	39.	55.	
1 0						
13.			0.299E-04			
2.	0.297E-02			0.380E-03		
0.	0.359E-02	0.317E-02	U./UIE-03	0.436E-03	0.433E-04	

-2.	0.297E-02	0.264E-02	0.605E-03	0.380E-03	0.396E-04
-5.	0.149E-02	0.135E-02	0.355E-03	0.232E-03	0.286E-04
-11.	0.137E-03	0.132E-03	0.525E-04	0.382E-04	0.749E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1533E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
Y	-9.	-5.	-3.	-2.	х -1.	0.
1.	2.	5.	9.	2.	±.	0.
13. 0.507E-					0.472E-04	0.490E-04
2. 0.663E-	0.413E-02	0.537E-02		0.602E-02	0.625E-02	0.645E-02
0.		0.800E-02		0.896E-02	0.929E-02	0.959E-02
-2.	0.413E-02	0.537E-02 -02 0.705E-	0.581E-02	0.602E-02	0.625E-02	0.645E-02
-5.	0.109E-02	0.141E-02 -02 0.188E-	0.153E-02	0.158E-02	0.164E-02	0.170E-02
-11.	0.643E-04	0.827E-04 -03 0.114E-	0.896E-04	0.931E-04	0.969E-04	0.101E-03
0.1010	0.10/1	0.1111	0.1211	CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
2.	0.600E-04 0.695E-02	0.612E-02		0.210E-04 0.791E-03	0.680E-04	
0.	0.103E-01	0.898E-02		0.108E-02	0.834E-04	
	0.695E-02	0.612E-02		0.791E-03	0.680E-04	
	0.190E-02		0.474E-03 0.505E-04	0.310E-03	0.377E-04	
-11.	0.121E-03	0.118E-03	0.505E-04	0.374E-04	0.780E-05	
		Z = 2	.00			
					Х	
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
13. 0 421E-		0.334E-04 -04 0.465E-			0.392E-04	0.407E-04
2. 0.196E-	0.122E-02	0.158E-02	0.171E-02	0.177E-02	0.184E-02	0.190E-02
0.	0.148E-02	0.192E-02 -02 0.256E-	0.208E-02	0.216E-02	0.224E-02	0.231E-02
	0.122E-02	0.158E-02 ·02 0.211E-	0.171E-02	0.177E-02	0.184E-02	0.190E-02
-5.	0.597E-03	0.772E-03 -03 0.104E-	0.836E-03	0.868E-03	0.901E-03	0.933E-03
-11.	0.517E-04	0.664E-04 ·04 0.918E-	0.720E-04	0.748E-04	0.779E-04	0.808E-04

				CONT	INUE
Y	10.	15.	35.	39.	X 55.
1	10.	±3.	55.		55.
13.	0.501E-04	0.497E-04	0.238E-04	0.181E-04	0.432E-05
2.	0.213E-02	0.194E-02	0.527E-03	0.344E-03	0.411E-04
Ο.	0.258E-02	0.234E-02	0.615E-03	0.398E-03	0.454E-04
-2.	0.213E-02	0.194E-02	0.527E-03	0.344E-03	0.411E-04
-5.	0.106E-02	0.987E-03	0.302E-03	0.204E-03	0.285E-04
-11.	0.979E-04	0.959E-04	0.422E-04	0.315E-04	0.680E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1577E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.220E-04	0.281E-04	0.305E-04	0.317E-04	0.330E-04	0.343E-04
0.355E-	-04 0.367E-	04 0.394E-	04 0.424E-	-04		
2.		0.371E-02		0.417E-02	0.433E-02	0.447E-02
0.461E-			02 0.502E-			
0.		0.553E-02			0.644E-02	0.665E-02
	-02 0.702E-					
	0.287E-02				0.433E-02	0.447E-02
	-02 0.472E- 0.758E-03				0.114E-02	0.118E-02
	-02 0.125E-				0.1148-02	0.118E-02
	0.450E-04				0 678〒-04	0.704E-04
	-04 0.751E-				0.0701 01	0.7010 01
0.,201	01 0.,011	01 0.0051	01 0.0001	CONT	INUE	
					X	
Y	10.	15.	35.	39.	55.	
13.	0.428E-04		0.219E-04	0.170E-04		
2.	0.498E-02		0.115E-02	0.732E-03	0.743E-04	
0.	0.736E-02		0.161E-02	0.101E-02	0.937E-04	
-2.	0.498E-02		0.115E-02	0.732E-03	0.743E-04	
	0.136E-02			0.273E-03		
-11.	0.864E-04	0.856E-04	0.403E-04	0.305E-04	0.701E-05	
		Z = 2	0.0			
		2 – 2	.00		х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.183E-04	0.234E-04	0.254E-04	0.264E-04	0.275E-04	0.285E-04
0.296E-	-04 0.305E-			-04		
2.	0.849E-03			0.123E-02	0.128E-02	0.132E-02
0.137E-	-02 0.140E-	02 0.148E-	02 0.153E-	-02		

0. 0.103E-02 0.133E-02 0.144E-02 0.150E-02 0.156E-02 0.161E-02 0.166E-02 0.170E-02 0.180E-02 0.185E-02 -2. 0.849E-03 0.110E-02 0.119E-02 0.123E-02 0.128E-02 0.132E-02 0.137E-02 0.140E-02 0.148E-02 0.153E-02 -5. 0.416E-03 0.537E-03 0.581E-03 0.604E-03 0.628E-03 0.650E-03 0.671E-03 0.690E-03 0.730E-03 0.760E-03 -11. 0.362E-04 0.464E-04 0.503E-04 0.523E-04 0.545E-04 0.566E-04 0.586E-04 0.604E-04 0.647E-04 0.693E-04 CONTINUE

Y	10.	15.	35.	39.	х 55.
13.	0.357E-04	0.359E-04	0.187E-04	0.146E-04	0.379E-05
2.	0.152E-02	0.142E-02	0.448E-03	0.303E-03	0.415E-04
0.	0.184E-02	0.171E-02	0.525E-03	0.353E-03	0.463E-04
-2.	0.152E-02	0.142E-02	0.448E-03	0.303E-03	0.415E-04
-5.	0.760E-03	0.721E-03	0.252E-03	0.176E-03	0.278E-04
-11.	0.698E-04	0.694E-04	0.335E-04	0.256E-04	0.607E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1621E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

	2	Z = 0.	00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			

13. 0.154E-04 (0.197E-04 0.214E-04	0.222E-04	0.232E-04	0.241E-04
0.250E-04 0.258E-04	4 0.278E-04 0.301	E-04		
2. 0.199E-02 (0.258E-02 0.279E-02	0.290E-02	0.301E-02	0.311E-02
0.321E-02 0.330E-02	2 0.347E-02 0.357	E-02		
0. 0.296E-02 (0.383E-02 0.415E-02	0.430E-02	0.447E-02	0.463E-02
0.477E-02 0.489E-02	2 0.515E-02 0.529	E-02		
-2. 0.199E-02 ().258E-02 0.279E-02	0.290E-02	0.301E-02	0.311E-02
0.321E-02 0.330E-02	2 0.347E-02 0.357	E-02		
-5. 0.528E-03 ().681E-03 0.737E-03	0.766E-03	0.796E-03	0.825E-03
0.852E-03 0.877E-03	3 0.929E-03 0.971	E-03		
-11. 0.316E-04 (0.404E-04 0.438E-04	0.456E-04	0.475E-04	0.493E-04
0.511E-04 0.528E-04	4 0.566E-04 0.610	E-04		

CONTINUE

					Х
Y	10.	15.	35.	39.	55.
13.	0.304E-04	0.309E-04	0.171E-04	0.135E-04	0.373E-05
2.	0.356E-02	0.331E-02	0.986E-03	0.655E-03	0.782E-04
0.	0.526E-02	0.486E-02	0.139E-02	0.912E-03	0.101E-03
-2.	0.356E-02	0.331E-02	0.986E-03	0.655E-03	0.782E-04
-5.	0.972E-03	0.927E-03	0.334E-03	0.234E-03	0.370E-04
-11.	0.616E-04	0.618E-04	0.318E-04	0.246E-04	0.619E-05

Z = 2.00

Х

Y	-9.	-5.	-3.	-2.	-1.	0.				
1.	2.	5.	9.							
		0.164E-04			0.193E-04	0.200E-04				
0.208E-04 0.215E-04 0.231E-04 0.251E-04										
		0.762E-03			0.892E-03	0.924E-03				
0.954E-03 0.982E-03 0.104E-02 0.109E-02										
0.	0.719E-03	0.926E-03	0.100E-02	0.104E-02	0.108E-02	0.112E-02				
0.116E-02 0.119E-02 0.126E-02 0.132E-02										
-2.	0.592E-03	0.762E-03	0.826E-03	0.858E-03	0.892E-03	0.924E-03				
0.954E-03 0.982E-03 0.104E-02 0.109E-02										
-5.	0.291E-03	0.374E-03	0.405E-03	0.421E-03	0.438E-03	0.454E-03				
0.469E-03 0.483E-03 0.514E-03 0.541E-03										
-11.	0.254E-04	0.325E-04	0.352E-04	0.366E-04	0.382E-04	0.397E-04				
0.411E-04 0.425E-04 0.456E-04 0.492E-04										
CONTINUE										
					Х					
Y	10.	15.	35.	39.	55.					
13.	0.254E-04	0.259E-04	0.146E-04	0.116E-04	0.327E-05					
2.	0.109E-02	0.104E-02	0.372E-03	0.261E-03	0.407E-04					
0.	0.132E-02	0.125E-02	0.438E-03	0.304E-03	0.458E-04					
-2.	0.109E-02	0.104E-02	0.372E-03	0.261E-03	0.407E-04					
-5.	0.542E-03	0.524E-03	0.206E-03	0.148E-03	0.264E-04					

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1664E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

-11. 0.497E-04 0.501E-04 0.264E-04 0.206E-04 0.533E-05

		Z = 0	0.00							
					Х					
Y	-9.	-5.	-3.	-2.	-1.	0.				
1.	2.	5.	9.							
1 2	0 1000 04	0 1200 04			0 1620 04	0 1 0 0 0 0 0 0 0				
				0.156E-04	0.103E-04	0.169E-04				
0.176E-04 0.182E-04 0.196E-04 0.214E-04 2. 0.139E-02 0.179E-02 0.194E-02 0.202E-02 0.210E-02 0.217E-02										
					0.210E-02	0.217E-02				
0.224E-02 0.230E-02 0.244E-02 0.254E-02										
Ο.	0.206E-02	0.266E-02	0.288E-02	0.299E-02	0.311E-02	0.322E-02				
0.333E-02 0.342E-02 0.362E-02 0.376E-02										
-2.	0.139E-02	0.179E-02	0.194E-02	0.202E-02	0.210E-02	0.217E-02				
0.224E-02 0.230E-02 0.244E-02 0.254E-02										
-5.	0.369E-03	0.475E-03	0.514E-03	0.534E-03	0.556E-03	0.577E-03				
0.596E-03 0.614E-03 0.654E-03 0.691E-03										
-11.	0.222E-04	0.283E-04	0.307E-04	0.320E-04	0.333E-04	0.346E-04				
0.359E-04 0.371E-04 0.399E-04 0.433E-04										
			CONT	INUE						
					Х					
Y	10.	15.	35.	39.	55.					
13.	0.217E-04	0.223E-04	0.133E-04	0.107E-04	0.319E-05					
2.	0.254E-02	0.241E-02	0.827E-03	0.569E-03	0.794E-04					
0.	0.376E-02			0.800E-03						
υ.	0.5708 02		0.11/10/2	0.0000 03	0.1000000					
-2.	0.254E-02	0.241E-02	0.827E-03	0.569E-03	0.794E-04					
------	-----------	-----------	-----------	-----------	-----------					
-5.	0.693E-03	0.673E-03	0.272E-03	0.197E-03	0.352E-04					
-11.	0.438E-04	0.446E-04	0.248E-04	0.196E-04	0.538E-05					

Z =	2.00
2 –	2.00

	2		00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.901E-05 ().115E-04	0.125E-04	0.130E-04	0.135E-04	0.141E-04
0.146E-	04 0.151E-04	↓ 0.163E-0	4 0.178E-	04		
2.	0.413E-03 ().531E-03	0.576E-03	0.598E-03	0.623E-03	0.646E-03
0.667E-	03 0.688E-03	0.732E-0	0.773E-	03		
0.	0.502E-03 ().645E-03	0.699E-03	0.727E-03	0.756E-03	0.784E-03
0.810E-	03 0.834E-03	0.887E-0	0.936E-	03		
-2.	0.413E-03 ().531E-03	0.576E-03	0.598E-03	0.623E-03	0.646E-03
0.667E-	03 0.688E-03	0.732E-0	0.773E-	03		
-5.	0.203E-03 ().261E-03	0.283E-03	0.294E-03	0.306E-03	0.318E-03
0.328E-	03 0.339E-03	0.361E-0	0.385E-	03		
-11.	0.178E-04 ().228E-04	0.247E-04	0.257E-04	0.268E-04	0.279E-04
0.289E-	04 0.299E-04	4 0.322E-0	4 0.350E-	04		
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	

1	TO .	±5.	55.	57.	55.
13.	0.181E-04	0.186E-04	0.113E-04	0.912E-05	0.279E-05
2.	0.776E-03	0.753E-03	0.304E-03	0.219E-03	0.388E-04
Ο.	0.939E-03	0.909E-03	0.359E-03	0.257E-03	0.441E-04
-2.	0.776E-03	0.753E-03	0.304E-03	0.219E-03	0.388E-04
-5.	0.387E-03	0.380E-03	0.166E-03	0.123E-03	0.245E-04
-11.	0.354E-04	0.361E-04	0.205E-04	0.163E-04	0.460E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1708E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
					Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.762E-05	0.972E-05	0.105E-04	0.110E-04	0.114E-04	0.119E-04
0.124E-	04 0.128E-0	4 0.138E-	04 0.152E-	04		
2.	0.971E-03	0.125E-02	0.135E-02	0.141E-02	0.146E-02	0.152E-02
0.157E-	02 0.161E-0	2 0.172E-	02 0.181E-	-02		
0.	0.144E-02	0.185E-02	0.201E-02	0.209E-02	0.217E-02	0.225E-02
0.233E-	02 0.239E-0	2 0.254E-	02 0.268E-	02		
-2.	0.971E-03	0.125E-02	0.135E-02	0.141E-02	0.146E-02	0.152E-02
0.157E-	02 0.161E-0	2 0.172E-	02 0.181E-	-02		
-5.	0.258E-03	0.331E-03	0.359E-03	0.373E-03	0.389E-03	0.404E-03
0.418E-	03 0.431E-0	3 0.460E-	03 0.491E-	-03		
-11.	0.156E-04	0.199E-04	0.216E-04	0.224E-04	0.234E-04	0.243E-04
0.252E-	04 0.261E-0	4 0.282E-	04 0.308E-	04		

				CONT		
Y	10.	15.	35.	39.	X 55.	
-5.		0.175E-02 0.258E-02 0.175E-02 0.487E-03	0.971E-03 0.680E-03		0.779E-04 0.104E-03 0.779E-04 0.327E-04	
		Z = 2	.00			
Ү 1.	-9. 2.	-5. 5.	-3. 9.	-2.	X -1.	0.
	0.634E-05	0.809E-05	0.877E-05		0.952E-05	0.991E-05
2.	0.289E-03	-04 0.115E- 0.371E-03 -03 0.515E-	0.402E-03	0.418E-03	0.435E-03	0.452E-03
0.	0.351E-03	0.451E-03 -03 0.625E-	0.488E-03	0.508E-03	0.528E-03	0.548E-03
-2.	0.289E-03	0.371E-03 -03 0.515E-	0.402E-03	0.418E-03	0.435E-03	0.452E-03
	0.142E-03	0.183E-03		0.206E-03	0.214E-03	0.222E-03
		0.160E-04 ·04 0.227E-			0.188E-04	0.196E-04
				CONT		
Y	10.	15.	35.	39.	X 55.	
	0.129E-04 0.553E-03 0.669E-03 0.553E-03 0.275E-03 0.252E-04	0.545E-03 0.658E-03	0.289E-03 0.244E-03	0.181E-03 0.213E-03	0.361E-04 0.413E-04 0.361E-04	
		T DISSOLVED C MICAL CONC. Z = 0	= 0.3155E+		752E+06 HRS VED CHEMICAL	CONC.)
Y	-9.	-5.	-3.	-2.	X -1.	0.
1.	2.	5.	9.			
		0.683E-05 05 0.977E-			0.805E-05	0.838E-05
2.	0.679E-03		0.944E-03	0.982E-03	0.102E-02	0.106E-02

0. 0.101E-02 0.129E-02 0.140E-02 0.146E-02 0.152E-02 0.157E-02 0.163E-02 0.168E-02 0.179E-02 0.190E-02 -2. 0.679E-03 0.872E-03 0.944E-03 0.982E-03 0.102E-02 0.106E-02 0.110E-02 0.113E-02 0.121E-02 0.129E-02 -5. 0.181E-03 0.232E-03 0.251E-03 0.261E-03 0.272E-03 0.283E-03 0.293E-03 0.302E-03 0.324E-03 0.349E-03 -11. 0.109E-04 0.140E-04 0.151E-04 0.158E-04 0.164E-04 0.171E-04 0.178E-04 0.184E-04 0.199E-04 0.219E-04 CONTINUE Х Y 10. 15. 35. 39. 55. 13. 0.110E-04 0.115E-04 0.779E-05 0.648E-05 0.225E-05 2. 0.129E-02 0.127E-02 0.550E-03 0.403E-03 0.741E-04 Ο. 0.191E-02 0.187E-02 0.788E-03 0.572E-03 0.100E-03 0.129E-02 0.127E-02 0.550E-03 0.403E-03 -2. 0.741E-04 0.352E-03 0.352E-03 0.174E-03 0.132E-03 -5. 0.297E-04 -11. 0.222E-04 0.231E-04 0.148E-04 0.121E-04 0.389E-05 Z = 2.00 Х -2. -3. -1. 0. Υ -9. -5. 1. 5. 2. 9. 13. 0.446E-05 0.569E-05 0.617E-05 0.642E-05 0.670E-05 0.698E-05 0.725E-05 0.751E-05 0.814E-05 0.901E-05 2. 0.203E-03 0.260E-03 0.281E-03 0.293E-03 0.305E-03 0.317E-03 0.328E-03 0.339E-03 0.363E-03 0.390E-03 0. 0.246E-03 0.315E-03 0.342E-03 0.355E-03 0.370E-03 0.384E-03 0.398E-03 0.411E-03 0.440E-03 0.473E-03 -2. 0.203E-03 0.260E-03 0.281E-03 0.293E-03 0.305E-03 0.317E-03 0.328E-03 0.339E-03 0.363E-03 0.390E-03 -5. 0.999E-04 0.128E-03 0.139E-03 0.144E-03 0.150E-03 0.156E-03 0.162E-03 0.167E-03 0.180E-03 0.194E-03 -11. 0.881E-05 0.112E-04 0.122E-04 0.127E-04 0.132E-04 0.138E-04 0.143E-04 0.148E-04 0.160E-04 0.177E-04 CONTINUE Х Y 10. 15. 35. 39. 55. 13. 0.916E-05 0.961E-05 0.661E-05 0.552E-05 0.195E-05 0.394E-03 0.394E-03 0.194E-03 0.147E-03 0.329E-04 2. 0.477E-03 0.476E-03 0.230E-03 0.174E-03 Ο. 0.378E-04 -2. 0.394E-03 0.394E-03 0.194E-03 0.147E-03 0.329E-04 0.198E-04 -5. 0.196E-03 0.198E-03 0.104E-03 0.808E-04 -11. 0.179E-04 0.187E-04 0.122E-04 0.100E-04 0.330E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1796E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

Z = 0.00

Х

Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
13. 0.614E-		0.481E-05 05 0.691E-			0.567E-05	0.591E-05
0.014E- 2. 0.769E-	0.476E-03	0.610E-03	0.661E-03	0.687E-03	0.716E-03	0.743E-03
0.		0.905E-03	0.980E-03	0.102E-02	0.106E-02	0.110E-02
-2.	0.476E-03		0.661E-03	0.687E-03	0.716E-03	0.743E-03
	0.127E-03	0.162E-03	0.176E-03	0.183E-03	0.191E-03	0.198E-03
-11. 0.125E-	0.771E-05 -04 0.130E-		0.107E-04 04 0.155E-		0.116E-04	0.121E-04
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
	0.781E-05 0.921E-03 0.136E-02 0.921E-03 0.251E-03 0.158E-04	0.918E-03 0.135E-02 0.918E-03	0.631E-03 0.438E-03 0.136E-03	0.500E-05 0.330E-03 0.471E-03 0.330E-03 0.106E-03 0.939E-05	0.686E-04 0.939E-04 0.686E-04 0.264E-04	
		Z = 2	.00			
					Х	
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
		0.400E-05 05 0.576E-			0.472E-05	0.492E-05
2. 0.230E-	0.142E-03	0.182E-03	0.197E-03	0.205E-03	0.214E-03	0.222E-03
0.230E 0. 0.279E-	0.173E-03	0.221E-03	0.239E-03	0.249E-03	0.259E-03	0.270E-03
-2. 0.230E-	0.142E-03	0.182E-03	0.197E-03	0.205E-03	0.214E-03	0.222E-03
-5.	0.701E-04	0.896E-04 03 0.127E-	0.972E-04	0.101E-03	0.105E-03	0.110E-03

CONTINUE		
	Х	

					A
Y	10.	15.	35.	39.	55.
13.	0.652E-05	0.690E-05	0.501E-05	0.425E-05	0.160E-05
2.	0.280E-03	0.284E-03	0.152E-03	0.118E-03	0.293E-04
Ο.	0.339E-03	0.343E-03	0.181E-03	0.140E-03	0.338E-04
-2.	0.280E-03	0.284E-03	0.152E-03	0.118E-03	0.293E-04
-5.	0.140E-03	0.143E-03	0.812E-04	0.643E-04	0.173E-04
-11.	0.128E-04	0.134E-04	0.929E-05	0.777E-05	0.275E-05

0.101E-04 0.104E-04 0.113E-04 0.125E-04

-11. 0.621E-05 0.791E-05 0.858E-05 0.893E-05 0.932E-05 0.970E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1840E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = (0.00			
					Х	
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
13. 0.433E					0.400E-05	0.417E-05
0.433E	0.334E-03	0.427E-03	0.463E-03	0.481E-03	0.502E-03	0.521E-03
0.340E	0.495E-03	0.633E-03		0.714E-03	0.744E-03	0.773E-03
-2.	0.334E-03		0.463E-03	0.481E-03	0.502E-03	0.521E-03
-5.	0.892E-04	0.114E-03 -03 0.161E-	0.124E-03	0.129E-03	0.134E-03	0.139E-03
-11.	0.543E-05	-03 0.181E- 0.692E-05 -05 0.994E-	0.750E-05	0.781E-05	0.816E-05	0.849E-05
0.8828	-05 0.915E-	-05 0.994E-	-05 0.110E-	-04 CONT	INUE	
					X	
Y	10.	15.	35.	39.	55.	
13.	0.556E-05	0.592E-05	0.447E-05	0.383E-05		
2.	0.656E-03	0.0012 00	0.346E-03	0.266E-03	0.620E-04	
0.	0.970E-03	0.977E-03		0.382E-03	0.856E-04	
	0.656E-03		0.346E-03			
	0.178E-03		0.106E-03			
-11.	0.112E-04	0.119E-04	0.857E-05	0.724E-05	0.268E-05	
		7 - 7				
		Z = 2	2.00		Х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			0.
13.		0.282E-05			0.333E-05	0.347E-05
0.361E- 2.		-05 0.407E- 0.128E-03	-05 0.455E 0.138E-03		0.150E-03	0.156E-03
		-03 0.181E-			0.1308 03	0.1301 03
		0.155E-03			0.182E-03	0.189E-03
0.196E·	-03 0.203E-	-03 0.219E-	-03 0.239E-	-03		
		0.128E-03			0.150E-03	0.156E-03
		-03 0.181E-			0 - 44 - 04	0
		0.629E-04 -04 0.894E-			0.741E-04	0.771E-04
		0.557E-05			0.657E-05	0.684E-05
		-05 0.801E-			0.03/1 03	0.0011 00
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
13.	0.464E-05	0.495E-05	0.379E-05	0.325E-05	0.131E-05	
2.	0.200E-03	0.205E-03	0.118E-03	0.941E-04	0.256E-04	
0.	0.242E-03	0.247E-03	0.141E-03	0.112E-03	0.297E-04	

-2.	0.200E-03	0.205E-03	0.118E-03	0.941E-04	0.256E-04
-5.	0.994E-04	0.103E-03	0.628E-04	0.506E-04	0.149E-04
-11.	0.908E-05	0.962E-05	0.704E-05	0.598E-05	0.226E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1883E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
Y	-9.	-5.	-3.	-2.	х -1.	0.
1.	2.	5.	9.	2.	±•	0.
13. 0.306E-		0.239E-05 05 0.346E-			0.282E-05	0.294E-05
2.	0.234E-03	0.299E-03 -03 0.423E-	0.325E-03	0.338E-03	0.352E-03	0.366E-03
0.	0.347E-03	0.444E-03 -03 0.627E-	0.482E-03	0.501E-03	0.522E-03	0.543E-03
-2.	0.234E-03	0.299E-03 -03 0.423E-	0.325E-03	0.338E-03	0.352E-03	0.366E-03
-5.	0.627E-04	0.801E-04 -03 0.114E-	0.868E-04	0.904E-04	0.943E-04	0.981E-04
-11.	0.383E-05	0.487E-05 0.703E-	0.529E-05	0.551E-05	0.575E-05	0.599E-05
0.0258	0.0101	05 0.7051	05 0.7051	CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
2. 0. -2. -5.	0.467E-03 0.690E-03 0.467E-03 0.127E-03	0.477E-03 0.704E-03	0.270E-03 0.390E-03 0.270E-03 0.818E-04		0.548E-04 0.762E-04 0.548E-04 0.198E-04	
		Z = 2	.00			
					Х	
Y 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
		0.199E-05 05 0.288E-			0.235E-05	0.245E-05
2. 0.114E-	0.702E-04	0.896E-04 -03 0.128E-	0.972E-04	0.101E-03	0.106E-03	0.110E-03
0.	0.852E-04	0.109E-03 -03 0.155E-	0.118E-03	0.123E-03	0.128E-03	0.133E-03
-2.	0.702E-04	0.896E-04 0.128E-	0.972E-04	0.101E-03	0.106E-03	0.110E-03
-5.	0.347E-04	0.442E-04 -04 0.632E-	0.480E-04	0.500E-04	0.521E-04	0.542E-04
-11.	0.309E-05	0.392E-05 05 0.567E-	0.426E-05	0.444E-05	0.463E-05	0.483E-05

				CONT	INUE
Y	10.	15.	35.	39.	X 55.
Ţ	10.	15.	35.	39.	55.
13.	0.330E-05	0.355E-05	0.285E-05	0.248E-05	0.105E-05
2.	0.142E-03	0.147E-03	0.914E-04	0.740E-04	0.220E-04
Ο.	0.172E-03	0.178E-03	0.109E-03	0.879E-04	0.256E-04
-2.	0.142E-03	0.147E-03	0.914E-04	0.740E-04	0.220E-04
-5.	0.707E-04	0.738E-04	0.481E-04	0.395E-04	0.126E-04
-11.	0.646E-05	0.690E-05	0.531E-05	0.457E-05	0.184E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1927E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	.00			
	0	-	2	0	X	0
Ү 1.	-9. 2.	-5. 5.	-3. 9.	-2.	-1.	0.
1.	2.	5.	2.			
13.	0.133E-05	0.169E-05	0.183E-05	0.191E-05	0.199E-05	0.208E-05
0.216E-						
2.	0.165E-03	0.210E-03	0.228E-03	0.237E-03	0.247E-03	0.257E-03
0.267E-			03 0.328E- 0.338E-03	-03 0.352E-03	0 2675 02	
0. 0.396E-		0.312E-03 03 0.442E-			0.367E-03	0.382E-03
-2.		0.210E-03			0.247E-03	0.257E-03
0.267E-					0.21/1 05	0.2371 03
-5.	0.442E-04	0.563E-04	0.611E-04	0.636E-04	0.663E-04	0.690E-04
0.717E-	-04 0.743E-	04 0.805E-	04 0.889E-	-04		
	0.270E-05				0.406E-05	0.423E-05
0.440E-	-05 0.456E-	05 0.498E-	05 0.558E-			
				CONT	-	
	1.0	1 -	25	2.0	X	
Y	10.	15.	35.	39.	55.	
13.	0.282E-05	0.304E-05	0.252E-05	0.222E-05	0.984E-06	
2.	0.332E-03	0.343E-03	0.209E-03	0.168E-03	0.476E-04	
0.	0.491E-03	0.506E-03	0.302E-03	0.242E-03	0.666E-04	
-2.	0.332E-03	0.343E-03	0.209E-03	0.168E-03	0.476E-04	
-5.	0.903E-04	0.944E-04	0.626E-04	0.516E-04	0.167E-04	
-11.	0.570E-05	0.611E-05	0.487E-05	0.423E-05	0.177E-05	
		Z = 2	.00			
		Z = 2	.00		х	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.	2 •	±•	•••
13.	0.111E-05	0.140E-05	0.152E-05	0.159E-05	0.166E-05	0.173E-05
0.180E-						
2.	0.494E-04	0.630E-04	0.684E-04	0.712E-04	0.743E-04	0.773E-04
0.803E-	-04 0.831E-	04 0.901E-	04 0.995E-	-04		

0. 0.600E-04 0.764E-04 0.829E-04 0.863E-04 0.901E-04 0.937E-04 0.973E-04 0.101E-03 0.109E-03 0.120E-03 -2. 0.494E-04 0.630E-04 0.684E-04 0.712E-04 0.743E-04 0.773E-04 0.803E-04 0.831E-04 0.901E-04 0.995E-04 -5. 0.244E-04 0.311E-04 0.338E-04 0.352E-04 0.367E-04 0.382E-04 0.397E-04 0.411E-04 0.446E-04 0.495E-04 -11. 0.218E-05 0.277E-05 0.300E-05 0.313E-05 0.327E-05 0.341E-05 0.354E-05 0.368E-05 0.401E-05 0.450E-05 CONTINUE

					Х
Y	10.	15.	35.	39.	55.
13.	0.235E-05	0.254E-05	0.213E-05	0.188E-05	0.845E-06
2.	0.101E-03	0.106E-03	0.700E-04	0.577E-04	0.186E-04
0.	0.122E-03	0.128E-03	0.836E-04	0.687E-04	0.218E-04
-2.	0.101E-03	0.106E-03	0.700E-04	0.577E-04	0.186E-04
-5.	0.503E-04	0.530E-04	0.367E-04	0.306E-04	0.106E-04
-11.	0.460E-05	0.495E-05	0.399E-05	0.348E-05	0.149E-05

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.1971E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = (0.00		x	
Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.938E-06	0.119E-05	0.129E-05	0.135E-05	0.141E-05	0.147E-05

IJ. 0.750E 00	0.11/2 00	0.12/6 00	0.100000	0.1416 00	0.14/2 00
0.153E-05 0.159	E-05 0.174E	-05 0.196E	-05		
2. 0.116E-03	0.148E-03	0.160E-03	0.167E-03	0.174E-03	0.181E-03
0.188E-03 0.195	E-03 0.211E	-03 0.233E	-03		
0. 0.172E-03	0.219E-03	0.238E-03	0.247E-03	0.258E-03	0.269E-03
0.279E-03 0.289	E-03 0.313E	-03 0.344E	-03		
-2. 0.116E-03	0.148E-03	0.160E-03	0.167E-03	0.174E-03	0.181E-03
0.188E-03 0.195	E-03 0.211E	-03 0.233E	-03		
-5. 0.311E-04	0.396E-04	0.430E-04	0.448E-04	0.467E-04	0.486E-04
0.505E-04 0.524	E-04 0.569E	-04 0.631E	-04		
-11. 0.191E-05	0.243E-05	0.263E-05	0.274E-05	0.286E-05	0.299E-05
0.311E-05 0.323	E-05 0.352E	-05 0.397E	-05		

CONTINUE

Y	10.	15.	35.	39.	55.
13. 2. 0. -2. -5.	0.200E-05 0.236E-03 0.350E-03 0.236E-03 0.643E-04	0.218E-05 0.247E-03 0.364E-03 0.247E-03 0.678E-04	0.189E-05 0.160E-03 0.232E-03 0.160E-03 0.477E-04	0.167E-05 0.131E-03 0.189E-03 0.131E-03 0.400E-04	0.783E-06 0.406E-04 0.571E-04 0.406E-04 0.140E-04
-11.	0.405E-05	0.438E-05	0.365E-05	0.321E-05	0.142E-05

Z = 2.00

Х

Y	-9.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
		0.992E-06			0.117E-05	0.122E-05
		-05 0.145E-				
		0.444E-04			0.523E-04	0.545E-04
		-04 0.637E-				
		0.538E-04			0.634E-04	0.660E-04
		-04 0.772E-				
		0.444E-04			0.523E-04	0.545E-04
		-04 0.637E-				
		0.219E-04			0.259E-04	0.269E-04
		-04 0.316E-				
		0.195E-05			0.231E-05	0.241E-05
0.250E-	-05 0.260E-	-05 0.284E-	05 0.320E-	-05		
				CONT	INUE	
					Х	
Y	10.	15.	35.	39.	55.	
13.	0.167E-05		0.159E-05	0.142E-05		
2.	0.719E-04	0.759E-04	0.533E-04	0.446E-04	0.155E-04	
0.	0.871E-04	0.917E-04	0.637E-04	0.532E-04	0.182E-04	
-2.	0.719E-04	0.759E-04	0.533E-04	0.446E-04	0.155E-04	
-5.	0.358E-04	0.380E-04	0.278E-04	0.236E-04	0.873E-05	
-11.	0.327E-05	0.354E-05	0.299E-05	0.264E-05	0.119E-05	

STEADY STATE SOLUTION HAS NOT BEEN REACHED BEFORE FINAL SIMULATING TIME

DISTRIBUTION OF DISSOLVED CHEMICALS IN PPM AT 0.2015E+06 HRS (ADSORBED CHEMICAL CONC. = 0.3155E+00 * DISSOLVED CHEMICAL CONC.)

		Z = 0	0.00			
					Х	
Y	201480.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
	0.664E-06				0.995E-06	0.104E-05
0.108E-	-05 0.112E-	05 0.123E-	-05 0.139E-	-05		
2.	0.817E-04	0.104E-03	0.113E-03	0.117E-03	0.123E-03	0.128E-03
0.133E-	-03 0.137E-	03 0.149E-	-03 0.165E-	-03		
0.	0.121E-03	0.154E-03	0.167E-03	0.174E-03	0.182E-03	0.189E-03
0.196E-	-03 0.204E-	03 0.221E-	03 0.245E	-03		
-2.	0.817E-04	0.104E-03	0.113E-03	0.117E-03	0.123E-03	0.128E-03
0.133E-	-03 0.137E-	03 0.149E-	-03 0.165E-	-03		
-5.	0.219E-04	0.279E-04	0.303E-04	0.315E-04	0.329E-04	0.343E-04
0.357E-	-04 0.370E-	04 0.402E-	-04 0.449E-	-04		
-11.	0.135E-05	0.171E-05	0.186E-05	0.194E-05	0.202E-05	0.211E-05
	-05 0.228E-					
				CONT	INUE	
					X	
Y	10.	15	35.	39	55.	
-	10.	± 5 .	55.	57.	55.	
13.	0.143E-05	0.156E-05	0.140E-05	0.126E-05	0.620E-06	

2.	0.168E-03	0.177E-03	0.122E-03	0.102E-03	0.341E-04	
0.	0.249E-03	0.261E-03	0.178E-03	0.147E-03	0.483E-04	
-2.	0.168E-03	0.177E-03	0.122E-03	0.102E-03	0.341E-04	
-5.	0.457E-04	0.486E-04	0.361E-04	0.307E-04	0.115E-04	
-11.	0.289E-05	0.314E-05	0.273E-05	0.242E-05	0.113E-05	
		Z = 2	2.00			
					Х	
Y	201480.	-5.	-3.	-2.	-1.	0.
1.	2.	5.	9.			
13.	0.553E-06	0.701E-06	0.761E-06	0.793E-06	0.829E-06	0.865E-06
0.900E-	06 0.936E-	-06 0.103E-	-05 0.116E	-05		
2.	0.246E-04	0.313E-04	0.339E-04	0.353E-04	0.369E-04	0.384E-04
0.399E-	04 0.414E-	-04 0.450E-	-04 0.502E	-04		
Ο.	0.298E-04	0.379E-04	0.411E-04	0.428E-04	0.447E-04	0.466E-04
0.484E-	04 0.502E-	-04 0.546E-	-04 0.608E	-04		
-2.	0.246E-04	0.313E-04	0.339E-04	0.353E-04	0.369E-04	0.384E-04
0.399E-	04 0.414E-	-04 0.450E-	-04 0.502E-	-04		

0.399E-04 0.414E-04 0.450E-04 0.502E-04 -5. 0.122E-04 0.155E-04 0.168E-04 0.175E-04 0.182E-04 0.190E-04 0.198E-04 0.205E-04 0.223E-04 0.250E-04 -11. 0.109E-05 0.138E-05 0.150E-05 0.156E-05 0.163E-05 0.170E-05 0.177E-05 0.184E-05 0.201E-05 0.228E-05

CONTINUE

Y	10.	15.	35.	39.	x 55.
13. 2. 0. -2. -5. -11. 01-014	0.119E-05 0.512E-04 0.620E-04 0.512E-04 0.255E-04 0.233E-05 (doc)/081502	0.130E-05 0.544E-04 0.658E-04 0.544E-04 0.272E-04 0.254E-05 C-21	0.118E-05 0.404E-04 0.483E-04 0.404E-04 0.210E-04 0.223E-05	0.107E-05 0.343E-04 0.409E-04 0.343E-04 0.180E-04 0.199E-05	0.530E-06 0.128E-04 0.151E-04 0.128E-04 0.714E-05 0.946E-06

001-014(doc)/071502 C-22

THIS PAGE INTENTIONALLY LEFT BLANK.

01-014(doc)/071502 C-46

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX D

COST ESTIMATE SUMMARIES FOR REMEDIAL ACTION ALTERNATIVES AT THE FORMER FIRE TRAINING AREA (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX D

Cost Estimate Summaries for Remedial Action Alternatives at the
Former Fire Training Area (SWMU 13)

		Alt. 1	Alt. 2	Alt. 3	Alt. 4	Alt. 5
			/ IC 2	7.10.0	Air Sparging	
					(to 50 µg/l)	Injection (to
					with	50 μg/L) with
		Monitored			Monitored	Monitored
		Natural	Air	Oxygen	Natural	Natural
		Attenuation		Injection		Attenuation
1.0	Capital Costs			-		
1.1	Engineering Services					
1.1.1	Work Plan/SSHP and Remedial Design	\$8,868		\$22,711	\$22,711	\$21,543
1.1.2	Contracting/Procurement	\$590				
1.1.3	Permitting	\$0	\$2,582	\$2,582	\$2,582	\$2,582
1.1.4	Construction Oversight for Monitoring	\$0	\$0	\$0	\$0	\$0
	Well Installation					
1.1.5	Construction Oversight for Extraction/	\$0	\$14,292	\$25,154	\$5,740	\$8,852
	Injection Installation					
1.1.6	Construction Oversight for System	\$0	\$11,365	\$11,365	\$11,365	\$8,052
	Startup					
1.1	Total Costs for Engineering Services	\$9,458	\$51,865	\$62,728	\$43,314	\$41,943
1.2	System Installation					
1.2.1	Site Preparation and Mobilization/					
1.2.1	Demobilization					
1.2.1.1	Locate Underground Utilities	\$0	\$628	\$628	\$628	\$628
1.2.1.2	Define Grid Layout	\$0				
1.2.1.3	Baseline Groundwater Monitoring	\$15,606		\$13,227		
1.2.1.4	Baseline Soils Letter Report	\$2,262				
1.2.1	Total Costs for Site Preparation and	\$17,868				
1.2.1	Mobilization/Demobilization	<i></i>	\$10,110	ψ10,1 <u>2</u> 0	ψ10,400	<i>_\</i> 0,001
1.2.2	Monitoring Well Installation	\$0	\$0	\$0	\$0	\$0
1.2.3	Extraction/Injection and Equipment	\$0		\$93,880		
	Installation	<u> </u>	¢,=0.	<i>400,000</i>	<i>400,000</i>	¢. <u>−</u> ,
1.2.4	Transport/Disposal of IDW	\$0	\$2,182	\$2,182	\$2,182	\$2,182
1.2.5	Project Closeout	\$4,800	\$7,600			
1.2	Total Costs for System Installation	\$22,668	\$100,185	\$124,190	\$82,586	\$101,597
1.0	Total Capital Costs	\$32,126		\$186,917		\$143,540
2.0	System Maintenance					
2.1	Groundwater Monitoring	\$109,242		\$263,033		
2.2	Annual Report	\$15,833		\$45,238		, ,
2.3	Post Remediation Soil Analysis	\$0				
2.4	Operations and Maintenance for System	\$0				
2.0	Total Costs for System Maintenance	\$125,076	\$279,229	\$374,602	\$209,981	\$238,718
	Published Drainet Costs	¢457.004	¢404 070	¢504 540	6005 004	¢200.050
	Subtotal Project Costs	\$157,201		\$561,519		
	Construction Mgmt (10% of subtotal)	\$15,720				
	Contingency (20% of subtotal)	\$31,440		\$112,304		
	Health and Safety (7.5% of subtotal)	\$11,790				
	Contractor Profit (10% of subtotal)	\$15,720				
	Escalation (8% of Subtotal)	\$12,576				
	Total Project Costs	\$244,448	\$670,639	\$873,162	\$522,295	\$594,411

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX E

OPERATION AND MAINTENANCE PLAN FOR THE FORMER FIRE TRAINING AREA (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

E.1. INTRODUCTION/PURPOSE

This plan presents preliminary procedures for the operation and maintenance (O&M) of the monitored natural attenuation system for remediation of the groundwater contamination at the former Fire Training Area at the solid waste management unit (SWMU) 13 at Fort Stewart, Georgia. This O&M Plan is based on the groundwater contaminant plume as understood at this time. If site conditions change during the O&M period, then a revised/updated O&M Plan will be submitted to the Georgia Environmental Protection Division. Substantive changes in the remediation approach or schedule will require that the public be provided with an opportunity for review and comment.

SWMU 13 contains groundwater contaminated primarily with benzene, toluene, ethylbenzene, and total xylenes and naphthalene. Corrective action is required to reduce the concentrations of contaminants to achieve the remedial levels presented in this Corrective Action Plan (CAP). The selected corrective action consists of monitored natural attenuation. A description of the selected corrective action is presented in Chapter 5.0 of the CAP.

E.2. TRAINING

Personnel who participate in O&M activities are subject to the training requirements presented in Table E-1. Casual visitors, such as package deliverers, who access only the staging areas of the site are not subject to these training requirements.

Personnel involved in the O&M of the system will be subject to the requirements specified in this O&M Plan, the Sampling and Analysis Plan (SAP), and the project Site Safety and Health Plan (SSHP). Training will be in accordance with Science Applications International Corporation (SAIC) Quality Assurance Administrative Procedure (QAAP) 2.1, *Indoctrination and Training*. The Site Supervisor is responsible for: (1) assessing qualifications and determining skill needs of personnel; (2) assuring that appropriate training is provided to personnel and that the training (classroom, reading assignments, or on-the-job) is completed; and (3) forwarding training records for personnel to the SAIC Central Records Facility located in Oak Ridge, Tennessee. Health and safety-related documentation will also be maintained in on-site project files, in accordance with the SSHP.

E.3. WASTE MANAGEMENT PRACTICES

Wastes generated from groundwater sampling activities will be managed in accordance with Resource Conservation and Recovery Act (RCRA) requirements and the site-specific SAP, Chapter 7.0. The types of wastes anticipated to be generated are: (1) monitoring well purge waters, (2) decontamination fluids, and (3) sanitary waste (noncontaminated compactible and miscellaneous trash). Materials that can be effectively reused, recycled, or decontaminated in the field are not waste materials.

Training	Туре	Service Visits O&M Worker	Site Supervisor
HEALTH AND SAFI			Supervisor
Site Safety and Health Plan	Reading	√	 ✓
Hazardous Waste Safety (40 hours)	Classroom	1	1
Hazardous Waste Safety Annual Refresher (8 hours)	Classroom	1	1
Hazardous Waste Safety Supervisors Training (8 hours)	Classroom		1
General Hazard Communication Training (contained in 40- and 8-hour courses)	Classroom		1
Respiratory Protection Training (required only if respirators are worn; contained in 40-hour course)	Classroom	1	1
Hearing Conservation Training (contained in 40- and 8-hour courses)	Classroom	1	1
Pre-entry Briefing (including site-specific hazards communication	OJT	1	1
Safety Briefing (daily and whenever conditions or tasks change)	OJT		1
First Aid/CPR (standard Red Cross or equivalent)	Classroom	At least 2 workers	
QUALITY ASSURAN	NCE TRAINI	NG	
O&M Plan	Reading	✓ ✓	
Sampling and Analysis Plan (with Addendum)	Reading	✓ ✓	√
Quality Assurance Project Plan, including applicable quality assurance program elements	Reading	1	-
General criteria, including applicable codes, standards, and regulations, and the purpose, scope, and implementation of manuals, instructions, and procedures	Reading	J	
Job responsibilities and authority	Reading	✓	√
Quality Assurance Administrative Procedures	Reading	 ✓ 	1
Quality Assurance Technical Procedures for sampling and analysis	nce Technical Procedures for Reading		1
Demonstration of proficiency for task-specific procedures and equipment	OJT		1

Table E-1. Training Requirements

CPR = Cardiopulmonary resuscitation.

O&M = Operation and maintenance.

OJT = On-the-job training.

 \checkmark = Required training.

Decontamination and monitoring well purge waters will be stored in poly tanks. The poly tanks will be transported to a staging area for temporary storage. Analytical data gathered from grab samples collected directly from filled poly tanks will be used to characterize liquid wastes. One grab sample will be collected from each filled poly tank and submitted to an off-site laboratory for analysis of volatile organic compounds (VOCs), pH, oil and grease, and phenols. The analytical data reported for the grab samples, the quantity to be released, and the date of the release will be submitted to the Fort Stewart Directorate of Public Works (DPW) water engineer for evaluation. The water engineer will determine if the liquid waste can be released into the facility industrial wastewater treatment system on a case-by-case basis. In the event that the Fort Stewart DPW water engineer rejects release of the liquid waste into the industrial wastewater treatment system, the contents of the subject poly tank will be transferred into 44-gallon 17E closed-top drums for disposal off-site. Based upon the results of the analytical data, the material will be

transported to either a permitted RCRA Subtitle D or Subtitle C facility located off the Fort Stewart Military Reservation for disposal. The material will be disposed in accordance with all applicable U.S. Environmental Protection Agency (EPA), U.S. Department of Transportation, and State of Georgia regulations. Containerized hazardous waste will be transported off-site for disposal within 90 days of receipt of sample data indicating that the waste is hazardous.

Sanitary wastes that are noncontaminated will be bagged and placed in a sanitary waste dumpster for disposal at Fort Stewart's permitted South Central Landfill. No free liquids or hazardous substances will be placed in dumpsters.

E.4. SAMPLING AND ANALYSIS

Annual sampling of groundwater will be conducted throughout the remediation period. All information, data, and resulting decisions will be technically sound, statistically valid, and properly documented by following a QAPP. The QAPP will document all monitoring procedures, sampling, field measurements, and sample analyses performed during these activities. Appropriate quality assurance, quality control, and chain-of-custody procedures will be followed in accordance with the U.S. Army Corps of Engineers' *Requirements for the Preparation of Sampling and Analysis Plans* (EM200-1-3), EPA's *Requirements for Quality Assurance Project Plans for Environmental Data Operations* (QA/R-5), and EPA's *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans* (QAMS-005/80). Detailed sampling and analysis procedures will be developed in conjunction with the Corrective Action Work Plan.

E.4.1 GROUNDWATER MONITORING DURING NATURAL ATTENUATION

Seven groundwater monitoring wells will be sampled annually for approximately 6 years. Groundwater samples will be collected from each of the seven wells using low-flow sampling techniques to minimize volatilization. Samples will be analyzed at an off-site laboratory for VOCs and semivolatile organic compounds (SVOCs). In addition, groundwater samples will be analyzed for natural attenuation parameters (nitrate/nitrite, sulfate/sulfide, total iron, total phosphorous, carbon dioxide, and methane) to confirm that conditions favorable for natural attenuation are present. Field parameters will be measured at the time of sampling and will include dissolved oxygen (DO), temperature, Eh, conductivity, pH, and ferrous iron.

E.4.2 GROUNDWATER MONITORING DURING CONFIRMATION SAMPLING

Following the completion of the natural attenuation period, the monitoring wells will be sampled for all constituents of concern as defined in the CAP to confirm that groundwater remedial levels have been met for all constituents. Confirmation groundwater sampling and analysis will be conducted 1 year following the natural attenuation period to verify that corrective action is complete.

Samples will be analyzed at an off-site laboratory for VOCs and SVOCs using then-current SW-846 methods. Field parameters will be measured at the time of sampling and will include DO, temperature, Eh, conductivity, and pH.

E.5. CORRECTIVE ACTION COMPLETION CRITERIA

The purpose of the corrective action is to achieve remedial levels in the groundwater at the site. The remedial levels, as defined in Chapter 3.0 of this CAP, are shown in Table E-2:

Analyte	Groundwater Remedial Level (µg/L)
Benzene	5
Ethylbenzene	700
Naphthalene	149
2-Methylnaphthalene ^{<i>a</i>}	142

^{*a*}As the maximum detected concentration of 2-methylnaphthalene in the Resource Conservation and Recovery Act (RCRA) facility investigation samples was below the recommended remedial level, no further investigation or study is required to address this constituent in groundwater.

Monitored natural attenuation will be ceased upon attaining the remedial levels shown in Table E-2. Confirmation groundwater sampling will be conducted 1 year following the monitored natural attenuation period to verify that the groundwater remedial levels have been achieved.

E.6. SYSTEM DECOMMISSIONING

Upon satisfactory completion of the confirmation groundwater sampling and acknowledgment from the regulators that the corrective action is complete, the groundwater monitoring system will be decommissioned. All above-grade completions will be removed and properly disposed of at the Fort Stewart sanitary landfill. The groundwater monitoring wells will be plugged and abandoned by filling the casings with a cement and bentonite grout mixture.

E.7. O&M SCHEDULE

The anticipated schedule for O&M is summarized in Table E-3.

O&M Activity	Frequency	Duration
Groundwater sampling during monitored natural attenuation, VOCs, SVOCs, and natural attenuation parameters	Annually	Annually throughout natural attenuation period (6 years)
Confirmatory groundwater sampling	Once after completion of remediation	After 1 year

O&M = Operation and maintenance.

SVOC = Semivolatile organic constituent.

VOC = Volatile organic constituent.

E.8. DATA MANAGEMENT AND REPORTING DOCUMENTATION

A data management system will be maintained throughout the corrective action to accumulate, archive, and control project data. The data and operational information will be used to prepare Progress Reports and the final Corrective Action Completion Report. The types of data to be maintained in the data management system include those listed below:

- Monitoring and laboratory data. Sample location, date and time of collection, chain of custody, laboratory, test method, analytical results, detection limits, and associated quality control sample results.
- Personnel, maintenance, and inspection records. Logbooks and maintenance checklists.

E.8.1 PROGRESS REPORT INFORMATION

A progress report will be prepared annually during the natural attenuation period and after the confirmatory sampling. The report will summarize the results of the groundwater sampling and analysis completed during that period. An analysis of any deviations from the required remedial levels and need for any contingent action will be discussed, as required.

A checklist is presented in Attachment 1 to this O&M Plan summarizing the items to be addressed in each Progress Report.

E.8.2 COMPLETION REPORT INFORMATION

A final Corrective Action Completion Report will be prepared following the completion of the corrective action and confirmation sampling. The Corrective Action Completion Report will summarize the corrective measures taken at the site, provide a summary of the sampling data, and provide the results of the confirmation groundwater sampling.

ATTACHMENT 1

PROGRESS REPORT CHECKLIST Former Fire Training Area, Solid Waste Management Unit 13, Fort Stewart, Georgia

	Baseline Groundwater Sampling		
Progress Report Section	System Installation and Startup	6-Year O&M Period	Annual Confirmatory Sampling
Work Accomplished (description of significant activities)	Baseline groundwater sampling event	Dates of sampling, analysis, or other performance testing	• Dates of sampling and analysis
Problems Encountered	Summary of any problems encountered	Summary of any problems encountered	Summary of any problems encountered
Analysis of Trends	 Actions taken to rectify problems Comparison of results of baseline groundwater sampling and analysis to results of previous sampling events 	 Actions taken to rectify problems Comparison of groundwater analytical results to predicted performance 	 Actions taken to rectify problems Comparison of results of groundwater analysis to remedial levels Summary of any deviations noted
Communications/Contacts	 Summaries of visitors to the site Summaries of major contacts or communications with GEPD, the local community, or others 	 Summaries of visitors to the site Summaries of major contacts or communications with GEPD, the local community, or others 	 Summaries of visitors to the site Summaries of major contacts or communications with GEPD, the local community, or others
Conclusions and Recommendations	Recommended changes in O&M procedures	 System shutdown if remedial levels have been met Need for contingent action (e.g., installation of additional wells, active remediation, etc.) if remedial levels have not been met 	Need for contingent action if remedial levels exceeded

GEPD = Georgia Environmental Protection Division. O&M = Operation and maintenance.

APPENDIX F

IMPLEMENTATION CHECKLIST FOR MONITORED NATURAL ATTENUATION FOR CONSTITUENTS OF CONCERN AT THE FORMER FIRE TRAINING AREA (SWMU 13)

THIS PAGE INTENTIONALLY LEFT BLANK.

Table F-1. Implementation Checklist for Monitored Natural Attenuation for COCs^a at the Former Fire Training Area (SWMU 13)

ROLE OF MONITORED N	ATURAL ATTENUATION
Source Control	Two interim removal actions (IRAs) have been performed at solid waste management unit (SWMU) 13. An interim measure (IM) was completed at SWMU 13 in 1997, which removed and properly disposed of the fire training facilities and contaminated soil to approximately 4 feet below ground surface (bgs). The second IRA was completed in 2001/2002. During the action, the concrete pad and 337 tons of soil were removed. An area of approximately 20 feet by 27 feet was excavated down to a depth of 12 feet. As a result of these two actions, the pathway of contamination leaching from the soil has been eliminated.
	There is no free petroleum product [nonaqueous phase liquid (NAPL)] at SWMU 13. Arsenic and chromium were identified in the revised final Resource Conservation and Recovery Act (RCRA) facility investigation (RFI) as contaminant migration constituents of concern (CMCOCs) in soil. Arsenic and chromium are not presently identified as a human health constituent of concern (HHCOC) in groundwater. Benzene and naphthalene were also identified in the CAP as CMCOCs. Based on Seasonal Soil Compartment (SESOIL) modeling results, it is anticipated that the soil concentrations for benzene and naphthalene will be reduced to their respective soil remedial levels before the groundwater concentration is reduced to its remedial level. See discussion regarding CMCOCs presented in the COPC based on additional soil sampling performed in July 2005 (See Section 2.9).
	There is no principal-threat waste at the SWMU 13. No other source control measures are needed to control long-term threat of release.
Restoration of Groundwater	Groundwater will be restored to "beneficial use" through reduction of constituent of concern (COC) concentrations to less than the remedial levels that were developed based on maximum contaminant levels (MCLs)/risk-based concentrations (RBCs) in the baseline human health risk assessment (BHHRA) [Appendix H of the revised final Phase II RFI Report (SAIC 2000)] and revised in Chapter 2.0 of this CAP. Based on the results of the supplemental groundwater characterization performed in December 2000, benzene, ethylbenzene, and naphthalene were detected at concentrations above these remedial levels. Based on the results of the supplemental groundwater characterization performed in December 2000, benzene, ethylbenzene, and naphthalene were detected at concentrations above these remedial levels. Based on the results of the supplemental groundwater characterization performed in June 2002, benzene and ethylbenzene were detected at concentrations above their remedial level. Groundwater at this site is not used as a source of drinking water, and exposure of a future resident is highly unlikely.
	Results of Analytical Transient 1,2,3-Dimensional (AT123D) modeling predict that the COC concentrations in groundwater will decline to below the remedial levels in 6 years (included a 1-year contingency period). Although this time frame is longer than that required to reduce the maximum benzene concentration to below the remedial level by active remediation, this time frame is reasonable.
	Further migration of the plume will be prevented. The results from December 2000 showed reductions in the COC concentrations in downgradient wells MW10, MW11, and MW13 at SWMU 13.
	Exposure to contaminated groundwater will be prevented through continuation of groundwater use restrictions and excavation permit restrictions at SWMU 13. Groundwater at this site is not used as a source of drinking water.
	Further reduction in risk will occur as contaminant concentrations in groundwater continue to decline due to biodegradation, advection, and dispersion.

Table F-1. Implementation Checklist for Monitored Natural Attenuation for COCs^a at the Former Fire Training Area (SWMU 13) (continued)

ROLE OF MONITORED N	ATURAL ATTENUATION (CONTINUED)
Soil Remediation	IMs were completed at SWMU 13 in 1997 and in 2001/2002 to remove and properly dispose of the fire training facilities and contaminated soil. There is no current risk due to direct exposure to soil. The soil contamination is confined to CMCOCs (arsenic and benzene).
Public Involvement	The public will be provided with an opportunity for review and comment on the CAP in accordance with the Fort Stewart Hazardous Waste Facility Permit. The public will also be provided with an opportunity for review and comment on any substantive changes in the remediation approach or schedule that may arise during implementation of the corrective action.
Protective of Human Health and the Environment	Monitored natural attenuation is protective of human health and the environment at SWMU 13. Based on the conclusions of Sections 9.4 and 9.5 of the revised final RFI Report (SAIC 2000), there is no current human health or ecological risk associated with benzene or other COCs in groundwater. Potential future exposure is unlikely because the shallow groundwater is not a viable source of drinking water in the Fort Stewart Military Reservation (FSMR). Attainment of the remedial levels will effectively eliminate any potential future risk.
Capable of Achieving Remedial Objectives	The remedial objective is to attain media cleanup standards for COCs in groundwater. Results of AT123D modeling predict that benzene (used as a surrogate parameter for modeling) concentrations in groundwater will further decline to below their remedial levels in approximately 6 years (includes a 1-year contingency period), thereby achieving remedial objectives. The other COCs in groundwater are expected to reach their respective remedial levels within 1.5 years.
Capable of Achieving Objectives in Reasonable Time Frame	Results of AT123D modeling predict that the benzene concentrations (benzene was conservatively used as the surrogate COC for modeling) in groundwater will decline to below the remedial levels in 6 years (includes a 1-year contingency period). Although this time frame is longer than that expected to be required by complete active remediation this time frame is reasonable.
Demonstrated Effectiveness	groundwater contamination plume is shrinking in size. Monitored natural attenuation has been demonstrated to be effective through technical analysis of modeling (AT123D analysis) of groundwater and analysis of geochemical data.
	Performance monitoring for monitored natural attenuation will include annual groundwater sampling to demonstrate the effectiveness of monitored natural attenuation. Performance monitoring of surface water is not necessary at SWMU 13 as the nearest surface water is located 2,500 feet from the site. Contingency (backup) measures are identified in the Operation and Maintenance (O&M) Plan (Appendix E) to ensure attainment of remedial objectives. Contingency measures include extension of active remediation and extension of monitoring.
DEMONSTRATION OF EF	FICACY
Site-specific Characterization: Conceptual Site Model	Former releases of fuel, water, and fire-fighting chemicals at SWMU 13 during fire fighting exercises or spills during operations have resulted in contamination of groundwater. Groundwater contaminated with benzene, ethylbenzene, and naphthalene at concentrations exceeding the remedial levels extends from the former fire training pad.

DEMONSTRATION OF E	FFICACY (CONTINUED)
Nature and Distribution of	Groundwater contamination is confined to an oblong-shaped plume covering an area
Contamination in	of approximately 10,100 ft ² (as defined by December 2000 results). Supplemental
Groundwater	groundwater characterization performed in December 2000 showed a decrease in the
	COC concentrations in the downgradient wells (MW10, MW11, and MW13);
	however, the concentrations at MW12 are relatively unchanged from the RFI results.
Nature and Distribution of	The first 4 feet of contaminated soil were excavated and disposed as part of the IM
Contaminant Sources	in 1997. During the 2001/2002 IRA, a 20-feet by 27-feet area was excavated to a
	dept of 12 feet. Therefore, the pathway of leaching from contaminated soil has been
	significantly minimized or eliminated.
Potential Risk or Impacts to	There is no current human health or ecological risk associated with exposure to
Receptors	COCs in groundwater. Potential future exposure is unlikely because the shallow
Receptors	groundwater is not a viable source of drinking water at FSMR. Attainment of the
	remedial levels for COCs will effectively eliminate any potential future risk for all the
Duanizzita of Decontors	probable scenarios, as outlined in the BHHRA. No surface water is present at the site.
Proximity of Receptors	Surficial groundwater is not used as a source of drinking water. The underlying
	Principal Artesian (Floridan) Aquifer is the primary source of drinking water in the
	vicinity of FSMR. The closest surface water body is Peacock Creek located 2,500 feet
	from SWMU 13.
Quantitative Understanding	The two interim actions conducted at the site have removed the main sources of
of Source Mass	contamination; however, limited subsurface soil contamination may still remain in
	this area. Any soil contamination may represent a potential risk from contaminants
	potentially leaching to groundwater only. The soil contamination does not represent
	a risk to human health (HHCOC).
Groundwater Flow	The high water table and flat terrain cause the gradient to be highly susceptible to
	variation as a consequence of rain events. The predominant shallow surficial
	groundwater direction is to the east/southeast to southeast. The hydraulic gradient was
	determined to be approximately 0.004 foot/foot during the RFI and 0.0026 foot/foot
	during the supplemental sampling performed in December 2000. Recharge is by
	precipitation. The aquifer consists of widely varying amounts of sand and silty sands.
	With the addition of the new shallow monitoring wells (MW14 through MW19), the
	existing monitoring well network will adequately monitor the groundwater.
Contaminant Phase	There is no free-phase product (NAPL) present at SWMU 13. Any contaminants
Distribution and Partitioning	determined to still be present in subsurface soils are at depths greater than 12 feet
	and are most likely present due to contaminant transfer between the soils and
	groundwater as the water table fluctuates.
Rates of Biological and	The rates of natural attenuation of benzene and other COCs potentially in
Non-biological	groundwater have been simulated using AT123D modeling. The model accounts for
Transformation	fate and transport processes of advection, dispersion, adsorption/retardation, and
	biological decay. Biological transformation has been simulated assuming
	conservative biodegradation, literature-based values. Direct measurement of the
	nutrients, electron donors, or microbial population present has not been made.
Variation in Factors with	The former Fire Training Area is not currently being used.
<u>Time</u>	
Site-specific Analysis:	The rates of natural attenuation of benzene and other COCs in groundwater have
Estimated Rate of	been simulated using AT123D modeling. These modeling results are presented in
Attenuation	Appendix C of this CAP.
Anticipated Time Required	Based on the results of AT123D modeling, the benzene concentrations in
to Achieve Remedial	groundwater are expected to decline below the remedial levels in less than 6 years
<u>Objectives</u>	(from June 2002). This time period includes a 1-year contingency period.
	Concentrations of the other COCs are expected to decline to below their respective
	remedial levels before the 6-year time period.
	i temediai ieveis beiore die o-year dine period.

DEMONSTRATION OF EF	FFICACY (CONTINUED)
<u>Lines of Evidence</u> (Three Tiers of Information)	The efficacy of monitored natural attenuation at SWMU 13 is evidenced by monitoring trends. These monitoring trends have shown decreasing benzene concentrations in groundwater samples near the former source (MW12) and downgradient from the former source (MW10).
	Hydrogeologic and geochemical data have been used to simulate the rate of attenuation. Appendix C of this CAP lists the data from site-specific characterization used in the analysis. Biological transformation has been simulated assuming conservative, literature-based values for biodegradation half-lives for the COCs in groundwater.
	Direct measurement of the nutrients, electron donors, or microbial population present has not been made.
ADDADDIATENESS	
APPROPRIATENESS Whether Contaminants in Soil or Groundwater Can Be Effectively Remediated by Natural Attenuation Processes	The COCs in groundwater can be effectively remediated by natural attenuation processes. Natural attenuation processes, particularly biological degradation, are well documented at diesel fuel spill sites. The COCs may naturally degrade through microbial activity and ultimately produce nontoxic end products (e.g., carbon dioxide and water). Four feet of contaminated soil was excavated from the site in 1997 and properly disposed. An additional excavation was conducted in 2001/2002 down to a depth of 12 feet to remove suspected contaminated soil. Residual contaminated soil may continue to cause leaching to the swale or the groundwater; however, only one of the CMCOCs (benzene) has been detected in groundwater.
Whether the Plume Is Stable or Whether Conditions Will	Natural attenuation is anticipated to remediate the COCs in groundwater in less than 6 years (from June 2002). The assumptions used by the model are highly conservative, and the time required to attenuate is likely to be overestimated. The groundwater contamination plume at SWMU 13 is not increasing in extent but shrinking. Results of monitoring have shown that benzene concentrations are
Change Over Time	decreasing at the former source area (MW13 and MW11) and at the edges of the plume (MW10). COC concentrations at MW12 remained relatively unchanged, which may have been attributed to residual subsurface soil contamination.
Whether Receptors Will Be Adversely Impacted	There is no current human health or ecological risk associated with exposure to the COCs in groundwater at the site. Potential future exposure is unlikely because the shallow groundwater is not a viable source of drinking water at FSMR. Attainment of the remedial levels will effectively eliminate any potential future risk. The nearest surface water body, Peacock Creek, is located 2,500 feet from the site. Based on the modeling performed in the revised final RFI Report (see Chapter 6.0), it is expected to take 178 years for the site groundwater to reach the nearest potential receptor. Therefore, receptors will not be adversely impacted by implementation of monitored natural attenuation.
Whether There Is a Current or Projected Demand for the Affected Resources	Shallow groundwater is not a viable source of drinking water. The underlying Principal Artesian (Floridan) Aquifer is the primary source of drinking water in the vicinity of SWMU 13. There is no anticipated demand for the affected groundwater source within the remediation time frame.
Whether Contamination Will Exert Long-term Detrimental Impact on Water Supplies/Resources	The shallow aquifer is not a viable source of drinking water. The groundwater COCs will be remediated at all points within the aquifer to below the remedial levels in less than 6 years. There will, therefore, be no long-term detrimental impact to water resources within the vicinity of SWMU 13.

APPROPRIATENESS (CONTINUED)		
Whether the Estimated	Results of AT123D modeling predict that benzene (the surrogate COC used for	
Time Frame of Remediation	modeling) concentrations in groundwater will decline through natural attenuation	
Is Reasonable	from a predicted concentration at the source (MW12) of 211 µg/kg to below its	
	remedial level of 5 μ g/L in 7 years. The other groundwater COCs (ethylbenzene and	
	naphthalene) will reach their respective remedial levels in less time. This time frame	
	is considered reasonable.	
Whether the Sources of	Four feet of contaminated soil was excavated from the site in 1997 and properly	
Contamination Can Be	disposed. An additional 12 feet of contaminated soil was excavated from the site in	
Adequately Controlled	2001/2002 and properly disposed. Residual contaminated soil may continue to cause	
	leaching to the swale or the groundwater; however, any continued leaching is	
	expected to be minimal.	
	The groundwater contamination plume at SWMU 13 has been shown to be	
	shrinking. Results of monitoring have shown that benzene concentrations are	
	decreasing at the former source area (MW13 and MW11) and at the edges of the	
	plume (MW10). There is no free-phase product (NAPL) present at SWMU 13.	
Whether Transformation	Methane is a biodegradation product of benzene and is evidence that biodegradation	
Products Present a Greater	is occurring. Methane is an odorless, colorless gas that is physiologically inert and	
Risk	poses no health risk. Methane is a simple asphyxiate; at high concentrations it can	
	supplant oxygen in the air, creating an oxygen-deficient environment. It is also	
	flammable and has a lower explosive limit in air of 5 percent. Methane monitoring	
	will be performed during the monitored natural attenuation period. Other	
	transformation products formed through subsequent biodegradation of methane	
	include carbon dioxide and water, which pose no health risk.	
Whether Active	No active remediation measures are proposed.	
Remediation Measures		
Will Impact the Monitored Natural Attenuation		
Whether Reliable	The U.S. Government will retain ownership of the Fire Training Area to ensure that	
Institutional Controls Are	monitoring and enforcement of the monitored natural attenuation O&M Plan are	
Available for Monitoring	completed. Other institutional controls at SWMU 13 include groundwater use	
and Enforcement	restrictions and excavation permits. These controls are reliable for the short-term	
	duration for monitored natural attenuation (6 years).	
	EMEDIATION TIME FRAME	
Comparison to Other	The groundwater COCs are expected to be reduced to less than their respective	
Alternatives	remedial levels by the selected remedial alternative, monitored natural attenuation in	
	less than 6 years. This time frame is longer than the time required for active remediation alone however is considered to be reasonable for this site.	
Balancing of Tradeoffs:	According to the Pollution Susceptibility Map of Georgia (GDNR 1992), SWMU 13	
<u>Classification, Value of</u>	is located in an average or higher groundwater pollution susceptibility area. Shallow	
Resource	groundwater is not a viable source of drinking water.	
Timeframe in Which	Shallow groundwater is not a viable source of drinking water. The underlying	
Aquifer Will Be Needed	Principal Artesian (Floridan) Aquifer is the primary source of drinking water in the	
	vicinity of SWMU 13. There is no anticipated demand for the affected groundwater	
	resource within the time frame of this remediation (less than 6 years).	
Plume Stability Over Time	The benzene plume at the SWMU 13 is not increasing in extent but shrinking.	
	Results of monitoring have shown that benzene concentrations are decreasing at the	
	former source area (MW13 and MW11) and at the edges of the plume (MW10).	

REASONABLENESS OF R	EMEDIATION TIME FRAME (CONTINUED)
Detrimental Impacts	The shallow aquifer is not a viable source of drinking water. The groundwater COCs will be remediated at all points within the aquifer to below their respective remedial levels in less than 6 years (from December 2000). There will, therefore, be no long-term detrimental impact to water resources within the vicinity of SWMU 13.
Uncertainties in Mass or	Chemical, hydrogeologic, and geochemical data are of adequate quality and
<u>Time Estimates</u>	usability. Data collection and laboratory analysis have been in accordance with approved U.S. Army Corps of Engineers procedures for assessing data quality, including data validation. The lateral and vertical extent of contamination has been defined adequately to provide accurate estimates of the mass of the COCs in groundwater. Time estimates have been made based on AT123D modeling using site-specific chemical, hydrogeologic, and geochemical data and a conservative literature-based value for the biodegradation rate of benzene and other COCs.
	Uncertainties inherent in these estimates are, therefore, acceptable. The O&M Plan (see Appendix E) has identified contingent measures to address uncertainties.
Reliability of Monitoring and Institutional Controls	The U.S. Government will retain ownership of SWMU 13 to ensure that monitoring and enforcement of the monitored natural attenuation O&M Plan are completed. Other institutional controls at SWMU 13 include groundwater use restrictions and excavation permits. Monitoring and institutional controls can be reliably implemented during the time frame for the remediation.
Public Acceptance of Time	The public will be provided with an opportunity for review and comment on the
Frame	CAP in accordance with the Fort Stewart Hazardous Waste Facility Permit. The public will also be provided with an opportunity for review and comment on any substantive changes in the remediation approach or schedule that may arise during implementation of the corrective action.
Provisions for Availability	Funding is assured through the U.S. Department of Defense, Environmental
of Adequate Funding	Remedial Action Program.
REMEDIATION OF SOUR Removal of Contaminated Soil	An IM was completed at SWMU 13 in 1997 to remove and properly dispose of the fire training facilities and contaminated soil to approximately 4 feet bgs. An IRA was also completed at the site in 2001/2002 to remove the concrete pad and contaminated soil down to a depth of 12 feet. There is no current risk due to direct exposure to soil. The soil contamination is confined to CMCOCs (arsenic and benzene). Results of AT123D modeling predict that benzene concentrations and other COCs in groundwater will decline to below their remedial levels in less than 6 years. Modeling indicates that natural attenuation will achieve the remedial levels in groundwater.
Free-phase NAPL Removal	No free-phase product (NAPL) is present at SWMU 13.
Treatment	Interim actions were completed at SWMU 13 in 1997 and in 2001/2002 to remove and properly dispose of the fire training facilities and contaminated soil up to 12 feet bgs.
Principal-threat Waste Treatment	Not applicable. There is no principal-threat waste.
Containment	Not applicable. No active sources of contamination are known to be present. Residual soil contamination is not migrating off site. Groundwater contamination is being naturally attenuated and is not migrating off-site.
REDEODICINGE FOR	
PERFORMANCE MONITO	ORING AND EVALUATION Seven existing wells (MW3, MW9, MW10, MW15, MW16, MW18, and MW19) will be monitored.

PERFORMANCE MONITO	ORING AND EVALUATION (CONTINUED)
Frequency	The monitoring frequency will be annually during the monitored natural attenuation period (6 years). Flexibility for adjusting the monitoring duration is provided
	through an analysis of trends and effectiveness of the corrective action as presented
	in the annual progress reports. In addition, baseline sampling will be conducted at
	the start of the remediation period and confirmatory sampling will be conducted
	1 year after the conclusion of the monitored natural attenuation period.
Type of Samples	Only groundwater samples will be collected during the monitored natural
Type of Samples	attenuation annual performance monitoring. Performance monitoring in groundwater
	will provide sufficient demonstration of natural attenuation for protection of the
	surficial aquifer. Groundwater samples will also be collected during the baseline,
	and confirmatory sampling.
Measurements	Analytical parameters for groundwater will include VOCs, SVOCs, methane gas,
Weasurements	carbon dioxide, nitrate/nitrite, sulfate/sulfide, and total iron. Field parameters for
	groundwater will be measured at the time of sampling and will include dissolved
	oxygen, temperature, oxidation-reduction potential, conductivity, pH, and ferrous
	iron.
Design:	Monitoring of the seven monitoring wells provides suitable measurement of
Demonstrate That Natural	contaminant trends in wells within the plume, upgradient, and laterally to the side of
Attenuation Is Occurring as	the plume. Declines in COCs concentrations will demonstrate that degradation is
Expected	occurring as expected.
Detect Changes	Presence of elevated methane gas concentrations in wells within the plume will
(Hydrogeologic,	demonstrate that biodegradation is occurring. Other geochemical parameters listed
Geochemical, and	under "measurements" above will detect changes in the geochemical conditions at
Microbial)	SWMU 13.
Identify Transformation	Presence of elevated methane gas concentrations in wells within the plume will
Products	demonstrate that biodegradation is occurring, resulting in methane as a
	transformation product.
Verify That the Plume Is not	Monitoring of wells MW3, MW9, MW10, MW15, MW16,, MW18, and MW19
Expanding	provides suitable measurement of contaminant trends upgradient, and laterally to the
	side of the plume to verify that the plume is not expanding.
Verify That There Is No	There are no potential downgradient receptors. Monitoring of wells MW9 and
Unacceptable Impact to	MW10 and newly installed well MW15 located at the perimeter of the plume will
Downgradient Receptors	provide suitable measurement of groundwater quality just prior to its going off-site.
Detect New Releases	Low levels of residual soil contamination may still remain; however, only one of the
	CMCOCs has been detected in the groundwater. Monitoring of well MW3
	upgradient of the site provides suitable detection of any changes in upgradient
	groundwater conditions.
Demonstrate Effectiveness	Shallow groundwater is not used as a drinking water supply. Monitoring of wells
of Institutional Controls to	MW9, MW10, and MW15 provides suitable measurement of groundwater quality
Protect Receptors	just prior to its going off-site.
Verify Attainment of	Monitoring of the seven wells (MW3, MW9, MW10, MW15, MW16, MW18, and
Remediation Objectives	MW19) provides suitable measurement of contaminant concentrations in wells within
	the plume, upgradient, and laterally to the side of the plume to verify that remediation
Duration	objectives (remedial levels) have been attained throughout the shallow aquifer.
Duration	Monitoring will be conducted throughout the monitored natural attenuation period
	(estimated at 6 years) or until remedial levels (remediation objectives) are met.
	Flexibility for adjusting the duration is provided through an analysis of trends and
	effectiveness of the corrective action as presented in annual progress reports.
	Extending (or reducing) the duration of monitoring is a contingency remedy to be evaluated as part of the annual progress reports.
	evaluated as part of the annual progress reports.

CONTINGENCY REMEDI	ES
Remedy Evaluation	Results of monitoring well sampling and analysis, in particular an analysis of trends in the rate of decline in contaminant concentrations, will be evaluated on an annual basis throughout the monitored natural attenuation period. If trends do not match predicted modeled behavior, then contingencies will be considered, including: modifying the conceptual site model and/or hydrogeologic model, revising the AT123D model to correlate to new data, extending (or reducing) the duration of monitored natural attenuation, and potentially implementing active remediation.
Triggers: <u>Concentrations</u> <u>Groundwater Show Increase</u>	If benzene or other COC concentrations in any given well increase at least 50 percent for two consecutive annual sampling events, then a contingent remedy evaluation will be implemented.
Near-source Wells Show Increase (New Release)	If benzene or other COC concentrations in MW16 and MW18 increase to a level exceeding twice their predicted maximums by modeling, then a contingent remedy evaluation will be implemented.
Contaminants Are Found Outside the Original Plume Boundary	If benzene or other COCs concentrations are detected in any individual well at a level greater than previously detected concentrations, then a contingent remedy evaluation will be implemented.
Concentrations not Decreasing Sufficiently to Meet Remediation Objectives	If benzene or other COC concentrations exceed the predicted concentration by more than 25 percent for two consecutive annual sampling events, then a contingent remedy evaluation will be implemented.
Land and/or Groundwater Use Has Changed	If land use or groundwater use changes at the SWMU 13, then a contingent remedy evaluation will be implemented.

^aThis checklist follows U.S. Environmental Protection Agency guidance as described in Office of Solid Waste and Emergency Response Directive 9200.4-17P (EPA 1999).

References:

EPA (U.S. Environmental Protection Agency) 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, Directive 9200.4-17P, April.

GDNR (Georgia Department of Natural Resources) 1992. Pollution Susceptibility Map of Georgia.

SAIC (Science Applications International Corporation) 2000. Phase II RCRA Facility Investigation Report for the Fire Training Area at Wright Army Airfield (SWMU 13), Fort Stewart Georgia, May.

APPENDIX G

ITLE?

THIS PAGE INTENTIONALLY LEFT BLANK.

STATE OF GEORGIA ENVIRONMENTAL LABORATORY ACCREDITATION

Name of Laboratory: Address:	General Engineering Laboratories, Inc. P.O. Box 30712 2040 Savage Road
	Charleston, SC 29407
Contact:	Bob Pullano or Wendy Dimmick
Telephone number: Fax number:	(843) 556-8171 (843) 766-1178
Accrediting Authority:	State of South Carolina
Accreditation Number:	SC-10120001
Effective Date:	Extension granted while recertification in process; January 27, 2003
Expiration Date:	March 26, 2006
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA
Accrediting Authority:	State of Florida
Accreditation Number:	E-87156
Effective Date:	July 1, 2001 (initial and reaccredited on July 1 each year thereafter)
Expiration Date:	June 30, 2006
Accreditation Scope:	SDWA, CWA, RCRA, CERCLA

#1

#2

	-
	An Employee Owned Company
	20 - 19 20 - 19 20 20 20 20 20 20 20 20 20 20 20 20 20
Science Applications Internati	onal Corporation

l of 1

1411672

сос NO.: FTA006

PO Box 2501, 151 Lalayette Dr., Tennessee 37830(423)481-4600

CHAIN OF CUSTODY RECORD

PROJECT NAME: HA	AF Long Ter ジルのム	m Moni 13	toring, C	0.0.54			П			Т				PAR	AM	ETER	RS	Т	Т	Т	Т	Г		ABORATORY N General Engineer		
PROJECT NUMBER: PROJECT MANAGER	1175 II. 241 - 144		200									ient Chronium										Vials:	2	ABORATORY A 2040Savage Rac Charleston, SC	bd	
Samplery (Signature)	/	1			Dendy							avale										of Bottles/	-	PHONE NO: (843	3)556-8171	
Sample ID	Date Coll		Time Co		Matrix	BTEX	20C	PAH	PCE	svoc	Lead	Fr X										No. of		OVA SCREENING	OBSERVATIONS,	COMMENTS,
FT0421	7/19/0		4955		Soil	1	ŕ	-	-		-	1	++	\top						\uparrow	T	T	T			
FTOHIL	7/19/0		Pas		5011							i		1							T	1	T			
FT0321	7/19/		1945		50.1		\square					1										1	T			
FTO311	7/19/1		0945		Soil																	1				
FT0221	7/191	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ø92		Soil							1									ļ	1				
FTOZI	7/19		Ø92		Soil							1										1				
FTO121	7/19/		\$91		50.1							1										1				
FTOIL	7/19	105	090	15	Soil							1										1				
					/	2																				
1					6			\leq	1		\geq															
					//-	E			1	À								_	_	_	_	_	1			
				2	/	1	12	>(2	-			-						-	_	-	-	+			
									Ĺ													Ļ	+			
RELINQUISHED BY:	2/	Date 7/20	Time	RECEN	VED BY:					Date			TOTAL	NUN	BER	OF	CO	IAT	NER	S:	0		4	Cooler Temperat	ture:	
COMPANY NAME:	ð	1130		СОМР	ANY NAME:					V	*	R	Cooler											FEDEX NUMBER	ier	
RECEIVED BY:	Trica	Date 7/24	e/Time 05	RELIN	QUISHED BY:				T	Date	e/Tin	ne	So	را ج ان	5	in d	gle f	S	4	tev	be	-		ent Ch	romium	、 ·
COMPANY NAME:	(113	٥		ANY NAME:											- (4		5	04				
Ben Wa		The		h		li	w			Date		ne TS	-													
COMPANY NAME:		14	20	COMP	ANY NAME:	_				j	41	わ														

Fort Stewart-SWMU 13

Station: 13-SB-01				No Coord S	orthing: N System:	A		Easting: NA Method:	
Station: 13-S Sample ID: FT01 Pate Collected: 07/15	11	Media: Field Sample Type:	5 (State)			1911	h: 2 - 2 FT		
Analysis	Chemical		Result	Units		Data Qual	Validation Code	Detection Limit	Dilution
General Chemistry	General Eng	ineering Laboratory							
SW846 7196	Chromium, he		0.707	MG/KG		J	A03,103	0.107	1
Station: 13-S Sample ID: FT01		Media:	Soil			Dept	h: 3 - 3 F1	-	
Date Collected: 07/1		Field Sample Type:	Grab			Dete	Validation	Detection	
Analysis	Chemical		Result	Units		Data I Qual		Detection Limit	Dilution
General Chemistry		ineering Laboratory							
	Chromium, h		0.166	MG/KG		J	A03,103	0.114	1
Station: 13-SB-02					orthing: System:	NA		Easting: N Method:	A
Station: 13-5 Sample ID: FT0		Media:	Soil			Dep	th: 2 - 2 F	Г	
Date Collected: 07/1		Field Sample Type:	Grab		1	Dete	Validatio	Detection	
Analysis	Chemical		Result	Units		Data Qual		n Detection Limit	Dilution
General Chemistry		gineering Laboratory							
	Chromium, h		0.102	MG/KG	L	J U.	J A03,103	0.102	1
Station: 13-5 Sample ID: FT0 Date Collected: 07/*	221	Media: Field Sample Type:		Units		1.755		T n Detection Limit	Dilution
Analysis		ringering Laboratory	Result	Unite					
General Chemistry	Chromium, h	gineering Laboratory	0.0682	MG/KG		JJ	A03,103	0.118	1
Station: 13-SB-03					Northing: System:			Easting: N Method:	IA
Station: 13- Sample ID: FT		Media	Soil			Der	oth: 2-2F	т	
Date Collected: 07/		Field Sample Type			(_1,,*12)	27.29			2
Analysis	Chemical		Resul	t Units		al Qua		n Detection Limit	n Dilution
General Chemistry		gineering Laboratory							
	Chromium,		0.0932	2 MG/KG		υu	JJ A03,103	0.0932	1
Station: 13- Sample ID: FT Date Collected: 07/	0321 19/2005	Media Field Sample Type	e: Grab	It Units				-⊤ on Detection Limit	n Dilution
Analysis	Chemical		Resu						
Analysis General Chemistry		ngineering Laboratory		6 MG/KG			J A03,103	3 0.1	1

Page 1

Fort Stewart-SWMU 13

a^b

Station: 13-SB-04					Northing: Northing: N	۹۸		Easting: NA Method:	
Station: 13-SB Sample ID: FT041 Date Collected: 07/19/	1	Media: Field Sample Type:					th: 2 - 2 F		
Analysis	Chemical			Units	Lab Qual	Qual		n Detection Limit	Dilution
General Chemistry	General Engineering Lat Chromium, hexavalent	poratory	0.0198	MG/KG	U	U	J A03,103	0.0994	1
Station: 13-SE Sample ID: FT04 Date Collected: 07/19	21	Media: ample Type:			Lab	•	th: 3-3F a Validatio	T n Detection	122478
Analysis	Chemical		Result	Units	Qua	l Qua	I Code	Limit	Dilution
General Chemistry	General Engineering La Chromium, hexavalent	boratory	0.0339	MG/KG	J	IJ	A03,103	0.104	1