PCDR \ PCDR3 \ FORT STEWART \ 032509 \ FST090051

SIGNIFICANCE OF CONTAMINATION REPORT WRIGHT ARMY AIRFIELD FIRE TRAINING AREA FORT STEWART SAVANNAH, GEORGIA

Prepared for:

U.S. ARMY CORPS OF ENGINEERS Kansas City, Missouri

Prepared by:

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. Gainesville, Florida

ESE No. 3-91-2015G

April 1993

C-FTSTEWART92.2/WSOC.1 10/20/92

•

2

TABLE OF CONTENTS

<u>Section</u>				Page
1.0	INTI	RODUC	rion	1-1
	1.1	<u>SITE E</u>	BACKGROUND	1-2
			LOCATION AND DESCRIPTION	1-2
			SITE HISTORY	1-2
		1.1.3	PHYSIOGRAPHY, TOPOGRAPHY, AND	
			SURFACE WATER	1-6
		•	GEOLOGY	1-6
			HYDROGEOLOGY	1-7
			CLIMATE	1-9
		1.1.7	PREVIOUS SITE INVESTIGATIONS	1-10
2.0	SCO	PE OF V	WORK	2-1
	2.1	<u>PREFI</u>	ELD ACTIVITIES	2-1
	2.2	PRELI	MINARY HYDROGEOLOGIC	
		<u>CHAR</u>	ACTERIZATION	2-1
		2.2.1	CONTINUOUS GROUNDWATER LEVEL	
			MONITORING	2-2
		2.2.2	MANUAL GROUNDWATER LEVEL	
			MONITORING	2-3a
		2.2.3	HYDRAULIC CONDUCTIVITY TESTING	2-9
		2.2.4	GROUNDWATER FLOW DIRECTION AND	·
			VELOCITY	2-17
	2.3	SOIL F	BORINGS	2-18
	2.4		IENT SAMPLES	2-19
	2.5		FOR WELL INSTALLATION AND	/
			LOPMENT	2-20
	2.6		NDWATER SAMPLING AND ANALYSES	2-26
	2.7		NTAMINATION	2-29
	2.8		E WATER, DECONTAMINATION WATER,	
			OIL DISPOSAL	2-30
	2.9		LING HANDLING, PACKAGING,	2 00
			HIPPING	2-30

C-FTSTEWART92.2/WSOC.2 10/20/92

TABLE OF CONTENTS (Continued, Page 2 of 3)

<u>Section</u>				Page
3.0	CON	TAMINATION A	ASSESSMENT RESULTS	3-1
	3.1 3.2 3.3 3.4 3.5	HYDRAULIC C		3-1 3-3 3-6 3-6 3-16
4.0			CONTAMINATION	4-1
	4.1 4.2	IDENTIFICATI EVALUATION	<u>ON OF COCs</u> OF SAMPLING RESULTS	4-3 4-3
		• • • • • • • •	NALYSIS OF INDIVIDUAL AMINANTS	4-4
		4.2.1. 4.2.1.	1 <u>Soil/Sediment Data and PCTs</u> 2 <u>Groundwater Data and PCTs</u>	4-5 4-14
	4.3	<u>SUMMARY OF</u> CONTAMINAN	<u>PCT ANALYSIS FOR INDIVIDUAL TTS</u>	4-18
		4.3.1 SOIL/3 4.3.2 GROU		4-18 4-18
5.0	CON	CLUSIONS ANI	O RECOMMENDATIONS	5-1
		<u>SOIL</u> <u>SEDIMENT</u> <u>GROUNDWAT</u>	<u>ER</u>	5-1 5-2 5-2
REFEREN	NCES			REF-1

3

ς.

C-FTSTEWART92.2/WSOC.3 10/20/92

TABLE OF CONTENTS (Continued, Page 3 of 3)

<u>Section</u>

•

.

ł

<u>Page</u>

q

APPENDICES

APPENDIX ACLIMATIC DATA FROM HUNTER ARMY	
AIRFIELD WEATHER STATION	A-1
APPENDIX BUSAEHA HAZARDOUS WASTE STUDY,	
MARCH 1987	B-1
APPENDIX CTOPOGRAPHIC SURVEY OF A MONITOR	
WELL SITE	C-1
APPENDIX DTELOG® DATA	D-1
APPENDIX EHYDROGEOLOGIC CALCULATIONS	E-1
APPENDIX FLITHOLOGIC LOGS AND WELL	
CONSTRUCTION LOGS AND SIEVE ANALYSIS	F-1
APPENDIX GWELL DEVELOPMENT RECORD FORMS	G-1
APPENDIX HWELL SAMPLING RECORD FORMS	H-1
APPENDIX ICHAIN-OF-CUSTODY FORMS	I-1
APPENDIX JANALYTICAL RESULTS	J-1
APPENDIX K QA/QC RECORDS	K-1

C-FTSTEWART92.2/WSOC.4 10/20/92

1

LIST OF TABLES

.

<u>Table</u>		Page
1-1	Analytical Parameters Detected in Soil Samples in 1987	1-11
1-2	Analytical Parameters Detected in Soil Samples in 1990, Wright AAFTA	1-14
1-3	Analytical Parameters Detected in Groundwater in 1990, Wright AAFTA	1-21
2-1	Manually Collected Water Level Data, Wright AAFTA	2-10
2-2	Monitor Well Completion and Location Survey Summary, Wright AAFTA	2-25
2-3	Well Development Record, Wright AAFTA	2-27
3-1	Summary of Sieve Analysis, Wright AAFTA	3-2
3-2	Summary of Groundwater Elevations, March 1992, Wright AAFTA	3-4
3-3	Summary of Analytes for Wright AAFTA	3-7
3-4	Sampling and Analytical Requirements for Wright AAFTA	3-8
3-5	Analytical Parameters Detected in Soil/Sediment Samples in 1992, Wright AAFTA	3-9
3-6	Analytical Parameters Detected in Groundwater Samples in 1992, Wright AAFTA	3-13
4-1	Soil/Sediment PCTs for Parameters Detected at Wright AAFTA	4-6
4-2	Groundwater PCTs for Parameters Detected at Wright AAFTA	4-7

C-FTSTEWART92.2/WSOC.5 10/20/92

6

LIST OF TABLES (Continued, Page 2 of 2)

.

K

<u>Table</u>		Page
4-3	Weight-of-Evidence Categories for Potential Carcinogens	4-8
4-4	Comparison of Maximum Soil Concentrations Detected at Wright AAFTA to PCTs	4-10
4-5	Comparison of Maximum Sediment Concentrations at Wright AAFTA to PCTs	4-12
4-6	Comparison of Groundwater Data for Wright AAFTA to PCTs	4-17

v

C-FTSTEWART92.2/WSOC.6 10/20/92

7

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1-1	Fort Stewart Location Map	1-3
1-2	Site Map and Surface Water Features - Wright AAFTA	1-4
1-3	Site Layout, Wright AAFTA, Ft. Stewart, Georgia	1-5
1-4	Composite Geologic Column	1-8
1-5	1987 and 1990 Sampling Locations, Wright AAFTA, Ft. Stewart, GA	1-13
2-1	1992 Sampling Locations, Wright AAFTA, Fort Stewart, Georgia	2-3
2-2	Telog® Water-Level Data in WMW-2 and Area Rainfall Data, July to December 1991	2-4
2-3	Potentiometric Surface Contour Map - 7/91, Wright AAFTA, Fort Stewart, Georgia	2-11
2-4	Potentiometric Surface Contour Map - 8/91, Wright AAFTA, Fort Stewart, Georgia	2-12
2-5	Potentiometric Surface Contour Map - 9/91, Wright AAFTA, Fort Stewart, Georgia	2-13
2-6	Potentiometric Surface Contour Map - 10/91, Wright AAFTA, Fort Stewart, Georgia	2-14
2-7	Potentiometric Surface Contour Map - 11/91, Wright AAFTA, Fort Stewart, Georgia	2-15

8

LIST OF FIGURES (Continued, Page 2 of 2)

<u>Figure</u>		<u>Page</u>
2-8	Potentiometric Surface Contour Map - 12/91, Wright AAFTA, Fort Stewart, Georgia	2 -16
2-9	Monitor Well Diagram, Wright AAFTA, Ft. Stewart, GA	2-24
3-1	Potentiometric Surface Contour Map, March 1992, Wright AAFTA, Fort Stewart, Georgia	3-5
4-1	1992 Benzene Concentrations in Surficial Groundwater (0-15 ft-bls), Wright AAFTA, Fort Stewart, Georgia	4-16

9

LIST OF ACRONYMS

AAFTA	Army Airfield Fire Training Area
ARAR	applicable or relevant and appropriate requirements
ASTM	American Society for Testing and Materials
CDAP	Chemical Data Acquisition Plan
CFR	Code of Federal Regulations
cm/sec	centimeters per second
CME	Central Mine Equipment
CSF	cancer slope factor
0	degree
°C	degrees Celsius
COC	chemical of concern
°F	degrees Fahrenheit
DI	deionized
DNR	Department of Natural Resources
DOT	U.S. Department of Transportation
EMC	EMC Engineering Services, Inc.
EPA	U.S. Environmental Protection Agency
ESE	Environmental Science & Engineering, Inc.
FCT	final cleanup target
FID	flame ionization detector
ft	feet
ft ²	square foot
ft-bls	feet below land surface
ft/day	feet per day
ft/ft	feet per foot
ft/yr	feet per year

C-FTSTEWART92.2/WSOC.9 10/20/92

LIST OF ACRONYMS (Continued, Page 2 of 3)

gal	gallon
gpd	gallons per day
ID	inside diameter
MCL	maximum contaminant level
mgd	million gallons per day
mg/kg	milligrams per kilogram
mL	milliliter
MRD	Missouri River District
NGVD	National Geodetic Vertical Datum of 1929
PAH	polynuclear aromatic hydrocarbon
PCT	preliminary cleanup target
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
QA	quality assurance
QC	quality control
RCRA	Resource Conservation and Recovery Act
RfD	reference dose
SC	clayey sand
SM	silty sand
SOW	scope of work
SSHP	site safety and health plan
SVOC	semivolatile organic compounds
TOV	total organic vapors
µg/L	micrograms per liter
U.S. 82	U.S. Highway 82
USACE	U.S. Army Corps of Engineers

C-FTSTEWART92.2/WSOC.10 10/20/92

11

LIST OF ACRONYMS (Continued, Page 3 of 3)

USAEHA	U.S. Army Environmental Hygiene Agency
USAF	U.S. Air Force
USCS	Unified Soil Classification System
VOA	volatile organic analyte
VOC	volatile organic compound
WP	work plan

. .

,

х

05/22/92

12

1.0 INTRODUCTION

Environmental Science & Engineering, Inc. (ESE) was contracted by the U.S. Army Corps of Engineers (USACE) to perform sampling activities and to present a significance of contamination report for the Wright Army Airfield Fire Training Area (AAFTA) at Fort Stewart, near Savannah, Georgia, as part of the site closure plan. The work performed at the site was designed to define the extent of contamination in the groundwater, sediments, and soil, define background levels of the contaminants, and compare the contaminants to federal and State of Georgia criteria.

This report has been prepared at the request of the Kansas City District, USACE, under Contract No. DACW41-87-D-0151. The activities performed during individual field activities at the Fort Stewart site are defined in this report. The project consisted of the following major tasks:

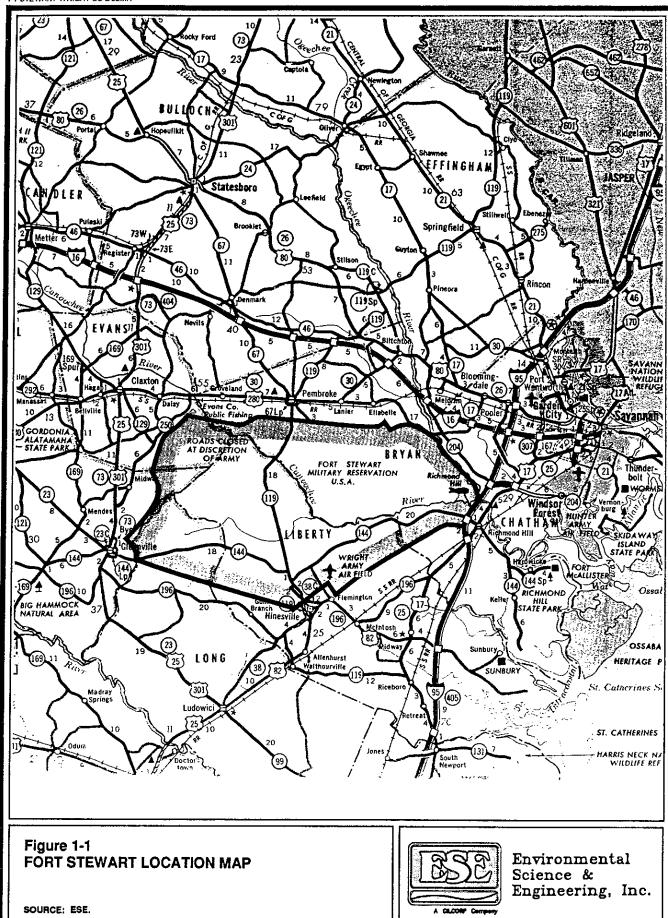
- 1. Prefield activities,
- 2. Preliminary hydrogeologic characterization,
- 3. Soil sampling,
- 4. Monitor well installation and groundwater sampling,
- 5. Sediment sampling, and
- 6. Report preparation.

The remainder of Section 1.0 presents the general site background for the Fort Stewart fire training areas. Section 2.0 presents a detailed description of specific procedures for each task. Section 3.0 presents the analytical results. Section 4.0 includes a description of the comparison of contaminant concentrations and state and federal guidelines. Section 5.0 presents conclusions and recommendations.

1.1 SITE BACKGROUND

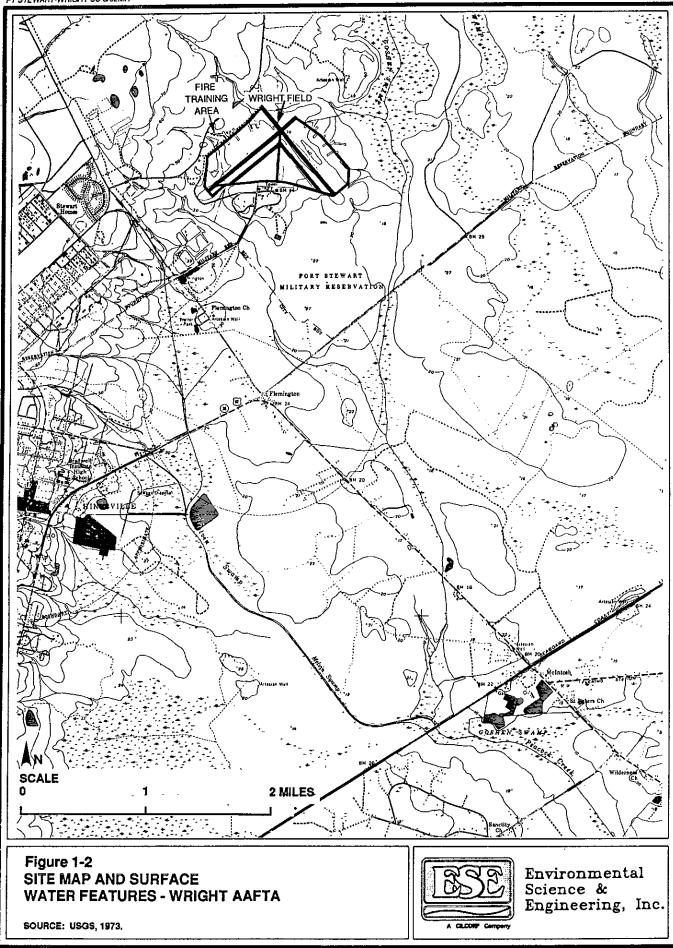
1.1.1 LOCATION AND DESCRIPTION

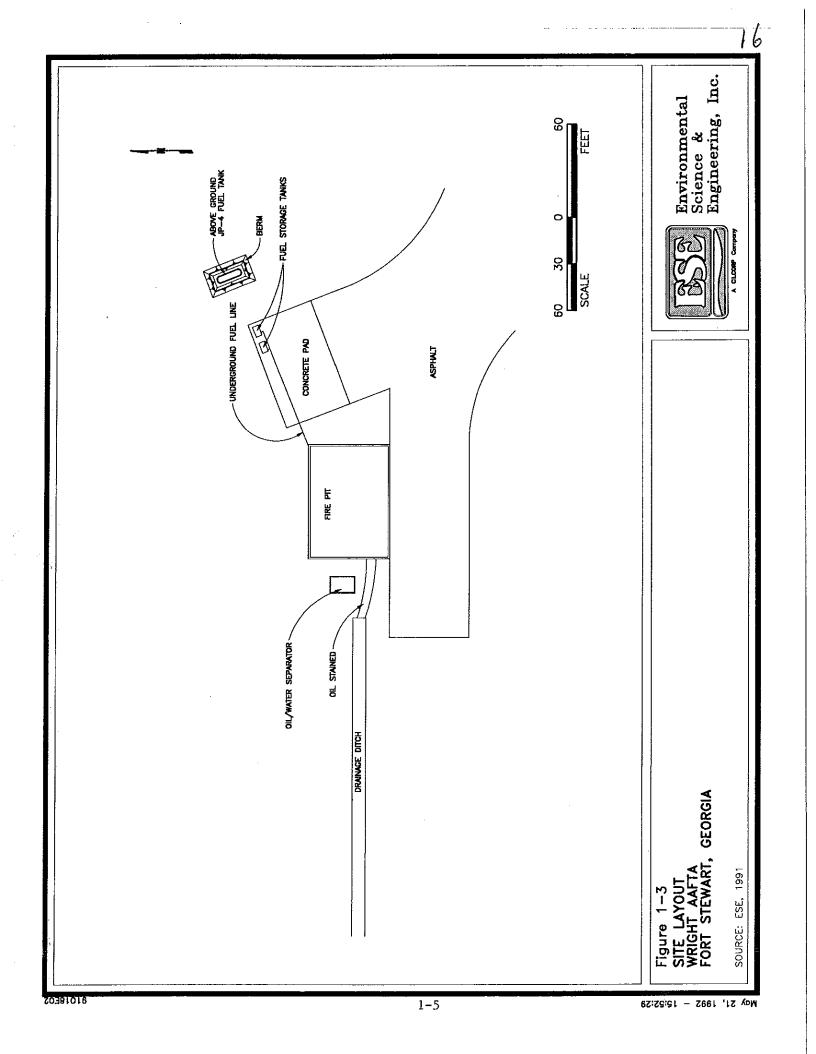
Wright Army Airfield is located in Liberty County, Georgia, near the southern entrance to Fort Stewart Military Reservation, approximately 1.5 miles from the community of Hinesville and 41 miles southwest of Savannah (Figure 1-1). The main access to the south entrance of Fort Stewart and Wright Army Airfield is from U.S. Highway 82 (U.S. 82). The Wright AAFTA is a 5,000-square-foot (ft²) concrete pad located on the northwest periphery of the airfield, approximately 3,100 feet (ft) northwest of the control tower (Figures 1-2 and 1-3).


1.1.2 SITE HISTORY

Fort Stewart, named in honor of the Revolutionary War General Daniel Stewart, was established in June 1940 as an antiaircraft artillery training center. Between January and September 1945, the installation operated a prisoner-of-war camp which housed two Italian units. The post was deactivated in September 1945.

In August 1950, Fort Stewart was reactivated to train antiaircraft artillery units for the Korean Conflict and was expanded to include armor training in 1953. Fort Stewart was designated a permanent Army installation in 1956.


The post became a flight training center in 1966, and Hunter AAF was acquired from the U.S. Air Force (USAF) in 1967 to support the increased need for helicopter pilot training during the Vietnam Conflict. Aviation training at the Fort Stewart facilities was phased out in 1973.


The 1st Battalion, 75th Infantry was activated on January 31, 1974, and Fort Stewart became a training and maneuver area providing tank, field artillery, helicopter gunnery, and small arms training for regular Army and National Guard

15

FT STEWART-WRIGHT SC 5/92MH

units. The 24th Infantry Division was permanently stationed at Fort Stewart in 1975. The Fort Stewart 24th Infantry Division was active during the Persian Gulf war crisis in 1991.

1.1.3 PHYSIOGRAPHY, TOPOGRAPHY, AND SURFACE WATER

The study area is located within the Southern Atlantic Coastal Plain Physiographic Province. Most of the land within Fort Stewart is flat, planted pine woods interfingered with freshwater swamps and tidal creeks with elevations ranging from 10 to nearly 100 ft-mean sea level (ft-msl). However, the northwestern portion of the reservation is characterized by rolling hills that rise to an elevation of approximately 180 ft-msl.

The Wright AAFTA is at an elevation of approximately 45 ft-msl. The ground surface slopes gently to the southeast and drains by natural intermittent stream channels into Goshen Swamp, the headwaters of Peacock Creek. Peacock Creek runs to the southeast and joins the tidally influenced North Newport River (Figure 1-2).

1.1.4 GEOLOGY

The coastal plain region of Georgia is underlain by a thick wedge of unconsolidated and semiconsolidated sediments that range in age from Recent to Cretaceous (Herrick and Vorhis, 1963). This sedimentary wedge thickens and slopes toward the east with a dip of less than 1 degree (°). Underlying these sediments in the Savannah area is a basement of crystalline igneous rocks of the Piedmont Formation, and various metamorphic and consolidated sedimentary rocks of Triassic to Precambrian age. The formations that comprise the primary artesian and shallow sand aquifers beneath the study site extend to a depth of approximately 850 ft. The units range in age from Middle Eocene to Recent. Figure 1-4 is a composite geologic column for the Savannah area.

Deep borings performed during previous investigations [ESE, 1982; U.S. Army Environmental Hygiene Agency (USAEHA), 1987] at or in the vicinity of Wright AAFTA indicate that the area is underlain predominantly by sand, silty-sand, and lesser clayey sand to a depth of at least 100 ft. Shallow borings performed during previous investigations (USAEHA, 1987 and ESE, 1990) at the Wright AAFTA indicate that the site is underlain predominantly by fine-grained sand deposits to a depth of at least 10 ft. The boring for deep well WMW-7, installed for the current study, encountered predominantly silty and clayey sand to 12 ft, then clean sand to 17 ft, then dense silty sand to 55 ft (total depth).

1.1.5 HYDROGEOLOGY

The two principal aquifer systems in the Georgia coastal plain are the artesian Floridan aquifer and the overlying surficial aquifer (water-table aquifer). The Floridan aquifer is comprised of Middle-Upper Eocene (Ocala Group) and Oligocene (undifferentiated) limestones. The overlying Lower-Miocene Tampa Limestone, which may include beds of sandy clay, may also form part of the Floridan aquifer. In the Savannah area, the top of the Floridan is approximately 200 feet below land surface (ft-bls).

The Middle and Upper-Miocene Hawthorn Group and Duplin Marl, comprised of clay with occasional limestone beds, forms a confining unit that hydraulically separates the Floridan aquifer from the overlying surficial aquifer. The Duplin Marl may have been encountered in WMW-7 at a depth of 17 ft-bls, based on soil descriptions. FT STEWART-WRIGHT SC 5/92MH

COMPOSITE GEOLOGIC COLUMN Geologic Unit System Series Lithologic Description + 15 Sand, silt, clay, mixed, brown Spoil QUATERNARY MSL Recent Alluvium Clay, soft, wet, highly organic, dark brown Pleistocene Undifferen-Sand, medium grained, fossiliferous tiated Sands -- 50 -Duplin Marl Clay, sandy, stiff, phosphatic, green, occasionally calcareous Upper Miocene -100 -Middle Hawthorn Clay and dolomitic limestone interbedded, Miocene Formation phosphatic, sandy, green to buff Limestone, dolomitic with seams of green sandy clay, conglomeritic at base Lower Miocene Tampa Lime stone Equiv. Undifferen TERTIARY Oligocene tiated Limestone, soft, fossiliferous, gray to buff -200 FEET (MSL) Rocks - 300 -Upper Ocala Limestone, soft to dense, granular fossiliferous, white to buff with lenses of bluish re-crystallized limestone glauconitic at base Eocene Limestone - 400 -- 500 -Middle Gosport Limestone, sandy, fossiliferous, dense, white to Eocene Sand gray - 600 -Limestone, soft, glauconitic, dolomitic, marly, white to buff Lisbon - 700 -Formation - 800 Pre-Lisbon - 900 --Rocks **KEY:** LIMESTONE CLAY SAND FOSSILS Figure 1-4 Environmental **COMPOSITE GEOLOGIC COLUMN** Science & Engineering, Inc. SOURCE: HERRICK AND VORHIS, 1963. A CLOOR Ca

C-FTSTEWART92.2/WSOC.14 05/22/92

The Pleistocene to Recent deposits above the Miocene deposits consist of discontinuous units of sand, silt, and clay. The surficial aquifer is comprised of discontinuous beds and lenses of sand within these deposits. The depth to the water table in the Savannah area is approximately 3 to 10 ft-bls.

Previous borings performed at Wright AAFTA encountered the water table of the surficial aquifer at a depth of 8 ft. The aquifer may extend to approximately 100 ft-bls as indicated by borings performed at a landfill a few miles northwest of Wright AAFTA (ESE, 1982). These borings encountered continuous sandy deposits to a depth of 100 ft. Kundell (1978) reports that the surficial aquifer may be up to 120 ft thick.

The Floridan aquifer is the major source of groundwater for the Coastal Plain of Georgia and adjoining states (Krause and Gregg, 1972). The Floridan aquifer in Georgia provides the majority of water for industrial and domestic use [500 million gallons per day (mgd) statewide in 1978]. There is no record of extended usage of the surficial aquifer in the study area; however, statewide usage amounted to 500,000 gallons per day (gpd) in 1978.

1.1.6 CLIMATE

The study area has a moist and temperate climate year round. Average temperatures range from 52 degrees Fahrenheit (°F) in winter to 80°F in summer. Average annual rainfall is approximately 48 inches (Headquarters, 24th Infantry Division, 1977), 60 percent of which usually falls during the period April through September. Prolonged drought is rare in the study area.

Climatic data for the period of July through December 1991 are presented in Appendix A. The data include the minimum and maximum temperature, daily

C-FTSTEWART92.2/WSOC.15 08/06/92

mean temperature, total precipitation water equivalent, and maximum windspeed and direction.

1.1.7 PREVIOUS SITE INVESTIGATIONS

An environmental study was completed by ESE at Fort Stewart in 1982. The study was performed to generate environmental data and to provide construction planning to bring the three sanitary landfills at Fort Stewart Military Reservation into compliance with the Resource Conservation and Recovery Act (RCRA) and with regulations of the State of Georgia Department of Natural Resources (DNR). The study included soil borings, monitor well installation, groundwater and surface water sampling, and aquifer testing (slug tests). The monitor wells installed at the South Central Landfill site during this study are the closest of these wells to the current study area and are approximately 6 miles to the west.

A preliminary contamination assessment was performed by USAEHA in March 1987 and is included as Appendix B to this report. This Hazardous Waste Study (No. 37-26-0127-88) was performed to evaluate the existence of contamination in the soils and pit residues at three fire training areas and four explosive ordnance disposal sites at Fort Stewart. The 1987 USAEHA study at the Wright AAFTA included the drilling, logging, and sampling of four exploratory borings and the pit residue (Figure 1-5). Five metals (lead, mercury, barium, chromium, and arsenic) were found in almost every sample at low to moderate levels. One soil sample and the pit residue sample contained elevated levels of polynuclear aromatic hydrocarbons (PAHs) and bis(2ethylhexyl)phthalate (Table 1-1).

During February 1990, Hunter/ESE performed the first phase of a contamination evaluation at the Wright AAFTA. The scope of work included soil gas analyses,

Table 1-1. Analytical Parameters Detected in Soil Samples in 1987

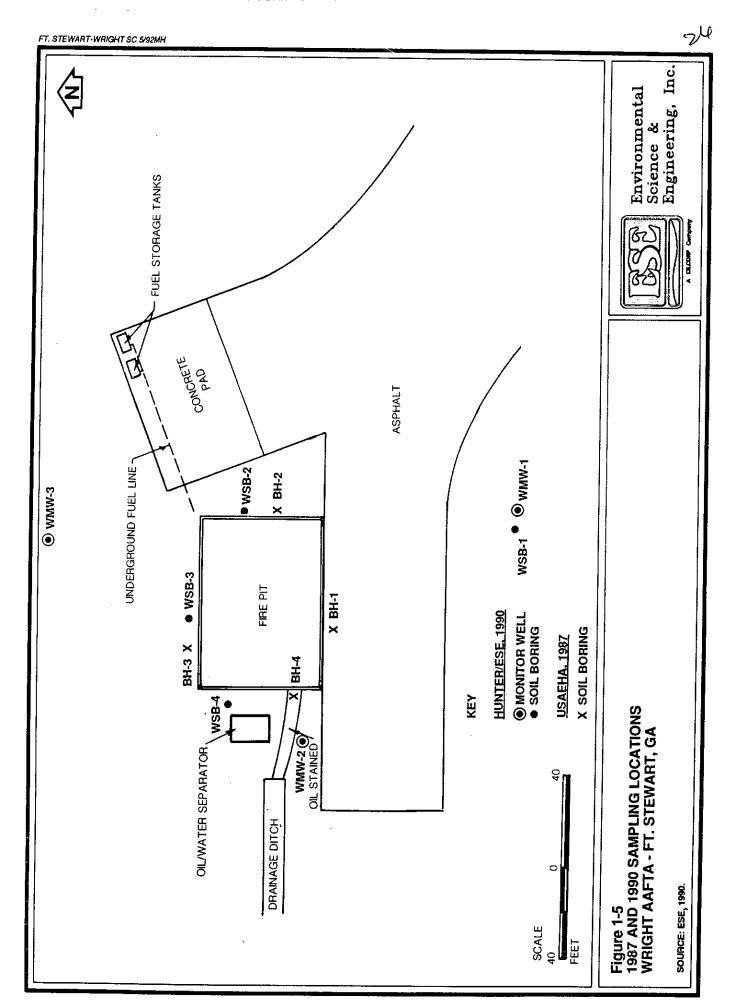
izi Nj

PARAMETERS			BH-1		BH-2	2	BH-3	3	8H-4	-4
		0-1 FT.	4-5 FT.	9-10 FT.	0-1 FT.	7.5-8.5 FT.	0-1 FT.	7.5-8.5 FT.	0-1 FT.	7.5-8.5 FT.
ARSENIC	06/G	3.98	15.70	16.00	3.90	1.99	2.00	3.94	3.92	9.86
BARIUM	0/9N	15.50	12.00	15.40	12.50	7.77	13.60	3.74	5.88	4.34
BENZO(A)ANTHRACENE	uG/KG	<1.00	<1.00	2000.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
BENZO(A)PYRENE	UG/KG	<1.00	<1.00	1108.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
BIS(2-ETHYLHEXYL)PHTHALATE	NG/KG	<1.00	<1.00	2500.00	<1.00	<1.00	200-00	<1.00	<1.00	<1.00
CD	UG/G	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98
CHROMIUM	0/9N	4.57	17.50	13.40	5.27	4.58	3.96	4.13	7.06	8.88
FLUORANTHENE	UG/KG	<1.00	<1.00	5100.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
INDENO(1-2-3-CD)PYRENE	UG/KG	<2.50	<2.50	500.00	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
LEAD	0/9(33.80	82.40	42.00	82.00	43.80	31.90	25.60	608.00	60.70
MERCURY	UG/G	0.39	0.39	0*0	0.39	0.39	0.39	0.39	0.39	0.39
PHENANTHRENE	UG/KG	<1.00	<1.00	1700.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
SE	NG/G	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
SILVER	0/9N	⊴.99	⊲.99	<3.99	⊴.99	<3.99	3.99	⊴.99	3.99	3.99

.

Source: ESE.

.


 z^{χ}

soil sampling and analyses, installation of three monitor wells, and groundwater sampling and analyses (Hunter/ESE, 1990).

Twelve soil gas probes (pneumometers) were installed around the fire training area in the 1990 study. Gas samples were extracted from the pneumometers and were analyzed for Total Organic Vapors (TOV) using a Model OVA-128 Flame Ionization Detector (FID). The TOV readings measured with the FID were between 0 and 30 parts per million (ppm). The highest readings were found at the southeast corner of the fire training pit and on the north side of the drainage ditch located approximately 40 ft from the eastern edge of the pit.

Analytical samples were collected from four soil borings at Wright AAFTA for the 1990 investigation (Figure 1-5). These samples were analyzed for inorganic compounds, volatile organic compounds (VOCs), and polynuclear aromatic hydrocarbons (PAHs). The results indicated five metals (arsenic, barium, chromium, lead, and selenium) and two VOCs (methylene chloride and toluene) are present in the soils at the Wright AAFTA (Appendix J). PAHs were not found in the soil samples.

Groundwater was sampled from three monitor wells as part of the 1990 study at the Wright AAFTA (Figure 1-5); the samples were analyzed for metals, VOCs, and PAHs. Three metals (barium, chromium, and lead) were detected at levels that exceeded regulatory maximum contaminant levels (MCLs) (Appendix J). All three elevated constituents were found in monitor well WMW-1, and lead and chromium were found in monitor well WMW-2. Both locations are located downgradient of the fire training pad. No PAHs or VOCs were detected in any of the samples.

Ę

Z N

2.0 SCOPE OF WORK

The work described in this Significance of Contamination report for the Wright AAFTA was performed as required in the optional task order scope of work (SOW) dated May 23, 1991, and revised June 26, 1991. The field activities included 6 months of preliminary surficial water-table elevation monitoring, followed by soil, sediment, and groundwater sampling and analysis. All activities were conducted in accordance with the protocol described in the Contamination Evaluation/Closure Plan [Hunter/ESE, 1989, which includes as appendices the Chemical Data Acquisition Plan (CDAP), the Site Health and Safety Plan (SHSP), and the USACE Sample Handling Protocol]. The USACE-approved Addendum to the Work Plan (ESE, 1992) was used to guide Phase II of the SOW.

2.1 PREFIELD ACTIVITIES

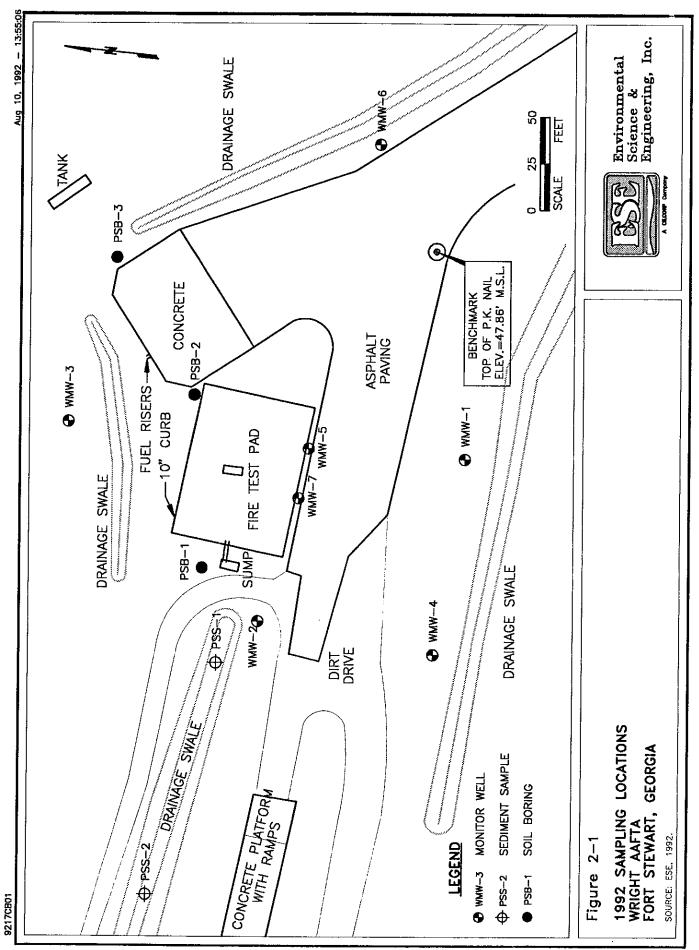
Several prefield activities were scheduled to acquaint key project personnel with the previous activities performed at the site and to review the new scope of work. The prefield activities included the following:

- 1. A review of all existing data,
- 2. A hydrogeologic site assessment including site visits to determine the hydrogeologic character of the surficial aquifer at the site,
- 3. Work Plan preparation and approval, and
- 4. Meeting to discuss the scope of work with the field team.

2.2 PRELIMINARY HYDROGEOLOGIC CHARACTERIZATION

The results of previous field activities at the Fort Stewart Military Reservation indicate that fluctuations occur in the water-table elevation at the Wright AAFTA. To determine the magnitude of these fluctuations, groundwater levels were monitored in existing monitor wells at the site for the 6-month period

C-FTSTEWART92.2/WSOC.19 03/25/93


preceding the current drilling effort. The monitoring period covered approximately 3 months during a wet season and 3 months during a dry season. The data generated were used to help select locations for new monitor wells (Section 2.5).

Groundwater levels were monitored continuously from July through December 1991 with a Telog® logging device, and once a month manually by ESE personnel. July, August, and September are generally the months with the most precipitation at the Wright AAFTA, and October, November, and December are generally dry (Hunter/ESE, 1989). Rainfall data for the 6-month period were received from the Hunter Army Airfield weather station, located approximately 35 miles east of Wright AAFTA.

All water level elevations were measured using existing survey data for the monitor well top of casing (TOC) elevations. Since the hydrogeologic characterization study was conducted, the previously existing and new wells have been resurveyed. The new survey data show slightly different elevations for the old well TOCs, but the differences are insignificant in terms of defining the orientation of the water table.

2.2.1 CONTINUOUS GROUNDWATER LEVEL MONITORING

The monitor well locations shown in Figure 2-1 are based on the topographic surveys provided in Appendix C. A Telog® data logging unit was installed in WMW-2 at the Wright AAFTA in July 1991. This unit continuously monitored water-level fluctuations (average, minimum, and maximum height of groundwater above the pressure transducer) at hourly intervals through December 1991.

Ę

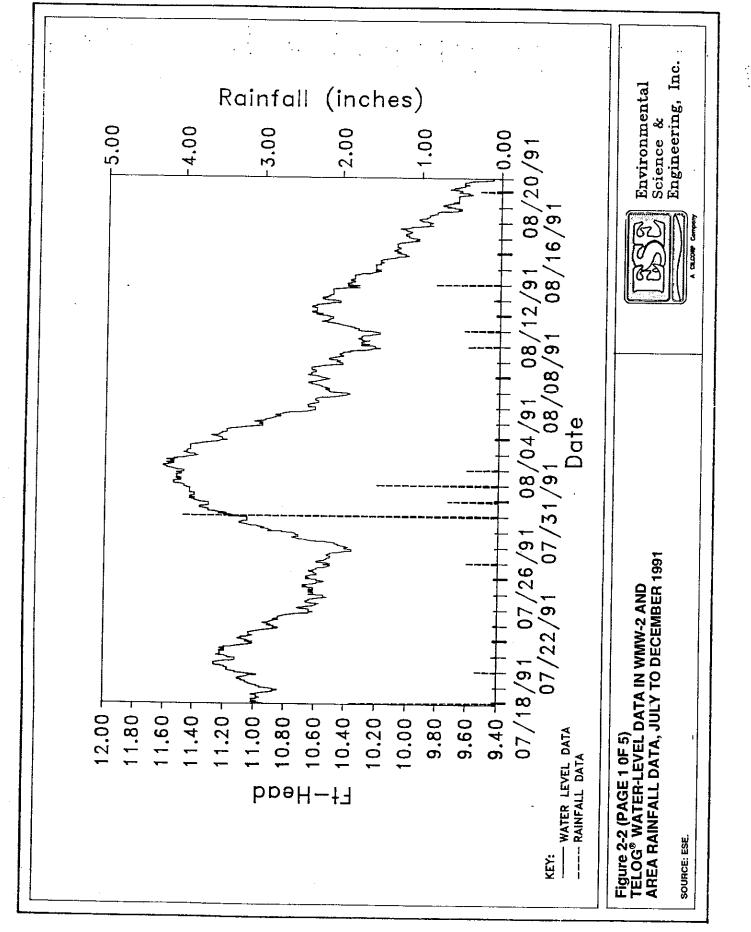
ť,

2-3

C-FTSTEWART92.2/WSOC.20 03/25/93

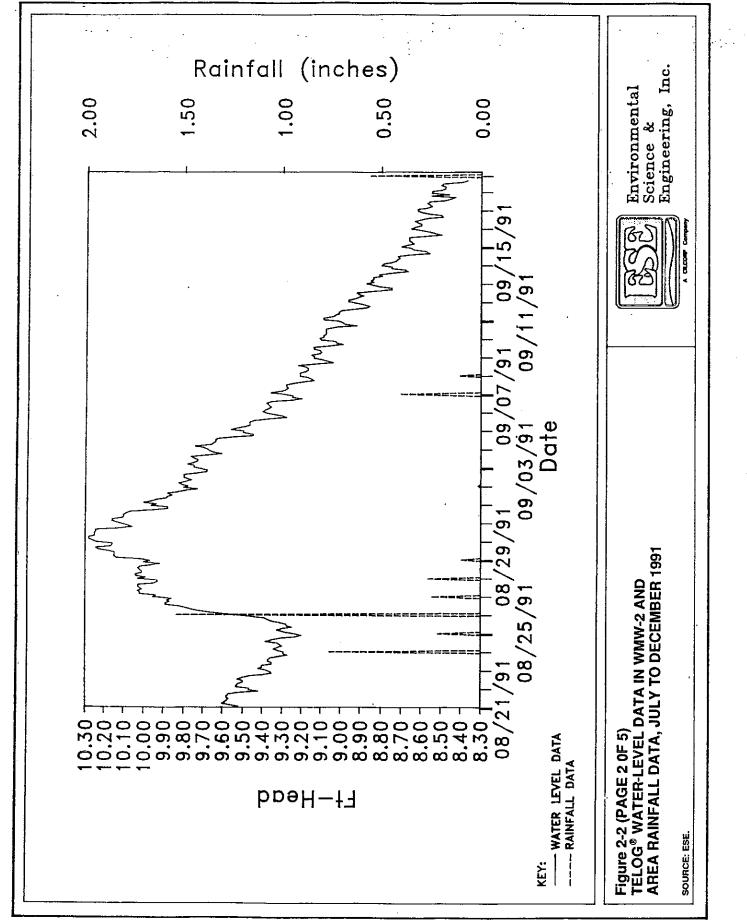
The Telog® transducer and cable were decontaminated by rinsing with deionized (DI) water prior to introduction into the well. The probe was lowered to the bottom of the well and then pulled back 1 ft. The cable was secured to the outside of the well casing with duct tape.

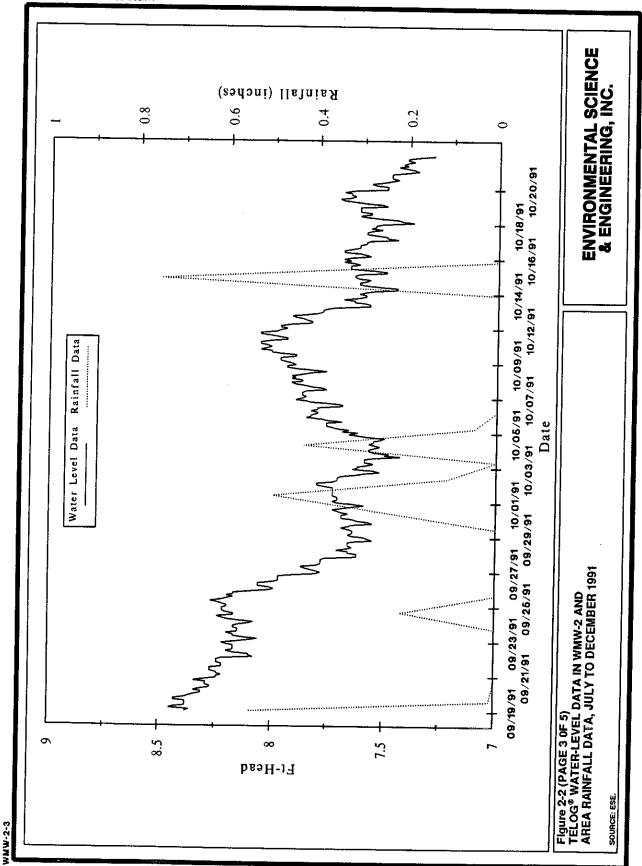
The electronics box was installed on the outside of the protective casing using small sheet metal screws. A small (less than one-quarter inch deep) V was cut out of the top of the protective casing to allow the cable to extend to the electronics box, allowing the protective casing cover to close securely without crushing the cable. Extra cable was secured outside the protective casing.


A graph of the Telog® data (Figure 2-2) shows a slight cyclic fluctuation recurring less than 24 hours between crests. These fluctuations, possibly due to tidal influences, are minor [approximately 0.25 ft per day (ft/day)], and have little effect on the overall groundwater gradient. The data also show sudden water-level increases over short times, followed by gradual decreases. These fluctuations appear related to rainfall events that occur periodically at the site. The Telog® data are included in Appendix D.

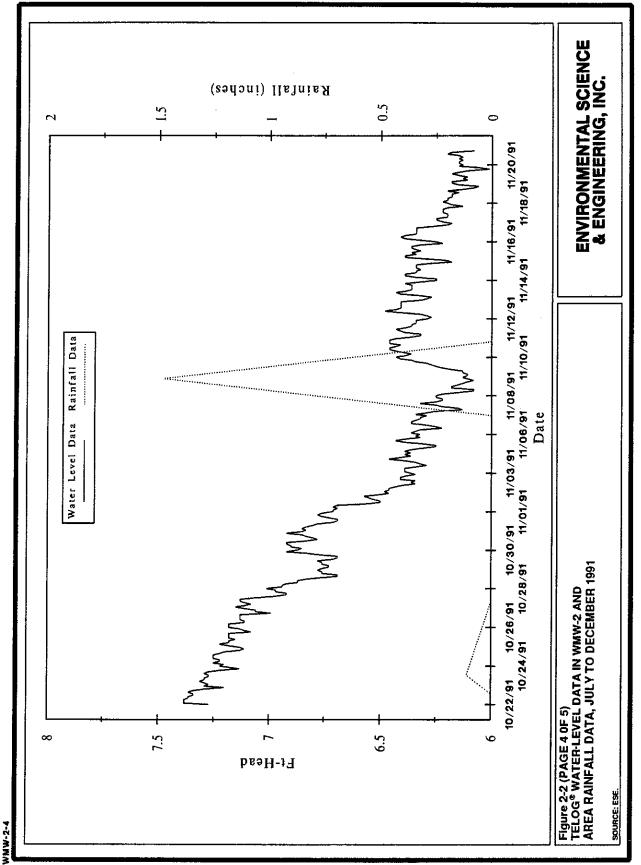
The maximum water height above the Telog® pressure transducer was 11.26 ft measured July 21, 1991; the lowest height of water was 5.20 ft measured December 19, 1991. The maximum groundwater fluctuation as determined by the Telog® data was 6.04 ft.

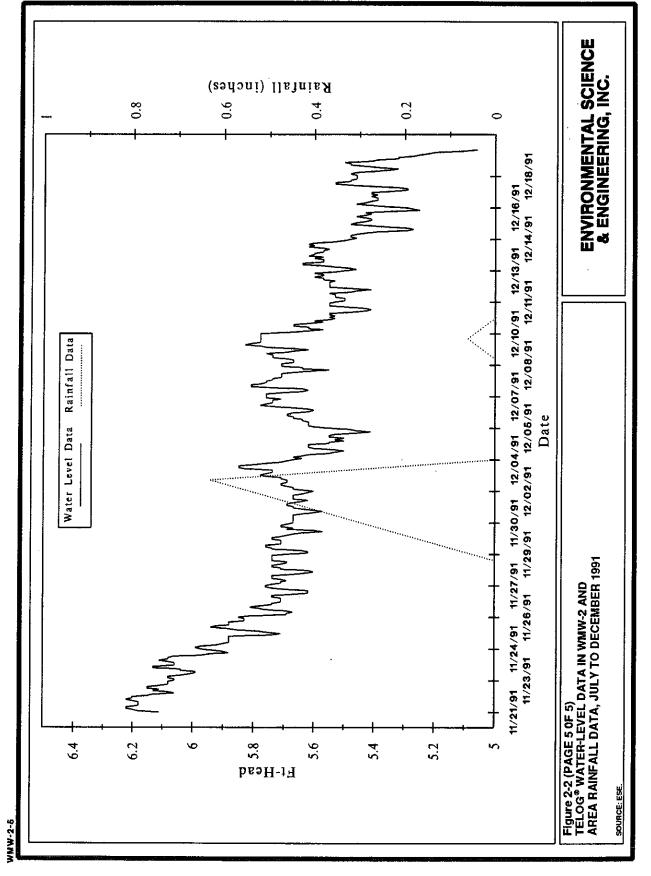
2.2.2 MANUAL GROUNDWATER LEVEL MONITORING


Water levels were obtained monthly July through December 1991 in wells WMW-1 through WMW-3 (Figure 2-1) using the wetted or electric tape methods.



FT. STEWART-WRIGHT SC 5/92MH


FT. STEWART-WRIGHT SC 5/92MH


K.

Ć

(

FT. STEWART-WRIGHT SC 5/92MH

Ĺ

All water levels were taken from a specific location marked on the top of the polyvinyl chloride (PVC) well casing.

The water-level tapes were decontaminated between wells using deionized (DI) water and transported between sites in a polyethylene bag. After the well cap was removed, a minimum of two water-level measurements were obtained at least 2 minutes apart to verify the static level. All water levels and times were recorded on appropriate water-level data sheets in the field logbook.

A decline in the water table elevation of approximately 6.8 ft between July and December was revealed by manual water level measurements in wells WMW-1 through WMW-3. This value is 0.74 ft less than that recorded by the Telog[®] unit.

A summary of the named water level measurements and elevation calculation is given in Table 2-1. Water table contour maps for each of the six months of monitoring are presented as Figures 2-3 through 2-8.

2.2.3 HYDRAULIC CONDUCTIVITY (SLUG) TESTING

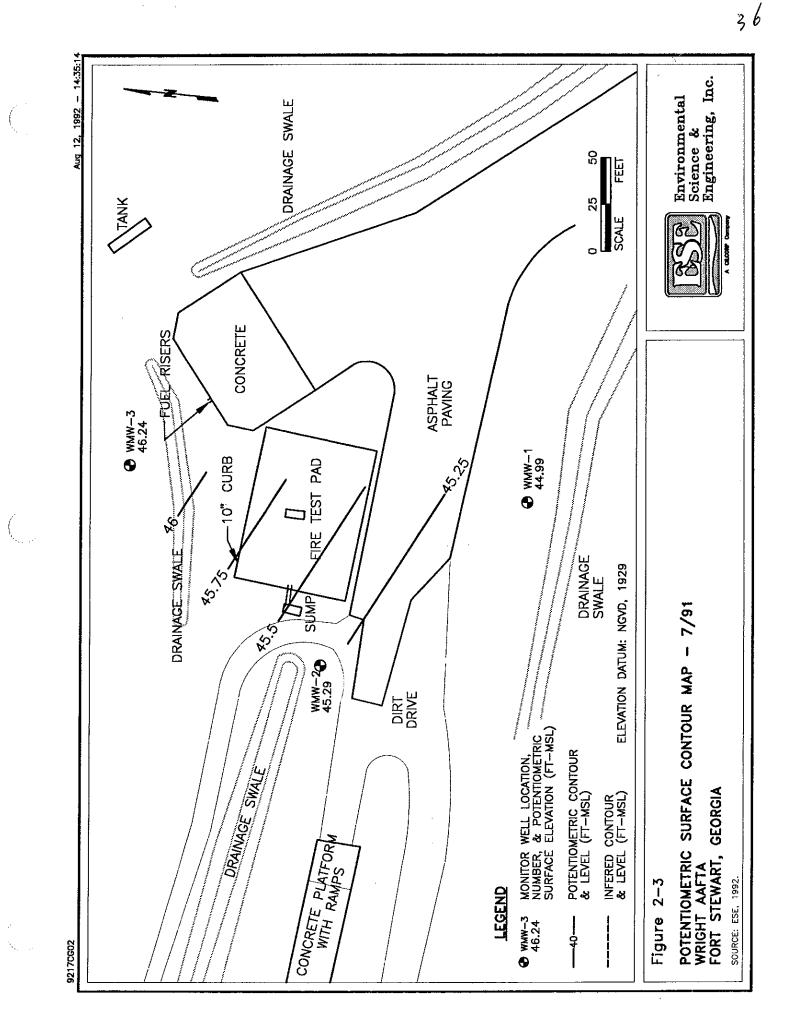
The slug test was designed to estimate the hydraulic conductivity (K) of an aquifer in the vicinity of a specific monitor well quickly and easily. Test durations ranged from 2 to 50 min. Testing was accomplished by instantaneously changing the water level in the well by either introducing (slugin) or removing (slug-out) a solid cylinder (the slug) to displace a volume of water. (One advantage of the slug method, as compared with the method of removing a slug of water from the well, is that it does not produce any water from the well, which in many cases may be contaminated and would require proper disposal). The rate at which the water level in the well returned to the static level was observed with the use of a pressure sensitive transducer and computerized datalogger. The datalogger was programmed to record the water

Table 2-1. Manually Collected Water Level Data, Wright AAFTA

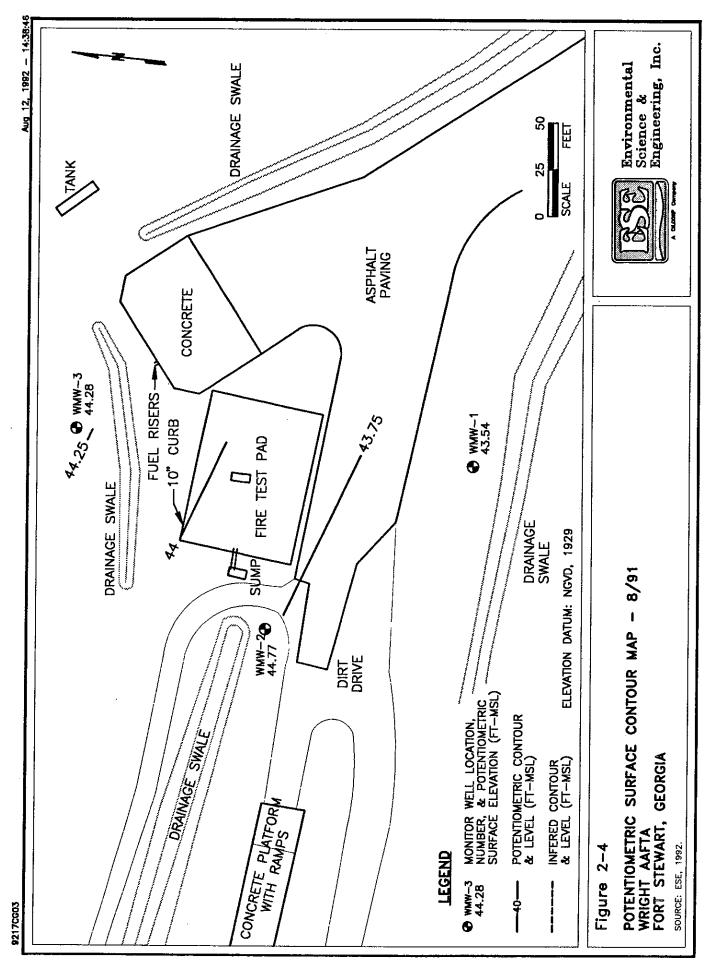
New Street

Ć

i

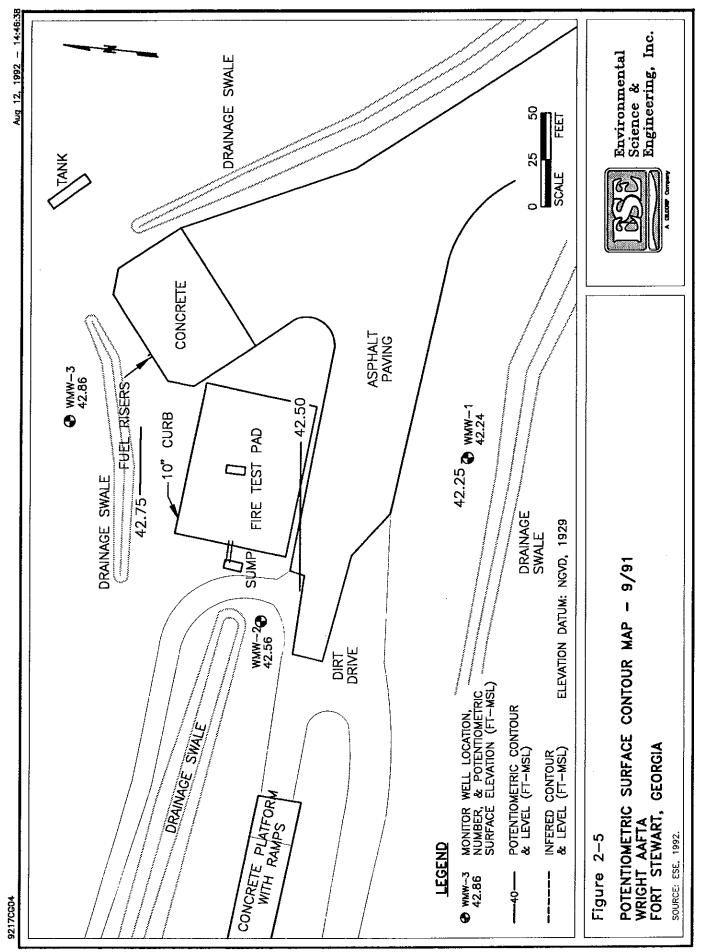

	NORTHING EASTING	EASTING	CONCRETE	· TOP OF	Date: 7/91	1.612	Date: 8/91	8/91	Date:	16/6	Date:	10/91
WELL NUMBER			BASE ELEVATION (ft msl)	CASING I N ELEVATION (ft msl)	DEPTH TO WATER (ft toc)	WATER ELEVATION (ft msl)	DEPTH T(WATER (ft toc)) WATER ELEVATION) (ft msl)	DEPTH TO WATER (ft toc)	DEPTH TO WATER WATER ELEVATION (ft toc) (ft msl)	EP.	WATER ELEVATION (ft msl)
HMW-1		688146.86 685369.25	47.52	47.52 49.39 4.40 44.99	4.40	66 77	5.85	43.54	7.15	42.24	8.32 41.07	41.07
LIMU-2	688247.15	688247.15 685269.58	47.60	49.62	4.33	45.29	5.85	43.77	7.06	42.56	8.21	41.41
HMU-3	688362.72	688362.72 685363.13	48.73	50.74	4.50	46.24	6.46	44.28	7.88	42-86	9.28	41.46

WELL NUMBER	ž	<pre>DRTHING EASTING CONCRETE TOP OF Date: 11/91 BASE CASING DEPTH TO WATER ELEVATION ELEVATION WATER ELEVATION (ft msl) (ft toc) (ft msl)</pre>	CONCRETE BASE ELEVATION (ft msl)	TOP OF CASING ELEVATION (ft msl)	Date: DEPTH TO WATER (ft toc)	11/91 WATER ELEVATION (ft msl)		12/91 WATER ELEVATION (ft msl)
WWW-1		688146.86 685369.25	47.52	49.39	9.63	39.76		10.78 38.61
unsu-2	688247.15	685269.58	47.60	49.62	97.46	40.16	10.56	39.06
MMW-3	688362.72	688362.72 685363.13	48.73	50-74	10.69	40.05	11.85	38.89

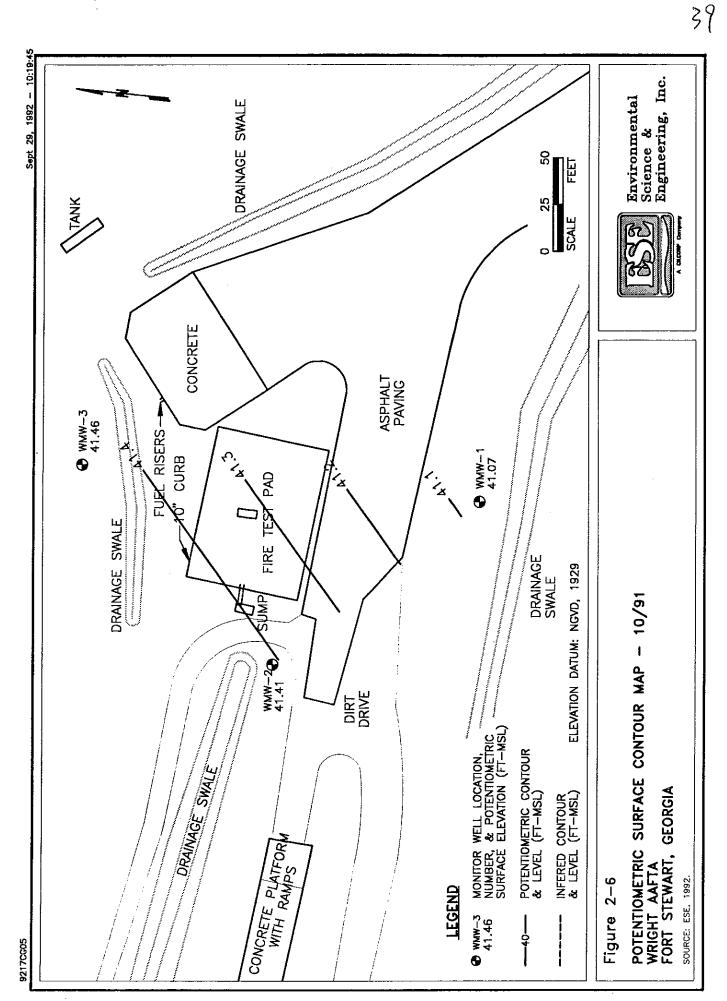

Notes: ft msl = feet above mean sea level ft toc = feet below the top of casing 35

,

•

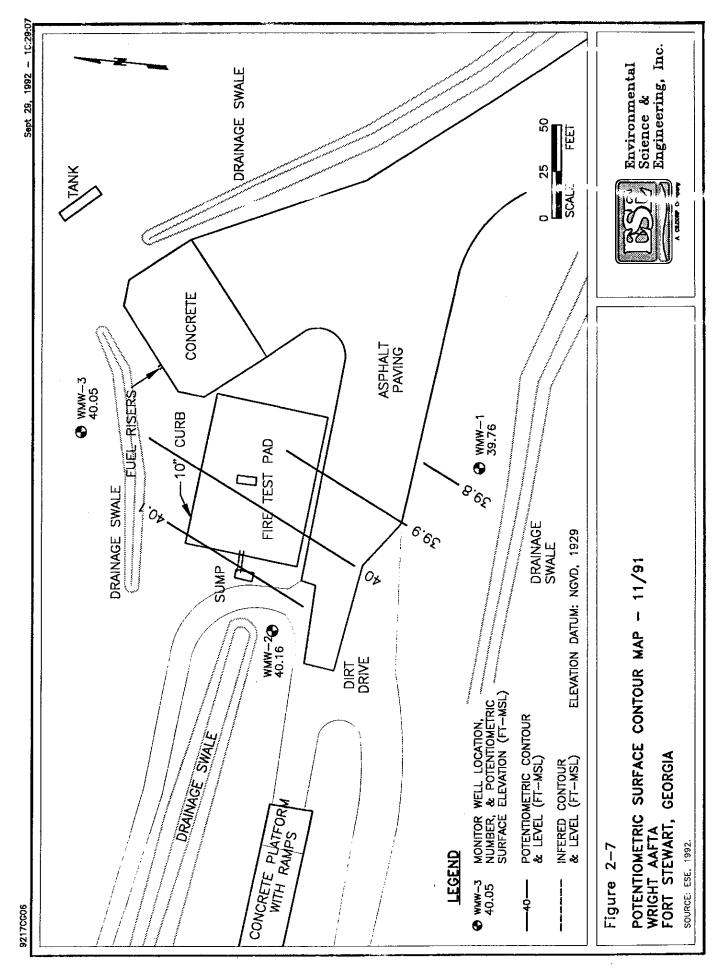


(


ł

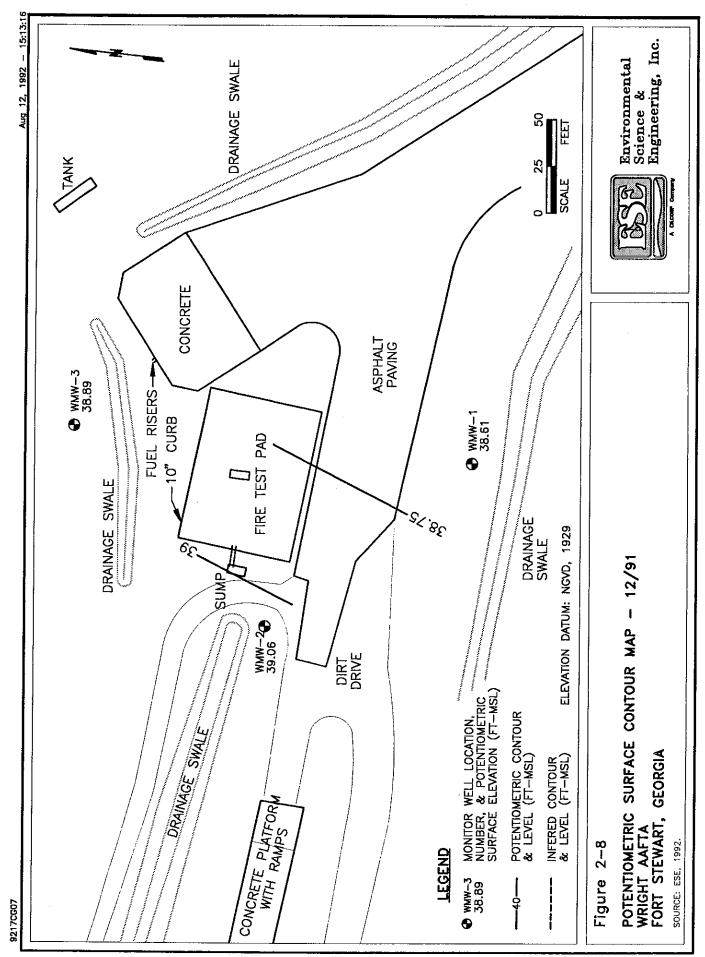
2-12

(


2-13

Ę

Ć


2-14

Ę

Ć

2-15

ĺ

7 X

2-16

q I

level at specific time intervals (generally multiple readings per second) during the test.

Following the test, the data was downloaded from the datalogger to a personal computer for analysis. The raw data were configured into a specific format then loaded into a computer program which used the Bouwer and Rice (1976) method for calculating the value of hydraulic conductivity. The data were first graphed by the program. Slug-in and slug-out data were plotted as a curve representing the change in water level versus the elapsed time of the test. The program then matched this curve to a theoretical curve from an idealized aquifer response based on the Theis equation. From this comparison and a series of calculations, the program determined the hydraulic conductivities of the aquifer in the immediate vicinity of wells WMW-5 and WMW-7 as 0.0022 ft/min and 0.00008 ft/min, respectively.

2.2.4 GROUNDWATER FLOW DIRECTION AND VELOCITY

The preliminary results of the hydrogeologic evaluation indicate the water table gradient is generally toward the south at the Wright AAFTA site. The gradient did fluctuate during the monitoring period, showing flow toward the southwest during the rainy summer months and toward the south and southeast during the dry winter months. The direction of flow correlates well with the average piezometric surface elevation.

Based on the data from WMW-1, WMW-2, and WMW-3 (see Table 2-1), the average groundwater gradient is approximately 0.0035 feet per foot (ft/ft) tending to the south. Assuming an aquifer porosity of 30 percent and a hydraulic conductivity of 2.2×10^{-3} ft/min (based on the slug tests) the linear groundwater flow velocity is estimated to be 13.7 feet per year (ft/yr). The formulae and calculations are included in Appendix E.

¢ч

2.3 SOIL BORINGS

A total of three soil borings at the Wright AAFTA was drilled March 9 and 10, 1992 using hollow-stem augers and sampled to determine the extent of soil contamination onsite. These soil boring locations are presented on Figure 2-1. PSB-1 is between the oil/water separator and the drainage ditch and was intended to assess the potential overflow from the oil/water separator, PSB-2 is near an underground fuel line adjacent to the fire pit, and PSB-3 is adjacent to the fuel storage tanks.

A Central Mine Equipment (CME) continuous split-barrel sampler was used to obtain a continuous soil sample in the first 5 ft of the borehole. Samples were then obtained at 5 to 7 and 10 to 12 ft-bls using split-barrel samplers.

The VOC sample fractions were immediately taken from the sampler and placed in prelabeled 40 milliliter (ml) vials as specified in the CDAP (ESE, 1989). The remaining sample was composited by mixing in a stainless steel bowl with stainless steel utensils; the sample was then placed in prelabeled quart amber glass jars with Teflon[®]-lined lids. One of the two quart jars used for each sample was filled only half-way with sample, covered with aluminum foil, and placed in the shade to equilibrate prior to headspace analysis; the jar was left in the shade for a minimum of 15 minutes prior to analysis. The PID analyzer probe was used to puncture the aluminum foil and measure the concentration of organic vapors in the sample jar headspace. This value was recorded on the boring logs. After each sample was analyzed, the aluminum foil was removed, and a Teflon[®]-lined lid was used to seal the jar prior to shipment to the ESE Gainesville laboratory for analysis.

The headspace readings were taken for additional screening data from monitor well samples. These data could indicate the potential for vadose zone soil contamination in areas where soil boring samples were not obtained. The work

2-18

C-FTSTEWART92.2/WSOC.23 08/06/92

plan also included sample headspace monitoring in soil boring samples along with the analytical work to determine if the results of the soil headspace data could be used to indicate the relative existence of elevated volatile constituents in the soil.

Sample WRITS1*11, from the 0- to 5-ft depth interval in soil boring WSB-2, was split with USACE. The sample split was shipped to the Missouri River District (MRD) laboratory in Omaha, Nebraska. A duplicate sample, WRITS1*10, was taken at WSB-3 from the 0- to 5-ft-depth interval. The duplicate sample was shipped with the other samples to the ESE laboratory in Gainesville.

All analytical soil samples were placed in plastic coolers with ice prior to shipment. The sample handling, chain-of-custody, and quality assurance (QA) procedures followed the CDAP (ESE, 1989) and the USACE Sample Handling Protocol (USACE, 1986).

Lithologic descriptions were made of the site soils by an ESE geologist. These logs are included in Appendix F.

After the borings were completed, the boreholes were abandoned by grouting using a mixture of 7 gallons (gal) of water to one sack (94 pounds) of portland cement. The grout was tremmied into the borehole to ground level. Before the drillers left the site, all grout levels were checked and topped off as necessary.

All sampling equipment decontamination procedures followed the site-specific CDAP (Hunter/ESE, 1989).

2.4 SEDIMENT SAMPLES

Two sediment samples were taken March 10, 1992 from a ditch located adjacent to the Wright AAFTA pad. The sediment samples were taken using a stainless steel Oakfield sampler. The sampler was advanced approximately 6 inches into the sediment between the submerged edge and the deepest portion of the ditch at the locations in Figure 2-1. Sediment Station PSS-1 was located approximately 40 ft downstream of the site. Station location PSS-2 was approximately 150 ft downstream of PSS-1.

The sample station farthest downstream (PSS-2) was sampled first to prevent any upstream sediment from compromising the downstream sample quality. Both sample locations were approached from the downstream side for the same reason.

Sample WRITS1*15, from Station WSD-2, was split with USACE. The sample split was shipped to the MRD laboratory in Omaha, Nebraska. A duplicate sample, WRITS1*14, was also taken at Station WSD-2. The duplicate sample was shipped with the other samples to the ESE laboratory in Gainesville.

2.5 MONITOR WELL INSTALLATION AND DEVELOPMENT

Monitor well locations were determined based on the data presented in the Contamination Evaluation/Closure Plan (ESE, 1990), and the results of the preliminary hydrogeologic characterization (Section 2.2). The monitor well locations are presented in Figure 2-1. The location of WMW-4 was selected because it is downgradient of the fire training pit, where the flow direction is south-southwest most of the year. Shallow well WMW-6 is located adjacent to the fire pit to assess contaminant levels near the source. The location of WMW-5 was chosen because of the seasonal southeast groundwater flow direction. Deep well WMW-7 was placed adjacent to WMW-5 to determine if elevated levels of dissolved constituents exist at depth in the area with the highest potential for contamination (adjacent to the source). The monitor well boreholes were installed March 5 through March 9, 1992 using 4-7/8-inch inside diameter (ID) hollow-stem augers. Soil samples were obtained from the shallow well boreholes (WMW-4, WMW-5, and WMW-6) using a CME continuous split-barrel sampler. Soil samples from the deep well (WMW-7) were obtained at 5-ft intervals using a 1-7/8-inch ID split-barrel sampler in accordance with American Society for Testing and Materials (ASTM) D-1586. Soil samples were used to prepare lithologic logs of the boreholes. Copies of the lithologic logs, including well construction details, are presented in Appendix F. A total of four representative soil samples from the screened zones of the wells was shipped to the ESE geotechnical soils laboratory for sieve analyses using methods ASTM D-422 and ASTM D-1140.

Monitor wells were constructed inside the hollow stem augers. The shallow monitor wells were constructed of 2-inch-diameter Schedule 40 PVC casing with threaded joints and 12.5 ft of 0.010-inch slot well screen. The top of the well screen was placed above the water table and approximately 3 feet below land surface (ft-bls) to intercept phase-separated hydrocarbons (if present) on the water table. The large fluctuation in groundwater levels at this site (see Section 2.2) warranted the use of 12.5 ft of screen rather than the 10 ft called for in the initial scope of work.

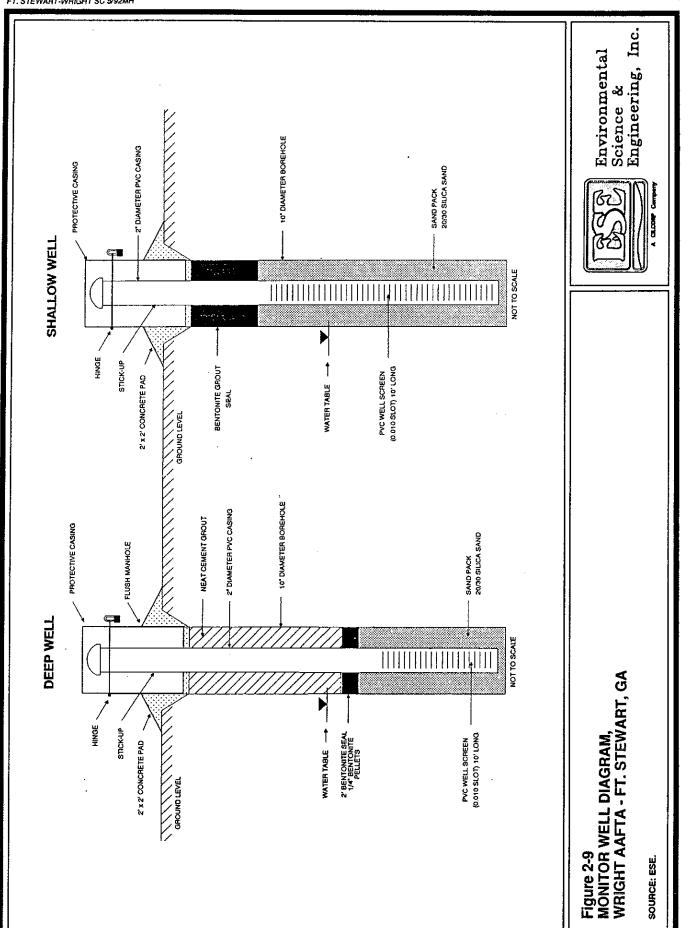
The annular space surrounding the screen was backfilled with clean, 20/30 silica sand to at least 1.5 ft above the top of the screen using a tremmie pipe. As the sand filled the augers, the augers were slowly lifted, allowing the sand to empty from the augers and flow into the annulus between the borehole and the well casing.

In shallow wells, a seal consisting of Volclay[®] bentonite grout was placed above the sand pack. The grout consisted of 2.1 pounds of Volclay[®] and 1 gal of water. The grout was mixed according to the manufacturer's specifications and allowed to cure at least 24 hours prior to the installation of the antipercolation pad.

The deep monitor well (WMW-7) was constructed of 2-inch diameter, Schedule 40 PVC casing with threaded joints and a 0.010-inch slot size screen. A 10-ft screened interval was set from approximately 40 to 50 ft-bls. The sand pack extended from the bottom of the well to 4 ft above the top of the well screen. Due to problems setting WMW-7, the original borehole was grouted and a new boring was made for well installation.

The original borehole for monitor well WMW-7 was abandoned during well placement as the bentonite pellets bridged in the augers just below the tremmie pipe. As the pellets could not be cleared from the bottom of the auger, the auger was removed from the borehole, and the borehole was subsequently abandoned. The abandoned borehole was grouted using a Portland® cement grout mix of 7 gallons of water added to each (94 lb) sack of Portland® cement. The grout was pumped through Tremie pipe to the bottom of the borehole, thus grouting the borehole from the bottom up. The new borehole and final location of WMW-7 is approximately 10 ft to the west of the abandoned borehole.

In the deep well, a 2-ft-thick bentonite clay seal comprised of 1/4-inch-diameter bentonite pellets was placed directly above the sandpack. The pellets were allowed to hydrate 24 hours prior to completing the well. The remaining annular space was backfilled to the land surface with a Portland[®] cement grout comprised of 7 gal of water to 94 pounds of cement. A centralizer was used on the deep well to center the casing in the well. The centralizer was set 5 ft above the screen zone.


The monitor wells were completed at the ground surface with 3-ft by 3-ft concrete antipercolation pads and protected above grade with locking steel protective casings. A 1/8-inch-diameter drain hole was drilled in the protective casings approximately 6 inches above the concrete pads. The tops of the pads were sloped away from the protective casings to prevent water from ponding and infiltrating the joint between the protective casings and the pads. The tops of the wells were capped inside the protective casings to keep airborne particulates and insects from entering the wells. The caps were vented to prevent air pressure buildup in the wells due to water-level changes. The general well construction details are presented in Figure 2-9 and are summarized in Table 2-2; information for the pre-existing wells WMW-1 to WMW-3 is included in the table. Well construction data sheets are included in Appendix F.

Three protective posts were installed around each well. The posts are 5-ft long by 2 1/2-inch-diameter steel pipe, and are set in concrete in 1-ft-deep by 4.5-inch diameter holes. The pipes were filled with concrete and painted to make them visible to traffic.

State Plane Coordinates and elevations of the monitor wells at the Wright AAFTA were measured during a control survey. The results of the survey, performed by EMC Engineering Services, Inc. (EMC), of Savannah, Georgia, are included in Table 2-2. Appendix J is a site map prepared by EMC that shows all of the site features and well locations.

The monitor well development was performed March 8 to March 11, 1992 (no sooner than 48 hours after well installation). The monitor wells were developed using a surge block with alternate purging using a Brainard Killman (B-K) 1.7-inch-diameter hand pump. The following procedures were followed:

- 1. The initial sand and silt in the bottom of the well was removed by pumping.
- 2. The surge block was lowered to approximately 3 to 5 ft below the water table and gently moved up and down in 3-ft strokes.
- 3. The surge block was removed from the well and sand and fines allowed to settle.
- 4. The well was pumped to remove the sand and fines from the bottom and pH, temperature, and conductivity readings were taken.
- 5. Surging was continued at a slightly lower level with an increase in the surging force.
- 6. The surging and pumping continued for a minimum of 4 hours and until the pH and conductivity had stabilized and sediment was no longer present in the discharge water.

FT. STEWART-WRIGHT SC 5/92MH

ĺ

(

ĺ

49

.

C-FTSTEWART92.3/TAB2-2W.WK1 10/08/92

(

Ę

Table 2-2. Monitor Well Completion and Location Survey Summary, Wright AAFTA

Well Number	Northing	Easting	Top of Casing Elevation (ft-msl)	Boring Diameter (inches)	Boring Depth (ft bls)	Sandpack Interval (ft bls)	Bentonite Seal (ft bls)	Screen Interval (ft bis)	Well Diameter (inches)	Grout Interval (ft bls)
ими-1	688146.86	685369.24	49.39	10.25	15.00	2.5 - 15.0	1.0 - 2.0	2.5 - 12.5	~	0 - 1.0
4MW-2	688247.14	685269.57	49.62	10.25	15.00	2.0 - 15.0	1.0 - 2.0	3.0 - 13.0	7	0 - 1.0
1-11-12	688362.71	685363.12	50.74	10.25	15.00	2.5 - 15.0	1.5 - 2.5	3.0 - 13.0	2	0 - 1.5
4-11Wim	688150.64	685263.33	48.91	ø	15.50	3.0 - 15.5	0 - 1.5	3.0 - 15.5	2	;
2-MMM	688231.50	685364.62	50.00	∞	15.50	3.0 - 15.5	0 - 1.5	3.0 - 15.5	N	:
9-MWM	688213.84	685531.23	49-65	లు	15.50	3.0 - 15.5	0 - 1.5	3.0 - 15.5	2	:
7-WW	688233.54	685337.62	49.89	ສ	50.00	36 - 50	34 - 36	40 - 50	2	0 - 34

Note: ft bls = feet below land surface.

ft-msl = feet mean sea level.

-- = Bentonite seal installed to surface.

*Boring diameter presented is the diameter of the boring in the sand pack zone only.

Source: ESE.

2-25

61

Temperature, pH, and specific conductance were monitored to ensure the water quality had stabilized. The total amount of water purged, pH, specific conductance, and temperature were measured and recorded on well development forms in the field notebook. Copies of these forms are included in this report as Appendix G. A summary of well development is presented in Table 2-3.

The results of the development revealed slight color and cloudiness in the wells. Discussions with field team members indicated the well water had a cloudy appearance but contained no apparent suspended solids; however, monitor well WMW-7 had traces of suspended sediments after over 5 hours of purging.

The monitor wells were developed a second time during the period of January 13 through January 15, 1993, in order to verify the developed condition of the groundwater with photographic slides. On these dates, all wells except WMW-7 developed clear with pumping a minimum of 3 well volumes. Due to excessive silt in WMW-7, the well was developed an additional 8 hours, then resampled. The final water condition of WMW-7 was clear, free of sand and silt.

2.6 GROUNDWATER SAMPLING AND ANALYSES

Groundwater samples were obtained from each of the three previously installed and four newly installed wells March 11 to March 14, 1991 (no sooner than 4 days following development). The samples were obtained using the methods outlined in the following paragraphs and the CDAP as revised in the Addendum to the Work Plan (ESE, 1991).

Immediately prior to purging a well, the static water level below the top of the well casing was measured from a reference point previously marked on the top of the well casing. Measurements were made and recorded to the nearest 0.01 ft on well sampling forms in the field notebook. An oil/water interface probe was also used to check for free product floating on the water.

The volume of water in the well, including the saturated pore volume (assumed at 30 percent) of the annular sand pack, was calculated based on the static water level and the well construction information. Well volume calculations were

C-FTSTEWART92.3/WSOC-V.3 03/26/93

52

Well Number	Date	Total Surging Time (min)	Total Pumping Time (min)	Total Volume Discharged (gal)	Final Condition
WMW-4	03/08/92 01/15/93	75 -	180 32	72 34	Clear, no sand or silt
WMW-5	03/08/92 01/15/93	60 -	120 30	80 33	Clear, no sand or silt
WMW-6	03/08/92 01/15/93	60 -	120 24	60 35	Clear, no sand or silt
WMW-7	03/10/92 01/13/93 01/15/93	75 135 143	240 99 83	100 80 75	Clear, no sand or silt

Table 2-3. Well Development Record, Wright AAFTA

Note: gal = gallon. min = minute.

Source: ESE.

53

recorded on well sampling forms in the field notebook. Copies of these forms are presented in Appendix H.

A centrifugal pump was used to purge at least three well volumes from all of the wells except the deep well (WMW-7). The deep well was bailed dry three times, allowed to recharge to 80 percent of the original volume each time, then sampled. Temperature, pH, and specific conductance were monitored with a Hydrolab® 4041 to ensure the water quality had stabilized prior to sample collection. The Hydrolab 4041 was calibrated in accordance with the manufacturers' instructions and documented on calibration forms in the field notebook. The total amount of water purged, pH, specific conductance, and temperature were measured and recorded on well sampling forms in the field notebook.

The monitor wells were sampled using Teflon® bailers, decontaminated in accordance with the CDAP. A new nylon cord was used for each well to lower the bailer into the well. The bailer was rinsed at least once with well water (this was discarded) prior to collecting a sample. All sampling equipment was protected from contact with potentially contaminated soil surfaces by covering the ground around the well with disposable polyethylene plastic sheeting.

Sample WRITW1*9, from monitor well WMW-4, was split with USACE. The sample split was shipped to the MRD laboratory in Omaha, Nebraska. A duplicate sample, WRITW1*8, was also taken at WMW-4. The duplicate sample was shipped with the other samples to the ESE laboratory in Gainesville, Florida. An equipment blank, WRITW1*11, was taken in the field. VOC trip blanks, samples WRITW1*13 and WRITW1*14, were packed with VOC samples shipped on March 11, 1992, and with samples delivered by the field crew to the ESE laboratory in Gainesville, Florida, on March 14, 1992, respectively.

On January 15, 1992, an additional groundwater metals sample was obtained from WMW-7 after the well was developed an additional 8 hours. FTSTEB2*4 was the sample, FTSTEB2*3 was the duplicate sample, and FTSTEB2*6 was the equipment blank. A split sample FTSTEB2*5 was sent to the MRD Laboratory. The only significant drop in concentrations detected during the second round of sampling was for Barium (dropped from 129 to 66.1 μ g/L).

2.7 DECONTAMINATION

The following decontamination procedures were used for field equipment that contacted sample matrices:

- 1. Organic compounds and trace metals analyses:
 - a. Cleaned with Liquinox[®] and tap water, using a brush when necessary to remove particulate matter and surface films;
 - b. Rinsed thoroughly with tap water;
 - c. Rinsed thoroughly with DI water;
 - d. Rinsed twice with pesticide-grade isopropanol;
 - e. Allowed to air dry; and
 - f. For overnight storage, wrapped in aluminum foil, to prevent contamination.
- 2. Groundwater purging and monitoring equipment:
 - a. Rinsed elevation tapes with tap water followed by DI water and placed in a polyethylene bag to prevent contamination during storage or transit;
 - b. Rinsed the downhole well tubing, hoses, and submersible pumps with copious amounts of tap water followed by DI water; and
 - c. If the inside of the tubing/hoses could not be rinsed adequately, tap water and deionized water were pumped through the tubing.
- 3. Drilling equipment:
 - a. All drilling equipment was steam cleaned prior to site mobilization; and
 - b. Between borings, all downhole drilling equipment was steam cleaned at a central location to remove traces of soil, rock, or other contaminants.

Decontamination operations were conducted at a decontamination pad set up near the site. The decontamination water and sediments were collected and placed in U.S. Department of Transportation (DOT)-approved 55-gal drums for storage and disposal.

2.8 PURGE WATER, DECONTAMINATION WATER, AND SOIL DISPOSAL

All purge water (from monitor well development and sampling), decontamination water, and drill cuttings were placed in 55-gal DOT-approved drums, labeled, and sealed prior to leaving the well site. If analytical results indicate the presence of regulated concentrations of hazardous constituents, the optimum method of disposing of wastes will be determined by ESE.

2.9 SAMPLE HANDLING, PACKAGING, AND SHIPPING

All analytical samples were placed in the appropriate sample containers as specified in the U.S. Environmental Protection Agency (EPA) Standard Operating Procedures and Quality Assurance Manual, Appendix A (April 1, 1986).

The samples were then wrapped with a cushioning material and placed in a plastic cooler. A sufficient amount of bagged ice was then placed in the cooler to keep the samples at 4 degrees Celsius (°C) until arrival at the laboratory.

All necessary chain-of-custody documentation required to accompany the samples during shipment was placed in a sealed plastic bag and taped to the underside of the cooler lid. The cooler was sealed with fiber tape, and custody seals were placed so any opening of the cooler prior to arrival at the laboratory could be detected. Sample volume requirements, sample container requirements, holding times, and preservation requirements were specified in the CDAP. Chainof-custody forms are presented in Appendix I.

All samples requiring chemical analysis were transported at the end of each day to the ESE and USACE QA laboratories by overnight courier. Samples that were sent to the USACE QA laboratory were packaged and shipped in accordance with USACE Sample Handling Protocol, Medium Concentration Sample, specified in the CDAP. The holding time criteria specified in the CDAP were followed.

3.0 CONTAMINATION ASSESSMENT RESULTS

3.1 SUBSURFACE CONDITIONS

During the drilling, four soil samples were obtained from the well borings for mechanical (sieve) analysis. The soil samples were obtained from the screened zones of the four wells installed during the Phase II field effort and were shipped to the ESE geotechnical laboratory for sieve analyses using ASTM D-422 and ASTM D-1140 methodologies. Table 3-1 summarizes the results of the sieve analyses, which are also included in Appendix F.

The subsurface soil encountered during this investigation and the previous investigation (Hunter/ESE, 1990) may be categorized into three general strata based on geologic and engineering characteristics.

Stratum I soils extend from the surface to depths of approximately 4 ft and consist of brown to yellow-red, fine to medium-grained, loose to medium-dense silty sand. The sand contains approximately 19 to 23 weight-percent particles finer than No. 200 mesh. The fines are generally nonplastic, and the soil is classified as silty sand (SM) according to the Unified Soil Classification System (USCS). Moisture contents in the Stratum I soils ranged from 10 to 13 percent. For a typical loose to medium-dense silty sand as found in this stratum, the estimated permeability is between 1 x 10^{-5} and 1 x 10^{-6} centimeters per second (cm/sec) (Peck, Hanson, and Thornburn, 1974).

Stratum II soils are present from approximately 4 to 10 ft-bls at most locations and consist of red to yellow-brown, medium to coarse-grained, loose to mediumdense clayey sand ranging in thickness from 17 to 22 ft. The sand contains approximately 23 to 43 weight-percent particles finer than No. 200 mesh. The fines are, in general, moderately plastic, and the soil is classified as clayey sand (SC) according to USCS. During the current investigation, low plasticity clay

3-1

Sample	Depth	Passing %			
ID	(ft)	#200 Sieve	D60	D30	D10
WW-4	12.0	15.0			
MW-5	12.0	16.0	0.23	0.154	
MW-6	13.0	19.0		×	
WW-7	40.0	25.0	0.11	0.079	0.0055

۴

Table 3-1. Summary of Sieve Analysis, Wright AAFTA.

Note: --- = no data

•-

Source: ESE

ĺ

F

was observed in all the well and soil borings. The thickness of the clay varies across the site, and the clay was not observed in soil borings drilled in the previous field effort. Soil moisture contents in the clay ranged from 11 to 23 percent. For a typical loose to medium-dense clayey sand to sandy clay as found in this stratum, the estimated permeability is between 1×10^{-5} and 1×10^{-7} cm/sec (Peck, Hanson, and Thornburn, 1974). Using data from the grain-size curves of aquifer soils in the screened zone at WMW-5 and a formula for calculating the approximate hydraulic conductivity based on aquifer grain-size distributions (Bialas, 1970), the hydraulic conductivity of the Stratum II soils is approximately 4.8×10^{-3} cm/sec. Slug testing confirmed a conductivity of 9×10^{-4} cm/sec (1.9×10^{-3} ft/min). The calculations are included in Appendix E.

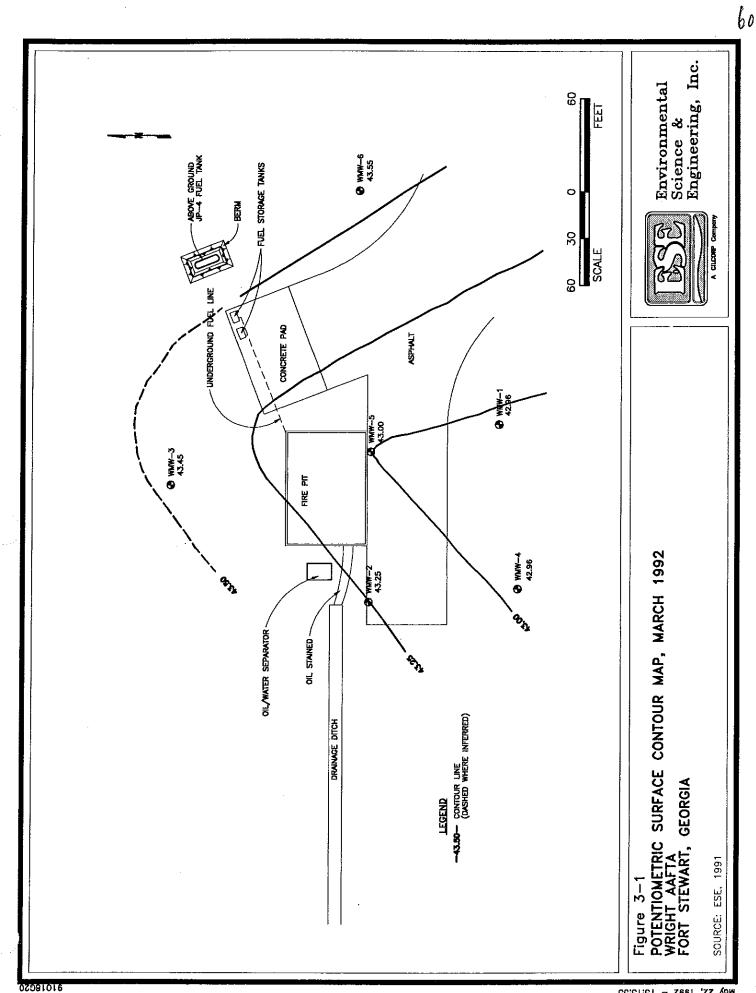
Stratum III soils consist of green-gray, silty, fine-grained, dense sand. The sand contains approximately 25 weight-percent of particles finer than No. 200 mesh. The fines are generally of low plasticity, and the soil is classified as silty sand (SM) in the USCS system. Approximately 28 ft of Stratum III sand was penetrated in well WMW-7. Based on field descriptions, this unit may be part of the Duplin Marl. The estimated permeability of this stratum is between 1×10^{-5} and 1×10^{-6} cm/sec (Peck, Hanson, and Thornburn, 1974). Using data from the grain-size curves of aquifer soils in the screened zone at WMW-7 and a formula for calculating the approximate hydraulic conductivity based on aquifer grain-size distributions (Peck, Hanson, and Thornburn, 1974), the hydraulic conductivity of the Stratum III soils is approximately 3.0×10^{-5} cm/sec. Slug testing revealed a conductivity of 4×10^{-5} cm/sec (8.3×10^{-5} ft/min). The calculations are included in Appendix E.

3.2 HYDRAULIC GRADIENT IN MARCH 1992

Water table elevations for the March 1992 field effort were calculated using the new survey data for the monitor wells. The data are summarized in Table 3-2. A water table contour map for the Wright AAFTA is presented in Figure 3-1 (The water level elevation in WMW-7 is not included in the contour because the well

3-3

Table 3-2. Summary of Groundwater Elevations, March 1992, Wright AAFTA.


Well Number	NORTHING	EASTING	Top of Casing Elevation (ft-msl)	Depth to Water 3/92 (ft-toc)	Groundwater Elevation 3/92 (ft-msl)
WMW-1	688148.69	685368.21	49.39	6,43	42.96
WMW-2	688248.83	685268.58	49.62	6.37	43.25
WMW-3	688364.54	685362.09	50.74	7.29	43.45
WMW-4	688150.64	685263.33	48.91	5.95	
WMW-5	688231.50	685364.62	50.00	7.00	42.96
WMW-6	688213.84	685531.23	49.65		43.00
WMW-7	688233.54	685337.62	49.89	6.10 6.92	43.55 42.97

Notes: ft-msl = feet mean sea level

.

•-

ft-toc = feet below the top of casing

Woy 22, 1992 - 15:13:55

61

is screened at depth in the aquifer). The data show groundwater flow across the site is generally to the south, which is consistent with earlier data (Section 2.0).

Monitor wells WMW-5 and WMW-7 are located on the same edge of the fire training pit approximately 27 ft apart. WMW-5 is screened across the water table (3 to 15.5 ft-bls) and WMW-7 is screened at depth in the same aquifer (40 to 50 ft-bls). The elevation of the groundwater is almost identical in the two wells (7 ft-msl in WMW-5 and 6.92 ft-msl in WMW-7), indicating only 0.08 ft of head difference between the two wells. This suggests there is no significant vertical component to groundwater flow in the aquifer. Because the wells are not immediately adjacent to one another, it is not possible to confirm such a small difference in head between the upper and lower parts of the aquifer.

3.3 ANALYTICAL RESULTS AND VALIDATION

Samples of soil, sediment, and groundwater were collected and analyzed during this investigation. All samples were analyzed for the VOCs, metals, and PAHs listed in Table 3-3. The sample collection and analysis program is summarized in Table 3-4. The analytical results are presented included in Appendix J. Table 3-5 shows the concentrations of those parameters that were found in soils and sediments above detection limits, and Table 3-6 shows the concentrations of those parameters found in the groundwater above the detection limits.

The analytical data were validated by an ESE QA/QC specialist. The calculations and appropriate documentation for the analytical QA/QC are included in Appendix K.

3.4 CHEMICAL ANALYSES OF THE DECONTAMINATION SOURCE WATER

The water used for sampling and drilling equipment decontamination and mixing grout was obtained from a spigot in the vehicle wash area located approximately 1/4 mile from the site. A water sample (WRITW1*10) was obtained from this

3-6

C-FTSTEWART92.3/WSOC-V.1 08/13/92

Table 3-3. Summary of Analytes for Wright AAFTA

.

Analyte	Analyte
Petroleum Hydrocarbons	VOCs (cont.)
<u>Total Metals</u>	dia 1.2 Dishlamanna an
	cis-1,3-Dichloropropene
Barium	trans-1,3-Dichloropropene Ethylbenzene
Cadmium	2-Hexanone
Chromium	
Lead	Methylene chloride
Silver	2-Methyl-2-pentanone (MIBK)
Arsenic	Styrene
Selenium	1,1,2,2-Tetrachloroethane Tetrachloroethene
Mercury	Toluene
moreary	
/OCs	1,1,1-Trichloroethane
<u> </u>	1,1,2-Trichloroethane
Acetone	Trichloroethene
Benzene	Vinyl acetate
Bromodichloromethane	Vinyl chloride
Bromoform	Xylenes (total, all
Bromomethane	isomers)
2-Butanone (MEK)	DATE
Carbon disulfide	<u>PAHs</u>
Carbon tetrachloride	A
Chlorobenzene	Acenaphthene
Chloroethane	Acenaphthylene
2-Chloroethyl vinyl	Anthracene
ether	Benzo(a)anthracene
Chloroform	Benzo(b)fluoranthene
Chloromethane	Benzo(k)fluoranthene
Dibromochloromethane	Benzo(a)pyrene
1,2-Dichlorobenzene	Benzo(g,h,i)perylene
1,3-Dichlorobenzene	Chrysene
1,4-Dichlorobenzene	Dibenzo(a,h)anthracene
1,1-Dichloroethane	Fluoranthene
1,2-Dichloroethane	Fluorene
1,1-Dichloroethene	Indeno(1,2,3-c,d)pyrene
trans-1,2-Dichloroethene	Naphthalene
1,2-Dichloropropane	Phenanthrene
-,- wichtoropropane	Рутепе

Source: ESE.

Z Na

05/07/92 C-FTSTEWART92.2/WSOC-H.1

(

5.

Table 3-4. Sampling and Analytical Requirements for Wright AAFTA

No. of QC Samples Analyzed by USACE	Trip Trip Blanks Replicate Rinseate Blanks A B C D	0 0 1 0 0 X X X X	1 1 1 1 1 1 X X X -	• • • • 0 •
1		. 0	1 1	Ţ
No. of QC Analyzed È		1	1	
	Trip Blanks	0	ŧ٩	0
of QC Samples lyzed by ESE	Rinseate	0	1	
	Replicate	H	1	₽.
No. of	Field Samples	6	7	2
		Soil	Groundwater	b Sediment

Note:

A = volatile organic compounds (SW 8240).
B = metals (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag).
C = polynuclear aromatic hydrocarbons (SW 8270).
D = total volatile organics (PID).
QC = Quality Control.

A number of trip blanks will be shipped dependent on the number of coolers with volatiles shipped.

Source: ESE.

3–8

AAFTA
Wright
1992.
1.
Samples
/Sediment
٥Ì
s C
Detected
Parameters
Analytical
 Table 3-5.

PARAMETERS	UNITS					SOIL							SEDIMENT	
			PS8-1			PSB-2			PS8-3		PS8-30UP	PSS-1	PSS-1DUP	PSS-2
		HS-1	WS-2	urs-3	MS-4	S-SM	9-SM	2-SM	8-SM	6-SM	HI-SH	HSD-1	AND-DUP	4SD-2
		0-3 FT.	5-7 FT.	8-10 FT.	0-4 FT.	5-7 FT.	8-10 FT.	4-6 FT.	5-7 FT.	8-10 FT.	4-6 FT.			
		03/09/92 03	03/09/92	03/09/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92
		16:30	16:40	16:50	07:20	07:30	07:40	08:30	08:40	08:50		05:30		08:30
1,1,1-TRICHL'ETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	<6.70	5.90	<5.90
1,1,2,2-TETRACHLORO- ETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<00.9>	<5.90	<5.60	<6.70	<5.90	<5.90
1,1,2-TRICHL'ETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	≪6.00	<6.00	<5.90	6.00	<5.90	<5.60	<6.70	5.90	<5.90
1,1-DICHLOROETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	≪6.00	<5.90	<6.00	<5.90	<5.60	< <u>6.70</u>	5.90	<5.90
1,1-DICHLOROETHYLENE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	≤.90	<6.00	<5.90	<5.60	<6.70	\$5.90	<5.90
1,2-DICHLOROBENZENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	<83.00	<82.00
1,2-DICHLOROETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<00 . 9>	<00.95 <	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
1,2-DICHLOROETHENE(TOTAL)	UG/KG	<5.80	≪,00	<5.90	<5.50	<6.00	< <u>6.00</u>	<5.90	≪6.00	<5.90	<5.60	02.3>	5.90	<5.90
1, 2-DICHLOROPROPANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	≪6.00	<6.00	<5.90	≪6.00	<5.90	<5.60	<6.70	<5.90	\$.90
1,3-DICHLOROBENZENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	<83.00	<82.00
1,4-DICHLOROBENZENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	<83.00	<82.00
2-CHLOROETHYLVINYL- ETHER	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	6.00	<6.00	<5.90	< <u>6.00</u>	<5.90	<5.60	\$6.70	<5.90	\$.90
ACENAPHTHENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	<83.00	<82.00
ACENAPHTHYLENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	<83.00	<82.00
ANTHRACENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	330.00	120.00
ARSENIC, SED	MG/KG-DRY	4.12	4.51	3.05	0.75	2.42	0.63	2.37	2.99	0.96	4.12	3.82	3.31	3.38
BARIUM, SED	MG/KG- DRY	15.40	12.90	10.30	25.90	12.60	11.40	18.00	11.20	9-47	16.00	37.20	24.70	13.40
BENZENE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	6.0	5. %	\$600	<5.90	<5.60	6.7 0	€.90	<5.90
BENZO(A)ANTHRACENE	UG/KG-DRY	<120.00	<120.00	<120.00	<110.00	<120.00	<120.00	<120.00	<120.00	<120.00	<110.00	1900.00	2700.00	2000.00
				,	22.21	-150-00	100-0212	112.0212	Inn-11212	nn-nzt.>	.UTI>	B		1900-00

64

Table 3-5. Analytical Parameters Detected in Soil/Sediment Samples in 1992, Wright AAFTA, Continued, Page 2 of 4

Ć

(

PARAMETERS	UNITS					Sort							SEDIMENT	
			PSB-1			PSB-2			PS8-3	-	PSB-30UP	PSS-1	PSS-1DUP	PSS-2
		HS-1	2-SH	us-3	4S-4	4S-5	9-SH	2-SM	MS-8	6-SH	dna-su	NSD-1	4NG-OSM	Z-OSM
		0-3 FT.	5-7 FT.	8-10 FT.	0-4 FT.	5-7 FT.	8-10 FT.	4-6 FT.	5-7 FT.	8-10 FT.	4-6 FT.			
		03/09/92 03		/09/92 03/09/92	03/10/92	03/10/92 03/10/92	03/10/92	03/10/92	03/10/92 03/10/92		03/10/92 03/10/92		03/10/92	03/10/92
		16:30	16:40	16:50	07:20	07:30	07:40	08:30	08:40	08:50		09:30		08:30
BENZO(A)PYRENE	UG/KG-DRY	<160.00	<170.00	<170.00	<160.00	<170.00	<170.00	<160.00	<170.00	<160.00	<160.00	2800.00	2700.00	2200.00
BENZO(B)FLUORANTHENE	UG/KG-DRY	<120.00	<120.00	<120.00	<110.00	<120.00	<120.00	<120.00	<120.00	<120-00	<110.00	4200.00	4700.00	3700.00
BENZO(GHI)PERYLENE	UG/KG-DRY	<190.00	<190.00	<190.00	<180.00	<190.00	<190.00	<190.00	<190.00	<190.00	<180.00	3600.00	2000-00	1600.00
BENZO(K) FLUORANTHENE	UG/KG-DRY	<120.00	<120.00	<120.00	<110.00	<120.00	<120.00	<120.00	<120.00	<120.00	<110.00	1200.00	1200.00	1100.00
BROMOD I CHLOROMETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
BROMOFORM	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	e6.70	<5.90	<5.90
BROMOMETHANE	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00	<12.00	<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
CADMIUM, SED	MG/KG-DRY	1.61	<0.54	60.4	0.54	0.77	<0.56	1.64	2.12	0.56	1.96	2.21	2.26	0.78
CARBON DISULFIDE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
CARBON TETRACHLORIDE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	< <u>6.00</u>	< <u>6.00</u>	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
CHLOROBENZENE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
CHLOROETHANE	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00	<12.00	<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
CHLOROFORM	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	67. 8	<5.90	≤.90
CHLOROMETHANE	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00	<12.00	<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
CHROMIUM, SED	MG/KG-DRY	15.60	6.14	33.90	5.48	7.59	6.45	11.70	17.70	4.51	16.10	16.80	19.40	8.99
CHRYSENE	UG/KG-DRY	<120.00	<120.00	<120.00	<110.00	<120.00	<120.00	<120.00	<120.00	<120.00	<110.00	2500.00	2600.00	1900.00
CIS-1,3-DICHLORD- PR	PROPENE UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	6.7 0	<5.90	<5.90
DIBEN(A, H)ANTHRACENE	UG/KG-DRY	<190.00	<190.00	<190.00	<180.00	<190.00	<190.00	<190.00	<190.00	<190.00	<180.00	<210.00	<190.00	320,00
D 1 BROMOCHLOROMETHANE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	<6 . 70	<5.90	<5.90

65

Table 3-5. Analytical Parameters Detected in Soil/Sediment Samples in 1992, Wright AAFTA, Continued, Page 3 of 4

Ć

. К.

Ę

PARAMETERS	UNITS					SOIL							SED I MENT	
			PSB-1			PSB-2			PSB-3		PSB-3DUP	PSS-1	PSS-1DUP	PSS-2
		HS-1	rs-2	HS-3	NS-4	5-SM	9-SM	2-SM	8-SM	6-SM	dna-sh	HSD-1	4NQ-QSM	WSD-2
		0-3 FT.	5-7 FT.	8-10 FT.	0-4 FT.	5-7 FT.	8-10 FT.	4-6 FT.	5-7 FT.	8-10 FT. 4-6	4-6 FT.			
		03/09/92	03/09/92	03/09/92	03/10/92 03/10/92		03/10/92	03/10/92	03/10/92 03/10/92 03/10/92 03/10/92		03/10/92	03/10/92 03/10/92 03/10/92		03/10/92
		16:30	16:40	16:50	07:20	07:30	07:40	08:30	08:40	08:50		05:20		08:30
DICHLOROBENZENE, TOTAL	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00	<12.00	<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
DIETHYL ETHER	UG/KG-DRY	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00
ETHYLBENZENE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<00 . 3>	<5.90	<6.00	<5.90	<5.60	o2-9>	<5.90	<5.90
FLUORANTHENE	UG/KG-DRY	120.00	<84.00	<83.00	<78.00	<84.00	<83.00	100.00	<85.00	<82.00	<78.00	3400.00	6200.00	4600.00
FLUORENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	<83.00	<82.00
INDENO(1,2,3-CD) PYRENE	UG/KG-DRY	<190.00	<190.00	<190.00	<180.00	<190.00	<190.00	<190.00	<190.00	<190.00	<180.00	4000-00	2200.00	2000.00
LEAD, SED	MG/KG-DRY	7.17	12.20	11.70	<6.99	<7 02	<7.48	<6.98	8.35	<7.19	<6.96	15.40	7.92	<7.17
MERCURY, SED	MG/KG-DRY	<0.10	<0.10	<0.10	<0°0>	<0.10	<0.10	<0.10	<0.10	<0.10	60.0≻	<0.11	<0.10	<0.10
METHYL ETHYL KETONE	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00	<12.00	<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
METHYLENE CHLORIDE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<00.9s	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
METHYLISOBUTYLKETONE	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00	<12.00	<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
MOISTURE	24ET HT	14.10	16.30	15.40	6.70	16.50	16.00	14.60	17.20	14.70	10.00	25.10	15.40	14.70
NAPHTHALENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	140.00	<78.00	<93.00	<83.00	<82.00
PHENANTHRENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	<82.00	<85.00	<82.00	<78.00	<93.00	2100.00	760.00
PYRENE	UG/KG-DRY	<81.00	<84.00	<83.00	<78.00	<84.00	<83.00	00-66	<85.00	<82.00	<78.00	3300.00	5200.00	3700.00
SELENIUM, SED	MG/KG-DRY	0.32	0.48	0.31	<0.27	<0.29	<0.29	<0.29	0.38	<0.29	<0.27	<0.32	<0.28	<0.29
SILVER, SED	MG/KG-DRY	<0.77	<0.81	<0.83	<0.78	<0.79	<0.84	<0.78	×0.0×	<0.81	≪0.78	<0.88	<0.81	<0.80
TETRACHLOROETHENE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	~~~	<5.90	<5.60	<6.70	<5.90	<5.90
TOLUENE	UG/KG-DRY	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	00°9≻	<5.90	<5.60	67. 8>	<5.90	<5.90

66

Table 3-5. Analytical Parameters Detected in Soil/Sediment Samples in 1992, Wright AAFTA, Continued, Page 4 of 4

ĺ

PSB-3DUP PSS-1 MS-DUP WSD-1 MS-DUP WSD-1 4-6 FT. 03/10/92 03/10/92 03/10/92 65.60 %.70 <5.60 %.70 <5.60 <6.70 <11.00 <13.00 <5.60 <6.70	PARAMETERS	UNITS					SOII							SEDIMENT	
WS-1 WS-1 S- 0-3 F1. 5- 0-3 03/09/92 03/09/92 03/09/92 0 03/09/92 03/09/92 03/09/92 03/05/92 LORO- PROPENE LG/KG-DRY <5.80				PSB-1			PSB-2			PSB-3		PSB-3DUP	PSS-1	PSS-1DUP	PSS-2
0-3 F1. 5- 03/09/92 03 09/92 03 05/09 16:30 1 1 16:30 1 16:30 1 16:30 16:30 1 1 16:30 1 16:30 1 16:30 1 16:30 1 10:00 PROPENE UG/KG-DRY <5.80			us-1	NS-2	NS-3	†-SH	S-SM	9-SM	2-SM	8-SH	6-SM	and-sh	1-OSM	ANG-OSM	WSD-2
03/09/92 03 03/09/92 03 16:30 1 16:30 1 16:3				7 FT.	8-10 FT.			8-10 FT.			8-10 FT.	4-6 FT.			
I6:30 16:40 16:50 07:30 07:40 08:30 08:40 08:50 6 0 CRO- PROFENE <5.80			26/60/20	03/09/92	03/09/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92	03/10/92
LORO- PROPENE UG/KG-DRY <5.80 <5.90 <5.50 <5.90 <5.90 <5.60 <5.90 <5.60 <5.90 <5.60 <5.60 <5.90 <5.60 <5.60 <5.90 <5.60 <5.60 <5.90 <5.60 <5.60 <5.60 <5.60 <5.60 <5.90 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60			16:30	16:40	16:50	07:20	07:30	07:40	08:30	08:40	08:50		09:30		08:30
E UG/KG-DRY 8.40 <6.00 <5.90 <7.10 <5.90 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60	TRANS-1, 3-DICHLORO- F	PROPENE UG/KG-DRY	<5.80	<6.00	<5.90	<5.50		<6.00	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90
OMETHANE UG/KG-DRY <5.80 <6.00 <5.50 <6.00 <5.90 <5.60 <5.60 <5.90 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60 <5.60	TRICHLOROETHENE	UG/KG-DRY	8.40		<5.90	12.00	<6.00	<6.00	<5.90	7.10	<5.90	<5.60	9.90	<5.90	40.00
UG/KG-DRY <12.00 <12.00 <12.00 <11.00 <12.00 <12.00 <12.00 <12.00 <12.00 <12.00 <12.00 <12.00 <10 <12.00 <11.00 <10 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.00 <10.0	TRICHLOROFLUOROMETHANE	-	<5.80	<6.00	<5.90	<5.50	<6.00	<6.00	<5.90	6.00		<5.60	<6.70	<5.90	10.00
UG/KG-DRY <5.80 <6.00 <5.90 <5.50 <6.00 <5.90 <5.90 <5.00 <5.90 <5.90	VINYL CHLORIDE	UG/KG-DRY	<12.00	<12.00	<12.00	<11.00		<12.00	<12.00	<12.00	<12.00	<11.00	<13.00	<12.00	<12.00
	XYLENE, TOTAL	UG/KG-DRY	<5.80		<5.90	<5.50	<6.00	<6.00	<5.90	<6.00	<5.90	<5.60	<6.70	<5.90	<5.90

4

Ć

Source: ESE.

67

.

Table 3-6. Analytical Parameters Detected in Groundwater Samples in 1992, Wright AAFIA

PARAMETERS	UNITS	1-1WM	umu-2	LMW-3	MMW-4	umu-5	9-MWM	2-MWM	WMH-4DUP WSOURCE	WSOURCE	EQPBLK	TRPBLK	Ľ
		03/11/92	03/11/92	03/11/92	03/13/92	03/13/92	03/13/92	03/14/92	03/13/92	03/13/92	03/13/92	03/11/92	03/14/92
		15:15	15:30	15:45	09:40	10:40	08:45	09:45				18:00	
1,1 DICHLOROETHANE	UG/L	<2.50	<2.50	<2.50	~2.50	<5.00	<5.00	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
1,1 DICHLOROETHYLENE	UG/L	<3.20	<3.20	≪3.20	3.20	<6.40	<6.40	<3.20	<3.20	<3.20	<3.20	<3.20	<3.20
1,1,1 TRICHL'ETHANE	UG/L	<2.50	<2.50	<2.50	<2.50	<5.00	<5.00	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
1,1,2 TRICHL'ETHANE	UG/L	<2.80	<2.80	<2.80	<2.80	<5.60	<5.60	<2.80	<2.80	<2.80	<2.80	<2.80	<2.80
1,1,2,2 TETRACHLORO ETHANE	UG/L	<1.50	<1.50	<1.50	<1.50	3.00	<3.00	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50
1,2 DICHLOROETHANE	UG/L	<2.50	<2.50	<2.50	<2.50	<5.00	<5.00	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
1,2 DICHLOROETHENE(TOTAL)	UG/L	<2.40	<2.40	<2.40	<2.40	<4.80	<4.80	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40
1,2 DICHLOROPROPANE	UG/L	<2.00	<2.00	<2.00	≪2.00	<4.00	<4.00	<2.00	<2.00	<2.00	<2.00	<2.00	~2.00
2 CHLOROETHYLVINYL ETHER	UG/L	≪3.10	⊲3.10	3.10	⊲3.10	<6.20	<6.20	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10
ACENAPHTHENE	UG/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	NRG	NRQ
ACENAPHTHYLENE	UG/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	NRG	NRQ
anthracene	UG/L	<1.00	<1.00	<1.00	<1.00	41.00	<1.00	<1.00	<1.00	<1.00	<1.00	NRG	NRQ
C ARSENIC, TOTAL	UG/L	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	3.70	<2.30	<2.30	<2.30	NRQ	NRO
BARIUM, TOTAL	UG/L	36.00	15.20	20.40	61.90	23.90	33.80	129.00	58.20	7.30	<1.10	NRG	NRQ
BENZENE	1/9N	4.70	<1.00	<1.00	<1.00	270.00	230.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
BENZO(A)ANTHRACENE	UG/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	NRG	NRQ
BENZO(A)PYRENE	N6/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	NRQ	NRQ
BENZO(B)FLUORANTHENE	UG/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	NRQ	NRQ
BENZO(GHI)PERYLENE	UG/L	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NRQ	NRG
BENZO(K) FLUORANTHENE	UG/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	NRQ	NRO
BROMOD I CHLOROMETHANE	UG/L	<2.20	<2.20	<2.20	<2.20	C4-40	<4.40	<2.20	<2.20	<2.20	<2.20	<2.20	<2.20
BROMOFORM	UG/L	<2.60	<2.60	<2.60	<2.60	<5.20	<5.20	<2.60	<2.60	<2.60	<2.60	<2.60	<2.60
													1

68

Table 3-6. Analytical Parameters Detected in Groundwater Samples in 1992, Wright AAFIA, Continued, Page 2 of 3

i N

Ć

Ę

<u>.</u>		NMM I	umu-2	LMW-3	7-MWM	NHU-S	9- MWN	Z-MMN	WWW-4DUP NSOURCE	WSOURCE	EapBLK	TRPBLK	
		03/11/92	03/11/92	03/11/92	03/13/92	03/13/92	03/13/92	03/14/92	03/13/92	03/13/92	03/13/92	03/11/92	03/14/92
		15:15	15:30	15:45	09:40	10:40	08:45	09:45				18:00	
BROMOMETHANE	NG/L	<3.50	<3.50	<3.50	₹3.50	<7.00	<7.00	<3.50	<3.50	<3.50	<3.50	<3.50	<3.50
CADMIUM, TOTAL	UG/L	<4.40	<4.40	<4.40	<4.40	<4.40	<4.40	<4.40	<4.40	C4-40	<4.40	NRQ	NRQ
CARBON DISULFIDE	UG/L	<4.40	07-42	07"7>	<4.40	<8.80	<8.80	07 ⁻ 7>	<4.40	<4.40	<4.40	<4.40	<4.40
CARBON TETRACHLORIDE	UG/L	<2.60	<2.60	<2.60	<2.60	<5.20	<5.20	<2.60	<2.60	<2.60	<2.60	<2.60	<2.60
CHLOROBENZENE	UG/L	<1.40	<1.40	<1.40	<1.40	<2.80	<2.80	<1.40	<1.40	<1.40	<1.40	<1.40	<1.40
CHLORDETHANE	UG/L	<8.20	<8.20	<8.20	<8.20	<16.00	<16.00	<8.20	<8.20	<8.20	<8.20	<8.20	<8.20
CHLOROFORM	UG/L	<2.50	<2.50	<2.50	<2.50	<5.00	<5.00	<2.50	<2.50	2.50	<2.50	<2.50	<2.50
CHLOROMETHANE	∩c/L	<4.40	<4.40	<4.40	<4.40	<8.80	<8.80	<4.40	<4.40	<4.40	07"7>	<4.40	<4.40
CHROMIUM, TOTAL	ne/r	<7.40	<7.40	<7.40	13.60	07".7>	<7.40	16.70	9.20	<7.40	<7.40	NRG	NRQ
CHRYSENE	ne/r	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50	NRG	NRQ
CIS 1,3 DICHLORO PROPENE	UG/L	<2.00	<2.00	<2.00	<2.00	<4.00	<4.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
DIBEN'(A,H)ANTH'CENE	UG/L	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NRG	NRQ
DIBROMOCHLOROMETHANE	UG/L	<2.30	<2.30	<2.30	<2.30	<4.60	<4.60	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30
DICHLOROBENZENE, TOT.	UG/L	<4.00	<4.00	<4.00	<4.00	<8.00	≪8.00	<4.00	<4.00	<4.00	<4.00	<4-00	<4.00
DIETHYL ETHER, TOTAL	UG/L	<5.00	<5.00	<5.00	<5.00	<10.00	<10.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
ETHYLBENZENE	UG/L	<1.30	<1.30	<1.30	<1.30	76.00	6.70	<1.30	<1.30	<1.30	<1.30	<1.30	<1.30
FLUORANTHENE	UG/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	×1°00	<1.00	<1.00	NRQ	NRG
FLUORENE	NG/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	NRQ	NRQ
INDENO(1,2,3 CD) PYRENE	UG/L	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NRQ	NRQ
LEAD, TOTAL	UG/L	<63.80	<63.80	<63.80	<63.80	<63.80	<63.80	<63.80	<63.80	<63.80	<63.80	NRQ	NRQ
MERCURY, TOTAL	UG/L	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	NRQ	NRQ
METHYL ETHYL KETONE	nc∕r	<10.00	<10.00	<10.00	<10.00	<20.00	<20.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00

Table 3-6. Analytical Parameters Detected in Groundwater Samples in 1992, Wright AAFIA, Continued, Page 3 of 3

Ć

(

.

PARAMETERS	UNITS	1-1MH	umu-2	E-MMM	4-MMH	S-MMM	9-MWN	2-HWH	NMM-4DUP NSOURCE	WSOURCE	EQPBLK	TRPBLK	Y
		03/11/92	03/11/92	03/11/92	03/13/92	03/13/92 03/13/92 03/13/92	03/13/92	03/14/92	03/13/92	03/13/92	03/13/92	03/11/92	03/14/92
		15:15	15:30	15:45	05:40	10:40	08:45	09:45				18:00	
METHYL ISOBUT'KETONE	E UG/L	<12.00	<12.00	<12.00	<12.00	<24.00	<24.00	<12.00	<12.00	<12.00	<12.00	<12.00	<12.00
METHYLENE CHLORIDE	, UG/L	<6.40	<6.40	<6.40	<6.40	<13.00	<13.00	<6.40	<6.40	<6.40	<6.40	<6.40	07 9>
NAPHTHALENE	UG/L	1.10	<1.00	<1.00	1.00	4.00	4.00	5.00	<1.00	<1.00	<1.00	NRO	NRD
PHENANTHRENE	UG/L	<1.00	<1.00	41.00	4.00	<1.00	4.00	41.00	<1.00	<1.00	-1.00	NRG	NRO
PYRENE	NG/L	<1.00	<1.00	<1.00	4.00	4.00	4.00	4.0	<1.00	<1.00	<1.00	NRO	NRO
SELENTUM, TOTAL	nc/L	<2.00	< <u>₹</u> .00	<2.00	<2.00	3.50	⊘ .00	<2.00	<2.00	<2.00	<2.00	NRO	O A N
SILVER, TOTAL	n6/L	<6.10	<6.10	<6.10	 4.10 	<6.10	< <u>6.10</u>	<6.10	<6.10	<6.10	<6.10	NRO	NRD
TETRACHLOROETHENE	1/9N	<1.90	<1.90	<1.90	<1.90	3.80	3.80	<1.90	<1.90	<1.90	<1.90	2	5 10
TOLUENE	NG/L	<1.70	4.70	<1.70	41.70	3.40	3.40	4.70	<1.70	<1.70	2	4 7	7
TRANS 1,3 DICHLORO	PROPENE UG/L	<1.60	<1.60	<1.60	<1.60	3.20	<3.20	<1.60	<1.60	<1.60	<1.60	V 12	2 V
TRI CHLOROETHENE	1/9N	<3.00	3.00	3.00	3.00	<6.00	<00.95	.00 ⊗.00	3.00	3.00	00.∑	90 B	5
TRICHLOROFLUORO	METHANE UG/L	<4.60	<4.60	<4.60	<4.60	<9.20	<9.20	<4.60	<4.60	<4.60	<4.60	<4.60	\$7 FU
VINYL CHLORIDE	ng/L	<4.60	<4.60	<4.60	<4.60	<9.20	~9. 20	<4.60	<4.60	<4.60	<4.60	<4.60	<4.60
XYLENES, TOTAL	UG/L	9.10	<3.70	<3.70	<3.70	170.00	300.00	3.70	3.70	3.7	3.70	Q. 2	3.70
								-					

Source: ESE.

spigot and analyzed for the same parameters as the site groundwater samples, with the addition of total and free chlorine (measured in the field using a Hach Spectrophotometer). The only parameter present in the sample above detection limits was barium, at a concentration of 7.3 micrograms per liter (μ g/L).

3.5 **OA SAMPLE RESULTS.**

QA samples were obtained at the Wright AAFTA for soils, sediments, and groundwater samples as described in Section 2.0. The QA/QC samples for all sample matrices did not indicate any abnormal variations for the analyzed parameters. Therefore, the results of the sampling and analyses were not biased by improper decontamination or sample handling procedures, and the data are acceptable.

4.0 SIGNIFICANCE OF CONTAMINATION

The objective of this evaluation is to determine the relative significance of the residual concentrations of site-related chemicals detected in soil, sediment, and groundwater at the Wright AAFTA and to provide guidance to determine suitable levels of remedial action to support site closure, if required. The area considered for site closure is the fire training pit which consists of a fire pit and associated drainage ditch, an aboveground fuel storage tank on a concrete pad, an underground fuel line, an aboveground JP-4 fuel tank, and an oil/water separator. The chemicals considered in this evaluation include metals, VOCs, PAHs, and other semivolatile organic compounds (SVOCs) that are associated with the burning of fuels for fire training purposes.

The analysis of sampling results demonstrates whether residual contamination should be controlled, minimized or eliminated from post closure migration to groundwater, surface water, or the atmosphere to the extent necessary to protect the health of humans and environmental receptors. For a site to be certified for clean closure according to RCRA, the owner must comply with closure performance standards specified in 40 Code of Federal Regulations (CFR) Part 264.111/265.111 (EPA, 1987). Clean closure is achieved when the preliminary cleanup target (PCT) analysis indicates that residual contamination does not pose potential threats to human health or environmental receptors. PCTs are residual chemical concentrations that correspond to EPA-established health-based exposure limits, which are established in such a manner that post closure maintenance and/or monitoring is not required.

The PCT analysis is performed according to the RCRA Surface Impoundment Clean Closure Guidance Manual (EPA, 1987), the Health and Environmental Assessment methods presented in the RCRA Facility Investigation Manual (EPA, 1989a), and other supporting EPA documents and directives. The following 72

4-1

analysis evaluates potential health threats associated with the site-related contaminants and establishes PCT concentrations.

The PCT concentrations are established by a 2-step process: (1) identify chemicals of concern (COCs), and (2) identify residual chemical concentrations that are sufficiently protective of public health and the environment. Safe residual chemical concentrations are applicable or relevant and appropriate requirements (ARARs) [i.e., maximum contaminant levels (MCLs)] or guidance levels (i.e., RCRA action levels). The objectives of the PCT analysis are as follows:

- 1. As described in the preamble to the proposed regulations, 40 CFR 265.228, published in the Federal Register on March 19, 1987, to achieve clean closure, the owner-operator of a surface impoundment is required "...to demonstrate that any hazardous constituents left in the subsoils will not cause unacceptable risks to human health or the environment." This evaluation will determine the acceptability of the potential risks posed to the human health and environmental receptors from individual contaminants assuming no remedial action occurs at the site.
- 2. The PCT analysis evaluates whether the current levels of metals, volatile organics, and semivolatile organics associated with fire training activities pose significant risk to human health and/or environmental receptors.
- 3. The PCT analysis provides an initial estimate of the closure requirements for the areas associated with fire training activities at the Wright AAFTA. In addition, PCTs are measures for estimating closure requirements in written closure plans, which must be submitted before determining the final cleanup targets (FCTs) in the soils and groundwater at the areas of concern. Also, PCTs can be used to develop an order-of-magnitude cost estimate for contaminated soil

removal and allow for a more precise soil removal cost estimate during closure with data generated during soil testing.

The results of the PCT analysis are presented in the following sections.

4.1 IDENTIFICATION OF COCs

COCs are those hazardous constituents that may have been generated, used, stored, disposed of, or otherwise managed at the facility and are detected in the treatment unit or surrounding environmental media. COCs are identified by examining historical records of wastes managed at the treatment unit, by conducting a comprehensive sampling of the wastes present at the treatment unit, and by examining the results of environmental samples collected at the site. To provide a preliminary assessment of the types of wastes generated, used, stored, or disposed of at the Wright AAFTA, historical information and records were reviewed.

4.2 EVALUATION OF SAMPLING RESULTS

Analytical data on soil, sediment, and groundwater constituents were obtained according to the sampling plan (ESE, 1992) to further characterize wastes disposed of at the fire training area. Four adjacent areas associated with fire training activities and one surface drainage area were addressed in the sampling investigation. These are the following:

Fire Training Area:

Fire pit

Aboveground fuel storage tanks (on concrete pad) Underground fuel line Oil/water separator

Drainage Area:

Drainage ditch

Three site investigations have been performed at the Wright AAFTA. The first investigation was performed by USAEHA in March 1987, the second by Hunter/ESE in February 1990, and the third by ESE in March 1992 (the current study). The results of these investigations are evaluated in the development of PCT levels for individual contaminants to determine if site contamination may pose potential health threats to humans and/or environmental receptors.

4.2.1 PCT ANALYSIS OF INDIVIDUAL CONTAMINANTS

PCTs for soil/sediment and groundwater are concentration-based values that are derived from EPA-established health-based exposure limits. The residual concentrations of each chemical detected at the site were evaluated for potential carcinogenic and systemic (noncarcinogenic) health effects by comparing the detected environmental concentrations to EPA-established exposure limits (ARARs or health-based values).

In general, PCTs were established for soil/sediment and groundwater as presented in the RCRA RFI Guidance Manual (EPA, 1989a). For soil/sediment, PCTs were derived using EPA-accepted oral soil exposure parameters (EPA, 1989b) and EPA-verified reference doses (RfDs) for threshold (noncarcinogenic, systemic) effects. PCTs for nonthreshold (carcinogenic) effects were derived using EPA-accepted oral soil exposure parameters and EPA-verified cancer slope factors (CSFs) and assume a risk level of 10⁻⁶ for the Class A and B carcinogens detected at the site (EPA, 1989a). For a screening analysis, only oral exposure was considered in developing PCTs. At high concentrations, some contaminants will cause at least skin irritation at the point of contact; however, for many contaminants, toxicity occurs after they pass through certain barriers (e.g., the wall of the gastrointestinal tract or the skin itself) enter the circulatory

system and gain access to various organ systems of the body (EPA, 1989). In addition, because of the chemical forms in which metals are usually found in soils (e.g., salts, ligand, and chelate complexes), the concern is with ingestion rather than with dermal contact (EPA, 1989). In the event that PCTs are exceeded, additional exposure pathways (i.e., dermal and inhalation exposure) may be considered in developing FCTs, if deemed necessary. A list of soil/sediment chemicals of concern with the reference doses (RfDs), cancer slope factors (CSFs), and PCTs is provided in Table 4-1.

For groundwater chemicals, the PCT was set at the MCL developed by the EPA Office of Drinking Water. Carcinogenic and noncarcinogenic PCTs for chemicals without an MCL were derived using EPA-accepted oral groundwater exposure parameters and EPA-verified RfDs and CSFs, respectively. As with soil/sediment, a risk level of 10⁻⁶ was assumed for the Class A and B carcinogens (EPA, 1989). A list of groundwater chemicals of concern with their RfDs, CSFs, and PCTs is presented in Table 4-2 and an explanation of the EPA carcinogen (weight-of-evidence) classes is presented in Table 4-3.

A comparison of site-specific chemical concentrations and individual PCTs is presented in the following sections. Because the sampling plan was designed to identify the COCs, only a limited number of samples (often one or two) were collected at each area of interest. Therefore, in comparing the site results to PCTs, the comparison evaluates the relationship of the maximum detected concentration at each area and the PCT.

4.2.1.1 Soil/Sediment Data and PCTs

The concentrations of each chemical detected in soil and sediment at the site were evaluated for potential carcinogenic and systemic (noncarcinogenic) health effects by comparing the concentrations to PCTs. For soil and sediment, PCTs were derived based on human oral exposure assumptions (EPA, 1989b) and the

4-5

Table 4-1. Soil/Sediment PCTs for Parameters Detected at Wright AAFTA

Chemical	RfD (mg/kg/day)	Systemic PCT (a) (mg/kg)	CSF (mg/kg/day)-1	WoE	Carcinogenic PCT (b) (mg/kg)
INORGANICS			· · ·		
Arsenic	0.001	80	1.75	A	0.4
Barium	0.05	4,000	NA	-	ND
Cadmium	0.001	80	ND	B1	ND
Chromium, total*	0.005	400	NA	-	ND
Lead	ND	500 **	ND	B2	ND
Mercury	0.0003	24	NA		ND
Selenium	0.005	400	NA	-	ND
PAHs					
Anthracene	0.3	24,000	NA	-	ND
Benz(a)anthracene	ND	ND	0.58 +	82	1.2
Benzo(a)pyrene	ND	ND	5.8	B2	0.12
Benzo(b)fluoranthene	ND	ND	0.58 +	B2	1.2
Benzo(ghi)perylene	ND	2,400 ++	NA	-	ND
Benzo(k)fluoranthene	ND	ND	0.58 +	B2	1.2
Chrysene	ND	ND	0.058 +	82	12
Dibenz(ah)anthracene	ND	ND	5.8 +	-	0.12
Fluoranthene	0.04	3,200	NA	-	ND
indeno(1,2,3-cd)pyrene	ND	ND	0.58 +	B2	1.2
Naphthalene	0.004	320	NA	-	ND
Phenanthrene	ND	2,400 ++	NA	-	ND
Pyrene	0.03	2,400	NA	-	ND
MISC. SEMIVOLATILE ORGANICS					
Bis(2-ethylhexyl) phthalate	0.02	1,600	0.014	B2	50
OLATILE ORGANICS					
Methylene chloride	0,06	4,800	0.0075	B2	93
Toluene	0.2	16,000	NA	- 1	ND
Trichloroethene	ND	ND	0.011 c	B2	64
Trichlorofluoromethane	0.3	24,000	Í NA	- 1	ND

Note:

NA = not applicable.

ND = not determined.

- RID = oral reference dose; an estimate of a daily exposure level for the human population (including sensitive subpopulations), that is likely to be without an appreciable risk of deleterious effects during a lifetime.
- CSF = cancer slope factor; is the upper-bound probability of an individual developing cancer as a result of exposure to a particular level of a potential carcinogen. The reported value is an upper 95-percent confidence limit on the probability of response per unit intake of a chemical over a lifetime, converting estimated intakes directly to incremental risk.
- WoE = weight-of-evidence for a chemical to be classified as an oral human carcinogen.
- PAH = polycyclic aromatic hydrocarbon.
- mg/kg/day = milligrams per kilogram per day.

mg/kg = milligrams per kilogram.

- (a) Systemic soil criteria = RfD (mg/kg/day) x 16 (kg) / 200 (mg/day) / 1E-06 (kg/mg).
- (b) Carcinogenic soil criteria = 1E-06 / CSF [(mg/kg/day)-1] x 70 (kg) / 100 (mg/day) / 1E-06 (kg/mg)
- (c) The CSF for trichloroethene has been removed from IRIS pending reevaluation of its carcinogenic potential in humans.

*Assumes chromium is present as the more potent hexavalent species.

**interim cleanup level established by EPA (1991).

+ Interim Region IV Guidance on Toxicity Equivalency Factor (TEF) methodology for carcinogenic PAHs based on each compounds relative potency to the potency of benzo(a)pyrene (EPA, February 1992). The following TEFs were used to convert the CSF for benzo(a)pyrene to an equivalent CSF for the particular carcinogenic PAH: benz(a)anthracene = 0.1, benzo(b)fluoranthene = 0.1, benzo(k)fluoranthene (0.1), chrysene (0.01), dibenz(a)anthracene = 1.0, and indeno(1,2,3-cd)pyrene = 0.1.

+ + No RfD is available for this PAH; the RfD for the most potent non-naphthalene PAH (pyrene) was used for comparison.

Table 4-2. Groundwater PCTs for Parameters Detected at Wright AAFTA

Chemical	RfD (mg/kg/day)	Systemic PCT (a) (ug/L)	CSF (mg/kg/day)-1	Weight of Evidence	Carcinogenic PCT (b) (ug/L)	MCL (ug/L)	
INORGANICS Arsenic Barium Chromlum, total* Lead Selenium	0.001 0.05 0.005 ND 0.005	MCL MCL MCL MCL MCL	1.75 NA NA ND NA	A - - B2 -	MCL NA NA ND NA	50 1,000 50 15 10	с с с с
PAHs Naphthalene VOLATILE ORGANICS	0.003	- 105	NA	-	NA	ND	
Benzene Ethylbenzene Xylenes, total	0.02 0.1 2	MCL MCL 70,000	0.029 NA NA	A -	MCL NA NA	5 700 ND	

Note:

NA = not applicable.

ND = not determined.

- RfD = oral reference dose; an estimate of a daily exposure level for the human population (including sensitive subpopulations), that is likely to be without an appreciable risk of deleterious
 - effects during a lifetime (EPA, 1989b).
- CSF = cancer slope factor; is the upper-bound probability of an individual developing cancer as a result of exposure to a particular level of a potential carcinogen (EPA, 1989b). The reported value is an upper 95-percent confidence limit on the probability of response per unitintake of a chemical over a lifetime, converting estimated intakes directly to incremental risk (EPA, 1989b).
- MCL = EPA maximum contaminant level established under the Safe Drinking Water Act (unless otherwise specified).
- PAH = polycyclic aromatic hydrocarbon.

mg/kg/day = milligrams per kilogram per day.

ug/L = micrograms per liter.

L/day = liters per day.

- (a) Concentration in drinking water derived from the oral reference dose (RfD) and assumes that a healthy 70-kilogram adult ingests 2 L/day of water (EPA, 1989).
- [concentration = oral RfD (mg/kg/day) x 70 (kg) x 1000 (ug/mg) / 2 (L/day)]

(b) Concentration corresponding to an upper-bound increased lifetime cancer risk of 1E-06.

- [concentration = 1E-06 x 70 (kg) x 1000 (ug/mg) / slope factor (mg/kg/day)-1 x 2 (L/day)]
- (c) Georgia State MCL (more stringent than federal MCL).
- (d) 56 FR 26460 (June 7, 1991). This "action level," when measured in the 90th percentile at the consumers tap, triggers initiation of corrosion control studies and treatment requirements. Effective December 7, 1992.

*Assumes chromium is present as the more potent hexavalent species.

Source: ESE.

Table 4-3. Weight-of-Evidence Categories for Potential Carcinogens

EPA Category	Description of Group	Description of Evidence
Group A	Human carcinogen	Sufficient evidence from epidemiologic studies to support a causal association between exposure and cancer
Group B1	Probable human carcinogen	Limited evidence of carcinogenicity in humans from epidemiologic studies
Group B2	Probable human carcinogen	Sufficient evidence of carcinogenicity in animals but inadequate data in humans
Group C	Possible human carcinogen	Limited evidence of carcinogenicity in animals
Group D	Not classified	Inadequate evidence of carcinogenicity in animals
Group E	No evidence of carcinogenicity in humans	No evidence of carcinogenicity in at least two adequate animal tests or in both epidemiologic and animal studies

Source: IRIS, 1992.

Ć

oral RfDs and CSFs as presented in the RCRA RFI Guidance Manual (EPA, 1989a), and relevant EPA toxicological databases and documents (Table 4-1). The maximum concentrations of the chemicals detected in soil and sediment, and appropriate PCTs, are given in Tables 4-4 and 4-5, respectively. A description of the relative significance of the soil and sediment analytical results for the areas sampled at the Wright AAFTA is presented in the following paragraphs.

Fire Pit--Nine soil samples were collected by USAEHA in 1987 from four 10-ftdeep borings (BH-1, BH-2, BH-3, and BH-4) at the perimeter of the pit. In 1990, Hunter/ESE sampled four additional 10-ft-deep borings, three at the perimeter of the pit (WSB-2, WSB-3, and WSB-4) and one adjacent to the upgradient well (WSB-1). The 1987 samples were obtained from the borings at the surface (0 to 1 ft-bls) and at depth (4 to 10 ft-bls), while the 1990 samples were collected in the boreholes between 6 to 10 ft-bls.

As shown in Table 4-4, the majority of inorganic and organic constituents were found to be below PCT levels and within the background ranges observed for inorganics in soils southwest of Savannah, Georgia (Shacklette and Boerngen, 1984) [or below detection limits (BDL)]. Exceptions are discussed in the following paragraphs.

Arsenic was detected above its carcinogenic PCT in every sample except WSB-2 (8 to 10 ft-bls). Most of the values are within the regional background range for arsenic, indicating that the arsenic levels may be representative of background conditions. Only a sample from BH-1 (9 to 10 ft-bls) had an arsenic level exceeding the regional background range.

Lead was detected in the 1987 surface sample (0 to 1 ft) from BH-4 at a level exceeding the EPA interim cleanup level and the regional background level. Lead

4-9

Table 4-4. Comparison of Maximum Soil Concentrations Detected at Wright AAFTA* to PCTs

.

.

•

Ć

	PCT	L	Regional Background	E.	ti.	Downgradient: South of Fire Dit	Oil/Water Senantor	Underground	Aboveground	
	(mg/kg)	/kg)	(mg/kg)	(mg/kg)	(by	(mg/kg)	(mg/kg)	(mg/kg)	Tank (mg/kg)	Exceedance
Chemical	Systemic Effects	Carcinogenic Effects	Southeastern Georgia (a)	BH-1, BH-2, BH-3, BH-4	WSB-2, WSB-3, WSB-4	WSB-1	PSB-1	PSB-2	PSB-3	of PCT
INORGANICS										
Arsenic	80	0.4	<0.1 - 6.5	16	4.59	BDI	4.51	67 6	C1 N	с Т
Banum	4,000	NA	10 - 200	15.5	8.83	8.28	15.4	950	φ -	- 1
Cadmium	80	NA	AA	BDL	BDL	BDL	4.09	220	5 6	
Chromium, total**	400	AN	1.0 - 20	17.5	18.9	9.58	33.9	7.59	17.7	e
Lead	500 ***	NA	<10-10	608	10.8	10.9	12.2	BDL	8.35	34
Mercury	24	AN	<0.01 - 0.032	0.4	BDL	BDL	BDL	BDL	BDL	; 07
Selenium	400	٩N	<0.1 - 0.5	BDL	0.531	BDL	0.485	BDL	0.387) ന
PAHs										
Benz(a)anthracene	QN	1.2 +	NA	2	BDI	E C R		IUa	2	•
Benzo(a)pyrene	QN	0.12	AA	1.108	BDL			BD L		- ,
Fluoranthene	3,200	NA	NA	5.1	BDL	BD	0 12 0	BDL BDL	i i	_
Indeno(1,2,3-cd)pyrene	QN	1,2 +	NA	0.5	BDL	801	BDI	цо И		
Naphthalene	320	NA	NA	BDL	BDL	BDL	BDL	BOL	0.14	
Phenanthrene	2,400 ++	NA	NA	1.2	BDL	BDL	BDL	108	BDL	
Pyrene	2,400	٩N	ΔN	BDL	BDL	BDL	BDL	BDL	0,099	
MISC. SEMIVOLATILE ORGANICS				_						×
Bis(2-ethythexyl) phthalate	1,600	50	ΨN	2.5	BDL	BDL	BDL	BDL	BDL	
VOLATILE ORGANICS										
Methylene chloride	4,800	8	NA	BOL	0.0034	0.0039	BDI	ВD	ΪŪ	
Toluene	16,000	QN	NA	BDL	0.033	0.022	BDL		BDI C	
Trichloroethene	QN	64	AN	BDL	BDL	BDL	0.0084	0.012	0.0071	

81

Table 4-4. Comparison of Maximum Soil Concentrations Detected at Wright AAFTA* to PCTs (Continued, Page 2 of 2)

Ę

Ć

BDL = below detection limit. ND = not determined. NA = not applicable. Note:

mg/kg = milligrams per kilogram.

(a) Average metal concentration in soils southwest of Savannah, Georgia (Shacklette and Boerngen, 1984).
 (1) Some site levels exceed carcinogenic PCT (highlighted in table).

Regional background value exceeds carcinogenic PCT (highlighted in table).
 Some site levels exceed regional background but are within PCT.
 Stite level exceeds noncarcinogenic PCT (highlighted in table).

*Soil samples were collected in 1987 (BH), 1990 (WSB), and 1992 (PSB).

**Assumes that chromium is present as the more potent hexavalent species.

***Interim cleanup level established by EPA (1991).

+ Interim Region IV Guidance on Toxicity Equivalency Factor (TEF) methodology for carcinogenic PAHs based on each compounds relative potency to the potency of benzo(a)pyrene (EPA, February 1992). The following TEFs were used to convert the CSF for benzo(a) pyrene to an equivalent CSF for the particular carcinogenic PAH:

benz(a)anthracene = 0.1 and indeno(1,2,3-cd)pyrene = 0.1. + + No RfD is available for this PAH; the RtD for the most potent non-naphthalene PAH (pyrene) is used for comparison, only.

Source: ESE.

Table 4-5. Comparison of Maximum Sediment Concentrations at Wright AAFTA* to PCTs

		PC (mg/i			Regional Background (mg/kg)		ge Ditch //kg)	Exceedance
Chemical	Systen Effect		Carcinog Effect		Southeastern Georgia (a)	PSS-1	PSS-2	of PCT
Arsenic	80		0.4		<0,1 - 6.5	3.82	3.38	1,2
Barium	4,000		NA		10 - 200	37.2	13.4	
Cadmium	80		NA		NA	2.26	0.786	
Chromium, total**	400		NA		1.0 - 20	19.4	8.99	
Lead	500	***	NA		<10 - 10	15.4	BDL	3
PAHs								
Anthracene	24,000		NA		NA	0.33	0.12	' 1
Benz(a)anthracene	ND		1.2	+	NA	2.7	2	1
Benzo(a)pyrene	ND		0.12		NA	2.8	2.2	1
Benzo(b)fluoranthene	ND		1.2	+	NA	4.7	3.7	1
Benzo(ghi)perylene	2,400	++	NA		NA	3.6	1.6	
Benzo(k)fluoranthene	ND		1.2	+	NA	1.2	1.1	
Chrysene	ND		12	+	NA	2.6	1.9	
Dibenz(ah)anthracene	ND		0.12	+	NA	8DL	0.32	1
Fluoranthene	3,200		NA		NA	6.2	4.6	
Indeno(1,2,3-cd)pyrene	ND		1.2	+	NA	4	2	1
Phenanthrene	2,400	+ +	NA		NA	2.1	0.76	
Pyrene	2,400		NA		NA	5.2	3.7	
VOLATILE ORGANICS		-						
Trichloroethene	ND		64		NA	0.0099	0.04	
Trichlorofluoromethane	24,000		NA		NA	BDL	0.01	

Note: ND = not determined.

NA = not applicable.

BDL = below detection limit.

mg/kg = milligrams per kilogram.

(a) Average metal concentration in soils southwest of Savannah, Georgia (Shacklette and Boerngen, 1984).

(1) Some site levels exceed carcinogenic PCT (highlighted in table).

(2) Regional background value exceeds carcinogenic PCT (highlighted in table).

(3) Site level exceeds regional background but is within PCT.

*All sediment samples (PSS) were collected in 1992.

**Assumes that chromium is present as the more potent hexavalent species.

***Interim cleanup level established by EPA (1991).

+ Interim Region IV Guidance on Toxicity Equivalency Factor (TEF) methodology for carcinogenic PAHs based on each compounds relative potency to the potency of benzo(a)pyrene (EPA, February 1992). The following TEFs were used to convert the CSF for benzo(a)pyrene to an equivalent CSF for the particular carcinogenic PAH: benz(a)anthracene = 0.1, benzo(b)fluoranthene = 0.1, benzo(k)fluoranthene (0.1), chrysene (0.01), dibenz(ah)anthracene = 1.0, and indeno(1,2,3-cd)pyrene = 0.1.

++No RID is available for this PAH; the RID for the most potent non-naphthalene PAH (pyrene) was used for comparison.

Source: ESE.

concentrations in the remaining 1987 samples and in WSB-3 (6 to 10 ft-bls) exceeded the regional background value for lead but are below the PCT.

Concentrations of mercury in all of the 1987 samples and selenium in WSB-3 (6 to 10 ft-bls) exceeded background values but are below their respective PCTs.

The concentrations of two PAHs [benz(a)anthracene and benzo(a)pyrene] in the 1987 samples also exceed the carcinogenic PCTs. Note that the only positive detections of PAHs were in the 9- to 10-ft-bls sample from BH-1 taken in 1987.

Aboveground Fuel Storage Tanks on Concrete Pad

In 1992, three soil samples were collected from a 10-ft deep boring (PSB-3) at the aboveground fuel storage tanks located northeast of the fire pit. The samples were collected at depths of 0 to 4.6, 5 to 7, and 8 to 10 ft-bls. The maximum arsenic concentration detected in these samples was within the regional background range (Table 4-4). All of the arsenic concentrations exceed the carcinogenic PCT developed for arsenic. Because the arsenic levels are similar across the site and are within the regional background range, the arsenic does not appear to be site-related.

Underground Fuel Line

In 1992, three soil samples were collected from a 10-ft-deep boring (PSB-2) near the underground fuel line northeast of the fire pit. The samples were collected at depths of 0 to 4, 5 to 7, and 8 to 10 ft-bls. The maximum arsenic concentration detected in the samples exceeds the carcinogenic PCT developed for arsenic (Table 4-4). Because the arsenic levels are within the regional background range, the arsenic does not appear to be site-related.

Oil/Water Separator

In 1992, three soil samples were collected from a 10-ft-deep boring (PSB-1) near the oil/water separator located adjacent to the west edge of the fire pit. The samples were collected at depths of 0 to 3, 5 to 7, and 8 to 10 ft-bls. The maximum arsenic concentration detected in the samples exceeds the carcinogenic PCT developed for arsenic (Table 4-4). Because the arsenic levels are within the regional background range, the arsenic does not appear to be site related.

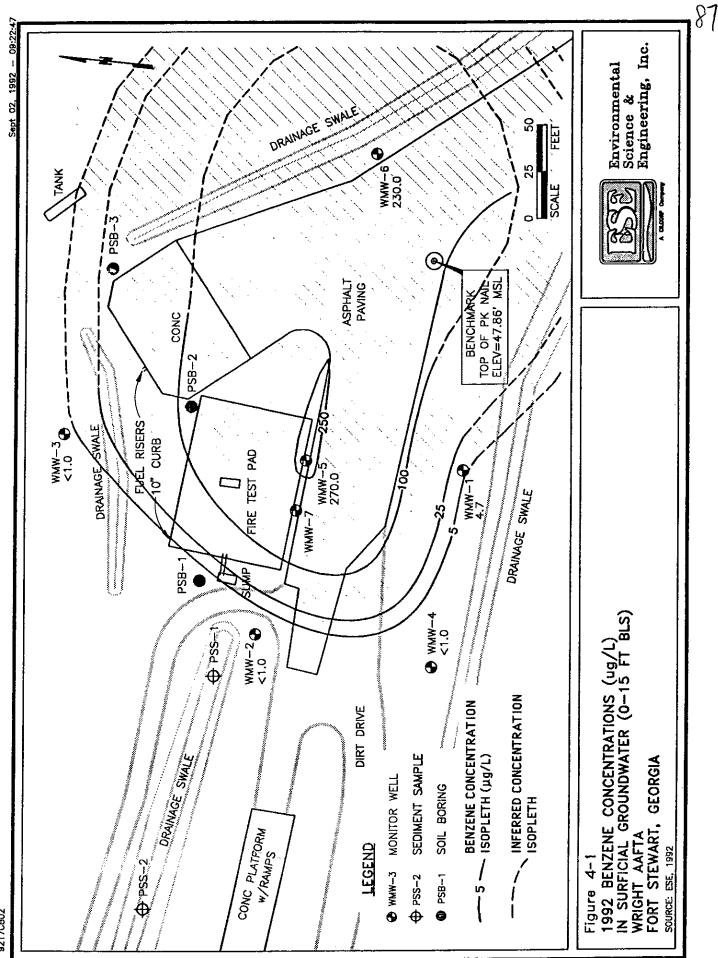
Drainage Ditch

In 1992, two sediment samples were collected from the ditch draining the west side of the fire pit. One sample (PSS-1) was collected approximately 40 ft from the concrete outfall, and the second sample (PSS-2) was collected approximately 150 ft downstream of PSS-1. The arsenic concentration detected in each of the samples exceeds the carcinogenic PCT developed for arsenic (Table 4-5) but is within the regional background range, indicating that the reported values are representative of regional levels and are not site-related. The lead concentration reported in PSS-1 exceeds the regional background range but is well below the interim cleanup level for lead.

The concentrations of the PAHs benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(ah)anthracene, and indeno(1,2,3-cd)pyrene in the sediment samples exceed their respective carcinogenic PCTs. Sediment PCTs are based on soil ingestion parameters, which are typically very conservative when applied to sediment exposure.

4.2.1.2 Groundwater Data and PCTs

As previously noted, the MCL, proposed MCL, or EPA-enforced action level is the applicable PCT for groundwater. In the absence of these values for specific chemicals, PCTs were derived based on human oral exposure assumptions and oral RfDs and CSFs, as presented in the RCRA RFI Guidance Manual (EPA, 1989)


4-14

(Table 4-2) and relevant EPA toxicological databases and documents. The maximum concentrations of the chemicals detected in groundwater, along with their appropriate PCTs, are given in Table 4-6. A discussion of the relative significance of the groundwater analytical results for the areas sampled at the Wright AAFTA is presented in the following paragraphs.

Samples were collected from three monitor wells in 1990: WMW-1, located south of the fire pit; WMW-2, located adjacent to the drainage ditch west of the fire pit; and WMW-3, located north (upgradient) of the fire pit. In 1992, samples were collected from the same three wells and four new wells: WMW-4, located south of the fire pit and west of WMW-1; WMW-5 and WMW-7, both located adjacent to the southern edge of the fire pit; and WMW-6, located southeast and across the asphalt from the fire pit. All of the wells are screened across the water table with the exception of WMW-7, which is screened at depth in the same aquifer.

The concentrations of lead in the 1990 samples from WMW-1 and WMW-2 exceeded the EPA action level (Table 4-6). The detection limit for lead in the 1992 samples was 63.8 μ g/L, so it is impossible to know whether the 1992 lead concentrations were above or below the action level. The chromium levels detected in the 1990 samples from WMW-1 and WMW-2 and the barium concentration reported in the 1990 sample from WMW-1 exceeded the state of Georgia MCLs for these metals. Both of these metals were below the MCLs or the detection limits in the 1992 samples from the same wells. The only other chemical measured in groundwater above its PCT was benzene, which was detected at approximately 50 times its MCL in WMW-5 and WMW-6. The benzene concentrations detected during the 1992 sample effort are presented in Figure 4-1.

4-15

9217CB02

4-16

Table 4-6. Comparison of Groundwater Data for Wright AAFTA to PCTs

(

1

	Exceedance of PCT			+	-				-		
Drainage Ditch (ug/L)	WMW-2	1992	č	152	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	M	1990	Ğ	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54.4	82.8	2.5	BDL	BDL	BDL	BDI
Downgradient (Southeast) of Fire Pit (ug/L)	9-MWM	1992		33.8	BOL	BDL	BDL	BDL	230	6.7	300
	WWW-4	1992		61.9	13.6	BDL	BDL	BDL	BOL	BDL	BDL
Downgradient (South) of Fire Pit (ug/L)	WMW-1	1992	IUN	18	BOL	BOL	BDL	1:	4.7	BOL	9.1
Dow	M	1990	ר ג	1,630	329	391	4.6	BOL	BOL	BDL	BDL
Fire Pit (ug/L)	Z-WWW	1992	37	129	16.7	BDL	BDL	BOL	BOL	BDL	BDL
E 3	WMW-3 WMM-5 1990 1992 1992	1992	G	23.9	BDL	BDL	3.5	BOL	270	76	170
Background: North of Fire Pit (ug/L)	e-Mi	1992	Ģ	20.4	BDL	BDL	BOL	BDL	BDL	BDL	BOL
Back North c (u	MM	1990	G	28.5				BDL	D	BDL	BOL
		MCL	S	1,000 6	20 20	15 d	10 ¢	QN	c)	200	9
PCTs (ug/L)	PCTs (ug/L) Systemic Carcinogenic Effects Effects (a) (b)	Effects (b)	U W	¥	Ą	Ñ	M	Ą	MCL	¥	≸
		Effects (a)	WC	WC	MCL	MCL	MCL	105	MCL	MCL	70,000
.5%		Chemical	INORGANICS Arenic	Barium	Chromium, total*	Lead	Selenium	PAHs Naphthalene	VOLATILE ORGANICS Benzene	Ethylbenzene	Xylenes, total

MCL = EPA maximum contaminant level established under the Safe Drinking Water Act (unless otherwise specified). Note:

NA = not applicable. ND = not determined. BDL = below detection limit.

ug/L = micrograms per liter.

(a) Concentration in drinking water derived from the oral reference dose (RfD) and assumes that a healthy 70-kilogram adult ingests 2 L/day of water (EPA, 1989b).

[concentration = oral RID (mg/kg/day) x 70 (kg) x 1000 (ug/mg) / 2 (L/day)]
 (b) Concentration corresponding to an upper-bound increased lifetime cancer risk of 1E-06.
 (b) Concentration = 1E-06 x 70 (kg) x 1000 (ug/mg) / slope factor (mg/kg/day)-1 x 2 (L/day)]
 (c) Georgia State MCL (more stringent than federal MCL).
 (d) 56 FR 26460 (Jume 7, 1991). This "action level," when measured in the 90th percentile at the consumers tap, triggers initiation of corrosion control studies and treatment requirements; effective as of December 7, 1982.

(1) Some site samples exceed MCL (highlighted in table).

*Assumes that chromium is present as the more potent hexavalent species.

Source: ESE

4.3 SUMMARY OF PCT ANALYSIS FOR INDIVIDUAL CONTAMINANTS

4.3.1 SOIL/SEDIMENT

Arsenic was detected in nearly all of the soil samples from the site at levels exceeding the carcinogenic PCT; however, the majority of concentrations are within the range typically observed in soils from the region (southwest of Savannah, Georgia), indicating that the reported values are not site-related. The only sample with a reported arsenic concentration exceeding background was the 9 to 10 ft-bls sample from BH-1. Not only does this detection appear to be an isolated case (arsenic levels in other borings from the same depth were within background), but the horizon at which it was detected is not readily available for exposure unless the site is excavated.

In addition to arsenic, two PAHs were detected above their carcinogenic PCTs in a deep (9 to 10 ft-bls) 1987 sample from the fire pit, while a surface soil sample from the same year showed a lead concentration exceeding the EPA interim cleanup level.

Sediment samples from the drainage ditch also revealed concentrations of arsenic that exceed the carcinogenic PCT; however, these levels are within the regional background range and do not appear to be site-related. Several PAHs were also detected at levels that exceed their respective carcinogenic PCT's (based on soil ingestion, which is conservative for sediment exposure).

4.3.2 GROUNDWATER

The concentrations of barium and chromium detected in a downgradient well (WMW-1) exceed state of Georgia MCLs, and the lead level detected in the same well is above the EPA action level. Chromium and lead were also detected above PCTs in the well adjacent to the drainage ditch (WMW-2). The only other chemical measured in groundwater above its PCT was benzene, detected at

4-18

approximately 50 times its MCL in WMW-5 (perimeter of fire pit) and WMW-6 (downgradient of fire pit).

Based on conversations with the fire station personnel who were onsite during several of our monthly visits, the fire training area was still in service. The recently charred grass near the fire training area also indicated the current use of the fire-training pad. The elevated levels of benzene detected during this round of sampling and analyses may be a direct result of a new spill occurring since the performance of the previous groundwater sampling and analyses.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Data collected indicate that the SVOC contamination in the drainage swale sediments and the benzene in groundwater present a potential threat to human health and/or the environment. The extent of lateral and vertical environmental contamination at Wright AAFTA has not currently been defined. Specifically, the southern and eastern limits of groundwater contamination are not known, and it is also possible that semivolatile contamination may have leached from the drainage swale sediments into adjacent and underlying soils. Despite the lack of definition of the extent of the problem, it is possible to proceed with a closure/remediation plan using the existing data. Such a closure plan will have to be performance based, requiring the closure construction contractor to perform further sampling as an initial phase of the closure. The quantity of sediments to be removed, the volume of groundwater requiring treatment, and the total time required for groundwater remediation can only be estimated on an order-of-magnitude basis using available data.

5.1 <u>SOIL</u>

Only two samples contained contaminant concentrations above the PCTs. The first sample was collected from the surface overflow area west of the AAFTA pad and contained slightly elevated levels of lead. This can easily be removed when the SVOC-contaminated sediments in the adjacent drainage swale are removed. The second sample was taken from the south edge of the pad at a depth of 10 ftbls and contained only elevated levels of SVOCs in excess of PCTs. The soil PCTs were based on an assumed exposure pathway of ingestion, which is not probable, given the location. No corresponding SVOC contamination of groundwater was detected in the adjacent monitor well (WMW-5) (15-ft total depth) or in WMW-7 (50-ft total depth). One of two explanations may explain this isolated hit. The contamination may have migrated downward from the surface and is not a part of a larger mass of contaminated soil, in which case, no further action would be

5-1

required as a risk to human health or the environment is not present. Or, the contamination may be the edge of a large mass of soil contamination originating from the drainage swale, in which case remediation would be addressed in conjunction with the drainage swale sediments.

5.2 SEDIMENT

Drainage swale sediments were slightly contaminated with SVOCs. The possibility that this contamination may have migrated laterally and downward into adjacent soils and the extent to which contamination may have spread from this source is unknown. A closure plan can be developed without the need for further data by requiring the closure contractor to perform confirmatory sampling during sediment excavation to determine the soil contamination extent around and beneath the drainage swale.

5.3 GROUNDWATER

Benzene contamination south and east of the pad does present a potential threat to human health and the environment. A performance-based closure will require additional groundwater sampling to determine the extent of the benzene plume so that a groundwater recovery system can be adequately sized.

REFERENCES

- Bialas, Z. and Kleczkowski, A.S. 1970. Practical Use of Certain Empirical Formulas to Determine Coefficient of Permeabilities. Archivum Hydrotechnik No. 3. pp. 405-417.
- Florida Department of Environmental Regulation (FDER). 1988. Hazardous Waste Inspection Report. July 14, 1988.
- Hunter/Environmental Science and Engineering, Inc. (Hunter/ESE). 1989. Contamination Evaluation/Closure Plan: Fort Stewart Fire Training Areas, Savannah, Georgia. Final Report. U.S. Army Corps of Engineers. Gainesville, FL.
- Integrated Risk Information System (IRIS). 1992. Electronic Database, DC-ROM Version. Toxicology, Occupational Medicine and Environmental Series. Volume 13. Expires July 31, 1992, Micromedex, Inc., Denver, CO.
- Peck, Hanson, and Thornburn. 1974. Foundation Engineering. John Wiley & Sons.
- Shacklette, H.T. and J.G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Coterminous United States. U.S. Geological Survey Professional Paper 1270. U.S. Government Printing Office, Washington. DC.
- U.S. Army Environmental Hygiene Agency (USAEHA). 1987. Hazardous Waste Study No. 37-26-0127-88. Investigation of Soil Contamination. Fort Stewart, GA. March 24-31, 1987. Aberdeen Proving Ground, MD.
- U.S. Environmental Protection Agency (EPA). 1987. Surface Impoundment Clean Closure Guidance Manual. EPA 530-SW-87-022. Office of Solid Waste. Washington, DC.
- U.S. Environmental Protection Agency (EPA). 1989a. RCRA Facility Investigation Guidance Vols. I and II. Waste Management Division, Office of Solid Waste. OSWER Directive 9502.00-6D. PB9/89-200299.
- U.S. Environmental Protection Agency (EPA). 1989b. Risk Assessment Guidance for Superfund (RAGS). Human Health Evaluation Manual. Vol. I. EPA 540/1-89/002. Washington, DC.

REFERENCES (Continued, Page 2 of 2)

- U.S. Environmental Protection Agency (EPA). 1991. Update on Soil Lead Cleanup Guidance. Office of Solid Waste and Emergency Response (OSWER). Memorandum from Don Clay, Assistant Administrator of OSWER. Washington, DC.
- U.S. Environmental Protection Agency (EPA). 1992. Toxicity Equivalency Factor (TEF) Methodology for Carcinogenic PAHs. Region IV Interim Guidance. Atlanta, GA.

APPENDIX A

95

CLIMATIC DATA FROM WRIGHT ARMY AIRFIELD WEATHER STATION

96

i

			.لد	NILY CLIMATOL	octone min			4.1	C0111 7	DO V	ç	ļ
MONTE:	July	YEAR:	1991				DETACHNENT:	21	SQUAD	KON:	Э 	
AY OF	 Xax	MIN	MEAN	DEG. DAYS	DEG. DAYS	PRECIP WATER	PRECIP SNOW	MAX WINDS	BS	SA	SP	Ī.
E NONTE	TEMP	<u>"Exp</u>	. TEMP	HEAT	C001	EQUIN TOTAL	TOTAL					
	90	 75	82.5	0	17.5	0.00	0.00	120/14	0	24 24		0 0
1	. 92	75	83.5	0	18.5	0.00	0.00	080/10	0		-	
2	. 92 95	76	85.5	Ô	20.5	Ţ	0.00	310/17	1	23	5	0
3		79	84	0	19	0.05	0.00	270/16	0	24	5	0
4	89	75	84	Ō	19	0.62	0.00	250/14	0	24	5	0
2	93		81	Ő	16	0.30	0.00	210/16	l	23	1	0
5	88	74	83.5	0	18.5	Т	0.00	290/13	1	23	3	0
7	93	74	83.5 84	0	19	0.00	0.00	270/14	1	23	5	0
8	94	14		0	15.5	2.45	0.00	220/22	1	23	11	0
3	89	72	80.5	V	17	Ţ	9.00	130/12	O	24	8	0
10	92	72	82	V	19.5	Ť	0.00	230/14	1	23	3	0
11	95	74	84.5	0	19.5	Î	0.00	150/12	0	24	4	0
12	94	75	84.5	0		0.00	0.00	210/11	0	24	0	0
13	99	11	87.5	0	22.5		0.00	150/14	1	23	5	0
14	97	75	86	0	21	ĩ	0.00	190/16	1	23	6	0
15	87	73	80	0	- 15		0.00	070/19	2	22	15	(
16	89	10	79.5	0	14.5	0.79	0.00	190/28	3	21	9	(
17	88	70	79	0	14	0.12		260/29	1	23	6	
18	87	71	79	0	14	1.75	0.00	140/11	1	23	2	(
19	88	75	81.5	0	16.5	T	0.00	250/22	Ô	24	ŝ	4
20	90	74	82	0	17	0.25	0.00		1	23	ĩ	1
21	89	72	80.5	0	15.5	0.04	0.00	030/19	Λ L	24		1
22	94	72	83	0	18	0.00	0.00	240/12	0	24		
	95	76	85.5	0	20.5	0,03	0.00	190/11	0			
23	96	76	86	0	21	0.00	0.00	330/14	0	24		
24	90 93	73	83	0	18	0.00	0.00	250/13	0	24		
25		73	83	0	18	0.00	0.00	250/13	0		0	
26	93	73	81	Õ	16	0.37	0.00	360/18	-	23		
27	89		8 <u>1</u> .5	ñ	16.5	0.00	0.00	220/11		24		
28	89	74	82 82	Ň	17	Ţ	0.00	260/16		24		
29	89	75		0	16.5	3.98	0.00	200/17	2		1	
30	89	74	81.5		6.5	0.62	0.00	270/16		22		
31	81	62	71.5	0	U.J	······································						
EXTREME:	98	62	80					260/29				
MFAN:	91.1	73.5	82.3	0	537.5	0.37 11.37		0	2	1 72	3 16	2
				· · · · · · · · · · · · · · · · · · ·								
	DAYS WITH F or above:	17	4.) or =	to .01" PRECI		7.) or = t	o i" SNOWFALL:	; 0				
1. 10 0.60	F or below:	<u>.</u> ,		to .10" PRECI	P: 10	8. PRECIPIT	ATION DAYS :	22				

												•
KONTE:	August	YEAR:	1991				DETACHMENT	: 21	SQUAI	DRCN:	2	! !
day of ee month	MAX TEMP	MIN TEMP	MEAN TEMP	DEG. DAYS HEAT	DEG. DAYS COOL	PRECIP WATER EQUIV TOTAL	PRECIP SNOW TOTAL	NAX WINDS	RS	SA	SP	L !
		 75	79.5		14.5	1.52	0.00	150/29	4		29	
<u>:</u>	84	75	79.5	0	14.5	0.38	0.00	220/18	0		18	0
2	- 83		82.5	ů	17.5	0.00	0.00	280/13	0	24		0
3	89	76		0	19	0.00	0.00	250/10	0			0
4	94	74	84	0	19.5	Т	0.00	180/14	0		4	0
5	94	75	84.5		17.5	0.00	0.00	160/12	1	23	1	0
6	91	74	82.5	0	11.5	0.00	0.00	180/13	0	24	0	0
7	91	75	83	0		0.03	0.00	250/15	0	24	3	0
8	96	78	87	0	22	0.00	0.00	280/14	0	24	0	0
9	94	76	85	C	20	0.37	0.00	290/24	2	23	6	0
10	92	75	83.5	0	18.5		0.00	350/24	1	23	9	0
17	91	13	82	0	17	0.43		290/09	1	23	9	0
12	89	73	81	0	16	0.00	0.00	220/22	î	23	4	0
13	92	73	82.5	0	17.5	0.06	0.00		1	23		Ō
14	91	73	82	0	17	0.80	0.00	210/17		24		Ő
15	63	72	17.5	0	12.5	0.00	0.00	320/11	0			0
	86	71	79.5	0	14.5	0.00	0.00	030/11	0	24		0
16	91	12	81.5	0	16.5	0.00	0.00	040/11	0	24		
17	91	12	82	0	17	0.00	0.00	310/13	0	24		0
18		76	84.5	0	19.5	0.00	0.00	220/22	0	24		0
19	93		81.5	Õ	16.5	0.25	0.00	280/13	3	21		0
20	92	71		Õ	11	0.00	0.00	270/12	0	24		0
21	88	64	76	-	13.5	0.00	0.00	090/10	0	24		0
22	87	70	78.5	0	14.5	0.00	0.00	060/13	0	24	0	0
23	87	72	79.5	0	14.5	0.75	0.00	120/13	2	22	2 1	0
24	84	74	79	0		0.21	0.00	130/15	2	22	2 4	(
25	90	75	82.5	0	17.5	1.53	0.00	090/08	1		3 13	3 (
26	85	74	79.5	0	14.5	0.24	0.00	030/09		2	3 1	5 (
27	83	74	78.5	0	13.5		0.00	090/12				2 (
28	84	73	78.5	0	13.5	0.26	0.00	110/12			37	
29	86	74	80	0	15	0.09	0.00	250/12				
30	87	74	80.5	0	15.5	0.00			Ő	5	1 0	ł
31	91	71	81	0	16	0.00	0.00					
EXTREME:		64	 80			1.53		040/19		*		
EATRENE: MEAN:		73.4	81.2			0.22		0	·,	 10 71	1 10	 2
TOTAL	. 07.1 			- 0	503.5	6.92		۰۰۰۰۰۰ V	/		4 10	J
·												
	F DAYS WITH	16	() or = 1	to .01" PRECI	P: 14	7.) or = t	o 1" SNOWFALL	: 0				
1. 90 de	g.F or above: g.F or below:	16	4, 1 UL	to .10" PRECI to .50" PRECI	P: 11	8. PRECIPIT	ATION DAYS	; 15				

			D	AILY CLIMATOL(GICAL DATA							
NONTH: Sept	tenber	YEAR:	1991				DETACHMENT	: 21	SQUAT	RON	; 5	
DAY OF HE MONTH	MAX TENP	MIN TEMP	MEAN TEMP	DEG. DAYS HEAT	DEG. DAYS COOL	PRECIP WATER EQUIV TOTAL	PRECIP SNOW TOTAL	MAX WINDS	RS	SA	SP	L
			82.5	 0	17.5	0.00	0.00	080/14	2	22	0	0
1	94	71	82.J 77	0	12	0.01	0.00	080/24	0	24	9	0
2	81	73		0	12.5	0.00	0.00	050/17	0	-	2	0
3	85	70	77.5	0	15	0.00	0.00	100/16	0	24	0	0
4	88	72	80 70	0	14	T	0.00	070/11	0	24	2	0
5	87	71	79	ů v	18.5	0.00	0.00	120/10	0	24	2	0
6	91	76	83.5	0	17	0.40	0.00	100/13	2	22		0
7	91	73	82	0	13	0.10	0.00	070/17	0	24		0
8	85	71	78	v	11.5	0.00	0.00	070/16	0	-24	0	0
9	86	67	76.5	v	11.5	T	0.00	070/13	0	24		0
10	88	72	80	0	15	0.00	0.00	350/10	0	-24	0	0
11	90	70	80	U		0.00	0.00	170/10	0	- 24	0	0
12	93	72	82.5	U	17.5	0.00	0.00	140/06	0	- 24	0	0
13	92	74	83	0	18	0.00	0.00	160/08	0	24	0	0
14	94	76	85	0	20	0.00	0.00	140/06	0	24	0	0
15	94	74	84	0	19		0.00	120/08	1	23	3	0
16	91	74	82.5	0	17.5	0.00	0.00	130/12	0	24	5	- (
17	90	73	81.5	0	16.5	0.00	0.00	180/10	0	24		(
18	88	72	80	0	15	0.00	0.00	140/15	Ō	24		(
19	89	73	81	0	16	0.55	0.00	360/15	2	22		(
20	76	65	70.5	0	5.5	0.01	0.00	020/16	0	24		(
21	74	64	69	0	4	0.00		030/13	Ō	2		(
22	79	63	71	0	6	0.00	0.00	030/13	ŏ	24		
23	87	65	76	0	11	0.00	0.00	050/11	0	2		
24	87	72	79.5	0	14.5	0.00	0.00	190/16	2	2		
25	81	70	75.5	0	10.5	0.21	0.00	260/11	Õ	2		
26	76	61	68.5	0	3.5	0.00	0.00	010/13			4 0	
27	80	60	70	0	5	0.00	0.00	010/13			4 0	
28 .	79	56	67.5	0	2.5	0.00	0.00				4 0	
29	81	63	72	0	7	0.00	0.00	060/24 070/26			4 0	
30	83	67	75	0	10	0.00	0.00	V1V120	v		4	
31	00		0	65	0							
	 94	56	28		****	0.55		070/26				
EXTREME: MEAN: TOTAL:		69,3 	11.1	65	380	0.04 1.28		0	9	13	35 (52
NUMBER OF D												
		10	4.) or = 1	to .01" PRECIN	P: 6	7.) or = t	o 1" SNOWFALL	: 0				
1. 90 deg.F	or above: or below:	0	7. 7 VL *	to .10" PRECI		8 PRECIPIT	ATION DAYS	: 7				

			D	AILY CLIMATOLO	GICAL DATA							
NONTH:	October	YEAR:	1991				DETACHMENT:	21	SQUAL)RON:	5	
DAY OF HE MONTH	NAX Temp	MIN TEMP	MEAN TENP	DEG. DAYS HEAT	DEG. DAYS COOL	PRECIP WATER EQUIV TOTAL	PRECIP SNOW TOTAL	MAX WINDS	RS	SA	SP	 [
				0	10	T	0.00	070/25	1	23	5	0
1	83	67		0	4.5	0.50	0.00	010/25	3	21	20	0
2	73	66	69.5	0	6.5	0.11	0.00	150/10	0	24	4	0
3	78	65	71.5	0	7.5	0.00	0,00	090/07	0	24	0	0
4	80	65	72.5	v	12.5	0.43	0.00	240/28	1	23	14	0
5	82	73	11.5	0	4.5	0.05	0.00	310/19	0	24	1	0
6	79	60	69.5	0	4.J ()	0.00	0.00	010/23	0	24	0	0
7	66	49	57.5	7.5	0	0.00	0.00	050/25	0	24	0	0
8	73	45	59	ь	•	T.	0.00	050/24	0	24	3	0
9	79	57	68	0	3	ľ	0.00	040/16	0	24	2	0
10	80	64	72	0	I		0.00	250/19	0	24	3	0
11	81	59	70	0	5	0.00	0.00	250/19	Ō	24	0	0
12	84	58	71	0	6	0.00		310/15	Õ	24	0	(
13	80	51	65.5	0	0.5	0.00	0.00	120/15	õ	24	Õ	(
14	80	56	68	0	3	0.00	0.00	280/25	1	23	10	.(
15	83	63	73	0	8	0.75	0.00		-	24	6	(
16	71	49	60	5	0	0.00	0.00	360/17	0	24	0	(
17	71	46	58.5	6.5	0	0.00	0.00	320/17	0			(
18	11	48	62.5	2.5	0	0.00	0.00	200/10	0	24		
	80	48	64	1	0	0.00	0.00	300/10	1	23		1
19	78	53	65.5	0	0.5	0.00	0.00	100/17	0	24		(
20	78	59	65.5	Ó	0.5	0.00	0,00	060/15	1	23		1
21		57	69	Ő	4	0.00	0.00	060/15	0	24		
22	81	65	74	0 0	9	0.00	0.00	090/18	0	24		
23	83	67	14	õ	10	0.11	0.00	120/27	0	24		
24	83		75.5	0	10.5	Т	0.00	070/19	0		4	
25	81	70	75.5	0	10.5	Т	0.00	070/19	0		4	
26	81	70		0	9	Т	0.00	070/21	0		3	
21	81	67	74	0	5.5	0.00	0.00	090/16	0		0	
28	82	59	70.5	0	0.5	T	0.00	040/18	0		3	
29	71	60	65.5	4.5	0	0.00	0.00	030/16		24		
30	71	50	60.5		0	0.00	0.00	290/14	0	24	10	
31	78	49	63.5									
EXTREME	: 84	45	64.5			0.75		120/27	 			
MEAN	: 78.1				138	1.95)	8	73		1
	F DAYS WITE							0				
1. 90 de	g.F or above:	0	4.) or = 1	CO .01" PRECIP	: 6	1.) or = to	VULUN BIAC .					
	g.F or below:	0	5.) or = 1 6.) or = 1	o ,10" PRECIP	: 5 ; 2		ATION DAYS : TORM DAYS :	2 V				

ĺ

			D	AILY CLIMATOLOG	ical data		,				_	!
MONTH:	NOVENBER	YEAR:	1991				DETACHMENT:	<u>21</u>	SQUAT	RON:	5	!
DAY OF HE KONTH	MAX TEKP	MIN TEMP	<u>mean</u> Temp	DEG. DAYS HEAT	DEG. DAYS COOL	PRECIP WATER EQUIV TOTAL	PRECIP SNOW POTAL	XAX WINDS	RS	SA	SP	1 1
			65.5	0	0.5	<u>م</u>	0.00	150/13	0	24		0
1	76	55		3.5	0	0.00	0.00	290/15	0	24		0
2	14	49	61.5	13.5	Ó	Ţ	`0.00	290/12	1	23	5	0
3	57	46	51.5		0	0.00	0.00	300/16	0	24	Û	0
4	58	38	48	17	0	0.00	0.00	350/12	0	24	0	0
5	60	35	47.5	17.5	0	0.00	0.00	010/15	1	23	Ĵ	Û
6	53	47	55	10	•	0.00	0.00	350/14	0	24	C	0
7	67	43	55	10	0	1.00 T	0.00	360/20	0	24	5	0
8	61	37	49	16	0	-	0.00	350/21	1	23	4	0
9	49	40	44.5	20.5	0	1.48	C.00	290/14	1	23	8	0
10	49	42	45.5	19.5	¢	ET	0.00	300/14	Õ	24	0	Û
10	63	38	50.5	14.5	0	0.00		060/08	Õ	24	0	0
	65	38	51.5	13.5	0	0.00	0.00		ů	24	0	0
12	63	42	52.5	12.5	0	0.00	0.00	010/11	0		Õ	Ő
13		39	55.5	9.5	0	0.00	0.00	130/09	-	24		Ĉ
14	72	49	63	2	Û	0.00	0.00	210/12	0			(
15	77	49 51	64.5	0.5	0	0.00	0.Û0	270/13	0		8	
16	78		63	2.2	0	0.00	0.00	050/23	0	24		.(
17	72	54		1	0	0.00	0.00	040/17	0		1	(
18	71	57	64 (C	÷ ∧	ĩ	0.00	0.00	120/18	0	24		(
19	78	58	68	U A	5.5	Ţ	0.00	190/17	0		1	ļ
20	91	60	70.5	v	8.5	0.00	0.00	180/20	0		0	(
21	79	68	73.5	U		0.00	0.00	230/19	0	24	3	
22	71	60	65.5	0	0.5	1.00 T	0.00	220/08	0	2	4 7	
23	71	59	65	0	0	0.00	0.00	300/25	0	24	4 0	
24	56	33	44.5	20.5	U		0.00	300/13	0	2	40	
25	54	28	41	24	0	0.00	0.00	360/13	0			(
26	56	30	43	22	0	0.00	0.00	050/15				ŕ
20	59	38	49.5	16.5	0	0.00		020/12			4 0	
28	69	43	56	9	0	0.00	0.00	110/19			4 0	
20 29	79	53	66	0	1	0.00	0.00	130/11			4 4	
	78	56	67	0	2	Т	0.00	_30/11			4	
30 31	70		0	65	0							
	•		 (1			1.48		300/25	j			
EXTREME		28				0.05						
<u>MEAN</u> TOTAL		46.2	56.5	340	21	1.48		0))
NILVARD (OF DAYS WITH					.	TH CMARTERS	. 0				
יר עט נ	eg.F or above:	Q	4.) or =	to .01" PRECIP:	1	1.) or = t	C i DIVUIC i DI	. V				
1. 90 01	eg.F or below:	2	5.) or =	to .10" PRECIP:	; 1	7.) or = t 8. PRECIPIT 9. THUNDERS	ATION DAYS	: 5 ^				
2. 32 00	eg.F or below:	0	6.) or =	to .50" PRECIP	: 1	9. THUNDERS	STORM JAYS	: 0				

MONTH: D	ECEMBER	YEAR:	1991				DETACHNENT:	21	SQUA	dren:	Ş	! : :
DAY OF HE MONTH	XAX TEXP	XIN TEX2	MEAN Temp	DEG. DAYS HEAT	DEG. DAYS CCOL	PRECIP WATER EQUIV TOTAL	PRECIP SNOW TOTAL	MAX WINDS	RS	SA	S?	
22 MOAIR					9.5	 ዋ	0.00	170/11	1		20	0
•	80	67	73.5	0	5.)	r. 2		200/17	3			0
2	76	67	71.5	0	6.5 0	0.63	0.00	290/24	4		15	0
2	79	49	64	<u>.</u>		0.00	0.00	290/26	C	24	Û	0
\$	55	38	46.5	18.5	0	0.00	0.00	070/15	Ū	24	Û	0
i	50	32	41	24	0	0.00	0.00	030/11	0		0	0
6	59	43	51	14	0	0.00	0.00	280/13	1		6	0
1	72	42	57	8	0	0.00	0.00	170/08	0	24	0	0
9	74	50	62	3	4.5	0.00	0.00	210/14	0	24	Û	0
9	17	62	69.5	0	4.) 0	0.06	0.00	070/15	1	23	4	0
10	72	55	63.5	1.5	-	0.00		030/14	9	24	0	0
11	67	48	57.5	7.5	0	0.00	0.00	080/14	0	24	2	0
12	?2	50	61	4	0	T.00	0.00	180/13	Û	24	4	0
13	30	61	70.5	Û	5.5	Ţ	0.00	240/17	1	23	15	
13	71	60	65.5	0	0.5	0.00	0.00	320/18	0	24		0
15	58	37	47.5	17.5	0	0.00	0.00	340/16	0	24	0	- 0
16	54	30	42	23	V	0.00	0.00	270/14	0	24		0
17	62	29	45.5	19.5	Ç A	0.00	0.00	280/18	0			0
18	67	38	52.5	12.5	U A	0.00	0.00			24		
19			0	65	v					24		
20			0	65	V					24		
21			0	65	V					24	i	
22			0	65	0					2		
23			0	65	0					2-		
24			0	65	0					2		
25			0	65	0					2		
26			0	65 (5	V A					2		
27			0	65	0					2		
28			0	65 65	0					-	4	
29			0	65 (5	0						4	
30			0	65	v ۵					2	4	
! 31			0	65					- -			
						0.63		290/2	6 -			
! EXTREME:		29				0.04						
! MEAN: ! TOTAL:		47.7 	57.9	999	25.5	0.69		0]6
1	DAYS WITE			to .01" PREC to .10" PREC to .50" PREC	IP: 2	1) or = 1	to 1" SNOWFALL:	0				

APPENDIX B

USAEHA HAZARDOUS WASTE STUDY, MARCH 1987

UNITED STATES ARMY ENVIRONMENTAL HYGIENE AGENCY

103

ABERDEEN PROVING GROUND, MD 21010-5422

HAZARDOUS WASTE STUDY NO. 37-26-0127-88 INVESTIGATION OF SOIL CONTAMINATION FORT STEWART, GEORGIA 24-31 MARCH 1987

VARE

ş

1

Distribution limited to U.S. Government agencies only; protection of privileged information evaluating another command; Nov 87. Requests for this document must be referred to Commander in Chief, Forces Command, ATTN: FCEN-FDE, Fort Gillem, Forest Park, GA 30305-6000.

B-1

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

104

DEPARTMENT OF THE ARMY U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-6422

REPLY TO ATTENTION OF

HSHB-ME-SE

MEMORANDUM FOR: Commander in Chief, Forces Command, ATTN: FCEN-FDE, Fort Gillem, Forest Park, GA 30305-6000

SUBJECT: Hazardous Waste Study No. 37-26-0127-88, Investigation of Soil Contamination, Fort Stewart, Georgia, 24-31 March 1987

EXECUTIVE SUMMARY

The purpose and a summary of the major conclusions and recommendations of the enclosed report follow:

a. <u>Purpose</u>. Fort Stewart requested assistance from the U.S. Army Environmental Hygiene Agency to evaluate the existence of contamination originating from three fire training areas, and four Explosive Ordnance Disposal (EOD) sites on Fort Stewart and Hunter Army Airfield. The information generated from this study will and the installation in identifying the existence of any environmental problems.

b. <u>Conclusions</u>. The study crew found no significant contamination at any of the EOD areas or the fire training area located near Zouck's Cemetery or Wright Army Airfield. However, the subsurface soil is contaminated with high concentrations of lead and other compounds related to JP-4 at the fire training area supporting Hunter Army Airfield. The fire training areas and EOD sites are Solid Waste Management Units (SWMU's) and should be included in the installation SWMU List.

c. <u>Recommendations</u>.

(1) To ensure regulatory compliance, the following recommendations are made. Initiate a study to evaluate the extent of contamination at Hunter Airfield to determine possible corrective action requirements; Prepare closure and post closure plans for all permitted EOD sites.

(2) To ensure good environmental engineering practice, the following recommendations are made: Produce a standing operating procedure on fire training to ensure an environmen-tally sound operation; prepare a plan for final disposition of all the fire training areas, including the one near Zouck's Cemetery, EOD 2, and EOD-3.

Band & Elis

PAUL R. THIES MAJ, MS Chief, Waste Disposal Engineering Division

Encl

CF: HODA(DASG-PSP) (wo/encl) HQDA(DAEN-ZCF U/DAEN-ZCE) (w/enc1) Cdr. Fort Stewart, ATTN: AFZT DEN-E (w/encl) LOF, FOFL SLEWAFL, ALIN: AF2: DEN-E (W/encl) Cdr, FORSCOM, ATTN: FCMD-PC (4 cy) (W/encl) Cdr, HEDDAC, Ft Stewart, ATTN: PVNTMED Svc (2 cy) (W/encl) Cdr, DDEAMC, ATTN: PVNTMED Svc (W/encl) Cdr, USAEHA Fld Spt Actv, Ft McPherson (W/encl) Hazardous Waste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Mar 87

CONTENTS

Paragraph

T.	AUTHORITY
TT.	DUDDOCE
111.	
IV.	ETADTHOS AND DISCUSSION
141	
	D Designal Coology
	o convert coils
۷.	
VI.	REFERENCES
VII.	REFERENCES

Appendix

A	- Tables of Holding Times, Analytical Methods, and Analytical Parameters	A-1
	Parameters	B-1
В		-
С	- Boreholes	C-1
	- Analytical Results for the Samples Confected from the con- Sites and Fire Training Areas of Fort Stewart	D-1
D	- References	

Page

105

DEPARTMENT OF THE ARMY U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-8422

ATTENTION OF

HSHB-ME-SE

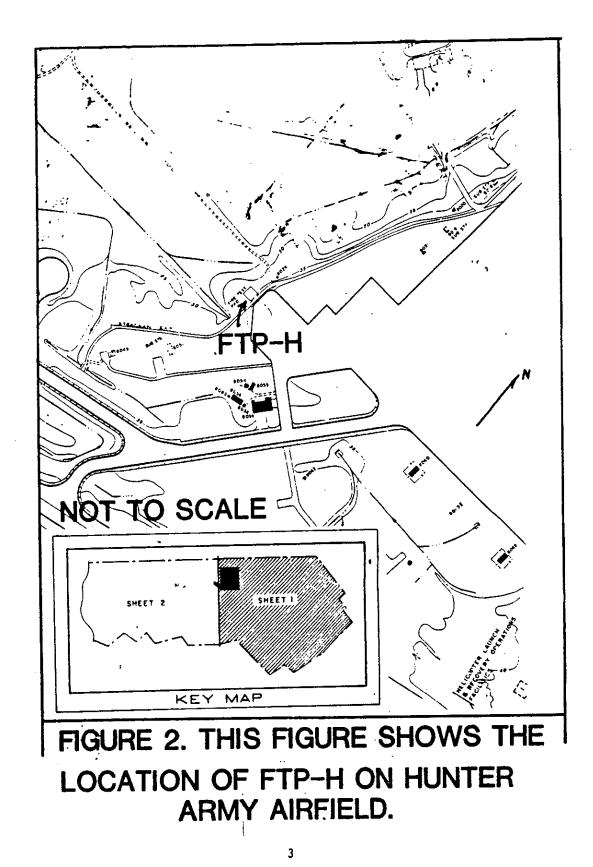
HAZARDOUS WASTE STUDY NO. 37-26-0127-88 INVESTIGATION OF SOIL CONTAMINATION FORT STEWART, GEORGIA 24-31 MARCH 1987

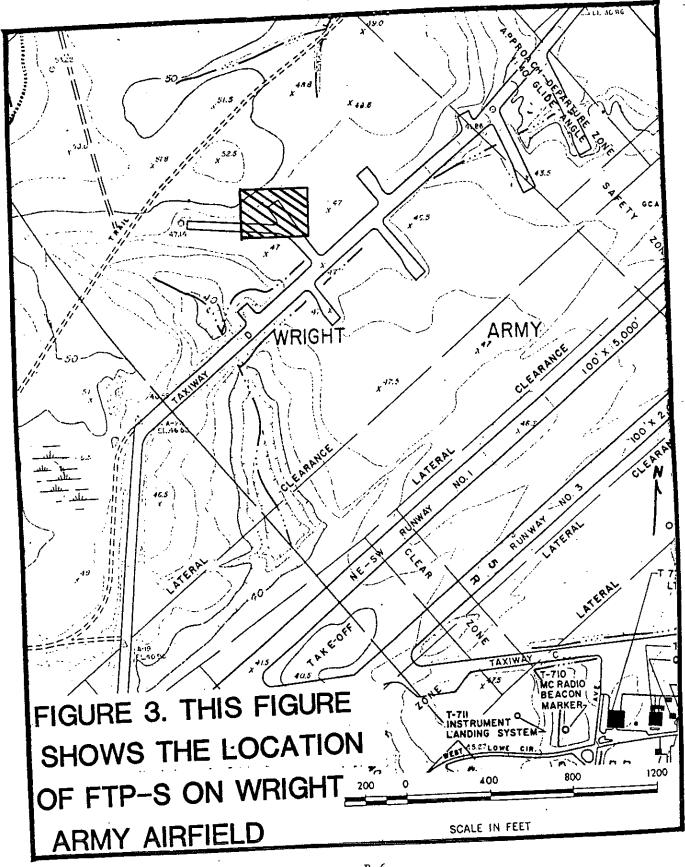
I. AUTHORITY. Letter, FORSCOM, AFEN-FDE, 13 June 1986, Subject: USAEHA Services, FY 87.

II. PURPOSE. To evaluate the existence of contamination originating from the three fire training areas and the four Explosive Ordnance Disposal (EOD) sites on Fort Stewart and Hunter Army Airfield (AAF).

III. BACKGROUND.

A. Fire Training.


1. The training of firefighters is a necessary part of the safety program of any post. The Major Command and Department of the Army recognize this need for training by regulation (FORSCOM 420-4 and AR 420-90, Section 3).


2. Training of firefighters on Fort Stewart occurs on two small concrete pads, one located at each of the installation's two airfields. The location of a third older training area is near Zouck's Cemetery behind the current Facility Engineer's storage yard. This area contained no constructed pad (Figures 1, 2, and 3). Fuels and oils used at these sites are mostly water contaminated jet propelled fuel (JP-4) and Diesel Fuel; however, waste oils and solvents have been used in the past.

B. EOD Areas.

1. The detonation of old, dud, off-specification, or terroristgenerated explosives is a necessary activity in the safety program of an installation. The 38th EOD provides this function for Fort Stewart and Hunter AAF.

2. The EOD activity currently occurs on a small area (approximately l acre) in training area A-6 (EOD-1). Other areas which have been used in previous years are: EOD-2, located North-Northeast of Wright AAF in training area A-16; EOD-3, located east of the small arms impact area in training area B-8; and EOD-4, located in Hotel Range impact area in training area B-12 (Figure 1). The units used all of these areas to detonate explosive devices (Figure 1). The units used all of these areas to detonate explosive devices (so frounds detonated at these areas includes smoke grenades, illuminating projectiles and high explosive rounds. In addition, excess small arms rounds were burned.

B-6

C. This study represents the first step in determining the need for any remedial action. The analytical results of the soils collected from this study were used to determine the existence of specific contamination at each site studied. These sites will warrant further sampling to determine the extent of the contamination if the study crew finds significant contamination. This approach was used due to the large number of sites of possible contamination at Fort Stewart. 109

D. Fort Stewart has been notified that the Resource Conservation and Recovery Act (RCRA) Part B Permit has been issued by the State of Georgia; however, the document had not arrived by 20 July 1987 when this report was written. Thus, the conditions of the permit in regards to these sites are unknown.

IV. FINDINGS AND DISCUSSION.

A. General.

1. Since the Fire Department did not have a standing operating procedure (SOP) for the fire training pit, the study crew could draw no conclusions about the environmental soundness of the operation at the facility. The Fire Department should produce an SOP for fire training. This SOP should include environmental considerations such as ensuring that the installation does not burn any hazardous materials at the site, and that the firefighters inspect the liquids containment system (the concrete basin, bermed at the sides to prevent overflow) used at the site periodically.

2. Under the continuing release provisions of Section 3004u of RCRA of 1976, as amended by the Hazardous and Solid Waste Amendments of 1984, Fort Stewart should add these sites to their application for a Part B permit. They must identify all SWMU's to the regulatory authorities. The EOD and fire training areas should be listed as SWMU's to show what further action, if any, each site will require.

3. The installation did not have written plans for the final disposition of any of the sites evaluated in this study. While Federal and State regulations do not require closure plans for each SWMU, it is good engineering practice to develop a written plan for the environmentally sound disposition of any site involved with waste management. In addition, the active EOD site (EOD-4) and the EOD site recently inactivated (EOD-1) are covered by the installation's Part B Permit (ref 15) which states that closure and post closure plans are required. The installation should prepare written plans of final disposition for each fire training facility, EOD-2, and EOD-3. Additionally, the installation must prepare a closure plan, IAW the installation's hazardous waste facilities permit (ref 15), for the EOD-1 and EOD-4.

B. Regional Geology.

1. This area belongs to the Lower Pine Belt Landform of the Atlantic Coastal Plains Physiographic Province. The underlying geologic units of the area range in age from Eocene to Recent. These units consist

of unconsolidated and semiconsolidated sedimentary deposits and generally thicken and dip towards the coast. The geologic units include, from older to younger, the Lisbon formation, Gosport Sand, Ocala Limestone, Tampa Limestone Equivalent, Hawthorn formation and the Duplin Marl (Figure 4, reference 11). Recent surficial deposits consist of alluvium and residuum from weathered limestone.

2. The basement complex underlying these formations, consists of metamorphic and igneous rocks which range in age from Pre-Cambrian to Triassic.

3. No active faults exist in this area (reference 11). However, active karst deposits exist east of Hinesville near the study area (reference 7). Neither of these geologic activities is expected to impact on this operation since they do not exist at the study sites.

C. <u>General Soils</u>.

1. The soil types which underlie this area of the United States belong mainly to the ultisol soil order. These are soils which form in situations that favor the rapid and complete alteration of weatherable minerals to secondary clays and hydrous oxides. These soils have the common characteristics of being very acid, highly leached, and rich in iron oxides.

2. The arrangement of these soils in this area shows that Fort Stewart lies in the older, stable terraces of the Atlantic Coastal Plain. These terraces are almost exclusively ultisols, except for the soils formed in more recently deposited sediments.

3. The soil series represented in the areas are as follows:

a. The fire training pit at Fort Stewart (FTP-ST) occurs in an area of Ocilla loamy fine sand. This series consists of somewhat poorly drained, nearly level sandy soils which exhibit an extremely low pH. They have developed in thick beds of acid marine sands that extend to a depth of 34 inches, where the texture changes to sandy clay loam for the remainder of the soil profile (reference 7). The seasonal high water table is located 1-2.5 feet below the soil surface.

b. The fire training pit at Hunter airfield (FTP-H) occurs in an area of Ellabelle loamy sand. This series consists of very poorly drained sandy soils which exhibit an extremely low pH. The dominant characteristic of these soils is that the seasonal high water table is at or near the soil surface for extended periods of the year. They have a black loamy sand surface soil and a yellowish brown sandy clay loam subsoil (reference 6). The seasonal high water table ranges from a 1-foot deep flood to 0.5 feet below the soil surface.

c. The fire training pit at Zouck's Cemetery (FTP-Z) occurs in an area of Echaw-Cantenary fine sand. This series consists of moderately well drained, sandy soils which exhibit an extremely low pH. They have developed in thick beds of acid marine sands. The texture of this series is

			CO+	MPOSITE GEOLOGIC COLUMN
Elovi	I Sve	iem Series	Geologic Unit	Lithologic Description
• 15	3		Spoil	Sand, silt, clay, mixed, brown
MSL -	OUATE ANARY	Aacant	Alluvium	Clay, soft, wet, highly organic, dark brown
	N N	Pleistocene	Undifferen- tiated Sands	Sand, medium grained, fossiliferous
- 50 -		Upper Miocene	Duplin Mari	Clay, sandy, still, phosphasic, green occasionally calcareous
		Middle Migcane	Hawthorn Formation	Clay and dolomitic limestone interbedued, phosphatic, sandy, green to buff
	7	Lower	Tampa Lime-	Limestone, dolomitic with seams of green sandy clay, conglomentic at base
FEET (MSL) 8 11.11.11.11	LH HIH HI KI TERTIARY	Oligocane	stone Eduiv. Undifferen tiated Rocks	Limestone, soft, fossiliferous, gray to built
- % - %	THHHHHHHHHH 16n	Upper Eccene	Ocala Limestone	Limestone, soft to dense, granular fossiliferous, white to buff with lenses of bluish re-crystallized limestone glauconitic at base
- 800 - 11 14	THHT	Middle Eacline	Gosport Sand	Limestone, sandy, fossililerous, dense, white to gray
- 600 - 2 - 700 - 2 - 800 - 1			Lisbon Formation	Limestone, soft, glauconitic, dolomitic, marly, white to built
- 900 -			Fre-Lisbon Rocks	
KEY: CLA SAA		Foss	STONE	
Figure 4 COMPOSITE GEO	LOG		UMN	SOURCE USATHAMA
FORT STEWART				1983, Reference 11, Appendix D.

11{

fine sand which extends throughout the profile. These soils drain quickly. The seasonal high water table ranges between 3 to 5 feet of the soil surface (reference 3).

d. The EOD-1 occurs in an area of Wahee sandy loam. This series consists of somewhat poorly drained soils that have a highly mottled gray, red, and brown clayey layer below the surficial horizon. These soils occur on isolated, low ridges and were formed from coastal marine terraces (reference 7). The seasonal high water table ranges from 0.5-1.5 feet below the soil surface.

e. The EOD-2 occurs in an area of Fuquay loamy sand. This series consists of well drained soils that are moderately permeable in the upper part of the subsoil and slowly permeable in the lower part. These soils formed in sandy and loamy marine sediments on uplands of the coastal plain (reference 7). The seasonal high water table ranges from 4-6 feet below the soil surface.

f. The EOD-3 occurs in an area of Stilson loamy sand This series consists of moderately well drained, moderately permeable soils that formed in sandy and loamy marine sediments. These soils are common on uplands in the southern coastal plains. A perched water table fluctuates between depths of 2.5 and 3.0 feet and exists from the beginning of winter to the middle of spring (reference 7). The perched layer exists due to the slower permeability of the B horizon. The B horizon in this soil contains a significant increase in the content of clay when compared to the surficial horizon.

g. The EOD-4 occurs in an area of Kershaw coarse sands. This series consists of excessively drained, very rapid permeable soils that formed in sandy marine sediments. These soils form in ridges in the atlantic coast flatwoods (reference 7). The seasonal high water table is in excess of 6 feet below the soil surface.

D. Hydrogeology.

1. The majority of Fort Stewart is located in the Canoochee River watershed. The Canoochee River flows to the east and is a tributary of the Ogeechee River, which flows to the southeast and forms part of the eastern installation boundary.

2. There are two ground-water systems under Fort Stewart. These are the principle artesian aquifer, consisting of limestone units of Miocene, Oligocene, and Eocene age; and the shallow sand aquifer. The shallow sand aquifer ranges in depth from just under the ground surface to approximately 55 meters. It is generally separated from the lower principle artesian aquifer by a relatively impermeable confining layer consisting of the Hawthorn formation, but some exchange does take place. Depth of the principle artesian aquifer ranges from approximately 80 to 140 meters in the vicinity of Fort Stewart. This aquifer supplies the drinking water for

Fort Stewart and the nearby towns. Regional ground-water flow is east toward the coast. The direction of flow in the shallow sand aquifer is generally from higher elevations towards nearby streams (reference 11). The potential for contaminant migration at this installation is high for the unprotected sand aquifer. The lower artesian aquifer is protected from contamination by the semi-confining layer. Thus, the potential for contamination of the area's drinking water supply is minimal. 13

E. Soil Investigation.

1. General.

a. Samples were collected using the procedure outlined in (reference 10, Section 7.3). The drill crew used a power driven hollow stem auger to drill to the desired depth. The crew then obtained a sample from beyond the bottom of the auger using a split spoon sampler.

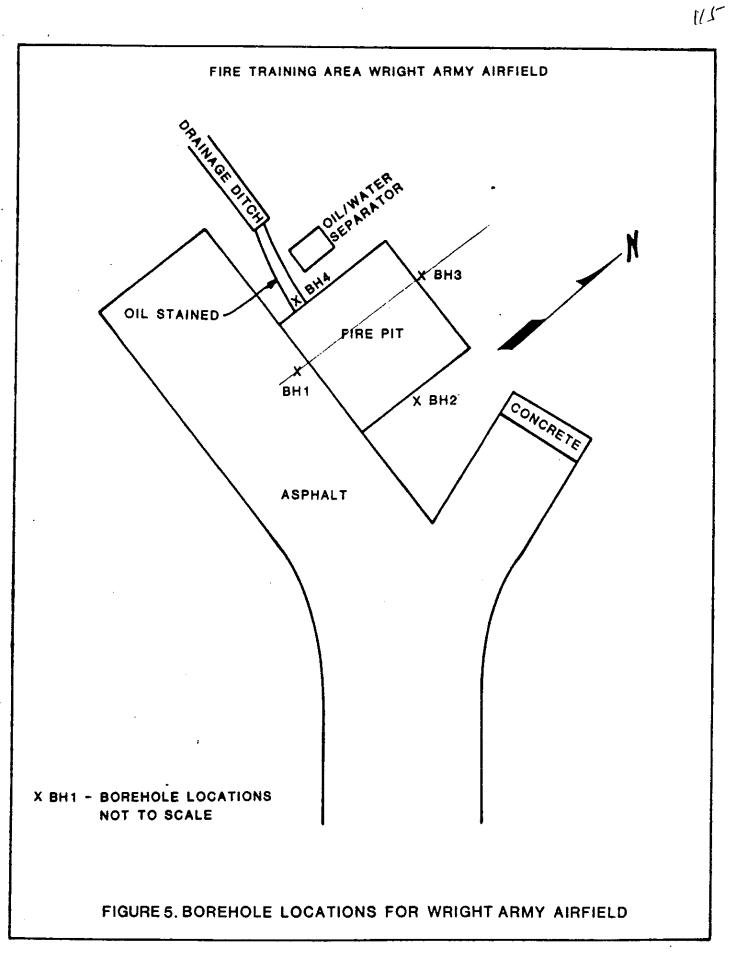
b. Samples with short holding times (Appendix A, Table A-1) were iced, packed and shipped by overnight delivery to the Analytical Quality Assurance Office (AQAO) for analysis. The remainder of the samples were refrigerated and held at the installation by the study crew until the end of the study and then shipped to the U.S. Army Environmental Hygiene Agency (USAEHA).

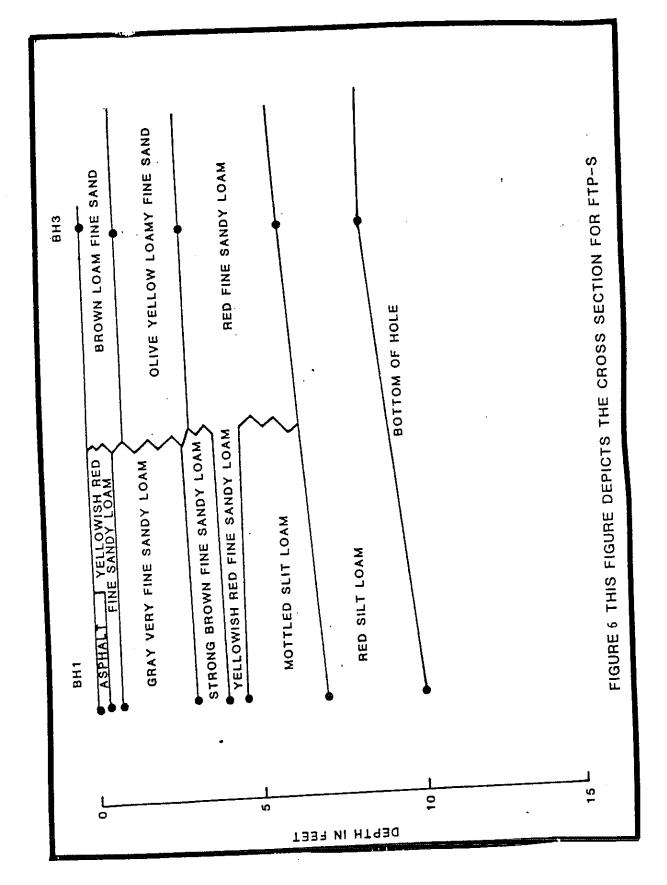
c. The crew took quality assurance provisions in the field and the laboratory. Two samples were taken upgradient of all sites for control purposes. Fourteen other samples were split in the field to meet the 20-percent quality control sampling required by the U.S. Environmental Protection Agency (EPA) (reference 10). The AQAO handles the laboratory quality control for this Agency. Depending on the specific parameter, this program consists of split samples, reagent blanks, and spiked samples. Paragraph V.E4 contains a detailed discussion of the quality control samples and results.

d. All samples were analyzed in accordance with (IAW) EPA methods described in reference 5. A complete list of analytical groups and corresponding test methods for soils appears in Appendix A, Table A-2.

e. Soil sampling schemes for this project were tailored to the type of site being sampled. The analytical plan for each site included only those analyses which the project officer expected from the operation of the site. Phase 1, an overview of the fire training areas and the EOD sites, generated a total of 75 samples, including quality assurance samples.

f. The crew addressed cross contamination by cleaning the drilling and sampling equipment periodically. The crew cleaned the drill steel and the rig with pressurized water between boreholes. In addition, they cleaned the sampling equipment between samples by first washing the equipment with trisodium phosphate soap, rinsing in distilled water, and rinsing again with isopropyl alcohol. The project officer checked decontamination by analyzing a sample of an extra rinse of the sampling

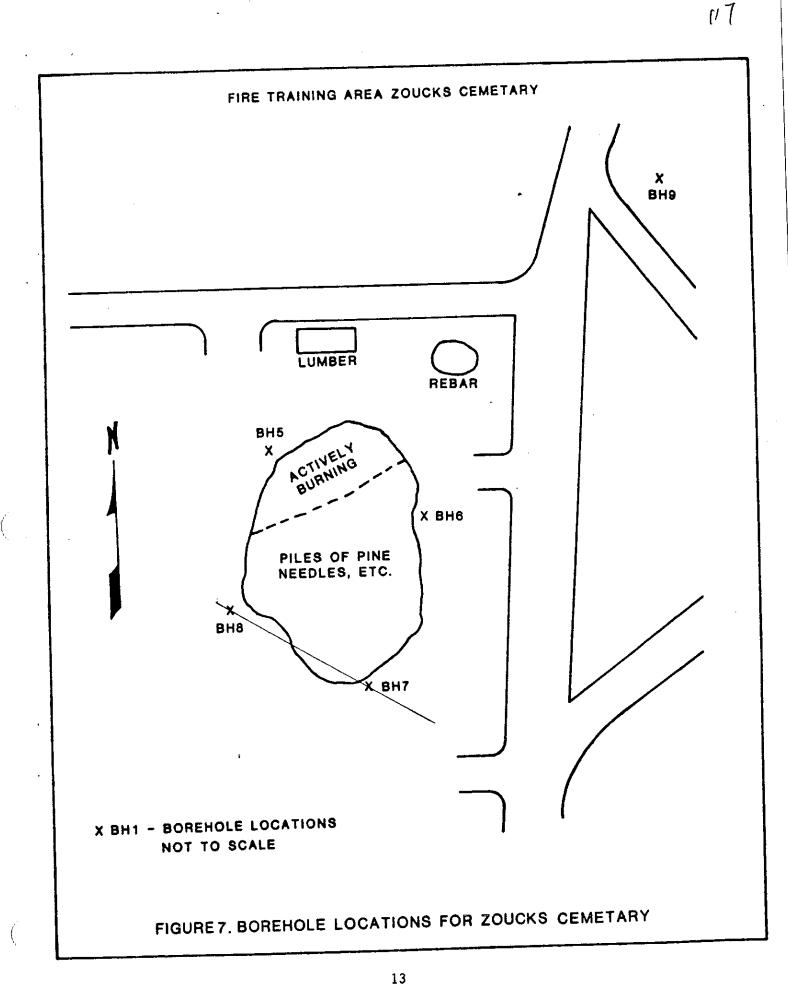

equipment using isopropyl alcohol. The crew collected the extra rinse following the washing of the equipment, after collection of the last soil sample for each area.

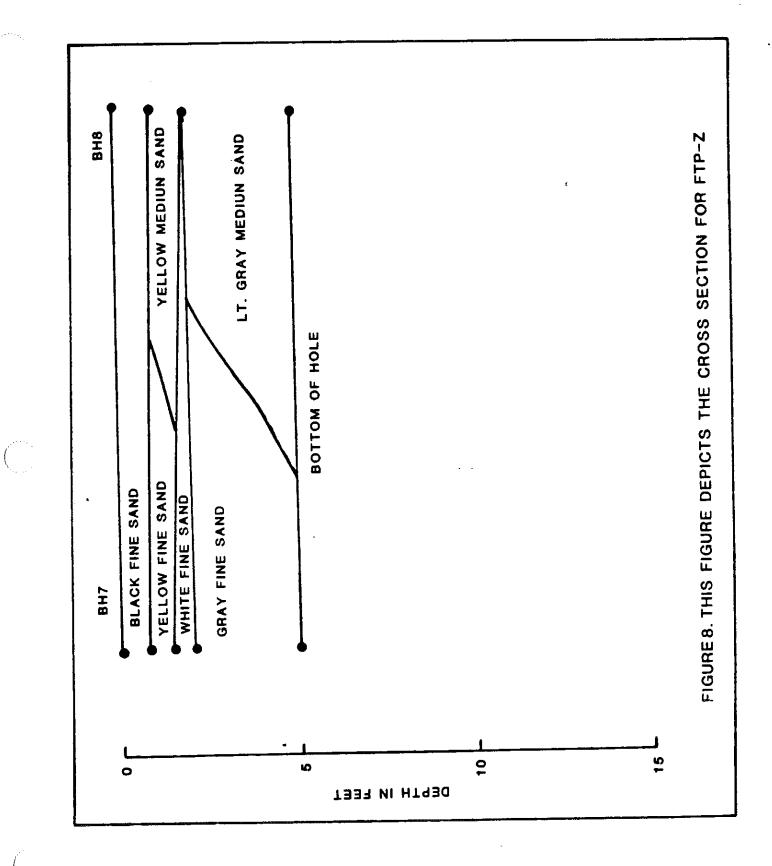

2. Fire Training Areas.

a. Two types of fire training sites exist on Fort Stewart: two pits lined with concrete which show signs of significant cracking; and an unlined pit located in a sandy soil deposit. The sampling plan is (reference 12) outlined in the protocol. While this plan was ideal, conditions which prevailed onsite forced the modification of the sampling. The sampling and the modifications taken at each area follow.

b. The sampling at the FTP-ST consisted of 13 samples from 4 boreholes, including quality control samples. Figure 5 outlines the location of the boreholes. Figure 6 is a cross section developed from drill log data. Appendix B contains the bore logs for these holes. The borehole denoting the most contaminated area (BH 4) was supposed to be drilled in the center of the pit but could not be. Instead, the crew drilled this borehole near the pit berm in a location where the pit apparently overflows frequently during the operation of the training exercise. Samples from this borehole were split for quality control. The project officer chose this location through discussions with the fire fighters and by noting the stained soil on that side of the pit. The crew could not drill in the center of the pit since the pit was full of liquids from the last training operation and installation personnel would not allow the concrete liner to be compromised. In addition, samples were collected from three other boreholes IAW the sampling plan for fire training pits. Two additional samples were taken: One of the burn residue in the pit and the other of the rinse alcohol following washing of the sampling equipment to ensure adequate equipment decontamination.

c. The sampling at the FTP-Z consisted of 11 samples from 4 boreholes, including quality control samples. Figure 7 outlines the location of the boreholes. Data from the drill logs were used to develop the crosssection in Figure 8. Appendix B contains the bore logs for these holes. This fire training area had not been used for the last 20 years. Recent use of the site was for storage of leaves and pine needles collected in the cantonment area. Like the FTP-ST, the crew could not drill the borehole denoting the most contaminated area (BH 5). The project officer relocated this site to near the edge of the pile of debris. The crew did not bore in the center of the pit since, at the time of the drilling for this site, the debris was actively smoldering. Samples from this relocated borehole were split for quality control. Samples were collected from three other boreholes IAW the sampling plan for fire training pits. Two additional samples were taken: One of the burn residue and the other of the rinse alcohol following washing of the sampling equipment to ensure adequate equipment. decontamination.





11 b

12

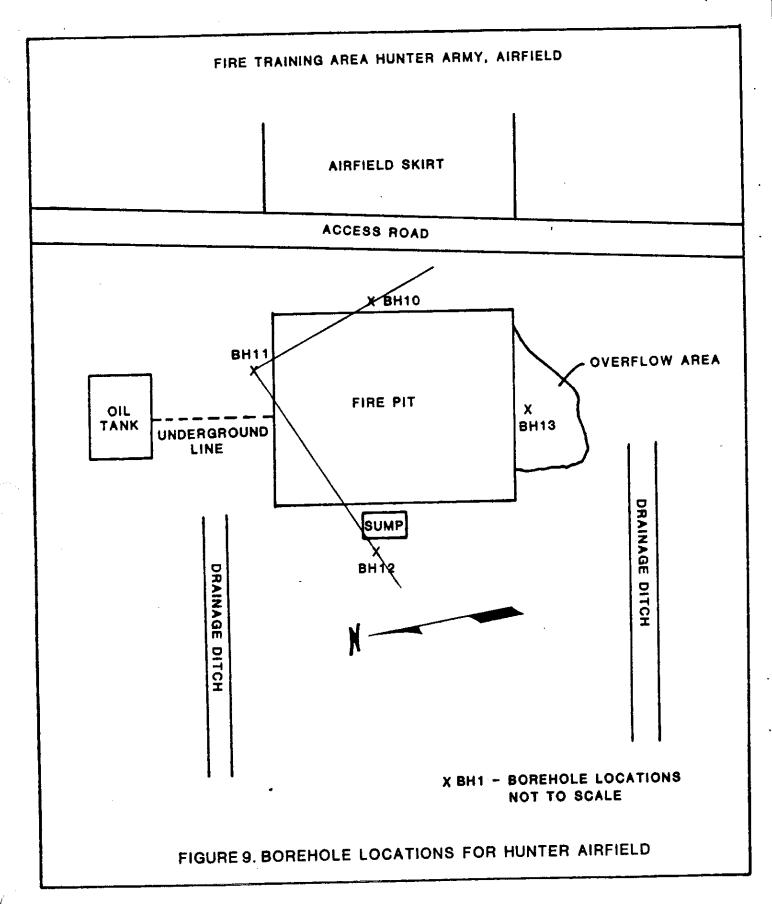
ĺ

ĺ

B-16

((}

d. The sampling at the FTP-H consisted of 11 samples from 4 boreholes, including quality control samples. Figure 9 outlines the location of these boreholes. Figure 10 is a cross-section developed from the borehole data. Appendix B contains the bore logs for these holes. Like the FTP-S, the crew could not drill the borehole denoting the most contaminated area (BH 13). The project officer relocated this hole to a spot near the pit berm in a location where the pit apparently overflows frequently during the training exercise. The project officer chose this location from discussions with the firefighters and by noting the stained soil on that side of the pit. Samples from this borehole were split for quality control. The crew could not bore in the center of the pit since the post would not allow the concrete liner to be compromised. Samples were collected from three other boreholes IAW the sampling plan for fire training pits. The crew took one sample of the rinse alcohol following washing of the sampling equipment to ensure adequate equipment decontamination.


 $\left[1\right]$

e. The crew drilled one borehole in the area outside the cantonment area to serve as a common background hole to all of the samples taken for this study. Appendix B contains the log for this borehole (BH 9).

f. This Agency analyzed each sample collected from these areas for metals [total and the EPA's Toxic Extraction Procedure (TEP) metals, reference 4], pesticides, polychlorinated biphenyls (PCBs), volatile organics, acid extractable organics, and base-neutral extractable organics. However, all of the samples were not submitted to the laboratory at the same time. The crew submitted the samples taken from the borehole drilled in the area suspected of having the highest concentration of contaminants as soon as possible following collection. All of the volatile organic, metals, acid and base-neutral extractable organic analyses were also submitted at the same time. The samples collected for PCB/pesticide were submitted under a different schedule. If the analysis of the samples from the borehole (drilled at the area suspected of having the highest contamination) detected any contamination by pesticides or PCBs, the remainder of the samples for this analysis were to be submitted for analyses. If, however, this analysis did not detect a contaminant, the remainder of the samples for this contaminant, from that area, would not be analyzed. This area would then be considered "clean" of pesticides/PCBs. The project officer chose this sampling scheme to minimize the number of samples while yielding an accurate determination of the existence of contamination at the fire training operation.

g. The analysis for total metals was performed to more fully characterize the site's soil chemistry. The analytical plan for this study included an analysis for total metal content. The State of Georgia Hazardous Waste Regulations are based on the results of TEP metals analysis not total metals.

h. The analytical results for the samples collected from the fire training areas are tabulated in Appendix C. The results tabulated in Appendix C include only those samples which contained parameter species in

(20

17 _{В-19}

ĺ

121

ł,

amounts above the detection limit. Samples not included in these tables did not contain detectable quantities of any of the chemical species analyzed for. Appendix A, Table A-3 contains a list of the analytical parameters used in this study along with their associated detection limits. The following is a discussion of these results by training area.

(1) The analysis of samples collected at FTP-ST at Wright AAF revealed the following results.

(a) Pesticide compounds were not found in the samples analyzed from this area. Therefore, the area is considered clean of pesticides/PCBs for reasoning discussed in paragraph V.2f. Appendix A, Table A-3 includes a list of pesticide compounds in this scan.

(b) The analysis for volatile organics and acid and baseneutral extractable organics revealed that all of the samples contained compounds relating to JP-4 and diesel fuels. In addition, a sample of the pit residue and one soil sample contained various compounds on the EPA's priority pollutant list (Appendix A, Table A-3). The residue left in the pit consisted of soil blackened by the oils and fuels used in the training operation. Organic analysis of this sample revealed 7,900 parts per billion (ppb) phenanthrene and 3,000 ppb bis(2-ethylhexyl) phthalate. One soil sample (sample number 40) collected from a depth of 9-10 feet in borehole_1 (Figure 5) contained 1,700 ppb phenanthrene, 5,100 ppb fluoranthene, 2,000 ppb benzo(a)anthracene, 2,500 ppb bis(2-ethylhexyl) phthalate, 1,108 ppb benzo(a)pyrene, and 500 ppb indeno(1,2,3-cd)pyrene. Normally, phthalates can be discounted since they are a common impurity in the laboratory procedure for extractable organics. However, one of the phthalate compounds in these samples is recognized due to its elevated level. Most of these compounds are derivatives from the incomplete combustion of coal tar and most of these are suspected carcinogens. One of these compounds, benzo(a)pyrene, is a known carcinogen. However, since the compound was found in only one sample, the data indicates a localized contamination. Based on the localized nature of the compound, it should not pose a threat the human health or the environment. Appendix C contains the analytical results. Appendix A, Table A-3 includes a list of the compounds contained in this scan.

(c) The analysis for metals consisted of two parts: total metals and TEP metals [cadmium (Cd), selenium (Se), barium (Ba), lead (Pb), silver (Ag), arsenic (As), mercury (Hg), chromium (Cr)]. The analytical results for total metals showed the existence of various levels of As (1.99-65.7 parts per million [ppm]), Ba (3.74-15.5 ppm), Hg (0.390-0.400 ppm), and Pb (25.6-608.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration, with one exception. Sample number 45 (borehole 4, surface) contained 608 ppm total Pb. This result significantly exceeded the Pb concentration of any of the background samples. All but two samples also contained levels of total Cr ranging from 4.13-17.5 ppm. These data could have resulted from the past use of waste oils in fire training which may have contained Pb compounds or Pb additives. The analysis for TEP metals failed to reveal the

existence of any of these compounds at the fire training pit above the detection limit of the analysis. These results showed that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment, these compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.

(2) The analysis of samples collected at FTP-Z near the cantonment area revealed in the following results.

(a) Pesticide compounds were not found in the samples analyzed from this area. Therefore, the area is considered clean for pesticides/PCBs for reasoning discussed in paragraph V.2f. Appendix A, Table A-3 includes a list of pesticide compounds in this scan.

(b) The analysis for volatile organics, acid and base-neutral extractable organics failed to reveal any of these compounds in the samples collected from this area.

(c) The analysis for metals consisted of two parts: total metals and TEP metals. The analysis for total metals showed the existence of various levels of As (1.97-13.9 ppm), Ba (1.97-20.5 ppm), Hg (0.391-0.398 ppm), and Pb (1.38-505.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration. with one exception. The sample of the burn residue (sample number 52) contained 505 ppm total Pb. This result significantly exceeded the Pb concentration of any of the background samples. However, the analytical results or leachability of Pb (TEP) revealed that the metals were not mobile. These data could have resulted from the past use of waste oils which may have contained Pb compounds or Pb additives. In addition, a sample of the burn residue contained 25.7 ppm Cd and 5.9 ppm total Cr. Three other samples of the soil collected from the top of the phreatic surface contained levels of Cd ranging from 1.95-4.99 ppm and total Cr ranging from 7.17-11.9 ppm. The analysis for TEP metals failed to reveal the existence of any of these compounds at the fire training pit above the detection limit of the analysis. These results showed that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment these compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.

(3) The analysis of samples collected at FTP-H at Hunter AAF revealed the following results.

(a) Pesticide compounds were not found in the samples analyzed from this area. Therefore, the area is considered clean for pesticides/PCBs for reasoning discussed in paragraph V.2f. Appendix A, Table A-3 includes a list of pesticide compounds in this scan.

Type - Antonia -

124

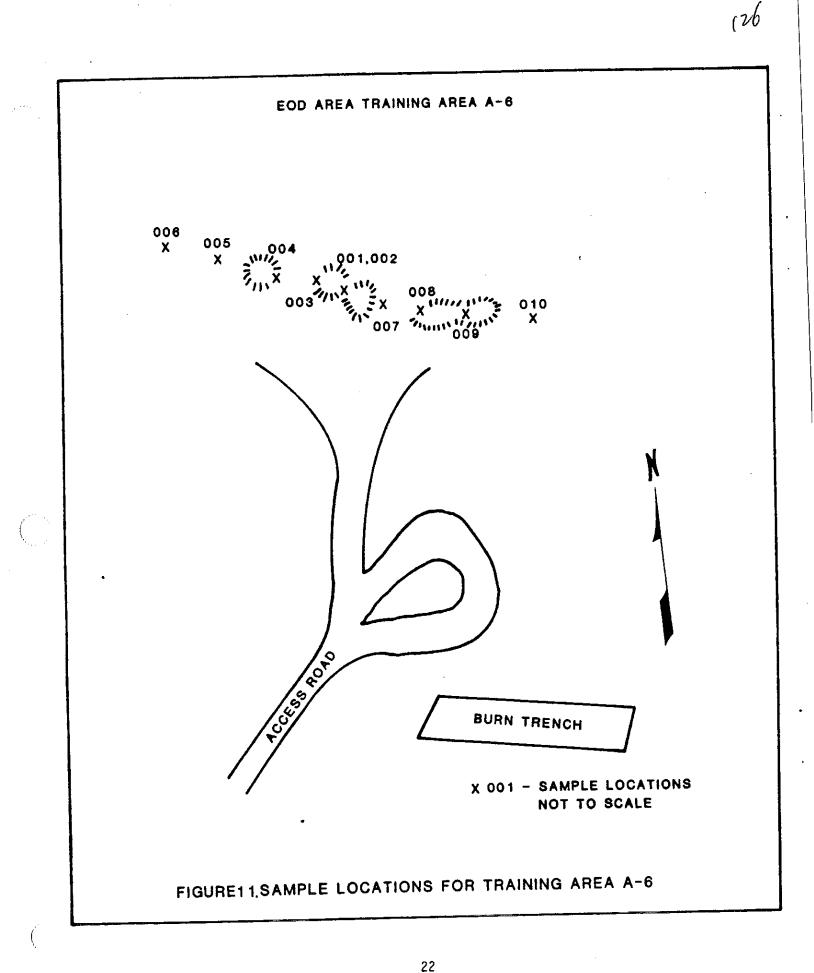
(b) The analysis for volatile organics and acid and baseneutral extractable organics revealed that all of the samples contained compounds relating to JP-4 and diesel fuels. In addition, three soil samples collected from the approximate top of the phreatic surface contained various compounds on the EPA's priority pollutant list. Organic analysis of these samples revealed concentration ranges of 5,800-10,000 ppb Naphthalene, 10,000-19,000 ppb 2-methylnaphthalene, 600-2,400 ppb Di-n-butylphthalate and 300-1700 ppb bis(2-ethylhexyl) phthalate. Two of these samples also contained Fluoranthene (200 + 400 ppb) and Phenanthrene (200 + 900), respectively. Trace levels of Phthalates are a common impurity in the laboratory procedure for extractable organics. However, two of the phthalate compounds in these samples are recognized due to their elevated levels. The existence of these compounds at the top of the phreatic surface (approximately 8-feet deep) suggests movement of these compounds to the ground water and away from the site. Appendix C contains the results of these analyses. Appendix A, Table A-3 includes a list of the compounds contained in this scan.

(c) The analysis for metals consisted of two parts: total metals and TEP metals. The analysis for total metals showed the existence of various levels of As (1.93-13.9 ppm), Ba (7.19-64.4 ppm), Hg (0.387-0.400 ppm), and Pb (13.8-1185.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration, except for lead. Four samples collected from this area contained levels of total lead which significantly exceeded the lead concentrations in the background samples. High lead concentrations were found in four surface samples and ranged in concentration from 645-1185 ppm. Other metals found in these samples were Se ranging from 0.194-0.799 ppm (6 of 10 samples), total Cr ranging from 4.16-12.8 ppm (5 of 10 samples), and Cd ranging from 1.99-3.87 ppm (3 of 10 samples). These data could have resulted from the past use of waste oils which may have contained lead compounds or lead additives. The analysis for TEP metals failed to reveal the existence of any of these compounds at the fire training pit above the detection limit of the analysis. These results showed that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment, these compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.

(d) The FTP-H occupies the edge of one of the runways at Hunter AAF. The topography of the area adjacent to FTP-H slopes rapidly to two small stream which flank and drain the FTP-H (Figures 2 and 9). These streams flow intermittently and are located approximately 150 yards from the pit. The soils of the area are sandy (highly permeable) and exhibit a high water table (approximately 8-feet below the soil surface). As such, the above mentioned contamination should migrate vertically from this site to the water table and laterally to the two stream channels. The contamination should then enter the stream and be drained to the Ossabaw Sound by the Forest River (Middle Marsh).

(e) These results warrant further sampling under 40 CFR 264.101 and 40 CFR 270.14 to determine the extent of this contamination and its possible impact on the streams and marshland adjacent to the site. Further sampling at this site should include soil, ground water, and surface water. NS 1

3. EOD Areas.

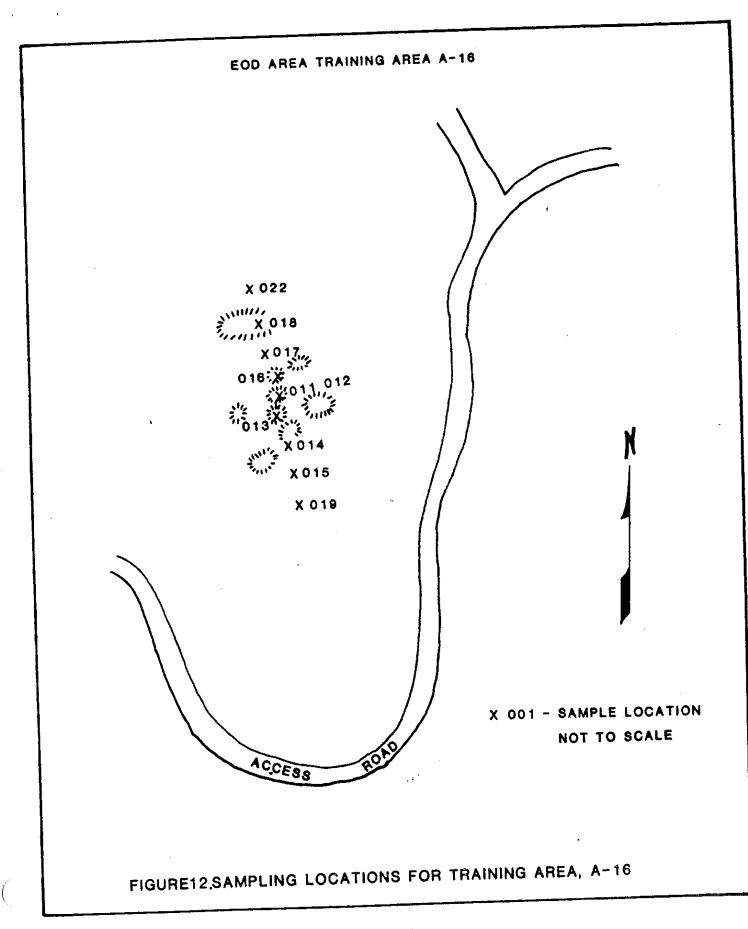

a. Due to the possibility of contacting unexploded ordnance, the study crew used a transect mode of sampling (reference 10, Section 6.4) to minimize the amount of movement through the area. The project officer chose the transect since it also was the most representative sampling scheme considering operation of an EOD area. The detonation of explosive devices spreads contaminants in a radial pattern around the blast crater. The EOD team groups these craters as close together as practical. After which, the installation levels the area with a dozer (or similar) and the process is repeated. Thus, as long as the crew can identify craters, sampling along a transect through the cratered area would produce a better indication of the contamination of the area than sampling from a random grid pattern.

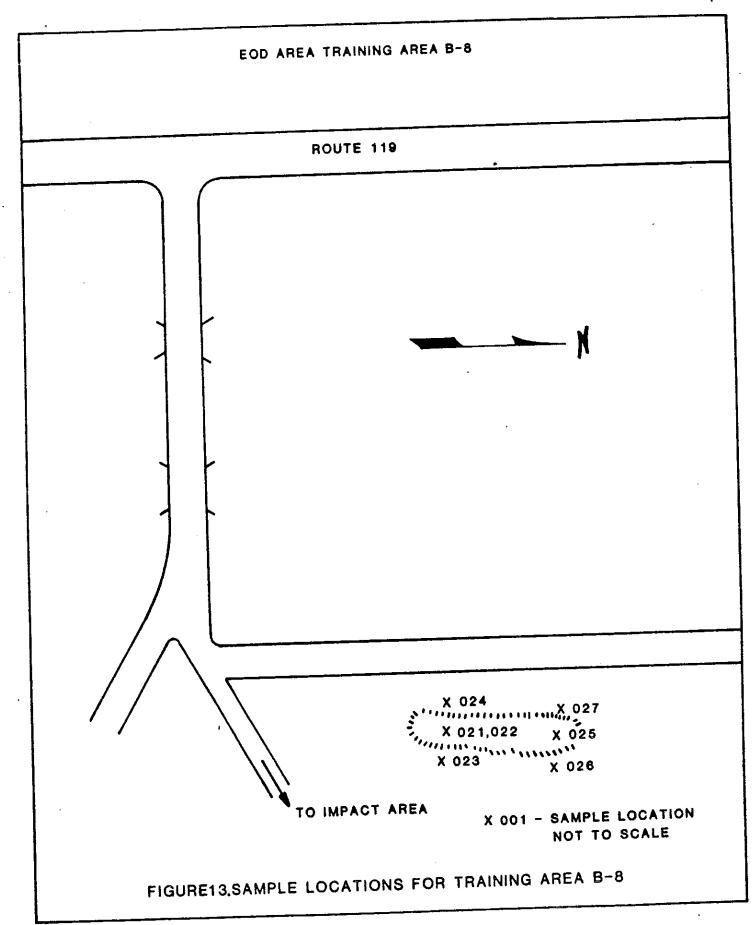
b. For three of the four EOD sites, the study crew took a transect consisting of 10 samples oriented to intersect as many craters as possible. The crew chose locations at the center of the main crater and at 40-foot intervals in opposite directions. In the four areas, the crew found only one elongated crater. Sampling for this area (EOD-3) consisted of two shorter transects. The crew limited soil sampling to the uppermost 1 inch of soil due to the safety problems associated with unexploded ordnance. The crew took the central sample at the center of the group of craters with eight of the other samples being taken at distances of 40-foot intervals from the center in opposite directions. The tenth sample was a split of the central sample taken for quality control.

c. This Agency analyzed the sample taken at the center of the group of craters for explosive residue, total and TEP metals, pesticides, volatile organics, acid extractable organics, and base-neutral extractable organics, since the project officer expected this point to contain the most contamination. The laboratory analyzed each of the other samples for explosive residue, and total and TEP metals as an indication of possible contamination.

d.' In general, analysis of these samples failed to show contamination at any of these areas by the following groups of compounds: volatile organics, acid extractable organics, base-neutral extractable organics, explosive compounds, or pesticides/PCBs. Appendix A, Table A-3 includes a list of the compounds contained in these analyses. Specific results of the analysis of soils collected from these areas follow by area.

(1) Metals analysis of the samples collected at EOD-1 in training area A-6 revealed the following results (Figure 11). This analysis consisted of two parts: total metals and TEP. The analysis for total


metals showed the existence of various levels of Ba (8.32-17.9 ppm), Hg (0.359-0.398 ppm), and Pb (28.5-184.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration. This indicates that these metals may be indigenous to the soils of this area. Other metals found in these samples were As ranging from 1.80-12.9 ppm (6 of 10 samples), Se ranging from 0.199-0.299 ppm (2 of 10 samples), and Cd ranging from 1.99-21.8 ppm (9 of 10 samples). Total Cr was 3.92 ppm in one sample. These metals were probably the result of the operation of the EOD area. The analysis for TEP metals failed to reveal the existence of any of these compounds above the detection limit of the analysis. The results indiate that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment, these compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.


(2) Metals analysis of the samples collected at EOD-2 in training area A-16 revealed the following results (Figure 12). This analysis consisted of two parts: total metals and TEP metals. The analysis for total metals showed the existence of various levels of As (3.91-12.9 ppm), Ba (5.33-11.5 ppm), Hg (0.368-0.429 ppm), and Pb (30.1-116.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration. This indicates that these metals may be indigenous to the soils of this area. Other metals found in these samples were Se ranging from 0.259 ppm (1 of 10 samples), total Cr ranging from 4.55-4.78 ppm (3 of 10 samples), and Cd ranging from 1.84-25.4 ppm (8 of 10 samples). The analysis for TEP metals failed to reveal the existence of any of these compounds at the fire training pit above the detection limit of the analysis. These results showed that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment, these compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.

(3) Metals analysis of the samples collected at EOD-3 in training area B-8 revealed the following results (Figure 13). This analysis consisted of two parts: total metals and TEP metals. The analysis for total metals showed the existence of various levels of As (1.98-9.91 ppm), Ba (9.72-50.6 ppm), Hg (0.394-0.400 ppm), and Pb (97.8-3281.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration, except for lead. The data from the analysis of these samples for lead revealed results which were significantly higher than the concentration of lead in the background samples. Other metals found in these samples were Se ranging from 0.257 ppm (1 of 9 samples), total Cr ranging from 9.00-10.4 ppm (2 of 9 samples), and Cd ranging from 1.98-26.0 ppm (3 of 9 samples). The analysis for TEP metals failed to reveal the existence of any of these compounds at the fire training pit above the detection limit of the analysis. These results showed that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment, these

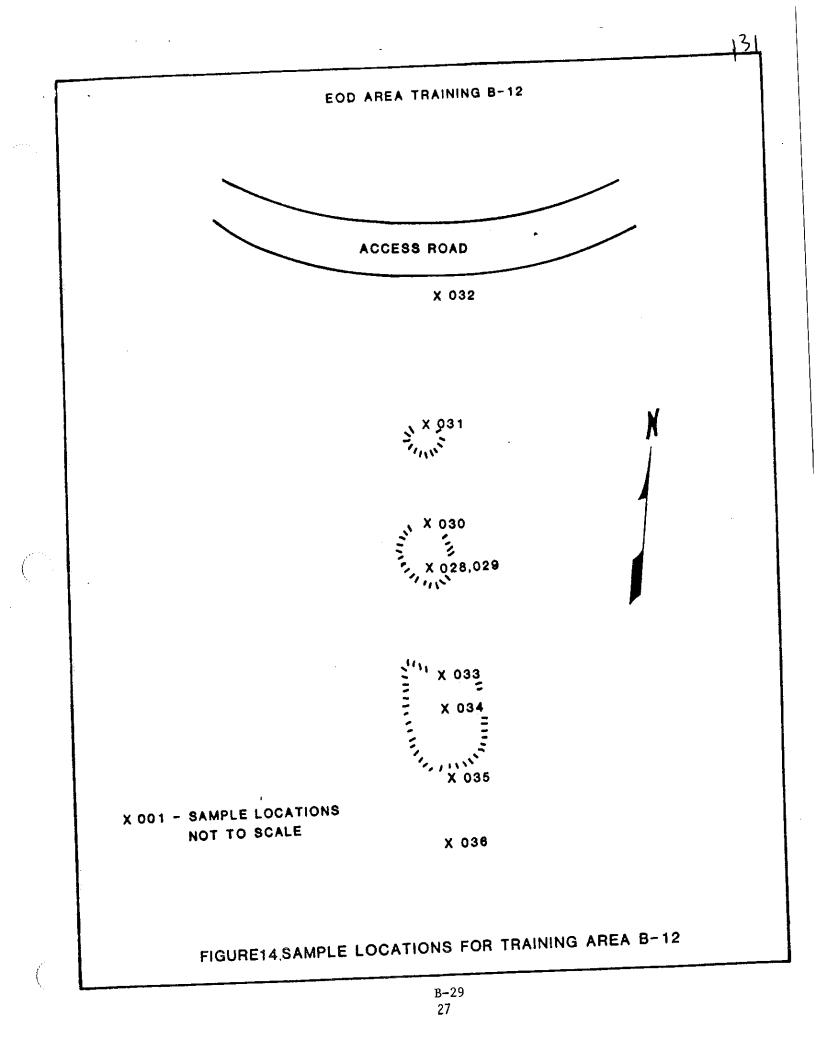
23

B-25

130

compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.

(4) Metals analysis of the samples collected at EOD-4 in training area B-12 revealed the following results (Figure 14). This analysis consisted of two parts: total metals and TEP metals. The analysis for total metals showed the existence of various levels of As, (1.98-21.4 ppm), Ba (2.78-8.17 ppm), Hg (0.395-0.414 ppm), and Pb (35.8-432.0 ppm) in all of the samples. These compounds were also found in the background samples in approximately the same concentration, except for lead. Two samples collected from this area contained levels of total lead which significantly exceeded the lead concentrations in the background samples. High lead concentrations were found in two surface samples corresponding to 40 and 120 feet from the center of the main crater. These locations were themselves within smaller blast craters. The data from these locations were 432 ppm and 191 ppm, respectively. Other metals found in these samples were Se ranging from 0.787 ppm (1 of 9 samples), total Cr ranging from 3.69-4.35 ppm (3 of 9 samples), and Cd ranging from 1.98-518.0 ppm (8 of 9 samples). The analysis for TEP metals failed to reveal the existence of any of these compounds above the detection limit of the analysis except for one sample. Sample 30 from the berm of the main crater (central crater) contained 0.43 milligram per Liter (mg/L) TEP Cd. This result is less than the 1.0 mg/L RCRA criteria for HW as outlined by 40 CFR 261.24. Therefore, these results failed to show that this area contains hazardous wastes (HW's). These results showed that the compounds exist in the soil. However, the compounds are not leachable as defined by the TEP. Thus, in the present environment, these compounds are not mobile in the soil and should not pose a risk to human health or the environment. Appendix C contains the results of these analyses.


e. The collective results of the analyses for the soils collected from the EOD area do not warrant further sampling or remedial action.

4. Quality Assurance.

a. The following is a discussion of the field quality control measures taken during this study.

(1) A total of 14 samples were collected for quality control. These measures consisted of 10 split samples, 3 wash samples, and 1 sample of the rinse solvent (isopropyl alcohol). Field quality assurance involved 11 percent of the samples taken to evaluate the EOD areas and 26 percent of the samples taken to evaluate the fire training areas.

(2) Analysis of these quality control samples did not indicate any problem with the decontamination procedures or chemical analysis in this study. Statistical analysis of this data was performed IAW methodologies outlined by Koch, et al., (reference 13) and Till (reference 14).

(a) Analysis of the rinse solvent (sample number 75) revealed that the alcohol used was not contaminated with any of the chemical species used to evaluate the sites contamination. 132

(b) Analysis of the wash samples (sample numbers 49, 63, and 74) showed the decontamination procedure was adequate to prevent crosscontamination of the samples by the sampling equipment.

(c) Analysis of the split samples showed no significant difference in any of the chemical species. A duplicate sample collected for the surface of borehole 4 (the fire training area at Wright AAF) revealed a difference in the analysis for total lead. One of the samples resulted in a measurement of 608 ppm lead (sample number 45) while the other resulted in a measurement of 43.6 ppm (sample number 48). This result is acceptable since none of the other chemical species measured for these samples showed any significant difference and may indicate the surface variability for this parameter.

V. CONCLUSIONS.

A. The study crew did not find significant contamination at any of the EOD areas.

B. The study crew did not find significant contamination at the fire training area located near Zouck's Cemetery.

C. The study crew found subsurface soil contamination at the fire training areas located at Wright and Hunter AAF's.

D. The contamination found at Wright AAF is localized and should not require remedial action.

E. Closure plans do not exist for the facilities evaluated in this study.

F. The Fire Department did not have an SOP for fire training.

G. The contamination at Hunter Army Airfield requires further study to determine the extent of the contamination.

H. The fire training and EOD areas are SWMU's.

VI. RECOMMENDATIONS.

A. To ensure regulatory compliance, the following recommendations are made:

1. Add the fire training and EOD areas to the installation's list of SWMU's [40 CFR 264.101].

2. Initiate a study to evaluate the extent of contamination at Hunter AAF to determine corrective action [40 CFR 264.101].

3. Prepare closure and post closure plans for the permitted EOD sites as outlined in the installation's Part B Hazardous Waste Facility Permit (Letter, from Director, Georgia Department of Natural Resources, to Major Stovall, DEH, Fort Stewart, 14 August 1987).

B. To ensure good environmental engineering practice, the following recommendations are made:

1. Produce an SOP on fire training to ensure an environmentally sound operation.

2. Prepare a plan for the final disposition of all the fire training areas, including the one near Zouck's Cemetery, EOD-2, and EOD-3.

VII. REFERENCES. For a list of references see Appendix D.

76 Hoddmitt

KEITH B. HODDINOTT, C.P.S.S. Soils Scientist Waste Disposal Engineering Division

APPROVED:

GUZEWICF

DAVID C. GUZEWICH Hazardous Waste Program Manager Waste Disposal Engineering Division

APPENDIX A

.

TABLES OF HOLDING TIMES, ANALYTICAL METHODS, AND ANALYTICAL PARAMETERS

TABLE A-1. HOLDING TIMES

Parameter	Holding Time
Volatile Organics	14 days
Acid Extractable Organics	30 days
Base-Neutral Extractable Organi	30 days
Explosives	30 days
Pesticides/PCB	30 days
Metals	6 months

TABLE A-2. METHODOLOGIES

Parameter	SW-846 Method Number
	8240
Volatile Organics	8270
A LA EVENACTABLE (POBNIC)	8270
Base-Neutral Extractable Organics	NO EPA NUMBER*
Explosives	8080
Pesticides/PCB	
Metals	3050 & 7061
Total Arsenic	3050 & 7080
Total Barium	3050 & 7131
Total Cadmium	3050 & 7190
Total Chromium	3050 & 7471
Total Mercury	3050 & 7421
Total Lead	3050 & 7741
Total Selenium	3050 & 7761
Total Silver	7060
TEP Arsenic	7080
TEP Barium	7130
TEP Cadmium	7190
TEP Chromium	7470
TEP Mercury	7420
TEP Lead	7740
TEP Selenium	7760
TEP Silver	,,,,,,

* Water Quality Information Paper 23, Military Unique Munitions Analytical Procedures, United States Army Environmental Hygiene Agency, 16 March 1987, Appendix B, "High Performance Liquid Chromatography, Analysis of explosives in Soil.

•

TABLE A-3. LIST OF PARAMETERS USED IN THIS STUDY WITH DETECTION LIMITS OF EACH

Parameter	Detection Limit µg/Kg
Benzene	0.5
Bromomethane	0.5
Bromodichloromethane	0.5
Bromoform	0.5
Carbon Tetrachloride	0.5
Chlorobenzene	0.5
Chloroethane	0.5
2 Chloroethylvinyl Ether	0.5
Chloroform	0.5
Chloromethane	- 0.5
)ibromochloromethane	0.5
,2 Dichlorobenzene	0.5
,3 Dichlorobenzene	0.5
,4 Dichlorobenzene	0.5
,1 Dichloroethane	0.5
,2 Dichloroethane	0.5
,1 Dichloroethene	0.5
,2 Dichloroethene(trans)	0.5
,2 Dichloropropane	0.5
,3 Dichloropropene (cis)	0.5
,2 Dichloropropene(trans)	0.5
thyl Benzene	0.5
ethylene Chloride	0.5
,1,2,2 Tetrachloroethane	0.5
etrachloroethylene	0.5
,1,1 Trichloroethane	0.5
,1,2 Trichloroethane	0.5
richloroethylene	0.5
richloroflouromethane	0.5
oluene	0.5
inyl Chloride	0.5

3a. Volatile Organics

в-34 А-3

3D. Base-Neutral Excount	Detection Limit
Parameter	μg/Kg
	1
Acenaphthene	1
Acenaphthylene	, 1
Anthracene	1
Benzo(a)anthracene	1
Benzo(a)pyrene	1
Benzo(b)fluoranthene	2.5
Renzo(ahi)perylene]
Benzo(k)fluoroanthene	1
Chrysene	2.5
Dibenzo(ah)anthracene	1
Fluoranthene	1
	2.5
Fluorene Indeno(1,2,3cd)pyrene	1
Ingenoti,2,300/PJrene	1
Naphthalene	1
Phenanthrene	1
Pyrene	
Hexachlorocyclopentadiene	1
Hexachlorobenzene	
Hexachlorobutadiene	1
Hexachloroethane	1
1,2,4 Trichlorobenzene	1
1 2 Dichlorobenzene	1
1 3 Dichlorobenzene	1
1 4 Dichlorobenzene	1
2 Chloronaphthalene	٦
Benzidine	1
a a Dichlorobenzidine	1
Papavi butvi phthalate	1
Bis(2 ethylhexyl)phthalate	1
Di-n-butyl phthalate	ì
Di-n-octyl phthalate	ì
Diethyl phthalate	1
Diethyl philaidte	i
Dimethyl phthalate	1
N-nitrosodimethylamine	1
N-nitrosodiphenylamine	1
N-nitrosodi-n-propylamine	1
Isophorone	
Nitrobenzene .	1
2,4 Dinitrotoluene	
2,6 Dinitrotoluene	
1 2 Dinhenvlhvdrazine	1
Bis(2 chloroethyl) ether	}
Ric(2 chloroethoxy)methane	1
Ric(2 chloroisopropy)/etile	1
A Bromonbenyl nhenvi etner	1
4 Chlorophenyl phenyl ether	

3b. Base-Neutral	Extractable	Urganics
------------------	-------------	----------

Parameter	Detection Limit µg/Kg
	µy/ky
	2.5
4 Chloro 3 methylphenol	2.5
2 Chlorophenol	2.5
2,4 Dichlorophenol	2.5
2,4 Dimethylphenol	25
2 4 Dinitrophenol	25
2 Methyl 4,6 dinitrophenol	2.5
2 Nitrophenol	2.5
4 Nitrophenol	2.5
Pentachlorophenol	2.5
Phenol	2.5
2,4,6 Trichlorophenol	

3c. Acid Extractable Organics

3d. Pesticides and PCBs

Parameter	Detection Limit µg/Kg
	μ3
	1
BHC(ALPHA)	1
BHC(BETA)	1
BHC(GAMMA)	1
BHC(DELTA)	1
Heptachlor	1
Aldrin	1
Heptachlor Epoxide	ì
4,4 DDE	1
Dieldrin	1
Endrin	1
4,4 DDD	1
A A DOT	1
Endosulfan Sulfate	1
Endosulfan I	1
Endosulfan II	1
Chlordane ,	50
Toxaphene	1
Endrin Aldehyde	5
PCB 1016	5 5
PCB 1221	5
PCB 1232	5
PCB 1242	5
PCB 1248	5 5 5 5
PCB 1254	5
PCB 1260	

A-5 B-36

Parameter	Detection Limit µg/Kg	
	500	
Silver	500	
Arsenic	10,000	
Barium	É 100	
Cadmium	500	
Chromium	20	
Mercury	500	
Lead Selenium	100	

3e. Extractable Metals

3f. Total Metals

a.

Parameter	Detection Limit µg/g	
	3.99	
Silver	1.96	
Silver Arsenic′	0.01	
Barium /	1.98	
Cadmium	3.96	
Chromium/	0.040	
Mercury /	1.98	
Lead Selenium	0.20	

APPENDIX B

BOREHOLES

Borelogs for the Test Holes Drilled at Wright AAF (Boreholes 1-4), Zoucks Cemetery (Boreholes 5-9), and Hunter AAF (Boreholes 10-13)

141

	DRILLING L (The proponent of this form	.0G 1\$ HSHB·ESI	WRIGHT
LOCATION	5-0127 Stewart, GA ker ADII	DATE <u>31</u> DRILLERS BORE HOLE	March 1987 Hoddinott, Smithson, Maners BH 1
SAMPLE TYPE BLOWS DEPTH PER 6 IN	DESCRIPTION		REMARKS
DEPIH PER 0 11	Black asphalt Yellowish red fine sa Gray (5yr 6/1) very f Strong brown(7.5yr5/8 loam Yellowish red fine sa Mottled silt loam Strong brown (7.5yr5/8 Gray (7.5yr5/8) Red (10r 4/8) Red (10r 4/8) silt lo BOH	ndy loam(5yrs/ ine sandy loan 3)fine sandy ndy loam(5yr5/ 8)	
		P_30	

AEHA Form 130, 1 Nov 82 Replaces HSHB Form 78, I Jun 80, which will be used.

ĺ

142

ROJECT OCATION		5-0127 Stewart, GA	- DATE	1 March 1987 Hoddinott, Smithson Maners
RILL RI	IG <u>Ac</u>	ker ADII	BORE HOLE	BH 2
DEPTH	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION Very dark gray(5yr		REMARKS
5	041	Very dark gray(5yr Light yellowish bro Dark gray (10yr4/1) Brown (10yr5/3) fin Yellowish red (5yr loam Red (10r4/8) silt Brownish yellow(10y BOH	fine sandy loam e sandy loam 5/8) fine sandy loam	water encountered @

AEHA Form 130, 1 Nov 82 Replaces HSHB Form 78, 1 Jun 80, which will be used.

ĺ

B-3

DRILLING LOG

(The proponent of this form is HSHB-ES)

PROJECT -	37-26-0127 Ft Stewart, GA		l March 1987 Hoddinott, Smithson,
LUCATION			Maners
DRILL RIG	Acker ADII	BORE HOLE	BH' 3

SAMP LE TYPE BLOWS REMARKS DESCRIPTION PER 6 IN DEPTH Dark brown (10yr3/3) loamy fine 043 sand Olive yellow (2.5y6/6)loamy fine sand Red (2.5yr4/8) fine sandy loam . 5 Red (10r 4/8) silt loam 044 BOH 10 ł

•

AEHA Form 130, 1 Nev 82 Replaces HSHB Form 78, 1 Jun 80, which will be used. 143

WAA

DRILLING LOG

(The proponent of this form is HSHB-ES)

PROJECT	37-26-0127	DATE March 1987	
	<u> </u>		
			Maners
DRILL RIG	Acker ADII	BORE HOLE	BH_4

		SAMPLE TYPE		T			
	DEPTH	BLOWS PER 6 IN		REMARKS			
		045/048	Brown(10yr4/3)meduim sand Very dark gray fine sand (10yr3/1)	black surface stain Samples taken in			
				cuplicate or split for quality control			
	-		Dark yellowish brown (10yr4/4) fine sandy loam Strong brown (7.5yr5/8) very fine	· · · · · · · · · · · · · · · · · · ·			
			sandy loam				
	۰						
	_		Red (10r5/8) silt loam				
		046/047		Water encountered 08.5'			
			ВОН				
1	0			Sample 049 is water from a rinse after washing the SP.			
	-	ŗ					
٨٢	AFHA Form 130 1 Nov 82						

AEHA Form 130, 1 Nov 82 Replaces HSHB Form 78, I Jun 80, which will be used. B-42

B-5

WAA

r44

145

DRILLING LOG

(The proponent of this form is HSHB.ES)

	<u>6-0127</u>	DATE —	31 March 1987 Hoddinott, Smithson,
LOCATIONFt	Stewart, GA		Maners
DRILL RIG	ker ADII	BORE HOLE	<u>BH. 6</u>
SAMPLE TYPE BLOWS DEPTH PER 6 IN	DESCRIPTION		REMARKS and 1"thick layer of
055	Dark grayish brown(10 Yellow (10yr 7/6) fin White (10yr8/2) very Brownish yellow (10yr	e sand fine sand	black residue 6" Below surface
5 056	White (10yr8/2)medium BOH	n sand	Water encountered @5' black sand was found at the extreme lower end of the SP.
	•		

AEHA Form 130, 1 Nov 82 Replaces HSHB Form 78, I Jun 80, which will be used. B-43

B-6-

146

DRILLING LOG (The proponent of this form is HSHB-ES)

PPO IECT .	37-26-0127	DATE3	DATE <u>31 March 1987</u>	
	<u>Ft Stewart, GA</u>			
DRILL RIG	Acker ADII	BORE HOLE	BH 5	

	SAMP LE TYPE		
DEPTH	BLOWS PER 6 IN	DESCRIPTION	REMARKS
	050/051	Ash + burn residue + sand. Brown (10yr5/3) medium sand	052 is a sample of the burn residue
		Strong brown(7.5yr5/8)loamy sand Light yellowish brown(10yr6/4)mediu White (10yr8/2) medium sand	m sand
5			
		Black medium sand	
-	053/054	ВОН	
		BUI	
		,	
	:		

AEHA Form 130, 1 Nev 82

.....

Replaces HSHB Form 78, I Jun 80, which will be used. B-44

B-7

147

DRILLING LOG

(The proponent of this form is HSHB-ES)

LOCATIONFt	26-0127 Stewart, GA	DATE	31 March 1987 Hoddinott, Smithson, Maners BH, 7
SAMPLE TYPE BLOWS DEPTH PER 6 II	L DESCRIPTION		REMARKS
	Black fine sand Yellow (10yr6/7) fine White (10yr8/2) fine Gray (10yr7/1) fine s BOH	sand	Water encountered 4' Black subsurface layer in bottom of SP

٠.

AEHA Form 130, 1 Nov 82 Replaces HSHB Form 78, 1 Jun 80, which will be used.

B-8

.

(4f

DRILLING LOG (The proponent of this form is HSHB-ES)

PROJECT .	37-26-0127	DATE	31 March 1987
	Ft Stewart, GA		<u>Hoddinott, Smithson,</u>
DRILL RIG	Acker ADII		ЕВН 8

	SAMPLE TYPE		
DEPTH	BLOWS PER 6 IN	DESCRIPTION	REMARKS
	059	Black sand	
		Yellow (10yr7/6) medium sand	
		Light gray (10yr7/2) medium sand	
5	060		Water encountered @ 5'
		вон	
10		•.	
	,		
_			
_			
		· · ·	

AEHA Form 130, 1 Nev 82 B-46 Replaces HSHB Form 78, I Jun 80, which will be used.

144

DRILLING LOG

(The proponent	of	this	form	I: HSHB·ES)	
----------------	----	------	------	-------------	--

PROJECT LOCATION		6-0127 Stewart, GA	DATE DRILLERS	31 March 1987 <u>Hoddinott, Smithson,</u> Maners
DRILL RI	G <u>Ac</u>	ker ADII	BORE HOLE	<u>BH 9</u>
oretu	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION		REMARKS
DEPTH	061	Brown (10yr4/3) mediu Yellowish brown (10yr fine sand Very pale brown (10yr sand	5/8) medium to	
5	062	Light gray (10yr7/2) BOH	medium sand	Water encountered @ \$' 063 is Quality Control sample on the SP washin
10		•		

۰.

J, I 1907 OL Replaces HSHB Form 78, I Jun 80, which will be used. B-47

.

B-10

		DRILLING (The proponent of this form	LUG n iz HSHB-ESI	HAD
PROJECT LOCATION DRILL RIG		6-0127 Stewart, GA ker ADII	DATE DRILLERS BORE HOLE	31 March 1987 Hoddinott, Smithson, Maners
	SAMPLE TYPE BLOWS PER 6 IN	DESCRIPTION Very dark brown (10yr2	2/2) loamy	REMARKS
5	064	fine sand Brown (10yr5/3) fine s Black (10yr2/1) fine Dark gray (7.5yr4/0) Gray (2.5yr6/0) fine BOH	sand sand fine sand	Dily odor Water encountered @ 8'

B-11

121 1)AA

DRILLING LOG

(The proponent of this form is HSHB-ES)

PROJECT -	37-26-0127	DATE <u>31 March 1987</u>	
	Ft Stewart, GA	DRILLERS	Hoddinott, Smithson,
			Maners
DRILL RIG	Acker ADII	BORE HOLE	BH 11

	SAMPLE TYPE		
DEPTH	BLOWS PER 6 IN		REMARKS
	066	Very dark brown (10yr2/2) fine sand Yellowish brown (10yr5/6) fine sand Very dark grayish brown (10yr3/2) fine sand	
		Very dark gray (7.5yr3/0) fine sand	Oily smell
	067	Dark gray (7.5yr4/0) fine sand	Water encountered @ 7'
10		вон	
	1		
	orm 130, 1	Nov 92	

Replaces HSHB Form 78, I Jun RAnwhitch will be used. B-49

B-12

DRI	LLING	LOG	
DIODOnent	at this is	nem in Liftian	

(The proponent o	t this	form	l s	HSHB-ES)
------------------	--------	------	------------	----------

PROJECT	37-26-0127	DATE3	11 March 1987
	<u> </u>	DRILLERS	<u>Hoddinott, Smithson,</u>
			Maners
DRILL RIG	Acker ADII		BH_12

	1.	SAMPLE		
	1	TYPE		
j		BLOWS		
	DEPTH	PER 6 IN	DESCRIPTION	REMARKS
		0.50		NE/MANS
		068	Black fine sand	Oily odor
	5			
	·			
		-	Pinkish gray (7.5yr6/2) fine sand	
			3 - 5 (1 to 5 to 7 2) the sand	
1		069	Damle enquirely in the second	
		···· ·····	Dark_grayish_brown (10yr4/2) fine	sand
	-		вон	
			· .	
10	, <u> </u>			
ł				
		1		1
1			1	
	7			
		1		· [
٨٣	116 6	<u>-</u>		
AL	HA FORM	130, 1 Nev	v 82 · · · ·	

•

Ŋ,

Replaces HSHB Form 78, I Jun 80, which will be used.

B-50 B-13

152 HAA

153

DRA

DRILLING LOG

(The proponent of this form is HSHB-ES)	
---	--

PROJECT -	37-26-0127 Ft Stewart, GA		1 March 1987 Hoddinott, Smithson, Maners
DRILL RIG	Acker ADII	BORE HOLE	BH 13

••

	SAMP LE TYPE		
DEPTH	BLOWS PER 6 IN	DESCRIPTION	REMARKS
UCTIN		Black (10yr2/1) fine sand	Oily odor
1	070 071	Brown (7.5yr5/2) fine sand	1
1		Black (10yr2/1) fine sand	
	1		
F	j		
5		Dark grayish brown (10yr4/2) fine sand	
	072 073	-	
· -]		
	<u> </u>	ВОН	V
_	1		1
-	1		
10	4		
1			
-	1	. ·	
-		•	
_			•
1		Ì	
	-		
AEHA F	orm 130,	1 Nov 82 Replaces HSHB Form 78, I Jun 80, which will be B-51	used.

B-14

Hazardous Waste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Mar 87

.

APPENDIX C

ANALYTICAL RESULTS FOR THE SAMPLES COLLECTED FROM THE EOD SITES AND FIRE TRAINING AREAS OF FORT STEWART

				Parameters Cadmium	Chromium	Selentum	Arsenic
	Mercury	Bartum ua/a	6/6rl	19/9	5/6rt	р9/8 0.2	чд∕а 1,96
umits Sample ID Detection Limit	ug/9 0.04	10.0	1,98				
		:	60.2	19.6	3.92	801 801	e e
al Center of Crater	0.392	;;	59.9	96.6		n 219	108 I
	0.389	10.7	34.8	1.99	80L	BDL	80L
Transect	0.195	9 66	41.8	3.94		BDL	36-12
Transect	0.394 0	12.6	2.A.5	801		801	16.4
#5 Transect Member	B45.0	15.7	184	3.95		BOL	÷.
#6 Transect Member		16.7	148	10.8		BOL	6.1
#7 Transect Member	455 D	11.0	144	15.2		1UB	1.9
#B Transect Member	0, 35		53.3	3.96		199	1.9
#9 Transect Member	0.396	1.7	35.3	21.8	BUL		
#10 Transect Member	0.39/						
TABLE C-2. CHEMICAL PARAMETERS FOUND Merc Units Hug/ Sample ID Detection Limit Ng/ #11 Center of Crater 1.5 #13 Transect Member 0.1		IN THE LABORATORY ANALYSIS, AREA E00-2 ury Barium Lead 9 19/9 19/9 9 11.5 10 6 10.7 10 6 10.7 10 8 5.33 10 10.7 10		Parameters Cadmium 19/9 3.97 801 801 19.8	Chromium 19/9 3.92 4.78 4.6 80L	Selentum Selentum 19/9 0.259 801 801 801	Arsentc H1.96 11.9 11.9 11.9 12.9 9.89
Transect	101 0	7.03	30.1	25.4 201		80F	7
#15 Transect Member		7.42	55.5	BUL		BDL	
#16 Transect Member	1.5.0	12.0	911	2.15		BOL	uri -
Transect	0.429	7.6.2	35.8	801	BUL	801	ιń.
Transect	0.373	4.9 51.3	E. 7 P	BOL	108 901	109	-
and transact Member	0.399		1 19	56.1	LUL LUL		

Hazardous Waste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Mar 87

e 5

C-2

B-53

15

.

1

1

ł

ł

:

1

BDL - below delectable limits

ways ways ways ways 1.92 1.92 0.2 10.14 801 801 801 801 801 801 801 801 90 801 801 91 801 801 91 801 801 92 93 94 93 94 801 93 94 901 94 901 3.98 801 801 3.98			Hercury	Bartum	Lead				Selenium	Arsenic
Carter 0.394 11 566 B01	Sample ID	Umits Detection Limit	и9/9 0.04	н9/9 0.01	,6н С	л <u></u> 5/	9/9 .98	н9/9 3.92	н9/9 0.2	8/84 1.96
Transect Member 0.35 5.72 6.65 001			105 0	:	364		BDL	BOL	801	16.6
Transect bener 0.33 17.4 97.6 19.4 10.4 00.1 Transect bener 0.335 12.1 13.6 12.1 13.6 12.1 13.6 13.4 00.1 00.1 Transect bener 0.335 20.6 12.1 13.6 12.1 13.6 12.1 00.1 00.1 Transect bener 0.335 20.6 12.1 13.6 12.1 00.1 00.1 00.1 Transect bener 0.335 20.5 12.1 13.6 13.6 00.1 00.1 00.1 Transect bener 0.335 12.1 13.6 13.6 13.6 00.1 00.1 00.1								BUI	BOL	1.98
Transect Nember 0.399 15.4 137.0 139.1 130.1		e of #21	0.146	21.6			מחר			0
Transect Nember 0.395 59.6 3281 1.98 90.1 00.1 Transect Nember 0.394 23.7 96.1 60.1 80.1 80.1 80.1 Transect Nember 0.394 23.7 96.1 60.1 80.1 80.1 80.1 - below detectable limits 0.394 23.7 96.1 80.1 80.1 80.1 80.1 - below detectable limits 0.394 23.7 96.1 80.1 80.1 80.1 80.1 - below detectable limits 0.394 96.1 80.1 80.1 80.1 80.1 80.1 - below detectable limits 1.94 97.1 97.3 97.3 97.9 97.9 97.9 - below detectable limits 1.94 97.3 97.3 97.9 97.9 97.9 97.9 - below detectable limits 1.94 97.9 97.9 97.9 97.9 97.9 97.9 - below detectable limits 1.94 97.9 97.9 97.9		Member	0.399	15.4	P			• • •		
Transect Nember 0.4 20.6 164 26 9.1 BDL 9.0 Transect Nember 0.339 23.7 99.1 26. 99.1 BDL 90.1 BDL		_	0.395	50.6	328		86.	BUL		
Transect Nember 0.398 23.7 98.1 BDL			• · 0	20.6	1			\$	BUL	
- below detectable limits I.E.C.4. CHEMICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 T. C.4. CHEMICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 Parameters		Nember	861.0	23.7	õ		BDL	BDL	BOL	6. d
Defour detectable limits Defour detectable limits LE C.4. CHENICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 RE C.4. CHENICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 RE C.4. CHENICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 Reference Distribution Units Works Distribution Units Works Distribution Distring (Distribution) <td></td>										
- below detectable limits I.E. C.4. CHENICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 I.E. C.4. CHENICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS. AREA EDD-4 Parameters Paramet										
CHENTCAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS, AREA EDD-4 Parameters		detectable limits								
Hercury Bartun Lead Cadmiun Chromiun Selentun Arsentun Units ug/g ug/g ug/g ug/g ug/g ug/g ug/g Datection Limit 0.01 1.98 1.98 0.01 1.99 ug/g ug/g ug/g r of Crater 0.398 4.16 64.7 53.6 BDL BDL 0.398 ug/g						Parameti	ers			TEP
Units vercury]		C hrom to an		Arsenic	Cadmitu
Units ug/g ug/g <thu g<="" th=""> ug/g ug/g <thu< td=""><td></td><td></td><td>HERCURY</td><td>1991 J 100</td><td>רבאמ</td><td></td><td></td><td></td><td>40/0</td><td></td></thu<></thu>			HERCURY	1991 J 100	רבאמ				40/0	
of Crater 0.398 4.16 64.7 53.6 BDL BDL cate of r28 0.414 4.35 166 60 4.35 0.787 cate of r28 0.414 4.35 155 518 3.69 80L cate of r28 0.414 4.35 155 518 3.69 80L cate of r28 0.414 4.35 175 518 3.69 80L ect Nember 0.395 5.14 45.6 1.98 80L 80L ect Nember 0.395 5.14 45.8 35.8 2.01 80L ect Nember 0.395 5.24 35.8 73.1 4.34 80L ect Nember 0.395 2.78 99.6 1.99 80L 80L ect Nember 0.4 3.2 99.6 1.99 80L 80L ect Nember 0.4 3.2 99.6 1.99 80L 80L ect Nember 0.4 3.2 <td< td=""><td>Sample ID</td><td>Units Detection Limit</td><td>5/61</td><td>9/64 0.01</td><td>6/6r</td><td>1.98 - 1.98</td><td>3.96</td><td></td><td>96.1</td><td>•</td></td<>	Sample ID	Units Detection Limit	5/61	9/64 0.01	6/6r	1.98 - 1.98	3.96		96.1	•
Center 0.198 4.10 0.71 0.787 Duplicate 0.414 4.35 166 6.0 4.35 0.787 Duplicate 0.414 4.35 155 518 3.69 801 Duplicate 0.389 8.17 175 518 3.69 801 Transect Member 0.395 5.14 45.6 1.98 801 801 Transect Member 0.395 5.14 45.8 13.6 801 801 Transect Member 0.395 5.14 45.4 35.1 4.34 801 801 Transect Member 0.395 2.78 99.6 1.99 801 801 Transect Member 0.402 2.78 99.6 1.99 801 801 Transect Member 0.402 2.78 99.6 1.99 801 801						• 13	IUB		3.98	ŏ
Duplicate of #28 0.414 4.15 160 0.0 4.23 0.0 4.15 160 4.15 170 4.23 9.17 4.25 5.18 8.17 4.25 5.18 8.17 4.25 5.18 8.17 4.25 5.18 8.01	#26 Center	of Crater	84E.D				1	787	4 14	ð
Transect Nember 0.389 8.17 175 518 3.07 901 Transect Nember 0.995 5.14 45.6 1.98 801 801 Transect Nember 0.995 5.14 45.6 1.01 801 801 Transect Nember 0.402 7.24 35.8 2.01 801 801 Transect Nember 0.399 2.78 99.6 1.99 801 801 Transect Nember 0.398 2.78 99.6 1.99 801 801 Transect Nember 0.398 2.78 99.6 1.99 801 801 Transect Nember 0.4 3.2 191 12 801 801		te of #28	0.414	4.35	20	2				0.43
Transect Nember 0.395 5.14 45.6 1.95 90. 90. Transect Nember 0.402 7.24 35.8 2.01 80.1 80.1 Transect Nember 0.395 4.54 4.35 73.1 4.34 80.1 Transect Nember 0.395 4.54 435. 73.1 4.34 80.1 Transect Nember 0.395 2.78 99.6 1.99 80.1 80.1 Transect Nember 0.395 2.78 99.6 1.99 80.1 80.1 Transect Nember 0.4 3.2 191 12 80.1 80.1			0.389	8.17	521	518	50.n			ŝ
Transect Member 0.402 7.24 35.8 2.01 90.0 90.0 Transect Member 0.395 4.54 432 73.1 4.34 60.0 Transect Member 0.395 2.78 99.6 1.99 801 801 Transect Member 0.395 2.78 99.6 1.99 801 801 Transect Member 0.4 3.2 191 12 801 801 Transect Member 0.4 3.2 191 12 801 801			0.395	5.14	45.8	N.6. I				ā
Transect Member 0.395 4.54 432 73.1 4.34 BUL Transect Member 0.398 2.78 99.6 1.99 801 801 Transect Member 0.398 2.78 99.6 1.99 801 801 Transect Member 0.4 3.2 191 12 801 801		_	0.402	7.24	315.8	2.01	BUL	60C		ŝ
Transect Nember 0.398 2.78 99.6 1.99 801 801 Transect Nember 0.4 3.2 191 12 801 801 Transect Nember 0.4 3.2 191 12 801 801		_	0.395	49°.4	432	73.1		801		ŝ
Transect Member 0.4 3.2 191 12 801 801 Transect Member 0.4 3.2 3 191 12 801 801			862.0	2.78	9, 66	99.1	804	BUL	60C	
			• 0	3.2	101	21	BDL	100	66.7	
					: 1		100	ĉ	~	

TABLE C-1. CHEMICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS, AREA FOD-3

C=3

80L - below detectable limits

1

į 1

Hazardous Waste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Mar 87

в**-**54

stournet	
Ľ.	

TABLE C-5. CHEMICAL PARAMETERS FOUND IN THE LABORATORY ANALYSIS, FIRE TRAINING PIT - MRIGHT AAF

ĺ

							PAra	Parameters					
	-		٦.	<u>(</u>	¢.,	V	Ŀ			Klund	tou		
		J J					l	bis(2- ethvihervi)		ן ומסימי	Benzo(a)	•	Indeno
			Hercury	Barlum	Lead	Chromium	Arsenic	Phthalate	anthreme		cene	6	byrene
Sample ID	Death (ft)	Deeth (ft) Detection Limit	• • • • •	6.01	86-1 86-1	на/ө 1.92	9/6-1	1 1	AXI-	₽3/8⊓ I	₩8/Ke 1	43/64	ue/Ke
#37 Pit Residue			0.39 0	ы. 20	147	BOL	65.7	3.000	7.400	ŝ	ž		ŝ
#36 Borehole 1	Ĵ		860.0	15.5	9.01	1.57	194	đ		Í	Í		ž
#39 Borehole 1	4 - 5		0.392	12	8 2 •	17.5	15.7	-		Í			ទ័ន
#40 Borehole]	0 6		4,0	15.4	24	• 61	16	2.500	1.700	5 IND	C S S S S S S S S S S S S S S S S S S S		
#41 Borehole }			0.39	12.5	52	5.27	6	Ū.	BUIL	i ua			
#42 Borehole	7.5-8.5		960.0	1.77		195° 4	1,99	1 2 8	Ĩ	Ē	ŝ		ž
#43 Borehole 1			0.39	13.6	911.9	108	~	200	Ē	Í			
#44 Borehole]	7.5-8.5		0.394	1.74	25.6	1	3,94			Ē	Ē		i
#45 Borehole	-		0.399	5,38	60.8	7.06	3.92	10g	UB I	ŝ			2
#46 Borehole	7.5-8.5		0,394	8C.8	60.7	8.85	9.86	1	BOC	ŚĒ	Í		
#47 Borehole			196.0	4,89	74.5	0.01	9.78	108		Ē			2
#4B Borehole 1			292.0	7.45	43.6	6.08	3.92	BDI	100				
sty Borehole 1			ជីន	90(80L	BOL	BDL	BDL BDL	BOL	906	BOL	108	
												`	
BDI . helow detectable limite	ctable limite												

TABLE C-6. CHEMICAL PARAMETERS FOUND IN THE LABORATORY AMALYSIS, FIRE TRAINING PIT - ZOUCK'S CENETERY

						Parameters			
			Hercury	Barlum	Lead	Chromtum	Arsento	Cadmitum	Selentum
Sample 10	Depth (ft)	Units Detection Limit	0/64	6/64 0'0	96-1 1,98	49/9	8/81 1.96	8/6n	19/8 0.2
¢50 åorehole 5	1-0		191 0	-	. 13	1	ž	2	ŝ
			1	36.96	•		Ŗ	R :	
#51 Uvplicate of #58			0.391	6.98	82	<u>108</u>	1.91	100	5
ess Burn Residue			0.396	20.5	505	5 9	5.9	25.7	0.317
#53 Borehole 5	7.5-8.5		0.396	1,98	15.8	6.11	6.11		
#54 Duplicate of #53			0.397	1.99	6.11	10.3	11.9	2	ICN
#55 Borehole 6	+		0, 397	2 97		Ĩ	1.97		
#56 Borehole 6	4.5-5.5		866.0	5.77	31.9	7.17	1.99	Ū.	ġ
#57 Borehole 7			160.0	2,93	19.6	BDC	1.96	ē	Ĩ
Sik Borehole 7	\$- \$		0.394	1.97	108	j j	BD1	Ē	
#59 Borehole B			0.397	10.7	71.4	- He	1 95	ŝ	Ē
rto Borchole 5	4-S		0.395	3.16		NIR 1		ũ	ģ
sti Borehole 9 Backerd	- - 0		999	61.4	0 % C			ទីន	
#62 Borehole 9 Backerd	5-5		190 U						
#62 Quality Control						101	100	901	
LI SEA			108	BOL	BOL	BOL	901	108	108
BDL helm detectable limit:	112114								

1 :

1

:... Ŧ

i

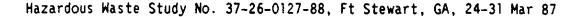
Hazardous Waste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Mar 87

157

.

C-4

Hazardous Haste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Har 87


158

ethylhevyl) te Phonarthrane v/re	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Phenyl)		
Selenium Nis (2 ethy Selenium Mihalate 1978 yike	4**** <u>*</u>	
Caderium Praya 1.39	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Arsenic 196		
Parameters Chromium vi/d	ૻ૱ૣ૾ૡૼૻૡૼ <u>૾૾</u> ૾૾ૡૼૡૡૼ	
X, E 11 C		
J.	옥수대학사 4동국교립 수입에는 25 위해임 사정 - 립	
Mercury 19/0		
Mercury Mercury Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Conta Co		
	4 4 4 4 4 5 5 5 6 6 7 7 7	
	bereasts 11 bereasts 11 bereasts 11 bereasts 11 bereasts 11 bereasts 12 bereasts 12 berea	dit. Inter seteration income

TRAIDING PIT - NUNTER AIDFIELD

TABLE C-7. CHEDVECKL PARMETERS FOUND IN THE LABORATORY ANALYSIS, FINE

C-5

APPENDIX D

REFERENCES

1. AR 420-90, 1 February 1985, Fire Protection.

2. Title 40, Code of Federal Regulations (CFR), 1986 rev, Part 261, Identification and Listing of Hazardous Wastes.

3. Title 40, CFR, 1986 rev, Part 264, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.

4. Title 40, CFR, 1986 rev, Part 270, EPA Administered Permit Programs: The Hazardous Waste Permit Program.

5. EPA Publication SW-846, "Test Methods for Evaluating Solid Waste," SW-846, Second Edition, Office of Solid Waste, Washington DC, 1984.

6. United States Department of Agriculture, Soil Survey of Bryan and Chatham Counties, Georgia, March 1974.

7. United States Department of Agriculture, Soil Survey of Liberty and Long Counties, Georgia, October 1982.

8. 24th Inf Div (Mech) & Fort Stewart Reg 385-14, 30 November 1984, Safety, POST RANGE REGULATION.

9. Rule and Regulations of the State of Georgia, Title 391, Department of Natural Resources, Article 3, Environmental Protection, Chapter 11, Hazardous Waste Management, Effective 17 September 1980.

10. EPA Publication No. 600/4-83-020, August 1983, "Preparation of Soil Sampling Protocol: Techniques and Strategies.

11. Letter, U.S. Army Toxic and Hazardous Materials Agency, DRXTH-AS-IA-82334, 31 May 1983, Installation Assessment of Head Quarters, 24th Infantry Division and Fort Stewart, GA, Report No. 334.

12. Letter, USAEHA, HSHB-ME-SE, 17 February 1987, Subject: Notification of Visit, Hazardous Waste Study No. 37-26-0127-87, Fort Stewart, GA.

13. Koch, George S. and Robert F. Link, Statistical analysis of geological data, 1970, Dover Publications, Inc., New York.

14. Till, Roger, Statistical methods for the earth scientist, Macmillan Press Ltd, London, 1982.

D-1

,

Hazardous Waste Study No. 37-26-0127-88, Ft Stewart, GA, 24-31 Mar 87

15. Letter, from J. Leonard Ledbetter, Director, Georgia Department of Natural Resources to Major M. E. Stovall, DEH, Fort Stewart, 14 August 1987, Subject: Transmittal of Fort Stewart's Part B Hazardous Waste Facility Permit.

16. Title 40, CFR, 1986 Rev, Part 265, Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities. APPENDIX C

TOPOGRAPHIC SURVEY OF A MONITOR WELL SITE

REPLACE THIS PAGE WITH SCANNED MAP!

APPENDIX D TELOG® DATA

WMW2-1	Time	Min	Mean	Max
07/18/91	12:31:06	-0.05	10.45	12.03
07/18/91		10.82	10.94	11.1
		10.82	10.94	11.03
07/18/91				
07/18/91	15:31:06	10.87	11.01	11.08
07/18/91	16:31:06	10.96	10.98	11.05
07/18/91	17:31:06	10.98	11.01	11.08
07/18/91		11.01	11.01	11.03
07/18/91		10.98	11.01	11.05
07/18/91		10.96	10.98	11.03
		10.96	10.98	11.03
07/18/91				
07/18/91		10.96	10.96	11.01
07/18/91		10.96	10.98	10.98
07/19/91	00:31:06	10.96	10.98	11.01
07/19/91	01:31:06	10.96	10.98	11.03
07/19/91	02:31:06	10.98	11.01	11.05
07/19/91	03:31:06	10.98	11.01	11.03
07/19/91		10.96	10.98	11.03
	05:31:00	10.94	10.96	11.01
07/19/91				
07/19/91	06:31:06	10.87	10.91	10.98
07/19/91		10.82	10.87	10,96
07/19/91	08:31:06	10.8	10.87	10.94
07/19/91	09:31:06	10.75	10.84	10.94
07/19/91	10:31:06	10.8	10.84	10.94
07/19/91		10.82	10.87	10.94
07/19/91		10.8	10.87	10.98
07/19/91		10.8	10.91	11.12
		10.91	10.96	11.08
07/19/91				
07/19/91		10.94	10.96	10,98
07/19/91		10.96	10.98	11.01
07/19/91	17:31:06	10.96	10.98	11.01
07/19/91	18:31:06	10.98	10.98	11.01
07/19/91	19:31:06	10.98	11.01	11.05
07/19/91	20:31:06	11.01	11.03	11.05
07/19/91	21:31:06	11.01	11.03	11.05
07/19/91		11.01	11.05	11.08
07/19/91		11.03	11.05	11.1
		11.03	11.08	11.1
	00:31:06			
	01:31:06	11.05	11.08	11.1
07/20/91		11.05	11.08	11.12
07/20/91	03:31:06	11.08	11.1	11.12
07/20/91	04:31:06	11.08	11.1	11.12
07/20/91		11.05	11.08	11.12
07/20/91		11.01	11.05	11.1
07/20/91		10.96	11.03	11.08
07/20/91		10.98	11.03	11.08
07/20/91		10.91	10.98	11.08
07/20/91	10:31:06	10.89	10.98	11.05
07/20/91	11:31:06	10.94	11.03	11.17
07/20/91	12:31:06	10.91	11.08	11.26
07/20/91	13:31:06	11.08	11.12	11.17
07/20/91	14:31:06	11.1	11.12	11.17
07/20/91	15:31:06	11.12	11.15	11.17
07/20/91	16:31:06	11.12	11.15	11.17
07/20/91		11.15	11,17	11.19
			11.17	11 10
07/20/91	18:31:06	11.17	11.1/	11.19

D-2

07/20/91	19:31:06	11.17	11.17	11.19	
07/20/91		11.17	11.17	11.19	
07/20/91		11.17	11.19	11.19	
07/20/91	22:31:06	11. 1 7	11.19	11.24	
	23:31:06	11.19	11.22	11.24	
	00:31:06	11.22	11.24	11.26	
07/21/91	01:31:06	11.24	11.26	11.26	
	02:31:06	11.26	11.26	11.29	
	03:31:06	11.26	11.26	11.29	
07/21/91	04:31:06	11.24	11.26	11.26	
07/21/91		11.22	11.22	11.24	
		11.17	11.19	11.24	
07/21/91					
07/21/91	07:31:06	11.1	11.15	11.19	
07/21/91	08:31:06	11.08	11.12	11.19	
07/21/91		11.03	11.12	11.26	
07/21/91		10.98	11.12	11.24	
07/21/91	11:31:06	10.96	11.12	11.26	
07/21/91		10.98	11.17	11.36	
07/21/91		11.05	11.17	11.26	
07/21/91	14:31:06	11.03	11.17	11.33	
07/21/91		11.1	11.19	11.29	
	16:31:06	11.19	11.24	11.31	
07/21/91	17:31:06	11.19	11.22	11.29	
07/21/91		11.17	11.22	11.26	
				11.24	
07/21/91		11.19	11.22		
07/21/91	20:31:06	11.19	11.22	11.24	
07/21/91	21:31:06	11.17	11.22	11.24	
		11.17	11.19	11.22	
07/21/91					
07/21/91	23:31:06	11.17	11.22	11.22	
07/22/91	00:31:06	11.17	11.19	11.22	
07/22/91		11.17	11,19	11.22	
07/22/91	02:31:06	11.17	11.22	11.24	
07/22/91	03:31:06	11.17	11.19	11.24	
07/22/91		11.15	11.19	11.22	
07/22/91		11.12	11.15	11.17	
07/22/91	06:31:06	11.05	11.12	11.17	
07/22/91		11.03	11.08	11.12	
		11.01	11.03	11.08	
07/22/91					
07/22/91	09:31:06	10.94	11.01	11.1	
07/22/91		10.94	11.01	11.08	
07/22/91		10,98	11.03	11.12	
07/22/91	12:31:06	10.94	11.01	11.12	
07/22/91	13:31:06	10,94	11.05	11.17	
07/22/91		10.91	11.03	11.17	
07/22/91		10.98	11.05	11.15	
07/22/91	16:31:06	11.03	11.08	11.15	
07/22/91		11.08	11.1	11.12	
07/22/91		11.05	11.08	11.12	
07/22/91	19:31:06	11.05	11.08	11.1	
07/22/91		11.03	11.05	11.1	
			11.03	11.03	
• •	21:31:06	11.01			
07/22/91	22:31:06	11.01	11.01	11.03	
07/22/91		11.01	11.03	11.05	
07/23/91		11.01	11.03	11.05	
07/23/91		11.03	11.03	11.05	
07/23/91	02:31:06	11.01	11.03	11.05	D-3
,,					

(

N,

07/23/91 03:31:06	11.01	11.03	11.03
07/23/91 04:31:06	10.98	11.01	11.03
07/23/91 05:31:06	10.96	10.98	11.01
07/23/91 06:31:06	10.91	10.96	11.01
07/23/91 07:31:06	10.87	10.91	10.96
07/23/91 08:31:06	10.8	10.87	10,94
• •	10.77	10.84	10.91
• •			
07/23/91 10:31:06	10.8	10.87	10.94
07/23/91 11:31:06	10.77	10.84	11.03
07/23/91 12:31:06	10.77	10.87	11.01
07/23/91 13:31:06	10.75	10.87	11.03
07/23/91 14:31:06	10.77	10.91	11.05
07/23/91 15:31:06	10.84	10.89	10.96
07/23/91 16:31:06	10.87	10.91	10,96
07/23/91 17:31:06	10.91	10.94	10.98
07/23/91 18:31:06	10,89	10.94	10.98
07/23/91 19:31:06	10.89	10,91	10.96
07/23/91 20:31:06	10.87	10,89	10.94
07/23/91 21:31:06	10.84	10.87	10.89
07/23/91 22:31:06	10.82	10.84	10.87
07/23/91 23:31:06	10.82	10,87	10.87
07/24/91 00:31:06	10.82	10.84	10.89
07/24/91 01:31:06	10.84	10.84	10.89
	10.84	10.84	10.87
07/24/91 02:31:06			
07/24/91 03:31:06	10.82	10.84	10.84
07/24/91 04:31:06	10.8	10,82	10.84
07/24/91 05:31:06	10.8	10.8	10.82
	10,73	10.77	10.8
07/24/91 06:31:06			
07/24/91 07:31:06	10,66	10.73	10.8
07/24/91 08:31:06	10,61	10.68	10.75
07/24/91 09:31:06	10.59	10.64	10.68
07/24/91 10:31:06	10.57	10.64	10,71
07/24/91 11:31:06	10.54	10.61	10.73
07/24/91 12:31:06	10.57	10.64	10.75
07/24/91 13:31:06	10.52	10.64	10.75
07/24/91 14:31:06	10.57	10.64	10,75
			10.75
07/24/91 15:31:06	10.59	10.66	
07/24/91 16:31:06	10.64	10.68	10.73
07/24/91 17:31:06	10.66	10.71	10.73
07/24/91 18:31:06	10.64	10.68	10.73
	10.61	10.64	10.68
07/24/91 19:31:06			
07/24/91 20:31:06	10.57	10.61	10.66
07/24/91 21:31:06	10.54	10.59	10.66
07/24/91 22:31:06	10.57	10.59	10.64
	10.54	10.57	10.59
07/25/91 00:31:06	10.54	10.59	10.61
07/25/91 01:31:06	10.61	10.64	10.66
07/25/91 02:31:06	10.61	10.66	10.66
07/25/91 03:31:06	10.64	10.66	10.68
07/25/91 04:31:06	10.61	10.64	10.68
07/25/91 05:31:06	10.61	10.64	10.66
07/25/91 06:31:06	10.59	10.61	10.66
07/25/91 07:31:06	10.57	10.61	10.66
07/25/91 08:31:06	10.5	10.57	10.64
07/25/91 09:31:06	10.47	10.52	10.59
07/25/91 10:31:06	10.5	10.54	10.61

D-4

*f*67

07/25/91 11:31:06	10.5	10.54	10.64	
07/25/91 12:31:06	10.5	10.54	10.66	
07/25/91 13:31:06	10.54	10.64	10.73	
07/25/91 14:31:06	10.57	10.61	10.68	
07/25/91 15:31:06	10.57	10.61	10.66	
07/25/91 16:31:06	10.59	10.61	10,66	
07/25/91 17:31:06	10.59	10.64	10.66	
07/25/91 18:31:06	10,59	10.61	10.66	
07/25/91 19:31:06	10.61	10.64	10.66	
07/25/91 20:31:06	10.61	10.61	10.66	
07/25/91 21:31:06	10.61	10.64	10.66	
07/25/91 22:31:06	10.59	10.61	10.64	
07/25/91 23:31:06	10.59	10.61	10.61	
07/26/91 00:31:06	10.61	10.61	10.66	
07/26/91 01:31:06	10.61	10.68	10.68	
07/26/91 02:31:06	10,64	10.66	10.71	
07/26/91 03:31:06	10.66	10.68	10.71	
07/26/91 04:31:06	10.64	10.68	10.71	
07/26/91 05:31:06	10.61	10.66	10.68	
07/26/91 06:31:06	10.57	10.61	10.66	
07/26/91 07:31:06	10.54	10.59	10.64	
07/26/91 08:31:06	10.52	10.59	10.64	
07/26/91 09:31:06	10.47	10.54	10.59	
07/26/91 10:31:06	10.47	10.54	10.71	
07/26/91 11:31:06	10.43	10.59	10.73	
07/26/91 12:31:06	10,45	10,59	10.73	
07/26/91 13:31:06	10.45	10.61	10,75	
07/26/91 14:31:06	10.57	10.66	10.77	
07/26/91 15:31:06	10.54	10.64	10.71	
07/26/91 16:31:06	10.61	10.66	10.75	
07/26/91 17:31:06	10.61	10.66	10.71	
07/26/91 18:31:06	10.61	10.64	10.68	
07/26/91 19:31:06	10.59	10.61	10.66	
07/26/91 20:31:06	10.57	10.59	10.64	
07/26/91 21:31:06	10.59	10.59	10.64	
07/26/91 22:31:06	10.59	10.59	10.61	
07/26/91 23:31:06	10.59	10.61	10.61	
07/27/91 00:31:06	10.61	10.61	10.64	
07/27/91 01:31:06	10.61	10.64	10.64	
07/27/91 02:31:06	10.61	10.64	10.64 ·	
07/27/91 03:31:06	10.61	10.61	10.64	
07/27/91 04:31:06	10.59	10.61	10.61	
07/27/91 05:31:06	10.59	10.59	10.61	
07/27/91 06:31:06	10.54	10.59	10.64	
07/27/91 07:31:06	10.5	10.54	10.61	
07/27/91 08:31:06	10.45	10.52	10.59	
07/27/91 09:31:06	10.43	10.5 [·]	10,64	
07/27/91 10:31:06	10.36	10.5	10.66	
07/27/91 11:31:06	10.4	10.5	10.66	
07/27/91 12:31:06	10.43	10.54	10.71	
07/27/91 13:31:06	10.43	10.5	10.66	
07/27/91 14:31:06	10.43	10.52	10.66	
07/27/91 15:31:06	10.52	10.59	10.68	
07/27/91 16:31:06	10.54	10.59	10.64	
07/27/91 17:31:06	10.54	10.57	10.61	ľ
07/27/91 18:31:06	10.52	10.54	10.61	-

• •

.....

ľ

168

D-5

07/27/91 19:31:06	10.52	10.54	10.57	
07/27/91 20:31:06	10.5	10.52	10.57	
07/27/91 21:31:06	10.5	10.52	10.54	
07/27/91 22:31:06	10.5	10.5	10.52	
07/27/91 23:31:06	10.5	10.5	10.52	
07/28/91 00:31:06	10.5	10.5	10.52	
07/28/91 01:31:06	10.5	10.52	10.54	
07/28/91 02:31:06	10.52	10.52	10.54	
07/28/91 03:31:06	10.5	10.52	10.54	
07/28/91 04:31:06	10.5	10.5	10.52	
07/28/91 05:31:06	10.47	10.5	10.54	
07/28/91 06:31:06	10.4	10.45	10.54	
07/28/91 07:31:06	10.36	10.4	10.47	
07/28/91 08:31:06	10.33	10.4	10.47	
07/28/91 09:31:06	10.31	10.36	10.45	
07/28/91 10:31:06	10.29	10.36	10.52	•
07/28/91 11:31:06	10.29	10.36	10.5	
07/28/91 12:31:06	10.26	10.50	10.47	
07/28/91 13:31:06	10.24	10.4	10.57	
07/28/91 14:31:06	10.29	10.38	10.47	
07/28/91 15:31:06	10.33	10.50	10.47	
07/28/91 16:31:06	10.33	10.4	10.47	
07/28/91 17:31:06	10.50	10.43	10.47	
07/28/91 18:31:06	10.4	10.45	10.47	
	10.43	10.45	10.47	
07/28/91 19:31:06 07/28/91 20:31:06	10.45	10.45	10.52	
07/28/91 21:31:06	10.47	10.47	10.5	
07/28/91 22:31:06	10.5	10.52	10.54	
07/28/91 23:31:06	10.52	10.54	10.57	
07/29/91 00:31:06	10.57	10,59	10.61	
07/29/91 01:31:06	10.61	10.64	10.66	
07/29/91 02:31:06	10.64	10.66	10.68	
07/29/91 03:31:06	10.68	10.71	10.73	
07/29/91 04:31:06	10.71	10.73	10.77	
07/29/91 05:31:06	10.71	10.75	10.77	
07/29/91 06:31:06	10.68	10.73	10.77	
07/29/91 07:31:06	10.66	10.71	10.77	
07/29/91 08:31:06	10.61	10.71	10.77	
07/29/91 09:31:06	10.61	10.71	10.82	
07/29/91 10:31:06	10.59	10.73	10.84	
07/29/91 11:31:06	10.59	10.73	10.87	
07/29/91 12:31:06	10.64	10.75	10.94	
07/29/91 13:31:06	10.71	10.82	10.94	
07/29/91 14:31:06	10.73	10.82	10.96	
07/29/91 15:31:06	10.77	10.91	11.17	
07/29/91 16:31:06	10.84	10.89	10.96	
07/29/91 17:31:06	10.87	10.91	10.96	
07/29/91 18:31:06	10.89	10.91	10.96	
07/29/91 19:31:06	10.91	10.96	10.98	
07/29/91 20:31:06	10.94	10.94	10.98	
07/29/91 21:31:06	10.94	10.96	10.98	
07/29/91 22:31:06	10.96	10.98	10.98	
07/29/91 23:31:06	10.98	10.98/	11.01	
07/30/91 00:31:06	11.01	11.03	11.05	
07/30/91 01:31:06	11.03	11.05	11.1	D
07/30/91 02:31:06	11.05	11.08	11.12	

Ĺ

D-6

07/20/01 02.21.06	11 00	11 1	11 10	
07/30/91 03:31:06	11.08	11.1	11.12	
07/30/91 04:31:06	11.08	11.1	11.15	
07/30/91 05:31:06	11.08	11.1	11.15	
07/30/91 06:31:06	11.03	11.08	11,12	
07/30/91 07:31:06	10.98	11.05	11,15	
07/30/91 08:31:06	10.94	11.05	11.17	
07/30/91 09:31:06	10.94	11.05	11.12	
07/30/91 10:31:06	11.01	11.05	11.12	
07/30/91 11:31:06	10.94	11.05	11.22	
	10.94	11.1		
			11.26	
07/30/91 13:31:06	11.08	11.17	11.26	
07/30/91 14:31:06	11.05	11.17	11.22	
07/30/91 15:31:06	11.12	11.15	11.22	
07/30/91 16:31:06	11.12	11.17	11.24	
	11.19	11.24	11.24	
· ·				
07/30/91 18:31:06	11.19	11.19	11.24	
07/30/91 19:31:06	11.19	11.22	11.24	
07/30/91 20:31:06	11.22	11.24	11.26	
07/30/91 21:31:06	11.24	11.26	11.31	
07/30/91 22:31:06	11.29	11.31	11.33	
07/30/91 23:31:06	11.26	11.31	11.33	
07/31/91 00:31:06	11.29	11.31	11.36	
07/31/91 01:31:06	11.31	11.33	11.38	
07/31/91 02:31:06	11.33	11.36	11.38	
07/31/91 03:31:06	11.33	11.36	11.38	
1 F				
07/31/91 04:31:06	11.33	11.36	11.38	
07/31/91 05:31:06	11.31	11.36	11.38	
07/31/91 06:31:06	11.31	11.31	11.36	
07/31/91 07:31:06	11.29	11.31	11.31	
07/31/91 08:31:06	11.29	11.31	11.36	
07/31/91 09:31:06	11.29	11.31	11.33	
07/31/91 10:31:06	11.29	11.31	11.36	
07/31/91 11:31:06	11.31	11.33	11.4	
07/31/91 12:31:06	11.31	11.36	11.4	
07/31/91 13:31:06	11.33	11.38	11.43	
07/31/91 14:31:06	11.29	11.4	11.49	
07/31/91 15:31:06	11.31	11.4	11.45	
07/31/91 16:31:06	11.38	11.43	11.45	
07/31/91 17:31:06	11.38	11.4	11.43	
07/31/91 18:31:06	11.4	11.4	11.45	
07/31/91 19:31:06	11.4	11.43	11.43	
07/31/91 20:31:06	11.4	11.43	11.43	
07/31/91 21:31:06	11.4	11.4	11.43	
07/31/91 22:31:06	11.38	11.4	11.4	
07/31/91 23:31:06	11.4	11.4	11.43	
08/01/91 00:31:06	11.4	11.4	11.43	
08/01/91 01:31:06	11.4	11.43	11.45	
08/01/91 02:31:06	11.43	11.43	11.45	
08/01/91 03:31:06	11.43	11.43	11.45	
08/01/91 04:31:06	11.43	11.43	11.45	
08/01/91 05:31:06	11.43	11.43	11.45	
08/01/91 06:31:06	11.4	11.43	11.43	
08/01/91 07:31:06	11.38	11.43	11,47	
08/01/91 08:31:06	11.38	11.43	11.45	
		11.45	11.49	
08/01/91 09:31:06	11.4			D
08/01/91 10:31:06	11.38	11.45	11.54	

(

ĺ

[70

D-7

08/01/91	11:31:06	11.4	11.47	11.54	
08/01/91	12:31:06	11.33	11.47	11.56	
08/01/91	13:31:06	11.36	11.47	11.61	
08/01/91	14:31:06	11.38	11.49	11.61	
08/01/91	15:31:06	11.45	11.54	11,61	
08/01/91	16:31:06	11.49	11.54	11.59	
08/01/91	17:31:06	11.52	11.54	11.56	
08/01/91	18:31:06	11.52	11.54	11.56	
08/01/91	19:31:06	11.49	11,54	11.56	
08/01/91	20:31:06	11,49	11.49	11.52	
08/01/91	21:31:06	11.49	11.49	11.52	
08/01/91	22:31:06	11.49	11.52	11.52	
08/01/91	23:31:06	11.49	11.52	11.52	
08/02/91	00:31:06	11.49	11.49	11.52	
08/02/91	01:31:06	11.49	11.52	11.52	
08/02/91	02:31:06	11,49	11.52	11.52	
08/02/91	03:31:06	11.49	11.52	11.52	
08/02/91	04:31:06	11.49	11.52	11.52	
08/02/91	05:31:06	11.49	11.49	11.52	
08/02/91	06:31:06	11.47	11.49	11.52	
08/02/91	07:31:06	11.47	11.49	11.52	
08/02/91	08:31:06	11.45	11.52	11.54	
08/02/91	09:31:06	11.43	11.47	11.54	
08/02/91	10:31:06	11.36	11.47	11.54	
08/02/91	11:31:06	11.36	11.47	11.59	
08/02/91	12:31:06	11.45	11.52	11.68	
08/02/91	13:31:06	11.52	11.54	11.61	
08/02/91	14:31:06	11.54	11.56	11.59	
08/02/91	15:31:06	11.56	11.56	11.61	
08/02/91	16:31:06	11.56	11.59	11.61	
08/02/91	17:31:06	11.56	11 59	11.61	
08/02/91	18:31:06	11.59	11.61	11.61	
08/02/91	19:31:06	11.56	11.61	11.63	
08/02/91	20:31:06	11.54	11.56	11.59	
08/02/91	21:31:06	11.54	11.56	11.61	
08/02/91	22:31:06	11.54	11.54	11.59	
08/02/91	23:31:06	11.54	11.59	11.59	
• •	00:31:06	11.54	11.54	11.59	
	01:31:06	11.54	11.56	11.59	
08/03/91	02:31:06	11.54	11.54	11.59	
• •	03:31:06	11.54	11.59	11.59	
08/03/91	04:31:06	11.52	11.52	11.59	
08/03/91	05:31:06	11.49	11.52	11.56	
08/03/91	06:31:06	11.52	11.54	11.54	
08/03/91	07:31:06	11.45	11.47 11.45	11.52	
08/03/91	08:31:06	11.31		11.52	
08/03/91	09:31:06	11.31	11.4	11.49	
08/03/91	10:31:06	11.31	11,38	11.54	
08/03/91	11:31:06	11.26	11.4	$\frac{11.52}{11.56}$	
• •	12:31:06	11.31	$11.4\\11.43$	11.58	
	13:31:06	11.29			
	14:31:06	11.31	11.45	11.66	
• •	15:31:06	11.38	11.47 11.45	11.59	
	16:31:06	$11.36 \\ 11.4$	11.45	11.49 11.49	D-
	17:31:06				D –
08/03/91	18:31:06	11.43	11.45	11.49	

-8

١

r71

08/03/91 19:31:0	06 11.4	11.43	11.47	
08/03/91 20:31:0		11.43	11.45	
08/03/91 21:31:0		11.43	11.45	
08/03/91 22:31:0		11.43	11.45	
08/03/91 23:31:0	06 11.4	11.43	11.45	
08/04/91 00:31:0		11.43	11.45	
08/04/91 01:31:0		11.43	11.45	
08/04/91 02:31:0		11.43	11.45	
08/04/91 03:31:0	06 11.38	11.4	11.45	
08/04/91 04:31:0		11.38	11,43	
08/04/91 05:31:0		11.36	11.4	
08/04/91 06:31:0		11.33	11.36	
08/04/91 07:31:0)6 11.24	11.29	11.33	
08/04/91 08:31:0	06 11.19	11.24	11.31	
08/04/91 09:31:0		11.24	11.31	
08/04/91 10:31:0		11.19	11.29	
08/04/91 11:31:0)6 11.15	11.22	11.36	
08/04/91 12:31:0	06 11.12	11.22	11.38	
08/04/91 13:31:0		11.22	11.36	
08/04/91 14:31:0		11.22	11.33	
08/04/91 15:31:0		11.24	11.31	
08/04/91 16:31:0	6 11,24	11.26	11.31	
08/04/91 17:31:0		11.29	11.33	
08/04/91 18:31:0		11.26	11.31	
08/04/91 19:31:0		11.24	11.29	
08/04/91 20:31:0	6 11.19	11.24	11.26	
08/04/91 21:31:0	6 11.17	11.22	11.24	
08/04/91 22:31:0		11.22	11.24	
08/04/91 23:31:0		11.19	11.24	
08/05/91 00:31:0	6 11.17	11.19	11.24	
08/05/91 01:31:0	6 11.17	11.19	11.22	
08/05/91 02:31:0		11.19	11.22	
08/05/91 03:31:0		11.19	11.22	
08/05/91 04:31:0		11.17	11.19	
08/05/91 05:31:0	6 11.08	11.12	11.17	
08/05/91 06:31:0		11.08	11.12	
08/05/91 07:31:0		11.03	11.1	
08/05/91 08:31:0		10.98	11.08	
08/05/91 09:31:0	6 10,89	10.96	11.03	
08/05/91 10:31:0	6 10.89	10.96	11.05	
08/05/91 11:31:0		10.96	11.08	
08/05/91 12:31:0		10.98	11.05	
08/05/91 13:31:0	6 10.82	10.96	11.08	
08/05/91 14:31:0	6 10.84	10.96	11.03	
08/05/91 15:31:0		11.01	11.08	
• •				
08/05/91 16:31:0		10.98	11.03	
08/05/91 17:31:0		10.96	11.03	
08/05/91 18:31:0	6 10.91	10.94	11.01	
08/05/91 19:31:0		10.94	10.96	
08/05/91 20:31:0		10.91	10.96	
08/05/91 21:31:0		10.89	10.94	
08/05/91 22:31:0	6 10.87	10.87	10.89	
08/05/91 23:31:0	6 10.87	10.87	10.87	
08/06/91 00:31:0		10.84	10.87	
08/06/91 01:31:0		10.84	10.89	D-9
08/06/91 02:31:0	6 10.84	10.87	10.89	

(

08/06/91	03:31:06	10.82	10.84	10.89	
08/06/91		10.8	10.82	10.84	
08/06/91		10.77	10.8	10.82	
08/06/91		10.71	10.75	10.82	
08/06/91		10.66	10.71	10.75	
08/06/91		10.61	10.66	10.75	
08/06/91		10.57	10.64	10.71	
08/06/91		10.57	10.61	10.71	
08/06/91		10.52	10.61	10.71	
08/06/91		10.52	10.61	10.73	
08/06/91		10.5	10.61	10.77	
08/06/91	14:31:06	10.52	10,61	10.71	
08/06/91		10.59	10.66	10.73	
08/06/91		10.64	10.66	10.73	
08/06/91		10.64	10,66	10.71	
08/06/91		10.64	10.66	10.71	
08/06/91		10.61	10.64	10.68	
08/06/91		10.59	10.61	10.66	
08/06/91		10.57	10.59	10.61	
08/06/91		10.57	10.59	10.61	
08/06/91	23:31:06	10.57	10.59	10.61	
08/07/91	00:31:06	10,57	10.59	10.64	
08/07/91	01:31:06	10.59	10.61	10.64	
08/07/91	02:31:06	10.59	10.61	10.64	
08/07/91	03:31:06	10.57	10.61	10.64	
08/07/91	04:31:06	10.54	10.59	10.61	
08/07/91	05:31:06	10.52	10.57	10.61	
08/07/91		10.5	10.52	10.57	
08/07/91		10.43	10.47	10,5	
08/07/91		10.38	10.43	10.5	
08/07/91		10.36	10.4	10.45	
08/07/91		10.33	10.38	10.45	
08/07/91		10.26	10.38	10.52	
08/07/91	12:31:06	10.31	10.4	10.52	
08/07/91	13:31:06	10.29	10.43	10.54	
08/07/91		10.33	10.5	10.66	
08/07/91	15:31:06	10.45	10.52	10.68	
08/07/91		10.45	10.52	10.57	
08/07/91	17:31:06	10.5	10.54	10.57	
08/07/91	18:31:06	10.5	10.52	10.57	
08/07/91	19:31:06	10.52	10.54	10.59	
08/07/91	20:31:06	10.52	10.52	10.57	
08/07/91	21:31:06	10.52	10.54	10.59	
08/07/91	22:31:06	10.54	10.57	10.59	
08/07/91	23:31:06	10.54	10.57	10.61	
08/08/91	00:31:06	10.57	10.59	10.61	
08/08/91		10.57	10.61	10.66	
08/08/91	02:31:06	10.59	10.64	10.66	
08/08/91	03:31:06	10.61	10.64	10,68	
08/08/91	03:31:00	10.64	10.66	10.68	
08/08/91	05:31:00	10.64	10.66	10.68	
08/08/91	06:31:06	10.59	10.61	10.68	
08/08/91	07:31:06	10.52	10.59	10.66	
08/08/91	08:31:06	10.52	10.57	10.64	
08/08/91	08:31:08	10.3	10.57	10.64	
08/08/91	10:31:06	10.47	10.54	10.84	
00/00/91	TO. JT. 00	10,47	10, 72	10.11	

ĺ

D-10

08/08/91	11:31:06	10.43	10.52	10.68	
08/08/91	12:31:06	10.45	10.54	10.68	
08/08/91	13:31:06	10.47	10.57	10.71	
08/08/91	14:31:06	10.54	10.59	10.8	
08/08/91	15:31:06	10.54	10.61	10.68	
08/08/91		10.59	10.66	10.82	
08/08/91		10.61	10.64	10.68	
08/08/91		10.61	10.64	10.68	
08/08/91	19:31:06	10.61	10.64	10.68	
08/08/91	20:31:06	10.59	10.64	10.66	
08/08/91		10.59	10.61	10.66	
08/08/91	22:31:06	10,57	10.61	10.64	
08/08/91	23:31:06	10.59	10.61	10.66	
08/09/91	00:31:06	10.61	10.64	10.66	
08/09/91	01:31:06	10.59	10.64	10.66	
08/09/91	02:31:06	10,61	10.64	10.66	
08/09/91		10.61	10.64	10.66	
08/09/91		10.59	10.64	10.66	
08/09/91		10.57	10.59	10.64	
08/09/91	06:31:06	10.52	10.57	10.59	
08/09/91	07:31:06	10.45	10.52	10.59	
08/09/91	08:31:06	10.43	10.47	10.54	
08/09/91	09:31:06	10.38	10.43	10.54	
08/09/91	10:31:06	10.38	10.43	10.5	
08/09/91	11:31:06	10.33	10.43	10.59	
08/09/91	12:31:06	10.38	10.45	10.57	
08/09/91	13:31:06	10.33	10.47	10.59	
08/09/91	14:31:06	10.33	10.45	10.57	
08/09/91	15:31:06	10.38	10.47	10.57	
08/09/91	16:31:06	10.45	10.52	10.57	
08/09/91	17:31:06	10.47	10.52	10.57	
08/09/91		10.5	10.52 10.5	$10.54 \\ 10.52$	
08/09/91	19:31:06	10.45 10.43	10.5	10.52	
08/09/91	20:31:06	10.43	10.47	10.5	
08/09/91	21:31:06 22:31:06	10.4	10.43	10.47	
08/09/91		10.4	10.45	10.47	
08/09/91 08/10/91	23:31:06 00:31:06	10.43	10.45	10.47	
	01:31:06	10.43			
08/10/91 08/10/91	02:31:06	10.45	$10.45 \\ 10.43$	10.47 10.47 [·]	
08/10/91	03:31:06	10.38	10.43	10.45	
08/10/91	04:31:06	10.36	10.38	10.43	
08/10/91	05:31:00	10.33	10.38	10.4	
08/10/91		10.29	10.33	10.36	
08/10/91	07:31:06	10.22	10.29	10.36	
08/10/91	08:31:06	10.15	10.26	10.38	
08/10/91		10.15	10.24	10.36	
08/10/91	10:31:06	10.12	10.19	10.33	
08/10/91		10.1	10.22	10.36	
08/10/91	12:31:06	10.12	10.22	10.38	
08/10/91	13:31:06	10.1	10.22	10.33	
08/10/91	14:31:06	10.17	10.31	10.47	
08/10/91	15:31:06	10.24	10.29	10.33	
08/10/91	16:31:06	10.26	10.26	10.33	
08/10/91		10.26	10.31	10.33	D
08/10/91		10.29	10.31	10.36	D

(

(

(

D-11

ſ	75
---	----

08/10/91	19:31:06	10.26	10.31	10.33
08/10/91		10.24	10.29	10.31
08/10/91		10.24	10.26	10.31
08/10/91		10.26	10.29	10.33
08/10/91	23:31:06	10.29	10.31	10.33
08/11/91		10.29	10.31	10.36
08/11/91		10.29	10.33	10.36
08/11/91		10.31	10.31	10.36
08/11/91		10,29	10.31	10.36
08/11/91	04:31:06	10,29	10.31	10.36
08/11/91	05:31:06	10.26	10.29	10.33
08/11/91	06:31:06	10.22	10.26	10.29
08/11/91	07:31:06	10.19	10.24	10.31
08/11/91		10.15	10.19	10.29
	09:31:06	10.15	10.19	10.26
08/11/91	10:31:06	10.12	10.19	10,26
08/11/91		10.1	10.22	10.33
08/11/91		10.06	10.24	10.33
08/11/91		10.12	10.29	10.4
08/11/91		10.29	10.33	10.43
08/11/91		10.29	10.33	10.38
08/11/91	16:31:06	10.31	10.33	10.38
08/11/91	17:31:06	10.33	10,36	10.38
08/11/91	18:31:06	10.36	10.36	10.38
08/11/91		10.36	10.38	10.38
08/11/91		10.36	10.38	10.43
08/11/91	21:31:06	10.36	10.4	10.45
08/11/91		10.4	10.43	10.47
08/11/91	23:31:06	10.4	10.45	10.5
08/12/91	00:31:06	10.43	10.47	10.52
08/12/91	01:31:06	10.47	10.5	10.54
08/12/91	02:31:06	10.5	10.54	10.59
08/12/91	03:31:06	10.52	10,54	10.59
08/12/91	04:31:06	10.52	10.57	10.59 10.59
08/12/91	05:31:06	10.52	10.54 10.52	10.59
08/12/91	06:31:06	10.52 10.47	10.52	10.54
08/12/91	07:31:06 08:31:06	10.47	10.52	10.57
08/12/91		10.45	10.5	10.59
08/12/91 08/12/91	09:31:06 10:31:06	10.45	10.5	10.59
08/12/91		10.4	10.52	10.66
08/12/91		10.43	10.52	10.61
08/12/91	13:31:06	10.36	10.54	10.68
08/12/91	14:31:06	10.47	10.61	10.77
	15:31:06	10.45	10.57	10.73
08/12/91	16:31:06	10.57	10.61	10.66
08/12/91	17:31:06	10.61	10.64	10.66
08/12/91	18:31:06	10.61	10,64	10.66
08/12/91	19:31:06	10.61	10.61	10.68
08/12/91	20:31:06	10.59	10.61	10.64
08/12/91	21:31:06	10.57	10.61	10.64
08/12/91	22:31:06	10.57	10.61	10.64
08/12/91	23:31:06	10.57	10.61	10.64
08/13/91	00:31:06	10.59	10.61	10.66
08/13/91	01:31:06	10.61	10.64	10.66
08/13/91	02:31:06	10.59	10.64	10.66

D-12

ľ

at a start and

08/13/91	03:31:06	10.59	10.64	10.66	
08/13/91	04:31:06	10.59	10.61	10.66	
08/13/91	05:31:06	10.57	10.61	10.64	
08/13/91	06:31:06	10.52	10.57	10.61	
08/13/91	07:31:06	10.45	10.52	10.59	
08/13/91	08:31:06	10.43	10.5	10.54	
08/13/91	09:31:06	10.38	10.45	10.59	
08/13/91	10:31:06	10.33	10,45	10.59	
08/13/91	11:31:06	10.33	10.45	10.66	
08/13/91	12:31:06	10.36	10.47	10.66	
08/13/91	13:31:06	10.33	10.54	10.64	
08/13/91	14:31:06	10.52	10.57	10.64	
08/13/91	15:31:06	10.52	10.57	10.61	
08/13/91	16:31:06	10.52	10.54	10.59	
08/13/91	17:31:06		10.57	10.59	
08/13/91	18:31:06	10.5	10.54	10.57	
08/13/91	19:31:06	10.5	10.52	10.57	
08/13/91	20:31:06	10.47	10.52	10.54	
08/13/91	21:31:06	10.47	10.5	10.54	
08/13/91	22:31:06	10.45	10.5	10.52	
08/13/91	23:31:06	10.47	10.5	10.52	
08/14/91	00:31:06	10.47	10.5	10.52	
	01:31:06	10.47	10.5	10.54	
	02:31:06	10.47	10.5	10.54	
08/14/91	03:31:06	10.47	10.5	10.54	
	04:31:06	10.47	10.5	10.54	
	05:31:06	10.45	10.5	10.52	
	06:31:06	10.4	10.45	10.5	
• •	07:31:06	10.29	10.38	10.47	
, ,	08:31:06	10.26 10.24	10.33 10.36	$10.43 \\ 10.47$	
, ,	09:31:06 10:31:06	10.24	10.30	10.47	
• •	11:31:06	10.28	10.33	10.52	
	12:31:06	10.19	10.55	10.54	
	13:31:06	10.31	10.4	10.54	
	14:31:06	10.31	10.4	10.47	
	15:31:06	10.33	10.38	10.47	
	16:31:06	10.36	10.38	10.43	
	17:31:06	10.36	10.36	10.4	
	18:31:06	10.33	10.36	10.43	
	19:31:06	10.33	10.38	10.4	
	20:31:06	10.33	10.38	10.4	
	21:31:06	10.33	10.36	10.4	
	22:31:06	10.33	10.36	10.4	
	23:31:06	10.33	10.36	10.38	
	00:31:06	10.33	10.36	10.38	
• •	01:31:06	10.33	10.36	10.38	
	02:31:06	10.33	10,36	10.38	
	03:31:06	10.31	10.36	10.38	
	04:31:06	10.29	10.33	10.36	
	05:31:06	10.26	10.31	10.33	
	06:31:06	10.24	10.26	10.31	
	07:31:06	10.15	10.24	10.29	
	08:31:06	10.12	10.22	10.29	
	09:31:06	10.12	10.19	10.29	
	10:31:06	10.17	10.22	10.29	Γ
, = - ,					

Ę

176

D-13

08/15/91	11:31:06	10.12	10.19	10.22	
08/15/91	12:31:06	10.17	10.22	10.29	
08/15/91	13:31:06	10.17	10.22	10.24	
08/15/91	14:31:06	10.12	10.22	10.29	
08/15/91	15:31:06	10.12	10,22	10.26	
08/15/91		10.15	10.22	10.24	
08/15/91		10.19	10.22	10.26	
08/15/91		10.19	10.22	10.26	
08/15/91		10.17	10.22	10.24	
08/15/91		10.12	10.19	10.24	
08/15/91		10.17	10.19	10.22	
08/15/91		10.17	10,19	10.22	
08/15/91		10.17	10.17	10.19	
08/16/91		10.17	10.19	10.22	
08/16/91		10.17	10.19	10.22	
08/16/91		10.17	10.19	10.22	
08/16/91		10.15	10.17	10.17	
08/16/91		10.15	10.15	10.17	
08/16/91		10.12	10.15	10.15	
08/16/91		10.06	10.1	10,15	
08/16/91		10.01	10.08	10,12	
08/16/91	08:31:06	9.96	10.03	10.1	
08/16/91		9,94	10.01	10.1	
08/16/91	10:31:06	9.89	10.03	10.15	
08/16/91		9.96	10.03	10.1	
08/16/91		9.96	10.03	10.17	
08/16/91		9.96	10.06	10.22	
08/16/91		9.94	10.08	10.26	
08/16/91	15:31:06	9.99	10.06	10.15	
08/16/91	16:31:06	10.06	10,08	10.12	
08/16/91	17:31:06	10.06	10.1	10.15	
08/16/91	18:31:06	10.08	10.08	10.12	
08/16/91	19:31:06	10.06	10.08	10.12	
08/16/91	20:31:06	10.06	10.08	10.1	
08/16/91	21:31:06	10.06	10.06	10.08	
08/16/91	22:31:06	10.06	10.06	10.08	
08/16/91	23:31:06	10.06	10.08	10.08	
08/17/91		10.06	10.08	10.08	
	01:31:06	10.06	10.08	10.1	
08/17/91		10.08	10.08	10.12	
08/17/91		10.06	10.08	10.1	
08/17/91		10.06	10.08	10.1	
08/17/91		10.03	10.06	10.08	
08/17/91		9,99	10,03	10.08	
08/17/91	07:31:06	9.94	9,99	10.03	
08/17/91	08:31:06	9.92	9,94	10.01	
08/17/91		9.92	9.96	10.03	
08/17/91	10:31:06	9,89	9,96	10.06	
08/17/91	11:31:06	9.85	9.94	10.08	
08/17/91	12:31:06	9.85	9.94	10.03	
08/17/91	13:31:06	9.87	9.99	10.1	
08/17/91	14:31:06	9.89	10.01	10.17	
08/17/91	15:31:00	9.89	10.01	10.06	
08/17/91	16:31:06	9.89	10.01	10.06	
		9,94	10.01	10.08	
08/17/91	17:31:06	10.01	10.03	10.08	-
08/17/91	18:31:06	TA'AT	10.00	10.00	

177

D-14

08/17/91	19:31:06	10.01	10.03	10.06
	20:31:06	9,99	10.01	10.06
	21:31:06	9.99	9.99	10.01
	22:31:06	9.99	9.99	10.01
	23:31:06	9.99	10.01	10.01
	00:31:06	10.01	10.01	10.03
	01:31:06	10.01	10.03	10.03
	02:31:06	10.01	10.03	10.03
	03:31:06	10.01	10.06	10.06
	04:31:06	9.99	10.01	10.06
	05:31:06	9.96	9.99	10.03
	06:31:06	9.87	9.92	9.96
, ,	07:31:06	9,8	9.87	9.92
	08:31:06	9.78	9.85	9.92
	09:31:06	9.78	9.87	9.96
	10:31:06	9.78	9.87	9.99
	11:31:06	9.78	9.87	10.01
	12:31:06	9.78	9.85	9.96
	13:31:06	9.78	9.85	9.96
	14:31:06	9.78	9.89	10.06
		9.8	9.89	10.03
	15:31:06	9.85	9.92	9.99
, ,	16:31:06		9.92	9.99
	17:31:06	9.92		
	18:31:06	9.89	9.94	9.99
	19:31:06	9.87	9.89	9.94
	20:31:06	9.85	9.89	9.92
• •	21:31:06	9.85	9.87	9.89
, ,	22:31:06	9.82	9.87	9.89
	23:31:06	9.82	9.87	9.89
	00:31:06	9.82	9.87	9.89
	01:31:06	9.82	9.85	9.89
	02:31:06	9.82	9.82	9.85
	03:31:06	9.82	9.82	9.85
	04:31:06	9.8	9.82	9.85
	05:31:06	9.78	9.8	9.82
, ,	06:31:06	9.66	9.73	9.78
, ,	07:31:06	9.64	9.68	9.75
08/19/91 (9.59	9.66	9.73
08/19/91 (9.61	9.68	9.75
	10:31:06	9.57	9.66	9.78
08/19/91		9.61	9.71	9.85
08/19/91		9.61	9.71	9.85
08/19/91		9.66	9.75	9.92
08/19/91	14:31:06	9.61	9.73	9.87
08/19/91	15:31:06	9.66	9.78	9.87
08/19/91 1	16:31:06	9.68	9.78	9.85
08/19/91 1	17:31:06	9.73	9.75	9.8
08/19/91 1	18:31:06	9.68	9.73	9.8
08/19/91 1		9.68	9.68	9.71
08/19/91 2		9.66	9.68	9.73
08/19/91 2		9.66	9.71	9.73
08/19/91 2		9,66	9.68	9.73
	23:31:06	9.66	9.68	9.68
	00:31:06	9,66	9.68	9.68
	01:31:06	9.66	9,68	9.71
08/20/91 0		9.66	9,68	9.71
,,				_

178

D-15

r79

08/20/91	03:31:06	9.68	9.68	9.71
08/20/91	04:31:06	9.68	9.68	9.71
08/20/91	05:31:06	9.68	9.68	9.71
	06:31:06	9.64	9.68	9.71
08/20/91	07:31:06	9.47	9.64	9.75
08/20/91	08:31:06	9.47	9.59	9.73
	09:31:06	9.54	9.61	9.71
	10:31:06	9.54	9.61	9.78
	11:31:06	9.52	9.61	9.78
	12:31:06	9.52	9.68	9.89
		9.47	9.66	9.82
• •	14:31:06	9.54	9.66	9.78
	15:31:06	9.61	9.68	9.78
	16:31:06	9,66	9.73	9.8
	17:31:06	9,68	9.71	9.75
	18:31:06	9.68	9.71	9.75
	19:31:06	9.66	9.68	9.73
• •	20:31:06	9,64	9,68	9.68
	21:31:06	9,61	9.64	9.68
	22:31:06	9.61	9,64	9.64
	23:31:06	9.61	9.61	9.64
	00:31:06	9.61	9.64	9.64
	01:31:06	9.61	9.64	9.64
	02:31:06	9.61	9.64	9.66
	03:31:06	9.61	9.64	9.66
	04:31:06	9.59	9.61	9.64
	05:31:06	9.54	9.59	9.61
	06:31:06	9.43	9.5	9.59
	07:31:06	9.4	9.45	9.5
08/21/91	08:31:06	9.38	9.45	9.57
	08/20/91 08/21/91 08/21/91	08/20/91 04:31:06 08/20/91 05:31:06 08/20/91 06:31:06 08/20/91 07:31:06 08/20/91 08:31:06 08/20/91 09:31:06 08/20/91 10:31:06 08/20/91 11:31:06 08/20/91 12:31:06 08/20/91 13:31:06 08/20/91 15:31:06 08/20/91 15:31:06 08/20/91 16:31:06 08/20/91 19:31:06 08/20/91 19:31:06 08/20/91 20:31:06 08/20/91 21:31:06 08/20/91 21:31:06 08/20/91 21:31:06 08/20/91 21:31:06 08/20/91 21:31:06 08/20/91 21:31:06 08/20/91 21:31:06 08/21/91 01:31:06 08/21/91 01:3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

WMW 2-2

(PO

WMW2-2	Time	Min	Mean	Max
	:06:46	9.4	9.52	9,61
	:06:46	9.45	9.52	
	:06:46			9.61
	:06:46	9.47	9.54	9.66
		9.5	9.57	9.64
	:06:46	9.52	9.59	9.68
	:06:46	9.57	9.61	9.66
	:06:46	9.57	9,59	9.64
	:06:46	9.57	9.59	9.64
	:06:46	9.54	9.57	9.59
	:06:46	9.54	9.59	9.59
	:06:46	9.54	9.57	9.59
	:06:46	9.54	9.57	9.57
	:06:46	9.57	9.57	9.59
08/22/91 01:	:06:46	9.54	9.59	9.61
	06:46	9.57	9.59	9.61
	06:46	9.57	9.57	9.59
08/22/91 04:	06:46	9.57	9.57	9.59
08/22/91 05:	06:46	9.57	9.57	9.59
08/22/91 06:	06:46	9.5	9.54	9.59
08/22/91 07:	06:46	9.43	9.5	9,54
08/22/91 08:	06:46	9.36	9.4	9.52
08/22/91 09:		9.34	9.43	9.57
	06:46	9.4	9,5	9.57
	06:46	9.36	9.45	9.59
	06:46	9.31	9.43	9.61
	06:46	9.34	9.52	9.64
	06:46	9,34	9.52	9.64
	06:46	9,47	9.54	9.66
	06:46	9.5	9.52	9.57
	06:46	9.5	9.52	
	06:46	9.5	9.52	9.57
	06:46	9.5		9.57
	06:46		9.52	9.57
	06:46	9.47	9.5	9.54
	06:46	9.47	9.5	9.52
		9.47	9.5	9.54
	06:46	9.47	9.5	9.52
	06:46	9.47	9.52	9.52
08/23/91 01:0		9.47	9.52	9.52
	06:46	9.47	9.5	9.54
	06:46	9.47	9.5	9.52
	06:46	9.47	9.47	9.5
	06:46	9.45	9.47	9.5
	06:46	9.36	9.43	9.47
	06:46	9.31	9.36	9.43
	06:46	9.29	9.36	9.43
)6:46	9.29	9.34	9.4
)6:46	9.24	9.36	9.5
)6:46	9.22	9.36	9.5
)6:46	9.22	9.4	9.54
)6:46	9.24	9.36	9.54
	6:46	9,38	9.43	9.57
08/23/91 15:0	6:46	9.34	9.4	9.47
08/23/91 16:0		9.31	9.4	9.5
08/23/91 17:0		9.38	9.4	9.45
			· · ·	

rfl

	- ·		
08/23/91 18:06:46	9.4	9.43	9.45
08/23/91 19:06:46	9,36	9.38	9.43
08/23/91 20:06:46	9.34	9.36	9.38
08/23/91 21:06:46	9.34	9.34	9.36
08/23/91 22:06:46	9.31	9.34	9.36
08/23/91 23:06:46	9.34	9.36	9.38
08/24/91 00:06:46	9.34	9.36	9.4
08/24/91 01:06:46	9.34	9.38	9.4
08/24/91 02:06:46	9.34	9.38	9.4
08/24/91 03:06:46	9.36	9.36	9.4
08/24/91 04:06:46	9.36	9.36	9.38
08/24/91 05:06:46	9.34	9.36	9.36
08/24/91 06:06:46	9.29	9.34	9.36
08/24/91 07:06:46	9.27	9.29	9.34
08/24/91 08:06:46	9.22	9.27	9.34
08/24/91 09:06:46	9.06	9.27	9.43
			9.36
08/24/91 10:06:46	9.2	9.29	
08/24/91 11:06:46	9.2	9.29	9.36
08/24/91 12:06:46	9.22	9.29	9.43
08/24/91 13:06:46	9.24	9.29	9.38
08/24/91 14:06:46	9,22	9.31	9.4
08/24/91 15:06:46	9.31	9.34	9.36
08/24/91 16:06:46	9.31	9.34	9.38
08/24/91 17:06:46	9,31	9.34	9.38
08/24/91 18:06:46	9.31	9.34	9.38
08/24/91 19:06:46	9.31	9.31	9.36
08/24/91 20:06:46	9.29	9.31	9.31
08/24/91 21:06:46	9.29	9.29	9.31
08/24/91 22:06:46	9.29	9.31	9,34
08/24/91 23:06:46	9.29	9.31	9.34
08/25/91 00:06:46	9.31	9.31	9.34
08/25/91 01:06:46	9.31	9.34	9.36
08/25/91 02:06:46	9.34	9.38	9.38
08/25/91 03:06:46	9.34	9.38	9.38
08/25/91 04:06:46	9.31	9.34	9.38
08/25/91 05:06:46	9.31	9.36	9.38
08/25/91 06:06:46	9.31	9,34	9.36
08/25/91 07:06:46	9.24	9.29	9.34
08/25/91 08:06:46	9.22	9.27	9.31
08/25/91 09:06:46	9.03	9.2	9.29
08/25/91 10:06:46	9.1	9.17	9.31
08/25/91 11:06:46	9.1	9.22	9.36
	9.08	9.22	9,45
08/25/91 12:06:46			
08/25/91 13:06:46	9.1	9.24	9.43
08/25/91 14:06:46	9.1	9.27	9.43
08/25/91 15:06:46	9.15	9.29	9.43
08/25/91 16:06:46	9.27	9.34	9.45
08/25/91 17:06:46	9.29	9.31	9.36
08/25/91 18:06:46	9.29	9.31	9.36
08/25/91 19:06:46	9.27	9.29	9.31
08/25/91 20:06:46	9.24	9.27	9.31
08/25/91 21:06:46	9.22	9.24	9.29
08/25/91 22:06:46	9.24	9.27	9.29
08/25/91 23:06:46	9.24	9.27	9.29
08/26/91 00:06:46	9.24	9.27	9.31
08/26/91 01:06:46	9.27	9.29	9.31

ĺ

[JZ

08/26/91	02:06:46	9.29	9.31	9.36
08/26/91	03:06:46	9.31	9.31	9.34
08/26/91		9.31	9.34	9.36
		9,34	9.36	9.36
08/26/91				
08/26/91		9.34	9.36	9.4
08/26/91	07:06:46	9.36	9.38	9.43
08/26/91		9.36	9.4	9.43
08/26/91		9.34	9.38	9.43
08/26/91		9.36	9.43	9.47
08/26/91		9.4	9,5	9.59
08/26/91	12:06:46	9.5	9.52	9.61
08/26/91	13:06:46	9.5	9.52	9.59
08/26/91	14:06:46	9.52	9.57	9,64
08/26/91	15:06:46	9.54	9.64	9.68
08/26/91	16:06:46	9.64	9.66	9.71
08/26/91	17:06:46	9.66	9.68	9.71
08/26/91	18:06:46	9,68	9.73	9.78
08/26/91	19:06:46	9.73	9.73	9.78
			9.75	9.78
08/26/91	20:06:46	9.73		
08/26/91	21:06:46	9.73	9.78	9.8
08/26/91	22:06:46	9.75	9.78	9.82
08/26/91	23:06:46	9.78	9.8	9.8
08/27/91	00:06:46	9.78	9.8	9.82
	01:06:46	9.82	9.85	9,89
08/27/91				
08/27/91	02:06:46	9.82	9.87	9.92
08/27/91	03:06:46	9.85	9.92	9.92
08/27/91	04:06:46	9.87	9.87	9.92
08/27/91	05:06:46	9.87	9.92	9.94
08/27/91	06:06:46	9,87	9.87	9.94
08/27/91	07:06:46	9.87	9.87	9.89
				9.92
08/27/91	08:06:46	9.85	9.87	
08/27/91	09:06:46	9,85	9.89	9.94
08/27/91	10:06:46	9.8	9.87	9.94
08/27/91	11:06:46	9.75	9.85	9.92
08/27/91	12:06:46	9.71	9,94	10.1
08/27/91	13:06:46	9.75	9,96	10.03
		9.8	9,92	10.06
08/27/91	14:06:46			
08/27/91	15:06:46	9.85	9.96	10.06
08/27/91	16:06:46	9.85	10.01	10.1
08/27/91	17:06:46	10.01	10.03	10.08
08/27/91	18:06:46	10.01	10.03	10.08
08/27/91	19:06:46	10.01	10.01	10.03
				10.06
08/27/91	20:06:46	10.01	10.03	
08/27/91	21:06:46	9.99	10.03	10.06
08/27/91	22:06:46	9.99	10.01	10.06
08/27/91	23:06:46	10.01	10.01	10.06
08/28/91	00:06:46	10.01	10.01	10.06
08/28/91	01:06:46	10.01	10.03	10.03
			10.03	10.03
08/28/91	02:06:46	10.01		
08/28/91	03:06:46	10.03	10.03	10.06
08/28/91	04:06:46	10.01	10.03	10.06
08/28/91	05:06:46	10.01	10.03	10.03
08/28/91	06:06:46	9.92	9.99	10.03
08/28/91	07:06:46	9.87	9.92	10.03
• •	08:06:46	9.92	9.96	10.03
08/28/91				
08/28/91	09:06:46	9.68	9.89	10.03

ľ

if 3

08/28/91 10:06:46	9.78	9.94	10.08
08/28/91 11:06:46	9.73	9,92	10.1
08/28/91 12:06:46	9.78	9.96	10,36
• •			
08/28/91 13:06:46	9.96	10.1	10.36
08/28/91 14:06:46	9.87	9.99	10.08
08/28/91 15:06:46	9.87	9.99	10.1
08/28/91 16:06:46	9.94	10.03	10.12
08/28/91 17:06:46	10.01	10.06	10.12
08/28/91 18:06:46	10.01	10.06	10.12
• •	10.01	10.00	
08/28/91 19:06:46			10.08
08/28/91 20:06:46	10.01	10.01	10.03
08/28/91 21:06:46	9,99	10.01	10.03
08/28/91 22:06:46	9.99	10.01	10.01
08/28/91 23:06:46	9.99	10.01	10.01
08/29/91 00:06:46	10.01	10.01	10.03
08/29/91 01:06:46	10.01	10.03	10.03
	10.01	10.03	
08/29/91 02:06:46			10.03
08/29/91 03:06:46	10.01	10.03	10.06
08/29/91 04:06:46	10.01	10.03	10.06
08/29/91 05:06:46	10.01	10.01	10.03
08/29/91 06:06:46	9,96	10.01	10.03
08/29/91 07:06:46	9.82	9.92	10.03
08/29/91 08:06:46	9.82	9.94	10.03
08/29/91 09:06:46	9.64	9,89	10.06
08/29/91 10:06:46	9,68	9.96	10.19
08/29/91 11:06:46	9.8	10.03	10.22
08/29/91 12:06:46	9.82	9.94	10.08
08/29/91 13:06:46	9.82	10.01	10.12
08/29/91 14:06:46	9.87	9.99	10.15
08/29/91 15:06:46	9.94	10.03	10.15
08/29/91 16:06:46	9,96	10.12	10,22
08/29/91 17:06:46	10.12	10.15	10.19
08/29/91 18:06:46	10.12	10.15	10.19
08/29/91 19:06:46	10.12	10.15	10.19
08/29/91 20:06:46	10.12	10.15	10.19
08/29/91 21:06:46	10.12	10.15	10.15
08/29/91 22:06:46	10.12	10.15	10.15
08/29/91 23:06:46	10.15	10.15	10.17
08/30/91 00:06:46	10.15	10.17	10.19
		10.19	10.22
08/30/91 01:06:46	10.17		
08/30/91 02:06:46	10.19	10.22	10.24
08/30/91 03:06:46	10.22	10.24	10.24
08/30/91 04:06:46	10.22	10.24	10.26
08/30/91 05:06:46	10.22	10.24	10.26
08/30/91 06:06:46	10.12	10.22	10.26
08/30/91 07:06:46	10.08	10.12	10.17
08/30/91 08:06:46	10.01	10.12	10.33
08/30/91 09:06:46	9.96	10.19	10.33
08/30/91 10:06:46	9.99	10.19	10.26
08/30/91 11:06:46	9.96	10.12	10.33
08/30/91 12:06:46	10.1	10.19	10.26
08/30/91 13:06:46	10.1	10.29	10.52
08/30/91 14:06:46	10.03	10.24	10.36
08/30/91 15:06:46	10.26	10,29	10.33
08/30/91 16:06:46	10.19	10.26	10.31
08/30/91 17:06:46	10.26	10.29	10.33

ľ

08/30/91 18:06:46	10.26	10.29	10 22
			10.33
08/30/91 19:06:46	10.24	10.26	10.31
08/30/91 20:06:46	10.24	10.24	10.29
08/30/91 21:06:46	10.22	10.26	10.29
08/30/91 22:06:46	10.22	10.24	10.29
08/30/91 23:06:46	10.22	10.26	10.29
08/31/91 00:06:46	10.22	10.26	10.29
08/31/91 01:06:46	10.22	10.24	10.24
08/31/91 02:06:46	10.24	10.24	10.26
08/31/91 03:06:46	10.24	10.24	10.24
08/31/91 04:06:46	10.22	10.24	10.26
08/31/91 05:06:46	10.22	10.24	10.26
08/31/91 06:06:46	10.06	10.19	10.24
08/31/91 07:06:46	10.03	10.06	10.12
08/31/91 08:06:46	10.01	10.06	10.17
08/31/91 09:06:46	9.96	10.06	10.15
08/31/91 10:06:46	9.89		
		10.1	10.33
08/31/91 11:06:46	9.89	10.06	10.29
08/31/91 12:06:46	9.92	10.06	10.31
08/31/91 13:06:46	9.96	10.17	10.33
08/31/91 14:06:46	9.92	10.08	10.24
08/31/91 15:06:46	9.96	10.19	10.29
08/31/91 16:06:46	10.01	10.15	10.24
08/31/91 17:06:46	10.15	10.17	10.24
08/31/91 18:06:46	10.15	10.17	10.22
08/31/91 19:06:46			
	10.1	10.15	10.19
08/31/91 20:06:46	10.08	10.12	10.15
08/31/91 21:06:46	10.08	10.1	10.12
08/31/91 22:06:46	10.06	10.1	10.12
08/31/91 23:06:46	10.08	10.1	10.12
09/01/91 00:06:46	10.08	10.1	10.12
09/01/91 01:06:46	10.08	10.1	10.15
09/01/91 02:06:46	10.08	10.1	10.12
09/01/91 03:06:46	10.06	10.08	10.12
09/01/91 04:06:46	10.06	10.08	10.08
09/01/91 05:06:46			
	10.01	10.06	10.06
09/01/91 06:06:46	9.89	10.01	10.06
09/01/91 07:06:46	9.87	9.89	9,96
09/01/91 08:06:46	9.82	9.89	9.96
09/01/91 09:06:46	9.82	9.87	9.96
09/01/91 10:06:46	9.8	9.87	9,96
09/01/91 11:06:46	9.75	9.89	10.12
09/01/91 12:06:46	9.78	9,99	10.17
09/01/91 13:06:46	9.71	9.94	10.1
09/01/91 14:06:46	9.8	9,94	
			10.1
09/01/91 15:06:46	9.8	9.94	10.08
09/01/91 16:06:46	9.85	9.96	10.08
09/01/91 17:06:46	9.99	10.03	10.06
09/01/91 18:06:46	9.94	9,99	10.03
09/01/91 19:06:46	9.92	9.94	9.99
09/01/91 20:06:46	9.92	9,94	9.96
09/01/91 21:06:46	9.89	9,94	9,96
09/01/91 22:06:46	9.87	9.92	9.94
09/01/91 23:06:46	9,85	9.87	9.94
• •			
09/02/91 00:06:46	9.87	9.89	9.89
09/02/91 01:06:46	9.85	9.87	9.89

.

(

09/02/91 02:06:46	9.85	9.87	9.87
09/02/91 03:06:46	9.85	9.85	9.89
09/02/91 04:06:46	9.85	9.89	9.89
09/02/91 05:06:46	9,85	9.87	9.87
09/02/91 06:06:46	9.8	9.82	9.87
09/02/91 07:06:46	9.8	9.85	9.85
09/02/91 08:06:46	9.78	9.8	9.85
09/02/91 09:06:46	9.73	9.78	9.85
09/02/91 10:06:46	9.57	9.71	9.82
09/02/91 11:06:46	9.59	9.75	9.89
09/02/91 12:06:46	9.61	9.8	9.89
09/02/91 13:06:46	9.71	9.8	9.87
09/02/91 14:06:46	9.64	9.75	9.82
09/02/91 15:06:46	9.68	9.8	9.89
09/02/91 16:06:46	9.73	9.8	9.89
09/02/91 17:06:46	9.78	9.82	9.87
09/02/91 18:06:46	9.78	9.82	9.87
09/02/91 19:06:46	9.78	9.82	9.85
09/02/91 20:06:46	9.78	9.8	9.85
09/02/91 21:06:46	9.75	9.78	9.82
09/02/91 22:06:46	9.75	9.75	9,8
09/02/91 23:06:46	9.75	9.78	9.78
09/03/91 00:06:46	9.75	9.8	9.82
09/03/91 01:06:46	9.78	9.8	9.82
09/03/91 02:06:46	9.78	9.8	9.82
09/03/91 03:06:46	9.78	9.8	9.82
09/03/91 04:06:46	9.78	9.8	9,85
09/03/91 05:06:46	9.78	9.8	9.85
09/03/91 06:06:46	9.66	9.78	9.82
09/03/91 07:06:46	9.61	9.68	9.8
09/03/91 08:06:46	9.61	9.68	9,75
09/03/91 09:06:46	9.57	9.68	9,78
09/03/91 10:06:46	9,52	9.68	9.8
09/03/91 11:06:46	9.54	9.68	9.87
09/03/91 12:06:46	9.5	9.71	9.89
09/03/91 13:06:46	9.52	9.71	9.87
09/03/91 14:06:46	9.57	9.73	9.89
09/03/91 15:06:46	9.59	9.78	10.03
09/03/91 16:06:46	9.64	9.73	9.82
09/03/91 17:06:46	9.75	9.78	9,85
		9.78	
09/03/91 18:06:46	9.78		9.82
09/03/91 19:06:46	9.75	9.78	9.82
09/03/91 20:06:46	9.73	9.75	9.8
09/03/91 21:06:46	9.71	9.75	9.78
09/03/91 22:06:46	9.71	9.73	9.75
09/03/91 23:06:46	9.71	9.73	9.75 ·
09/04/91 00:06:46	9.71	9.73	9.78
09/04/91 01:06:46	9.71	9.73	9.75
09/04/91 02:06:46	9.73	9,75	9.75
09/04/91 03:06:46	9.75	9.75	9.78
	9.73	9.75	9.8
09/04/91 04:06:46			
09/04/91 05:06:46	9.73	9.75	9.8
09/04/91 06:06:46	9.57	9.71	9.78
09/04/91 07:06:46	9.54	9,66	9.78
09/04/91 08:06:46	9,52	9.59	9.66
09/04/91 09:06:46	9.52	9.64	9.82
· · · ·			

Ć

09/04/91 10:06:46	9.5	9,66	9.78
09/04/91 11:06:46	9.52	9.64	9,8
09/04/91 12:06:46	9,45	9.66	9.85
09/04/91 13:06:46	9.52	9.68	9.87
09/04/91 14:06:46	9,5	9.66	9.87
09/04/91 15:06:46	9.59	9.71	9.85
09/04/91 16:06:46	9.59	9,68	9.82
09/04/91 17:06:46	9.68	9.71	9.75
09/04/91 18:06:46	8.71	9.73	10.12
09/04/91 19:06:46	9.43	9.75	9.87
09/04/91 20:06:46	9.64	9.68	9.73
09/04/91 21:06:46	9.64	9,64	9,66
09/04/91 22:06:46	9.61	9.66	9.68
09/04/91 23:06:46	9.61	9.64	9.68
09/05/91 00:06:46	9.61	9.64	9.64
09/05/91 01:06:46	9.64	9.64	9.66
09/05/91 02:06:46	9.64	9.64	9.66
	9.64	9.64	
09/05/91 03:06:46			9.66
09/05/91 04:06:46	9.61	9.64	9.66
09/05/91 05:06:46	9.59	9.61	9.64
09/05/91 06:06:46	9.54	9.59	9.64
09/05/91 07:06:46	9.4	9.52	9.59
• •	9.38	9.45	9.54
09/05/91 08:06:46			
09/05/91 09:06:46	9.38	9.45	9.54
09/05/91 10:06:46	9.34	9.45	9.66
09/05/91 11:06:46	9,29	9,45	9.66
09/05/91 12:06:46	9.36	9.5	9.71
09/05/91 13:06:46	9.36	9.5	9.66
09/05/91 14:06:46	9.38	9.45	9.57
09/05/91 15:06:46	9.4	9.54	9.64
09/05/91 16:06:46	9.4	9.54	9.68
09/05/91 17:06:46	9.52	9.57	9.61
09/05/91 18:06:46	9.52	9.54	9.57
09/05/91 19:06:46	9.47	9.52	9.57
09/05/91 20:06:46	9.45	9.5	9.54
09/05/91 21:06:46	9.45	9.47	9.5
09/05/91 22:06:46	9.45	9.47	9.5
09/05/91 23:06:46	9.45	9.47	9.5
09/06/91 00:06:46	9.45	9.47	9.5
09/06/91 01:06:46	9.45	9.47	9.5
09/06/91 02:06:46	9.45	9.47	9.47
09/06/91 03:06:46	9.45	9.47	9.47
09/06/91 04:06:46	9.43	9.45	9.47
09/06/91 05:06:46	9.4	9.45	9.45
09/06/91 06:06:46	9.36	9.4	9.45
09/06/91 07:06:46	9.22	9.34	9.38
09/06/91 08:06:46	9.2	9.27	9.36
• •			
09/06/91 09:06:46	9.22	9.29	9.36
09/06/91 10:06:46	9.22	9.29	9.36
09/06/91 11:06:46	9.22	9.31	9.47
09/06/91 12:06:46	9.22	9.34	9.47
09/06/91 13:06:46	9.2	9.34	9.54
09/06/91 14:06:46	9.2	9.36	9.45
09/06/91 15:06:46	9.29	9.4	9.52
09/06/91 16:06:46	9.29	9.38	9.47
09/06/91 17:06:46	9.38	9.43	9.5
•			

.

ĺ

09/06/91 18:06:46	9.38	9.4	9.45
09/06/91 19:06:46	9.36	9.38	9.43
09/06/91 20:06:46	9.34	9.38	9.43
09/06/91 21:06:46	9,34	9.36	9.38
09/06/91 22:06:46	9.34	9.36	9.38
09/06/91 23:06:46	9.34	9.36	9.38
09/07/91 00:06:46	9,34	9,36	9.38
09/07/91 01:06:46	9.34	9.38	9.4
09/07/91 02:06:46	9.36	9.38	9.4
09/07/91 03:06:46	9.34	9.38	9.4
09/07/91 04:06:46	9.34	9.36	9.4
09/07/91 05:06:46	9.34	9.36	9.36
09/07/91 06:06:46	9.22	9.31	9.36
09/07/91 07:06:46	9.15	9.2	9.24
09/07/91 08:06:46	9.15	9.2	9.27
09/07/91 09:06:46	9.15	9.2	9.27
09/07/91 10:06:46	9.2	9.24	9.36
09/07/91 11:06:46	9.13	9.27	9.47
09/07/91 12:06:46	9.13	9.24	9.36
09/07/91 13:06:46	9.2	9.27	9.31
09/07/91 14:06:46	9.15	9.29	9.43
09/07/91 15:06:46	9.22	9.29	9.43
09/07/91 16:06:46	9,24	9.38	9.52
09/07/91 17:06:46	9.29	9.34	9.43
09/07/91 18:06:46	9,27	9.31	9.36
09/07/91 19:06:46	9.27	9.29	9.31
09/07/91 20:06:46	9.24	9.27	9.31
09/07/91 21:06:46	9.24	9.29	9.31
09/07/91 22:06:46	9.22	9.27	9.29
09/07/91 23:06:46	9.24	9.27	9.29
09/08/91 00:06:46	9.24	9.27	9.31
09/08/91 01:06:46	9.27	9,29	9.31
09/08/91 02:06:46	9.24	9.27	9.31
09/08/91.03:06:46	9.24	9.29	9,31
09/08/91 04:06:46	9.22	9.27	9.31
09/08/91 05:06:46	9.22	9.24	9.29
09/08/91 06:06:46	9.2	9.22	9.24
09/08/91 07:06:46	9.13	9.17	9.22
09/08/91 08:06:46	9,06	9.13	9.17
09/08/91 09:06:46	9.08	9.15	9.24
09/08/91 10:06:46	9.03	9.15	9.29
09/08/91 11:06:46	9.06	9.15	9.31
09/08/91 12:06:46	9.06	9.17	9.34
	9.06	9.17	
			9.31
09/08/91 14:06:46	9.1	9.22	9.38
09/08/91 15:06:46	9.08	9.2	9.31
09/08/91 16:06:46	9.17	9.2	9.24
09/08/91 17:06:46	9.2	9.22	9.27
		9.22	
09/08/91 18:06:46	9.2		9.24
09/08/91 19:06:46	9.17	9.2	9,24
09/08/91 20:06:46	9.17	9.2	9.22
09/08/91 21:06:46	9.15	9.17	9.22
09/08/91 22:06:46	9.15	9.17	9.2
09/08/91 23:06:46	9.15	9.17	9.17
09/09/91 00:06:46	9.15	9.17	9.2
09/09/91 01:06:46	9.17	9.17	9.22
· ·			

(\$}

09/09/91 02:06:46	9.17	9.17	9.2
09/09/91 03:06:46	9.17	9.2	9.22
09/09/91 04:06:46	9.2	9.22	9,22
09/09/91 05:06:46	9.17	9.22	9.22
09/09/91 06:06:46	9.06	9.17	9.2
09/09/91 07:06:46	9.03	9.08	9.2
09/09/91 08:06:46	8.96	9,06	9.2
09/09/91 09:06:46	8.94	9.03	9.1
09/09/91 10:06:46	8.87	9.06	9.2
09/09/91 11:06:46	8.92	9.08	9.22
09/09/91 12:06:46	8.92	9.1	9.24
09/09/91 13:06:46	9.01	9.1	9.22
09/09/91 14:06:46	9.08	9.15	9.22
09/09/91 15:06:46	8.94	9.13	9.24
09/09/91 16:06:46	9.08	9.13	9.22
09/09/91 17:06:46	9.13	9.15	9.2
09/09/91 18:06:46	9.13	9.15	9.2
09/09/91 19:06:46	9.1	9,15	9.17
		9:13	
09/09/91 20:06:46	9.08		9.15
09/09/91 21:06:46	9.08	9.1	9.13
09/09/91 22:06:46	9.08	9.1	9.13
09/09/91 23:06:46	9.08	9.1	9.13
09/10/91 00:06:46	9.08	9.1	9.13
09/10/91 01:06:46	9.1	9.13	9.13
	9.13	9.13	
09/10/91 02:06:46			9.17
09/10/91 03:06:46	9.13	9.15	9.17
09/10/91 04:06:46	9.1	9.15	9.17
09/10/91 05:06:46	9.08	9.13	9.15
09/10/91 06:06:46	9.06	9.08	9.13
09/10/91 07:06:46	8.87	9.03	9.08
09/10/91 08:06:46	8.89	8,99	9.08
09/10/91 09:06:46	8.82	8.99	9.08
09/10/91 10:06:46	8.94	9.03	9.1
09/10/91 11:06:46	8.87	9.01	9.1
09/10/91 12:06:46	8.85	9.06	9.17
09/10/91 13:06:46	8,92	9.01	9.1
09/10/91 14:06:46	8.94	9.1	9.22
	9.01	9.1	9.2
09/10/91 16:06:46	9.01	9.1	9.22
09/10/91 17:06:46	9.08	9.13	9.17
09/10/91 18:06:46	9.08	9.1	9.15
09/10/91 19:06:46	9.08	9.08	9.13
09/10/91 20:06:46	9.06	9.08	9.1
09/10/91 21:06:46	9.06	9.1	9.13
09/10/91 22:06:46	9.06	9.08	9.1
09/10/91 23:06:46	9.06	9.08	9.1
09/11/91 00:06:46	9.06	9.08	9.1
09/11/91 01:06:46	9.06	9.08	9.08
09/11/91 02:06:46	9.06	9.08	9.08
09/11/91 03:06:46	9.06	9.08	9.1
	9.06	9.08	9.1
09/11/91 05:06:46	9.06	9.08	9.1
09/11/91 06:06:46	8.99	9.06	9.08
09/11/91 07:06:46	8.89	8.99	9.03
09/11/91 08:06:46	8.85	8,92	9.01
09/11/91 09:06:46	8.85	8.92	8.99
-,,			

09/11/91 10:06:46	8.85	9.01	9.15
09/11/91 11:06:46	8.78	8.94	9.15
09/11/91 12:06:46	8.82	8.94	9.06
09/11/91 13:06:46	8.96	9.03	9.13
09/11/91 14:06:46	8.94	9.01	9.13
09/11/91 15:06:46	8.94	9.01	9.06
09/11/91 16:06:46	9.01	9.08	9.17
09/11/91 17:06:46	9.08	9.1	9.15
09/11/91 18:06:46	9.06	9.1	9.13
09/11/91 19:06:46	9.03	9.08	9.1
09/11/91 20:06:46	9.01	9.06	9.08
09/11/91 21:06:46	8,99	9.03	9.06
09/11/91 22:06:46	8.99	9.03	9.06
09/11/91 23:06:46	8.99	9.03	9.06
09/12/91 00:06:46	8.99	9.01	9.06
	8.99	9.01	9.03
09/12/91 01:06:46			
09/12/91 02:06:46	8.99	9.01	9.01
09/12/91 03:06:46	8,99	9.01	9.01
09/12/91 04:06:46	8.99	9.01	9.01
09/12/91 05:06:46	8,99	8.99	9.01
09/12/91 06:06:46	8.89	8.96	8.99
09/12/91 07:06:46	8.85	8.89	8.94
09/12/91 08:06:46	8.82	8,87	8,94
09/12/91 09:06:46	8.8	8.87	8,96
• •			
09/12/91 10:06:46	8.78	8.85	8.94
09/12/91 11:06:46	8.8	8.87	8.92
09/12/91 12:06:46	8.78	8.89	9.03
09/12/91 13:06:46	8.78	8,87	9,01
	8.8	8.89	
09/12/91 14:06:46			8.99
09/12/91 15:06:46	8.87	8.94	8.99
09/12/91 16:06:46	8.92	8.94	9.01
09/12/91 17:06:46	8.94	8.99	9.03
09/12/91 18:06:46	8.94	8,99	9.03
09/12/91 19:06:46	8.92	8,94	8.99
09/12/91 20:06:46	8.92	8.94	8.99
09/12/91 21:06:46	8.89	8,92	8.94
09/12/91 22:06:46	8.89	8.92	8.92
09/12/91 23:06:46	8.89	8.89	8,92
09/13/91 00:06:46	8.89	8.89	8.92
09/13/91 01:06:46	8.89	8.89	8.92
09/13/91 02:06:46	8.89	8.89	8.92
09/13/91 03:06:46	8.89	8,92	8.92
09/13/91 04:06:46	8.89	8.92	8.94
09/13/91 05:06:46	8.87	8.92	8.94
09/13/91 06:06:46	8.82	8.87	8.92
09/13/91 07:06:46	8.75	8.8	8.82
09/13/91 08:06:46	8.71	8.75	8.8
09/13/91 09:06:46	8.66	8.75	8.8
09/13/91 10:06:46	8.71	8,75	8.85
09/13/91 11:06:46	8.64	8,75	8.89
09/13/91 12:06:46	8.66	8.8	8.96
09/13/91 13:06:46	8.73	8.82	8.99
09/13/91 14:06:46	8.68	8.8	8.94
09/13/91 15:06:46	8.8	8.87	8.94
09/13/91 16:06:46	8.82	8.87	8.94
09/13/91 17:06:46	8.82	8.87	8.92

00/13/01	18:06:46	8.82	8.85	8.89
		8.82	8.82	8.87
	19:06:46			8.87
09/13/91		8.82	8.85	
	21:06:46	8.8	8.85	8.87
09/13/91		8.8	8.85	8.87
09/13/91	23:06:46	8.8	8.82	8.87
09/14/91	00:06:46	8.8	8.85	8,87
09/14/91	01:06:46	8.8	8.82	8.87
09/14/91		8.8	8.8	8,85
09/14/91		8.8	8.8	8.82
09/14/91		8.8	8.82	8.82
09/14/91		8.78	8.8	8,82
09/14/91		8.73	8.78	8.82
09/14/91		8.66	8.71	8.78
		8.62	8.68	8.71
09/14/91				8.75
09/14/91		8.62	8.66	
09/14/91		8.59	8.68	8.73
	11:06:46	8.62	8.68	8.78
09/14/91		8.64	8.73	8.89
	13:06:46	8.62	8.78	8.87
09/14/91	14:06:46	8.57	8.73	8.82
09/14/91	15:06:46	8.71	8.78	8.89
09/14/91	16:06:46	8,73	8.78	8,85
09/14/91		8.78	8.82	8.87
09/14/91	18:06:46	8.78	8.8	8,85
09/14/91	19:06:46	8.75	8.78	8,82
09/14/91	20:06:46	8.73	8.75	8.8
09/14/91	21:06:46	8.71	8.75	8.78
09/14/91	22:06:46	8.71	8.73	8.75
09/14/91	23:06:46	8.71	8.73	8.75
09/15/91		8.71	8.73	8.75
		8.71	8.71	8.73
09/15/91		8.68	8.71	8.73
	02:06:46		8.71	8.73
	03:06:46	8.71		
	04:06:46	8.71	8.71	8.73
09/15/91	05:06:46	8.68	8.73	8.75
09/15/91	06:06:46	8.62	8.68	8.73
09/15/91	07:06:46	8.57	8.62	8.64
	08:06:46	8.5	8.57	8.66
09/15/91	09:06:46	8.48	8.55	8.62
09/15/91	10:06:46	8.52	8.59	8.66
09/15/91	11:06:46	8.45	8.57	8.66
09/15/91	12:06:46	8,52	8,62	8.85
	13:06:46	8.59	8,66	8.73
	14:06:46	8,57	8.64	8.71
09/15/91	15:06:46	8.62	8.66	8.73
	16:06:46	8.66	8.68	8.73
• •	17:06:46	8.66	8.71	8.73
	18:06:46	8.66	8.68	8.73
	19:06:46	8.64	8.66	8.71
		8.62	8.64	8.68
• •	20:06:46		8.64 8.64	8.68
	21:06:46	8.62		
	22:06:46	8.62	8.64	8.68
	23:06:46	8.62	8.66	8.68
	00:06:46	8.64	8,66	8.68
09/16/91	01:06:46	8.64	8.66	8.71

tî l

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 02:06:46	8.64	8.66	8.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 03:06:46	8.64	8.66	8.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 06:06:46	8.57	8.62	8.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 07:06:46	8.48	8.55	8,59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 10:06:46	8.45		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 11:06:46	8.45	8.55	8.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8.59	8.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 15:06:46	8.52	8.62	8,73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.62		8.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 19:06:46	8.59	8.62	8.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.57	8.62	8.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/16/91 23:06:46	8,57	8.62	8.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/17/91 00:06:46	8.59	8,62	8.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/17/91 03:06:46	8.59		8.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09/17/91 04:06:46	8.59	8.62	8.66
09/17/9106:06:468.558.598.6209/17/9107:06:468.488.558.5909/17/9108:06:468.438.488.5909/17/9109:06:468.438.58.5909/17/9110:06:468.388.58.5709/17/9110:06:468.388.58.6209/17/9111:06:468.458.528.6209/17/9112:06:468.458.598.7109/17/9113:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9115:06:468.578.628.6609/17/9117:06:468.598.628.6609/17/9119:06:468.578.628.6609/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.578.5709/17/9121:06:468.558.578.5709/17/9121:06:468.558.578.5909/17/9121:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.388.438.48<				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •			
09/17/9108:06:468.438.488.5909/17/9109:06:468.438.58.5909/17/9110:06:468.388.58.5709/17/9111:06:468.458.528.6209/17/9112:06:468.458.598.809/17/9113:06:468.438.598.809/17/9113:06:468.488.598.7109/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9115:06:468.578.628.6809/17/9116:06:468.578.628.6609/17/9117:06:468.598.628.6409/17/9119:06:468.578.578.5909/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.578.5709/17/9123:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.388.438.4809/18/9107:06:468.388.438.48 </td <td></td> <td></td> <td></td> <td></td>				
09/17/9109:06:468.438.58.5909/17/9110:06:468.388.58.5709/17/9111:06:468.388.58.6209/17/9112:06:468.458.528.6209/17/9113:06:468.438.598.809/17/9113:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9115:06:468.578.628.6809/17/9116:06:468.578.628.6609/17/9117:06:468.598.628.6609/17/9119:06:468.578.628.6609/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9110:06:468.388.58.5709/17/9111:06:468.388.58.6209/17/9112:06:468.458.528.6209/17/9113:06:468.438.598.809/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9115:06:468.578.628.6109/17/9116:06:468.578.628.6609/17/9117:06:468.598.628.6609/17/9119:06:468.578.628.6409/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.48	09/17/91 08:06:46	8.43	8.48	8.59
09/17/9110:06:468.388.58.5709/17/9111:06:468.388.58.6209/17/9112:06:468.458.528.6209/17/9113:06:468.438.598.809/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9115:06:468.578.628.6109/17/9116:06:468.578.628.6609/17/9117:06:468.598.628.6609/17/9119:06:468.578.628.6409/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.48	09/17/91 09:06:46	8.43	8.5	8.59
09/17/9111:06:468.388.58.6209/17/9112:06:468.458.528.6209/17/9113:06:468.438.598.809/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9115:06:468.578.628.6809/17/9116:06:468.578.628.6609/17/9117:06:468.598.628.6609/17/9119:06:468.578.628.6609/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.48				
09/17/9112:06:468.458.528.6209/17/9113:06:468.438.598.809/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9116:06:468.578.628.6809/17/9116:06:468.598.628.6609/17/9117:06:468.598.628.6409/17/9119:06:468.578.628.6409/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5709/18/9103:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9113:06:468.438.598.809/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9116:06:468.578.628.6809/17/9117:06:468.598.628.6609/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9119:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.458.528.5509/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9116:06:468.578.628.6809/17/9117:06:468.598.628.6609/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9105:06:468.558.578.5709/18/9105:06:468.458.528.5509/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 12:06:46			
09/17/9114:06:468.488.598.7109/17/9115:06:468.558.628.7109/17/9116:06:468.578.628.6809/17/9117:06:468.598.628.6609/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9105:06:468.558.578.5709/18/9105:06:468.458.528.5509/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 13:06:46	8.43	8,59	8.8
09/17/9115:06:468.558.628.7109/17/9116:06:468.578.628.6809/17/9117:06:468.598.628.6609/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.558.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9105:06:468.558.578.5709/18/9105:06:468.458.528.5509/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 14:06:46	8.48	8.59	8.71
09/17/9116:06:468.578.628.6809/17/9117:06:468.598.628.6609/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9120:06:468.558.578.5709/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.6209/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9105:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9117:06:468.598.628.6609/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9118:06:468.598.628.6409/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.558.578.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 17:06:46	8.59	8.62	8,66
09/17/9119:06:468.578.628.6609/17/9120:06:468.578.578.5909/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 18:06:46	8.59	8.62	8.64
09/17/9120:06:468.578.578.5909/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9105:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9121:06:468.558.578.5709/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.558.578.5909/18/9103:06:468.558.578.5709/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9122:06:468.558.558.5709/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 21:06:46	8.55	8.57	8.57
09/17/9123:06:468.528.558.5709/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.558.578.5909/18/9103:06:468.558.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/17/91 22:06:46	8.55	8.55	8.57
09/18/9100:06:468.528.558.5909/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.578.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	, ,			
09/18/9101:06:468.558.578.5909/18/9102:06:468.558.578.6209/18/9103:06:468.578.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	• •			
09/18/9102:06:468.558.578.6209/18/9103:06:468.578.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/18/9103:06:468.578.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/18/9103:06:468.578.578.5909/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5	09/18/91 02:06:46	8.55	8.57	8.62
09/18/9104:06:468.558.578.5709/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5		8.57	8.57	8.59
09/18/9105:06:468.558.558.5709/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/18/9106:06:468.458.528.5509/18/9107:06:468.388.438.4809/18/9108:06:468.348.438.5				
09/18/91 07:06:46 8.38 8.43 8.48 09/18/91 08:06:46 8.34 8.43 8.5				
09/18/91 08:06:46 8.34 8.43 8.5	09/18/91 06:06:46			
09/18/91 08:06:46 8.34 8.43 8.5	09/18/91 07:06:46	8.38	8.43	8.48
		8.38	8.48	8.62
09/18/91 09:06:46 8.38 8.48 8.62	09/10/91 09:00:40	0,00	0.40	0.02

.

D-29

00/10/01 10 06 /6		- · · -	
09/18/91 10:06:46	8.27	8.41	8.55
09/18/91 11:06:46	8.31	8.45	8.64
09/18/91 12:06:46	8.29	8,55	8.73
09/18/91 13:06:46	8.5	8.55	8.62
09/18/91 14:06:46	8,34	8.43	8.52
09/18/91 15:06:46	8.41	8.5	8.64
09/18/91 16:06:46	8.43	8.55	8.68
09/18/91 17:06:46	8.52	8,55	8.62
09/18/91 18:06:46	8.52	8.57	8.62
09/18/91 19:06:46	8.5	8.52	8.57
09/18/91 20:06:46	8.48	8.5	8,55
09/18/91 21:06:46	8.45	8.5	8.52
09/18/91 22:06:46	8.45	8.48	8.52
09/18/91 23:06:46	8.45	8.48	8.52
09/19/91 00:06:46	8.45	8.48	8.52
09/19/91 01:06:46	8.45	8.48	8.52
09/19/91 02:06:46	8.45	8.5	8.52
09/19/91 03:06:46	8.45	8.5	8.52
09/19/91 04:06:46	8.48	8.5	8.52
09/19/91 05:06:46	8.45	8.48	8.5
09/19/91 06:06:46	8.38	8.45	8.5
09/19/91 07:06:46	8.29	8.34	8,38
09/19/91 08:06:46	8.24	8.34	8.41
09/19/91 09:06:46	8,24		
		8.41	8.57
08/16/91 21:31:06	10.06	10.06	10.08
08/16/91 22:31:06	10.06	10,06	10.08
08/16/91 23:31:06	10.06	10.08	10,08
08/17/91 00:31:06	10.06	10.08	10.08
08/17/91 01:31:06	10.06	10.08	10.1
08/17/91 02:31:06	10.08	10.08	
			10.12
08/17/91 03:31:06	10.06	10.08	10.1
08/17/91 04:31:06	10.06	10.08	10.1
08/17/91 05:31:06	10.03	10.06	10.08
08/17/91 06:31:06	9.99	10.03	10.08
08/17/91 07:31:06	9,94	9.99	10.03
08/17/91 08:31:06	9.92	9,94	10,01
08/17/91 09:31:06	9.92	9.96	
			10.03
08/17/91 10:31:06	9.89	9.96	10.06
08/17/91 11:31:06	9.85	9.94	10.08
08/17/91 12:31:06	9.85	9.94	10.03
08/17/91 13:31:06	9.87	9.99	10,1
08/17/91 14:31:06	9.89	10.01	10.17
08/17/91 15:31:06	9.89	10,01	
• •			10.06
08/17/91 16:31:06	9.94	10.01	10.06
08/17/91 17:31:06	9,99	10.03	10.08
08/17/91 18:31:06	10.01	10.03	10.06
08/17/91 19:31:06	10.01	10.03	10.06
08/17/91 20:31:06	9.99	10.01	10.06
08/17/91 21:31:06	9.99	9,99	10.01
08/17/91 22:31:06	9.99	9.99	10.01
08/17/91 23:31:06	9.99	10.01	10.01
08/18/91 00:31:06	10.01	10.01	10.03
08/18/91 01:31:06	10.01	10.03	10.03
08/18/91 02:31:06	10.01	10.03	10.03
08/18/91 03:31:06	10.01	10.06	10.06
08/18/91 04:31:06	9.99	10.00	
00/10/)1 04.01.00	2.77	10.01	10.06

ĺ

1

	0.07	<u> </u>	
08/18/91 05:31:06	9.96	9.99	10.03
08/18/91 06:31:06	9.87	9.92	9.96
08/18/91 07:31:06	9.8	9.87	9.92
08/18/91 08:31:06	9.78	9.85	9.92
08/18/91 09:31:06	9.78	9.87	9.96
			9.99
08/18/91 10:31:06	9.78	9.87	
08/18/91 11:31:06	9.78	9.87	10.01
08/18/91 12:31:06	9.78	9,85	9.96
08/18/91 13:31:06	9,78	9.87	9.96
08/18/91 14:31:06	9.8	9.89	10.06
08/18/91 15:31:06	9.8	9.92	10.03
08/18/91 16:31:06	9.85	9.92	9,99
08/18/91 17:31:06	9.92	9.94	9.99
08/18/91 18:31:06	9.89	9.94	9.99
08/18/91 19:31:06	9.87	9.89	9.94
08/18/91 20:31:06	9,85	9.89	9.92
08/18/91 21:31:06	9.85	9.87	9.89
08/18/91 22:31:06	9.82	9.87	9.89
08/18/91 23:31:06	9.82	9.87	9.89
08/19/91 00:31:06	9.82	9.87	9.89
08/19/91 01:31:06	9.82	9.85	9.89
08/19/91 02:31:06	9.82	9.82	9.85
08/19/91 03:31:06	9.82	9.82	9.85
08/19/91 04:31:06	9.8	9.82	9.85
08/19/91 05:31:06	9.78	9.8	9.82
08/19/91 06:31:06	9.66	9.73	9.78
08/19/91 07:31:06	9.64	9,68	9,75
08/19/91 08:31:06	9.59	9.66	9.73
08/19/91 09:31:06	9.61	9.68	9.75
08/19/91 10:31:06	9.57	9.66	9.78
08/19/91 11:31:06	9.61	9.71	9.85
08/19/91 12:31:06	9.61	9.71	9.85
08/19/91 13:31:06	9.66	9.75	9.92
08/19/91 14:31:06	9.61	9.73	9.87
08/19/91 15:31:06	9.66	9.78	9.87
1 1			
08/19/91 16:31:06	9.68	9.78	9.85
08/19/91 17:31:06	9.73	9.75	9.8
08/19/91 18:31:06	9,68	9.73	9.8
08/19/91 19:31:06	9.68	9.68	9.71
08/19/91 20:31:06	9,66	9.68	9.73
08/19/91 21:31:06	9,66	9.71	9.73
08/19/91 22:31:06	9.66	9,68	9.73
	9,66	9.68	9.68
08/20/91 00:31:06	9.66	9.68	9.68
08/20/91 01:31:06	9.66	9.68	9.71
08/20/91 02:31:06	9.66	9.68	9.71
08/20/91 03:31:06	9.68	9.68	9.71
08/20/91 04:31:06	9.68	9.68	9.71
08/20/91 05:31:06	9.68	9.68	9.71
08/20/91 06:31:06	9.64	9.68	9.71
		9.64	9.75
08/20/91 07:31:06	9.47		
08/20/91 08:31:06	9.47	9.59	9.73
08/20/91 09:31:06	9.54	9.61	9.71
08/20/91 10:31:06	9.54	9.61	9.78
08/20/91 11:31:06	9.52	9.61	9.78
08/20/91 12:31:06	9.52	9.68	9.89

ľ

08/20/91	13:31:06	9.47	9.66	9.82
	14:31:06	9.54	9,66	9.78
	15:31:06	9.61	9.68	9.78
	16:31:06	9.66	9.73	9.8
	17:31:06	9,68	9.71	9.75
	18:31:06	9.68	9.71	9.75
	19:31:06	9.66	9.68	9.73
• •	20:31:06	9.64	9.68	9.68
• • •	21:31:06	9.61	9.64	9.68
• •	22:31:06	9.61	9.64	9.64
	23:31:06	9.61	9.61	9.64
	00:31:06	9.61	9.64	9.64
• •	01:31:06	9.61	9.64	9.64
	02:31:06	9.61	9.64	9.66
• •	03:31:06	9.61-	9.64	9.66
• •	04:31:06	9,59	9.61	9.64
	05:31:06	9.54	9,59	9,61
	06:31:06	9.43	9.5	9.59
• •	07:31:06	9.4	9.45	9.5
08/21/91		9.38	9.45	9.57

D-32

WMW 2-3

(

- 1¹¹ - N

WMW2-3	Time	Min	Mean	Max
09/19/91	12:58:15	8.24	8.38	8.64
09/19/91	13:58:15	8,29	8,43	8.57
	14:58:15	8.29	8,36	8.45
09/19/91	15:58:15	8.34	8,45	8.57
09/19/91	16:58:15	8.36	8.45	8.52
09/19/91	17:58:15	8,41	8,45	8.5
09/19/91		8.38	8.43	8.45
09/19/91	19:58:15	8.36	8,38	8.41
09/19/91	20:58:15	8.36	8.38	8.38
09/19/91	21:58:15	8.36	8,38	8.38
09/19/91		8.36	8.38	8.41
09/19/91		8.36	8.38	8.41
09/20/91		8.36	8.38	8,41
09/20/91	01:58:15	8,38	8.41	8.43
09/20/91	02:58:15	8,38	8.43	8.45
09/20/91		8.41	8.43	8.45
09/20/91		8,38	8.43	8.45
09/20/91		8.38	8.41	8.43
09/20/91		8.36	8.38	8.41
09/20/91	07:58:15	8.34	8.36	8.38
09/20/91		8.34	8.36	8.38
09/20/91	09:58:15	8.31	8.34	8,38
09/20/91	10:58:15	8.31	8.34	8.38
09/20/91	11:58:15	8.27	8.31	8.36
09/20/91	12:58:15	8.24	8.31	8.36
09/20/91	13:58:15	8.27	8.31	8.34
09/20/91	14:58:15	8.29	8.31	8.36
09/20/91	15:58:15	8.29	8,34	8.36
09/20/91	16:58:15	8.29	8,34	8.36
09/20/91	17:58:15	8.29	8.31	8.34
09/20/91	18:58:15	8.29	8.31	8.34
09/20/91	19:58:15	8.29	8.29	8.31
	20:58:15	8.27	8.27	8.29
• •	21:58:15	8.27	8.27	8.29
• •	22:58:15	8.24	8.27	8.27
, ,	23:58:15	8.27	8.29	8.29
	00:58:15	8.27	8.29	8.29
	01:58:15	8.27	8.29	8.29
	02:58:15	8.29	8.29	8.34
	03:58:15	8.29	8.31	8.34
• •	04:58:15	8.29	8.34	8.36
	05:58:15	8.29	8.31	8.34
	06:58:15	8.27	8.29	8.34
	07:58:15	8.24	8.27	8.31
	08:58:15	8.22	8.24	8.29
	09:58:15	8.03	8.15	8.29
• •	10:58:15	8.15	8.24	8.31
	11:58:15	7.99	8.2	8.29
	12:58:15	8.08	8.22	8.31
	13:58:15	8.13	8.24	8.31
	14:58:15	8.08	8.24	8.36
	15:58:15	8,2	8.27	8.34
• •	16:58:15	8.22	8.27	8.31
,//-		~		0.01

				~ ~ ~
09/21/91	18:58:15	8.27	8.27	8.31
09/21/91	19:58:15	8.22	8.27	8.31
	20:58:15	8.2	8.22	8.24
09/21/91		8.2	8.22	8.24
09/21/91	22:58:15	8.2	8.22	8.24
09/21/91		8.2	8.22	8.27
		8.2	8.24	8.27
	00:58:15			
09/22/91	01:58:15	8.2	8.24	8.27
09/22/91	02:58:15	8.2	8.24	8.27
	03:58:15	8,22	8.24	8.27
	04:58:15	8.22	8.24	8.27
09/22/91	05:58:15	8.22	8.24	8.27
09/22/91	06:58:15	8.17	8.22	8.27
09/22/91		8.13	8.17	8.2
	08:58:15	7.99	8.08	8.17
09/22/91	09:58:15	8,01	8.08	8.2
09/22/91	10:58:15	8.01	8.1	8.2
	11:58:15	7.99	8.1	8.22
09/22/91		7.97	8.1	8.24
09/22/91	13:58:15	8.01	8.15	8.29
	14:58:15	7.94	8.17	8.29
	15:58:15	8.03	8.2	8.27
<i>,</i> .				
09/22/91		8.15	8.2	8.27
09/22/91	17:58:15	8.15	8.17	8.22
09/22/91	18:58:15	8.17	8.17	8,22
09/22/91	19:58:15	8.17	8.17	8.22
09/22/91	20:58:15	8.15	8.17	8.22
09/22/91	21:58:15	8.15	8.17	8.2
09/22/91	22:58:15	8.15	8.17	8.2
09/22/91	23:58:15	8.15	8.17	8.2
09/23/91	00:58:15	8.17	8.17	8.2
09/23/91	01:58:15	8.17	8.2	8.2
09/23/91	02:58:15	8.17	8.2	8.2
09/23/91	03:58:15	8.2	8.2	8.24
09/23/91		8.17	8,22	8.24
09/23/91	05:58:15	8,17	8.2	8.24
09/23/91	06:58:15	8.1	8.15	8.2
09/23/91	07:58:15	8.03	8.08	8.15
		8.01	8.1	8.2
09/23/91				
09/23/91	09:58:15	7.97	8.08	8.17
09/23/91	10:58:15	8.01	8.06	8.17
09/23/91		7.92	8.08	8.29
		7.99	8.13	8.36
• •	12:58:15			
	13:58:15	7.94	8.15	8.31
09/23/91	14:58:15	8.01	8.17	8.31
09/23/91	15:58:15	8.06	8.13	8.29 ·
09/23/91	16:58:15	8.1	8.17	8.22
09/23/91	17:58:15	8.17	8.2	8.27
09/23/91	18:58:15	8.17	8.2	8.24
09/23/91	19:58:15	8.15	8.17	8.22
09/23/91	20:58:15	8.13	8.15	8.2
09/23/91	21:58:15	8.1	8.13	8.17
09/23/91	22:58:15	8.1	8.15	8.17
09/23/91	23:58:15	8.1	8.13	8.17
09/24/91		8.13	8.15	8.15
<i>UJ/24/J</i> I	00.00.10	· · · · ·	· · · ·	0.10

r 98

09/24/91 02:58:15	8.15	8.17	8.17
09/24/91 03:58:15	8.15	8.17	8.2
09/24/91 04:58:15	8.17	8.17	8.2
09/24/91 05:58:15	8.17	8.17	8.2
09/24/91 06:58:15	8.1	8.15	8.17
09/24 <u>/</u> 91 07:58:15	8.1	8.13	8.17
09/24/91 08:58:15	8.06	8.1	8.17
09/24/91 09:58:15	7.9	8.03	8.13
09/24/91 10:58:15	7.99	8.08	8.22
09/24/91 11:58:15	7.99	8.13	8.29
09/24/91 12:58:15	7.94	8.15	8,29
09/24/91 13:58:15	7.94	8.17	8.38
09/24/91 14:58:15	8.01	8.2	8.29
09/24/91 15:58:15	8.01	8.15	8.24
09/24/91 16:58:15	8.13	8.22	8.34
09/24/91 17:58:15	8.22	8.24	8.29
	8.2	8.24	8.29
09/24/91 18:58:15	8.17	8.24	8.24
09/24/91 19:58:15			
09/24/91 20:58:15	8.17	8.17	8.2
09/24/91 21:58:15	8.17	8.17	8.2
09/24/91 22:58:15	8.15	8.17	8.2
09/24/91 23:58:15	8.17	8.2	8.22
09/25/91 00:58:15	8.17	8.2	8.24
09/25/91 01:58:15	8.17	8.22	8.24
09/25/91 02:58:15	8.2	8.22	8.27
09/25/91 03:58:15	8.22	8.24	8.27
09/25/91 04:58:15	8.2	8.22	8.27
09/25/91 05:58:15	8.2	8.22	8.27
09/25/91 06:58:15	8.2	8.22	8.22
09/25/91 07:58:15	8.17	8.2	8.22
09/25/91 08:58:15	8.15	8.2	8.22
09/25/91 09:58:15	8.2	8.2	8.24
09/25/91 10:58:15	8.17	8.2	8.24
09/25/91 11:58:15	8.17	8.22	8.27
09/25/91 12:58:15	8.2	8,22	8.24
		8.22	8.29
	8.17		
09/25/91 14:58:15	8.2	8.24	8.29
09/25/91 15:58:15	8.15	8.22	8.29
09/25/91 16:58:15	8.22	8.27	8.31
09/25/91 17:58:15	8.2	8.24	8.29
09/25/91 18:58:15	8.2	8.22	8.27
09/25/91 19:58:15	8.17	8.2	8.24
09/25/91 20:58:15	8.17	8.2	8.22
09/25/91 21:58:15	8.17	8.2	8.22
09/25/91 22:58:15	8.17	8.17	8.22
09/25/91 23:58:15	8,15	8.17	8.22
09/26/91 00:58:15	8.15	8.2	8.22
09/26/91 01:58:15	8.15	8.17	8.22
09/26/91 02:58:15	8.15	8.17	8.22
09/26/91 03:58:15	8.15	8.15	8.17
09/26/91 04:58:15	8.15	8.17	8.2
09/26/91 05:58:15	8.1	8.13	8.17
09/26/91 06:58:15	8.06	8.1	8.13
09/26/91 07:58:15	7.99	8.03	8.1
09/26/91 08:58:15	7.97	8.01	8.08

r99

09/26/91 10:58:15	7.94	7.99	8.08
09/26/91 11:58:15	7.92	8.01	8.1
09/26/91 12:58:15	7.92	8.01	
			8.17
	7.92	8.03	8.24
09/26/91 14:58:15	7.92	8.06	8.27
09/26/91 15:58:15	7.94	8.03	8.15
09/26/91 16:58:15	7,99	8.06	8.15
09/26/91 17:58:15	8,06	8.06	8.1
09/26/91 18:58:15	8,01	8.06	8.08
09/26/91 19:58:15	7.99	8.03	8.06
09/26/91 20:58:15	7.97	7.99	8.01
09/26/91 21:58:15	7.94	7.97	7.99
09/26/91 22:58:15	7.94	7.97	7.99
09/26/91 23:58:15	7.94	7.97	7.99
09/27/91 00:58:15	7.94	7.97	7.97
09/27/91 01:58:15	7,94	7.97	7.97
09/27/91 02:58:15	7.94	7.97	7.97
09/27/91 03:58:15	7.94	7.97	7.99
09/27/91 04:58:15	7.92	7.97	7.99
09/27/91 05:58:15	7.87	7.94	7.97
09/27/91 06:58:15	7.85	7.94	
			7.92
09/27/91 07:58:15	7.78	7.83	7.9
09/27/91 08:58:15	7.73	7.8	7.87
09/27/91 09:58:15	7.71	7.78	7.87
09/27/91 10:58:15	7.69	7.78	7.87
09/27/91 11:58:15	7.69	7.78	7.9
09/27/91 12:58:15	7.69	7.8	7.92
09/27/91 13:58:15	7.76	7.83	7.9
09/27/91 14:58:15	7.76	7.83	7.99
09/27/91 15:58:15	7.73	7.85	7.97
09/27/91 16:58:15	7.78	7.85	7.92
09/27/91 17:58:15	7.85	7.85	7.9
09/27/91 18:58:15	7.83	7.87	7.9
09/27/91 19:58:15	7.8	7.83	7.87
09/27/91 20:58:15	7.78	7.8	7.83
09/27/91 21:58:15	7.78	7.8	7.83
09/27/91 22:58:15	7.76	7.78	7.83
09/27/91 23:58:15	7.76	7.78	7.78
09/28/91 00:58:15	7.76	7.78	7,8
09/28/91 01:58:15			
	7.76	7.78	7.8
	7.76	7.78	7.83
09/28/91 03:58:15	7,78	7.8	7.83
09/28/91 04:58:15	7.73	7.78	7.8
09/28/91 05:58:15	7.73	7.76	7.78
09/28/91 06:58:15	7.69	7.76	7.78
09/28/91 07:58:15	7.57	7.64	7.73
09/28/91 08:58:15	7.59	7.62	7.69
09/28/91 09:58:15	7.55	7.62	7.69
09/28/91 10:58:15	7.5	7.62	7.73
09/28/91 11:58:15	7.55	7.62	7.71
09/28/91 12:58:15	7.55	7.62	7.78
09/28/91 13:58:15	7.55	7.64	7.73
09/28/91 14:58:15	7.57	7.66	7.73
09/28/91 15:58:15	7.59	7.66	7.73
09/28/91 16:58:15	7.59	7.66	7.78
/20//1 10.30.13	1.00	7.00	1.70

>00

09/28/91 18:58:15	7.69	7.71	7.76
09/28/91 19:58:15	7.64	7.69	7.73
09/28/91 20:58:15	7.64	7.66	7.71
09/28/91 21:58:15	7.64	7.66	7.69
09/28/91 22:58:15	7.62	7.64	7.69
09/28/91 23:58:15	7.62	7.64	7.69
09/29/91 00:58:15	7.62	7.66	7.69
09/29/91 01:58:15	7.62	7.64	7.69
09/29/91 02:58:15	7.64	7.66	7.69
09/29/91 03:58:15	7.66	7.66	7.69
09/29/91 04:58:15	7.64	7.66	7.69
09/29/91 05:58:15	7.64	7.64	7.69
09/29/91 06:58:15	7.59	7.64	7.69
09/29/91 07:58:15	7.57	7.59	7.64
09/29/91 08:58:15	7.48	7.55	7.62
09/29/91 09:58:15	7.45	7.55	7.62
09/29/91 10:58:15	7.45	7.57	7.69
09/29/91 11:58:15	7.45	7.59	7.66
09/29/91 12:58:15	7.45	7.59	7.66
09/29/91 13:58:15	7,52	7.62	7.69
09/29/91 14:58:15	7.59	7.64	7,69
09/29/91 15:58:15	7.59	7.64	7.71
09/29/91 16:58:15	7.62	7.66	7.69
09/29/91 17:58:15	7.64	7.64	7.69
09/29/91 18:58:15	7.62	7.64	7.69
		7.64	
09/29/91 19:58:15	7.62		7.66
09/29/91 20:58:15	7.62	7.64	7.69
09/29/91 21:58:15	7.62	7.64	7.69
09/29/91 22:58:15	7.62	7.64	7.69
09/29/91 23:58:15	7.62	7.64	7.69
09/30/91 00:58:15	7.62	7,66	7.69
09/30/91 01:58:15	7.64	7.66	7.71
09/30/91 02:58:15	7.66	7.69	7.71
09/30/91 03:58:15	7.64	7.69	7.71
09/30/91 04:58:15	7.64	7.66	7.69
09/30/91 05:58:15	7.64	7.64	7.66
09/30/91 06:58:15	7.59	7.64	7.66
09/30/91 07:58:15	7.55	7.62	7.64
09/30/91 08:58:15	7.48	7.55	7.64
09/30/91 09:58:15	7.5	7.59	7.71
09/30/91 10:58:15	7.48	7.57	7,69
09/30/91 11:58:15	7.55	7.64	7.73
09/30/91 12:58:15	7.5	7.62	7.69
09/30/91 13:58:15	7.5	7.62	7.76
09/30/91 14:58:15	7.52	7.64	7.8
09/30/91 15:58:15	7.64	7.69	7.73
09/30/91 16:58:15	7.64	7.69	7.71
09/30/91 17:58:15	7.66	7.69	7.73
09/30/91 18:58:15	7.66	7.69	7.73
09/30/91 19:58:15	7.64	7.66	7.71
09/30/91 20:58:15	7.64	7.69	7.71
09/30/91 21:58:15	7.64	7.69	7.71
09/30/91 22:58:15	7.64	7.66	7.69
09/30/91 23:58:15	7.64	7.69	7.71
10/01/91 00:58:15	7.66	7.69	7.71

Ĺ

 $\mathcal{V}l$

10/01/01 02.59.15	7.69	7 71	7 70
10/01/91 02:58:15		7.71	7.73
10/01/91 03:58:15	7.69	7.71	7.76
10/01/91 04:58:15	7.69	7.73	7.76
10/01/91 05:58:15	7.69	7.71	7.73
10/01/91 06:58:15	7.66	7.69	7.73
10/01/91 07:58:15	7.62	7.64	7.71
10/01/91 08:58:15	7.52	7.64	7.73
10/01/91 09:58:15	7.59	7.66	7.71
10/01/91 10:58:15	7.52	7.59	7.69
10/01/91 11:58:15	7.5	7.64	7.78
10/01/91 12:58:15	7.45	7.64	7.78
10/01/91 13:58:15	7.59	7.69	7.78
10/01/91 14:58:15	7.66	7.71	7.78
10/01/91 15:58:15	7.69	7.71	7.76
10/01/91 16:58:15	7.71	7.73	7.76
10/01/91 17:58:15	7.71	7.73	7.76
10/01/91 18:58:15	7.71	7.71	7.73
10/01/91 19:58:15	7.69	7.73	7.76
10/01/91 20:58:15	7.69	7.71	7.76
10/01/91 21:58:15	7.69	7.73	7.73
10/01/91 22:58:15	7.69	7.71	7.73
10/01/91 23:58:15	7.69	7.71	7.73
10/02/91 00:58:15	7.71	7.73	7.73
10/02/91 01:58:15	7.71	7.73	7.73
10/02/91 02:58:15	7.71	7.73	7.76
10/02/91 03:58:15	7.71	7.73	7.76
10/02/91 04:58:15	7.73	7.73	7.76
10/02/91 05:58:15	7.73		
		7.73	7.78
10/02/91 06:58:15	7.71	7.73	7.78
10/02/91 07:58:15	7.71	7.71	7.76
10/02/91 08:58:15	7.71	7.73	7.76
10/02/91 09:58:15	7.69	7.71	7.73
10/02/91 10:58:15	7.66	7.73	7.8
10/02/91 11:58:15	7.69	7.73	7.78
10/02/91 12:58:15	7.69	7.73	7.8
10/02/91 13:58:15	7.73	7.78	7.83
10/02/91 14:58:15	7.76	7.78	7.8
10/02/91 15:58:15	7.76	7.8	7.83
10/02/91 16:58:15	7.78	7.8	7.85
10/02/91 17:58:15	7.8	7.83	7.83
10/02/91 18:58:15	7.76	7.8	7.83
10/02/91 19:58:15	7.73	7.76	7.8
10/02/91 20:58:15	7.71	7.73	7.76
10/02/91 21:58:15	7.71	7.73	7.73
10/02/91 22:58:15	7.71	7.71	7.73
10/02/91 23:58:15	7.71	7.73	7.73
10/03/91 00:58:15	7.71	7.71	7.73
10/03/91 01:58:15	7.71	7.71	7.73
10/03/91 02:58:15	7.69	7.71	7.71
10/03/91 03:58:15	7.69	7.69	7.71
10/03/91 04:58:15	7.64	7.69	7.69
10/03/91 05:58:15	7.64	7.64	7.69
10/03/91 06:58:15	7,59	7.62	7.64
10/03/91 07:58:15	7.57	7.62	7.64
10/03/91 08:58:15	7,55	7.59	7.64

ĺ

y02

10/03/91 10	0:58:15	7.48	7.52	7.62
	1:58:15	7.34	7.5	7,59
10/03/91 12		7.45	7.55	7.64
10/03/91 13		7.43	7.55	7.76
10/03/91 14		7.55	7.64	7.71
	5:58:15	7.43	7.62	7.69
10/03/91 10		7.55	7.62	7.66
	7:58:15	7.62	7.64	7.69
	8:58:15	7.59	7.62	7.66
	9:58:15	7.57	7.59	7.62
	0:58:15	7.55	7.57 7.55	7.59
	L:58:15	7.55	7.55	7.57
	2:58:15	7.55		7.59
	8:58:15	7.55	7,57	7.62
10/04/91 00		7.55	7.59	7.62
10/04/91 01		7.55	7.59	7.62
10/04/91 02		7.57	7.59	7.62
	3:58:15	7.57	7.59	7.62
	+:58:15	7.57	7.59	7.59
	5:58:15	7.55	7.57	7.59
	5:58:15	7.52	7.55	7.57
	7:58:15	7.41	7.48	7.57
, ,	3:58:15	7.38	7.43	7.57
10/04/91 09		7.38	7.45	7.59
, ,):58:15	7.43	7.5	7.62
	:58:15	7.41	7.5	7.59
	2:58:15	7.34	7.48	7.57
	8:58:15	7.48	7.55	7.62
	:58:15	7.48	7.55	7.62
	:58:15	7.55	7.59	7.64
	:58:15	7.55	7.57	7.62
	:58:15	7.57	7.59	7.62
	:58:15	7.55	7.57	7.59
	:58:15	7.52	7.57	7.59
	:58:15	7.5	7.55	7.57
	:58:15	7.48	7.55	7.55
	:58:15	7.5	7.52	7.57
	:58:15	7.52	7.55	7.57
	:58:15	7.55	7.55	7.59
	:58:15	7.55	7.55	7.59
	:58:15	7.55	7.57	7.59
	:58:15	7.55	7.57	7.57
	:58:15	7.52	7.55	7.57
	:58:15	7.52	7.55	7.55
	:58:15	7.52	7.55	7.57
, ,	:58:15	7.5	7.52	7.55
	:58:15	7.48	7.52	7,55
	:58:15	7.41	7.48	7.55
	:58:15	7.48	7.5	7.57
	:58:15	7.43	7.5	7.59
	:58:15	7.48	7.57	7.76
	:58:15	7.45	7.52	7.64
	:58:15	7.55	7.62	7.66
• •	:58:15	7.48	7.62	7.69
10/05/91 16	:58:15	7.62	7.66	7.71

203

10/05/91 18:58:15	7.62	7.62	7.66
10/05/91 19:58:15	7.62	7.62	7.66
	7.64		
10/05/91 20:58:15		7.69	7.69
10/05/91 21:58:15	7.64	7.64	7.69
10/05/91 22:58:15	7.64	7.66	7.69
10/05/91 23:58:15	7.66	7.69	7.73
10/06/91 00:58:15	7.69	7.71	7.76
10/06/91 01:58:15	7.71	7.73	7.78
10/06/91 02:58:15	7.71	7.73	7.73
10/06/91 03:58:15	7.73	7.76	7.76
10/06/91 04:58:15	7.73	7.76	7.78
10/06/91 05:58:15	7.73	7.76	
			7.78
10/06/91 06:58:15	7.73	7.76	7.78
10/06/91 07:58:15	7.73	7.76	7.78
10/06/91 08:58:15	7.73	7.76	7.8
10/06/91 09:58:15	7.57	7.71	7.78
10/06/91 10:58:15	7.59	7.69	7.83
10/06/91 11:58:15	7.57	7.71	7.83
10/06/91 12:58:15	7,62	7.76	7.9
10/06/91 13:58:15	7.66	7.8	7.92
10/06/91 14:58:15	7.69	7.78	7,85
10/06/91 15:58:15	7.71	7.83	7.92
10/06/91 16:58:15	7.76	7.85	7.92
10/06/91 17:58:15	7.83	7.85	
			7.9
10/06/91 18:58:15	7.8	7.83	7.87
10/06/91 19:58:15	7.78	7.8	7.83
10/06/91 20:58:15	7.78	7.83	7.83
10/06/91 21:58:15	7.76	7.78	7.83
10/06/91 22:58:15	7.76	7.8	7.83
10/06/91 23:58:15	7.78	7.8	7.83
10/07/91 00:58:15	7.78	7.8	7.83
10/07/91 01:58:15	7.78	7.8	7.83
10/07/91 02:58:15	7.78	7.83	7.83
10/07/91 03:58:15	7.78	7.83	7.85
10/07/91 04:58:15	7.78	7.8	7.85
10/07/91 05:58:15	7.8	7.8	7.83
10/07/91 06:58:15	7.78	7.8	7.83
10/07/91 07:58:15	7.59		
		7.73	7.8
10/07/91 08:58:15	7.62	7.69	7.8
10/07/91 09:58:15	7.64	7.73	7.85
10/07/91 10:58:15	7.62	7.69	7.8
10/07/91 11:58:15	7.62	7.73	7.87
10/07/91 12:58:15	7.66	7.73	7.83
10/07/91 13:58:15	7.71	7.8	7.92
10/07/91 14:58:15	7.69	7.83	7.92
10/07/91 15:58:15	7.76	7.85	7.9 ⁻
10/07/91 16:58:15	7.83	7.85	7.92
10/07/91 17:58:15	7.87	7.9	7.94
10/07/91 18:58:15	7.85	7.9	7.94
10/07/91 19:58:15	7.85	7.87	7.9
10/07/91 20:58:15			
	7.85	7.87	7.9
10/07/91 21:58:15	7.83	7.85	7.87
10/07/91 22:58:15	7.83	7.85	7.87
10/07/91 23:58:15	7.85	7.87	7.87
10/08/91 00:58:15	7.85	7.87	7.87

10/00/01 00.50.15	7 05	7 07	7 0
10/08/91 02:58:15		7.87	7.9
10/08/91 03:58:15		7.9	7.9
10/08/91 04:58:15	7.85	7.87	7.9
10/08/91 05:58:15	7.85	7.87	7.9
10/08/91 06:58:15		7.85	7.9
		7.76	7.85
• •			
10/08/91 08:58:15		7.76	7.85
10/08/91 09:58:15		7.76	7.83
10/08/91 10:58:15	7.69	7.78	7.9
10/08/91 11:58:15	7.71	7.78	7.87
10/08/91 12:58:15		7.83	7.9
10/08/91 13:58:15		7.85	7.99
, ,			
10/08/91 14:58:15		7.85	8.01
10/08/91 15:58:15		7.87	8.01
10/08/91 16:58:15	7.83	7.9	7.94
10/08/91 17:58:15	7.87	7.92	7.99
10/08/91 18:58:15		7.92	7.97
10/08/91 19:58:15		7.9	7.9
• •		7.87	7.9
10/08/91 21:58:15		7.85	7.87
10/08/91 22:58:15		7.87	7.9
10/08/91 23:58:15		7.87	7.92
10/09/91 00:58:15	7.87	7.92	7.92
10/09/91 01:58:15	7.87	7.9	7.92
10/09/91 02:58:15		7.9	7.92
10/09/91 03:58:15		7.92	7.94
10/09/91 04:58:15	7.9	7.92	7.94
· ·			
10/09/91 05:58:15	7.87	7.9	7.92
10/09/91 06:58:15	7.85	7.87	7.9
10/09/91 07:58:15	7.78	7.85	7.9
10/09/91 08:58:15	7.78	7.83	7.85
10/09/91 09:58:15	7.71	7.83	7.87
10/09/91 10:58:15	7.69	7.76	7.9
10/09/91 11:58:15	7.71	7.8	7.94
10/09/91 12:58:15	7.78	7,83	7.92
	7.83	7.87	7.92
10/09/91 13:58:15			
10/09/91 14:58:15	7.83	7.9	7.97
10/09/91 15:58:15	7.83	7.9	7.97
10/09/91 16:58:15	7.9	7.94	7.99
10/09/91 17:58:15	7.9	7.94	8.01
10/09/91 18:58:15	7.92	7.94	7.99
10/09/91 19:58:15	7.87	7,92	7.99
10/09/91 20:58:15	7.87	7.9	7.97
			7.97
10/09/91 21:58:15	7.87	7.92	
10/09/91 22:58:15	7.9	7.92	7.97
10/09/91 23:58:15	7.92	7.94	7.99
10/10/91 00:58:15	7.92	7.94	7.99
10/10/91 01:58:15	7.92	7.94	7.97
10/10/91 02:58:15	7.94	7.97	7.97
10/10/91 03:58:15	7.94	7.97	7.99
10/10/91 04:58:15	7.94	7.97	7,99
10/10/91 05:58:15	7.94	7.97	7.99
10/10/91 06:58:15	7.94	7.97	7.99
10/10/91 07:58:15	7.9	7.94	7.99
10/10/91 08:58:15	7,85	7.9	7.97

505

10/10/01 10:00:10	~ ~ ~ ~		0.00
10/10/91 10:58:15	7.76	7.9	8.06
10/10/91 11:58:15	7.78	7.9	8.01
10/10/91 12:58:15	7.85	7.97	8.06
10/10/91 13:58:15	7.87	7.97	8.06
10/10/91 14:58:15	7.87	8.01	8.15
10/10/91 15:58:15	7.97	8.03	8.15
10/10/91 16:58:15	7.97	8.01	8.06
10/10/91 17:58:15	8.01	8.03	8.06
10/10/91 18:58:15	8.03	8.06	8.1
10/10/91 19:58:15	8.01	8.06	8.08
10/10/91 20:58:15	7.99	8.03	8.06
10/10/91 21:58:15	8.01	8.01	8.06
10/10/91 22:58:15	7.99	8.01	8.06
10/10/91 23:58:15	8.01	8.03	8,06
10/11/91 00:58:15	8.01	8.03	8.06
10/11/91 01:58:15	8.03	8.06	8.06
10/11/91 02:58:15	8.06	8.06	8.08
10/11/91 03:58:15	8.06	8.06	8.08
10/11/91 04:58:15	8.03	8.06	8.06
10/11/91 05:58:15	8.03	8.06	8.06
10/11/91 06:58:15	8.01	8.03	8.06
10/11/91 07:58:15	7.92	7.97	8.03
10/11/91 08:58:15	7.9	7.94	7.99
10/11/91 09:58:15	7.87	7,94	8.01
10/11/91 10:58:15	7.85	7.94	8.01
10/11/91 11:58:15	7.87	7.94	8.03
10/11/91 12:58:15	7.92	7.97	8.06
10/11/91 13:58:15	7.92	8.01	8.15
10/11/91 14:58:15	7.97	8.01	8.1
10/11/91 15:58:15	7.97	8.01	8.1
10/11/91 16:58:15	8.01	8.06	8.1
• •			
10/11/91 17:58:15	8.03	8.08	8.13
10/11/91 18:58:15	8.03	8.06	8.1
10/11/91 19:58:15	7.99	8.01	8.06
10/11/91 20:58:15	7.97	7.99	8.01
10/11/91 21:58:15	7.94	7.97	7,99
10/11/91 22:58:15	7.94	7.97	7.99
10/11/91 23:58:15	7.94	7.99	8.01
10/12/91 00:58:15	7.92	7.94	7,99
10/12/91 01:58:15	7.97	7.97	7.99
10/12/91 02:58:15	7.97	7.97	7.99
10/12/91 03:58:15	7.94	7.97	7.99
10/12/91 04:58:15	7.97	7.97	7.99
10/12/91 05:58:15	7.92	7.94	7.97
10/12/91 06:58:15	7.9	7.92	7.97
10/12/91 07:58:15	7.78	7.83	7.92
10/12/91 08:58:15	7.78	7.83	7.87
10/12/91 09:58:15	7.76	7.83	7.9
10/12/91 10:58:15	7.76	7.83	7.87
	7.76	7.83	7.92
10/12/91 11:58:15			
10/12/91 12:58:15	7.78	7.85	7.97
10/12/91 13:58:15	7.78	7.87	8.01
10/12/91 14:58:15	7.8	7.87	7.94
10/12/91 15:58:15	7.85	7.9	7.97
10/12/91 16:58:15	7.87	7.9	7.97
		-	

Ý. V

10/12/91 18:58:15	7.87	7.92	7.97
10/12/91 19:58:15	7.83	7.87	7.92
10/12/91 20:58:15	7.83	7.85	7.85
10/12/91 21:58:15	7.8	7.83	7.85
10/12/91 22:58:15	7.78	7.8	7.83
10/12/91 23:58:15	7.78	7.8	7.8
10/13/91 00:58:15	7.78	7.78	7.8
10/13/91 01:58:15	7.76	7.78	7.78
10/13/91 02:58:15	7.76	7.78	7.8
10/13/91 03:58:15	7.76	7.78	7.8
10/13/91 04:58:15	7.73	7.76	7.78
10/13/91 05:58:15	7.73	7.76	7.78
10/13/91 06:58:15	7.71	7.73	7.78
10/13/91 07:58:15	7.55	7.62	7.71
10/13/91 08:58:15	7.52	7.57	7.64
10/13/91 09:58:15	7.52	7.57	7.66
10/13/91 10:58:15	7.5	7.57	7.66
10/13/91 11:58:15	7.52	7.57	7.66
10/13/91 12:58:15	7.52	7.59	7.66
10/13/91 13:58:15	7.52	7.59	7.69
10/13/91 14:58:15	7.57	7.64	7.71
10/13/91 15:58:15	7.59	7.66	7.71
10/13/91 16:58:15	7.62	7.64	7.71
10/13/91 17:58:15	7.64	7.71	7.76
10/13/91 18:58:15	7.64	7.69	7.73
10/13/91 19:58:15	7.62	7.64	7.69
10/13/91 20:58:15	7.59	7.62	7.64
10/13/91 21:58:15	7.57	7.62	7.64
10/13/91 22:58:15	7.57	7.59	7.62
10/13/91 23:58:15	7.57	7.59	7.62
	7.57	7.59	7.59
10/14/91 00:58:15			
10/14/91 01:58:15	7.57	7.59	7.62
10/14/91 02:58:15	7.59	7.62	7.62
10/14/91 03:58:15	7.57	7.62	7.62
10/14/91 04:58:15	7.57	7.59	7.62
10/14/91 05:58:15	7.55	7.57	7.59
10/14/91 06:58:15	7,52	7.55	7.57
10/14/91 07:58:15	7.43	7.48	7.55
10/14/91 08:58:15	7.41	7.45	7.5
10/14/91 09:58:15	7.43	7.48	7.52
10/14/91 10:58:15	7.36	7.45	7.55
10/14/91 11:58:15	7.41	7.48	7.57
10/14/91 12:58:15	7.45	7.52	7.62
10/14/91 13:58:15	7.48	7.57	7.66
10/14/91 14:58:15	7.5	7.59	7.71
10/14/91 15:58:15	7.52	7.62	7.78
10/14/91 16:58:15	7.55	7.62	7.66
10/14/91 17:58:15	7.59	7.62	7.66
10/14/91 18:58:15	7.57	7.62	7.64
10/14/91 19:58:15	7.57	7.59	7.62
10/14/91 20:58:15	7.57	7.59	7.62
10/14/91 21:58:15	7.57	7.57	7.59
10/14/91 22:58:15	7.57	7.57	7.59
10/14/91 23:58:15	7.57	7.59	7.62
10/15/91 00:58:15	7.59	7.62	7.64
10/10/31 00.00.10	1.37	1.02	1.04

Ĺ

10/15/91 02:58:15	7.59	7.64	7.66
10/15/91 03:58:15	7.62	7.66	7.69
10/15/91 04:58:15	7.64	7.64	7.69
10/15/91 05:58:15	7.62	7.64	7.66
10/15/91 06:58:15	7.57	7.62	7.62
	7.48		
10/15/91 07:58:15		7.52	7.59
10/15/91 08:58:15	7.45	7.5	7.55
10/15/91 09:58:15	7.43	7.5	7.59
10/15/91 10:58:15	7.43	7.5	7.62
			7.76
10/15/91 11:58:15	7.41	7.52	
10/15/91 12:58:15	7.45	7.57	7.73
10/15/91 13:58:15	7.43	7.62	7.73
10/15/91 14:58:15	7.55	7.66	7.83
10/15/91 15:58:15	7.52	7.64	7.71
10/15/91 16:58:15	7.62	7.66	7.71
10/15/91 17:58:15	7.64	7.66	7.71
10/15/91 18:58:15	7.62	7.66	7.73
10/15/91 19:58:15	7.59	7.62	7.66
10/15/91 20:58:15	7.59	7.62	7.64
10/15/91 21:58:15	7.59	7.62	7.64
10/15/91 22:58:15	7.62	7.64	7.64
10/15/91 23:58:15	7.62	7.64	7.69
10/16/91 00:58:15	7.64	7.69	7.71
10/16/91 01:58:15	7.64	7.66	7.71
10/16/91 02:58:15	7.64	7.66	7.71
10/16/91 03:58:15	7.69	7.69	7.71
10/16/91 04:58:15	7.66	7.69	7.71
10/16/91 05:58:15	7.66	7.69	7.71
10/16/91 06:58:15	7.62	7.66	7.69
10/16/91 07:58:15	7.55	7.59	7.66
10/16/91 08:58:15	7.55	7.57	7.66
10/16/91 09:58:15	7.5	7.57	7.64
10/16/91 10:58:15	7.5	7.59	7.71
10/16/91 11:58:15	7.5	7.62	7.73
10/16/91 12:58:15	7.52	7.62	7.8
10/16/91 13:58:15	7,52	7.66	7.8
10/16/91 14:58:15	7.55	7.69	7.83
	7.55		
10/16/91 15:58:15	7.59	7.69	7.83
10/16/91 16:58:15	7.64	7.69	7.76
10/16/91 17:58:15	7.66	7.71	7.76
10/16/91 18:58:15	7.62	7.66	7.71
, ,			
10/16/91 19:58:15	7.59	7.62	7.64
10/16/91 20:58:15	7.59	7.62	7.64
10/16/91 21:58:15	7.57	7.62	7.64
10/16/91 22:58:15	7.59	7.62	7.64
10/16/91 23:58:15	7.59	7.59	7.62
10/17/91 00:58:15	7.59	7.62	7.64
10/17/91 01:58:15	7,59	7.59	7.62
10/17/91 02:58:15	7.57	7.59	7.64
10/17/91 03:58:15	7.57	7.59	7.62
10/17/91 04:58:15	7.57	7.59	7.62
10/17/91 05:58:15	7.55	7.59	7.62
10/17/91 06:58:15	7.5	7.57	7.62
10/17/91 07:58:15	7.43	7.48	7.55
10/17/91 08:58:15	7.43	7.45	7.52

20f

	- /-		
10/17/91 10:58:15	7.41	7.5	7.57
10/17/91 11:58:15	7.41	7.48	7.55
10/17/91 12:58:15	7.43	7.5	7.62
10/17/91 13:58:15	7.48	7.52	7.64
10/17/91 14:58:15	7.5	7.55	7.62
10/17/91 15:58:15	7.52	7.57	7.62
10/17/91 16:58:15	7.55	7.59	7.66
10/17/91 17:58:15	7.62	7.64	7.69
10/17/91 18:58:15	7.55	7.59	7.64
10/17/91 19:58:15	7.55	7.57	7.62
10/17/91 20:58:15	7.52	7.57	7.59
10/17/91 21:58:15	7.52	7.55	7.57
10/17/91 22:58:15	7.52	7.52	7.55
10/17/91 23:58:15	7.52	7.55	7.57
10/18/91 00:58:15	7.52	7.57	7.57
10/18/91 01:58:15	7.52	7.55	7.59
10/18/91 02:58:15	7.55	7.55	7.59
10/18/91 03:58:15	7.55	7.55	7.57
10/18/91 04:58:15	7.55	7.55	7.57
10/18/91 05:58:15	7.52	7.55	7.57
10/18/91 06:58:15	7.43	7.52	7.55
10/18/91 07:58:15	7.38	7.43	7.45
10/18/91 08:58:15	7.36	7.38	7.43
10/18/91 09:58:15	7.34	7.41	7.45
10/18/91 10:58:15	7.36	7.43	7.5
10/18/91 11:58:15	7.36	7.43	7.5
10/18/91 12:58:15	7.41	7.45	7.52
10/18/91 13:58:15	7.43	7.5	7.64
10/18/91 14:58:15	7.45	7.52	7.62
10/18/91 15:58:15	7.5	7.55	7.64
10/18/91 16:58:15	7.55	7.59	7.66
10/18/91 17:58:15	7.01	7.66	7.8
10/18/91 18:58:15	7.59	7.62	7.69
10/18/91 19:58:15	7.57	7.59	7.64
10/18/91 20:58:15	7.55	7.57	7.62
10/18/91 21:58:15	7.55	7.57	7.59
10/18/91 22:58:15	7.55	7.57	7.59
10/18/91 23:58:15	7.57	7.59	7.62
10/19/91 00:58:15	7.59	7.62	7.64
10/19/91 01:58:15	7.59	7.62	7.64
10/19/91 02:58:15	7.62	7,62	7.64
10/19/91 03:58:15	7.62	7.62	7.64
10/19/91 04:58:15	7.62	7.62	7.64
10/19/91 05:58:15	7.62	7.64	7.64
10/19/91 06:58:15	7.57	7.62	7.64
10/19/91 07:58:15	7.48	7.52	7.59
	7.48	7.5	7.55
10/19/91 09:58:15	7.45	7.52	7.59
10/19/91 10:58:15	7.45	7.52	7.59
10/19/91 11:58:15	7.45	7.55	7.59
10/19/91 12:58:15	7.52	7.59	7.66
10/19/91 13:58:15	7.55	7.62	7.69
10/19/91 14:58:15	7.59	7.64	7.71
10/19/91 15:58:15	7.62	7.64	7.73
10/19/91 16:58:15	7.64	7.69	7.76

(

 $\left(\right)$

209

10/19/91 18:58:15	7.69	7.71	7.76
10/19/91 19:58:15		7.69	7.73
10/19/91 20:58:15		7.66	7.69
10/19/91 21:58:15		7.64	7.69
10/19/91 22:58:15		7.64	7.66
10/19/91 23:58:15	7.64	7,64	7.66
10/20/91 00:58:15		7.66	7.66
10/20/91 01:58:15		7.66	7.69
10/20/91 02:58:15		7.66	7.69
10/20/91 03:58:15		7.69	7.69
10/20/91 04:58:15	7.66	7.69	7.69
10/20/91 05:58:15		7.69	7.69
10/20/91 06:58:15		7.64	7.69
		7.55	7.57
10/20/91 08:58:15		7.5	7.55
10/20/91 09:58:15		7.52	7,59
10/20/91 10:58:15	7.43	7.5	7.57
10/20/91 11:58:15	7.41	7.5	7.59
10/20/91 12:58:15		7.5	7.57
10/20/91 13:58:15		7.55	7.69
10/20/91 14:58:15		7.55	7.62
10/20/91 15:58:15		7.57	7.64
10/20/91 16:58:15	7.52	7.57	7.62
10/20/91 17:58:15	7.52	7.57	7.62
10/20/91 18:58:15		7.52	7,59
10/20/91 19:58:15		7.5	7.55
10/20/91 20:58:15		7.48	7.5
10/20/91 21:58:15		7.5	7.52
10/20/91 22:58:15	.7.45	7,45	7.5
10/20/91 23:58:15	7.45	7.45	7.5
10/21/91 00:58:15	7.45	7.48	7.5
10/21/91 01:58:15		7.48	7.5
10/21/91 02:58:15	7.45	7.48	7.5
			7.5
10/21/91 03:58:15	7.48	7.48	
10/21/91 04:58:15	7.48	7.48	7.5
10/21/91 05:58:15	7.45	7.48	7.52
10/21/91 06:58:15	7.45	7.48	7.5
10/21/91 07:58:15	7.41	7.45	7.48
10/21/91 08:58:15	7.36	7.41	7.45
10/21/91 09:58:15	7.36	7.38	7.43
10/21/91 10:58:15	7.34	7.36	7.41
10/21/91 11:58:15	7.36	7.38	7.43
10/21/91 12:58:15	7.36	7.38	7.41
10/21/91 13:58:15	7.36	7.41	7.43
10/21/91 14:58:15	7,36	7.41	7.48
10/21/91 15:58:15	7.34	7.43	7.5
10/21/91 16:58:15	7.43	7.45	7.5
10/21/91 17:58:15	7.41	7.43	7.48
10/21/91 18:58:15	7.41	7.41	7.45
10/21/91 19:58:15	7.38	7.43	7.45
10/21/91 20:58:15	7.41	7.43	7.45
10/21/91 21:58:15	7.36	7.38	7.45
10/21/91 22:58:15	7.36	7.41	7,45
	7.00		
10/21/91 23:58:15	7.38	7.41	7.43
10/22/91 00:58:15	7.36	7.38	7.43

Ţ

210

10/22/91 02:58:15	7.38	7.41	7.45
10/22/91 03:58:15	7.41	7.43	7.45
10/22/91 04:58:15	7.38	7.41	7.43
10/22/91 05:58:15	7.36	7.41	7.41
10/22/91 06:58:15	7.34	7.36	7.38
10/22/91 07:58:15	7.27	7.31	7.36
10/22/91 08:58:15	7.22	7.29	7.34
10/22/91 08:58:15	7.22	7.29	7.34
08/21/91 07:31:06	9.4	9.45	9.5
08/21/91 08:31:06	9.38	9.45	9.57

WMW 2-4

(

WMW2-4	Time	Min	Mean	Max
10/22/91	11:41:06	6.46	7.27	7.36
	12:41:06	7.11	7.31	7.45
10/22/91	13:41:06	7.25	7.38	7.55
10/22/91	14:41:06	7.2	7.34	7.52
10/22/91	15:41:06	7.25	7.38	7.52
, .	16:41:06	7.31	7.38	7.45
	17:41:06	7.36	7.38	7.43
	18:41:06	7.36	7.36	7.43
	19:41:06	7.34	7.36	7.41
	20:41:06	7.31	7.36	7.41
	21:41:06	7.31	7.36	7.38
	22:41:06	7.31	7.34	7.38
	23:41:06	7.31	7.34	7.34
	00:41:06	7.31	7.34	7.36
	01:41:06	7.31	7.34	7.36
	02:41:06	7.31	7.34	7.34

10/23/91	03:41:06	7.31	7.36	7.36	
	04:41:06	7.34	7.34	7.36	
	05:41:06	7.34	7.34	7.36	
	06:41:06	7.29	7.31	7.34	
10/23/91		7.25	7.29	7.31	
10/23/91		7.18	7.22	7.27	
	09:41:06	7,15	7.2	7.27	
	10:41:06	7.15	7.22	7.36	
	11:41:06	7.06	7.29	7.41	
	12:41:06	7.08	7.25	7.36	
	13:41:06	7.13	7.27	7.43	
	14:41:06	7.18	7.27	7.48	
	15:41:06	7.27	7.29	7.36	
	16:41:06	7.27	7.31	7.38	
	17:41:06	7.27	7.31	7.36	
10/23/91	18:41:06	7.29	7.31	7.36	
10/23/91	19:41:06	7.27	7.29	7.34	
10/23/91	20:41:06	7.27	7.29	7.31	
10/23/91	21:41:06	7.25	7.29	7.31	
10/23/91	22:41:06	7.25	7.27	7.31	
10/23/91	23:41:06	7.22	7.27	7.31	
10/24/91	00:41:06	7.25	7.27	7.31	
10/24/91	01:41:06	7.25	7.27	7.31	
10/24/91	02:41:06	7.25	7.29	7.31	
10/24/91	03:41:06	7.27	7.29	7.31	
10/24/91	04:41:06	7.27	7.29	7.31	
10/24/91	05:41:06	7.25	7.27	7.31	
10/24/91	06:41:06	7.22	7.25	7.29	
10/24/91	07:41:06	7.18	7.22	7.25	
10/24/91	08:41:06	7.11	7.15	7.22	
10/24/91	09:41:06	7.08	7.13	7.2	
10/24/91	10:41:06	7.08	7.18	7.27	
10/24/91		7.06	7.18	7.27	D-
10/24/91	12:41:06	7.06	7.18	7.29	

-50

10/24/91 17:41:06	7.22	7.25	7.27
10/24/91 18:41:06	7.22	7.25	7.29
10/24/91 19:41:06	7.22	7.22	7.27
10/24/91 20:41:06	7.2	7.22	7.25
10/24/91 21:41:06	7.22	7.22	7.25
10/24/91 22:41:06	7.22	7.22	7.25
10/24/91 23:41:06	7.22	7.25	7.25
10/25/91 00:41:06	7.22	7.25	7.25
10/25/91 01:41:06	7.22	7.25	7.25
10/25/91 02:41:06	7.22	7.25	7.27
10/25/91 03:41:06	7.22	7.25	7.27
10/25/91 04:41:06	7.22	7.27	7.27
10/25/91 05:41:06	7.2	7.22	7.27
10/25/91 06:41:06	7.2	7.25	7.27
10/25/91 07:41:06	7.15	7.2	7.25
10/25/91 08:41:06	7.13	7.15	7.2
10/25/91 09:41:06	7.08	7.13	7.2
10/25/91 10:41:06	6.97	7.11	7.18

Ę.

(

÷.,

10/25/91 11:41:06 10/25/91 12:41:06 10/25/91 13:41:06	7.01 7.04 7.01	7.11 7.13 7.13	7.22 7.27 7.25
10/25/91 14:41:06	7.13	7.2	7.27
10/25/91 15:41:06	7.06	7.18	7.31
10/25/91 16:41:06	7.11	7.2	7.27
10/25/91 17:41:06	7.18	7.22	7.27
10/25/91 18:41:06	7.18	7.2	7.25
10/25/91 19:41:06	7.15	7.18	7.2
10/25/91 20:41:06	7.15	7.18	7.2
10/25/91 21:41:06	7.15	7.18	7.2
10/25/91 22:41:06	7.13	7.15	7.2
10/25/91 23:41:06	7.15	7.15	7.18
10/26/91 00:41:06	7.15	7.18	7.18
10/26/91 01:41:06	7.15	7.18	7.18
10/26/91 02:41:06	7.15	7.18	7.2
10/26/91 03:41:06	7.18	7.18	7.2
10/26/91 04:41:06	7.18	7.18	7.2
10/26/91 05:41:06	7.18	7.18	7.2
10/26/91 06:41:06	7.15	7.18	7.2
10/26/91 07:41:06	7.13	7.18	7.22
10/26/91 08:41:06	7.04	7.11	7.18
10/26/91 09:41:06	7.01	7.08	7.22
10/26/91 10:41:06	6.97	7.11	7.22
10/26/91 11:41:06	6.9	7.11	7.22
10/26/91 12:41:06	6.92	7.13	7.27
10/26/91 13:41:06	6.99	7.13	7.25
10/26/91 14:41:06	7.04	7.13	7.2
10/26/91 15:41:06	7.08	7.18	7.27
10/26/91 16:41:06	7.08	7.15	7.2
10/26/91 17:41:06	7.13	7.18	7.25
10/26/91 18:41:06	7.13	7.15	7.18
10/26/91 19:41:06	7.13	7.18	7.18
10/26/91 20:41:06	7.11	7.13	7.18

D-51

10/27/91 01:41:06	7.11	7.13	7.13
10/27/91 02:41:06	7.11	7.13	7.15
10/27/91 03:41:06	7.11	7.13	7.15
10/27/91 04:41:06	7.11	7.13	7.13
10/27/91 05:41:06	7.11	7.13	7.13
10/27/91 06:41:06	7.08	7.13	7.15
10/27/91 07:41:06	7.08	7.13	7.13
10/27/91 08:41:06	6.99	7.06	7.13
10/27/91 09:41:06	6.85	6.99	7.08
10/27/91 10:41:06	6.94	7.01	7.2
10/27/91 11:41:06	6.8	7.06	7.22
10/27/91 12:41:06	6.9	7.04	7.29
10/27/91 13:41:06	6.9	7.06	7.29
10/27/91 14:41:06	6.97	7.11	7.29
10/27/91 15:41:06	6.99	7.11	7.25
10/27/91 16:41:06	7.04	7.11	7.22
10/27/91 17:41:06	7.11	7.15	7.18
10/27/91 18:41:06	7.11	7.13	7.18

10/27/91	19:41:06	7.08	7.11	7.15	
	20:41:06	7.08	7.08	7.13	
10/27/91	21:41:06	7.06	7.08	7.11	
10/27/91	22:41:06	7.08	7.11	7.11	
10/27/91	23:41:06	7.06	7.11	7.11	
10/28/91	00:41:06	7.06	7.08	7.13	
10/28/91	01:41:06	7.08	7.13	7.13	
10/28/91	02:41:06	7.08	7.08	7.11	
10/28/91	03:41:06	7.08	7.13	7.13	
10/28/91	04:41:06	7.06	7.08	7.11	
10/28/91	05:41:06	7.06	7.06	7.08	
10/28/91	06:41:06	7.04	7.06	7.08	
10/28/91	07:41:06	6.92	6.97	7.04	
10/28/91	08:41:06	6.87	6,92	6.97	
10/28/91	09:41:06	6.85	6,92	6.99	
10/28/91		6.8	6,92	6.97	
10/28/91	11:41:06	6.83	6.92	6.99	
10/28/91		6.85	6.94	7.15	
10/28/91	13:41:06	6.83	6.97	7.15	
10/28/91	14:41:06	6.83	6.97	7.15	
10/28/91	15:41:06	6.9	6.97	7.08	
10/28/91	16:41:06	6.92	6.99	7.06	
10/28/91		6.99	7.01	7.06	
10/28/91	18:41:06	6.94	6.99	7.04	
10/28/91	19:41:06	6,92	6,94	6.99	
10/28/91	20:41:06	6.92	6.94	6.97	
10/28/91	21:41:06	6.9	6.94	6,94	
10/28/91		6.87	6.9 [,]	6.94	
10/28/91		6.87	6.92	6.94	
10/29/91		6.87	6.9	6.92	
10/29/91		6.85	6.87	6.92	
10/29/91		6.83	6.87	6.9	
10/29/91		6.85	6.87	6.9	
10/29/91		6.83	6.85	6.9	D-52
, ,					

10/29/91 09:41:06	6.6	6.69	6.76
10/29/91 10:41:06	6.6	6.66	6.76
10/29/91 11:41:06	6,62	6.69	6.8
10/29/91 12:41:06	6.62	6.71	6.78
10/29/91 13:41:06	6.6	6.76	6.87
10/29/91 14:41:06	6.64	6.76	6.83
10/29/91 15:41:06	6.69	6 .76	6.8
10/29/91 16:41:06	6.73	6.8	6.85
10/29/91 17:41:06	6.76	6.78	6.83
10/29/91 18:41:06	6.73	6 .76	6.78
10/29/91 19:41:06	6.73	6 .76	6.76
10/29/91 20:41:06	6.73	6.73	6.76
10/29/91 21:41:06	6.71	6.73	6.76
10/29/91 22:41:06	6.71	6.76	6.78
10/29/91 23:41:06	6.71	6.73	6.8
10/30/91 00:41:06	6.76	6.76	6.78
10/30/91 01:41:06	6.73	6.76	6.8
10/30/91 02:41:06	6.73	6.78	6.8

10/30/91 03:41:06	6.76	6.76	6,8	
10/30/91 04:41:06	6.76	6.76	6.8	
10/30/91 05:41:06	6.73	6.78	6.8	
10/30/91 06:41:06	6.73	6.76	6,78	
10/30/91 07:41:06	6.66	6.71	6.78	
10/30/91 08:41:06	6.62	6.69	6.73	
10/30/91 09:41:06	6.64	6.69	6.76	
10/30/91 10:41:06	6,62	6,69	6.76	
10/30/91 11:41:06	6.62	6.69	6.8	
10/30/91 12:41:06	6.64	6.73	6.83	
10/30/91 13:41:06	6.73	6.78	6.85	
10/30/91 14:41:06	6.76	6.8	6.87	
10/30/91 15:41:06	6.78	6.83	6.9	
10/30/91 16:41:06	6.8	6.87	6.94	
10/30/91 17:41:06	6.9	6.92	6.99	
10/30/91 18:41:06	6.87	6.9	6.92	
10/30/91 19:41:06	6.85	6.87	6.92	
10/30/91 20:41:06	6.85	6.87	6.9	
10/30/91 21:41:06	6.83	6.85	6.87	
10/30/91 22:41:06	6.83	6.85	6.9	
10/30/91 23:41:06	6.85	6.9	6.92	
10/31/91 00:41:06	6.87	6.9	6.92	
10/31/91 01:41:06	6.87	6.9	6.92	
10/31/91 02:41:06	6,9	6,92	6.94	
10/31/91 03:41:06	6.9	6.92	6.97	
10/31/91 04:41:06	6.9	6.92	6,94	
10/31/91 05:41:06	6.9	6.92	6.94	
10/31/91 06:41:06	6.87	6.9	6.94	
10/31/91 07:41:06	6.76	6.83	6.9	
10/31/91 08:41:06	6.71	6.8	6.92	
10/31/91 09:41:06	6.6	6.78	6.85	
10/31/91 10:41:06	6,62	6.78	6.9	
10/31/91 11:41:06	6.73	6.8	6.9	
10/31/91 12:41:06	6,66	6.8	6.94	D - 53

10/31/91 17:41:06	6.9	6,92	6.97
10/31/91 18:41:06	6.85	6.9	6.94
10/31/91 19:41:06	6.83	6.85	6.9
10/31/91 20:41:06	6.83	6.85	6.87
10/31/91 21:41:06	6.8	6.83	6.85
10/31/91 22:41:06	6.8	6.85	6.85
10/31/91 23:41:06	6.83	6.85	6.85
11/01/91 00:41:06	6.8	6.85	6.85
11/01/91 01:41:06	6.78	6.83	6.85
11/01/91 02:41:06	6.78	6.83	6.85
11/01/91 03:41:06	6.78	6.8	6.83
11/01/91 04:41:06	6.78	6.8	6.8
11/01/91 05:41:06	6.78	6.78	6.8
11/01/91 06:41:06	6.76	6.78	6.8
11/01/91 07:41:06	6.66	6.71	6.78
11/01/91 08:41:06	6.69	6.71	6.73
11/01/91 09:41:06	6.64	6.69	6.73
11/01/91 10:41:06	6.57	6.64	6.71

11/01/91 11:41:06 11/01/91 12:41:06 11/01/91 13:41:06	6.57 6.62 6.66	6.69 6.71 6.73	6.78 6.78 6.78	
11/01/91 14:41:06	6.71	6.73	6.78	
11/01/91 15:41:06	6.73	6.76	6.8	
11/01/91 16:41:06	6.73	6.78	6.8	
11/01/91 17:41:06	6.76	6.78	6.8	
11/01/91 18:41:06	6.76	6.78	6.8	
11/01/91 19:41:06	6.71	6.76	6.8	
11/01/91 20:41:06	6.71	6.73	6.76	
11/01/91 21:41:06	6.69	6.71	6.73	
11/01/91 22:41:06	6.69	6,71	6.73	
11/01/91 23:41:06	6.66	6.71	6.73	
11/02/91 00:41:06	6.69	6.71	6.73	
11/02/91 01:41:06	6.69	6.69	6.73	
11/02/91 02:41:06	6.69	6.73	6.73	
11/02/91 03:41:06	6.69	6.71	6.71	
11/02/91 04:41:06	6.66	6.71	6.73	
11/02/91 05:41:06	6.64	6.69	6.73	
11/02/91 06:41:06	6.62	6.66	6.71	
11/02/91 07:41:06	6.5	6.57	6.66	
11/02/91 08:41:06	6.48	6.53	6.6	
11/02/91 09:41:06	6.41	6.5	6.6	
11/02/91 10:41:06	6.41	6.5	6.57	
11/02/91 11:41:06	6.41	6.5	6.62	
11/02/91 12:41:06	6.43	6.5	6.62	
11/02/91 13:41:06	6.46	6.53	6.64	
11/02/91 14:41:06	6.46	6.53	6.6	
11/02/91 15:41:06	6.5	6.55	6.64	
11/02/91 16:41:06	6.48	6.57	6.64	
11/02/91 17:41:06	6.55	6.57	6.62	
11/02/91 18:41:06	6.5	6.53	. 6.6	
11/02/91 19:41:06	6.48	6.5	6.55	D-54
11/02/91 20:41:06	6.48	6.48	6.5	- - ·

11/03/91 01:41:06	6.43	6.46	6.48
11/03/91 02:41:06	6.43	6.46	6.5
11/03/91 03:41:06	6,43	6.46	6.48
11/03/91 04:41:06	6.43	6.46	6.48
11/03/91 05:41:06	6.41	6.43	6.46
11/03/91 06:41:06	6.39	6.41	6.43
11/03/91 07:41:06	6.39	6.41	6.43
11/03/91 08:41:06	6.34	6.39	6.41
11/03/91 09:41:06	6.25	6.34	6.41
11/03/91 10:41:06	6.27	6.34	6,41
11/03/91 11:41:06	6.32	6.36	6.39
11/03/91 12:41:06	6.32	6.36	6.41
11/03/91 13:41:06	6.27	6.34	6.41
11/03/91 14:41:06	6.27	6.36	6.43
11/03/91 15:41:06	6.29	6.41	6.48
11/03/91 16:41:06	6.39	6.41	6.43
11/03/91 17:41:06	6.39	6.41	6.46
11/03/91 18:41:06	6.36	6.41	6.46

11/03/91	19:41:06	6.34	6.39	6,43	
11/03/91		6.34	6.36	6.41	
11/03/91		6.34	6.34	6.39	
11/03/91		6.34	6.36	6.39	
11/03/91		6.36	6.36	6.39	
11/04/91		6.34	6.36	6.39	
11/04/91		6.36	6.39	6.41	
11/04/91		6.36	6.39	6.43	
11/04/91	03:41:06	6.36	6.39	6.41	
11/04/91	04:41:06	6.39	6.39	6.41	
11/04/91	05:41:06	6.39	6.39	6.41	
11/04/91	06:41:06	6.34	6.36	6.39	
11/04/91	07:41:06	6.29	6.34	6.39	
11/04/91		6.2	6.25	6.32	
11/04/91	09:41:06	6.22	6.29	6.36	
11/04/91	10:41:06	6.25	6.29	6.39	
11/04/91	11:41:06	6.25	6.32	6.41	
11/04/91	12:41:06	6.2	6.32	6.41	
11/04/91	13:41:06	6.27	6.34	6.41	
11/04/91	14:41:06	6.34	6.39	6.46	
11/04/91	15:41:06	6.34	6.39	6.48	
11/04/91	16:41:06	6.39	6.43	6.48	
11/04/91	17:41:06	6.43	6.46	6.48	
11/04/91	18:41:06	6.39	6.41	6.48	
11/04/91	19:41:06	6.39	6.41	6.43	
11/04/91	20:41:06	6.36	6.39	6.43	
11/04/91	21:41:06	6,34	6.36	6.39	
11/04/91	22:41:06	6.34	6.36	6.39	
11/04/91	23:41:06	6.36	6.39	6.39	
11/05/91	00:41:06	6.32	6.36	6.39	
11/05/91	01:41:06	6.34	6.36	6.41	
11/05/91	02:41:06	6.34	6.39	6.41	I
11/05/91	03:41:06	6.34	6.39	6.39	
11/05/91	04:41:06	6.36	6.39	6.39	
• •					

 \mathbf{b}_{k}

218

D-55

11/05/91	09:41:06	6.18	6.25	6.32
11/05/91	10:41:06	6.13	б.2	6.27
11/05/91	11:41:06	6.18	6.25	6.32
• •	12:41:06	6.2	6.27	6.39
11/05/91	13:41:06	6.25	6.32	6.41
11/05/91	14:41:06	6.29	6.36	6.43
11/05/91	15:41:06	6.34	6.39	6.41
11/05/91	16:41:06	6.36	6.41	6.48
11/05/91	17:41:06	6.41	6.43	6.48
11/05/91	18:41:06	6.39	6.41	6.46
11/05/91	19:41:06	6.34	6.39	6.41
11/05/91	20:41:06	6.29	6.34	6,39
11/05/91	21:41:06	6.27	6.32	6.36
11/05/91	22:41:06	6.32	6.34	6.36
11/05/91	23:41:06	6.32	6.34	6.36
11/06/91	00:41:06	6.29	6.32	6.34
11/06/91	01:41:06	6.29	6.32	6,34
11/06/91	02:41:06	6.32	6.34	6.36

11/06/91	03:41:06	6.34	6.36	6.41	
11/06/91		6.32	6,34	6.39	
11/06/91	05:41:06	6.32	6,34	6.39	
11/06/91	06:41:06	6.29	6.34	6.36	
11/06/91	07:41:06	6.25	6.32	6.36	
11/06/91	08:41:06	6.22	6,25	6.27	
	09:41:06	6.2	6.22	6.32	
	10:41:06	6.18	6.22	6.36	
11/06/91		6.15	6.25	6.39	
11/06/91	12:41:06	6.13	6.27	6.39	
11/06/91	13:41:06	6,18	6.29	6.39	
	14:41:06	6.18	6.32	6.41	
11/06/91	15:41:06	6.29	6.36	6.43	
11/06/91	16:41:06	6.32	6.34	6.39	
11/06/91	17:41:06	6.34	6.36	6.41	
11/06/91	18:41:06	6.32	6.34	6.39	
11/06/91	19:41:06	6.32	6.34	6.34	
11/06/91	20:41:06	6.27	6.29	6.34	
11/06/91	21:41:06	6.25	6.32	6.34	
11/06/91	22:41:06	6,29	6,32	6.34	
11/06/91	23:41:06	6.29	6.32	6.34	
11/07/91	00:41:06	6.27	6.32	6.34	
11/07/91	01:41:06	6.29	6.29	6.34	
11/07/91	02:41:06	6.29	6.32	6.34	
11/07/91	03:41:06	6.29	6.34	6.34	
11/07/91	04:41:06	6.32	6.34	6,34	
11/07/91	05:41:06	6.27	6.29	6.32	
11/07/91	06:41:06	6.27	6.29	6.32	
11/07/91	07:41:06	6.18	6.25	6.29	
11/07/91	08:41:06	6.11	6.15	6.22	
11/07/91	09:41:06	6.11	6.13	6.18	
11/07/91		6.11	6.13	6.2	
11/07/91		6.08	6.15	6.22	
11/07/91		6.13	6.2	6.25	D-56
• •					

11/07/91 17:41:06	6.29	6.32	6.34
11/07/91 18:41:06	6.25	6.27	6.34
11/07/91 19:41:06	6.22	6.25	6.27
11/07/91 20:41:06	6.22	6.25	6.25
11/07/91 21:41:06	6.2	6.22	6.25
11/07/91 22:41:06	6.2	6.22	6.25
11/07/91 23:41:06	6.2	6.22	6.25
11/08/91 00:41:06	6.2	6.22	6.25
11/08/91 01:41:06	6.22	6.25	6.27
11/08/91 02:41:06	6.22	6.25	6.27
11/08/91 03:41:06	6.22	6.25	6.27
11/08/91 04:41:06	6.22	6.25	6.25
11/08/91 05:41:06	6.22	6.22	6.25
11/08/91 06:41:06	6.2	6.22	6.25
11/08/91 07:41:06	6.11	6.15	6.22
11/08/91 08:41:06	6.04	6.08	6.13
11/08/91 09:41:06	5.99	6.08	6.18
11/08/91 10:41:06	6.06	6.13	6.2

11/08/91	11:41:06	5.97	6.08	6.2
11/08/91	12:41:06	6.04	6.18	6.27
11/08/91	13:41:06	6.15	6.18	6.25
11/08/91	14:41:06	6.13	6.18	6.22
11/08/91	15:41:06	6.13	6.18	6.25
11/08/91		6.13	6.18	6.22
11/08/91		6.13	6.15	6.2
11/08/91		6.11	6.13	6.15
11/08/91		6.08	6.13	6.15
11/08/91		6.08	6.11	6.13
11/08/91		6.08	6.11	6.13
11/08/91		6.06	6.08	6.11
11/08/91		6.06	6,08	6.11
11/09/91	00:41:06	6.08	6.11	6.15
11/09/91		6.06	6.11	6.15
11/09/91		6.06	6.11	6.15
11/09/91		6.08	6.13	6.15
11/09/91		6.08	6.13	6.15
11/09/91		6.08	6.11	6.13
11/09/91		6.08	6.11	6.15
11/09/91		6.08	6.11	6.13
11/09/91		6.06	6.11	6.13
11/09/91		6.06	6.13	6.15
11/09/91		6.08	6.11	6.15
11/09/91		6.08	6.13	6.15
11/09/91		6.11	6.15	6.2
11/09/91	13:41:06	6.13	6.18	6.22
11/09/91	14:41:06	6.18	6.2	6.22
11/09/91	15:41:06	6.2	6.22	6.25
11/09/91	16:41:06	6.22	6.25	6.27
11/09/91		6.22	6.25	6.27
11/09/91		6.22	6.25	6.29
11/09/91	19:41:06	6.25	6.27	6.29
11/09/91		6.27	6.29	6.32
-, - ,			-	

D-57

11/10/91 01	:41:06	6.34	6.36	6.39
11/10/91 02	:41:06	6.36	6.39	6.41
	:41:06	6.36	6.41	6.41
	:41:06	6.39	6.41	6.41
11/10/91 05	:41:06	6.39	6.43	6.43
11/10/91 06	:41:06	6.39	6.41	6.43
11/10/91 07	:41:06	6.36	6.39	6.41
11/10/91 08	:41:06	6.36	6.39	6.41
11/10/91 09	:41:06	6.34	6.36	6.41
11/10/91 10	:41:06	6.32	6,39	6.43
11/10/91 11	:41:06	6.34	6.39	6.43
11/10/91 12	:41:06	6.36	6.39	6.46
11/10/91 13	:41:06	6.36	6.43	6.5
11/10/91 14	:41:06	6.34	6.43	6.53
11/10/91 15	:41:06	6.43	6.46	6.53
11/10/91 16	:41:06	6.43	6,46	6.5
11/10/91 17	:41:06	6.43	6.46	6.48
11/10/91 18	:41:06	6.41	6.43	6.48

11/10/91 19:	:41:06	6.41	6.43	6.46
11/10/91 20:	:41:06	6.39	6,43	6.46
11/10/91 21:	:41:06	6.39	6.41	6.43
11/10/91 22:	:41:06	6.41	6.43	6.46
11/10/91 23:	41:06	6.41	6.46	6.48
11/11/91 00:	41:06	6.43	6.48	6.48
	41:06	6.43	6.46	6.48
	41:06	6.43	6.46	6.48
	41:06	6.43	6.46	6.48
11/11/91 04:	41:06	6.46	6.46	6.48
	41:06	6.41	6.43	6.48
11/11/91 06:	41:06	6.41	6,43	6.46
11/11/91 07:	41:06	6.32	6.36	6.43
11/11/91 08:	41:06	6.29	6.32	6.36
11/11/91 09:		6.27	6.32	6.39
11/11/91 10:		6.25	6.32	6.39
11/11/91 11:	41:06	6.27	6.32	6.39
11/11/91 12:	41:06	6.29	6,36	6.46
11/11/91 13:	41:06	6.25	6.39	6.5
11/11/91 14:	41:06	6.32	6.39	6.48
11/11/91 15:	41:06	6.34	6.41	6.48
11/11/91 16:	41:06	6.36	6.43	6.48
11/11/91 17:	41:06	6.41	6.43	6.48
11/11/91 18:	41:06	6.39	6.41	6.46
11/11/91 19:	41:06	6.34	6.39	6,41
11/11/91 20:	41:06	6.34	6.36	6.39
11/11/91 21:	41:06	6.34	6.36	6.39
11/11/91 22:	41:06	6.34	6.36	6.39
11/11/91 23:	41:06	6.34	6.36	6.39
11/12/91 00:	41:06	6.32	6.36	6.39
11/12/91 01:	41:06	6.32	6.34	6.39
11/12/91 02:	41:06	6.32	6.36	6.36
	41:06	6.32	6.34	6.39
11/12/91 04:	41:06	6.34	6.36	6.36 D-58
				סכ-ע

11/12/91 09:41:06	6.2	6.27	6.34
11/12/91 10:41:06	6.18	6.25	6.34
11/12/91 11:41:06	6.18	6.29	6.39
11/12/91 12:41:06	6.2	6.29	6.36
11/12/91 13:41:06	6.27	6.32	6.41
11/12/91 14:41:06	6.34	6.39	6.46
11/12/91 15:41:06	6.34	6.41	6.48
11/12/91 16:41:06	6.41	6.46	6.5
11/12/91 17:41:06	6.46	6.48	6.5
11/12/91 18:41:06	6.41	6.46	6.5
11/12/91 19:41:06	6.39	6.43	6.46
11/12/91 20:41:06	6.39	6.41	6.43
11/12/91 21:41:06	6.39	6.41	6.43
11/12/91 22:41:06	6.39	6.41	6.43
11/12/91 23:41:06	6.39	6.41	6.46
11/13/91 00:41:06	6.39	6.41	6.43
11/13/91 01:41:06	6.39	6.41	6.43
11/13/91 02:41:06	6.36	6.39	6.43

ĺ

1 N

11/13/91 03:41:06	6.36	6.41	6.43
11/13/91 04:41:06	6.39	6.41	6.46
11/13/91 05:41:06	6.36	6.41	6.43
11/13/91 06:41:06	6,36	6.39	6.41
11/13/91 07:41:06	6,25	6.32	6.39
11/13/91 08:41:06	6.22	6.25	6.34
11/13/91 09:41:06	6.22	6.29	6.39
11/13/91 10:41:06	6.2	6.27	6.34
11/13/91 11:41:06	6.2	6.27	6.34
11/13/91 12:41:06	6.22	6.32	6.41
11/13/91 13:41:06	6.25	6.32	6.43
11/13/91 14:41:06	6.29	6.36	6,43
11/13/91 15:41:06	6.34	6.41	6.48
11/13/91 16:41:06	6.41	6.41	6.46
11/13/91 17:41:06	6.41	6,43	6.48
11/13/91 18:41:06	6.36	6.41	6.43
11/13/91 19:41:06	6.36	6.39	6.41
11/13/91 20:41:06	6.34	6.36	6.41
11/13/91 21:41:06	6.34	6.36	6.39
11/13/91 22:41:06	6.34	6.36	6.39
11/13/91 23:41:06	6.34	6.36	6.39
11/14/91 00:41:06	6.34	6.36	6.39
11/14/91 01:41:06	6.34	6.36	6.39
11/14/91 02:41:06	6.34	6.39	6.39
11/14/91 03:41:06	6.34	6.36	6.39
11/14/91 04:41:06	6.34	6.39	6.41
11/14/91 05:41:06	6.36	6.39	6.41
11/14/91 06:41:06	6.36	6.39	6.41
11/14/91 07:41:06	6.25	6.32	6.39
11/14/91 08:41:06	6.18	6.22	6.29
11/14/91 09:41:06	6.18	6.25	6.32
11/14/91 10:41:06	6.15	6.25	6.36
11/14/91 11:41:06	6.18	6.25	6.29
11/14/91 12:41:06	6.2	6.27	6.36

11/14/91 17:41:06	6.36	6.39	6.43
11/14/91 18:41:06	6.34	6.36	6.43
11/14/91 19:41:06	6.34	6.34	6.41
11/14/91 20:41:06	6.32	6.34	6.39
11/14/91 21:41:06	6.32	6.34	6.34
11/14/91 22:41:06	6.32	6.32	6,36
11/14/91 23:41:06	6.29	6.32	6.34
11/15/91 00:41:06	6.32	6.32	6.34
11/15/91 01:41:06	6,32	6.34	6.36
11/15/91 02:41:06	6.32	6.34	6.36
11/15/91 03:41:06	6.32	6.34	6.36
11/15/91 04:41:06	6.32	6.34	6.36
11/15/91 05:41:06	6.32	6.34	6.36
11/15/91 06:41:06	6.29	6.32	6.36
11/15/91 07:41:06	6.22	6.27	6.32
11/15/91 08:41:06	6.18	6.27	6.32
11/15/91 09:41:06	6.11	6.18	6.34
11/15/91 10:41:06	6.13	6.18	6.25

ĺ

71/15/01 11.//1.0/	6 1 2	<i>c</i>	6 00
11/15/91 11:41:06	6.13	6.2	6.29
11/15/91 12:41:06 11/15/91 13:41:06	6.15	6.27	6.41
	6.22	6.29	6.41
11/15/91 14:41:06	6.2	6.32	6.43
11/15/91 15:41:06	6.22	6.39	6.46
11/15/91 16:41:06	6.27	6.36	6.43
11/15/91 17:41:06	6.36	6.39	6.43
11/15/91 18:41:06	6.34	6.39	6.43
11/15/91 19:41:06	6.34	6.34	6.39
11/15/91 20:41:06	6.32	6.34	6.39
11/15/91 21:41:06	6.32	6.36	6.36
11/15/91 22:41:06	6.32	6.32	6.34
1 1/15/91 23:41:06	6.32	6.32	6.34
11/16/91 00:41:06	6.32	6.34	6.34
11/16/91 01:41:06	6.34	6.34	6.39
11/16/91 02:41:06	6.34	6.36	6.39
11/16/91 03:41:06	6.34	6.36	6.39
11/16/91 04:41:06	6.34	6.36	6.39
11/16/91 05:41:06	6.34	6.36	6.39
11/16/91 06:41:06	6.34	6.34	6.36
11/16/91 07:41:06	6.25	6.32	6.34
11/16/91 08:41:06	6.22	6.27	6,34
11/16/91 09:41:06	6.15	6.22	6.32
11/16/91 10:41:06	6.15	6.22	6.29
11/16/91 11:41:06	6.18	6.25	6.34
11/16/91 12:41:06	6.2	6,29	6.48
11/16/91 13:41:06	6.22	6.32	6.41
11/16/91 14:41:06	6.27	6.34	6.43
11/16/91 15:41:06	6.32	6.39	6.48
11/16/91 16:41:06	6.34	6.41	6.46
11/16/91 17:41:06	6.39	6.41	6.43
11/16/91 18:41:06	6.36	6.39	6.43
11/16/91 19:41:06	6.34	6.39	6.39
11/16/91 20:41:06	6.34	6.39	
11/10/91 20.41:00	0.04	0.39	6.39

D-60

-25

11/17/91 01:41:06	6.32	6.34	6.34
11/17/91 02:41:06	6.32	6.34	6.36
11/17/91 03:41:06	6.32	6.34	6.36
11/17/91 04:41:06	6.32	6.34	6.36
11/17/91 05:41:06	6.29	6.34	6.34
11/17/91 06:41:06	6.29	6.32	6.34
11/17/91 07:41:06	6.22	6.27	6.32
11/17/91 08:41:06	6.18	6.22	6.25
11/17/91 09:41:06	6.15	6.2	6.25
11/17/91 10:41:06	6.11	6.15	6.22
11/17/91 11:41:06	6.11	6.18	6.27
11/17/91 12:41:06	6.15	6,2	6.27
11/17/91 13:41:06	6.15	6.22	6.29
11/17/91 14:41:06	6.18	6.27	6.34
11/17/91 15:41:06	6.2	6.25	6.32
11/17/91 16:41:06	6.2	6.25	6.29
11/17/91 17:41:06	6.2	6.25	6.29
11/17/91 18:41:06	6.2	6.22	6.27
/-//10.41.00	0.2	0.22	0.27

11/17/91 19:41:06	6.18	6.2	6.25	
11/17/91 20:41:06	6.18	6.2	6.22	
11/17/91 21:41:06	6.18	6.2	6.2	
11/17/91 22:41:06	6.18	6.2	6.22	
11/17/91 23:41:06	6.18	6.2	6.25	
11/18/91 00:41:06	6.18	6.22	6.25	
11/18/91 01:41:06	6.18	6.22	6.25	
11/18/91 02:41:06	6.2	6.22	6.25	
11/18/91 03:41:06	6.2	6.22	6.22	
11/18/91 04:41:06	6.2	6.22	6.25	
11/18/91 05:41:06	6.22	6,22	6,25	
11/18/91 06:41:06	6.22	6.22	6.25	
11/18/91 07:41:06	6.18	6.2	6.22	
11/18/91 08:41:06	6.13	6.18	6.22	
11/18/91 09:41:06	6.11	6.13	6.18	
11/18/91 10:41:06	5.99	6.15	6.22	
11/18/91 11:41:06	5,99	6.18	6.25	
11/18/91 12:41:06	6.13	6.2	6,25	
11/18/91 13:41:06	6.13	6.2	6.25	
11/18/91 14:41:06	6.18	6.22	6.27	
11/18/91 15:41:06	6.18	6.22	6.27	
11/18/91 16:41:06	6.2	6.22	6.25	
11/18/91 17:41:06	6.2	6.2	6.22	
11/18/91 18:41:06	6.18	6.2	6.25	
11/18/91 19:41:06	6.15	6.2	6.22	
11/18/91 20:41:06	6.15	6.2	6.22	
11/18/91 21:41:06	6.15	6.18	6.22	
11/18/91 22:41:06	6.15	6.18	6.22	
11/18/91 23:41:06	6.15	6.18	6.2	
11/19/91 00:41:06	6.15	6.18	6.2	
11/19/91 01:41:06	6.15	6.18	6.2	
11/19/91 02:41:06	6.15	6.15	6.18	
11/19/91 03:41:06	6.15	6.15	6.2	D-61
11/19/91 04:41:06	6.15	6.18	6.22	D-01
. ,			****	

	11/19/91	09:41:06	6.04	6.08	6.11
		10:41:06	5,94	6.01	6.08
	11/19/91	11:41:06	5.92	6.06	6.15
	11/19/91	12:41:06	5.94	6,04	6.22
	11/19/91	13:41:06	6.01	6.15	6.27
	11/19/91	14:41:06	6.01	6.13	6.27
	11/19/91	15:41:06	6,06	6.18	6.25
:	11/19/91	16:41:06	6.11	6.18	6.22
	11/19/91	17:41:06	6.13	6.18	6.2
:	11/19/91	18:41:06	6.11	6.18	6.2
:	11/19/91	19:41:06	6.11	6.11	6.18
3	11/19/91	20:41:06	6.11	6.13	6.18
]	11/19/91	21:41:06	6.08	6.13	6.15
]	11/19/91	22:41:06	6.08	6.11	6.13
1	11/19/91	23:41:06	6.08	6.11	6.18
1	L1/20/91	00:41:06	6.13	6.13	6.18
]	1/20/91	01:41:06	6.13	6.15	6.2
1	L1/20/91	02:41:06	6.13	6.18	6.2

i

ĺ

 $\left(\right)$

11/20/91	03:41:06	6.15	6.18	6.2	
11/20/91	04:41:06	6.15	6.18	6.2	
11/20/91	05:41:06	6,13	6.15	6.2	
11/20/91		6.11	6.15	6.18	
11/20/91		6.06	6.11	6.15	
11/20/91		6.01	6.08	6.13	
11/20/91		5.94	6.01	6.11	
11/20/91		5.97	6.04	6.11	
11/20/91	11:41:06	5,99	6.06	6,13	
11/20/91	12:41:06	5,92	6.13	6.27	
11/20/91	13:41:06	5.94	6.15	6.22	
11/20/91	14:41:06	6.11	6.18	6.29	
11/20/91	15:41:06	6.06	6.13	6.18	
11/20/91	16:41:06	6.13	6.15	6.18	
11/20/91	17:41:06	6.15	6.15	6.18	
11/20/91	18:41:06	6.13	6.15	6.2	
11/20/91	19:41:06	6.11	6.15	6.15	
11/20/91	20:41:06	6.13	6.15	6.15	
11/20/91	21:41:06	6.11	6.13	6.15	
11/20/91		6.11	6.11	6.15	
11/20/91	23:41:06	6.11	6.15	6.15	
11/21/91	00:41:06	6.11	6.15	6.18	
11/21/91	01:41:06	6.13	6.13	6.18	
11/21/91		6.13	6.18	6.18	
	03:41:06	6.13	6.15	6.18	
11/21/91		6.15	6.15	6.2	
11/21/91		6.15	6.2 [,]	6.22	
11/21/91	06:41:06	6.13	6.15	6.2	
11/21/91	07:41:06	6.13	6.18	6.18	
11/21/91		6.04	6.11	6.15	
11/21/91		5,94	6.08	6.15	
11/21/91	10:41:06	5.97	6.04	6.15	
10/19/91	23:58:15	7.64	7.64	7.66	
10/20/91	00:58:15	7.64	7.66	7,66	

D-62

10/20/91 05:58:15	7.64	7.69	7.69
10/20/91 06:58:15	7.57	7.64	7.69
10/20/91 07:58:15	7.5	7.55	7.57
10/20/91 08:58:15	7.48	7.5	7.55
10/20/91 09:58:15	7.45	7.52	7.59
10/20/91 10:58:15	7.43	7.5	7.57
10/20/91 11:58:15	7.41	7.5	7.59
10/20/91 12:58:15	7.45	7.5	7.57
10/20/91 13:58:15	7.43	7.55	7.69
10/20/91 14:58:15	7.48	7.55	7.62
10/20/91 15:58:15	7.52	7.57	7.64
10/20/91 16:58:15	7.52	7.57	7.62
10/20/91 17:58:15	7.52	7.57	7.62
10/20/91 18:58:15	7.5	7.52	7.59
10/20/91 19:58:15	7,45	7.5	7.55
10/20/91 20:58:15	7.48	7.48	7.5
10/20/91 21:58:15	7.45	7.5	7.52
10/20/91 22:58:15	7.45	7.45	7.5

Ć

1 N

10/20/91	23:58:15	7,45	7.45	7.5	
		7,45	7.48		
		7.45			
		7.48	7.48	7.5	
10/21/91	04:58:15	7.48	7.48	7.5	
10/21/91		7.45	7.48	7.52	
10/21/91	06:58:15	7.45	7.48	7.5	
10/21/91	07:58:15	7.41	7.45	7.48	
10/21/91	08:58:15	7.36	7,41	7.45	
10/21/91	09:58:15	7.36	7.38	7.43	
10/21/91	10:58:15	7.34	7.36	7.41	
10/21/91	11:58:15	7.36	7.38	7.43	
10/21/91	12:58:15	7.36	7.38	7.41	
10/21/91	13:58:15	7.36	7.41	7.43	
10/21/91	14:58:15	7.36	7.41	7.48	
10/21/91	15:58:15	7.34	7.43	7.5	
			7.45	7.5	
		7.41		7.45	
				7.45	
			7.41		
• •					
	04:58:15	7.38	7.41	7.43	
10/22/91	05:58:15	7.36	7.41	7.41	
10/22/91	06:58:15	7.34	7.36	7.38	-
10/22/91	07:58:15	7.27	7.31	7.36	1
10/22/91	08:58:15	7.22	7.29	7.34	
	10/21/91 10/22/91 10/22/91 10/22/91 10/22/91 10/22/91 10/22/91	10/21/91 04:58:15 10/21/91 05:58:15 10/21/91 05:58:15 10/21/91 07:58:15 10/21/91 07:58:15 10/21/91 09:58:15 10/21/91 10:58:15 10/21/91 11:58:15 10/21/91 12:58:15 10/21/91 13:58:15 10/21/91 14:58:15 10/21/91 14:58:15 10/21/91 15:58:15 10/21/91 17:58:15 10/21/91 19:58:15 10/21/91 19:58:15 10/21/91 20:58:15 10/21/91 21:58:15 10/21/91 21:58:15 10/21/91 21:58:15 10/21/91 21:58:15 10/21/91 21:58:15 10/22/91 01:58:15 10/22/91 01:58:15 10/22/91 03:58:15 10/22/91 04:58:15 10/22/91 05:58:15 10/22/91 07:58:15	10/21/91 $00:58:15$ 7.45 $10/21/91$ $01:58:15$ 7.45 $10/21/91$ $02:58:15$ 7.45 $10/21/91$ $03:58:15$ 7.48 $10/21/91$ $04:58:15$ 7.48 $10/21/91$ $05:58:15$ 7.45 $10/21/91$ $06:58:15$ 7.45 $10/21/91$ $07:58:15$ 7.45 $10/21/91$ $07:58:15$ 7.45 $10/21/91$ $07:58:15$ 7.36 $10/21/91$ $09:58:15$ 7.36 $10/21/91$ $10:58:15$ 7.36 $10/21/91$ $10:58:15$ 7.36 $10/21/91$ $12:58:15$ 7.36 $10/21/91$ $13:58:15$ 7.36 $10/21/91$ $14:58:15$ 7.36 $10/21/91$ $16:58:15$ 7.41 $10/21/91$ $18:58:15$ 7.41 $10/21/91$ $19:58:15$ 7.41 $10/21/91$ $19:58:15$ 7.36 $10/21/91$ $19:58:15$ 7.36 $10/21/91$ $19:58:15$ 7.36 $10/21/91$ $22:58:15$ 7.36 $10/21/91$ $22:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.38 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 $10/22/91$ $02:58:15$ 7.36 <	10/21/91 $00;58:15$ 7.45 7.48 $10/21/91$ $01:58:15$ 7.45 7.48 $10/21/91$ $02:58:15$ 7.45 7.48 $10/21/91$ $03:58:15$ 7.48 7.48 $10/21/91$ $04:58:15$ 7.48 7.48 $10/21/91$ $04:58:15$ 7.45 7.48 $10/21/91$ $05:58:15$ 7.45 7.48 $10/21/91$ $06:58:15$ 7.45 7.48 $10/21/91$ $06:58:15$ 7.45 7.48 $10/21/91$ $07:58:15$ 7.36 7.41 $10/21/91$ $09:58:15$ 7.36 7.38 $10/21/91$ $10:58:15$ 7.36 7.38 $10/21/91$ $12:58:15$ 7.36 7.41 $10/21/91$ $12:58:15$ 7.36 7.41 $10/21/91$ $15:58:15$ 7.34 7.43 $10/21/91$ $15:58:15$ 7.41 7.43 $10/21/91$ $16:58:15$ 7.36 7.38 $10/21/91$ $12:58:15$ 7.36 7.38 $10/21/91$ $12:58:15$ 7.36 7.38 $10/21/91$ $22:58:15$ 7.36 7.38 $10/22/91$ $02:58:15$ 7.36 7.38 $10/22/91$ $02:58:15$ 7.36 7.38 $10/22/91$ $02:58:15$ 7.36 7.41 $10/22/91$ $02:58:15$ 7.36 7.41 $10/22/91$ $02:58:15$ 7.36 7.41 $10/22/91$ $02:58:15$ 7.36 7.41 $10/22/91$ $02:58:1$	10/21/91 $00:58:15$ 7.45 7.48 7.5 $10/21/91$ $01:58:15$ 7.45 7.48 7.5 $10/21/91$ $02:58:15$ 7.45 7.48 7.5 $10/21/91$ $03:58:15$ 7.48 7.48 7.5 $10/21/91$ $03:58:15$ 7.48 7.48 7.5 $10/21/91$ $04:58:15$ 7.45 7.48 7.52 $10/21/91$ $05:58:15$ 7.45 7.48 7.52 $10/21/91$ $06:58:15$ 7.45 7.48 7.52 $10/21/91$ $06:58:15$ 7.45 7.48 7.52 $10/21/91$ $06:58:15$ 7.36 7.41 7.45 $10/21/91$ $09:58:15$ 7.36 7.41 7.45 $10/21/91$ $10:58:15$ 7.36 7.38 7.43 $10/21/91$ $11:58:15$ 7.36 7.41 7.43 $10/21/91$ $12:58:15$ 7.36 7.41 7.48 $10/21/91$ $13:58:15$ 7.36 7.41 7.48 $10/21/91$ $15:58:15$ 7.36 7.41 7.45 $10/21/91$ $17:58:15$ 7.36 7.41 7.45 $10/21/91$ $19:58:15$ 7.36 7.38 7.45 $10/21/91$ $21:58:15$ 7.36 7.38 7.43 $10/22/91$ $02:58:15$ 7.36 7.38 7.43 $10/22/91$ $02:58:15$ 7.36 7.41 7.45 $10/22/91$ $02:58:15$ 7.36 7.41 7.45 $10/22/91$

D-63

WMW 2-5

227

(

Ć

WMW2-5 Time	Min	Mean	Max
11/21/91 12:07:10	6.01	6.11	6.27
11/21/91 13:07:10	6.04	6.18	6.34
11/21/91 14:07:10 11/21/91 15:07:10 11/21/91 16:07:10 11/21/91 17:07:10 11/21/91 19:07:10 11/21/91 19:07:10 11/21/91 20:07:10 11/21/91 20:07:10 11/21/91 20:07:10 11/22/91 00:07:10 11/22/91 10:07:10 11/22/91 00:07:10 11/22/91 00:07:10 11/23/91 00:07:10	6.04 6.11 6.15 6.18 6.2 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.18 6.2 6.18 6.2 6.18 6.2 6.18 6.2 6.11 6.11 5.99 6.04 6.04 6.01 6.04 6.04 6.06 6.06 6.06 6.06 6.06 6.06 6.04 6.06 6.06 6.06 6.06 6.06 6.04 6.01 6.06 6.06 6.06 6.06 6.06 6.06 6.04 6.01 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.04 6.01 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.06 6.04 6.01 6.06 6	6.18 6.25 6.22 6.22 6.22 6.22 6.18 6.18 6.18 6.18 6.18 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.13 6.08 6.08 6.13 6.15 6.13 6.15 6.13 6.15 6.13 6.15 6.13 6.08 6.06 6.08 6.08 6.06 6.08 6.08 6.06 6.08 6.08 6.06 6.08 6.08 6.06 6.08 6.06 6.08 6.06 6.08 6.06 6.08 6.06 6.08 6.06 6.08 6.08 6.06 6.08 6.06 6.08 6.08 6.08 6.06 6.08 6.06 6.08 6.06 6.08 6.06 6.08 6.06	6.25 6.29 6.27 6.27 6.25 6.2 6.2 6.2 6.2 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.22 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.22 6.22 6.25 6.22 6.25 6.22 6.25 6.22 6.25 6.25 6.25 6.22 6.15 6.13 6.13 6.18 6.2 6.18 6.13 6.11 6.08 6.11 6
11/23/91 08:07:10	5.99	6.04	6.06
11/23/91 09:07:10	5.97	6.01	6.04
11/23/91 10:07:10	5.85	5.97	6.01
11/23/91 11:07:10	5.94	5.99	6.04
11/23/91 12:07:10	5.94	5.99	6.06
11/23/91 12:07:10	5.97	6.04	6.08

ĺ

22f

11/23/91 18:07:10	6.08	6.13	6.18
11/23/91 19:07:10	6.06	6.08	6.13
11/23/91 20:07:10	6.04	6.06	6.08
11/23/91 21:07:10	6.04	6.06	6.11

11/23/91 22:07:10	6.04	6.06	6.08
11/23/91 23:07:10	6,04	6.06	6.11
11/24/91 00:07:10	6.06	6.08	6.11
11/24/91 01:07:10	6.06	6.08	6.13
11/24/91 02:07:10	6.11	6.11	6.11
11/24/91 03:07:10	6.06	6.08	6.11
11/24/91 04:07:10	6.08	6.11	6.11
11/24/91 05:07:10	6.04	6.08	6.11
11/24/91 06:07:10	6.04	6.06	6.11
11/24/91 07:07:10	5.99	6.04	6.06
11/24/91 08:07:10	5.92	5.97	
11/24/91 09:07:10	5.83		6.01
11/24/91 10:07:10		5.94	6.04
11/24/91 11:07:10	5.85	5.92	5.99
	5.76	5.88	5.97
	5.83	5.9	6.06
11/24/91 13:07:10	5.83	5.92	6.04
11/24/91 14:07:10	5.88	5.94	6.01
11/24/91 15:07:10	5.92	5.97	6.04
11/24/91 16:07:10	5.92	5,99	6,06
11/24/91 17:07:10	5.97	5.99	6.04
11/24/91 18:07:10	5.94	5.97	6.01
11/24/91 19:07:10	5.92	5.94	5.99
11/24/91 20:07:10	5.88	5.92	5.97
11/24/91 21:07:10	5.88	5.9	5.94
11/24/91 22:07:10	5.85	5.88	5.9
11/24/91 23:07:10	5.83	5.88	5.88
11/25/91 00:07:10	5.83	5.88	5.9
11/25/91 01:07:10	5.85	5.9	5,92
11/25/91 02:07:10	5.85	5.88	5.9
11/25/91 03:07:10	5.85	5.88	5.88
11/25/91 04:07:10	5.85	5.88	5.92
11/25/91 05:07:10	5.85	5.88	5.92
11/25/91 06:07:10	5.85	5.88	5.9
11/25/91 07:07:10	5.81	5.83	5.88
11/25/91 08:07:10	5.69	5.74	5.85
11/25/91 09:07:10	5.69	5.71	5.78
11/25/91 10:07:10	5.69	5.74	5,81
11/25/91 11:07:10	5.67	5.76	5.83
11/25/91 12:07:10	5.71	5.78	5.85
11/25/91 13:07:10	5.76	5.83	5.9
11/25/91 14:07:10	5.78	5.85	
11/25/91 15:07:10	5.83		5.97
11/25/91 16:07:10	5.83	5.88	5.94
11/25/91 17:07:10		5,9	5.97
	5.9	5.94	5.97
11/25/91 18:07:10	5.9	5.92	5.94
11/25/91 19:07:10	5.88	5.9	5.92
11/25/91 20:07:10	5.85	5.88	5.9
11/25/91 21:07:10	5.85	5.88	5.9

D-66

11/26/91 02:07:10	5.78	5.83	5.85
11/26/91 03:07:10	5.81	5.83	5,85
11/26/91 04:07:10	5.81	5.83	5.85
11/26/91 05:07:10	5.83	5.85	5.88

11/26/91 06:07:10	5.78	5.81	5.88
11/26/91 07:07:10	5.74	5.78	5.83
11/26/91 08:07:10	5.64	5.69	5.78
11/26/91 09:07:10	5.64	5.69	5.76
11/26/91 10:07:10			
	5.64	5.69	5.74
11/26/91 11:07:10	5.62	5.67	5.74
11/26/91 12:07:10	5.64	5.69	5.78
11/26/91 13:07:10	5.64	5.74	5.83
11/26/91 14:07:10	5.67	5.76	5.85
11/26/91 15:07:10	5.74	5.78	5.83
11/26/91 16:07:10	5.74	5.78	5.88
11/26/91 17:07:10	5.78	5.81	5,85
11/26/91 18:07:10	5.76	5.78	5.83
11/26/91 19:07:10	5.74	5.76	5.81
11/26/91 20:07:10	5.71	5.74	5,76
11/26/91 21:07:10	5.69	5.74	5.74
11/26/91 22:07:10	5.69	5.74	5.74
11/26/91 23:07:10	5.69		5.74
11/27/91 00:07:10		5.71	
	5.69	5.71	5.74
11/27/91 01:07:10	5.71	5.74	5.76
11/27/91 02:07:10	5.69	5.71	5.76
11/27/91 03:07:10	5.71	5,71	5.74
11/27/91 04:07:10	5.69	5.71	5.74
11/27/91 05:07:10	5.71	5.74	5.76
11/27/91 06:07:10	5.69	5.74	5.76
11/27/91 07:07:10	5.64	5.69	5.74
11/27/91 08:07:10	5.6	5.67	5.74
11/27/91 09:07:10	5.5	5.62	5.74
11/27/91 10:07:10	5.53	5.62	5,69
11/27/91 11:07:10	5.53	5.62	5.74
11/27/91 12:07:10	5.55	5.62	5.69
11/27/91 13:07:10	5.57	5,64	
			5.69
	5.6	5.69	5.76
11/27/91 15:07:10	5.64	5.74	5.83
11/27/91 16:07:10	5.67	5.74	5.81
11/27/91 17:07:10	5.74	5.76	5.81
11/27/91 18:07:10	5.74	5.76	5.81
11/27/91 19:07:10	5.71	5.74	5.76
11/27/91 20:07:10	5.69	5.74	5.76
11/27/91 21:07:10	5.69	5.71	5.74
11/27/91 22:07:10	5.69	5.69	5.71
11/27/91 23:07:10	5.69	5.71	5.74
11/28/91 00:07:10	5.67	5.69	5.74
11/28/91 01:07:10	5.64	5.69	5.76
11/28/91 02:07:10	5.67	5.71	5.76
11/28/91 03:07:10	5.71	5.74	5.78
• •			
	5.74	5.76	5.78
11/28/91 05:07:10	5.71	5.74	5.78

230

11/28/91 10:07:10 11/28/91 11:07:10 11/28/91 12:07:10 11/28/91 13:07:10	5.5 5.53 5.57 5.6	5.6 5.6 5.62 5.67	5.64 5.67 5.67 5.74
11/28/91 14:07:10 11/28/91 15:07:10 11/28/91 16:07:10 11/28/91 17:07:10 11/28/91 18:07:10 11/28/91 19:07:10 11/28/91 20:07:10 11/28/91 21:07:10 11/28/91 22:07:10 11/29/91 00:07:10 11/29/91 01:07:10 11/29/91 02:07:10 11/29/91 03:07:10 11/29/91 04:07:10 11/29/91 05:07:10 11/29/91 06:07:10 11/29/91 06:07:10 11/29/91 09:07:10 11/29/91 10:07:10 11/29/91 10:07:10 11/29/91 12:07:10 11/29/91 12:07:10 11/29/91 13:07:10 11/29/91 15:07:10 11/29/91 16:07:10 11/29/91 18:07:10 11/29/91 19:07:10 11/29/91 20:07:10 11/29/91 21:07:10 11/29/91 21:0	5.62 5.69 5.71 5.69 5.71 5.69 5.67 5.69 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.64 5.57 5.55 5.55 5.55 5.62 5.67 5.74 5.62 5.67 5.62 5.67 5.69 5.62 5.67 5.62 5.69 5.69 5.69 5.62 5.67 5.62 5.69	5.71 5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	5.78 5.76 5.78 5.76 5.78 5.76 5.74 5.74 5.71 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.76 5.77 5.76 5.77
11/30/91 01:07:10 11/30/91 02:07:10 11/30/91 03:07:10 11/30/91 04:07:10 11/30/91 05:07:10 11/30/91 06:07:10 11/30/91 07:07:10 11/30/91 09:07:10 11/30/91 10:07:10 11/30/91 11:07:10 11/30/91 12:07:10	5.71 5.69 5.69 5.69 5.67 5.64 5.64 5.64 5.64 5.57 5.5 5.48	5.74 5.74 5.71 5.71 5.69 5.67 5.67 5.64 5.57 5.6	5.76 5.76 5.76 5.74 5.71 5.71 5.69 5.67 5.62 5.62 5.62 5.62
11/30/91 13:07:10	5.6	5.64	5.74 D-68

D-68

11/30/91 18:07:10	5.67	5.71	5.76
11/30/91 19:07:10	5.67	5.69	5.69
11/30/91 20:07:10	5.64	5.69	5.71
11/30/91 21:07:10	5,64	5.67	5.71

ĺ

(

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/30/91 22:07:10	5.64	5.67	5.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.64		5.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/01/91 02:07:10	5.64	5.67	5.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/01/91 03:07:10	5.64	5.67	5.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.64		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
12/01/91 $07:07:10$ 5.64 5.67 5.69 $12/01/91$ $08:07:10$ 5.57 5.6 5.67 $12/01/91$ $10:07:10$ 5.55 5.57 5.62 $12/01/91$ $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $12:07:10$ 5.43 5.6 5.69 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $15:07:10$ 5.62 5.67 5.74 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $18:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.67 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.69 5.69 $12/01/91$ $12:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/$				
12/01/91 $08:07:10$ 5.6 5.64 5.69 $12/01/91$ $10:07:10$ 5.57 5.6 5.67 $12/01/91$ $10:07:10$ 5.55 5.57 5.62 $12/01/91$ $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $12:07:10$ 5.43 5.6 5.61 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $15:07:10$ 5.6 5.67 5.71 $12/01/91$ $15:07:10$ 5.6 5.67 5.74 $12/01/91$ $16:07:10$ 5.67 5.69 5.74 $12/01/91$ $18:07:10$ 5.67 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $20:07:10$ 5.62 5.67 5.69 $12/01/91$ $20:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$				
12/01/91 $09:07:10$ 5.57 5.6 5.67 $12/01/91$ $10:07:10$ 5.55 5.57 5.62 $12/01/91$ $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $12:07:10$ 5.43 5.6 5.69 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $15:07:10$ 5.62 5.67 5.71 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $16:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.64 5.67 5.74 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.67 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/$				
12/01/91 $10:07:10$ 5.55 5.57 5.62 $12/01/91$ $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $12:07:10$ 5.43 5.6 5.69 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $15:07:10$ 5.67 5.64 5.71 $12/01/91$ $15:07:10$ 5.62 5.67 5.74 $12/01/91$ $16:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.64 5.67 5.74 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.69 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02$	12/01/91 08:07:10	5.6	5.64	5.69
12/01/91 $10:07:10$ 5.55 5.57 5.62 $12/01/91$ $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $12:07:10$ 5.43 5.6 5.69 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $15:07:10$ 5.67 5.64 5.71 $12/01/91$ $15:07:10$ 5.62 5.67 5.74 $12/01/91$ $16:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.64 5.67 5.74 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.69 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02$	12/01/91 09:07:10	5.57	5.6	
12/01/91 $11:07:10$ 5.53 5.57 5.62 $12/01/91$ $12:07:10$ 5.43 5.6 5.69 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $14:07:10$ 5.57 5.64 5.71 $12/01/91$ $15:07:10$ 5.62 5.67 5.74 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $16:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.64 5.67 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $21:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $02:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.65 5.64 5.67 $12/02/91$ $10:07:10$ 5.55 5.64 5.67 $12/02$				
12/01/91 $12:07:10$ 5.43 5.6 5.69 $12/01/91$ $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $14:07:10$ 5.57 5.64 5.71 $12/01/91$ $15:07:10$ 5.6 5.67 5.74 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $19:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $01:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.66 5.64 5.67 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/$				
12/01/91 $13:07:10$ 5.55 5.64 5.71 $12/01/91$ $14:07:10$ 5.57 5.64 5.71 $12/01/91$ $15:07:10$ 5.6 5.67 5.74 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $19:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $19:07:10$ 5.64 5.69 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.74 $12/02$				
12/01/91 $14:07:10$ 5.57 5.64 5.71 $12/01/91$ $15:07:10$ 5.6 5.67 5.71 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $19:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $20:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.64 $12/02/91$ $03:07:10$ 5.64 5.67 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.67 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02$				
12/01/91 $15:07:10$ 5.6 5.67 5.71 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $13:07:10$ 5.67 5.71 5.76 $12/02$		5.55	5.64	5.71
12/01/91 $15:07:10$ 5.6 5.67 5.71 $12/01/91$ $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $13:07:10$ 5.67 5.71 5.76 $12/02$	12/01/91 14:07:10	5.57	5.64	5.71
12/01/91 $16:07:10$ 5.62 5.67 5.74 $12/01/91$ $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.67 5.67 5.71 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $21:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.66 5.62 5.67 $12/02/91$ $00:07:10$ 5.66 5.62 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.66 5.64 5.67 $12/02/91$ $00:07:10$ 5.65 5.64 5.67 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $11:07:10$ 5.57 5.67 5.71 $12/02/91$ $12:07:10$ 5.67 5.71 5.74 $12/0$		5.6		
12/01/91 $17:07:10$ 5.64 5.67 5.74 $12/01/91$ $18:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.64 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.6 5.64 5.67 $12/02/91$ $10:07:10$ 5.5 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $12:07:10$ 5.67 5.71 5.76 $12/02/91$ $12:07:10$ 5.67 5.71 5.76 $12/02/91$ $12:07:10$ 5.67 5.71 5.76 $12/02/91$				
12/01/91 $18:07:10$ 5.67 5.69 5.74 $12/01/91$ $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.67 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $12:07:10$ 5.67 5.71 5.76 $12/02/91$ $14:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/$				
12/01/91 $19:07:10$ 5.67 5.67 5.71 $12/01/91$ $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.67 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/$				
12/01/91 $20:07:10$ 5.64 5.69 5.69 $12/01/91$ $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $00:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 <td></td> <td></td> <td></td> <td>5.74</td>				5.74
12/01/91 $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.6 5.62 5.67 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.55 5.64 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $14:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 <td>12/01/91 19:07:10</td> <td>5.67</td> <td>5.67</td> <td>5.71</td>	12/01/91 19:07:10	5.67	5.67	5.71
12/01/91 $21:07:10$ 5.62 5.67 5.69 $12/01/91$ $22:07:10$ 5.64 5.67 5.69 $12/02/91$ $00:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.6 5.62 5.67 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.55 5.64 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.57 5.67 5.71 $12/02/91$ $14:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 <td>12/01/91 20:07:10</td> <td>5.64</td> <td>5.69</td> <td>5.69</td>	12/01/91 20:07:10	5.64	5.69	5.69
12/01/91 $22:07:10$ 5.64 5.67 5.69 $12/01/91$ $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.6 5.62 5.67 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.64 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.67 $12/02/91$ $09:07:10$ 5.65 5.64 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
12/01/91 $23:07:10$ 5.62 5.64 5.67 $12/02/91$ $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.6 5.62 5.67 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.62 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $10:07:10$ 5.55 5.64 5.64 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
12/02/91 $00:07:10$ 5.6 5.62 5.67 $12/02/91$ $01:07:10$ 5.62 5.67 5.69 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.62 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.65 5.64 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.67 5.71 5.74 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
12/02/91 $01:07:10$ 5.6 5.62 5.67 $12/02/91$ $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.62 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $08:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $10:07:10$ 5.5 5.64 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
12/02/91 $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.62 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $10:07:10$ 5.5 5.66 5.64 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $17:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74	12/02/91 00:07:10	5.6	5.62	5.67
12/02/91 $02:07:10$ 5.62 5.67 5.69 $12/02/91$ $03:07:10$ 5.62 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $10:07:10$ 5.5 5.66 5.64 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $17:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74	12/02/91 01:07:10	5,6	5.62	5.67
12/02/91 $03:07:10$ 5.62 5.67 5.69 $12/02/91$ $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $08:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.66 5.62 5.67 $12/02/91$ $09:07:10$ 5.5 5.66 5.64 $12/02/91$ $10:07:10$ 5.55 5.64 5.74 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $14:07:10$ 5.57 5.67 5.71 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
12/02/91 $04:07:10$ 5.64 5.67 5.69 $12/02/91$ $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.6 5.62 5.67 $12/02/91$ $10:07:10$ 5.5 5.6 5.64 $12/02/91$ $11:07:10$ 5.5 5.64 5.74 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.66 5.64 5.74 $12/02/91$ $14:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.71 5.76 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
12/02/91 $05:07:10$ 5.64 5.67 5.69 $12/02/91$ $06:07:10$ 5.64 5.67 5.69 $12/02/91$ $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $08:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.6 5.62 5.67 $12/02/91$ $10:07:10$ 5.5 5.6 5.64 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $12:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.57 5.67 5.71 $12/02/91$ $14:07:10$ 5.57 5.67 5.71 $12/02/91$ $15:07:10$ 5.67 5.74 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
12/02/91 $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $08:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.6 5.62 5.67 $12/02/91$ $10:07:10$ 5.5 5.6 5.64 $12/02/91$ $10:07:10$ 5.5 5.6 5.64 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.6 5.64 5.74 $12/02/91$ $14:07:10$ 5.53 5.67 5.71 $12/02/91$ $15:07:10$ 5.57 5.69 5.74 $12/02/91$ $16:07:10$ 5.67 5.69 5.74 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74		5.64	5.67	5.69
12/02/91 $07:07:10$ 5.64 5.67 5.69 $12/02/91$ $08:07:10$ 5.62 5.64 5.69 $12/02/91$ $09:07:10$ 5.6 5.62 5.67 $12/02/91$ $10:07:10$ 5.5 5.6 5.64 $12/02/91$ $10:07:10$ 5.5 5.6 5.64 $12/02/91$ $11:07:10$ 5.55 5.64 5.74 $12/02/91$ $13:07:10$ 5.6 5.64 5.74 $12/02/91$ $14:07:10$ 5.53 5.67 5.71 $12/02/91$ $15:07:10$ 5.57 5.69 5.74 $12/02/91$ $16:07:10$ 5.67 5.69 5.74 $12/02/91$ $16:07:10$ 5.67 5.71 5.76 $12/02/91$ $18:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.76 $12/02/91$ $19:07:10$ 5.67 5.71 5.74 $12/02/91$ $19:07:10$ 5.67 5.71 5.74	12/02/91 06:07:10	5.64	5.67	5.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.64	5.67	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
12/02/9112:07:105.555.645.7412/02/9113:07:105.65.645.7412/02/9114:07:105.535.675.7412/02/9115:07:105.575.675.7112/02/9116:07:105.645.695.7412/02/9116:07:105.675.695.7412/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/9113:07:105.65.645.7412/02/9114:07:105.535.675.7412/02/9115:07:105.575.675.7112/02/9116:07:105.645.695.7412/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74		5.5	5.6	5.64
12/02/9113:07:105.65.645.7412/02/9114:07:105.535.675.7412/02/9115:07:105.575.675.7112/02/9116:07:105.645.695.7412/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74	12/02/91 12:07:10	5.55	5.64	5.74
12/02/9114:07:105.535.675.7412/02/9115:07:105.575.675.7112/02/9116:07:105.645.695.7412/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/9115:07:105.575.675.7112/02/9116:07:105.645.695.7412/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/9116:07:105.645.695.7412/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/9117:07:105.675.695.7612/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/9118:07:105.675.715.7612/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74	12/02/91 17:07:10	5.67	5.69	5.76
12/02/9119:07:105.645.675.7112/02/9120:07:105.675.715.74				
12/02/91 20:07:10 5.67 5.71 5.74				
12/02/91 21:07:10 5.67 5.69 5.74				
	12/02/91 21:07:10	5.67	5.69	5.74

. D-69

12/03/91 02:07:10	5.69	5.71	5.74
12/03/91 03:07:10	5.69	5.71	5.74
12/03/91 04:07:10	5.71	5.74	5.78
12/03/91 05:07:10	5.74	5.76	5.81

(

12/03/91 06:07:10	5.74	5.78	5 01
12/03/91 07:07:10	5.74	5.76	5.81 5.78
12/03/91 08:07:10	5,74	5.76	5.78
12/03/91 09:07:10	5.67	5.76	5.78
12/03/91 10:07:10	5.62	5.71	5.85
12/03/91 11:07:10	5.62	5.74	
12/03/91 12:07:10	5.62	5.74	5.83
12/03/91 13:07:10	5.62		5.83
12/03/91 14:07:10	5.71	5.78	5.85
12/03/91 15:07:10	5.78	5.83 5.85	5.92
12/03/91 16:07:10	5.83		5.92
12/03/91 17:07:10	5.81	5.9 5.85	6.04
12/03/91 18:07:10	5.78	5,81	5,94
12/03/91 19:07:10			5.83
12/03/91 20:07:10	5.74 5.74	5.78	5.83
12/03/91 21:07:10		5.76	5.81
	5.69	5.71	5.76
	5.67	5.69	5.74
12/03/91 23:07:10 12/04/91 00:07:10	5,67	5.69	5.71
12/04/91 00:07:10	5.64	5.67	5.69
	5.64	5.67	5.69
	5.64	5.64	5.69
	5.64	5.67	5.69
12/04/91 04:07:10	5.64	5.67	5.69
12/04/91 05:07:10	5.62	5.64	5.67
12/04/91 06:07:10	5.6	5.62	5.64
12/04/91 07:07:10	5.6	5.6	5.64
12/04/91 08:07:10	5.48	5.55	5.62
12/04/91 09:07:10	5.46	5.53	5.57
12/04/91 10:07:10	5.46	5.5	5.55
12/04/91 11:07:10	5.46	5.5	5.57
12/04/91 12:07:10	5.46	5.53	5.6
12/04/91 13:07:10	5.48	5.55	5.64
12/04/91 14:07:10	5.53	5.6	5.67
12/04/91 15:07:10	5.55	5.62	5.76
12/04/91 16:07:10	5.55	5.62	5.69
12/04/91 17:07:10	5.6	5.62	5.67
12/04/91 18:07:10	5.57	5.62	5.64
12/04/91 19:07:10	5.57	5.6	5.62
12/04/91 20:07:10	5.5	5.55	5.6
12/04/91 21:07:10	5.53	5.55	5.57
12/04/91 22:07:10	5.5	5.5	5.55
12/04/91 23:07:10	5.48	5.5	5.55
12/05/91 00:07:10	5.48	5.53	5.55
12/05/91 01:07:10	5.5	5.53	5.55
12/05/91 02:07:10	5.5	5.5	5.55
12/05/91 03:07:10	5.5	5.55	5.57
12/05/91 04:07:10	5.5	5.53	5.55
12/05/91 05:07:10	5.5	5.55	5.57

233

D-70

12/05/91 10:07:10 12/05/91 11:07:10 12/05/91 12:07:10 12/05/91 13:07:10	5.36 5.41 5.41 5.43	5.43 5.46 5.48 5.5	5.48 5.5 5.55 5.6	
12/05/91 14:07:10 12/05/91 15:07:10 12/05/91 17:07:10 12/05/91 17:07:10 12/05/91 19:07:10 12/05/91 20:07:10 12/05/91 21:07:10 12/05/91 22:07:10 12/06/91 00:07:10 12/06/91 01:07:10 12/06/91 02:07:10 12/06/91 03:07:10 12/06/91 04:07:10 12/06/91 04:07:10 12/06/91 05:07:10 12/06/91 09:07:10 12/06/91 09:07:10 12/06/91 10:07:10 12/06/91 10:07:10 12/07/91 00:07:10 12/07/91 10:07:10 12/07/91 10:07:10 12/07/91 10:07:10 12/07/91 10:07:10	5.48 5.55 5.57 5.62 5.771 5.69 5.69 5.69 5.69 5.774 5.774 5.67 5.57 5.57 5.57 5.57 5.62	5.55 5.62 5.62 5.62 5.62 5.64 5.64 5.65 5.65 5.65 5.65 5.65 5.65	5.6995555555555555555555555555555555555	D7

(

٩.,

234

-71

12/07/91 18:07:10	5.76	5.78	5.83
12/07/91 19:07:10	5.74	5.76	5.81
12/07/91 20:07:10	5.74	5.76	5.78
12/07/91 21:07:10	5.71	5.76	5.78

12/07/91	22:07:10	5.74	5.74	5.78
12/07/91		5.71	5.74	5.76
12/08/91		5.71	5.74	5.76
12/08/91	01:07:10	5.69	5.74	5.76
12/08/91		5.69	5.71	5.74
12/08/91		5.69	5.71	5.74
12/08/91		5,69	5.74	5.76
12/08/91		5.69	5.71	5.74
12/08/91		5.69	5.71	5.76
12/08/91		5.67	5,69	5,74
12/08/91		5.6	5.67	5.71
12/08/91		5.5	5,62	5.67
	10:07:10	5.46	5.6	5.67
12/08/91		5,5	5.55	5.62
12/08/91		5.5	5.64	5.74
12/08/91		5.57	5.64	5.69
12/08/91		5.57	5,64	5.69
12/08/91		5.6	5.71	5.81
12/08/91		5.69	5,71	5.76
12/08/91		5.69	5.71	5.76
12/08/91		5.69	5.71	5.76
12/08/91		5.67	5,69	5.74
12/08/91		5.67	5.67	5.71
12/08/91		5,64	5,67	5,69
	22:07:10	5.67	5,67	5,69
	23:07:10	5,64	5.67	5,69
	00:07:10	5,67	5.69	5.71
	01:07:10	5.67	5.69	5.71
	02:07:10	5.69	5.74	5.74
12/09/91		5,69	5.74	5.74
	04:07:10	5,69	5.69	5.74
	05:07:10	5.69	5.74	5,76
	06:07:10	5.71	5.76	5.76
	07:07:10	5,69	5.74	5.74
	08:07:10	5.69	5,69	5.74
· ·	09:07:10	5.64	5.67	5.71
	10:07:10	5.6	5.67	5.71
· ·	11:07:10	5,55	5.62	5.76
	12:07:10	5,55	5,67	5.74
	13:07:10	5.62	5,69	5.83
	14:07:10	5.64	5.76	5,85
	15:07:10	5.67	5,78	5.85
	16:07:10	5.71	5.81	5,88
• •	17:07:10	5.78	5.83	5,88
	18:07:10	5.78	5.81	5,85
	19:07:10	5.78	5.78	5.83
	20:07:10	5.78	5.78	5.83 D-72
	21:07:10	5.76	5.78	5.81
TT/02/21	21.07.10	5.70	5.70	3.01

12/10/91 02:07:10	5.76	5.78	5,78
12/10/91 03:07:10	5.76	5.78	5.78
12/10/91 04:07:10	5.76	5.78	5.78
12/10/91 05:07:10	5.74	5.78	5.81

12/10/91	06:07:10	5.76	5.78	5.81
12/10/91		5.71	5.74	5.78
12/10/91		5.62	5.67	5.74
12/10/91		5.57	5.62	5.67
12/10/91		5.55	5.6	5.64
12/10/91		5.5	5.57	5.67
12/10/91		5.5	5.62	5.78
12/10/91		5.48	5.6	5.76
12/10/91		5.5	5.62	5.81
12/10/91		5.57	5.67	5.78
12/10/91		5.55	5.64	5.74
12/10/91		5.62	5.67	5.69
12/10/91		5.6	5.62	5.67
12/10/91		5.57	5.6	5.64
12/10/91		5.57	5.57	5.62
12/10/91		5.55	5.6	5.6
12/10/91	22:07:10	5.53	5.55	5.57
12/10/91	23:07:10	5.55	5.55	5.57
12/11/91	00:07:10	5.5	5.53	5.57
12/11/91	01:07:10	5,53	5.55	5.57
12/11/91		5,53	5.55	5.57
12/11/91		5.5	5.53	5.57
12/11/91	04:07:10	5.5	5.55	5.57
12/11/91	05:07:10	5.53	5,55	5.57
12/11/91	06:07:10	5.5	5.55	5.57
12/11/91	07:07:10	5.5	5.53	5,55
12/11/91	08:07:10	5.43	5.48	5.55
12/11/91	09:07:10	5.39	5,43	5.48
12/11/91		5.36	5,41	5.48
12/11/91		5.34	5.41	5.48
12/11/91		5.39	5.43	5.48
12/11/91	13:07:10	5.41	5.48	5.6
12/11/91		5.41	5.48	5.62
12/11/91	15:07:10	5.46	5.55	5,64
12/11/91	16:07:10	5.46	5,55	5.62
12/11/91	17:07:10	5,55	5,55	5.62
12/11/91		5.5	5.55	5.6
12/11/91	19:07:10	5.53	5.55	5.57
12/11/91	20:07:10	5.5	5.53	5.57
12/11/91	21:07:10	5.5	5.5	5.53
12/11/91	22:07:10	5.48	5.5	5.55
12/11/91	23:07:10	5,48	5.5	5.55
12/12/91	00:07:10	5.48	5.5	5.55
12/12/91	01:07:10	5.5	5.53	5.55
12/12/91	02:07:10	5.5	5.53	5.55
12/12/91	03:07:10	5.5	5.53	5.55
12/12/91	04:07:10	5.5	5,53	5.55
12/12/91	05:07:10	5.5	5.53	5.55

D-73

12/12/91 10:07:10	5.41	5.46	5.48
12/12/91 11:07:10	5.34	5.41	5.5
12/12/91 12:07:10	5.36	5.48	5.57
12/12/91 13:07:10	5,39	5.48	5.57

Ć

(

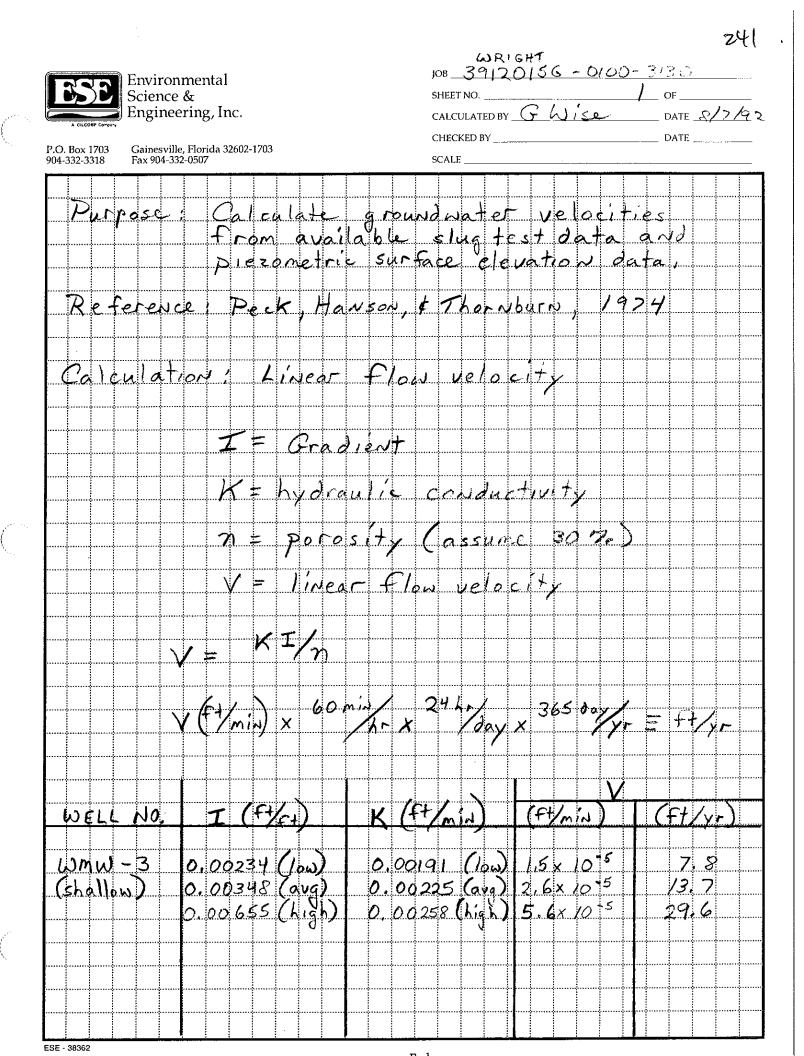
12/12/91 14:07: 1 0	5.5	5.55	5.6
12/12/91 15:07:10	5.5	5,55	5.57
12/12/91 16:07:10	5.5	5.55	5.6
12/12/91 17:07:10	5.53	5.55	5.6
12/12/91 18:07:10	5.53	5,55	5.6
12/12/91 19:07:10	5.5	5,55	5.6
12/12/91 20:07:10	5,53	5.55	5.57
•	5.5	5,53	
12/12/91 21:07:10			5.57
12/12/91 22:07:10	5.5	5.55	5.57
12/12/91 23:07:10	5.53	5.57	5.6
12/13/91 00:07:10	5.53	5.57	5.6
12/13/91 01:07:10	5.53	5,55	5,6
12/13/91 02:07:10	5.55	5,6	5.6
12/13/91 03:07:10	5.55	5.57	5.6
12/13/91 04:07:10	5.55	5.6	5.62
12/13/91 05:07:10	5.55	5,57	5.6
12/13/91 06:07:10	5.57	5.6	5.64
12/13/91 07:07:10	5.55	5.57	5.57
12/13/91 08:07:10	5.5	5,53	5.57
12/13/91 09:07:10	5.43	5.5	5.55
12/13/91 10:07:10	5.39	5.46	5.5
12/13/91 11:07:10	5.39	5.46	5.53
12/13/91 12:07:10	5.39	5.48	5,57
12/13/91 13:07:10	5.41	5.53	5.64
12/13/91 14:07:10	5.41	5,53	5.64
12/13/91 15:07:10	5.48	5.57	5.67
12/13/91 16:07:10	5.48	5.6	5.67
12/13/91 17:07:10	5.6	5.64	5.69
12/13/91 18:07:10	5.6	5.64	5.67
12/13/91 19:07:10	5.55	5.6	5.64
12/13/91 20:07:10	5,55	5.57	5.62
12/13/91 21:07:10	5.55	5.57	5.6
12/13/91 22:07:10	5.57	5.6	5.62
12/13/91 23:07:10	5.55	5,57	5.6
12/14/91 00:07:10	5.55	5.6	5.62
12/14/91 01:07:10	5.55	5.57	5.62
12/14/91 02:07:10	5.57	5.57	5.62
12/14/91 03:07:10	5.57	5.62	5.62
12/14/91 04:07:10	5.57	5.6	5.64
12/14/91 05:07:10	5.6	5.6	5.62
12/14/91 06:07:10	5.6	5.6	5,64
12/14/91 07:07:10	5.57	5.6	5.64
12/14/91 08:07:10	5.57	5.57	5.62
12/14/91 09:07:10	5.55	5.57	5.6
12/14/91 10:07:10	5.41	5.53	5.6
12/14/91 11:07:10	5.43	5.55	5.6
12/14/91 12:07:10	5.53	5.57	5.62
12/14/91 13:07:10	5.5	5.6	5.64
12/14/71 13.07.10	J . J	5.0	D-74

237

12/14/91 18:07:10	5.55	5.6	5.64
12/14/91 19:07:10	5.55	5.57	5.62
12/14/91 20:07:10	5.5	5.53	5,57
12/14/91 21:07:10	5.48	5.5	5.55

12/14/91 22:07:10	5.48	5.5	5,53	
12/14/91 23:07:10	5,46	5.48	5.53	
12/15/91 00:07:10	5.46	5.46	5.48	
12/15/91 01:07:10	5.46	5,48	5.5	
12/15/91 02:07:10	5.46	5.48	5.5	
12/15/91 02:07:10	5.46	5.48	5.5	
12/15/91 04:07:10	5.48	5.46	5.5	
12/15/91 05:07:10	5.41	5.46	5.5	
12/15/91 06:07:10	5.41	5.43	5,48	
12/15/91 07:07:10	5.39	5.41	5.43	
12/15/91 08:07:10	5.32	5.39	5.41	
12/15/91 09:07:10	5.2	5.29	5.36	
12/15/91 10:07:10	5.2	5.27	5.36	
12/15/91 11:07:10	5.2	5.27	5.36	
12/15/91 12:07:10	5.22	5.29	5.41	
12/15/91 13:07:10	5.27	5.32	5.41	
12/15/91 14:07:10	5.29	5.36	5.46	
12/15/91 15:07:10	5.36	5,43	5,5	
12/15/91 16:07:10	5.36	5.43	5.5	
12/15/91 17:07:10	5.46	5.48	5.5	
12/15/91 18:07:10	5.43	5.46	5,48	
12/15/91 19:07:10	5.41	5.46	5.48	
12/15/91 20:07:10	5.41	5.43	5.46	
12/15/91 21:07:10	5.39	5.41	5.43	
12/15/91 22:07:10	5.39	5.41	5.43	
12/15/91 23:07:10		5.41	5.43	
12/16/91 00:07:10	5.39	5,43	5.46	
12/16/91 01:07:10	5.41	5,43	5.46	
12/16/91 02:07:10	5.41	5.46	5.48	
12/16/91 03:07:10	5.41	5.43	5.46	
12/16/91 04:07:10	5.39	5.43	5.46	
12/16/91 05:07:10	5.39	5.41	5.46	
12/16/91 06:07:10	5.39	5.43	5.46	
12/16/91 07:07:10	5.39	5.41	5.46	
12/16/91 08:07:10	5.22	5.36	5.41	
12/16/91 09:07:10	5.2	5.25	5.32	
	5.22	5.25	5.34	
12/16/91 10:07:10	5.22			
12/16/91 11:07:10	5.22	5.27	5.36	
12/16/91 12:07:10	5.25	5.29	5.36	
12/16/91 13:07:10	5.27	5.34	5.41	
12/16/91 14:07:10	5.29	5.36	5.46	
12/16/91 15:07:10	5.34	5.41	5.5	
12/16/91 16:07:10	5.36	5.43	5.48	
12/16/91 17:07:10	5.43	5.46	5.48	
12/16/91 18:07:10	5.41	5.43	5,46	
12/16/91 19:07:10	5,39	5.41	5.46	
12/16/91 20:07:10	5,39	5.41	5.41	m ==
12/16/91 21:07:10	5.36	5.39	5.41	D-75

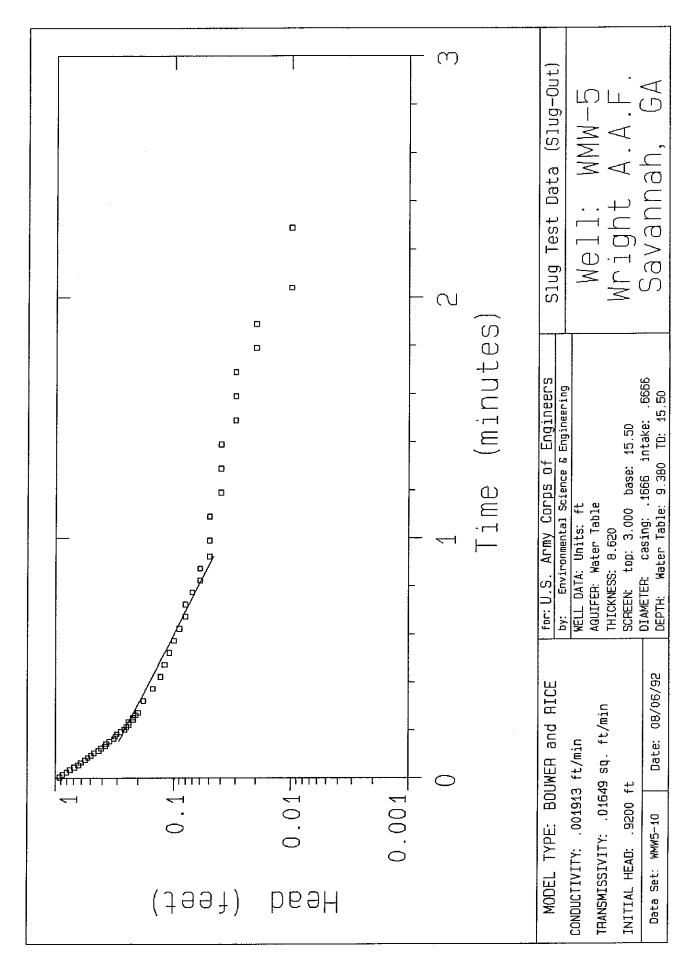
12/17/91 02:07 12/17/91 03:07 12/17/91 04:07 12/17/91 05:07	7:10 5.39 7:10 5.39	5.41 5.39 5.41 5.41	5.43 5.43 5.43 5.43
12/1//91 03:07	5.41	5.41	5.4

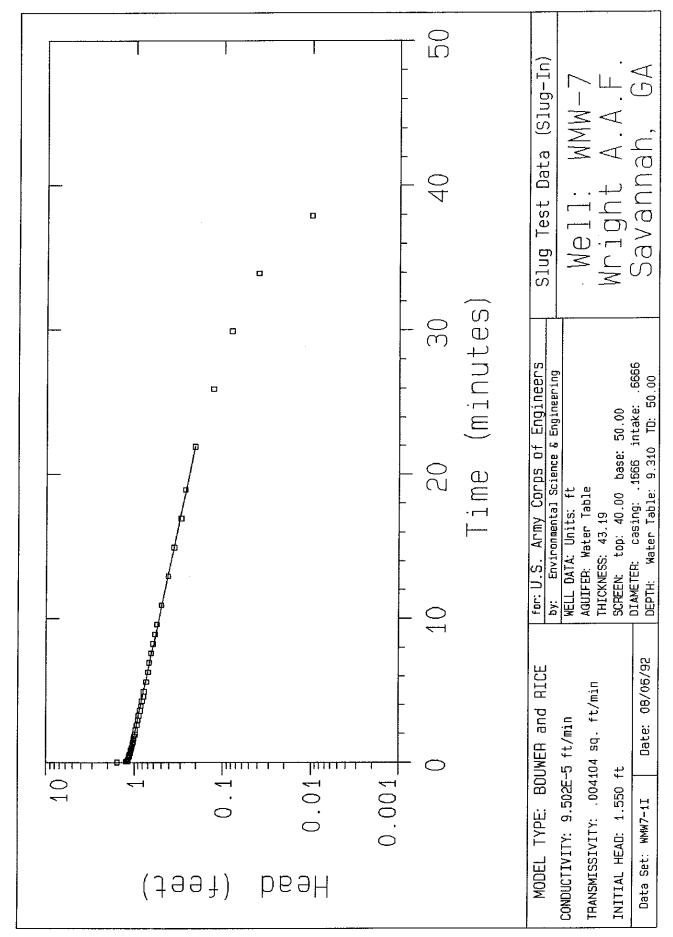

12/17/91 06:07:10	5.39	5.41	5.46	
12/17/91 07:07:10	5.36	5.41	5.43	
12/17/91 08:07:10	5.27	5.34	5.43	
12/17/91 09:07:10	5.27	5.29	5.36	
12/17/91 10:07:10	5.22	5.27	5.32	
12/17/91 11:07:10	5.22	5.29	5,34	
12/17/91 12:07:10	5.25	5.32	5.39	
12/17/91 13:07:10	5.29	5.34	5.43	
12/17/91 14:07:10	5.36	5.41	5.48	
12/17/91 15:07:10	5.39	5.48	5.57	
12/17/91 16:07:10	5.41	5.48	5.57	
12/17/91 17:07:10	5.5	5.53	5.57	
12/17/91 18:07:10	5.5	5.53	5.55	
12/17/91 19:07:10	5.48	5.5	5,53	
12/17/91 20:07:10	5,46	5.48	5.5	
12/17/91 21:07:10	5.46	5.48	5.5	
12/17/91 22:07:10	5.43	5.46	5.48	
12/17/91 23:07:10	5.41	5.46	5.48	
12/18/91 00:07:10	5.43	5.46	5.48	
12/18/91 01:07:10	5.46	5.48	5.5	
12/18/91 02:07:10	5.46	5.46	5.5	
12/18/91 03:07:10	5.43	5.46	5.5	
12/18/91 04:07:10	5,43	5,46	5.5	
12/18/91 05:07:10	5.46	5.48	5.48	
12/18/91 06:07:10	5.46	5.46	5.48	
12/18/91 07:07:10	5.43	5.46	5.48	
12/18/91 08:07:10	5.32	5.39	5.46	
12/18/91 09:07:10	5.29	5.34	5.39	
12/18/91 10:07:10	5.29	5.32	5.36	
12/18/91 11:07:10	5.27	5.32	5.39	
12/18/91 12:07:10	5.32	5.39	5.48	
12/18/91 13:07:10	5.36	5.41	5.48	
12/18/91 14:07:10	5.36	5.43	5.5	
12/18/91 15:07:10	5.41	5.48	5.57	
12/18/91 16:07:10	5.41	5.48	5,55	
12/18/91 17:07:10	5.48	5.48	5.55	
12/18/91 18:07:10	5.48	5.5	5.53	
12/18/91 19:07:10	5.43	5.46	5.48	
12/18/91 20:07:10	5.39	5.41	5.43	
12/18/91 21:07:10	5.34	5.39	5.41	
12/18/91 22:07:10	5.32	5,36	5.39	
12/18/91 23:07:10	5.29	5.32	5.36	
12/19/91 00:07:10	5.27	5.32	5.34	
12/19/91 01:07:10	5.27	5.29	5.32	
12/19/91 02:07:10	5.22	5.27	5.29	
12/19/91 03:07:10	5.22	5.25	5.29	
12/19/91 04:07:10	5.18	5.2	5.25	Ľ
12/19/91 05:07:10	5.2	5.22	5.25	

D-76

APPENDIX E

240

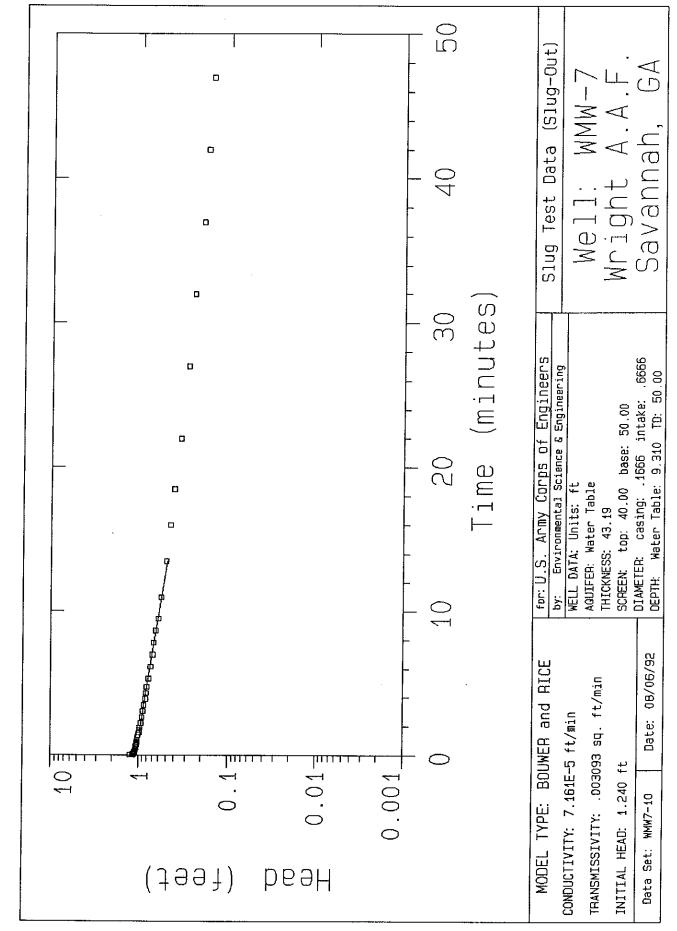

HYDROGEOLOGIC CALCULATIONS



(m)Slug Test Data (Slug-Out) Q D G-MWM Savannah Well: Wright പ Time (sec) D .6666 for: U.S. Army Corps of Engineers by: Environmental Science & Engineering DEPTH: Water Table: 9.380 TD: 15.50 ۵ DIAMETER: casing: .1666 intake: THICKNESS: 0.620 SCREEN: top: 3.000 base: 15.50 ۰ 0 WELL DATA: Units: ft AQUIFER: Water Table 0 08/06/95 MODEL TYPE: BOUWER and RICE TRANSMISSIVITY: .02225 sq. ft/min Date: CONDUCTIVITY: .002582 ft/min 0 . 01 111 \bigcirc Π INITIAL HEAD: .9300 ft 0.001_{-} 0.1 Data Set: WMW5-20 (1991) bбэН

242

E-2



(

244

E-4

rest

E-5

APPENDIX F

-246

LITHOLOGIC LOGS AND WELL CONSTRUCTION LOGS AND SIEVE ANALYSIS

					Army A t, Sava				Log of	Borin	g No.	WMW	/-4			neet I 1 of I	
Pro Dr Dr Lo	ent: oject N illing C iller: gged B cation:	ontract		39 La D	S Army 912015G ayne Env . Nichols . Foster	vironm		neers, Kansas Ci ervices	ty Division		Boring Sta Boring Cor Boring Dia Well Casin Type of Dr Drilling Mo	npleted: meter: g Diameter ill Rig:	3 8 ; 2 N	/6/92 inch inch Iobile Iollow	; • B-5		ıger
Elevation	Depth	Samp Type	Samp Rec ft	mqq UI9	Blaus Per 6"	Well Construction	Lithology		MATERIAL	DESCRIF	PTION			Bl 8 1	sistan ows/ 6 2 0 (pp	nce ft 2 4 3 om)	× 12
		CS	3.4	0		ধার্ট		(SP) SAND,	medium brow	/n, fine-gi	rained, wet	 /	₽ <u></u> ┨				
						ИИ		(CL) CLAY,	gravelly, gray	y and red,	moist						
									silty, yellow	and gray,	fine-grain	ed, moist	1				
4	- #							becoming we	sandy, mottle	ed orange	and red. n	/	1				
		CS	3.1	0			-///	becoming we		ou orungo			₽				
	5—						$\mathbb{V}//$					-					
							-///										
							M		AY AND SA			grained,					
	-					目		silty sand an	d red and gra	y sandy c	lay, wet						
		CS	2.8	0			$ \mathcal{M} $						8				
	10—							(SM) SAND,									
]	medium-grai	ned, with occ	asional cl	ay lenses, v	vet					
].[]									ļ	
																 	
	15											-	ļ			L	<u> </u>
	10							BORING TE	RMINATED	AT 15.5	FT BGS		1				
																1	
]	
			'														
																ŀ	
					1												
SS	= Split	spoon		CS	= CMS	Conti	nous Sa	mpler			PID = 1	Photoioniza	tion I	Detect	or (I	INu)	
										~~~		<u></u>		<u> </u>			-
5/4/9	2								F-1							S	E

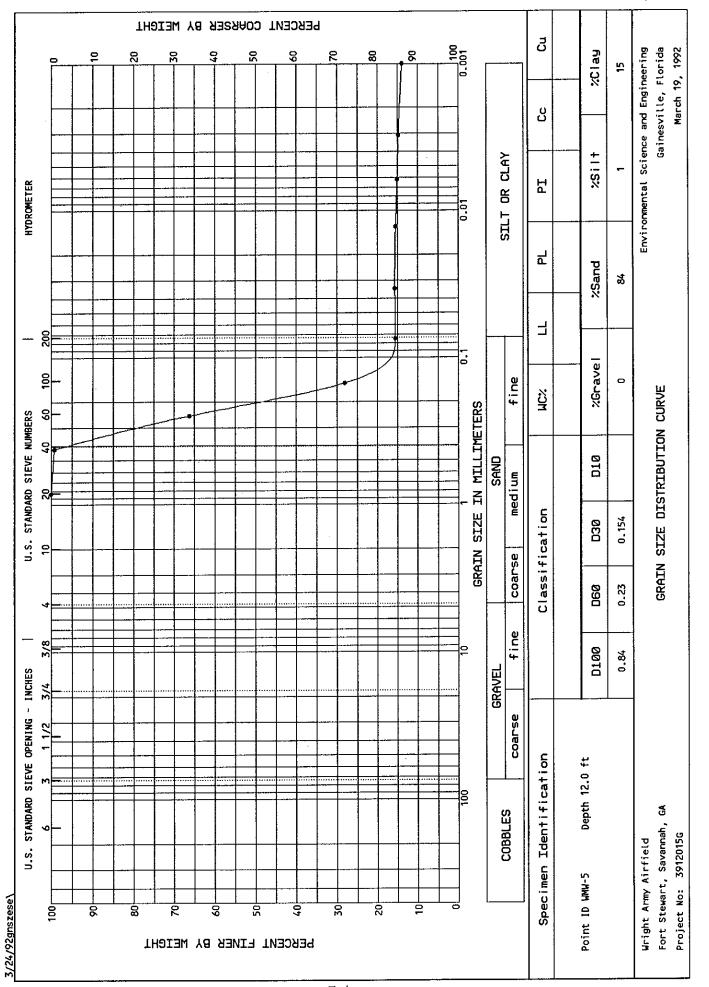
Ć

Ć

Ć

## MONITOR WELL CONSTRUCTION

125H Torto Client:_ Logged By: _ Location: Washer t Drilling Contractor: Job Number: .... Driller's Name: _____ inde Date/Time: Start 3/6/93 Finish _5 ANI -Comments (Lost circulation interval, Water-level changes, Hole collapse interval, etc.): Weil Number:___ if SA Depths in Reference to Ground Level Top of 2 - Locking Cap Protective Casing-Type, Diameter Steel Protective Pipe l 2 Top of Well Casing. **Cement/Gravel Pad**  $\nabla \nabla = \nabla$ 605.25 Court Top of Coment ビン Bottom of Protective Casing-Ground Water -- Type of Grout Vollay Υ. Casing: Type. Diameter. Couplings: Type. Number_ Depths _ Top of Bentonite Seal -Type of Plug_ 1/2 Top of Gravel Pack-Gravel Pack: zo Si Material Top of Screen Screen: Type. Diameter.... Length_ Slot Size. 0-4 **Bore Hole Diameter** Bottom of Screen-Total Depth of Bore Hole NOT TO SCALE F-2 - 8


الما معتقد المعتر والتي الدور المعاد

e i a listan

مى 10 مەرىپى بەر يالەك مەرىكە تەرىپى مەرىپ

Wi Fort S	MW-5	Sheet No. 1 of 1				
Client: Project Number: Drilling Contractor: Driller: Logged By: Location:	3912015G	vironmental Services s	Engineers, Kansas City Division Boring Started: Boring Completed:			
Depth Samp Type amp Rec ft	PIO ppm Blows Per 6"	Well Distruction Lithology	MATERIAL DESCRIPTION	Dynamic P Resist: Blows 8 16	ance	
Samp Cel	PEC PIO	L i thal c		PID (F	-	
CS 3.5		(SM) SAN	D, silty, brown grading to yellow,		300 400	
		fine-grain				
CS 2.4	0		CLAY AND SAND, sandy clay intermixed			
5		with silty with dept	sand, red and gray, wet, becoming sandier	r		
					++	
			D, silty, orange, red, and gray mottled, finguration of the set of	ne-		
15			TERMINATED AT 15.5 FT BGS			

1 N



F-4

-150

## MONITOR WELL CONSTRUCTION

Client: USACE Logged By: __ Location: Leventer HOF, FTA, Ft Steen Drilling Contractor: . Driller's Name: Danel Wichell Job Number: Job Number: Well Number: MUS-2 UMN-5 Date/Time: Start 3/6/12 Finish 3/6 Comments (Lost circulation interval, Water level changes, Hole collapse interval, etc.): ASA

Depths in Reference to Ground Level Top of Z Locking Cáp Protective Casing-Protective Pipe Type, Diameter Steel, 2 Top of Well Casing Cement/Gravel Pad (non Top of Cament . . . * 1/2" Bottom of Protective Casing-Ground Water -- Type of Grout <u>Vollay</u> - Casing: <u>Sch 40 PUC</u> Disputer Z Casing: Type Diameter Couplings: Thread Number_ Depths _ Top of Bentonite Seal-Type of Plug_ 1821 Top of Gravel Pack-3 ( Gravel Pack: 20/30 5: Top of Screen-Material. Screen: Туре. Diameter_ Length .... Slot Size 0.010 15/2' 84 Bottom of Screen-Bore Hole Diameter 15 /2' Total Depth of Bore Hole

					Army A t Sava				Log of Borin	ng No.	WMW	-6			eet I 1 of :		
Fort Stewart, Savannah, GAClient:US Army Corps of Engineers, Kansas CiProject Number:3912015GDrilling Contractor:Layne Environmental ServicesDriller:D. NicholsLogged By:G. FosterLocation:													3/6/92 3/6/92 8 inch				
	Depth	Type	Rec ft	mqq (	Blous Per 6"	Well Construction	Lithology		MATERIAL DESCRI	PTION		Dyn 8	Dynamic Pentratic Resistance Blows/ft × 8 16 24 32			x	
	ŏ	Samp	Samp	DIG	<u>a</u> 9	nst Nat	÷								(ppm) 300 400		
_				0		8		(SM) SAND	silty, medium brown	grading to 1		101 3	J 20	0 3	4	10	
	_	CS	3.5	U				yellow, fine-	grained, moist	Reading to 1	-					-	
¥	-										-				~~~		
Ŧ								3 ft - become	sandy, orange, gray, a	and red mot	tled E					╞	
	5—	CS	3.0	0			-1//	grading to re		and red mot						┢	
						旧											
	_						+//	7 ft - becom	es red with thin gray a	and seams	clay is					┢	
	-							moist and sa	nd is wet)		-					1	
	-	CS	3.3	0				(SC-SM) SAND, interbedded clayey sand and silty			silty	1				ļ	
	10-						$\left[ \right] $	sand, fine- to medium-grained, orange, red, and gray						_			
										-					┦─		
							-/			-					╞		
	-					II.					-					╈	
	15					Ш		BORING TERMIN		RMINATED AT 15.5 FT BGS							┢
								<b>_</b>									
SS	= Split	spoon		CS	= CMS	Cont	inous Sa	mpler		PID =	Photoionizat	ion D	etect	:or (1	HNu)	I.	

11

i de la composición de la comp

 $\int_{-\infty}^{\infty}$ 

#### MONITOR WELL CONSTRUCTION

-53

6. Fost Client: 125 ACE Location: Hunter HAF FTA Logged By: _ Drilling Contractor: _ Driller's Name: Danel Job Number: MW Well Number:____ Date/Time: Start 3/6/12 Finish Comments (Lost circulation interval, Water level changes, Hole collapse interval, etc.): Depths in Reference to Ground Level Top of Protective Casing-- Locking Cap Protective Pipe Type, Diameter Steel, 4⁴ Top of Well Casing . - Cement/Gravel Pad Top of dement-D 74 707 Bottom of Protective Casing-

Ground Water --- Type of Grout <u>Udlary</u> Casing: Type Diameter. Couplings: Type_ Number. Depths . Top of Bentonite Seal -HA Type of Plug_ 1421 Top of Gravel Pack-Gravel Pack: Top of Screen-**Material** Screen: DPUC Туре _ Diameter. Length_ Slot Size. Bottom of Screen-- Bore Hole Diameter Total Depth of Bore Hole Section 1 Section NOT TO SCALE

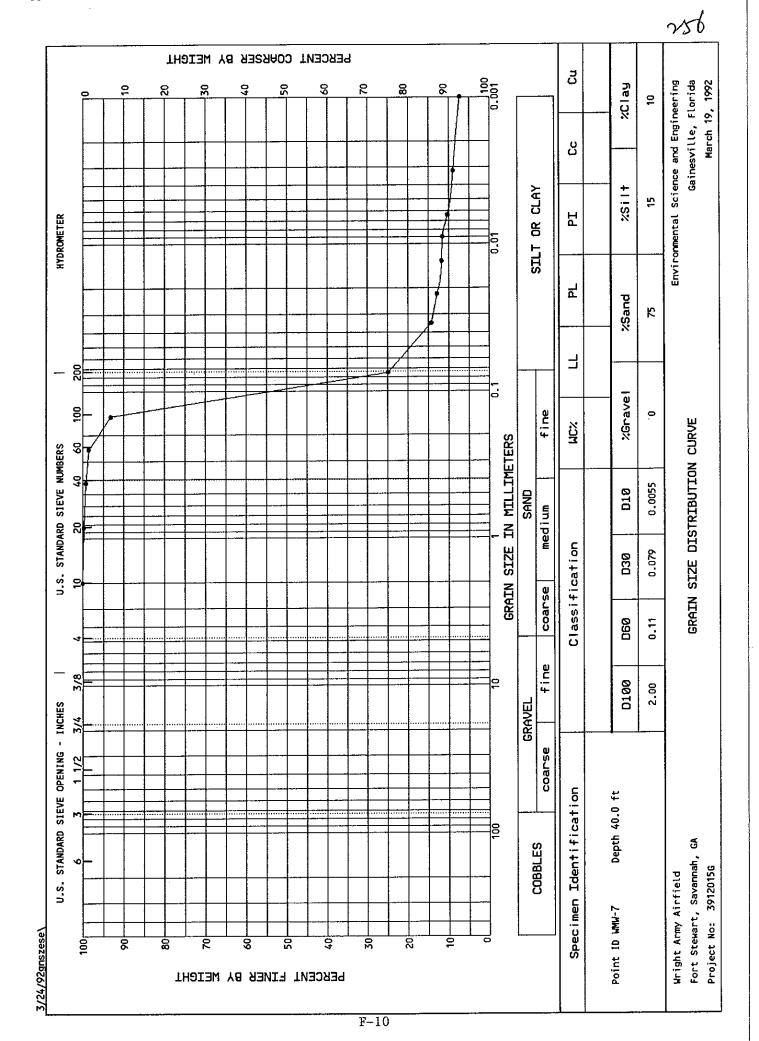
F-7

1. s. A. S. S.

					Army A t, Sava				Log of Bor	ing No.	WMW	1-7			neet 1 1 of 1	
Pr Dr Dr Lo	ient: oject Nu illing C iller: gged By cation:	mber: ontract	<u> </u>	U 39 La D	S Army ( )12015G	Corps o	orps of Engineers, Kansas City Division Boring Started: 3/5/92 Boring Completed: 3/5/92 conmental Services Boring Diameter: 8 inch Well Casing Diameter: 2 inch Type of Drill Rig: Mobile B						2 2 2 B-5			
	Depth	Samp Type	Samp Rec ft	mqq UIq	Blows Per 6"	Lead MATERIAL DESCRIPTION MATERIAL DESCRIPTION		Dynamic Pentratio Resistance Blows/ft × 8 16 24 32 PID (ppm)			x					
1		S	Sa			Š						10	00 20	00 <b>3</b>	00 4	00
	_							(SM) SAND,	silty, yellow-brown	, fine-grained	, moist	<u> </u>				-
	-					=	///	(SC) SAND,	clayey, brown, fine-	grained, wet					-	+
L fu	₣ -	SS	2.0	500	3-4	털			<b>,</b>	· ·		+	$\vdash$			1
	5-				11-34			(CL) CLAY, grading to rea	sandy, orange, red, d, moist	and gray mot	tled _					
							¥//					$\square$				
		00	0.0		10.07	븕			AV AND GAND 1	hanhaddad	dy alay					╞>
		SS	2.0	45	18-25 25-32	녈	-//	(UL-SM) CL. (moist) and s	AY AND SAND, ini ilty sand (fine- to n	redium-grain	ed, wet),	┼──	$\vdash$			-
	10—		<b> </b>				$ \mathbf{A}  $		and gray mottled		-	+	<b> </b>			+
	-											<u> </u>				+
									orange to yellow, fir	ne- to coarse-	grained,	h				
		SS 2.0 0			2.0 0 8-9 8-11		]:	wet, with tra	ce gravel			Ľ				
	15-								_	<u> </u>	<b> </b>					
	_					뒄	-						$\vdash$		┣	-
								(SP-SM) SAI	(SP-SM) SAND, interbedded clean sand (fine- to							
	-	SS	2.0	0	2-1	뎕		coarse-graine	d, trace clay and gr	avel) and silt		₽-×	┫──┤		+	
	-				6-13	릨		(white to pale	e yellow, fine-graine	ea), wet	-					
	20										-					
												<u> </u>	ļ		<u> </u>	<u> </u>
		00				臣		28 # _ CD	arsens, SC becomes	micaceous en	d white	┢—	<u> </u>	×		_
	_	SS	2.0	0	7-9 9-10	閏		to pale green		micaceous all		╂───	$\vdash$	-		-
	25										-	<u> </u>				+
	-					閏						$\mathbf{I}$				
						둼			silty, medium dark							
		SS	2.0	0	15-29 84-50/5"			-	with lenses of fine- y clayey in places	to coarse-gra	ined,	ľ				ľ
	30-				pst-DU/8"			,	· · · · ·		-	$\square$	<b>_</b>			<u> </u>
						国	-						<b> </b>		<u> </u> .	
			•			国	-11					–	<b> </b>		-	
		SS	2.0	0	22-31	国		33 ft - with t	race gravel in coars	e sand lenses		<b></b>			<u> </u>	╞╯
	-				32-50	邑						$\mathbf{H}$				+
SS	= Split	spoon	l	CS		<u>ı                                    </u>	us Sa	mpler		PID =	Photoioniza	tion I	)etec!	: or (1	INu)	1

. .

7⁷ 5


/

Client: Project Num Drilling Cont Driller: Logged By: Location:		U 39 L4 D	S Army ( 912015G	Corps of Engi	Cansas City Division Boring Started: Boring Completed: Boring Diameter: Well Casing Diamete Type of Drill Rig: Drilling Method:	: :: : 1		2 2 B-57	Auger
Depth	samp igpe Samp Rec ft	PID ppm	Blous Per 6"	kell Construction Lithology	MATERIAL DESCRIPTION		B 8 1 PII	c Pent sistanc lows/ft 6 24 D (ppm 0 300	82 1)
	S 2.0	0	28-50 50/4"						->>
	S 2.0	0	25-27 35-50/4"						
	S 2.0	0	41-35 50/4"						
	S 2.0	0	19-22 50/2"		LING TERMINATED AT 55 FT BGS				
S = Splitspc	-			Continous Sa	PID = Photoioniz.				

ĺ

Ć

ľ,



AAAP 10/4/85 MONITOR WELL CONSTRUCTION Client: L: S.A.C. E. Location: Wingher HAF, FTH, Ft. Stewa oster Logged By: Drilling Contractor: Driller's Name: Dame Job Number: _ Date/Time: Start 35/92 Finish 3/9/ -7 Well Number:_ D - 1Comments (Lost circulation interval, Water level changes, Hole collapse interval, etc.): **Depths in Reference** to Ground Level Top of 2 2 - Locking Cap **Protective Casing-**Protective Pipe Type, Diameter <u>U</u>⁴ Steel 21/2 Top of Well Casing. **Cement/Gravel Pad** 10 FD 65 00-0-0 Top of Cement-Bottom of 242 Protective Casing-Ground Water ---- Type of Grout Meler Cement - Casing: Sch Yv FVC Type_Sch Yv FVC Diameter_Z-Couplings: Type_Threaded Number_S Depths_Cy (1, 20, 30) Top of Bentonite Seal -– Type of Plug <u>1/0</u> Top of Gravel Pack-<u>40'</u> Gravel Pack: 20 Si sand Top of Screen -----Material. Screen: Ç Type_ Diameter ___ Length ..... Slot Size_ 8 " ΣÔ Bottom of Screen Bore Hole Diameter -Total Depth of Bore Hole

NOT TO SCALE

		Fo			Army A t, Sava				Log of Bor	ing No.	WSB-	1			eet N 1 of 1	
Pro Dri Dri Log		lumber: Contrac y:	:	U 3: L D	•	Corps vironm	of Engin	eers, Kansas Ci rvices	ity Division	Boring Sta Boring Con Boring Dia Well Casin Type of Dr Drilling M	mpleted: meter: g Diameter: fill Rig:	3 8 N N	/9/92 /9/92 inch /A in lobile ollow	ich B-57		ger
	Dep†h	Samp Type	amp Rec ft	u   u   u   u   u     u   u   u   u   u     u   u   u   u   u     u   u   u   u     u   u   u     u   u     u   u     u   u     u   u     u   u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u     u <th></th> <th>٤</th> <th>Bl 1¢ PID</th> <th>istan ows/i 5 24 0 (ppi</th> <th>ce ît &gt; 4 3¦ m)</th> <th>× 2</th>					٤	Bl 1¢ PID	istan ows/i 5 24 0 (ppi	ce ît > 4 3¦ m)	× 2			
Ţ	  	CS	3.0	3		Ŭ		scattered irre 0 to 3 ft - Sa	<ul> <li>SAND, clayey, red-brown, fine-grained, with ttered irregular clay and sand pockets, moist</li> <li>3 ft - Sample WRITS1*1 collected</li> <li>CLAY, silty, sandy, red-brown and gray mottled,</li> </ul>		st -		10 20			
	5	SS	1.7	0	9-14 16-24			moist (SC) SAND, fine-grained,	clayey, red-brown a	and gray mott	F	3				
	  10	SS	1.5	0	9-11 26-24				ample WRITS1*3 c RMINATED AT 10		f: 	] 				
S	≃ Split	spoon		CS	= CMS	Contin	ous Sam	pler		PID = I	Photoionizati	on D	etecto	or (H	Nu)	

(

(

		Fo		ewar	Army A rt, Sava	nnal	n, GA		Log of Bo	ring No.	WSB-	2			heet ] 1 of		
Pr Dr Dr Lo		•		39 L D	S Army 912015G ayne Env 9. Nichols I. Bagel	vironm	-	neers, Kansas Ci ervices	Boring Completed:				3/10/92 3/10/92 8 inch r: N/A inch Mobile B-57 Hollow Stem Aug				
	Depth							Ę	В 3 1	sistan lows/ 6 2 D (pp	nce /ft :43 om)	× 32					
C.In	<u> </u>	CS	2.3	0				0 to 2 ft - Sai collected	silty, brown, fine- nples WRITS1*4 :layey, brown and	and WRTS1*11							
		SS	0.0	0	12-14			5 ft - become	s red-brown and g al clay pockets		+					+	
	_	SS	1.5	0	20-20 16-16 24-25			5 to 7 ft - Sai	an clay pockets nple WRITS1*5 c ample WRITS1*6								
	10							BORING TE	RMINATED AT 1	0 FT BGS							
															:		
								• .									
		:															
•	= Split				= CMS C			_1			hotoionizatio						

ĺ

		Fo			Army rt, Sav				Log of B	oring No.	WSB-	3	S	Sheet No 1 of 1	
Pr Dr Dr Lo		Yumber Contrac		1 5 1 1		Corps vironr	of Engi	neers, Kansas C		Boring Sta Boring Con Boring Dia	rted: npleted: meter: g Diameter: ill Rig:	3/10 3/10 8 in N/A Mol	inch ile B-i		
	Depth	Samp Type	Samp Rec ft	PID PPm	Blows Per 6"	Well Construction	Li thology		MATERIAL DES	CRIPTION		ر ج F	Resista Blows, 16 2 PID (pr	/ft × 24 32 om)	
-		CS	4.6	0				(SM) SAND, 0 to 2 ft - Sat collected	silty, brown, fine nples WRITS1*7	-grained, moist and WRITS1*1	0			300 400	
	δ	SS	1.7	100	11-12 11-24			$-\frac{4 \text{ to } 4.3 \text{ ft } - s}{(\text{SC}) \text{ SAND, } c}$ fine-grained,	andy clay lens layeý, red-browr	nd becomes clayer			×		
		SS	1.9	2000+	8-8 12-13			8 to 10 ft - Sa	mple WRITS1*9	collected					
								·	· · · · · · · · · · · · · · · · · · ·						
3 =	Splitsp	boon		CS ==	CMS Co	ontino	us Samp	ler		PID - Pho	toionization	Detect			

•-- ·--

## WELL DEVELOPMENT RECORD FORMS

APPENDIX G

_

262 -

Æ

	MONITOR WELL		c
		Sheet	of
	Well	Inst	allation, h.
Site: <u>URFGHT AI</u> Well construction deta	$\frac{dE}{dE}$ Designation	on: <u>MDU-SA</u> Da	te: <u>3/8/42</u>
Well construction deta	ails from boring	log: Screened TOC Bo	rehole
Total depth (top o	f casing): <u>17.6</u>	Screened 79C Bo interval: <u>3-124</u> di	ameter: <u>8</u> "
Water losses during	g drilling:	Fluid purging	:
Height of well cas	ing (ground surf.	ace): 2 Well	diameter: 21
Standing water: Well	casing/screen:	11,68 X 0,1632 =	1.90
(From Chart) Annu	lus (volume x 30)	い、 リノ ロン インマー・	8.52 10.42×5=52.131
	····		10,4210-04,10
Date and time of deve		· · · · · · · · · · · · · · · · · · ·	
Method of development	(pump/bailer):	ENTPunp Pumping r	rate: <u>Sspm</u>
Depth(s) of pumping an			
=15' 2MEN,			
SULGED SCREEN AL	TER EVERY IDS	L LEMOVED START.	ING WETH
TOP 3' PUMP RATE	PROPPED AF	TER SURGEND TO	Bjem
<del> </del>			
Water level Before			24 HR
Water level Before	evelopment:	1/Q During: 17	Alter.
Well depth (sounded)	Before: 17,3	After:	
Physical appearance o			
Final: CLOWPY			
Field analysis	Initial	During $(2)$	Final
Field analysis Time -	1115	During (2) /325 /57.	5 1330
Conductivity	101	50 42	40
pH _	41	4.1	4.2
Temperature	20,9	19.5 12.5	19.5
Quantity of water remo	oved/time for re	moval (both incremen	tal and total)
72gAL			
,,			
Collect a l-pint samp	le of last water	removed.	
Comments:			
			,
			· · · ·
Alman Ville	0 / 3/8/92	Pringan	10 Gr.
Signed		G-1	· · · · ·

•

Ē

MONITOR WELL DEVELOPMENT Sheet _____ of _____ WMM/-S Installation, Well Date: 3 Designation: MW-SJ site: URIGHT AAF Well construction details from boring log: Borehole Total depth (top of casing): _____ interval: _____ diameter: Water losses during drilling: 17.3 Fluid purging: Height of well casing (ground surface):  $\mathcal{A}$  Well diameter:  $\mathcal{A}''$ Standing water: Well casing/screen:  $10, 26\times0.163 = 1.67$ (From Chart) Annulus (volume x 30%):  $\frac{10.26 \times 173 = 8}{10.26 \times 173 = 8}$ Date and time of development: Method of development (pump/bailer): GENT, Mump Pumping rate: Pump DRY Depth(s) of pumping and elapsed time at each depth: BOTTOM 30 SED SYRGED WELL AFTER EACH PURGE & RECHARGE 24 HR Before development: 204 During: _____ After: _____ Water level Well depth (sounded) Before: 1723 After: Physical appearance of water (clarity, color, particulates, odor) During development: <u>LITE ORAWGE TO ORAWSE STLTY</u> Final: OR CT. ORANGE CLOUPY During (2) Initial Field analysis 1730 Time Conductivity 23,6123,51 pH -231 Temperature Quantity of water removed/time for removal (both incremental and total) 80 JAL Collect a 1-pint sample of last water removed. Comments: RECHARGED 100% 3,5 MEN p. d. el

 $\leq$ 

Signed

G-2

·

	MONITOR WELL DEVELOPMENT Shee	t l of l
ite: <u>WRIGHT AAI</u>	Well WMW-6 In	stallation Date: <u>3/8</u> /92
ell construction deta Total depth (top of	ils from boring log: Screened 70C casing): 17.6 interval: 5-17.6	Borehole diameter: <u>8'1</u>
Water losses during	drilling: Fluid purgi	ng:
Height of well casi	ng (ground surface): Wel	l diameter: <u>A</u>
tranding water: Well	casing/screen: 10.12 & UIUD	x 1,10
(From Chart) Annul	us (volume x 30%):/0.72X 7.80.	$\frac{13=7.82}{9.5785}=47.5$
ate and time of devel	annant: 3/8/92	
ate and time of devel	(pump/bailer): <u>CENT PUMP</u> Pumping	rate: JUMP DRY
lethod of development	(pump/valie), <u>-cp/ ry/ry</u>	TEM 30 SEL
	d elapsed time at each depth: <u>B07</u>	
SURGINGAFTER EAC	H PURGE FORISMEN,	<u> </u>
· · · · · · · · · · · · · · · · · · ·	J	
		· · · · · · · · · · · · · · · · · · ·
later level Before	development: <u>6,88</u> During:	24 HR After:
Vell depth (sounded) Physical appearance of	Before: <u>17.3</u> Water (clarity, color, particula STLTF DRAWBY LTTE ORANGE TO ORANGE STLTY	After: r: tes, odor)
Vell depth (sounded) Physical appearance of	Before: <u>17.3</u> Afte water (clarity, color, particula <u>STLTF DRAWBY</u> <u>LTTE ORANGE TO ORANGE STLTY</u> 65.	After: r: tes, odor)
Nell depth (sounded) Physical appearance of Initial: <u>ORMNGE</u> During development: Final: <u>LTTE ORAN</u>	Before: <u>17.3</u> Afte water (clarity, color, particula <u>STLTF DRAWBY</u> <u>LTTE ORANGE TO ORANGE STLTY</u> 65.	After: r: tes, odor)  Final
Well depth (sounded) Physical appearance of Initial: <u>ORMNGE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time	Before: 17.3 Afte Water (clarity, color, particula STLTF DRAWBY LTTE ORANGE TO ORANGE STLTY GE Initial During (2) 0700 100	After: r: tes, odor)
Nell depth (sounded) Physical appearance of Initial: <u>ORANGE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity	Before: <u>17.3</u> Afte water (clarity, color, particula <u>STLTF DRAWBY</u> <u>LTTE ORANGE TO DRAMGE STLTF</u> GE Initial During (2)	After: r: tes, odor)  Final
Nell depth (sounded) Physical appearance of Initial: <u>ORMNGE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time	Before: 17.3 Afte Water (clarity, color, particula STLTF DRAWBY LTTE ORANGE TO ORANGE STLTY GE Initial During (2) 0700 100	After: r: tes, odor)  Final
Nell depth (sounded) Physical appearance of Initial: <u>ORMNGE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature	Before: 17.3 Afte Water (clarity, color, particula STLTF DRAWBY LTTE ORANGE TO ORANGE STLTY GE Initial During (2) 0700 100	After: r: tes, odor) Final O Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
Nell depth (sounded) Physical appearance of Initial: <u>ORMUSE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature Quantity of water rema	Before: $17.3$ Afte water (clarity, color, particula STLTF ORANGE TO ORANGE STLTF GE Initial During (2) 0700 0900 100 116 33 29 5.5 41.6 4.7 19.1 222 27	After: r: tes, odor) Final O Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
Nell depth (sounded) Physical appearance of Initial: <u>ORMNGE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature Quantity of water remu <u>6054</u>	Before: 17.3 Afte Water (clarity, color, particula STUTY DAWAY LTTE ORANGE TO DRANGE STUTY GE Initial During (2) 0700 0900 100 116 33 29 515 416 47 19.1 222 22 bved/time for removal (both increm	After: r: tes, odor)  Final O(OO 28 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 028 038 038 038 038 038 038 038 038 038 038 038 038 038 038 038 0
Nell depth (sounded) Physical appearance of Initial: <u>ORMUSE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature Quantity of water remu <u>605p4</u> Collect a 1-pint samp	Before: 17.3 Afte Water (clarity, color, particula STLTF DRAWBY LTTE DRAWSE TO DRAWGE STLTY GE. Initial During (2) 0700 0900 100 16 33 39 515 41.6 41 19.1 222 22 bved/time for removal (both increment le of last water removed.	After: r: tes, odor) Final O //OO 28 4/3 4/3 ental and total)
Nell depth (sounded) Physical appearance of Initial: <u>ORMUSE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature Quantity of water remu <u>6054</u> Collect a l-pint samp	Before: 17.3 Afte Water (clarity, color, particula STUTY DAWAY LTTE ORANGE TO DRANGE STUTY GE Initial During (2) 0700 0900 100 116 33 29 515 416 47 19.1 222 22 bved/time for removal (both increm	After: r: tes, odor) Final O //OO 28 4/3 4/3 ental and total)
Nell depth (sounded) Physical appearance of Initial: <u>ORMUSE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature Quantity of water remu <u>6054</u> Collect a l-pint samp	Before: 17.3 Afte Water (clarity, color, particula STLTF DRAWBY LTTE DRAWSE TO DRAWGE STLTY GE. Initial During (2) 0700 0900 100 16 33 39 515 41.6 41 19.1 222 22 bved/time for removal (both increment le of last water removed.	After: r: tes, odor) Final O //OO 28 4/3 4/3 ental and total)
Nell depth (sounded) Physical appearance of Initial: <u>ORMUSE</u> During development: Final: <u>LTTE ORAN</u> Field analysis Time Conductivity pH Temperature Quantity of water remu <u>6054</u> Collect a 1-pint samp	Before: 17.3 Afte Water (clarity, color, particula STLTF DRAWBY LTTE DRAWSE TO DRAWGE STLTY GE. Initial During (2) 0700 0900 100 16 33 39 515 41.6 41 19.1 222 22 bved/time for removal (both increment le of last water removed.	After:

1

.

2

264

/...

MONITOR WELL DEVELOPMENT Sheet of Installation Well Date: 3/9/22 Site: WRFGHT AAF Designation:  $\mathcal{Q}$ -1 Well construction details from boring log: Screened Toc. Borehole Total depth (top of casing): 53interval: 40.5- diameter: _ Water losses during drilling: _____ Fluid purging: Height of well casing (ground surface): 2 Well diameter; Standing water: Well casing/screen: 46,03×0,1632=7,51 (From Chart) Annulus (volume x 30%): <u>/5X0.73= 10.95</u> 8.46×592.3 Date and time of development: 3/10/92 Method of development (pump/bailer): BK Pumpe Pumping rate: Depth(s) of pumping and elapsed time at each depth: <u>BOTTOM</u> 24 HR Before development: 6,97 During: After: Water level Before: 31335 After: Well depth (sounded) Physical appearance of water (clarity, color, particulates, odor) Initial: <u>CLOUPY GREY SILTY</u> During development: <u>GREY STLTY</u> Final: LTGREY SELTY 3-10-92 Final 3-11-92 During (2) Initial Field analysis 0800 0835 355 0915 9:30 1000 600 Time 338 320 306 333 270 300 78 Conductivity 60 OVER 55 5.6 59 63 pH ⊥ <u>21,8</u> <u>æ.4</u> 20.2 1 20,9 20,2 Temperature Quantity of water removed/time for removal (both incremental and total) 1005AC Collect a 1-pint sample of last water removed. Comments: WELLPURGED DRY 12-155HL 518192 nophal 3/10/ (KInsigan Signed

WMW-> (CONT.)

TIME	11020	1100	1/120	1300	11325
cond	280	257	1237	275	319
Ph.	6.0	6.0	5.8	1300 275 579 21.6	6.1
TEMP	21.3	21.3	21.0	21.6	2110

2

2

(

	MONITOR WELL	DEVELOPMENT	Sheet	of
	Well		Instal	lation
site: WRISGT AAPI	🔏 Designati	on: <u>WMW</u> -	<u>4</u> Date	: 
lell construction detai	ls from boring	log: Screened	Bore	hole 8"
Total depth (top of	casing): <u>17.6</u>	, interval:	<b>Z</b> -/2.6 diam	eter:
	1-111-001	Flui	d purging:	
	- Lamaund curf	acel: L	WEIL UL	ameee <u></u>
(From Chart) Annulu	is (volume x 30	7):(17.6-4.8	5) * **75	
Jellinda 11 4941 - 50	Such V2 = 27	)		
Date and time of develo	opment: <u>1/15/</u>	1350	<u> </u>	
Date and time of develo Method of development (	(pump/bailer):	Crustos PUrp	Pumping rat	e:
Denth(s) of pumping and	i elapsed time	at each dept	:n:	· · ·
peross Saver 2	or		_,,,,,,,,,,	
		<u> </u>		
				24 HR
Water level Before	development:	7.85 Durin	ng:	() 77
Well depth (sounded) Physical appearance of	Before: 1	1.76	AIter:	odor)
Physical appearance of	water (claric	in moust		
Initial: <u>LTOIANE-</u>	<u>ST. 102510-102</u>	2 Salors	10	
Initial: <u>LTOIAnje-</u> During development: Final: <u>Cluby</u> <u>NO</u>	CAL AC S. VI	<u> </u>		
Final: Clerry DV	Sal V			
Field analysis	Initial		ng (2)	Final
Time	1332	1340	1346	1354
Conductivity	48	42	42	_ 43
	4.2	4.1	4.1	<u> </u>
pH	189	18.9	19.1	19.1
Temperature Quantity of water remo		12.	25 incrementa	34 1 and total
Quantity of water remo	oved/cime for c			
				;;,,
<u> </u>				
Collect a l-pint samp	le of last wate	er removed.	Jel_	
Comments:				
		<u> </u>		
Mal I B	al 1/1570	33		

#### MONITOR WELL DEVELCEMENT

			Sheet	of
site: WRISHT AA	Well FTA Designation	on: WMW-S	Instal Date	lation :
Well construction de	tails from boring	10g:		hole p
Total depth (top o	of casing): 17.	5 interval:	17.5 <b>1</b> 78 iam	eter: <u>E</u>
Water losses durin	ng drilling:	Fluid	purging:	
Height of well cas	sing (ground surfa	ace):	_ Well di	ameter:
Standing water: Well	l casing/screen:	17.5-5,88)	X 0.1632	= 1.9
(From Chart) Annu				
1 well vol = 10.4 50	1. Juck volu.	es= 12/31	-2901	
Deterned time of day	alopmant: 1/1	<193		
Method of development	t (pump/bailer):	FUN P	umping rat	e:
Depth(s) of pumping a	and elapsed time a	at each depth	:	
Across som				
NC. D SC				
	····		·	
Well depth (sounded) Physical appearance Initial: C/tor, During developmen Final: Clory, C	t: clar, NO	and or st	iculates,	odor)
Field analysis	Initial	· During	(2)	Final
Time	1250 1304	1310 40	13/7	1320
Conductivity pH	<u>63 43</u> <u>A 8 44</u>	4.3	40	4.3
Temperature	21.9 21.6	21.7	21.7	21.7
Quantity of water res	0  ] 	ZZ (bath i	30 noramental	SS and thre
Quantity of water rea	moved/time for ter		iner einen eur	0
		·····		
-				
Collect a 1-pint sam	ple of last water	removed.		
Comments:				
Mar & B	3 (/ 15/93			

#### MONITOR WELL DEVELOPMENT

Sheet of Installation Well Site: WRIGT MAPTA Designation: WMW-6 Date: ____ Well construction details from boring log: Screened & To C Borehole interval: 76-17.6 diameter: 8 TIC Total depth (top of casing): 17.6 Water losses during drilling: N/B Fluid purging: M/A Height of well casing (ground surface): 2 Well diameter: 2" Standing water: Well casing/screen: (17.6 - 5.66) × 0.1632 = 1.95 (From Chart) Annulus (volume x 30%):  $(17.6-5.66) \times 0.73 = 8.72$ 1 vert volume = 10.67 SAL - Jurel volumes = 32.01 SAL Date and time of development: 1/15/9 Method of development (pump/bailer): pone Pumping rate: Depth(s) of pumping and elapsed time at each depth: _____ 141055 Some 20m 24 HR Before development: 5.66 During: _____ After: _____ Water level Well depth (sounded) Before: 12.86 After: 17.80Physical appearance of water (clarity, color, particulates, odor) Initial: ORANZE-TURBIC, S. LAY, NO SAND During development: Clas, NO Solars, Co Final: clin, No sindor s. LJ Final During (2) Initial Field analysis 1430 1434 1410 1414 Time Conductivity 4.1 4.0 pН 21.2 21.2 20.4 Temperature 35 30 GAllons Quantity of water removed/time for removal (both incremental and total) Purad 35 sal in 24min Collect a 1-pint sample of last water removed. 705 Comments: Mal & Bay Vio Date Approved Signed

270

	MONITOR WELL	DEVELOPMENT	Sheet	_ of
WRIGHT AAPT	s Well Designatio	on:WMW-7	Installa Date:	tion
Well construction deta Total depth (top of	ils from boring casing): <u>53</u>	log: Screened interval:	40.0- Boreho 5 <u>0.0</u> diamet	le er: <u>8</u>
Water losses during Height of well case	ng (ground surfa	ace): <u>2'</u>	Well diam	eter: <u>2</u> //
Standing water: Well (From Chart) Annul 1 well Volvie = 18.3	us (volume x 302	1): <u>157.</u>	73 <u>= 10.</u>	95
Date and time of devel				
Method of development	(pump/bailer):	lugare P	umping rate:	
Depth(s) of pumping at	d elapsed time a	at each depth	: PUMAL	Sugar
Acrest Screen	· · · ·			·
<i>p</i>		· · · · · · · · · · · · · · · · · · ·		·····
·· ··				
Well depth (sounded) Physical appearance of Initial: <u>c/car.</u> During development Final: <u>C/car</u> No	DKSTON - 2.4	159 TURSIC	47 35sol-w	11 - V. TSEDIO - FISS
Field analysis Time Conductivity pH Temperature	Initial 20 1026 1044 101 6.0 357 306 22.1 22.8	$\begin{array}{c} 2 1155 & 1223 \\ 5.9 & 6.0 \\ \hline 307 & 316 \\ \hline 23.1 & 24.1 \\ \hline \end{array}$	<u>1300 1312 14</u>	B 274 276 275 P 7 22 2 19.7 20.0 P
<i>Sullers</i> Quantity of water remo	wod/time for ren	oval (both i	ncremental a	nd total)
121026 - 1047 Beno	21 JAL OF WAT	EL. Well is i	1155-	1223 19sal renow
12-0-1117 - 9 9AL TE	and 1355-1	405 Purged 10	5A1/0-5. 62	0 - 16 40 - Purged 18
1726-1732 Pused ASAL	1/15/92 784-	750 Puzzel 175	llow. 3+8	832 - 18 Gallons 9:12
Collect a l-pint samp	le of last water	removed. Y	es	9.5)-100 1012-10
Comments: 1049 Belan		4		brig pure in all see
	25 - Well Purgel a			
See bach	of Post			
mal & Bryl	1/15/93	· · · · · · · · · · · · · · · · · · ·		······································
Signed	Date	Approved		Date

A shear

Punydefron To GAI Com 10.54 11:00 B 1383Al 1134 11:34 7. 1453Al Feldine reterm 1202 12:07 5 150301 APPENDIX H

WELL SAMPLING RECORD FORMS

273

Well Number: WMW-1 Date: 3-14 9-22 Time:	1400	
Boring Diameter: Well Casing Diameter:	2"	
Annular Space Length: _//.5Stickup: _2/	,5	
WATER LEVEL		
Held:		
Cut:		
DTW: 4.43 Top of Casing		
COLUMN OF WATER IN WELL		
Casing Length: 14-5		
DTW Top of Casing: <u>1.43</u>		
Column of Water in Well: 8.07		
VOLUME TO BE REMOVED		
Gallons per foot of A.S. (from chart)	- [,]] -	
Column of Water or Length of A.S. (whichever is less)	x <u>&amp; G</u>	
Volume of Annular Space	<u> </u>	
Gallons per foot of Casing	- 6.1632	
Column of Water	x 8.07	
Volume of Casing	- (.32	
Total Volume (Volume of A.S. + Volume of Casing)	= <u>10.76</u>	
Number of Volumes to be Evacuated	x <u> </u>	
Total Volume to be Evacuated	<u>- 32.27</u>	
Method of Purging (pump, bailer, etc.): Centrilinger	fimp	
FIELD ANALYSES Start Mid	End	4143
Тіше <u>1400 1404</u>	1410	1423
pH <u>5.7</u> <u>5.1</u>	4.7	<u>    4.4                               </u>
Conductivity <u>50                                    </u>	40	40
Temperature <u>17.0</u>	17.7	17.9
Total Volume Purged: <u>35.0</u> gallons 2.5 gal/min		
Sample Date/Time: 3.11.92 1515 Sample Number: WR	TW1+1	
PRACTIONS		$\frown$
(P)XY V (N) NF C O S UP	Z B M	SXI
CFFHCLMPRRP	T RS	
M ma	3/1/84	
Signed/Sampler: Abure My Dat	\$ 15 165'	)
Signed/Reviewer: Dat	e:	

H--1

274

1. 4. 4. 1	0.7		3/11/2	$\sim$	Time:	142	5				
Well Number: WMC	-					2"					
Boring Diameter:				g Diamet tickup:							
Annular Space Length:			3	cickup:							
WATER LEVEL											
Held:					<u> </u>						
Cut:				•							
DTW: <u>6.37</u>		Тор	of Cas	ing							
COLUMN OF WATER IN WE		12	-5								
Casing Le	-	12	.37								
DTW Top of Ca											
Column of Water in	Well:	Ч.	13								
VOLUME TO BE REMOVED						1.7	_				
Callons per foot o						- <u>1.17</u> x <u>9.13</u>					
Column of Water or	- Length of	A·S·	(which	ever is	less)	= <u>10.1</u>					
Volume of Annular											
Callons per foot of Casing $= \frac{6.1632}{x9.13}$											
Column of Water						$= 1.4^{\circ}$					
Volume of Casing											
Total Volume (Vo			lume of	Casing)		<u>- 12.1</u> x 3					
Number of Volumes	to be Evacu	ated									
Total Volume to b			Δ.	<u>, . с</u>	$h \sim$	- <u>36</u> .	<u></u>				
Method of Purging (p	ump, bailer,	etc.	): <u>Cer</u>		gar r	mut	)				
FIELD ANALYSES	Start			MId		End					
Time	1425			<u> </u>		1430	<u> </u>				
рН	4.7		<u> </u>			<u>મ.મ</u> ૨૯					
Conductivity	49	. ·		<u> </u>							
Temperature	19.2		18.			18.8					
Total Volume Purged:	40	gall		0 g al/m							
Sample Date/Time:	1530		Sample	Number:	WR	17101#3	40PH				
FRACTIONS											
PX4 V (N	) NF	С	0	S	UP	Z	В				
CF F H	CL	M5 X2	Р	R	RP	Ť	RS				
		Х3									
	21	1					Inta-				
Signed/Sampler:	Hours.	IA!			. Date	e: <u>5/</u>	KIT				
Signed/Reviewer:	Myisiga	K. ".	p		Date	e: <u>3</u> /	<u>c                                     </u>				
	v	<u>ر</u> ،									

. ₹ N

H-2

275

Well Number: WMW-3 Date:	3/11/92 Time:	1440_
Reside Diameter: 10' Well	. Casing Diameter: _	<u></u>
Annular Space Length: 10,5	Stickup:	2.5
WATER LEVEL		
Held:		
Cut:		
	of Casing	
COLUMN OF WATER IN WELL		
Casing Length:	>	
DTW Top of Casing: 7.20	<u>A</u>	
Column of Water in Well:8.2		
VOLUME TO BE REMOVED		_
Gallons per foot of A.S. (from cha	art)	= 1,17
Column of Water or Length of A.S.	(whichever is less)	x <u>8 21</u>
Volume of Annular Space		<u>- <u>9.9</u></u>
Gallons per foot of Casing		<u> </u>
Column of Water		x <u>8.21</u>
Volume of Casing		<u>1.34</u>
Total Volume (Volume of A.S. + Vo	lume of Casing)	<u>- 10.94</u> /
Number of Volumes to be Evacuated		x <u>3</u>
Total Volume to be Evacuated	are Du MA	- 32.8
Method of Purging (pump, bailer, etc.	): <u>CEWI. FUMI</u>	n - 1
FIELD ANALYSES Start	Mid	End \5\0
Time 14/10	1455	<u>ч.ч</u>
рН <u>H.S</u>	4.4	28
Conductivity <u>32</u>	<u> </u>	21.0
Temperature 18.5	15	
10101 11=- 0	ons li5gpm	ETTW/+3
Sample Date/Time:	Sample Number: 401	
FRACTIONS		Z B
CVPX4 V W NF C	O S UP	T RS
CF F H CL My	P R RP	1 10
	1	, /
Mample	De	ite: 3/11/92
Signed/Sampler: ( Month type)	<u></u>	ite: <u>&gt;18192</u>
Signed/Reviewer:	be	

-----

{

276

;

0016
-ell Number: WMW-4 Date: 3-13-92 Time: 0925
Soring Diameter: Well Casing Diameter:'
*nnular Space Length: 151 Stickup: 2.0
WATER LEVEL
Held:
Cut:
DTW: <u>595</u> Top of Casing
SOLUMN OF WATER IN WELL
Casing Length; 18.1
DTW Top of Casing: 5.95
Column of Water in Well: 12.15
VOLUME TO BE REMOVED
Gallons per foot of A.S. (from chart)
Column of Water or Length of A.S. (whichever is less) X 12.15
Volume of Annular Space
Gallons per foot of Casing $= 0.1632$
Column of Water x 12.15
Volume of Casing = <u>1.98</u>
Total Volume (Volume of A.S. + Volume of Casing) = 10.85
Number of Volumes to be Evacuated $x = \frac{3}{2}$
Total Volume to be Evacuated
~ethod of Purging (pump, bailer, etc.): Contrifu as pump
SIELD ANALYSES Start Mid End
Time 0925 0930 0935
pH 4.5 4.2 4.2
Conductivity <u>4/ 38 35</u>
Temperature 18,5 18,3 18.3
Total Volume Purged: 35 gallons
Sample Date/Time: 0940 Sample Number: WRITWIX4
FRACTIONS PUP SLT WIGHT 33,55pm
(v) C v (N NF C O S UP Z B
CFFHCL MSPRRPTRS
(A3)
$1 \cap 2 \cap 2 \cap 2$
Signed/Sampler: Manad. Kg Date: 5/63/12
Signed/Reviewer: Altrigan M Date: Date:

11

,ť

k

1

ļ

277

Well Number: WMG	W-5 Date: 3-13-92 Time: 1025
	8" Well Casing Diameter: 3"
	n: 15 Stickup: 2'
WATER LEVEL	
Cut:	
	Top of Casing
COLUMN OF WATER IN W	
	Length: 18.1
	Casing: 7.0
	n Hell: <u>[].</u>
VOLUME TO BE REMOVED	
Gallons per foot	of A.S. (from chart) $-0.73$
	or Length of A.S. (whichever is less) X <u>11.1</u>
Volume of Annula	r Space - 8.1
Gallons per foot	of Casing $= 0.1(.5)$
Column of Water	x <u> </u>
Volume of Casing	<u>- 1.8(</u>
Total Volume (V	olume of A.S. + Volume of Casing) $= \frac{9.9}{1000000000000000000000000000000000000$
Number of Volume	s to be Evacuated X <u>3</u>
Total Volume to	be Evacuated
Method of Purging (	pump, bailer, etc.): Centri fugal pump
FIELD ANALYSES	Start Mid End
Time	1025 1030 1035
рH	4.5 4.2 4.1
Conductivity	42 31 31
Temperature	20,5 20,9 20,9
Total Volume Purged:	30 gallons 3gpm
Sample Date/Time:	040 Sample Number: WRITWI#5
FRACTIONS	
VE 124 V (N	NF C O S UP Z B
CF F H	CL PR RP T RS
Signed/Sampler:	Honop. 49 Date: 3/13/82
Signed/Reviewer:	RT rigan 12- Date: 275.742

.

278

0877
Well Number: <u>WMW-b</u> Date: <u>3-13-92</u> Time: <u>0820</u>
Boring Diameter: Well Casing Diameter:
Annular Space Length: Stickup:
WATER LEVEL
Held:
Cut:
DTW: Top of Casing
COLUMN OF WATER IN WELL
Casing Length: 18.1
DTW Top of Casing: 6.10
Column of Water in Well: 12
VOLUME TO BE REMOVED
Gallons per foot of A.S. (from chart) $-\frac{1.17}{0.73}$
Column of Water or Length of A.S. (whichever is less) X 12
Volume of Annular Space 8.76
Gallons per foot of Casing = <u>0.1632</u> .
Column of Water X <u>\</u>
Volume of Casing = $\frac{1.9}{1.0}$
Total Volume (Volume of A.S. + Volume of Casing) = 15-99-10-10.
Number of Volumes to be Evacuated X
Total Volume to be Evacuated
Method of Purging (pump, bailer, etc.): Centrifugal pump
FIELD ANALYSES Start Mid End
Time 0920 0830 0855
pH 5.5 4.5 413
Conductivity $52$ $30$ $26$
Temperature <u>1810</u> <u>20,4</u> <u>20,6</u>
Total Volume Purged: 48 gallons 3.59m
Sample Date/Time: 0845 Sample Number: WRITWI*6
PRACTIONS
VEX4 V (N NF C O S UP Z B
CFFHCL (MSPR RPT RS
$\sim$
Signed/Sampler: Action Diate: 3/13/22
Signed/Reviewer: RP mggn Date: 518192
0 · ()

Н−6

ĺ

рι

279

ſ

	14-92_ Ilme: 02/5									
Well Number: <u>wmw-7</u> Date: <u>3-1</u>	Casing Diameter:'									
Boring Diameter: <u>8</u> Well C Annular Space Length: <u>15 1</u>	•									
WATER LEVEL										
Held:										
Cut: Top of	- Coolog									
	E Casing									
COLUMN OF WATER IN WELL 53										
Column of Water in Well:										
VOLUME TO BE REMOVED	<u> </u>									
Gallons per foot of A.S. (from chart										
Column of Water or Length of A.S. (w	whichever is less) $\lambda = \frac{10.95}{10.95}$									
Volume of Annular Space	0									
Gallons per foot of Casing = $\frac{6.1632}{0.000}$										
Column of Water $x - \frac{46.09}{7.52}$										
Volume of Casing	19 117									
Total Volume (Volume of A.S. + Volum										
Number of Volumes to be Evacuated	A									
Total Volume to be Evacuated	Bailer = <u>55.41</u>									
Method of Purging (pump, bailer, etc.):	Contribuigat pump									
FIELD ANALYSES Start	165ALMID 225AL 345ACEnd									
Time 0715	5-8 59 Wil									
pH <u>5.7</u>										
Conductivity <u>305</u>	21 370 321									
Temperature <u>20.2</u>	21.3.21.4 21.9									
Total Volume Purged:										
Sample Date/Time: 3/14/92 Sa	ample Number: WRITCUIA?									
FRACTIONS										
(PXY V (N) NF C	O S UP Z B									
CFFHCL	P R RP T RS									
BAILED DRY 3X										
Man Man 1 2 al	Date: 3/14/93									
Signed/Sampler:	Date: $\frac{5/8192}{5}$									
Signed/Reviewer:	pare									

ĺ

2f0

ł

Well Number: WSG	<u>nurco</u> Dat	e: <u>3-1</u> 3	3-92	Time:		
Boring Diameter: _						
Annular Space Lengt						
WATER LEVEL						
Held:			<u></u>			
DTW:		Top of C	asing			
COLUMN OF WATER IN	WELL					
Casing	Length:					
DTW Top of	Casing:					
Column of Water	In Well:					
VOLUME TO BE REMOVED	)					
Gallons per foot	of A.S. (from	chart)				
Column of Water	or Length of A.	S. (whic	hever is	; less)	х	
Volume of Annula	r Space				=	
Gallons per foot		=				
Column of Water		х	<u></u>			
Volume of Casing					=	
Total Volume (V	olume of A.S. +	Volume o	f Casing	)	=	
Number of Volume	s to be Evacuate	d			Χ	
Total Volume to	be Evacuated				×	··· · · · · · · · · · ·
Method of Purging (	pump, bailer, et	c.):	·····			
FIELD ANALYSES	Start		Mid		En	d
Time	_111.0			<u></u>		
рĦ	6.3			·······		
Conductivity	<u> </u>					
Temperature	<u> </u>					
Total Volume Purged:	ga	llons				
Sample Date/Time:	1120	Sample	Number:	WR	ITW	1710
PRACTIONS						
(VP)X4 v (N	) NF <u>C</u>	0	S	UP	z	В
CF F H	CL ME		R	RP	Т	RS
NO DEFECTAB	ECLORINE	Ē				
	20	~ /	7		1	)
Signed/Sampler: <u> </u>	thomas D.	ly pl		Date:	3/1	13/92
Signed/Reviewer:		<i>v</i>		Date:	<u>-</u>	· · ·

WELL SAP	191, ENC	DATA	- FORE
----------	----------	------	--------

2f1

ell Number: oring Diameter: nnular Space Length	1W-7 8"	Wel	l Casing	g Diamet	er:	2 "	<del></del>	
oring Diameter.	. 15'	_	S :	- tickup:	<u></u>			
MATER LEVEL	· _ <b>I</b>			-				
-08						<u></u>		
Cut:			-					
DTW: 5,88		_ Top	of Cas	lng				
COLUMN OF WATER IN W	ELL							
Casing	Length:	52 5,88						
DTW Top of	Casing: 9	5,88						
Column of Water i	· · · · · · · · · · · · · · · · · · ·	<b>F</b>						
OLUME TO BE REMOVED						~		
Gallons per foot	of A.S. (	from ch	art)		:			./
Column of Water				ever is	less) 🔅	X 15	415	
Volume of Annula						<u> </u>		
Gallons per foot	of Casing					16		
Column of Water						x <u>46</u> ,		
Volume of Casing	5					=	_	
Total Volume (V	Jolume of A.	S- + Vo	lume of	Casing)		= <u>18</u>		
Number of Volume	es to be Eva	acuated				x		
Total Volume to	be Evacuate	ed		A.		= 53		
Method of Purging	(pump, baile	er, etc.	): <u>F</u> (	ordtos	Purt			-
FIELD ANALYSES	Star	rt		Mid		End		
Time	1026		. <u> </u>	<del></del>				
рН	6.1	<u> </u>		~				
Conductivity	357		<b>.</b>	<u> </u>				
Temperature	22.1	1. =						
Total Volume Purged	: 155,500 400	gall	lons		_	<b>6</b>	~ ~	
Sample Date/Time: .	1/15/93 1	224	Sample	Number:	FF	STERZ	* 4	- SAAPH (DUPLIC
FRACTIONS	_					67	5	SPLT
VP V	N NF	С	0	S	UP	Z	В	
L. L	H CL	М	Р	R	RP	Т	RS	
CF F								
CF F		,						
	mal 1	a B	(		Date	1/		7

282

APPENDIX I

1

CHAIN-OF-CUSTODY FORMS

# Soil/Sediments

(

ť

I-1

FIELD GROUP: WRITS1 / D. SUZANNE WOODWARD ///	1/1 0			5-3	S											ISED CODE AND NOTES F KNOWN .neering, Inc.	ANIZATION/DATE/TIME)	2-11-1000		$\frac{1}{\sqrt{2}}$ Problems? $\frac{1}{\sqrt{2}}$
*** FIELD LAB COORD. SU	Burry NC	- i	- /	5.6-2.	56-22	26-22	•.3 •.4 •.5 •.5	5.3-5	5 × 5			*				ACTERS MAY BE USED IRED), HAZARD CODE AND IFY SPECIFICS IF KNOWN Science & Engineering,	BY (NAME/ORGAN	m (m ESE		TO SHIP ON 3 / // rvations Audited?
SHEET	PARAMETER LIST FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS 1	FTSTWS 1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	FTSTWS1	9 ALPHANUMERIC CHARI FIELD DATA (IF REOU H-OTHER ACUTE HAZARD: IDENT ES TO Environmental	RECID	VRa		
-24-92 *** FIELD LOG NAME: COE - FT. STEWART	DATE TIME 3/9/52 /630	4	3/9/92 11.50	311-12 720	31 10/72 730	3/10/22 240	3/10/32 834	3/10/12. E40	3/10/72 850	3/10/52 ~~		-10-93 0730	10-92 0530	-10 92		Y; UP TO ATE, TIME, T-TOXIC WASTE ITH SAMPL	TIME) VIA:			IF YES, ANTICIPATED
Engineering 02 0201 PROJECT	FRACTIONS (CIRCLE)	ES SS EV SV	ES EVEN	, EV	85 (82 8V 8V)	(SS/SS/SV SV	ES SS EV SV	(SS SS SV SV	(55, 25, (5V)	(23)(55 (SV, SV)	SS SS SV SV	69 69 60 6V 3-	50 60 00 3-		SS SS SV SV	IA:		(1) 2 (Eve) /3/10/		LES TO BE SHIPPED? Y Custody Seals Intact? /
Environmental Science & PROJECT NUMBER 3924018G	SITE/STA HAZ? WS-1	WS-2	WS-3	WS-4 .	WS-5	WS-6	WS-7	WS8	WS9	WS-DUP	WS-SPL	WSD-1	WSD-2	WSD-DUP	WSD-SPL	പ്പറല	IШ I	1 Kenan D. CoyAL(ESE) / Mak		
Envir. PROJE(	ESE	(12)	(E)	60	E.S.	es (	(1+)	(*8)	6*	10	; ; ; ;	12)	(E)	1414	*15 *	NOTE	ELINQUISHED	1	- 	SAMPLER: SAMPLER: C

ĺ

284

٩,

Waters

(

4/3												NOTES , Inc.	ON/DATE/TIME)	12 1500		Problems?
COND	ي بر بر	28	20									9 ALPHANUMERIC CHARACTERS MAY BE USED , FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES E H-OTHER ACUTE HAZARD: IDENTIFY SPECIFICS IF KNOWN LES TO Environmental Science & Engineering, Inc.	(NAME/ORGANIZATION,	)@	61:41 66-	tes :
PARAMETER LIST	FTSTW1	FTSTW1 2,4	FTSTW1	ERIC CHARACTER (IF REQUIRED) 2MBD; IDENTIFY S ronmental Scie	REC'D BY	il Rem C	a-2 +2-	$\int_{a}^{b} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{10} \frac{1}{2} \frac{1}{12}$								
DATE TIME 3-11-92 1515		1-										P TO 9 ALPHANUM TIME, FIELD DATA IC MARE H-OTHER ACUTE HA SAMPLES TO ENVI	VIA:	FEPEX		YES, ANTICIPATED Samples Iced?
	CARA ARELI	AN AL	VP VP VP VP	CCESSARY; UP TO ENTER DATE, TIME R-REACTIVE T-TOXIC MAST HEETS WITH SAMP	DATE/TIME)	1800		tts th								
ERACTIONS GIRCLE		TA TA ANSING THE STA	N SW SW SW	N SM SM SM	N SW SW SW	N SW SW SW	N SM SM SM	N SM SM SM	N SW SW SW	N SM SM SM	N SW SW SW	OR ENTER SITE ID AS NECESSARY; UP FRACTIONS COLLECTED. ENTER DATE, T CODES: I-IGNITABLE C-CORROSIVE R-REACTIVE T-TOXIC RETURN COMPLETED LOGSHEETS WITH S	/ORGANIZATION/DATE	E_3-11-92		TO BE SHIFFED? ody Seals Inta
SITE/STA HAZ?	WMW-2 (	МММ-3 C	- 4 - MMM	WMW-5	WMW-6	WMW-7	WMW-DUP	WMW-SPL	WSOURCE	EQPBLK	EQPSPL	ынон	BY: (NAME	llen on los ( 26.		MORE SAMPLES USTODIAN: Cust
	(53)	<b>*</b> 3	*4	*5	*6	£*	*8	6*	*10	*11	*12	I-4 I-4 I-4 I-4 I-4	RELINQUISHED	للا الا		SAMPLER: SAMPLE C

Ę

t/,	HME			TME)	00		
*** FIELD GROUP: WRITW1 LAB COORD. SUZANNE WOODWARD	ST		UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED , TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES oxic wast H-other Acute Hazard: IDENTIFY SPECIFICS IF KNOWN SAMPLES TO Environmental Science & Engineering, Inc.	D BY (NAME/ORGANIZATION/DATE/TIME)	Rem Cas ESE 3-12 1500	61:E1 8-E1-E AS3	TO SHIP ON / / Problems?
*** FIELD LOGSHEET *** - FT. STEWART L	TIME PARAMETER LIST	FTSTB	PHANUMERIC CHA D DATA (IF REO R ACUTE HAZARD: IDEN O Environmenta	VIA: REC'D	FEPEX WA	HS3	#= 
4-92 ME: COE	TPOTE 3-11-92	/P VP	XY; UP TO 9 AL DATE, TIME, FIEL E T-TOXIC WASTE H-OTHE WITH SAMPLES T	ME)	Fel.		IF YES, ANTICIPATED Samples Iced?
nee	FRA	The second secon	R SITE ID AS NECESSARY; UP TO 9 NS COLLECTED. ENTER DATE, TIME, F I-IGNITABLE C-CORROSIVE R-REACTIVE T-TOXIC MASTE I COMPLETED LOGSHEETS WITH SAMPLE	BY: (NAME/ORGANIZATION/DATE/TI	Abroallys/ESE 3-11-92, 1800		SAMPLER: MORE SAMPLES TO BE SHIPPED? SAMPLE CUSTODIAN: Custody Seals Intact? /
Environmental Science & Engi PROJECT NUMBER 3924018G 0201	ESE SITE/STA HAZ?		-CHANGE OR ENTEL -CIRCLE FRACTIOI -HAZARD CODES: -PLEASE RETURN	RELINQUISHED BY: (NAMI	Cherro lys 6		SAMPLER: MORE SAMPLES TO BE SAMPLE CUSTODIAN: Custody S
En PR	ESE *13	+15	NOTE	RELI	- 0	ι m	SAM SAM

I-5

Environmental Science & Engineering 02-24-92 *** FIELD LOGSHEET *** FIELD GROUP: WRITW1 PROJECT NUMBER 3924018G 0201 PROJECT NAME: COE - FT. STEWART LAB COORD. SUZANNE WOODWARD /	* SITE/STA HAZ? FRACTIONS(CIRCLE) DATE TIME PARAMETER LIST MWW-1 MS MS MS N VP	2 WMW-2 MS MS NS NS N VP VP VP VP VP	3 WMW-3 MS MS NS N VP VP VP VP VP P FTSTW1	T MMM-4 . CT INISIA SALA SALA SALA SALA SALA SALA SALA	WMW-5 CHE MS MS N VP VP VP VP 3-13-12 /AC/ FTSTW1 21/	WMW-6 MAS MS N VP VP VP 3-13-92 ARGA FTSTWI U.S.	WMW-7 CHE MS N VP VP VP 3-14-92	WMW-DUP WE WE NY VP VP VP 3-3-3-72	AWW-SPL MS MS MS VP VP VP VP	MSOURCE AS AS AS AS AS 3-13.93 FISTWI / 2 370	EQPBLK OF MES OF OF OF OF FISTW1	EQPSPL MS MS N VP VP VP VP VP	-CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMER -CIRCLE FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA ( -HAZARD CODES: I-ICNITABLE C-CORROSIVE R-REACTIVE T-TOXIC WASTE H-OTHER ACUTE HAZARC -PLEASE RETURN COMPLETED LOGSHEETS WITH SAMPLES TO ENVIRO	BY: (NAME/ORGANIZATION/DATE/TIME) VIA: REC'D BY (NAME/ORGANIZATION	WWPPEREVEX VERA OD ESE 3-14 1	PLER: MORE SAMPLES TO BE SHIPPED? IF YES, ANTICIPATED # TO SHIP ON ///////////////////////////////////	CP-21-2 May	
Environ ⁿ PROJECT		*2	*3	(F)		(g)	(L3)	M (8*)	м 6 <b>*</b>	M	Æ.	*12	NOTE - CHA CLRA PLEZ - PLEZ	RELINQUISHED	5 - 7	 SAMPLER: SAMPLE CU		

ĺ

(

7fJ

2	2	TIME)	181     ->	1			259
LTW1 6 Cash		res nc. DATE/TI	7	2	3		
SLD GROUP: WRITW1 SUIZANNF WOODWAPD		NUD NOT NWN NUD NOT NTIONTI			014 3-15-42		
D GROU		USED CODE A LF KNO Lineeri GANIZA	SE		A TO		
FIELD COORD SUD	1 1	AY BE AZARD IFICS E ED9 AME/OR			Ļ		
A A B	1 1	TERS M FED) H SPECC Cience BY (N					
*		CHARAC CHARAC DENTIFR DENTIFR DENTIFR DENTIFR DENTIFR	DE OF				
ELD LOGSH STEWART	PARAMETER LIST FTSTB FTSTB FTSTB	MERIC A (IF AZARD: II AZARD: II AZAR	#				
*** FIELD LOGSHEET - FT. STEWART	TIME	LD DAT LD DAT ER ACUTE H FO Env	ANTICIPATED SNTICIPATED es Iced? V				
нік к СО СО СО	DATE 3-1492	OR ENTER SITE ID AS NECESSARY, UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED) HAZARD CODE AND NOTES CODES: I=10NTABLE C-CORNOSIVE R-REACTIVE T=TOXIC WASH H-OTHER ACUT HAZARD; IDENTIFY SPECIFICS IF KNOWN RETURN COMPLETED LOGSHEETS WITH SAMPLES TO Environmental Science & Engineering, Inc. 3Y: (NAME/ORGANIZATION/DATE/TIME) VIA: REC'D BY (NAME/ORGANIZATION/DATE,					
4-92 ME:	an an an	TE, TI TE, TI T=TOXIC H TH SA	F YES,				
$\sim$	LE) VP VP VP VP	ESSAR) TTER D2 -REACTIVE EETS W]	ct?	<b>~</b>		·	
Engineering 0. 0201 PROJECT		AS NEC ED. EN BRIOSIVE R LOGSHE TION/L	SHIPPED?				
	FRACTIONS (CIRCLE)	TE ID OLLECT OLLECT LETED GANIZA					
Science & 3924018G	~	TER SI IONS C I USC C	LES TO Custody				
al Sci BER 39	STA HAZ BLK BLK SPL						
Environmental PROJECT NUMBER	SITE/STA TRPBLK TRPBLK TRPSPL		REMARESAM				
Envir( PROJE(	EC *13 *15 *15	NOTE -CHANG -CIRCL -HAZAR -HAZAR -PLEAS RELINQUISHED		I-7			
	ы		i i i i i i i i i i i i i i i i i i i				

(

APPENDIX J

298

ANALYTICAL RESULTS

1992 RESULTS

$ \begin{array}{llllllllllllllllllllllllllllllllllll$					Envi PROJ FIELI	Environmental PROJECT NUMBER FIELD GROUP	Science & 39240186 39240186 MR1TS1 ALL	Environmental Science & Engineering PROJECT NUMBER 3924018C 0201 PRO. FIELD GROUP WRITS1 PRO. ALL LAB	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	/96//92 STA' COE - 1 SER S.P. HA FOR SUZANNI	DATE 04/96/92 STATUS : FINAL (CT NAME COE - FT. STEMART (CT MANAGER S.P. HOODWARD CORDINATOR SUZANNE WOODWARD		PAGE J		·
Item         Item <t< th=""><th>SAMPLE ID'S Parameters Units</th><th>STORET METHOD</th><th>HS-3 LS1 LS1 LS1 LS1 L</th><th>NS-2 URITSI 2</th><th>. WS-3 MRITS1 3</th><th>HS-4 HR1751 4</th><th>HS-5 HRITS1 5</th><th>HS-6 HRITS1 6</th><th>NS-7 NRITSL 7</th><th>HS-8 HRITSI B</th><th>HS-9 HRITS1 9</th><th>MS-DUP MR1TS1 10</th><th>NSD-1 NR1TS1 12</th><th>NSD-2 URITS1 13</th><th>HSD-DUP HR I TS I 14</th></t<>	SAMPLE ID'S Parameters Units	STORET METHOD	HS-3 LS1 LS1 LS1 LS1 L	NS-2 URITSI 2	. WS-3 MRITS1 3	HS-4 HR1751 4	HS-5 HRITS1 5	HS-6 HRITS1 6	NS-7 NRITSL 7	HS-8 HRITSI B	HS-9 HRITS1 9	MS-DUP MR1TS1 10	NSD-1 NR1TS1 12	NSD-2 URITS1 13	HSD-DUP HR I TS I 14
It is in the interplate interpl	DATE TIME		83/89/92 16:30	83/89/92 16:48	63/89/92 16:50	83/16/92 87:28	03/10/92 07:30	03/10/92 07:40		09/10/92 08:40	03/10/92 08:50	83/18/92	63/16/92 69:36	03/10/92 08:30	83/18/92
MC-DNT         1003         4.12         4.51         3.05         6.753         2.47         6.391         2.37         2.99         9.476           MC-DNT         1003         1.6         1.2         1.2         1.14         10.3         2.41         9.47           MC-DNT         1003         1.61         12.6         1.13         25.9         12.6         11.7         17.7         4.51           MC-DNT         1028         1.16         3.23         5.48         7.39         6.53         1.57         5.49           MC-DNT         1029         15.6         6.14         3.39         5.48         7.39         6.53         1.77         7.39         6.53         7.19           MC-DNT         1029         6.143         3.39         5.48         7.39         6.39         7.39         6.39         7.39           MC-DNT         1029         6.143         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.133         6.133         6.133         6.133         6.133         6.133         6.133         6.133         6.		02687	14.1	16.3	15.4	9.7	16.5	16.8	14.6	17.2	14.7	10.0	25.1	14.7	15.4
MC-DN         DD         15.4         12.9         11.4         16.9         11.2         9.47           MC-DN         100         15.6         6.14         33.9         5.48         7.39         6.45         11.7         17.7         6.51           MC-DN         100         15.6         6.14         33.9         5.48         7.39         6.46         1.77         7.51           MC-DN         100         15.6         6.14         33.9         5.48         7.39         6.59         1.77         7.51           MC-DN         100         12.5         11.7         7.59         6.49         7.39         6.49         7.39           MC-DN         100         0.325         0.485         6.183         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193         6.193	ARSENJC, SED MG/KC-DRV	1003 Cf AA	4.12	4.51	3.05	0.755	2.42	0.639	2.37	2.99	8.966	4.12	3, 82	3.38	3.31
(C-DN) $(0.0)$ $(1.61)$ $(C-366)$ $(1.9)$ $(2.14)$ $(2.13)$ $(1.7)$ $(2.12)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.7)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$ $(1.2)$	BARIUM, SED MG/KG- DRY	1008	15.4	12.9	10.3	25.9	12.6	11.4	16.8	11.2	9.47	16.8	37.2	13.4	24.7
MC-DNT         NO         I.7.3         I.7.3 <thi.7.3< th="">         I</thi.7.3<>	CADM1UM_SED MG/KG-DRY	1028 1028	19.1	<8.546	4.89	0.548	0.779	<0.563	1.64	2.12	0.564	1.96	2.21	0.786	2.26
MC-DNF         11.7         12.3         11.7         12.3         11.7         12.3         11.7         699         699         699         699         699         699         699         699         699         699         699         699         699         699         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6199         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191         6191 <td>CHROM JUN SED</td> <td>1829 1629</td> <td>15.6</td> <td>6.14</td> <td>33.9</td> <td>5.48</td> <td>7.59</td> <td>6.45</td> <td>11.7</td> <td>17.7</td> <td>4.51</td> <td>16.1</td> <td>16.8</td> <td>6.99</td> <td>19.4</td>	CHROM JUN SED	1829 1629	15.6	6.14	33.9	5.48	7.59	6.45	11.7	17.7	4.51	16.1	16.8	6.99	19.4
T132         G. 102         G. 103         G. 103 </td <td></td> <td>1052 ICAP</td> <td>7.17</td> <td>12.2</td> <td>11.7</td> <td>&lt;6.99</td> <td>&lt;7.02</td> <td>&lt;7.48</td> <td>&lt;6.98</td> <td>8.35</td> <td>&lt;7.19</td> <td>&lt;6.96</td> <td>15.4</td> <td>&lt;7.17</td> <td>7.92</td>		1052 ICAP	7.17	12.2	11.7	<6.99	<7.02	<7.48	<6.98	8.35	<7.19	<6.96	15.4	<7.17	7.92
NG-DN         114 $0.325$ $0.435$ $0.415$ $0.325$ $0.415$ $0.325$ $0.415$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.325$ $0.$	MERCURY, SED	71921	<0.102	<0.183	<8.185	868.8>	<0.106	<0.193	<0.103	<8.189	<8.182	<0.097	<0.117	<0.105	<0'193
$(6-) \mathrm{N}\mathrm{V}$ $(6, -) \mathrm{N}\mathrm{N}$ $(6, -) \mathrm{N}\mathrm{N}\mathrm{N}$ $(6, -) \mathrm{N}\mathrm{N}\mathrm{N}$ $(6, -) \mathrm{N}\mathrm{N}\mathrm{N}$	SELENJUN, SED Mc/ke-DBY	1148 1148	0.325	0.485	8.318	<0.270	<0.292	(8.29I	<0.292	0.387	<0.291	<0.272	<0.326	<0.291	<0.288
3200         61         64         63         770         64         63         62         63           KE-DRY         0KS         6H	C. SILVER, SED	1878	<0.770	<0.819	<8.837	<8'.789	<0.792	<0.844	<0.787	<0.846	<0.812	<0.786	<8.885	<8.889	<0.815
HYLEK         3420         CI         CI </td <td>NACENAPHTHENE 112/102</td> <td>3420B</td> <td>(81</td> <td>&lt;81 1</td> <td>68&gt;</td> <td>875</td> <td>&lt;84</td> <td>&lt;83</td> <td>&lt;82</td> <td>&lt;85</td> <td>&lt;82</td> <td>&lt;78</td> <td>E6&gt;</td> <td>&lt;82</td> <td>&lt;83</td>	NACENAPHTHENE 112/102	3420B	(81	<81 1	68>	875	<84	<83	<82	<85	<82	<78	E6>	<82	<83
ME         3423         CB1         CB4         CB3         C78         CB4         CB3         CB2         CB5         CB5 <thcb5< th=""> <thcb5< th=""> <thcb5< th=""></thcb5<></thcb5<></thcb5<>	ACENAPHTHYLENE III/KG-DRY	5029E	18>	<b>4</b> 8 <b>4</b>	68>	<i>41</i> 8	<84 <	68>	<82	(85	<82	<78	E6>	<82	<83
MTHRAGENC         34529         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         UG///////////////////////////////////	ANTHRACENE	34223 EMS	18>	<b>1</b> 84	<83	₹78	<84 <	<83	<82	<85	<82	679	E6>	120	338
PYRENC         34250         C160         C170         C170         C170         C160         C170         C160         C170         C160         C170         C160         C170         C160         C170         C120	BENZO(A)ANTHRACENE IIC/KG-DRY	34529 GMS	<120	<120	<128	4119	<120	<120	<120	<120	<12 <b>0</b>	6115	1988	2000	2799
FLUORANTIENE         3123         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120         <120	BENZO(A)PYRENE	34250 GMS	<168	<170	<178	<168	<178	<178	<168	<170	<168	<168	2808	22.00	2766
D)PERTLEN:         3452         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190         (190	BENZO(B)FLUORANTHENE Inc/KG-DRY	54233	<120	<120	<128	4119 4	<128	<128	<128	<120	<128	811S	4200	3766	4768
FLUORMATIENE         34245         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         UG/KG-DRY         6HS         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120         (120 <td>BENZO(CHI)PERYLENE</td> <td>34524 GMS</td> <td>¢198</td> <td>061&gt;</td> <td>615</td> <td><b>6</b>81&gt;</td> <td><b>0</b>61&gt;</td> <td>&lt;190</td> <td><b>0</b>61&gt;</td> <td>&lt;198</td> <td>961&gt;</td> <td>&lt;188</td> <td>3688</td> <td>1688</td> <td>2000</td>	BENZO(CHI)PERYLENE	34524 GMS	¢198	061>	615	<b>6</b> 81>	<b>0</b> 61>	<190	<b>0</b> 61>	<198	961>	<188	3688	1688	2000
UG/KG-DRY         6128         <128         <128         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <129         <120         <129         <129	BENZO(K) FLUORANTHENE 110 / KG-DBY	34245 CMC	<120	<128	¢120	<118	<120	<128	<120	<120	<120	<118 <	1200	1100	1288
34559       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196       (196		34323	<120	<128	<128	811S	<128	<120	<120	<120	<12 <b>0</b>	<118	2500	0961	2699
MC-DRY         34379         120         <84         <83         <78         <84         <83         <85          <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85         <85 </td <td>DIBEN(A, H) ANTHRACENE</td> <td>34559</td> <td>&lt;198</td> <td>&lt;198</td> <td><b>8</b>61&gt;</td> <td><b>6</b>81&gt;</td> <td>&lt;198</td> <td>061&gt;</td> <td>&lt;190</td> <td>861&gt;</td> <td>961&gt;</td> <td>&lt;180</td> <td>&lt;218</td> <td>328</td> <td>&lt;198</td>	DIBEN(A, H) ANTHRACENE	34559	<198	<198	<b>8</b> 61>	<b>6</b> 81>	<198	061>	<190	861>	961>	<180	<218	328	<198
34384 </td <td>FLUORANTHENE</td> <td>34379 CMS</td> <td>120</td> <td><del>1</del>87</td> <td>683</td> <td>&lt;78</td> <td><b>F</b>8&gt;</td> <td>68&gt;</td> <td>160</td> <td>&lt;85</td> <td>&lt;82 (82)</td> <td>&lt;78</td> <td>3400</td> <td>4608</td> <td>6288</td>	FLUORANTHENE	34379 CMS	120	<del>1</del> 87	683	<78	<b>F</b> 8>	68>	160	<85	<82 (82)	<78	3400	4608	6288
		34384 CMC	(81	<b>1</b> 87	68>	478	<84	68>	<82	<85	<82	<7B	66>	<82	(83
XG-DRY         34445	(1,2	34486 CMC	6198	615	961>	<180	961>	061>	961>	<198	615	4180	4000	2000	2260
истори 34464 (81 (84 (83 (78 (84 (83 (85 Ист.,лоу счес	NAPHTHALENE	34445	(81	<84	683	<78	<84	68>	<82	<85	149	<78	E6>	<82	68>
	PHENANTHRENE UG/KG-DRY	34464 GMS	(8)	<84	<83	<78	<84	68>	<b>&lt;8</b> 2	<85	<82	<78	£6>	760	2100

Ć

ť

. .

2/2

Ì

				Env H PROJI FIELL	ronmental CCT NUMBER ) GROUP	Environmental Science & Engineering PROJECT NUMBER 39240160 0201 PROJ FIELD GROUP WRITS1 PROJ ALL LAB	Engineerin 0201 PR PR LA		'92 ° COE S P.	'92 STATUS : FINAL Coe - FT. Stewart S.P. Hoodmard Suzanne Hoodward	<b></b>	PAGE 2		
SAMPLE ID'S Parameters Units	STORET METHOD	HS-1 HR!TS1 J	HS-2 Hritsi 2	WS-3 WR1TS1 3	NS-4 NR1751	WS-5 WRITSI 5	WRITSI 6 6	HS-7 HRITSI 7	NSB URITSI B	NS-9 NRITSI 9	MS-DUP MRITSI 18	NSD-1 NR17S1 12	NSD-2 Writsi 13	USD-DUP URITS1 14
DATE TIME		03/09/92 16:30	03/09/92 16:40	83/89/92 16:58	83/18/92 87:28	03/10/92 07:30	03/10/92 07:40	08:30 08:30	03/10/92 08:40	03/10/92 08:50	26/01/20	03/10/92 09:30	03/10/92 08:30	03/10/92
PYRENE 116/KG-DRY	34472 GHS	<81	<84	683	<78	<84	68>	66	<85	<82	877	3366	3788	5288
BENZENE UC/KG-DRY	34237 GMS	<5.8	<6.0	<5.9	<5.5	<6.8	<b>6.</b> 8	<5.9	<6.8	<b>(</b> .5)	<5.6	<6.7	<5.9	<5.9
BROMOD I CHLOROMETHANE UG/KG-DRY	34330 6MS	<5.8	<b>6.</b> 8	(5.9	<b>(5.5</b>	<6.8	(¢.8	<5.9	<6.8	<5.9	<5.6	<6.7	<5.9	<5.9
BROMOF ORM IIG /KG-DRY	34290	<5.8	<6.8	<5.9	<5.5	<6.8	<6.8	<5.9	<6.0	(5.9	<5.6	<6.7	<5.9	<5.9
BROMOMETHANE UG/KG-DRY	344 16 GMS	<12	<12	<12	!	<12	<12	<12	<12	<12	(II)	(13	<12	<12
METHYL ETHYL KETONE UG/KG-DRY	75078 GMS	¢12	, <12	<12	!	<12	<12	<12	<12	<12	II> .	£13	<12	<12
CARBON DISULFIDE UG/KG-DRY	78544 GNS	<5.8	<6.0	<5.9	<5.5	<6.8	<6.8	<5.9	<b>6</b> .9>	<5.9	<5.6	<6.7	<5.9	(5.9
CARBON TETRACHLORIDE UG/KG-DRY	34299 GHS	<5.8	<b>6</b> .9>	<5.9	<5.5	<6.8	<6.8	<5.9	<6.9>	<5.9	<5.6	<6.7	<5.9	<5.9
CHLOROBENZENE UG/KG-DRY	34304 GMS	<5.8	<6.8	<5.9	<b>&lt;5.5</b>	<6.0	<6.8	<5.9	<6.8	<5.9	<5.6	<b>&lt;6.7</b>	6.3>	<5.9
DIBRONOCHLORONETHANE UG/KG-DRY	34309 GNS	<5.8 <5.8	<6.0	<5.9	<b>45.5</b>	<6.8	<6.8>	<5.9	<6.0	<5.9	<5.6	<6.7	<5.9	<5.9
CHLOROETHANE UG/KG-DRY	34314 GMS	<12	<12	<12	(11)	<12	<12	<12	<12	<12	<li>II&gt;</li>	<13	<12	<12
CHLOROFORM UG/KG-DRY	34318 GMS	<5.8	<6.8	(5.9	<5.5	<6.8	<6.8	<5.9	<6.8	<5.9	<5.6	<6.7	<b>(5.9</b>	<5.9
2-CHLOROETHYLVINYL- ETHER UC/KG-DRY	34579 GNS	<5.8	<6.0	<5.9	<5.5	<6.8	<6.8	<5.9	6.B	<5.9	<5.6	<6.7	<5.9	<5.9
E	34421 GHS	<12	<12	(12	(I)	<12	(12	<12	<12	<12	(11	<i3< td=""><td>&lt;12</td><td>&lt;12</td></i3<>	<12	<12
I, 2-DICHLOROBENZENE UG/KG-DRY	34539 GNS	<b>18</b> >	<84	68>	<7B	<84	<83	<82	<85	<82	<78	<93	<82	<83
1, 3-DICHLOROBENZENE UG/KG-DRY	34569 GHS	18>	<84	<83	<78	<84	<83	<82	<85	<82	<78	66>	<82	£8>
I, 4-DI CHLOROBENZENE IIC/KG-DRY	34574 GHS	18>	(84	<83	<78	<84	£8>	<82	<85	<82	<78	<93	<82	<83
DI CHLOROBENZENE, TOTA	98578	<12	<12	<12	(1)	<12	<12	<12	<12	<12	(1)	<13	<12	<12
I, I-DICHLOROETHANE II, I-DICHLOROETHANE	34499 SMS	<5.8	<6.8	<5.9	<5.5	<6.8	6.8>	<5.9	<6.8	(5.9	<b>65.6</b>	<6.7	<5.9	<5.9
1,2-DICHLOROETHANE IIC/KG-DRY	34534 GMS	<5.8	<b>6</b> -9>	<5.9	<b>&lt;5.5</b>	<6.8	\$P.9>	<5.9	6.9>	<5.9	<5.6	<6.7	<5.9	<5.9
1, 1-DICHLOROETHYLENE UG/KG-DRY	34504 GMS	<5.8	<6.8	<5.9	<5.5	<6.8	(¢.8	<5.9	<6.8	<5.9	<5.6	<6.7	<5.9	<5.9
1, 2-DICHLOROETHENE (T OTAL ) UG/KG	96464 GMS	<5.8	<6.8	(5.9	<5.5	<6.8	<6.8	<5.9	<6.0	<5.9	<5.6	<6.7	<5.9	<5.9
ICHLO	34544 GMS	<5.8	<6.8	<5.9	<5.5	<6.8	6.8>	<5.9	<6.0	<5.9	<5.6	<6.7	<5.9	<5.9
CIS-1, 3-DICHLORO- PROPENE UG/KG-DRY	34702 GMS	<5.B	<6.8	<5.9	<5.5	<6.8	6.9>	€*S>	6.8	<5.9	<5.6	<6.7	<5.9	<5.9

J-3

ĺ

293

i

				Envir PROJE FIELC	Environmental Science & PROJECT NUMBER 39240186 FIELD GROUP MRITS1 ALL	Environmental Science & Engineering PROJECT NUMBER 3924018G 0201 PROJ FIELD GROUP WRITS1 PROJ FIELD GROUP MRITS1 LAB	Engineerin 8201 PRC PRC		DATE 04/06/92 STATUS : FINAL CT NAME COE - FT. STEMART CT MANAGER S.P. HOODHARD SOORDINATOR SUZANNE HOODHARD	92 STATUS : FINAL COE - FT. STEMART S.P. WOODWARD SUZANNE MOODWARD	L PAGE	35		
SAMPLE ID'S Paraneters Units	STORET METHOD	NRITSI I	us-2 uritsi 2	E-SH 1ST171	NS-4 NR1TS1	HS-5 HRITSI 5	NS-6 NRITS1 6	MS-7 HRITSI 7	HS-8 HRITS1 HRITS1	HS-9 HRITSI 9	91 10-sh 10	HSD-1 HR I TS1 12	USD-2 URITSI 13	NSD-DUP NRLTS1 14
DATE TIME		83/89/92 16:30	83/89/92 16:40	03/09/92 16:50	03/10/92 07:20	03/10/92 07:30	03/10/92 07:40	03/10/92 08:30	03/10/92 08:40	03/10/92 08:50	63/10/55	83/10/92 89:38	83/16/92 88:38	03/10/9 <b>2</b>
TRANS-1, 3-D1CHLORO- PROPENE IN /KG-DRY	34697 CMS	<5.8	6.9>	(5.9	<5.5	<b>6.</b> 8	6.8	<5.9	( <del>6</del> .8	<b>(5.9</b>	<5.6	<6.7	<5.9	<5.9
DIETHYL ETHER	10279 10270	<18	<18	<del>0</del> 1>	<b>91&gt;</b> .	<18	<16	41e	615	<10	615	61>	<18	<18
ETHYLBENZENE IIG AC-DBY	14374 14374	<5.8	\$6.8	<5.9	<5.5	6.8	<b>6.</b> 9>	<b>6.</b> 3	<6.8	<5.9	<5.6	<6.7	(5.9	<5.9
METHYLENE CHLORIDE	34426 24426	<5.8	<6.8	<5.9	<5.5	6.8	6.3>	<5.9	<6.8	<5.9	<5 <b>.</b> 6	<6.7	<5.9	<5.9
METHYL I SOBUTYLKETONE IIG /KG-DRY	75169	<12	<12	<12	(1)	<12	<12	<12	<12	<12	ti)	EI>	<12	<12
1,1,2,2-TETRACHLORO- FTHANE NG/KG-DBY	34519 Enc	<5.8	\$6.9	<b>&lt;5.9</b>	<5.5	<6.8	<6.8	<5.9	<6.0	<5.9	<5.6	<6.7	(5.9	<5.9
5	34478 BM478	<5.8	6.8	<b>45.9</b>	<5.5	<6.8	<6.8	<5.9	<6.0	<5.9	<5.6	<6.7	<5.9	<5.9
TOLUENE US 201 CONTRACTOR	34483	42°8	<b>6.</b> 8	<5.9	<5.5	6.9>	(6.B	<5.9	<b>6</b> .9>	€.5	<5.6	<6.7	<5.9	<5.9
1, 1, 1-TRICHL'ETHANE	34509	<5.8	6. <del>8</del>	<b>6.</b> 3	<5.5	<b>6.</b> 8	<6.9>	<5.9	<b>6</b> .9>	<5.9	<5.6	<6.7	(E.9	<5.9
I, I, Z-TRICHL 'ETHANE	942 14	<5.8	46.B	<5.9	<5.5	6. <del>0</del>	4e.8>	<5.9	<6.0	<5.9	<5.6	. <6.7	<5.9	<5.9
TR I CHLOROE	34487	8.4	<b>6.</b> 8	<5.9	12	6.9>	(9°9)	<5.9	7.1	<5.9	<5.6	6.9	48	<5.9
TRICHLOROFLUOROMETHA	16445 16445	<5.8	<b>6.</b> 8	<5.9	<5.5	6.6	(¢.8	<5.9	<6.8	<5.9	<5.6	<6.7	10.6	<b>(5.9</b>
VINYL CHLORIDE	34495 CHC	<12	<12	<12	<11>	<12	<12	<12	<12	<12	<b>11</b> >	<13	<12	<12
XYLENE TOTAL UG/KG-DRY	45510 6MS	<5.8	<b>€6.</b> ₿	<5.9	<5.5	<6.8	<6.8	<5.9	<6.0	<5.9	<5.6	<6.7	<5.9	<5.9

.

зť Ц

se No

. .

k

.

	TRPBLK NR1T41 14	83/14/92	NRQ	NRO	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	MRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ
1	TRPBLK Uritui 13	03/11/92 18:00	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRO	NRQ	NRQ	NRQ	NRQ	NRQ
PAGE	EQPBLK URITHI 11	03/13/92	(2.3	(1.1	<b>4.</b> 4	4-15	<63.8	<0.18	<2.8	<6.1	6.15	\$1.8	6.15	<1.5	<2.8	<1.5	2.5	<1.5	<1.5	<2.5	<1.B	6.15	<2.5	<1.0	6.1>	6.1>
STATUS : FINAL - FT. STEWART . HOODMARD ANNE HOODMARD	HSOURCE MR17M1 10	26/E1/E0	(2.3	7.3	4.4	4.75	<63.8	<0.18	<2.8	<6.1	6.1>	8.1>	<1.0	<1.5	<2.0	<1.5	<2.5	<1.5	<1.5	<b>(2.5</b>	<1.0	<1.8	<2.5	<1.8	6.1>	¢1.0
Ing DATE 04/06/92 STATUS ; FINAL PROJECT NAME COE - FT. STEUART PROJECT MAMAGER S.P., WOODWARD LAB COORDIMATOR SUZANNE WOODWARD	KMM-DUP Hritui B	26/E1/E0	<2.3	58.2	4.4>	9.2	\$63.8	<81.18	<2.0	<6.1	<1.0	6.1>	6.15	<1.5	<2.8	<1.5	<2.5	<1.5	<1.5	<2.5	6.15	<1.8	<2.5	<1.0	<1.8	¢1.0
J DATE 04/ JECT NAME JECT MANAG S COORDINAT	WNN-7 NRTTH1 7	83/14/92 89:45	3.7	129	4-42	16.7	<63.8	<0. IB	<2.8	<6.1	6.1>	\$1.B	<1.0	<1.5	<2.8	<1.5	<2.5	(1.5	<1.5	<2.5	<1.0	<1.0	<2.5	6.1>	6.1>	<ul><li>&lt;1.0</li></ul>
Environmental Science & Engineering DaTE 04 PROJECT NUMBER 32240186 0201 PROJECT NAME FIELD GROUP WRITWI PROJECT MAMA ALL LAB COORDINA	WMM-6 NR1741 6	03/13/92 08:45	<2.3	33.8	4.4>	1.15	8-63-8	<0.18	<2.8	<6.1	6.1>	6.1>	6.1>	<1.5	<2.8	<1.5	<2.5	<1.5	<1.5	<2.5	<1.8	6.1>	<2.5	<1.8	<1.8	6.15
Science & E 39240180 0 WRITHI ALL	umu-5 uritui 5	83/13/92 10:40	<2.3	23.9	4.4	4-15	<63.8	<0.18	9.S	<6.1	<1.0	6.1>	6.15	<1.5	<b>6</b> .2>	<1.5	<2.5	<1.5	<1.5	<2.5	<1.8	6.1>	<2.5	<b>8</b> .1>	<1.8	¢1.0
Environmental PROJECT NUMBER FIELD GROUP	NMH-4 NRITH1 4	83/13/92 89:48	<2.3	61.9	<4.4	13.6	<63.8	<0.18	<2.8	<6.1	41.B	<1.8	61.0	<1.5	<2.8	<1.5	<2.5	<1.5	<1.5	<2.5	61.B	6.1>	<2.5	8.1>	6.1>	<1.8
Envi PROJ	HNN-3 Uritri 3	03/11/92 15:45	(2.3	28.4	4.45	4.15	8.63>	<b>&lt;0</b> .18	<2.8	<6.1	¢1.0	<1.8	¢1.0	<1.5	<2.0	<1.5	<2.5	<1.5	<1.5	<2.5	¢1.0	<1.8	<2.5	8.1×	<1.0	6.15
	WMH-2 WR1T41 2	03/11/92 15:30	<2.3	15.2	<b>4.</b> 4	4.15	8-63>	<0.18	<2.8	<6.1	<1.0	<1.0	<1.0	<1.5	<2.0	<1.5	<2.5	<1.5	<1.5	<2.5	8.1>	6.1>	<2.5	<1.8	<1.0	<1.0
	HNH-1 HR1741 1	03/11/92 15:15	<2.3	36.0	4.4	4.15	8.63.8	<8.18	4 <b>2</b> .8	(1.9	9.15	9-1>	6.1>	<1.5	<2.8	<1.5	<2.5	<1.5	<1.5	<2.5	¢1.0	6.1>	<2.5	1.1	0°1>	\$1. <b>8</b>
	STORET NETHOD		1982 Ce aa	1887	1027 1027		1051	1996	1147	1077	34205	34200	34228	34526 24526	34247		1224E	ŵ	34320	E 34556	94376	1964E	34463 24463	34696	34461 CMS	34469 GMS
	SAMPLE ID'S Parameters Units •	DATE TIME	* ARSENIC, TOTAL IIC/I	, BARIUN, TOTAL	CADMIUM_TOTAL	CHRONIUN, TOTAL	<pre>// LEAD_TOTAL // IIC/3</pre>	1 MERCURY, TOTAL	SELENIUM, TOTAL	' SILVER, TOTAL	ACENAPHTHENE	CL ACENAPHTHYLENE	ANTHRACEN	BENZO(A)ANTHRACENE	BENZO(A)PYRENE	BENZO(B)FLUORANTHENE	BENZO(GHI)PERYLENE	BENZO(K)FLUORANTHENE	CHRYSENE US/L	DIBEN'(A,H)ANTH'CENE	FLUORANTHENE	FLUORENE US/L	INDENO(1,2,3-CD)	Ę	DENANTHRENE	PYRENE UG/L

J-5

/

đ N

-. 295

k

				Env I PROJ	Environmental PROJECT NUMBER FIELD GROUP	Science & 39240186 WRITH1 ALL	Englneerin 9201 PR PR	Environmental Science & Engineering DATE 04/06/92 STATUS : Fina Project number 3924018C 0201 Project mame cot - FT. Stemar Project manager S.P. Woodward Field Group Mrithi Lab Coordinator Suzanne Moodward	/06/92 STA COE - SER S.P. H	DATE 04/06/92 STATUS : FINAL ECT MAME COE - FT. STEMART ECT MANGER S.P. WOODWARD COORDINATOR SUZANNE WOODWARD	PACE	й 2	-
SAMPLE ID'S Parameters Units	STORET METHOD	WMW-1 WR I TW 1 3	NNN-2 NRITUI 2	HMM-3 NR (TW 1 3	NRU-4 Nritui 4	HMM-5 HRITH1 5	UMU-6 URITUL 6	HMH-7 Infitul 7	WMM-DUP Uritui 8	NSOURCE NR I TN 1 18	EQPBLK Mritul 11	TRPBLK NRITHI 13	TRPBLK Nrithi 14
DATE TIME		03/11/92 15:15	96:51 15:30	03/11/92 15:45	83/13/92 89:48	03/13/92 10:40	63/13/92 08:45	03/14/92 09:45	<b>0</b> 3/13/92	03/13/9 <b>2</b>	03/13/92	03/11/92 18:00	83/14/92
BENZENE UG/L	94030 GR30	1.1	¢1.0	41.B	¢1.8	278	238	9.1>	<1.9	¢1.8	61.B	<b>6</b> .1>	<1.8
BROMOD I CHLOROMETHANE UG/L	32101 GMS	<b>(2.2</b>	<2.2	<b>(2.2</b>	<2.2	4-45	<4.4	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2
BRONOF ORM UG/L	32184 GMS	<2.6	<2.6	<b>2.6</b>	<b>42.6</b>	<5.2	<5.2	<2.6	<2.6	<2.6	<b>c2.6</b>	<2.6	<2.6
BROMOMETHANE UG/L	344 13 GMS	(3.5	<3.5	<a.5< td=""><td>&lt;3.5</td><td>6.15</td><td>&lt;7.8</td><td>&lt;3.5</td><td>&lt;3.5</td><td>&lt;3.5</td><td>&lt;3.5</td><td>(<b>3.5</b></td><td><b>(</b>3.5</td></a.5<>	<3.5	6.15	<7.8	<3.5	<3.5	<3.5	<3.5	( <b>3.5</b>	<b>(</b> 3.5
CARBON DISULFIDE	77041 CHS	(t.4	<b>64.4</b>	4.1	<4.4	<8.8	<8.8	<b>4.4</b>	4-4	<b>4</b> .4	4. <del>1</del> .	(4°4	(4.4
CARBON TETRACHLORIDE UG/L	32182 CHS	<2.6	<2.6 <	<2.6	<2.6	<5.2	<5.2	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6
CHLOROBENZENE UG/L	19646 CMS	4.1	<b>41.4</b>	4.15	4.15	<2.8	<2.8	4.1>	4.15	4.15	<b>*</b> .1>	4.15	4.15
DIBROMOCHLOROMETHANE UC/L	32105 GMS	<2.3	<2.3	E.5	\$2.3	<4.6	<4.6	<2.3	<2.3	<2.3	£.5>	6.2>	£.5>
CHLOROETHANE UG/L	34311 GMS	<pre>&lt;8.2</pre>	<8.2	<8.2	<b>&lt;8.2</b>	<16	<16	<b>&lt;8.2</b>	<b>&lt;8.2</b>	<8.2	<8.2	<8.2	<b>c</b> 8.2
	32106 GMS	<2.5	<2.5	<2.5	<2.5	<5.0	<5.8	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-CHLOROETHYLVINYL- ETHER UG/L	34576 GMS	(J. F	(3.1	<3.1	(3.1	<6.2	<6.2	<a.1< td=""><td>(3.1</td><td>&lt;3.1</td><td>&lt;3.1</td><td>(3.1</td><td>&lt;3.1</td></a.1<>	(3.1	<3.1	<3.1	(3.1	<3.1
CHLOROME THANE UG/L	344 18 CMS	4.4	4-4	4.4S	4.4	<8.8	<8.8	4.4	4.4	<b>4 4</b>	<4.4	4.4	4.4
DI CHLOROBE NZENE, TOT. UG/L	81524 GMS	4. <del>1</del>	4°.	< <b>4</b> .8	<4.8	<b>8</b> .8>	<8.8>	<4.8	<4.0	6.4>	6. 4.	( <b>4</b> .8	<li>4.8</li>
1, 1-DI CHLOROETHANE UG/L	34496 GNS	<2.5	<2.5	Q.5	<b>C2.5</b>	<5.8	<5.8	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1, 2-DI CHLOROETHANE UG/L	34531 GMS	<b>42.5</b>	<2.5	<2.5	<2.5	<5.8	<5.8	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1, 1-DI CHLOROETHYLENE UG/L	34501 GMS	<3.2	<3.2	<b>&lt;3.2</b>	<3.2	<6.4	<6.4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2
1, 2-D1CHLOROETHENE(T DTAL) UC/L	96463 GMS	<b>C2.4</b>	<b>4</b> 5. <b>4</b>	<b>(2.4</b>	<2.4	<li>4.8</li>	<4.8	<2.4	<b>42.4</b>	<b>4</b> .5	<b>42.4</b>	<b>4</b> .5	4.5
GHL	34541 6MS	<b>6</b> .2>	<2.8	c2.8	<2.B	<4.0	<4.8	<2.0	<2.8	<2.8	<2.8	<2.8	<2.8
CIS-1, 3-DICHLORO- PROPENE UC/L	34.704 GHS	<2.8	<2.8	<2.8	<2.8	<4.0	<4.0	<2.8	< <b>(2.8</b>	<2.0	<2.8	<2.9	<2.8
TRANS-1, 3-DICHLORO- PROPENE UG/I	34699 6HS	¢1.6	٤١.6	<1.6	61.6	<3.2	<3.2	\$1.6	\$1.6	<1.6	<1.6	¢1.6	\$1.6
DIETHYL ETHER, TOTAL UGAL	B1576 GMS	\$	\$	¢5	\$	<b>8</b> 1>	615	ŝ	<5 C	<b>\$</b>	<b>\$</b>	ŝ	ŝ
ETHYLBENZENE IIC/I	17EAE	٤.1>	<1.3	<1.3	<1.3	76	6.7	£.1>	<1.3	¢1.3	¢1.3	<1.3	<1.3
METHYLENE CHLORIDE UG/L	34423 GMS	<b>6.4</b>	<6.4	<6.4	<b>4</b> .9>	٤١>	٤١>	<6.4	<6.4	<6.4	<b>4</b> .9>	<6.4	<b>&lt;6.4</b>
METHYL ETHYL KETONE UG/L	01595 GMS	<10.0	6.01>	<10.0	<10.0	<28	<28	<18.0	<10.0	<10.0	<10.0	<10.6	<10.6

ĺ

296

Ł

<2.5 <1.5 <1.9 <2.8 3.0 €4.6 <4.6 (3.7 ¢..7 TRPBLK Writhi 4 03/14/92 3 03/11/92 18:00 41.5 <1.9 (1.7 <2.5 <2.8 **G.**8 **6.6** <4.6 с.e> TRPBLK 9 **URITHI** <1.5 < ¢.1> <2.5 <2.8 **9**.0 4.6 <1.6 3.7 EOPBLK URITUJ 26/E1/E0 ¢1.7 Ξ <12 Environmental Science & Engineering Date 04/06/92 Status : FINAL ProJECT NUMBER 39240188 0201 PROJECT NAME COE - FT. STEWART FIELD GROUP WRITWI PROJECT MANAGER S.P. WOODWARD ALL LAB COORDINATOR SUZANNE WOODWARD <1.5 <2.8 **9**.6 6.6 <4.6 <3.7 6.15 <1.7 ¢2.5 **WRITHI** 8 26/13/92 **HSOURCE** HNN-DUP I 26/E1/E0 <4.6 <4.6 6.6 <3.7 æ <1.5 \$1.9 <2.5 **42.8** 512 <1.7 83/14/92 09:45 WMM-7 WR I T M I <3.7 0.5 <1.9 **2.5** <2.8 **9.**€> \$.6 4.6 3 ~ <1.7 03/13/92 08:45 9-NUM <3.8 <3.8 **†**-€≎ <5.0 <5.0 <5.6 6.9 **(9.2 (9.2** WRITHI Ś 300 ŝ 83/13/92 18:40 <9.2 NRITHI URITHI 6.6 €3.8 <5.0 <<u>5.6</u> <6.8 **69.2** 170 €24 ÷. 03/13/92 09:40 <1.5 <1.7 <2.5 <2.8 3.0 ¢.1> <4.6 <4.6 <3.7 NNN-4 UR I T NI <12 ¢.1> <4.6 <0.7 WMM-3 HRITHI 15:45 <1.5 <2.5 <2.8 **8**.0 <4.6 <1.7 • **ć12** 03/11/92 03/11/92 15:30 <2.8 **9**.6 6.6 <3.7 HAN-2 Krituj <1.5 <1.7 **2.5** 4 6 <1.9 2 <u></u> RETUI 15:15 <1.5 (1.9 2.5 <2.8 **0**.0 <4.6 ¢1-6 · 9.1 <1.7 ŝ **0**3/11/92 81596 CMS 34516 CMS 34475 34475 CMS 34010 STORET METHOD TOLUENE UG/L 1,1,1-TRICHL'ETHANE 1,1,2-TRICHL'ETHANE UG/L TRICHLOROETHENE TRICHLOROELUORO-METHANE UG/L VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE UG/L 1 XYLENES,TOTAL UG/L IETHYL ISVo∿. UG/L J.J.2.2-TETRACHLORO-ETHANE UG/L TETRACHLOROETHENE UG/L UNITS SAMPLE 10°S Parameters TOLUENE DATE Time

(

. .

PAGE 3

297

298

Environmental Science & Engineering DATE 02/12/93 STATUS : FINAL PROJECT NUMBER 3924007V L221 PROJECT NAME CE - FT. STEWART FIELD GROUP FTSTEB2 PROJECT MANAGER GARY WISE ALL LAB COORDINATOR SUZANNE WOODWARD

·.				
2LE [D'S		DUP	WMW-7	EQPBLK
<b>VRAME TERS</b>	STORET	FTSTEB2	FTSTEB2	FTSTEB2
UNITS	ME THOD	3	4	6
\TE		01/15/93	01/15/93	01/15/93
: ME			12:24	12:20
ISENIC, TOTAL	1002	<2.3	<2.3	<2.3
UG/L	GF AA			
<b>NRIUM, TOTAL</b>	1007	62.9	66.1	<1.1
UG/L	1CAP			
ADMIUM, TOTAL	1027	<4.4	<4.4	<4.4
UG/L	1 CAP			
IRONIUM, TOTAL	1034	10.5	<7.4	<7.4
UG/L	1CAP			
EAD, TOTAL	1051	<2.0	<2.0	<2.0
UG/L	GFAA			
IRCURY, TOTAL	71900	<0.18	<0.18	<0.18
UG/L	CVAA			
ELENIUM TOTAL	1147	<2.0	<2.0	<2.0
UG/L	GFAA			
ILVER TOTAL	1077	<6.1	<6.1	<6.1
UG/L	ICAP			

.

### 1990 RESULTS

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFIA

ĺ

PARAMETERS	UNITS	WSB-1	USB-2	WSB-3	WSB-4	4102-32M	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
%MOISTURE	XWET WT	15.90	16.10	15.00	16.60	17.20	NRQ	NRQ
1,1,1-TRICHL'ETHANE	UG/KG-DRY	<1-60	<1.60	<1.50	<1.60	<1.60	NRQ	NRQ
1,1,1-TRICHL'ETHANE	UG/L (EPTOX)	NRG	NRG	NRQ	NRQ	NRQ	<1.60	<1.60
1,1,2,2-TETRACHLORO ETHANE	UG/KG-DRY	<1.80	<1.80	<1.80	<1.80	<1.80	NRQ	NRQ
1, 1, 2, 2-TETRACHLORO ETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.50	<1.50
1,1,2-TRICHL'ETHANE	UG/KG-DRY	<1.90	<1.90	<1.90	<1.90	<1.90	NRQ	NRQ
1,1,2-TRICHL'ETHANE	UG/L (EPTOX)	NRQ	NRG	NRQ	NRQ	NRQ	<0.87	<0.87
1,1-DICHLOROETHANE	UG/KG-DRY	<1.00	<1.00	<1.00	<1.00	<1.00	NRQ	NRQ
1,1-DICHLOROETHANE	UG/L (EPTOX)	NRQ	NRO	NRQ	NRQ	NRG	<0.85	<0.85
1,1-DICHLOROETHENE	UG/G-DRY	<1.40	<1.40	<1.40	<1.40	<1.40	NRQ	NRQ
1, 1-DICHLOROETHYLENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.20	<1.20
1, 2-DICHLOROETHANE	UG/KG-DRY	<1.00	<1.00	<1.00	<1.00	<1.00	NRQ	NRQ
1,2-DICHLOROETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRG	<0.87	<0.87
1,2-DICHLOROETHANE-D4	UG/KG-DRY	29.00	61.00	61.00	60-00	61.00	NRO	NRQ
1,2-DICHLOROETHANE-D4	UG/L (EPTOX)	NRG	NRQ	NRQ	NRQ	NRQ	54.00	NRQ
1,2-DICHLOROETHENE, TOTAL	UG/KG-DRY	<1.55	<1.53	<1.52	<1.55	<1.56	NRQ	NRQ
1,2-DICHLOROETHENE, TOTAL	UG/L (EPTOX)	NRG	NRG	NRQ	NRG	NRG	<1.30	<1.30
1,2~DICHLOROPROPANE	UG/KG-DRY	<1.20	<1.10	<1.10	<1.20	<1.20	NRQ	NRQ
1,2-DICHLOROPROPANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRQ	<00>	<0.97
2,4,6-TRIBROMOPHENOL	MG/KG-DRY	7400.00	7200.00	7100.00	20*0*00	2400-00	NRQ	NRG
2,4,6-TRIBROMOPHENOL	UG/L (EPTOX)	NRG	NRG	NRG	NRQ	NRG	180.00	NRG

J-10

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFTA, Continued, Page 2 of 7

Ć

PARAMETERS	UNITS	WSB-1	WSB-2	WSB-3	MSB-4	WSB-3DUP	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
2-BUTANONE	UG/KG-DRY	<11.30	<11.10	<11.10	<11.30	<11.40	NRQ	NRQ
2-BUTANONE	UG/L (EPTOX)	NRG	NRQ	NRQ	NRG	NRG	<9.44	44
2-FLUORBIPHENYL	UG/L (EPTOX)	NRG	NRG	NRQ	NRG	NRG	74.00	NRQ
2-FLUOROBIPHENYL	UG/KG-DRY	3150.00	3200,00	3430.00	3260.00	3360.00	NRQ	NRQ
2-FLUOROPHENOL	UG/KG-DRY	8970.00	8510.00	8920.00	8710.00	9220.00	NRQ	NRG
2-FLUOROPHENOL	UG/L (EPTOX)	NRG	NRQ	NRQ	NRG	NRG	130.00	NRQ
2-HEXANONE	UG/KG-DRY	<3.70	<3.70	<3.70	<3.70	<3.80	NRO	NRQ
2-HEXANONE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRG	<3.10	<3.10
4-METHYL-2-PENTANONE	UG/KG-DRY	<3.20	<3.16	<3.14	<3.20	3.22	NRQ	NRQ
4-METHYL-2-PENTANONE	UG/L (EPTOX)	NRG	NRQ	NRG	NRO	NRQ	<3.00	<3.00
ACENAPHTHENE	UG/KG-DRY	<150.00	<150.00	<150.00	<150.00	<150.00	NRQ	NRQ
	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRG	<3.80	NRQ
ACENAPHTHYLENE	UG/KG-DRY	<110.00	<110.00	<110.00	<110.00	<110_00	NRQ	NRQ
ACENAPHTHYLENE	UG/L (EPTOX)	NRQ	NRG	NRG	NRQ	NRG	<2.70	NRQ
ACETONE	UG/KG-DRY	<20.00	<20.00	<20.00	<20.00	<20.00	NRQ	NRQ
ACETONE	UG/L (EPTOX)	NRG	NRQ	NRG	NRG	NRG	<17.00	<17.00
ANTHRACENE	UG/KG-DRY	<85.00	<85.00	<84.00	<86.00	<86.00	NRQ	NRQ
ANTHRACENE	UG/L (EPTOX)	NRQ	NRG	NRG	NRG	NRG	<2.10	NRQ
ARSENIC, SED	MG/KG-DRY	<0.54	<0.54	3.35	1.37	4.59	NRQ	NRQ
ARSENIC, TOTAL	UG/L (EPTOX)	NRG	NRQ	NRG	NRG	NRQ	<2.30	NRQ
BARIUM, SED	MG/KG-DRY	8.28	8.83	7.95	4.36	6.28	NRQ	NRQ

J-11

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFTA, Continued, Page 3 of 7

e.

ge^{rten}ten Name .

PARAMETERS UNITS	S	NSB-1	WSB-2	WSB-3	WSB-4	HSB-3DUP	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
BARIUM, TOTAL	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRG	3.01	NRQ
BENZENE	UG/KG-DRY	<1.30	<1.30	<1.30	<1.30	<1.40	NRQ	NRQ
BENZENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.10	<1.10
BENZO(A)ANTHRACENE	UG/KG-DRY	<70.00	<70-00	<69.00	<70.00	<71.00	NRQ	NRQ
BENZO(A)ANTHRACENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRO	<1.80	NRQ
BENZO(A)PYRENE	UG/KG-DRY	<210.00	<210.00	<200.00	<210.00	<210.00	NRQ	NRG
BENZO(A)PYRENE	UG/L (EPTOX)	NRQ	NRG	NRG	NRQ	NRG	<5.20	NRQ
BENZO(B)FLUORANTHENE	UG/KG-DRY	<150.00	<150.00	<150.00	<150.00	<150.00	NRQ	NRQ
BENZO(B)FLUORANTHENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRG	<3.80	NRO
BENZO(GHI)PERYLENE	UG/KG-DRY	<83.00	<83.00	<82.00	<84.00	<85.00	NRQ	NRQ
BENZO(GHI)PERYLENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<2.10	NRQ
BENZO(K) FLUORANTHENE	UG/KG-DRY	<190.00	<190_00	<190.00	<190.00	<190.00	NRO	NRG
BENZO(K) FLUORANT HENE	UG/L (EPTOX)	NRQ	NRQ	NRG	NRQ	NRQ	<4.70	NRQ
BROMOD I CHLOROMETHANE	UG/KG-DRY	<1.20	<1.20	<1.10	<1.20	<1.20	NRQ	NRG
BROMOD I CHLOROMETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRQ	<0.98	<0.98
BROMOFLUOROBENZENE	UG/KG-DRY	59.00	59.00	56.00	29-00	61.00	NRO	NRG
BROMOFLUOROBENZENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRQ	46.00	NRQ
BROMOFORM	UG/KG-DRY	<2.90	<2.90	<2.90	<2.90	3.00	NRQ	NRG
BROMOFORM	UG/L (EPTOX)	NRQ	NRQ	NRG	NRG	NRQ	<2.50	<2.50
BROMOMETHANE	UG/KG-DRY	<1.40	<1.40	<1.40	<1.40	<1.40	NRQ	NRQ
BROMOMETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRQ	<1.20	<1.20

302

J-12

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFIA, Continued, Page 4 of 7

7 N

.

PARAMETERS	UNITS	WSB-1	WSB-2	WS8-3	WSB-4	4NQE-8SM	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/12/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
CADM1UM, SED	MG/KG-DRY	<0-42	<0.42	<0.41	<0-42	<0.42	NRQ	NRQ
CADMIUM, TOTAL	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<3.50	NRG
CARBON DISULFIDE	UG/KG-DRY	<3.70	3.70	<3.60	<3.70	<3.70	NRQ	NRQ
CARBON DISULFIDE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRQ	<3.10	<3.10
CARBON TETRACHLORIDE	UG/KG-DRY	<1.20	<1.10	<1.10	<1.20	<1.20	NRO	NRQ
CARBON TETRACHLORIDE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRG	<0.97	<0.97
CHLOROBENZENE	UG/KG-DRY	82.0>	40.77	<0.76	<0.78	<0.78	NRQ	NRQ
CHLOROBENZENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRG	<0.65	<0.65
CHLOROETHANE	UG/KG-DRY	<2,10	<2.10	<2.10	<2.10	<2.10	NRQ	NRQ
CHLOROETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRG	<1.80	<1.80
CHLOROFORM	UG/KG-DRY	1-40	<1.40	<1.40	<1.40	<1.40	NRQ	NRQ
CHLOROFORM	UG/L (EPTOX)	NRQ	NRQ	NRG	NRQ	NRQ	<1.20	<1.20
CHLOROMETHANE	UG/KG-DRY	<29.00	<29.00	<28.00	<29.00	<29.00	NRG	NRG
CHLOROMETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<24.00	<24.00
CHROMIUM, SED	MG/KG-DRY	9.58	8.57	18.90	10.50	8.83	NRG	NRG
CHROMIUM, TOTAL	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<7.00	NRG
CHRYSENE	UG/KG-DRY	<110.00	<110.00	<110.00	<110.00	<110.00	NRG	NRG
CHRYSENE	UG/L (EPTOX)	NRG	NRG	NRQ	NRQ	NRQ	<2.80	NRG
CIS-1,3-DICHLOROPROPENE	UG/KG-DRY	<1.80	<1.80	<1.80	<1.80	<1.80	NRQ	NRG
CIS-1,3-DICHLOROPROPENE	UG/L (EPTOX)	NRQ	NRG	NRG	NRQ	NRQ	<1.50	<1.50
DIBEN' (A, H)ANTH' CENE	UG/L (EPTOX)	NRG	NRG	NRQ	NRQ	NRQ	<1.80	NRG

.

J-13

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFTA, Continued, Page 5 of 7

.

ĺ

.

PARAMETERS U	UNITS	WSB-1	WSB-2	K-85W	4-8SW	WSB-3DUP	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
D I BEN(A, H)ANTHRACENE	UG/KG-DRY	00.17>	<72.00	<71.00	<72.00	<72.00	NRQ	NRQ
D I BROMOCHLOROME THANE	UG/KG-DRY	<1.60	<1.50	<1.50	<1.60	<1.60	NRQ	NRQ
DIBROMOCHLOROMETHANE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.30	<1.30
ETHYLBENZENE	UG/KG-DRY	<1.20	<1.20	<1.20	<1.20	<1.20	NRQ	NRQ
ETHYLBENZENE	UG/L (EPTOX)	NRG	NRQ	NRO	NRQ	NRQ	<1.00	<1.00
FLUORANTHENE	UG/KG-DRY	<130.00	<130.00	<130.00	<130.00	<130.00	NRQ	NRQ
FLUORANTHENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRG	<3.20	NRQ
FLUORENE	UG/KG-DRY	<120.00	<120.00	<120.00	<120.00	<120.00	NRQ	NRQ
FLUORENE	UG/L (EPTOX)	NRQ	NRG	NRG	NRG	NRD	<3.10	NRQ
INDENO(1,2,3-CD)PYRENE	UG/KG-DRY	<110.00	<110.00	<110.00	<110.00	<110.00	NRQ	NRQ
INDENO(1,2,3-CD)PYRENE	UG/L (EPTOX)	NRG	NRQ	NRG	NRQ	NRQ	<2.70	NRQ
LEAD, SED	MG/KG-DRY	10.90	77.77	10,80	<6.00	7.84	NRQ	NRQ
LEAD, TOTAL	UG/L (EPTOX)	NRQ	NRQ	NRO	NRQ	NRQ	<25.00	NRQ
MERCURY, SED	MG/KG-DRY	<0.11	<0.11	<0.11	<0.12	<0.12	NRQ	NRQ
MERCURY, TOTAL	UG/L (EPTOX)	NRO	NRG	NRG	NRQ	NRG	<0.20	NRQ
METHYLENE CHLORIDE	UG/KG-DRY	3.90	<1.90	3.40	3.30	2.50	NRG	NRQ
METHYLENE CHLORIDE	UG/L (EPTOX)	NRG	NRQ	NRQ	NRQ	NRQ	3.70	3.30
NAPHTHALENE	UG/KG-DRY	<230.00	<240.00	<230.00	<240.00	<240.00	NRQ	NRQ
NAPHTHALENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRO	<5.90	NRG
NITROBENZENE-D(5)	UG/KG-DRY	3740.00	3820.00	3850.00	3870.00	3900.00	NRQ	NRQ
NI TROBENZENE-D(5)	UG/L (EPTOX)	NRQ	NRQ	NRG	NRG	NRQ	83.00	NRG

.

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFIA, Continued, Page 6 of 7

Ć

(

PARAMETERS	UNITS	WSB-1	WSB~2	WSB-3	HSB-4	USB-30UP	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
PHENANTHRENE	UG/KG-DRY	~26 <b>.</b> 00	<76.00	<75.00	<77.00	<77.00	NRQ	NRQ
PHENANTHRENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.90	NRQ
PHENOL-D(5)	UG/KG-DRY	8020.00	7850-00	8170.00	8130,00	7200.00	NRQ	NRQ
PHENOL-D(5)	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	93.00	NRG
PYRENE	UG/KG-DRY	<81.00	<81.00	<80.00	<82.00	<82.00	NRG	NRG
PYRENE	UG/L (EPTOX)	NRG	NRG	NRQ	NRQ	NRQ	<2.00	NRQ
SELENIUM, SED	MG/KG-DRY	<u>/</u> 5*0≻	<0-47	0.53	<0.48	<0-48	NRQ	NRQ
SELENIUM, TOTAL	UG/L (EPTOX)	NRG	NRG	NRQ	NRQ	NRQ	<2.00	NRG
SILVER, SED	MG/KG-DRY	89*0>	<0.68	<0.67	<0.68	<0.69	NRQ	NRG
SILVER, TOTAL	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRG	NRQ	<5.70	NRG
STYRENE	UG/KG-DRY	<1.90	<1.90	<1.90	<1.90	<1.90	NRG	NRQ
STYRENE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.60	<1.60
TERPHENYL-(D14)	MG/KG-DRY	4030-00	3500.00	4660.00	4500.00	4620.00	NRQ	NRQ
TERPHENYL-(D14)	UG/L (EPTOX)	NRG	NRQ	NRQ	NRG	NRQ	75.00	NRQ
TETRACHLOROETHENE	UG/KG-DRY	<0.61	<0.60	<0.60	<0.61	<0.61	NRG	NRQ
TETRACHLOROETHENE	UG/L (EPTOX)	NRQ	NRG	NRQ	NRQ	NRQ	<0.51	<0.51
TOLUENE	UG/KG-DRY	22.00	33.00	14.00	22.00	26.00	NRG	NRQ
TOLUENE	UG/L (EPTOX)	NRG	NRQ	NRG	NRO	NRQ	2.20	1.20
TOLUENE-D(8)	UG/L (EPTOX)	NRG	NRG	NRG	NRQ	NRG	50.00	NRQ
TOLUENE-D8	UG/KG-DRY	61.00	63.00	62.00	63.00	61.00	NRG	NRG
TRANS-1,3-DICKLOROPROPENE	UG/KG-DRY	<1.00	<1.00	<1.00	<1.00	<1.00	NRQ	NRG

J-15

Analytical Parameters Detected in Soil Samples in 1990, Wright AAFIA, Continued, Page 7 of 7

ar Ng

Ę

PARAMETERS	UNITS	HSB-1	WSB-2	WSB-3	MSB-4	UCE-30UP	RINSEBLK	TRPBLK
		5-10 FT.	8-10 FT.	6-10 FT.	8-10 FT.	6-10 FT.		
		02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90	02/15/90
		08:50	10:06	10:55	12:15	10:55	12:30	12:00
TRANS-1, 3-DICHLOROPROPENE	UG/L (EPTOX)	NRQ	NRG	NRQ	NRQ	NRG	<0.86	<0.86
TRICHLOROETHENE	UG/KG-DRY	<1.00	<1.00	<1.00	<1.00	<1.00	NRQ	NRQ
TRI CHLOROETHENE	UG/L (EPTOX)	NRQ	NRQ	NRG	NRQ.	NRQ	<0.87	<0.87
VINYL ACETATE	UG/KG-DRY	<3.10	<3.00	⊴.00	<3.10	<3.10	NRG	NRQ
VINYL ACETATE	UG/L (EPTOX)	NRG	NRQ	NRQ	NRQ	NRG	<2.60	<2.60
VINYL CHLORIDE	UG/KG-DRY	<1.90	<1.80	<1.80	<1.90	<1.90	NRG	NRQ
VINYL CHLORIDE	UG/L (EPTOX)	NRQ	NRQ	NRQ	NRQ	NRQ	<1.60	<1.60
XYLENE, SED	UG/KG-DRY	<1.20	<1.20	<1.20	<1.20	<1.20	NRQ	NRQ
XYLENES, TOTAL	UG/L (EPTOX)	NRQ	NRQ	NRG	NRQ	NRQ	<1.00	<1.00

306

Source: ESE.

Analytical Parameters Detected in Groundwater Samples in 1990, Wright AAFTA

.

 $\left( \begin{array}{c} & & \\ & & \\ & & \end{array} \right)$ 

PARAMETERS	UNITS	LMW-1	MMW-2	MM4-3	umu-100P	RINSEBLK	TRPBLK
		03/08/90	03/08/90	03/08/90	03/08/90	03/08/90	03/08/90
		13:40	14:50	15:30	13:40	14:10	16:00
1,1,1-TRICHL'ETHANE	∩c/t	<1-30	<1.30	<1.30	<1.30	<1.30	<1.30
1,1,2,2-TETRACHLORO ETHANE	UG/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50
1,1,2-TRICHL'ETHANE	UG/L	<1.60	<1.60	<1.60	<1.60	<1.60	<1.60
1,1-D1CHLOROETHANE	-UG/L	<0.85	<0.85	<0.85	<0.85	<0.85	<0.85
1,1-DICHLOROETHYLENE	UG/L	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20
1,2-DICHLOROETHANE	UG/L	<0-87	<0.87	<0.87	<0.87	<0.87	<0.87
1,2-DICHLOROETHANE-D4	NG/L	46.00	46.00	47.00	45.00	45.00	46.00
1,2-DICHLOROETHENE, TOTAL	UG/L	<1.30	<1.30	<1.30	<1.30	<1.30	<1.30
1,2-DICHLOROPROPANE	UG/L	<i>4</i> 0°0≻	26.0>	79 <b>.</b> 0>	<0.97	<b>79.0</b> >	<0.97
2,4,6-TRIBROMOPHENOL	UG/L	170.00	200.00	180.00	170-00	160.00	NRQ
2-BUTANONE	UG/L	<9.44	<9.44	<9.44	-6° 44	77*6>	77 6>
2-FLUORBIPHENYL	UG/L	79.00	82.00	77.00	29.00	76.00	NRQ
2-FLUOROPHENOL	UG/L	150.00	170.00	170.00	160.00	170.00	NRQ
2-HEXANONE	UG/L	<3.10	<3.10	<3.10	<3.10	3.10	≪3.10
4-METHYL-2-PENTANONE	UG/L	<3.00	<3.00	3.00	<3.00	<3.00	<3.00
ACENAPHTHENE	UG/L	<3.80	<3.80	<3.80	<3.80	<3.80	NRQ
ACENAPHTHYLENE	NG/L	<2.70	<2.70	<2.70	<2.70	<2.70	NRQ
ACETONE	∩c/L	<17.00	<17.00	<17.00	<17.00	73.00	<17.00
ANTHRACENE	∩6/L	<2.10	<2.10	<2.10	<2.10	<2.10	NRG
ARSENIC, TOTAL	∩G/L	8.50	<2.30	<2.30	4.80	7.20	NRQ
BARIUM, TOTAL	NG/L	1180.00	148.00	28.50	1630.00	2.00	NRG
BENZENE	ng/L	<1.10	<1.10	<1.10	<1.10	<1.10	<1.10

Analytical Parameters Detected in Groundwater Samples in 1990, Wright AAFIA, Continued, Page 2 of 4

¥ N

PARAMETERS	NITS	1-WMW	LMW-2	LMW-3	WMW-1DUP	RINSEBLK	TRPBLK
		03/08/90	03/08/90	03/08/90	03/08/90	03/08/90	03/08/90
		13:40	14:50	15:30	13:40	14:10	16:00
<b>BENZO(A)ANTHRACENE</b>	NG/L	<1.80	<1.80	<1.80	<1.80	<1.80	NRG
BENZO(A)PYRENE	06/L	<5.20	<5.20	<5.20	<5.20	<5.20	NRG
BENZO(B)FLUORANTHENE	06/L	<3.80	<3.80	<3.80	<3.80	<3.80	NRG
BENZO(GHI)PERYLENE	NG/L	<2.10	<2.10	<2.10	<2.10	~2.10	NRQ
BENZO(K) FLUORANTHENE	NG/L	<4.70	<4.70	<4.70	<4.70	<4.70	NRQ
BROMOD I CHLOROMET HANE	NG/L	<0.98	<0.98	<0.98	<0.98	<0.98	<0.98
BROMOFLUOROBENZENE	UG/L	52.00	51.00	51.00	51.00	51.00	44.00
BROMOFORM	1/9N	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50
BROMOMETHANE	UG/L	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20
CADMIUM, TOTAL	1/5f1	<3.50	<3.50	<3.50	<3.50	<3.50	NRQ
CARBON DISULFIDE	NG/L	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10
CARBON TETRACHLORIDE	NG/L	<0.97	<0.97	26-0>	26°0>	<0.97	<0-0>
CHLOROBENZENE	NG/L	<0.65	<0.65	<0.65	<0.65	<0.65	<0.65
CHLOROETHANE	UG/L	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80
CHLOROFORM	NG/L	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20
CHLOROMETHANE	UG/L	<24.00	<24.00	<24.00	<24.00	<24.00	<24.00
CHROMIUM, TOTAL	1/9N	241.00	54.40	13.70	329.00	<7.00	NRG
CHRYSENE	UG/L	<2.80	<2.80	<2.80	<2.80	<2.80	NRG
CIS-1,3-DICHLOROPROPENE	06/L	<1.50	<1.50	<1.50	<1.50	<1.50	<1.50
DIBEN'(A, H)ANTH'CENE	∩g/L	<1.80	<1.80	<1.80	<1.80	<1.80	NRG
DIBROMOCHLOROMETHANE	NG/L	<1.30	<1.30	<1.30	<1.30	<1.30	<1.30
ETHYLBENZENE	NG/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00

J-18

Analytical Parameters Detected in Groundwater Samples in 1990, Wright AAFTA, Continued, Page 3 of 4

ľ N

(

PARAMETERS	UNITS	1- <i>1</i> 1	WMW-2	MMW-3	WW-10UP	RINSEBLK	TRPBLK
		03/08/90	03/08/90	03/08/90	03/08/90	03/08/90	03/08/90
		13:40	14:50	15:30	13:40	14:10	16:00
FLUORANTHENE	ng/L	<3.20	<3.20	<3.20	3.20	3.20	NRQ
FLUORENE	UG/L	<3.10	<3.10	<3.10	3.10	3.10	NRG
INDENO(1,2,3-CD)PYRENE	ng/L	<2.70	<2.70	<2.70	<2.70	<2.70	NRG
LEAD, TOTAL	ng/L	284.00	82.80	<25.00	391.00	<25.00	NRQ
MERCURY, TOTAL	UG/L	<0.20	<0.20	<0.20	<0.20	<0.20	NRQ
METHYLENE CHLORIDE	∩¢/L	<1.60	<1.60	<1.60	<1.60	<1.60	11.00
NAPHTHALENE	ענ/ר	<5.90	<5.90	<5.90	<5.90	<5.90	NRQ
NITROBENZENE-D(5)	nc/L	82.00	84.00	83.00	83.00	83.00	NRQ
PHENANTHRENE	חפ/ר	<1.90	<1.90	<1.90	<1.90	<1.90	NRQ
PHENOL-D(5)	UG/L	92.00	110.00	100.00	100.00	98.00	NRQ
PYRENE	NG/L	<2.00	<2.00	<2.00	<2.00	<2.00	NRQ
SELENIUM, TOTAL	UG/L	2.20	2.50	3.40	4.60	3.10	NRQ
SILVER, TOTAL	UG/L	<5.70	<5.70	<5.70	<5.70	<5.70	NRQ
STYRENE	UG/L	<1.60	<1.60	<1.60	<1.60	<1.60	<1.60
TERPHENYL-(D14)	UG/L	66.00	82.00	100.00	70.00	95.00	NRQ
TETRACHLOROETHENE	UG/L	<0.51	<0.51	<0.51	<0.51	<0.51	<0.51
TOLUENE	∩¢/r	<0.70	02*0>	<0.70	<0.70	<0.70	<0.70
TOLUENE-D(8)	UG/L	52.00	52.00	54.00	51.00	53.00	52.00
TRANS-1, 3-DICHLOROPROPENE	UG/L	<0.86	<0.86	<0.86	<0.86	<0.86	<0.86
TRICHLOROETHENE	UG/L	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87
VINYL ACETATE	UG/L	<2.60	<2.60	<2.60	<2.60	<2.60	<2.60
VINYL CHLORIDE	nc/L	<1.60	<1.60	<1.60	<1.60	<1.60	<1.60

ζoq

Analytical Parameters Detected in Groundwater Samples in 1990, Wright AAFTA, Continued, Page 4 of 4

DADAWETEDE							
LAKAME LEKS	NITS	LMMu- 7	LMU-2	MMH-3	WW-10UP	RINSEBLK	TRP8LK
		03/08/90	03/08/90	03/08/90	03/08/90	03/08/90	03/08/90
		13:40	14:50	15:30	13:40	14:10	16:00
XYLENES, TOTAL							
	1/50	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00

APPENDIX K

QA/QC RECORDS

(

(DAYS)	L. EXIR. TO ANA. COLL. TO ANA. ESE Batch	I 4 626598 I 16 626739							I 16 626729		-	1 16 626733	8 11 626777	7 626918		1 070/75				7 626918		-			I I5 G26733			1 3 G26598	2 10 C26765		-				2 10 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13							2 16 G26765		_			I I5 626729	2 IØ C26765.		1 B B B B B B B B B B B B B B B B B B B
- 100	VALE VULL. IU EXIK.	15	6	8	15	ŝ		m	15	~ a	ו ס י	<u>र</u> ा (	'n	ſ	<u>, r</u>	g or	<b>~ 6</b> 0	15	e		2	14	∞ r	- :	<u>4</u> . c	7	6	7 1	- œ	7	14	2	c	7	60	7	14	2	c	7	4 G	0 -	4	5	ł	2	14	8	t	
ANAL VETE	03/13/97							03/13/92		_					_		_	03/25/92	26/02/E0	03/16/92			26/02/20	26/91/50	26/07/00/20	03/16/92	03/13/92	03/25/92	03/20/92	03/18/92	03/25/92	03/20/92	26/01/00 26/1/20	03/22/60	03/20/92	63/18/92	03/25/92	26/92/20	26/01/50	03/12/02	26/02/E0	26/81/20	03/25/92	03/19/92	03/16/92	26/E1/E0	03/25/92	03/20/92	03/18/92	10/ JC/ CO
04/20/92 FYTRACTION DATE	03/12/92	03/24/92	03/18/92	03/17/92			AN 0	26/71/CA	26/17/20 02/18/202	03/17/92	CU/ FC/ CU				03/24/92	03/18/92	03/17/92				03/12/92	03/24/92 03/10/02	26/21/E0	26/11/50 76/11/50				03/24/92	03/18/92	03/11/92		162/10 03/12/92		03/24/92	03/18/92	03/11/60			012/02	26/77 /CO	03/18/92	03/17/92				03/12/92	03/24/92	03/18/92	03/11/92	CO/ 86/ CO
CLASSIFICATION		ARSENIC-SW3050/SW7060	ICAP METALS SCAN-SH3050/SW6010	REKOUKI-SW/4/I SELENTIM-SUDGEG/SUDJAG	SEMINOLANDOUS/SW//40 SEMINOLATHE ODEANLY CMDDS SHOFED (SHOOTS	VOI ATIIE ORGANIC CHEUS-SM3340/ WO VOI ATIIE ORGANIC CHEORE	PERCENT MOISTIRE - ACTM D2-545000/54624	1706.0	ICAP METALS SCAN-SH3050/SH6010		SELENIUM-SU3050/SU7740	SEMI VOLATILE ORGANIC CMPDS-SU3546/SU8276	VOLATILE ORGANIC CMPDS-SU205740	PERCENT MOISTURE - ASTH D2216		ICAP METALS SCAN-SW3050/SW6010	MERCURY-SW7471	SELLENIUM-SW3050/SW7740	SEMI VOLATILE ORGANIC CMPDS-SW3540/SW8270	PULATILE UNGANIC UNPUS-SW3050/SW8240 DEDCENT MOTORIC ACT: 20015	FERVENT MUISTURE - ASIA UZZI6 ARSENIC-SUDARA/SUDAKA	ICAP METALS SCAN-SURARA MAN	MERCURY-SW7471	SELENIUM-SH3050/SW7740	SEMI VOLATILE ORGANIC CMPDS-SH3540/SH8270	VOLATILE ORGANIC CMPDS-SH3050/SN8240	PERCENT MOISTURE - ASTM D2216	ARSENIC-SH3050/SH7060	ICAP METALS SCAN-SW3050/SW6010	RE ROURY - SW / 4 / I	SELENTURESM3858/SW//48 SEMIVOLATIFE OPCANIC CMDDC SUDFAC/OUCCED	VOLATILE ONGANIC UNTUS-SM3540/SM	PERCENT MOISTURE - ASTH D2216		ICAP METALS SCAN-SW3050/SW6010	MERCURY-SW7471	SELENTUM-SH3050/SW7740 SEMTVOLATILE ODMANIC CHOSE SUCTATIONS	VOLATIF ORGANIC CHEUS-SH3340/SH VOLATIF ORGANIC CHPDS-CH3950 / CHO340	PERCENT MOISTURE - ASTM 02216		ICAP METALS SCAN-SW3050/SW6010		SELENIUM-SH3050/SN7740	SEMIVOLATILE ORGANIC CMPDS-SH3540/SH8270	VOLATILE ORGANIC CMPDS-SW3050/SW8240	PERCENT MOISTURE - ASTM D2216		ICAL RELALS SCAN-SM3020/SM6010 Medchdylshiji		
	26/60/E0						63/66/52							63/66/65						00/01/C0	76 /04 /00						03/10/92						03/10/92						63/16/92							26/01/E0				
STATION ID	1-SH						NS-2							HS-3				•		V-20	-						12-2						9-SM						1-2M						0.01	8-/M				
SAMPLE 10	WRITS]*I						WRITS1*2							WRITS1+3						WRITS1*4				ŀ	<u>(</u>	1	HRITS1*5						HRITS1+6						WRITS1*7						10170120	De Tor - Line				

PAGE 1

(

PAGE 2	ESE Batch 626729 626765 626696 626733	626777 626918 626598 626729 626729 626765	626777 626777 626598 626798 626729 626696 626696	626777 626918 626598 626598 626759 626696 626696	626777 626918 626918 626598 626729 626759 626733 626777 626733
	COLL. TO ANA. 15 18 18 15	۵ م ۳ ۲ ۵ ۵ ۳	វិទក្ខ ភ័ ខ្លី ឆ ស្មី	9 9 9 9 7 9 9 9 1 1 9 9 9 1 9 9 1	ອ [້] ດ ພ [ິ] ນອັສ ເນືອັດ
	(DAYS) EXTR. TO ANA. 1 2 1 1	r	· · · · · · · ·	8 0	∞ <u>, , , (, , , ∞</u>
۲S	0 EXTR.	0 0 <b>4</b> 804	0 04Br4	0 040°-4	0 0418740
nc. MY AIRFIELD SOI	DATE	03/19/92 03/13/92 03/13/92 03/20/92 03/25/92 03/25/92	83/19/92 03/16/92 03/13/92 03/25/92 03/18/92 03/25/92	03/20/92 03/16/92 03/15/92 03/25/92 03/18/92 03/18/92	03.20/92 03.16/92 03.25/92 03.25/92 03.25/92 03.26/92 03.26/92 03.26/92
Science and Engineering, Inc. 20E - FT. STEMART WRIGHT ARMY AIRFIELD SOILS 04/20/92	ON DATE				Nas 12/92 03 Nas 12/92 03 03/22/92 03 03/24/92 03 03/11/92 03 03/12/92 03 03/12/92 03
ence : - FT. 04/20,					
Environmental Sci SAMPLE DATE REPORT FOR COE	7868 Sujaese/Sw6018 NT748 Nt7748	CHPOS-SU3050/SU6 - ASTM D2216 7060 Su3050/Su6010 1740	MIC CAPDS-SH3540/SH8270 CMPDS-SH3650/SH8240 A 83TM D2216 A 83TM D2216	110 - CHUNS - MASTAO SHARZ (0 2MPDS - SHABSO/SHARZ 40 2MPDS - ASTM D2216 7068 2MBOS 8/SM6010 1740 1770	IT C C C C C C C C C C C C C C C C C C C
SAN	CLASSIFICATION Arsenic-Suad50/Su7060 ICAP Metals Scan-Suad56/Su6016 Mercury-Su7471 Sellenium-Suad50/Su7740 Stml VOLATIF Forcaric CMDD6_Sua720 Stml VOLATIF Forcaric CMDD6_Sua720	VOLATILE ORGANIC CHEDS SHADDAN PERCENT MOISTURE - ASTM D2216 ARSENIC-SWADD66 ICAP METALS SCAN-SWAD56/SW6010 MERCURY-SW7471 MERCURY-SW3050/SW748	SETIVULATILE OKGANIC CRPDS-SH346/SH8270 VOLATILE OKGANIC CRPDS-SH3346/SH8240 PRECENT MOISTURE – ASTM D2216 ARSENIC-SH3856/SH7966 ICAP METALS SCAN-SH3856/SH6618 FIECURY-SH7471 SELEUNU-SH3856/SH7748 SELEUNU-SH3856/SH7748	VOLATILE VICTURE CHPDS PERCENT MOISTURE - AST ARSENIC-SH3050/SW7060 ICAP METALS SCAN-SH305 HERCURY-SW7471 SELENUW-SW3050/SW740 SELENUW-SW3740	VOLATILE ORGANIC CMPDS-SW3950/SW3240 PERCENT MOISTURE - ASTN D2216 ARSENIC-SW3050/SW7060 ICAP METALS SCAN-SW3050/SW6010 MERCIY-SW7471 MERCIY-SW7471 SELENIUM-SW3550/SW7740 SEMIVOLATILE ORGANIC CMPDS-SW3050/SW8270 VOLATILE ORGANIC CMPDS-SW3050/SW8240
	03/10/92 A	03/10/92 V	83/16/92 4 2 83/16/92 83	03/10/92 V 11 20/01/59 11 11 11 11 11 11 11 11 11 11 11 11 11	03/10/92 Pt 10/92 Pt 10 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
	STATION ID HS-9	NS-DUP	1-dsh	r-osh	ano-ds <b>h</b>
	SAMPLE ID 4RITS1*9	URITS1*10	WRITS1*12	HRITS1*13	1*IS1 -221

(

É Sa

313

1

.

314

## Waters

ĺ

art Name

PAGE 1

PAGE 2	ESE Batch 026772 026775 026649 026649 026649	
	COLL. TO ANA. 7 5 5 2	
	AYS) XTR. TO ANA. 3 1	
(2)	L. TO EXTR. 1 5	
ELD WATERS	ATE COL	
Inc. ARMY AIRFJE	ANALYSIS C 03/20/92 03/19/92 03/16/92 03/16/92	
e and Engineering. T. STEMART WRIGHT 20/92	EXTRACTION         DATE         ANALYSIS         DATE         COLL. TO         EXTRACTION         DATE         ANALYSIS         DATE         COLL.         TO         ANA.         COLL.         TO         CAST         CAST	
Environmental Science and Engineering, Inc. SAMPLE DATE REPORT FOR COE - FT. STEWART URIGHT ARMY AIRFIELD WATERS 04/20/92	SAMPLE ID     STATION ID     COLL. DATE     CLASSIFICATION     E       URITUL*I1     EOPBLK     03/13/92     SELENIUM-SW7740     0       URITUL*I1     EOPBLK     03/13/92     SEMIVOLATILE     0       NRITUL*11     EOPBLK     03/13/92     SEMIVOLATILE     0       VOLATILE     ORGANIC     CMPDS - SU8240     N       URITUL*13     TRPBLK     03/11/92     VOLATILE     ORGANIC       URITUL*14     TRPBLK     03/11/92     VOLATILE     ORGANIC     CMPDS - SU8240	
	CLASSIFICATI SELENJUN-SW7 SEMIVOLATILE VOLATILE ORC VOLATILE ORC VOLATILE ORC	
	COLL. DATE 03/13/92 03/11/92 03/14/92	
	STATION ID EQPBLK TRPBLK TRPBLK	
	SAMPLE ID Mritul#11 Hritul#13 Hritul#13	

1

# Quality Control Summary Reports By Analytical Batch

317

К-6

ESE Data Batch - QC Summary - A Description

1. The ESE batch number appears at the top of each page. A general description of and the method number appear after the batch number on the first page of the batch.

2. This item contains information concerning the batch status, method blank correction (if any), batch notes, the ESE field group name, and lab coordinator responsible for those field groups.

3. This item lists the laboratory and client sample identification. In CLASS (ESE's LIMS), samples are identified using the combination of the field group name and sequence number. For example in the attached batch summary, the field group name is HUNTS1; the sequence number is 22. The interpretation of the field group name is as follows:

HUNT - Installation name (Hunter Army Airfield) S - Matrix (soil/sediment)

1 - Round number

The date of analysis is always recorded; and in this report, these dates are summarized in the "Sample Date Report" section. For selected methods, the date and time of analysis for each sample is recorded in the data batch file; this information is displayed in section 3 of this summary.

4. Section 4 summarizes the QC data for that batch of samples and analysis; this section of the report is segregated by QC type. Each area details the samples, units, found, target, percent recovery, and criteria used for the acceptance of the data.

For QC performed on environmental samples, the field group * sequence number of the sample used is encoded in the series under the header "SAMPLE". For example under Sample Matrix Spike Recovery Summary, SPM1*HUNTS1*22 can be read as the matrix spike for sample HUNTS1*22.

The following abbreviations are used in the QC section:

MB = Method Blank SP = Standard Matrix Spike (equivalent to LCS) LCS = Laboratory Control Sample (equivalent to SP) RP = Replicate RF = Reference SPM = Sample Matrix Spike SUR = Surrogate SPX = Analytical (post-digestion) Spike

5. Section 5 summarizes the automated computer checks that are performed for each batch (as appropriate to the method). Each and every "no" answer requires a comment by the analyst and/or their supervisor. The explanation is printed at the bottom of the page.

Note: Samples from Ft. Stewart Hunter AAF and Wright AAF were analyzed in the same batch for some methods. For these samples, the QC will be reported for each site.

319

ESE BATCH : G26658 CLASSIFICATION : NON-HALOGENATED VOLATILE-SH 8240

QC TYPE : FDER/SW ANALYST : GREGORY LANB EXTRACTOR : DATA ENTRY : TODD ROMERO

STATUS

: FINAL

.

METHOD BLANK CORRECTION METHOD : BY CONCENTRATION

BATCH NOTES Download File Huntsgli

HUNTSI	PROJECT NUMBER 39240186 0201	COE - FT. STEL	ART	LAB COORD INATOR SUZANNE WOODWARD
A1461 -				
SAMPLE	CLIENT	DATE	TIME	
CODE	<u>10</u>	ANALYZED	ANAL YZED	-
HUNTS1#22	HS-DUP	03/09/92	03:11PH	
HUNTS1*1	HS-1	03/09/92	05:21PH	
HUNTS1*3	HS-3	03/09/92	86:05PM	
HUNTS1*4	HS-4	03/09/92	06:48PM	
HUNTS1*7	HS-7	03/09/92	07:31PM	
HUNTS1*15	HS-15	03/09/92	10:58PM	
HUNTS1*18	HS-18	03/09/92	11:41PM	
HUNTSI*19	HS-19	03/10/92	12:24AM	
HUNTS1*23	HS-DUP	03/10/92	01:07AM	
HUNTS1*26	HSD-1	03/10/92	01:51AM	
HUNTSI*28	HSD-3	03/10/92	02:34AM	
HUNTS1*29	HSD-4	03/10/92	03:17AN	
HUNTS1*30	HSD-DUP	03/10/92	04:00AM	
HUNTS1*27	HSD-2	03/10/92	04:44AM	
HUNTS1*2	HS-2	03/10/92	05:27AM	
HUNTS1*8	HS-8	03/10/92	06:10AH	
HUNTS1*9	HS-9	03/10/92	06:54AH	
IUNTS1*12	HS-12	03/11/92	03:19PH	
IUNTS1*14	HS-14	03/11/92	05:33PM	
IUNTS1*13	HS-13	03/11/92	06:16PM	
IUNTS1*17	HS-17	03/11/92	06:59PM	
IUNTS1*16	HS-16	03/11/92	07:43PM	
UNTS1*10	HS-10	03/12/92	09:39PM	
IUNTS1*11	HS-11	03/12/92	11:45PM	

REPORT DATE/TIME ANALYSIS DATE EXTRACT DATE

:



3.

ESE BATCH

Ę

Ć

: G26658

Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/09/92	MB*QC*0309	34421*GMS	CHLOROME THANE	UG/KG-DRY	ND
03/09/92 03/09/92	MB*QC*0309 MB*QC*0309	34416*GMS 34495*GMS	BROMOMETHANE Vinyl Chloride	UG/KG-DRY UG/KG-DRY	ND ND
03/09/92	MB*QC*0309	34314*CMS	CHLOROETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34426*GMS	METHYLENE CHLORIDE	UG/KG~DRY	ND
03/09/92	MB+QC+0309	78544*GMS	CARBON DISULFIDE	UG/KG-DRY	ND
03/09/92	MB*QC+0309	34491*GMS	TRICHLOROFLUOROMETHANE	UC/KG-DRY	ND
03/09/92	MB*QC*0309	34504*GMS	1,1-DICHLOROETHYLENE	UG/KG-DRY	ND
03/09/92	HB*QC*0309	34499*GMS	1,1-DICHLOROETHANE	UG/KG-DRY	ND
03/09/92	MB+QC+0309	96464*CMS	1,2-DICHLOROETHENE(TOTAL)	UG/KG	ND
03/09/92	MB*QC*0309	97201*GMS	DIETHYL ETHER	UG/KG-DRY	ND
83/09/92 03/09/92	MB*QC*0309 MB*QC*0309	34318*GMS 34534*GMS		UG/KG-DRY	ND
03/09/92	MB*QC*0389	75078×GMS	1,2-DICHLOROETHANE METHYL ETHYL KETONE	UG/KG-DRY UG/KG-DRY	ND 8.0
03/09/92	NB+QC+0309	34509*GMS	1, 1, 1-TRICHL'ETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34299*GMS	CARBON TETRACHLORIDE	UG/KG-DRY	ND
03/09/92	MB+QC+0309	34338×CHS	BROMOD I CHLOROME THANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34544*GMS	1,2-DICHLOROPROPANE	UG/KG-DRY	ND
03/09/92	HB*QC*0309	34702*CMS	CIS-1, 3-DICHLORO- PROPENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34487*GMS	TRICHLOROETHENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34 309*GNS	DIBROMOCHLORONETHANE	UG/KG-DRY	ND
03/09/92	NB*QC*0309	34237*GMS	BENZENE	UG/KG-DRY	ND
03/09/92 03/09/92	MB*QC*0309	34514*GNS	1, 1, 2-TRICHL'ETHANE	UC/KC-DRY	ND ND
03/09/92 03/09/92	MB*QC*0309 MB*QC*0309	34579*GHS 34697*GHS	2-CHLOROETHYLVINYL- ETHER TRANS-1, 3-DICHLORO- PROPENE	UG/KG-DRY UG/KG-DRY	ND ND
03/09/92	MB*QC*0309	34290*GMS	BROMOFORM	UG/KG-DRY	ND
03/09/92	MB*QC*0389	75169*GMS	METHYLISOBUTYLKETONE	UG/KG-DRY	1.3
03/09/92	MB*0C*0309	34478*GHS	TETRACHLOROETHENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34519*GMS	1,1,2,2-TETRACHLORO- ETHANE	UG/KG-DRY	ND
03/09/92	MB*QC#0309	34483*GMS	TOLUENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34304*GMS	CHLOROBENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309	34374*CMS	ETHYLBENZENE	UG/KG-DRY	ND
03/09/92	NB*QC*0309	45510×GMS	XYLENE, TOTAL	UG/KG-DRY	ND
03/09/92 03/09/92	MB*QC*0309	98578*GMS	DICHLOROBENZENE, TOTAL	UG/KG-DRY	ND
03/09/92	MB*QC*0309B MB*QC*0309B	34421*GMS 34416*GMS	CHLOROME THANE BRONOME THANE	UC/KC-DRY	ND ND
03/09/92	MB*QC*0309B	34495*GMS	VINYL CHLORIDE	UG/KG-DRY UG/KG-DRY	ND
03/09/92	HB*QC*0309B	34314*GMS	CHLOROETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34426*GMS	METHYLENE CHLORIDE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	78544*GHS	CARBON DISULFIDE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34491*GMS	TRICHLOROFLUOROMETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34504+GHS	I, 1-DICHLOROETHYLENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34499*GMS	I, 1-DICHLOROETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	96464*GMS	1,2-DICHLOROETHENE(TOTAL)	UG/KG	ND
03/09/92	MB*QC*0309B	97201*GMS	DIETHYL ETHER	UG/KG-DRY	ND
03/09/92 03/09/92	MB*QC*0309B MB*QC*0309B	34318*GMS	CHLOROFORM 1,2-DICHLOROETHANE	UG/KG-DRY	1.0
03/09/92	MB*QC*0309B	34534*GMS 75078*GMS	METHYL ETHYL KETONE	UG/KG-DRY UG/KG-DRY	ND ND
03/09/92	MB*QC*0309B	- 34509*GMS	1, 1, 1-TRICHL'ETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34299*GMS	CARBON TETRACHLORIDE	UG/KG-DRY	ND
03/09/92	NB*QC*0309B	34330*GMS	BROMODICHLORONETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34544*GMS	1,2-DICHLOROPROPANE	UG/KG-DRY	ND
03/09/92	#8*QC*0309B	34702*GMS	CIS-1, 3-DICHLORO- PROPENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34487*GMS	TRICHLOROETHENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34309*GMS	DIBROMOCHLOROMETHANE	UG/KG-DRY	ND
03/09/92	NB*QC*0309B	34237*GMS	BENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34514*GMS	1, 1, 2-TRICHL'ETHANE	UG/KG-DRY	ND
03/09/92 03/09/92	MB*QC*0309B MB*QC*0309B	34579*GHS 34697*GMS	2-CHLOROETHYLVINYL- ETHER TRANS-1,3-DICHLORO- PROPENE	UC/KC-DRY UC/KC-DRY	ND ND
03/09/92	MB*QC*0309B	34298*6#S	TRANS-1, 3-DICHLORO- PROPENE BROMOFORM	UG/KG-DRY UG/KG-DRY	ND ND
03/09/92	HB*QC*0309B	75169×6MS	METHYL I SOBUTYLKE TONE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34478*GMS	TETRACHLOROETHENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34519*GMS	1,1,2,2-TETRACHLORO- ETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34483*GMS	TOLUENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	34304*GMS	CHLOROBENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*8309B	34374*GMS	ETHYLBENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	45510*GMS	XYLENE, TOTAL	UG/KG-DRY	ND
03/09/92	MB*QC*0309B	98578*GMS	DICHLOROBENZENE, TOTAL	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34421*GMS	CHLOROMETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34416*GMS	BRONOMETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34495*GMS	VINYL CHLORIDE	UG/KG-DRY	ND
03/09/92 03/09/92	MB*QC*0311 MB*OC*0311	34314*GMS		UG/KG-DRY	ND
v3/v3/3L	MB*QC*0311 MB*QC*0311	34426*GMS 78544*GMS	METHYLENE CHLORIDE	UG/KG-DRY	ND
R3/R0/07		10.3英美英语门合	CARBON DISULFIDE	UG/KG-DRY	ND
03/09/92 03/09/92				HC/KC-DDV	ND
03/09/92 03/09/92 03/09/92	MB*QC*0311 MB*QC*0311 MB*QC*0311	34491*GMS 34504*GMS	TRICHLOROFLUOROMETHANE 1,1-DICHLOROETHYLENE	UG/KG-DRY UG/KG-DRY	ND ND

Section 4.

.

#### ESE BATCH : G26658

(

Method Blank Sample Summary

Section 4 (cont'd)

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/09/92	MB*QC*0311	96464*GMS	1,2-DICHLOROETHENE(TOTAL)	UG/KG	ND
03/09/92	MB*QC*0311	97201*CMS	DIETHYL ETHER	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34318*GMS	CHLOROFORM	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34534*GHS	1,2-DICHLOROETHANE	UC/KC-DRY	ND
03/09/92	HB*QC*0311	75078*CMS	METHYL ETHYL KETONE	UG/KG-DRY	ND
03/09/92	HB*QC*0311	34509*GMS	I, I, 1-TRICHL'ETHANE	UC/KC-DRY	ND
03/09/92	MB*QC+0311	34299*GHS	CARBON TETRACHLORIDE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34330+0MS	BROMODICHLOROMETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34544*GMS	I, 2-DICHLOROPROPANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34702*GHS	CIS-1,3-DICHLORO- PROPENE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34487#GMS	TRICHLOROE THENE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34309*GMS	DIBROMOCHLOROMETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34237*GMS	BENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34514*GMS	I.I.2-TRICHL'ETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34579*CHS	2-CHLOROETHYLVINYL- ETHER	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34697*GMS	TRANS-1.3-DICHLORO- PROPENE	UG/KG-DRY	ND
83/09/92	MB*QC*0311	34290*GMS	BROMOFORM	UG/KG-DRY	ND
03/09/92	MB*QC*0311	75169*GMS	METHYLISOBUTYLKETONE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34478*GMS	TETRACHLOROETHENE	UG/KG-DRY	ND
03/09/92	MB*0C*0311	34519*GMS	1,1,2,2-TETRACHLORO- ETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34483*GMS	TOLUENE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34304*GMS	CHLOROBENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	34374*GHS	ETHYLBENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0311	45518+GNS	XYLENE, TOTAL	UG/KG-DRY	ND
03/09/92	MB*QC*0311	98578*GMS	DICHLOROBENZENE, TOTAL	UG/KG-DRY	ND
03/09/92	#B*QC*0312	34421*GHS	CHLOROMETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0312	34416*GMS	BRONOMETHANE		
03/09/92	NB*QC*0312	34495*GMS	VINYL CHLORIDE	UG/KG-DRY	ND
03/09/92	MB*QC*0312			UG/KG-DRY	ND
03/09/92		34314*GHS	CHLOROETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0312 MB*QC*0312	34426*GMS	METHYLENE CHLORIDE	UG/KG-DRY	ND
03/09/92		78544*GMS	CARBON DISULFIDE	UG/KG-DRY	ND
03/09/92	MB*QC*0312 MB*QC*0312	34491*GHS	TRICHLOROFLUOROMETHANE	UG/KG-DRY	ND
		34504*GMS	1, 1-DICHLOROETHYLENE	UG/KG-DRY	ND
03/09/92 03/00/02	MB*QC*0312	34499*GMS	1, 1-DICHLOROETHANE	UG/KG-DRY	ND
03/09/92	MB*QC*0312	96464*GMS	1,2-DICHLOROETHENE(TOTAL)	UG/KG	ND
03/09/92	MB*QC*0312	97201*GMS	DIETHYL ETHER	UG/KG-DRY	ND
03/09/92	MB*QC*0312	34318*GMS	CHLOROFORM	UG/KG-DRY	ND
03/09/92	MB*QC*0312	34534*GHS	1,2-DICHLOROETHANE	UG/KG-DRY	ND
83/09/92	MB*QC*0312	75078*GHS	METHYL ETHYL KETONE	UG/KG-DRY	ND
03/09/92	MB#QC#0312	34509*CMS	I, I, J-TRICHL'ETHANE	UG/KG-DRY	ND
3/09/92	MB+QC+0312	34299*6MS	CARBON TETRACHLORIDE	UG/KG-DRY	ND
3/09/92	HB*QC*0312	34330*GMS	BROMODICHLOROMETHANE	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34544*GMS	1,2-DICHLOROPROPANE	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34702*GMS	CIS-1,3-DICHLORO- PROPENE	UG/KG-DRY	ND
13/09/92	MB*QC*0312	34487*CHS	TRICHLOROE THENE	UG/KG-DRY	ND
13/09/92	MB*QC*0312	34309×CMS	DIBROMOCHLOROMETHANE	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34237*GMS	BENZENE	UG/KG-DRY	NÐ
3/09/92	MB*QC*0312	34514*GMS	1,1,2-TRICHL'ETHANE	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34579*GMS	2-CHLOROETHYLVINYL- ETHER	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34697*CMS	TRANS-1.3-DICHLORO- PROPENE	UC/KC-DRY	ND
3/09/92	MB*QC*0312	34290*GMS	BROHOFORM	UG/KG-DRY	ND
3/09/92	MB*QC*0312	75169*GHS	METHYLISOBUTYLKETONE	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34478*CMS	TETRACHLOROETHENE	UG/KG-DRY	ND
3/09/92	MB*QC*0312	34519*CMS	I.I.2.2-TETRACHLORO- ETHANE		
3/09/92	MB*QC*0312	34483#GMS	TOLUENE	UG/KG-DRY	ND
3/09/92	MB*QC*8312	34304*GMS	CHLOROBENZENE	UG/KG-DRY	ND
03/09/92	MB*QC*0312	34374*6HS		UG/KG-DRY	ND
3/09/92	MB#QC#0312		ETHYLBENZENE	UG/KG-DRY	ND
		45510*CHS	XYLENE, TOTAL	UG/KG-DRY	ND
13/09/92	NB*QC*0312	98578*GNS	DICHLOROBENZENE, TOTAL	UG/KG-DRY	ND

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER		<b>%</b> RECV	RECV CRIT	UNITS	TARGET	FOUND
03/09/92	SP1*QC*311	34504*CMS	1, 1-DICHLOROETHYLENE		90	59-172	UG/KG-DRY	50	45
03/09/92	SP1*QC*311	34487*GMS	TRICHLOROE THENE		96	62-137	UG/KG-DRY	50	48
03/09/92	SP1*QC*311	34237*GMS	BENZENE	•	94	66-142	UG/KG-DRY	50	47
03/09/92	SP1*QC*311	34483*CMS	TOLUENE		92	59-139	UG/KG-DRY	50	46
03/09/92	SP1*QC*311	34 304*GMS	CHLOROBENZENE		94	60-133	UG/KG-DRY	50	47
03/09/92	SP 1*QC*1	34 504×6MS	1, I-DICHLOROETHYLENE		88	59-172	UG/KG-DRY	50	44
03/09/92	SP 1*QC * 1	34487*GMS	TR I CHLOROE THENE		102	62-137	UG/KG-DRY	50	51
03/09/92	SP1*QC*1	34237*GMS	BENZENE		109	66-142	UG/KG-DRY	50	50
03/09/92	SP1#QC#1	34483*GMS	TOLUENE		102	59-139	UG/KG-DRY	50	51
03/09/92	\$P1*QC*1	34304*GMS	CHLOROBENZENE		102	60-133	UG/KG-DRY	50	51

Ĺ

1 L

Sample Matrix Spike Recovery Summary

Section 4 (contral)

DATE		STORE T	PARAMETER	<pre>€PECU</pre>	PECU	CDIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
DATE 03/09/92	SAMPLE SPM1*HUNTS1*22		I. I-DICHLOROETHYLENE	112	59-1		0.0	UG/KG-DRY	58	65	<u>Rrv</u>
03/09/92	SPM1*HUNTS 1*22	34487*GMS	TRICHLOROETHENE	107	62-1		0.0	UG/KG-DRY	58	62	
03/09/92	SPM1*HUNTS 1*22	34237*6MS	BENZENE	112	66-14		0.0	UG/KG-DRY	58	65	
03/09/92		34483*GMS	TOLUENE	114	59-1	• -	0.0	UC/KG-DRY	58	66	
03/09/92	SPM1*HUNTS 1*22	34304*GMS	CHLOROBENZENE	112	60-1		0.0	UG/KG-DRY	58	65	
03/09/92	SPM1*HUNTS1*22 SPM2*HUNTS1*22	34504*GMS	1, I-DICHLOROETHYLENE	109	59-1		0.0	UG/KG-DRY	58	63	0.0
03/09/92	SPM2*HUNTS 1*22	34487*GMS	TRICHLOROETHENE	105	62-13		0.0	UG/KG-DRY	58	61	0.0
03/09/92	SPM2*HUNTS 1*22	34237*GMS	BENZENE	114	66-14		0.0	UG/KG-DRY	58	66	0.0
03/09/92	SPM2*HUNTS 1*22	34483*GMS	TOLUENE	119	59-13		0.0	UG/KG-DRY	58	69	8.7
03/09/92	SPM2*HUNTS 1*22	34304*GMS	CHLOROBENZENE	114	60-1		0.0	UG/KG-DRY	58	66	0.0
			I, I-DICHLOROETHYLENE	91	59-1		0.0	UC/KG-DRY	56	51	0.0
03/09/92 03/09/92	SPM1*HUNTS1*12 SPM1*HUNTS1*12	34504*GMS 34487*GMS	TRICHLOROETHENE	91	62-13		0.0	UG/KG-DRY	56	51	
03/09/92	SPM1*HUNTS1*12	34237*GMS	BENZENE	91 91	66-14		0.0	UG/KG-DRY	56	51	
03/09/92	SPM1*HUNTS1*12	34483*GMS	TOLUENE	93	59-1	. –	0.0	UG/KG-DRY	56	52	
03/09/92	SPM1*HUNTS1*12	34304*GMS	CHLOROBENZENE	91	60-13		0.0	UG/KG-DRY	56	51	
03/09/92	SPM2*HUNTS1*12	34504*GMS	1, 1-DICHLOROETHYLENE	89	59-11		0.0	UG/KG-DRY	56	50	1.1
03/09/92	SPM2*HUNTS 1* 12	34487*GMS	TRICHLOROETHENE	91	62-1		0.0	UG/KG-DRY	56	51	1.1
03/09/92	SPM2*HUNTS1*12	34237*GMS	BENZENE	93	66-14		0.0	UG/KG-DRY	56	52	3.2
03/09/92	SPM2*HUNTS1*12	34483*GMS	TOLUENE	95	59-13		0.0	UG/KG-DRY	56	53	2.1
03/09/92	SPM2*HUNTS 1*12	34304*GMS	CHLOROBENZENE	91	60-1		0.0	UG/KG-DRY	56	51	1.1
	of the month of the le	54564.0110	onconocheene				•••				
Surrogate :	Spike Recovery Summa	ry									
DATE	SAMPLE	STORET	PARAMETER	UNITS		TARGE	T FOUND	<b>≭</b> RECV	RECV CRIT		
03/09/92	MB*QC*0309	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-	DRY	50	48	96	70-121	-	
03/09/92 03/09/92	NB*QC*0309	97031*SUR 97026*SUR	TOLUENE-D(8)	UG/KG-		50	40 50	100	BI-117		
03/09/92	NB*QC*0309	97027*SUR	BRONOFLUOROBENZENE	UG/KG-		50 50	50	100	74-121		
03/09/92	DA*HUNTS 1*22	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	46	92	70-121		
03/09/92	DA*HUNTS1*22	97026*SUR	TOLUENE-D(8)	UG/KG-		50	53	110	81-117		
03/09/92	DA*HUNTS1*22	97027*SUR	BROMOFLUOROBENZENE	UG/KG-		50	45	98	74-121		
03/09/92	SPM1+HUNTS1+22	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	47	94	70-121		
03/09/92	SPM1*HUNTS1*22	97026*SUR	TOLUENE-D(8)	UG/KG-		50	53	110	B1-117		
03/09/92	SPM1*HUNTS1*22	97027*SUR	BROMOFLUOROBENZENE	UG/KG-		50	47	94	74-121		
03/09/92	SPM2*HUNTS1*22	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	48	96	70-121		
03/09/92	SPM2*HUNTS1*22	97026*SUR	TOLUENE-D(8)	UG/KG-		50	57	110	81-117		
03/09/92	SPM2*HUNTS1*22	97027*SUR	BROMOFLUOROBENZENE	UG/KG-		50	45	90	74-121		
03/09/92	DA*HUNTS1*1	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	48	96	70-121		-
03/09/92	DA*HUNTS1*1	97026*SUR	TOLUENE-D(B)	UG/KG-		50	53	110	81-117		
03/09/92	DA*HUNTS1*1	97027*SUR	BROMOFLUOROBENZENE	UG/KG-		50	46	92	74-121		
03/09/92	DA*HUNTS1*3	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	47	94	70-121		
			•			50	56	110	81-117		
03/09/92	DA*HUNTS1*3	97026*SUR	TOLUENE-D(8) BROMOFLUOROBENZENE	UG/KG- UG/KG-		50 50	47	94	74-121		
03/09/92	DA*HUNTS1*3	97027*SUR		UG/KG-		50 50	46	92	70-121		
03/09/92 03/09/92	DA*HUNTS1*4	97031*SUR	1,2-DICHLOROETHANE-D(4) TOLUENE-D(8)	UG/KG-		50	55	110	81-117		•
03/09/92	DA*HUNTS I*4	97026*SUR 97027*SUR	BROMOFLUOROBENZENE	UG/KG-		50	46	92	74-121		
	DA*HUNTS1*4	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	44	88 88	79-121		
03/09/92 03/09/92	DA*HUNTS1*7 DA*HUNTS1*7	97026*SUR	TOLUENE-D(8)	UG/KG-		50	49	98	81-117		
03/09/92	DA*HUNTS1*7	97027*SUR	BRONOFLUOROBENZENE	UG/KG-		50	44	66	74-121		
03/09/92	MB*QC*0309B	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	48	96	70-121		
03/09/92	MB*QC*0309B	97026*SUR	TOLUENE-D(8)	UG/KG-		50	49	98	81-117		
03/09/92	NB*QC*0309B	97020*SUR 97027*SUR	BRONOFLUOROBENZENE	UG/KG-		50 50	49 51	96 100	74-121		
		97027*SUR 97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50 50	48	96	70-121		
03/09/92 03/09/92	DA*HUNTS1*15 DA*HUNTS1*15	97031*SUR 97026*SUR	TOLUENE-D(8)	UG/KG-		50 50	48 53	90 110	81-117		
				UG/KG-			47		74-121		
03/09/92 03/09/92	DA*HUNTS1*15	97027*SUR	BROMOFLUOROBENZENE			50 50		94	70-121		
03/09/92	DA*HUNTS1*18 DA*HUNTS1*18	97031*SUR	1,2-DICHLOROETHANE-D(4) TOLUENE-D(8)	UG/KG-		50 50	49 52	98 180	81-117		
03/09/92	DA*HUNTS1*18	97026*SUR		UG/KG- UG/KG-			52 50	100 100			
03/09/92		97027*SUR				50 50			74-121		
03/10/92	DA*HUNTSI*19	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50 50	48 57	96 110	70-121		
03/10/92 03/10/92	DA*HUNTS1*19	97026*SUR 97027*SUR	TOLUENE-D(8) BROMOFLUOROBENZENE	UG/KG- UG/KG-		50 50	42	110 84	81-117 74-121		
	DA*HUNTS J*19	97027*SUR 97031*SUR		UG/KG-		50	49		70-121		
03/10/92	DA*HUNTS1*23 DA*HUNTS1*23	•	1,2-DICHLOROETHANE-D(4)	UG/KG-		50 50	49 61	98 120	81-117		
03/10/92 03/10/92		97026*SUR 97027*SUR	TOLUENE-D(8) BROHOFLUOROBENZENE	UG/KG-		50	41	82	74-121		
· · · · ·	DA*HUNTS1*23	97027*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50 50	49	98			
03/10/92	DAHUNTS 1+26	97031*SUR	•						70-121		
03/10/92	DA*HUNTS1*26	97026*SUR	TOLUENE-D(B)	UG/KG-		50 50	48	96	81-117		
03/10/92	DA*HUNTS 1*26	97027*SUR	BROMOF LUOROBENZENE	UG/KG-		50 50	51	100	74-121		
03/10/92	DA*HUNTS 1*28	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-		50	47	94	70-121		
03/10/92	DA*HUNTS 1*28	97026*SUR	TOLUENE-D(8)	UG/KG-		50	34	68	81-117		
03/10/92	DA*HUNTS1*28	97027*SUR	BROMOFLUOROBENZENE	UG/KG-		50	94	190	74-121		
03/10/92	DA*HUNTS1*29	97031#SUR	1,2-DICHLOROETHANE-D(4)	UC/KG-		50	48	96	70-121		
03/10/92	DA*HUNTS1*29	97026*SUR	TOLUENE-D(8)	UC/KG-		50	47	94	81-117		
03/10/92	DA*HUNTS1*29	97027*SUR	BROMOFLUOROBENZENE	UC/KC-		50	55	110	74-121		
03/10/92	DA*HUNTS1*30	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-	ŲRY	50	48	96	70-121		

#### ESE BATCH : 626658 Environmental Science and Engineering Analytical Services Computer QC Checks

Section 5.

323

Batch No.: 026658 Analysis Date: 03/09/92	Analyst: GREGORY LAMB
Analysis holding time within criteria?	Yes No Comment / Corrective Action
Extract holding time within criteria?	x
Method blank present? Method blank within acceptance criteria?	X X
Standard matrix spike present? Standard matrix spike within acceptance criteria?	x x
Sample matrix spike present? Sample matrix spike within acceptance criteria?	X X
Sample matrix spike duplicate present? Sample matrix spike duplicate within acceptance crit	X eria? X
Surrogate present? Surrogate within acceptance criteria?	X
	97027*SUR

Note: Any "NO" answer requires a comment.

#### OVERRIDE COMMENTS

PROB.:SURROGATE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.:TOLUENE D8 AND BFB OUT OF CRITERIA ON 5 OF 24 SAMPLES. THESE SAMPLES WERE VERY DIRTY AND MATRIX EFFECTS CAUSED ERRATIC RECOVERIES./GGL

ESE BATCH : G26598 CLASSIFICATION : PERCENT HOISTURE - ASTH D2216

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92 10:22:53
ANAL YST	: ERIC ANDERSON	ANALYSIS DATE	: 03/13/92
EXTRACTOR	: ERIC ANDERSON	EXTRACT DATE	: 03/12/92
DATA ENTRY	: ERIC ANDERSON		

STATUS

(

: FINAL

METHOD BLANK CORRECTION METHOD : NONE

	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR SUZANNE WOODWARD		
HUNTSI 3924018G 0201			COE - FT. STEWART			
WRITSI	3924018G 0201	COE - FT. STEN	ARI	SUZANNE WOODWARD		
SAMPLE	CLIENT	DATE	TIHE			
<u>CODE</u>	1D	ANALYZED	ANALYZED	_		
WRITSI*1	₩S-1					
WRITS1*2	WS-2					
WRITS1*3	₩S-3					
WRITS1*4	WS-4					
WRITS1*5	WS-5					
WRITS1*6	WS-6					
WRITS1*7	₩S-7					
WRITS1*8	₩S-8					
WR1TS1*9	WS-9					
WRITS1*10	M2-DA5					
WRITSI*12	WSD-1					
WRITS1*13	WSD-2					
WRITSI*14	WSD-DUP					
HUNTS1*1	H\$-1					
HUNTS1*2	HS-2					
HUNTS I*3	HS-3					
HUNTSI*4	HS-4					
HUNTS1*7	H\$-7					
HUNTS1*8	HS-B					
HUNTS1*9	HS-9					
HUNTS1*10	HS-10					
HUNTSI*11	HS-11					
IUNTS1*12	HS-12					
HUNTS1*13	HS-13					
IUNTS I * 14	HS-14					
IUNTSI*15	HS-15					
IUNTS1*16	HS-16					
IUNTSI*17	HS-17					
IUNTS1*18	HS-18					
IUNTS1*19	HS-19					
IUNTS1*22	HS-DUP					
IUNTS1*23	HS-DUP					
IUNTS1*26	HSD-I					
IUNTS1*27	HSD-2					
IUNTS1*28	H\$D-3					
IUNTS1*29	HSD-4					
IUNTS1*30	H\$D-DUP					

ŧ

Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/13/92	MB*QC*1	96041+0	PAN WEIGHT	GM	1.00530
03/13/92	MB*QC*1	96042×0	PAN+SAMPLE WEIGHT(WET)	GM	1.00530
03/13/92	MB*QC*1	96043×0	PAN+SAMPLE WEIGHT(DRY)	GM	1.00450
03/13/92	M8*QC*1	70320×1	NOISTURE	SHET HT	ND
03/13/92	MB*QC*2	96041×0	PAN HEIGHT	GM	1.00040
03/13/92	NB*QC*2	96042×0	PAN+SAMPLE WEIGHT(WET)	GM	1.00040
03/13/92	MB*QC*2	96043×0	PAN+SAMPLE HEIGHT(DRY)	GM	0.99950
03/13/92	MB*QC*2	70320*1	MOISTURE	XWET NT	ND
03/13/92	MB*QC*3	96041*0	PAN HEIGHT	GM	1.00920
03/13/92	MB*QC*3	96042×0	PAN+SAMPLE HEIGHT(HET)	GM	1.00920
03/13/92	MB*QC*3	96043×0	PAN+SAMPLE HEIGHT(DRY)	GM	1.00830
03/13/92	MB*QC*3	70320*1	NOISTURE	XWET WT	ND
03/13/92	MB*QC*4	96041*0	PAN WEIGHT	GM	1.01130
03/13/92	MB*QC*4	96042*0	PAN+SAMPLE WEIGHT(WET)	GN	1.01130
83/13/92	MB*QC*4	96043*0	PAN+SAMPLE WEIGHT(DRY)	GM	1.01030
03/13/92	MB*QC*4	70320×1	MOISTURE	≭WET WT	ND

Replicate Analysis Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	REP #1	REP #2	RPD RPD CRIT
03/13/92	RP#WRITS1#6	96041*0	PAN HEIGHT	GM	0.99860	1.00070	0.21007 N/A
03/13/92	RP*WRITS1*6	96042×0	PAN+SAMPLE WEIGHT(WET)	GM	18.30270	18.99430	3.70861 N/A
03/13/92	RP*WR]TS1*6	96043*0	PAN+SAMPLE WEIGHT(DRY)	GM	15.54250	15.64860	0.68032 N/A
03/13/92	RP*WRITS1*6	70320×1	MOISTURE	XWET WT	16.0	18.6	15.0 23
03/13/92	RP*WR1TS1*7	96041*0	PAN WEIGHT	GM	1.00220	1.00370	0.14956 N/A
03/13/92	RP*WR1TS1*7	96042*0	PAN+SAMPLE WEIGHT(WET)	GM	18.78330	18.71730	0.35199 N/A
03/13/92	RP*WRITS1*7	96043*0	PAN+SAMPLE WEIGHT(DRY)	GM	16.19200	15.98220	1.30415 N/A
03/13/92	RP*WR]TS]*7	70320*1	MOISTURE	XNET HT	14.6	15.4	5.3 23
03/13/92	RP*HUNTS1*1	9604 i *0	PAN WEIGHT	GM	0.99930	0.99830	0.10012 N/A
03/13/92	RP*HUNTS I* 1	96842*0	PAN+SAMPLE WEIGHT(WET)	GM	17.81020	17.82910	0.10606 N/A
03/13/92	RP*HUNTS [*1	96043*0	PAN+SAMPLE HEIGHT(DRY)	GM	16.07000	16.07110	0.00684 N/A
03/13/92	RP*HUNTS1*1	70320*1	MOISTURE	≯WET NT	10.4	10.4	0.0 23
03/13/92	RP*HUNTS1*15	96041×0	PAN WEIGHT	GM	1.00540	1.00500	0.03979 N/A
03/13/92	RP*HUNTS1*15	96042×0	PAN+SAMPLE WEIGHT(WET)	GM	17.88030	17.89780	0.09783 N/A
03/13/92	RP*HUNTS1*15	96043*0	PAN+SAMPLE WEIGHT(DRY)	GM	16.47950	16.46120	0.11111 N/A
03/13/92	RP*HUNTS1*15	70320*1	MOISTURE	XHET WT	8.3	8.5	2.4 23
03/13/92	RP*HUNTS1*26	96041×0	PAN HEIGHT	GM	1.01150	1.01360	0.20740 N/A
03/13/92	RP*HUNTS1*26	96042×0	PAN+SAMPLE WEIGHT(WET)	GM	18,53870	18.69640	0.84705 N/A
03/13/92	RP*HUNTS1*26	96043*0	PAN+SAMPLE WEIGHT(DRY)	GM	13.86800	13.75510	0.81743 N/A
03/13/92	RP*HUNTS1*26	70320×1	MOISTURE	WET WT	26.6	27.9	4.8 23

325

# ESE BATCH - : G26598 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26598 Analysis Date: 03/13/92 Analyst: ERIC ANDERSON

	<u>"Exceptions"</u>
Analysis holding time within criteria?	<u>Yes No Comment / Corrective Action</u> X
Extract holding time within criteria?	x
Method blank present?	x
Method blank within acceptance criteria?	X
Sample replicate present?	x
Sample replicate within acceptance criteria?	X
Note: Any "NO" answer requires a comment.	

# OVERRIDE COMMENTS

: 04/22/92 10:04:01 : 03/16/92

۰.

:

REPORT DATE/TIME ANALYSIS DATE

EXTRACT DATE

ESE BATCH : G26649 CLASSIFICATION : VOLATILE ORGANIC CMPDS-E624

QC TYPE : FDER/SH ANALYST : KELLY RUSSELL-KELLER EXTRACTOR : DATA ENTRY : TODD ROMERO

STATUS

#### : FINAL

METHOD BLANK CORRECTION METHOD : NONE USATHAMA LOT: INST

BATCH NOTES DOWNLOAD FILE WRITWKKI

FIELD GRP	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
HUNTHI	39240186 0201	COE - ST. STEW	ART	SUZANNE WOODWARD
WRITH1	3924018G 0201	COE - FT. STEW		SUZANNE WOODWARD
SAMPLE	CLIENT	DATE	TIME	
CODE	ID	ANALYZED	ANALYZED	_
WRITWI*13	TRPBLK	03/16/92	10:40AM	
WRITN1*14	TRPBLK	03/16/92	11:10AM	
WRITW!*!!	EQPBLK	03/16/92	11:4IAM	
WRITHIXI	KWM-1	03/16/92	12:12PM	
WRITW1*2	WMW-2	03/16/92	02:16PH	
WRITW1*3	MWM-3	03/16/92	02:47PM	
WRITH1*4	WMW-4	03/16/92	03:18PM	
WRITW1*7	WMW-7	03/16/92	04:50PM	
WRITH1*8	WMW-DUP	03/16/92	05:21PM	
WR]TH1*10	HSOURCE	03/16/92	05:51PM	
HUNTW1*1	HWM-1	83/16/92	06:22PM	
HUNTH1*2	HMW-2	03/16/92	06:53PM	
HUNTH1*3	HMM-3	03/16/92	07:24PM	
HUNTH1*4	HMW-4	03/16/92	07:55PM	
HUNTW1*5	HMM-5	03/16/92	08:26PM	

(

Method Blank Sample Summary

					•
DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/16/92	MB*QC*0316	34418*GMS	CHLOROME THANE	UG/L	ND
03/16/92	MB*QC*0316	34413*CMS	BROMOMETHANE	UG/L	ND
03/16/92	MB*QC*0316	39175*CHS	VINYL CHLORIDE	UG/L	ND
03/16/92	MB*QC*0316	34311*GMS	CHLOROE THANE	UG/L	ND
03/16/92	MB*QC*0316	34423*GMS	NETHYLENE CHLORIDE	UG/L	ND
03/16/92	MB*QC*0316	81576*GMS	DIETHYL ETHER, TOTAL	UG/L	ND
03/16/92	MB*QC*0316	7704 I*GMS	CARBON DISULFIDE	UG/L	ND
03/16/92	MB*QC*0316	34501×GMS	1, I-DICHLOROETHYLENE	UG/L	NÐ
03/16/92	MB*0C*0316	34488×GMS	TRICHLOROFLUORO- METHANE	UG/L	ND
03/16/92	MB*0C*0316	34496*GMS	1, 1-DICHLOROETHANE	UG/L	ND
03/16/92	MB*QC*0316	96463*GMS	1, 2-DICHLOROETHENE (TOTAL)	UG/L	ND
03/16/92	MB*QC*0316	32106*GMS	CHLOROFORM	UG/L	ND
03/16/92	MB*QC*0316	34531*GMS	1,2-DICHLOROETHANE	UG/L	ND
03/16/92	HB*QC*0316	81595*GMS	METHYL ETHYL KETONE	UG/L	ND
03/16/92	MB*QC*0316	34506*GMS	1, 1, I-TRICHL'ETHANE	UG/L	ND
03/16/92	MB*QC*0316	32102*GMS	CARBON TETRACHLORIDE	UG/L	ND
03/16/92	MB*0C*0316	34576*GMS	2-CHLOROETHYLVINYL- ETHER	UG/L	ND
03/16/92	MB*QC*0316	32101*GMS	BROMODICHLORONETHANE	UG/L	ND
03/16/92	MB+QC+0316	34541*GMS	1, 2-DICHLOROPROPANE	UG/L	ND
03/16/92	MB*QC*0316	34704*GMS	CIS-1, 3-DICHLORO- PROPENE	UG/L ·	ND
03/16/92	MB*0C*0316	39180*GMS	TRICHLOROETHENE	UG/L	ND
83/16/92	MB*0C*0316	32105*GHS	. DI BROMOCHLOROHE THANE	UG/L	ND
03/16/92	MB*QC*0316	34511*GMS	1.1.2-TRICHL'ETHANE	UG/L	ND
03/16/92	MB*QC*0316	34030*GMS	BENZENE	UG/L	ND
03/16/92	MB*0C*0316	34699*GMS	TRANS-1, 3-DICHLORO- PROPENE	UG/L	ND
03/16/92	MB*QC*0316	32104*GMS	BROMOFORM	UG/L	ND
03/16/92	MB*QC*0316	81596*GMS	METHYL ISOBUT'KETONE	UG/L	ND
03/16/92	MB*QC*0316	34475*GMS	TE TRACHLOROE THENE	UG/L	ND
03/16/92	MB*QC*0316	34516*GMS	1,1,2,2-TETRACHLORO- ETHANE	UG/L	ND
03/16/92	MB*QC*0316	34010*GMS	TOLUENE	UG/L	ND
03/16/92	MB*QC*0316	34301*GHS	CHLOROBENZENE	UG/L	ND
03/16/92	MB*QC*0316	34371*GMS	ETHYLBENZENE	UG/L	ND
03/16/92	HB*QC+0316	81551*GMS	XYLENES, TOTAL	UG/L	ND
03/16/92	HB*0C*0316	81524*GMS	DICHLOROBENZENE, TOT.	UG/L	ND

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>XRECV</b>	RECV CRIT	UNITS	T ARGE T	FOUND
03/16/92	SP 1*0C*1	34501*GHS	1, 1-DICHLOROETHYLENE	80	61-145	UG/L	50	40
03/16/92	SP 1*0C*1	39180×CMS	TRICHLOROE THENE	102	71-120	UG/L	50	51
03/16/92	SP 1*0C*1	34030*GMS	BENŻENE	102	76-127	UG/L	50	51
03/16/92	SP 1+0C+1	34010*GMS	TOLUENE	102	76-125	UG/L	50	51
03/16/92	SP I*QC*1	34 30 1*GMS	CHLOROBENZENE	102	75-130	UG/L	50	51

### Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAHETER	<b>XRECV</b>	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/16/92	SPM1*WR]TH1*1	34501*CMS	1, I-DICHLOROETHYLENE	84	61-145	0.0	UG/L	50	42	
03/16/92	SPM1*WRITH1*1	39180*GMS	TR ICHLOROE THENE	106	71-120	0.0	UG/L	50	53	
03/16/92	SPH1*HR1TH1*1	34030*GMS	BENZÉNE	108	76-127	4.7	UG/L	50	54	
03/16/92	SPM1*WRITH1*1	34010*GMS	TOLUENE	106	76-125	0.0	UG/L	50	53	
03/16/92	SPM1*WRITH1*1	34301*GMS	CHLOROBENZENE	106	75-130	0.0	UG/L	50	53	
03/16/92	SPH2*WRITH1*1	34501*GMS	1.1-DICHLOROETHYLENE	84	61-145	0.0	UG/L	50	42	0.0
03/16/92	SPM2*WRITH1*1	39180*GMS	TRICHLOROE THENE	110	71-120	0.0	UG/L	50	55	0.0
03/16/92	SPH2*WRITH!*1	34030*GMS	BENZENE	110	76-127	4.7	UG/L	50 .	55	0.0
03/16/92	SPH2*URITHI*1	34010*GMS	TOLUENE	110	76-125	0.0	UG/L	50	55	0.0
03/16/92	SPM2*WRITH1*1	34301+GMS	CHLOROBENZENE	108	75-130	0.0	UG/L	50	54	0.0

### Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	<b>%</b> RECV	RECV CRIT
03/16/92	MB*QC*0316	98812*SUR	1, 2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
03/16/92	MB*QC*0316	98810*SUR	TOLUENE-D(8)	UG/L	50	51	100	85-115
03/16/92	MB*QC*0316	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	51	100	86-115
03/16/92	DA*WRITW1*13	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
03/16/92	DA*WR TW1*13	98810*SUR	TOLUENE-D(8)	UG/L	50	50	100	85-115
03/16/92	DA*WRITW1*13	97947¥SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
83/16/92	DA*WRITW1*14	98812*SUR	1,2-DICHLOROETHANE-D(4)	06/L	50	45	90	76-114
03/16/92	DA*WRITW1*14	98810*SUR	TOLUENE-D(8)	UG/L	50	50	100	85-115
03/16/92	DA*NRITW1*14	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	47	94	86-115
03/16/92	DA*WRITW1*11	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	48	96	76-114
03/16/92	DA*NRITN1*11	98810*SUR	TOLUENE-D(B)	UG/L	50	49	98	85-115
03/16/92	DA*NRITH1*11	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	DA*WR1TW1*1	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
03/16/92	DA*WRITHI*1	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
03/16/92	DA*HRITHI*1	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	SPM1*HRITH1*1	98812*SUR	1,2-DICHLOROETHANE-D(4)	ÚG/L	50	49	98	76-114

32f

Ć

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	<b>KRECV</b>	RECV CRIT
03/16/92	SPM1*WRITW1*1	98910*SUR	TOLUENE-D(B)	UG/L	50	47	94	85-115
03/16/92	SPM1*WRITW1*1	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	SPM2*WRITH1*1	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	51	100	76-114
03/16/92	SPM2*WRITW1*1	98810*SUR	TOLUENE-D(8)	UG/L	50	51	100	85-115
03/16/92	SPM2*WRITH1*1	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	52	100	86-115
03/16/92	SP1*0C*1	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	50	100	76-114
03/16/92	SP1*0C#1	98818*SUR	TOLUENE-D(8)	UG/L	. 50	49	98	85-115
03/16/92	SP 1*0C*1	97947*SUR	BROMOFLUOROBENZENE	VG/L	50	50	100	86-115
03/16/92	DA*WRITH1*2	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	49	9B	76-114
03/16/92	DA*NRITH1*2	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
03/16/92	DA*WRITH1*2	97947*SUR	BRONOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	DA*WRITWI*3	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	48	96	76-114
03/16/92	DA*HRITHI*3	98810*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
03/16/92	DA*WRITWI*3	97947*SUR	BRONOFLUOROBENZENE	UG/L	50	48	96	86-115
83/16/92	DA*WRITWI*4	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
03/16/92	DA*WRITW1*4	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
03/16/92	DA*WRJTWI*4	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	48	96	86-115
03/16/92	DA*WRITH1*7	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	48	96	76-114
03/16/92	DA*WRITH1*7	98810*SUR	TOLUENE-D(B)	UG/L	50	49	98	85-115
03/16/92	DA*WRITH1*7	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	DA*WRITW1*8	98812*SUR	1_2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
03/16/92	DA*WRITW1*8	98810*SUR	TOLUENE-D(B)	UG/L	50	49	98	85-115
03/16/92	DA*WRITH1*8	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	DA*WRITWI*10	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	48	96	76-114
03/16/92	DA*WRITWI*10	98810*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
03/16/92	DA*WRITW1*10	97947*SUR	BROHOFLUOROBENZENE	UG/L	50	48	96	86-115
03/16/92	DA*HUNTW1*1	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	50	100	76-114
03/16/92	DA*HUNTW1*1	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
03/16/92	DA*HUNTW1*1	97947*SUR	BROMOFLUOROBENZENE	UG/L	Sø	49	98	86-115
03/16/92	DA*HUNTW1*2	98812*SUR	1_2-DICHLOROETHANE-D(4)	UG/L	50	50	100	76-114
03/16/92	DA*HUNTW1*2	98810*SUR	TOLUENE-D(8)	UG/L	50	50	100	85-115
03/16/92	DA*HUNTW1*2	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	50	100	86-115
03/16/92	DA*HUNTW1*3	98812*SUR	1_2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
03/16/92		98810*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
	DA*HUNTW1*3	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
03/16/92	DA*HUNTW1*3	• • • • • • • •		UG/L	50	48	96	76-114
03/16/92	DA*HUNTH1*4	98812*SUR	1,2-DICHLOROETHANE-D(4)		50 50	48 48	96 96	85-115
83/16/92	DA*HUNTW1*4	98810*SUR	TOLUENE-D(8)	UG/L	50 50		96 98	85-115 86-115
03/16/92	DA*HUNTW1*4	97947*SUR	BRONOFLUOROBENZENE	UG/L		49		76-115
03/16/92	DA*HUNTH1*5	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	49	98	
03/16/92	DA*HUNTW1*5	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115 86-115
03/16/92	DA*HUNTW1*5	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	80-115

# ESE BATCH : G26649 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26649	Analysis Date: 03/16/92 Ar	alyst: Kŧ	LLY F	RUSSELL-KELLER
				"Exceptions" Comment / Corrective Action
Analysis holding time	within criteria?	Yes X	<u>No</u>	Commente y confective neovan
Extract holding time w	ithin criteria?	x		
Method blank present?		x		
Method blank within ac	ceptance criteria?	X		
Standard matrix spike	present?	x		
Standard matrix spike	within acceptance criteria?	х		
Sample matrix spike pr	esent?	x		
Sample matrix spike wi	thin acceptance criteria?	X		
Sample matrix spike du	plicate present?	x		
Sample matrix spike du	plicate within acceptance crite	ria? X		
Surrogate present?		х		
Surrogate within accep	tance criteria?	Х		
	seculars a compant			

Note: Any "NO" answer requires a comment.

# OVERRIDE COMMENTS

# ESE BATCH : G26696 CLASSIFICATION : MERCURY-SH7471

	: FDER/SH : LISA SWAYZE : LISA SWAYZE : LISA SWAYZE	REPORT DATE/TIME ANALYSIS DATE EXTRACT DATE	: 04/22/92 : 03/18/92 : 03/17/92	10:26:09
--	--------------------------------------------------------------	---------------------------------------------------	----------------------------------------	----------

• _

### STATUS

ľ

METHOD BLANK CORRECTION METHOD : NONE

: FINAL

FIELD GRP	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
HUNTSI	39240186 0201	COE - FT. STEW		SUZANNE WOODWARD
WRITSI	3924018C 0201	COE - FT. STEW	ART	SUZANNE WOODHARD
SAMPLÉ	CLIENT	DATE	TIME	
CODE	. ID	ANAL YZED	ANALYZED	_
HUNTS1*1	HS-1			
HUNTS1#2	HS-2			
HUNTS1*3	HS-3			
HUNTS1*4	HS-4			
HUNTS1*7	HS-7			
HUNT\$1*8	HS-8			
HUNTS1*9	HS-9	03/24/92		
HUNTS1*10				
HUNTS1*11	HS-11			
HUNTS1*12	HS-12			
HUNTS1*13	HS-13			
HUNTS1*14	HS-14			
HUNTS1*15	HS-15			
HUNTS1*16	HS-16			
HUNTS1*17	HS-17			
HUNTS1*18	HS-18			
HUNTS1*19	HS-19	•		
HUNTS1*22	HS-DUP			
HUNTS1*23				
HUNTS1*26				
HUNTS1*27				
82*12TMUH	HSD-3			
HUNTS1*29	HSD-4			
HUNTS1*30	HSD-DUP			
WRITS1*1	₩S-1			
WRITS1*2	WS-2			
WRITS1*3	WS-3			
WRITS1*4	W\$-4			
WRITS1*5	WS-5			
WRITSI*6	WS-6			
WRITS1*7	WS-7			
WRITS1*8	WS-8			
WRITS1*9	₩S-9			
WRITS1*10	WS-DUP			
WRITS1*12	HSD-1			
WRITS1*13				
HRITS1*14				

# Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/18/92	MB*0C*1	71921*CVAA	MERCURY, SED	MG/KG-DRY	ND
03/18/92	MB*0C*2	71921*CVAA	MERCURY, SED	MG/KG-DRY	ND
03/18/92	MB+QC+3	71921*CVAA	MERCURY, SED	MG/KG-DRY	ND

### Standard Matrix Spike Recovery Summary

DATE	SANPLE	STORET	PARAMETER	%RECV	RECV CRIT	UNITS	TARGET	FOUND
03/18/92	SP*0C*1		MERCURY, SED	104.1	83-125	MG/KG-DRY	2.46	2.56
03/18/92	SP*0C*2		MERCURY SED	109.2	83-125	MG/KG-DPY	2.40	2.62
03/18/92	SP#0C#3		HERCURY, SED	104.0	83-125	MG/KG-DRY	2.48	2,58

### Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>SRECV</b>	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/18/92	SPM1*HUNTS1*1	71921*CVAA	MERCURY, SED	108.6	83-125 83-125	0.0 0.0	MG/KG-DRY MG/KG-DRY	2.68	2.91 3.20	6.22
03/18/92 03/18/92	SPM2*MUNTS1*1 SPM1*KUNTS1*9	71921*CVAA 71921*CVAA	MERCURY SED MERCURY SED	87.0	83-125	0.0	MG/KG-DRY	2.76	2.40	
03/18/92	SPM2*HUNTS 1*9	71921*CVAA	MERCURY SED	84.8	83-125 83-125	0.0 0.0	HG/KG-DRY HG/KG-DRY	2.69 2.80	2.28 3.08	2.56
03/18/92 03/18/92	SPMI*WRITSI*1 SPM2*WRITSI*1	71921*CVAA 71921*CVAA	MERCURY, SED Mercury, SED	••••	83~125	0.0	MG/KG-DRY	2.87	3.12	0.913

# ESE BATCH : G26696 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26696 Analysis Date: 03/18/92	Analyst: LISA SWAYZE
	"Exceptions"
	Yes No Comment / Corrective Action
Analysis holding time within criteria?	x
Extract holding time within criteria?	<b>X</b>
No. of calibration standards present acceptable?	X
Curve correlation coefficient >= 0.995?	X
Calibration curve y-intercept < curve detection lim	hit? X
Sample responses within highest standard response?	x
Method blank present?	X
Method blank within acceptance criteria?	x
Standard matrix spike present?	x
Standard matrix spike within acceptance criteria?	x
Sample matrix splke present?	X
Sample matrix spike within acceptance criteria?	x
Sample matrix spike duplicate present?	X
Sample matrix spike duplicate within acceptance cri	teria? X
Note: Any "NO" answer requires a comment.	

OVERRIDE COMMENTS

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92	10:01:24
ANAL YST	: GARRY PRICE	ANALYSIS DATE Extract date	: 03/18/92 : 03/17/92	
	: DAVID NICHOLS : ICAP UPLOAD	EXTRACT DATE	: 03/1//72	

۰.

# STATUS : FINAL

(

METHOD BLANK CORRECTION METHOD : NONE

FIELD GRP	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
HUNTHI	3924018G 0201	COE - ST. STEN	ART	SUZANNE HOODWARD
WRITHI	39240186 0201	COE - FT. STEW	ART	SUZANNE HOODWARD
SAMPLE	CLIENT	DATE	TIME	
CODE	ID .	ANALYZED	ANALYZED	
HRITH1*1	HWH-I	03/18/92	03:04PM	
HRITH1*2	HMH-2	03/18/92	03:06PM	
WRITH1*3	WMH-3	03/18/92	03:08PM	
WRITH1*4	HMW-4	03/18/92	03:11PM	
NRITH1*5	WMW-5	03/18/92	03:13PM	
NRITH1*6	WNW-6	03/18/92	03:15PM	
NRITH1*7	WMW-7	03/18/92	03:17PM	
WRITH1*8	WMW-DUP	03/18/92	03:30PM	
WRITWI*10	WSOURCE	03/18/92	03:33PM	
WRITH1*11	EQPBLK	03/18/92	03:36PM	
HUNTWI¥I	HMW-1	03/18/92	03:53PM	
HUNTW1*2	HMW-2	03/18/92	03:57PM	
HUNTW1#3	HMM-3	03/18/92	03:59PM	
HUNTW1*4	HMW-4	03/18/92	04:02PM	
HUNTW1*5	HMW-5	03/18/92	04:06PH	
HUNTRI*6	HMH-6	03/18/92	04:08PM	
HUNTW1*7	HMW-7	03/18/92	04:11PM	
HUNTW1*B	HWM-8	03/18/92	04:14PM	
HUNTH1*9	HMW-9	03/18/92	04:16PM	
HUNTHI*10	HMM-DUP	03/18/92	04:30PM	
HUNTW1*12	HSOURCE	03/18/92	04:33PM	
HUNTW1*16	EQPBLK	03/18/92	04:35PM	

# Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/18/92	NB*QC+1	1077*ICAP	SILVER, TOTAL	UG/L	ND
03/18/92	MB*QC*1	1007*ICAP	BARTUN, TOTAL	UG/L	ND
03/18/92	MB*QC*1	1027*/CAP	CADMIUN, TOTAL	UG/L	ND
03/18/92	MB*QC*1	1034*ICAP	CHROMIUM, TOTAL	UG/L	NÐ
03/18/92	MB*QC*1	1051*ICAP	LEAD, TOTAL	UG/L	ND
03/18/92	MB*QC*2	1077#1CAP	SILVER, TOTAL	UG/L	ND
03/18/92	MB*QC*2	1007*1CAP	BARIUM, TOTAL	UG/L	ND
03/18/92	MB*QC*2	1027*1CAP	CADHIUM, TOTAL	UG/L	ND
03/18/92	MB*QC*2	1034*1CAP	CHRONIUM, TOTAL	UG/L	ND
03/18/92	MB*QC*2	1051*1CAP	LEAD, TOTAL	UG/L	ND

# Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	#RECV	RECV CRIT	UNITS	TARGET	FOUND
03/18/92	SP1#QC*1	1077*1CAP	SILVER, TOTAL	95.0	73-107	UG/L	50.0	47.5
03/18/92	SP1*QC*1	1007*1CAP	BARIUH, TOTAL	101.0	86-196	UG/L	2000	2020
03/18/92	SP1*QC*1	1027*ICAP	CADMIUN, TOTAL	93.6	80-108	UG/L	50.0	46.8
03/18/92	SP1*QC*1	1034*1CAP	CHROMIUM TOTAL	98.5	79-109	UG/L	200	197
03/18/92	SP1*QC*1	1051*ICAP	LEAD, TOTAL	95.0	79-109	UG/L	500	475
3/18/92	SP2*QC*2	1077*1CAP	SILVER TOTAL	96.6	73-107	UG/L	50.0	48.3
3/18/92	SP2*QC*2	1007*ICAP	BARIUH, TOTAL	101.0	86-106	UG/L	2000	2020
3/18/92	SP2*QC*2	1027*ICAP	CADHIUM TOTAL	98.8	80-108	UG/L	50.0	49.4
3/18/92	SP2*QC*2	1034* CAP	CHRONIUM, TOTAL	99.5	79-109	UG/L	200	199
03/18/92	SP2*QC*2	1051*1CAP	LEAD TOTAL	98.0	79-109	UG/L	500	490

# Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>X</b> RECV	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/18/92	SPM1#WR]TW1*7	1077*1CAP	SILVER, TOTAL	96.0	73-107	0.0	UG/L	50.0	48.0	arv
03/18/92	SPMJ*WRITH1*7	1007*ICAP	BARIUM, TOTAL	103.5	86-106	129	UC/L	2000	2070	
03/18/92	SPM1*WRTTW1*7	1027*1CAP	CADHIUH, TOTAL	100.8	80-108	1.5	UG/L	50.0	50.4	
03/18/92	SPM1*WR1TW1*7	1034*ICAP	CHROMIUM, TOTAL	102.5	79-109	16.7	UG/L	200	205	
03/18/92	SPM1*WR TW1*7	1051*/CAP	LEAD, TOTAL	101.0	79-109	2.2	UG/L	500	505	
03/18/92	SPH2*WRITH1*7	1077*1CAP	SILVER TOTAL	92.6	73-107	0.0	UG/L	50.0	46.3	3.6
03/18/92	SPM2*WR1TW1*7	1007*1CAP	BARIUN TOTAL	102.0	86-106	129	UG/L	2000	2040	
03/18/92	SPH2*WRITW1*7	1027*ICAP	CADHIUM TOTAL	96.8	80~108	1.5	UG/L	50.0	48.4	1.9
03/18/92	SPM2*WRITW1*7	1034*ICAP	CHRONIUN, TOTAL	100.0	79-109	16.7	UG/L	200	200	4.2 3.0
03/18/92	SPM2*WR!TW1*7	1051*1CAP	LEAD, TOTAL	100.4	79-109	2.2	UG/L	500	502	3.0 1.0
03/18/92	SPM1*HUNTW1*9	1077*ICAP	SILVER TOTAL	92.6	73-107	0.0	UG/L	50.0	46.3	1.0
03/18/92	SPM1*HUNTW1*9	1007*1CAP	BARIUM TOTAL	102.5	86-106	113	UG/L	2000	2050	
03/18/92	SPM1*HUNTW1*9	1027*1CAP	CADHIUM, TOTAL	94.6	80-108	0.0	UG/L	2000	47.3	
03/18/92	SPN1*HUNTW1*9	1034*1CAP	CHROMIUM, TOTAL	98.5	79-109	9.1	UG/L	200	47.3	
03/18/92	SPM1*HUNTW1*9	1051*1CAP	LEAD TOTAL	102.0	79-109	1.1	UG/L		-	*
03/18/92	SPH2*HUNTH1*9	1077*1CAP	SILVER, TOTAL	94.6	73-107	0.0		500	510	
03/18/92	SPM2*HUNTH1*9	1007*ICAP	BARIUN_TOTAL	103.0	86-106	113	UG/L	50.0	47.4	2.3
03/18/92	SPM2*HUNTW1*9	1027*1CAP	CADMIUM, TOTAL	97.2			UG/L	2000	2060	1.0
03/18/92	SPM2*HUNTW1*9	1024*1CAP	CHRONIUN, TOTAL	• • •	80-108	0.0	UG/L	50.0	48.6	2.7
03/18/92	SPM2*HUNTH1*9	1051*1CAP	LEAD TOTAL	99.0	79-109	9.1	UG/L	200	198	0.5
	and manual many	TODI - LOAL	LEAD, FUTAL	103.0	79-109	1,1	UG/L	500	515	1.0

# ESE BATCH -: G26699 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: 626699	Analysis Date: 03/18/92 A	nalyst: GARRY	PRICE
			"Exceptions" D Comment / Corrective Action
Analysis holding time wi	thin criteria?	<u>Yes</u> N X	b Comment / Corrective Action
Extract holding time wit	hin criteria?	x	
Method blank present?		x	
Method blank within acce	ptance criteria?	x	
Standard matrix spike pr	esent?	x	
	thin acceptance criteria?	x	
Sample matrix spike pres	ent?	x	
Sample matrix spike with	in acceptance criteria?	x	
Sample matrix spike dup!	icate present?	x	
Sample matrix spike dupl	icate within acceptance crite	erla? X	
Note: Any "NO" answer re	quires a comment.		

OVERRIDE COMMENTS

ESE BATCH : 026705 CLASSIFICATION : VOLATILE ORGANIC CMPDS-E624

QC TYPE	: FDER/SH	REPORT DATE/TIME	: 04/22/92 10:06:29
ANALYST	: DANIEL LUCAS	ANALYSIS DATE	: 03/17/92
EXTRACTOR DATA ENTRY	: : TODD ROMERO	EXTRACT DATE	:

336

STATUS

(

: FINAL

METHOD BLANK CORRECTION METHOD : BY CONCENTRATION

BATCH NOTES DOWNLOAD FILE HUNTWIDL

FIELD GRP	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
HUNTW1	39240186 0201	COE - ST. STEW	ART	SUZANNE HOODWARD
WRITW1	39240186 0201	COE - FT. STEW	ART	SUZANNE HOODWARD
SAMPLE	CLIENT	DATE	TIME	
CODE	ID	ANAL YZED	ANALYZED	_
HUNTHI*13	TRPBLK	03/17/92	10:50AM	_
HUNTW1*16	EQPBLK	03/17/92	11:21AM	
HUNTW1*8	HMN-8	03/17/92	11:51AM	
HUNTW1*10	HMM-DUP	03/17/92	02:57PH	
HUNTW1*12	HSOURCE	03/17/92	03:28PM	
WRITW1*5	HNH-5	83/17/92	04:29PM	
WRITWI*6	WMH-6	03/17/92	04:58PM	
HUNTH1*7	KNW-7	03/17/92	05:30PM	
HUNTW1*9	HMH-9	03/17/92	06:00PM	
HUNTW1*6	HMH-6	03/17/92	08:33PM	

#### Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/17/92	MB*QC*0317	34418*GMS	CHLOROME THANE	UG/L	ND
03/17/92	MB*QC*0317	34413*GMS	BROMOMETHANE	UG/L	ND
03/17/92	MB*QC*0317	39175*GHS	VINYL CHLORIDE	UG/L	ND
03/17/92	MB*QC*0317	34311*GMS	CHLOROETHANE	UG/L	ND
03/17/92	MB*QC*0317	34423*GMS	NETHYLENE CHLORIDE	UC/L	ND
03/17/92	MB*QC*0317	81576*GMS	DIETHYL ETHER, TOTAL	UG/L	ND
03/17/92	HB*QC*0317	77041*GHS	CARBON DISULFIDE	UG/L	ND
03/17/92	MB*QC*0317	34501*GMS	1,1-DICHLOROETHYLENE	UG/L	ND
03/17/92	#B*QC*0317	34488*GMS	TRICHLOROFLUORO- METHANE	UG/L	ND
03/17/92	MB*QC*0317	34496*GMS	1,1-D1CHLOROETHANE	UG/L	ND
03/17/92	MB*QC*8317	96463*CMS	1, 2-DICHLOROETHENE(TOTAL)	UG/L	ND
03/17/92	MB*0C*0317	32106*CMS	CHLOROFORM	UG/L	0.36
03/17/92	MB*0C*0317	34531*GMS	1, 2-DICHLOROETHANE	UG/L	NÐ
03/17/92	MB*0C+8317	81595*GMS	METHYL ETHYL KETONE	UG/L	NÐ
03/17/92	MB*0C*0317	34506*GMS	I, I, I-TRICHL'ETHANE	UG/L	ND
03/17/92	MB*0C*0317	32102*GMS	CARBON TETRACHLORIDE	UG/L	ND
03/17/92	MB*0C*0317	34576*GMS	2-CHLOROETHYLVINYL- ETHER	UG/L	ND
03/17/92	MB*0C*0317	32101*GMS	BROMOD I CHLOROME THANE	UG/L	ND
03/17/92	MB*QC*0317	34541*GNS	1,2-DICHLOROPROPANE	UG/L	ND
03/17/92	MB*QC*0317	34704*GMS	CIS-1, 3-DICHLORO- PROPENE	UG/L	ND
03/17/92	MB*QC*0317	39180*GMS	TRICHLOROE THENE	UG/L	ND
03/17/92	MB*QC*0317	32105*GMS	DIBROMOCHLOROMETHANE	UG/L	ND
03/17/92	MB*QC*0317	34511*GHS	1,1,2-TRICHL'ETHANE	UG/L	ND
03/17/92	MB*QC*0317	34030*GMS	BENZENE	UG/L	ND
03/17/92	MB*QC*0317	34699*GMS	TRANS-1, 3-DICHLORO- PROPENE	UG/L	ND
03/17/92	MB*QC*0317	32104*GMS	BROMOFORM	UG/L	ND
03/17/92	MB*0C*0317	81596*GMS	METHYL ISOBUT'KETONE	UG /L	ND
03/17/92	HB*0C*0317	34475*GMS	TE TRACHLOROE THENE	UG/L	ND
03/17/92	MB*0C*0317	34516*GMS	1,1,2,2-TETRACHLORO- ETHANE	UG./L	NÐ
03/17/92	MB*0C*0317	34010*GMS	TOLUENE	UG L	ND
03/17/92	MB*0C*0317	34301*GMS	CHLOROBENZENE	UG/L	ND
03/17/92	MB*0C*0317	34371*GMS	ETHYLBENZENE	UG/L	ND
03/17/92	MB*0C*0317	81551+GMS	XYLENES, TOTAL	UG/L	ND
03/17/92	MB*QC*0317	81524*GMS	DICHLOROBENZENE TOT.	UG/L	ND

Standard Matrix Spike Recovery Summary

· ·

DATE	SAMPLE	STORET	PARAMETER	%RECV_	RECV CRIT	UNITS	TARGET	FOUND
03/17/92	SP1*0C*1	34501*CMS	I 1-DICHLOROETHYLENE	86	61-145	UG/L	50	43
03/17/92	SP1*0C*1	39180*GMS	TRICHLOROE THENE	100	71-120	UG/L	50	50
03/17/92	SP1+0C+1	34030*GMS	BENZENE	102	76-127	UG/L	50	51
03/17/92	SP1*0C*1	34010*GMS	TOLUENE	102	76-125	UG/L	50	51
03/17/92	SP1*0C*1	34301*GNS	CHLOROBENZENE	102	75-130	UG/L	50	51

Sample Matrix Spike Recovery Summary

DATE	SANPLE	STORET	PARAMETER	<b>%</b> RECV	RECV_CRIT	UNSPIKED	UNITS	<u>TARGET</u>	FOUND	<u>RPD</u>
03/17/92	SPM1*HUNTW1*8	34501*GMS	1.1-DICHLOROETHYLENE	88	61-145	0.0	UG/L	50	44	
03/17/92	SPM1*HUNTH1*8	39180×GMS	TRICHLOROETHENE	104	71-120	0.0	UG/L	50	52	
	SPH1*HUNTW1*8	34030*GMS	BENZENE	106	76-127	3.5	UG/L	50	53	
03/17/92		••••	TOLUENE	104	76-125	0.0	UG/L	50	52	
03/17/92	SPM1*HUNTW1*8	34010*CMS		104	75-130	0.0	UG/L	50	52	
03/17/92	SPM1*HUNTW1*8	34 30 1*GMS	CHLOROBENZENE				UG/L	50	43	2.3
03/17/92	SPM2*HUNTW1*8	34501*GMS	I, 1-DICHLOROETHYLENE	86	61-145	0.0			53	9.5
03/17/92	SPM2*HUNTW1*8	39180*GMS	TRICHLOROETHENE	186	71-120	0.0	UG/L	50		-
03/17/92	SPM2*HUNTH1*8	34030*GMS	BENZENE	108	76-127	3.5	UG/L	50	54	9.5
03/17/92	SPM2*HUNTW1*8	34010*GMS	TOLUENE	108	76-125	0.0	UG/L	50	54	9.5
03/17/92	SPM2*HUNTW1*8	34301*GMS	CHLOROBENZENE	104	75-130	0.0	UG/L	50	52	0.0

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	XRECV	RECV CRI
3/17/92	MB*0C*0317	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	47	94	76-114
3/17/92	MB*0C*0317	98810*SUR	TOLUENE-D(8)	UG/L	50	47	94	85-115
3/17/92	MB*QC*0317	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	48	96	86-115
3/17/92	DA*HUNTH1*13	98812*SUR	1,2-D1CHLOROETHANE-D(4)	UG/L	50	49	98	76-114
3/17/92	DA*HUNTW1*13	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
3/17/92	DA*HUNTH1*13	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	50	100	86-115
3/17/92	DA*HUNTWI*16	98812*SUR	1,2-DICHLOROETHANE-D(4)	UC/L	50	49	98	76-114
3/17/92	DA*HUNTW1*16	98810*SUR	TOLUENE-D(B)	UG/L	50	49	98	85-115
3/17/92	DA*HUNTH1*16	97947*SUR	BROHOF LUOROBENZENE	UG/L	50	49	98	86-115
3/17/92	DA*HUNTW1*8	98812*SUR	1,2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
3/17/92	DA*HUNTW1*8	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
3/17/92	DA*HUNTN1*8	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
3/17/92	SPM1*HUNTW1*B	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	47	94	76-114
3/17/92	SPM1*HUNTH1*8	98810*SUR	TOLUENE-D(8)	UG/L	50	45	90	85-115
3/17/92	SPM1*HUNTW1*8	97947*SUR	BRONOFLUOROBENZENE	UG/L	50	48	96	86-115
3/17/92	SPM2*HUNTW1*8	98812*SUP	1,2-DICHLOROETHANE-D(4)	UG/L	50	50	100	76-114
3/17/92	SPM2*HUNTW1*8	98810*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
3/17/92	SPM2*HUNTW1*8	97947*SUR	BROMOFLUOROBENZENE	UG/L	-50	50	100	86-115
3/17/92	SP1*0C*1	98812*SUR	1_2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
3/17/92	SP1*QC*1	98810*SUR	TOLUENE-D(8)	UC/L	50	49	98	85-115
3/17/92	SP1*QC*1	97947*SUR	BRONOFLUOROBENZENE	UG/L	50	58	100	86-115
3/17/92	DA*HUNTW1*10	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
3/17/92	DA*HUNTH1*10	98810*SUR	TOLUENE-D(8)	UG/L	50	47	94	85-115
3/17/92	DA*HUNTW1*10	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
3/17/92	DA*HUNTH1*12	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
3/17/92	DA*HUNTH1*12	98810*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
3/17/92	DA*HUNTW1*12	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
3/17/92	DA*WRITW1*5	98812*SUR	1_2-DICHLOROETHANE-D(4)	UG/L	50	50	100	76-114
3/17/92	DA*WR1TW1*5	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
3/17/92	DA*WRITH1*5	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	50	100	86-115
3/17/92	DA*WRITH1*5	98812*SUR	1_2-D1CHLOROETHANE-D(4)	UG/L	50	50	100	76-114
3/17/92	DA*WRITWI*6	98810*SUR	TOLUENE-D(8)	UG/L	50	49	98	85-115
		97947*SUR	BRONOFLUOROBENZENE	UG/L	50	50	100	86-115
3/17/92	DA*NRITHI*6 DA*HUNTHI*7	98812*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	48	96	76-114
3/17/92		98810*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
3/17/92	DA*HUNTWI*7		BROMOFLUOROBENZENE	UG/L	50	49	98	86-115
3/17/92	DA*HUNTWI*7	97947*SUR	1.2-DICHLOROETHANE-D(4)	UG/L	50	49	98	76-114
3/17/92	DA*HUNTW1*9	98812*SUR	TOLUENE-D(8)	UG/L	50	48	96	85-115
3/17/92	DA*HUNTW1*9	98810*SUR		UG/L	50	50	100	86-115
3/17/92	DA*HUNTW1*9	97947*SUR	BROMOF LUOROBENZENE	UG/L UG/L	50 50	48	96	76-114
13/17/92	DA*HUNTW1*6	98812*SUR	1,2-DICHLOROETHANE-D(4)		50	49	98	85-115
13/17/92	DA*HUNTW1*6	98810*SUR	TOLUENE-D(8)	UG/L			96 96	86-115
3/17/92	DA*HUNTW1*6	97947*SUR	BROMOFLUOROBENZENE	UG/L	50	48	ЯD	90-112

# ESE BATCH : 626705 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26705	Analysis Date: 03/17/92 Ar	alyst: DANIG	L LUCAS
			"Exceptions"
		<u>Yes</u>	to Comment / Corrective Action
Analysis holding time	within criteria?	X	
Extract holding time	within criteria?	х	
Method blank present?		x	
Method blank within a	cceptance criteria?	Х	
Standard matrix spike	present?	x	
Standard matrix spike	within acceptance criteria?	X	
Sample matrix spike p	resent?	X	
Sample matrix spike w	ithin acceptance criteria?	X	
Sample matrix spike d	uplicate present?	x	
Sample matrix spike d	uplicate within acceptance crite	-la? X	
Surrogate present?		x	
Surrogate within acce	ptance criteria?	X	

Note: Any "NO" answer requires a comment.

.

### OVERRIDE COMMENTS

(

ſ

•

### ESE BATCH : G26729 CLASSIFICATION : ARSENIC-SN3050/SW7060

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92 10:26:54
ANAL YST	: LULANAE OSBORNE	ANALYSIS DATE	: 03/25/92
EXTRACTOR	: DEBRA ZUCKERMAN	EXTRACT DATE	: 03/24/92
DATA ENTRY	: GFAA UPLOAD		

STATUS

ĺ

Ъ.,

: FINAL

METHOD BLANK CORRECTION METHOD : NONE

	PROJECT NUMBER		LAB COORDINATOR
WRITSI	3924018G 0201	COE - FT. STEWART	SUZANNE WOODWARD

SAMPLE CODE	CLIENT ID	DATE ANALYZED	TIME ANALYZED
WRITSI*1	WS-1		
WRITS1*2	₩S-2		
WR1TS1#3	WS-3		
WRITS1*4	WS-4		
WRJTS1*5	₩S-5		
WRITS1*6	₩S-6		
WRITS!*7	₩S-7		
WRITS1*8	WS~8		
WRITS1*9	WS-9		
WRITSI*10	WS-DUP		
WRITS1*12	WSD-1		
WRITS1*13	WSD-2		
WRITS1*14	WSD-DUP		

#### Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUN	D				
03/25/92	MB*QC*1	1003*GFAA	ARSENIC, SED	MG/KG-	-DRY ND					
Standard M	atrix Spike Recoverų	y Summary								
DATE	SAMPLE	STORET	PARAMETER	<b>%</b> RECV	RECV CRIT	UNITS	TARGET	FOUND		
03/25/92	SP1*QC*1	1003*GFAA	ARSENIC, SED	104.1	72-120	MC/KG-DRY	1.95	2.03	-	
Sample Mat DATE	rix Spike Recovery S	Summary STORET	PARAME TER	#RECV	RECV CRIT	UNSPIKED	UNITS	TARGET_	FOUND	RPD
03/25/92	SPM1*WRITS1*6	1003*GFAA	ARSENIC, SED	99.6	72-120	0.639	MG/KG-DRY	2.33	2.32	<b>•</b> • • • •
03/25/92	SPM2*WRITS1*6	1003*GFAA	ARSENIC, SED	100.4	72-120	0.639	MG/KG-DRY	2,33	2.34	0.401
Spike Into	Matrix Recovery Sum	mary								
DATE	SAMPLE	STORET	PARAMETER	*RECV	RECV CRIT	UNITS	TARGET	FOUND	-	
03/25/92	SPX*WRITS1*9	1003*GFAA	ARSENIC, SED	113,B	85-115	MG/KG-DRY	11.6	13.2		
03/25/92	SPX*WRITS1*14	1003×GFAA	ARSENIC, SED	118.3	85-115	MG/KG-DRY	11.5	13.6		

.

# ESE BATCH : 626729 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26729 Analysis Date: 03/25/92 Analyst: LULAMAE OSBORNE

Analysis holding time within criteria?	<u>Yes</u> X	<u>"Exceptions"</u> No <u>Comment / Corrective Action</u>
Extract holding time within criteria?	x	
Method blank present? Method blank within acceptance criteria?	x x	
Standard matrix spike present? Standard matrix spike within acceptance criteria?	x x	
Sample matrix spike present? Sample matrix spike within acceptance criteria?	x x	
Sample matrix spike duplicate present? Sample matrix spike duplicate within acceptance criteria?	X X	

Note: Any "NO" answer requires a comment.

OVERRIDE COMMENTS

,

RPD 4.80

# ESE BATCH : G26733 CLASSIFICATION : SELENIUM-SW3050/SW7740

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92 10:27:16
ANALYST	: LISA SHAYZE	ANALYSIS DATE	: 03/25/92
EXTRACTOR	: DEBRA ZUCKERMAN	EXTRACT DATE	: 03/24/92
DATA ENTRY	: GFAA UPLOAD		

STATUS

(

: FINAL

METHOD BLANK CORRECTION METHOD : NONE

PROJECT NUMBER	PROJECT NAME	LAB COORDINATOR
	COE - FT. STEWART	SUZANNE WOODWARD

SAMPLE	CLIENT 1D	DATE ANALYZED	TIME ANALYZED
WRITSI*1	¥S-1		
WRITSI*2	₩S-2		
WRITS1*3	WS-3		
WR!TS1*4	₩S-4		
WRITS1*5	₩S-5		
WRITS!*6	WS-6		
WRITS1*7	WS-7		
WR17S1*8	₩S-8		
WRITSL*9	₩S-9		
WRITSI*10	HS-DUP		
WR1TS1*12	WSD-1		
WRITS1*13	WSD-2		
WRITS1*14	WSD-DUP		

.

Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUN	D			
03/25/92	MB*QC*1	1148*GFAA	SELENTUM, SED	MG/KG	DRY ND				
Standard M	atrix Spike Recovery	Summary							
DATE	SAMPLE	STORET	PARAMETER	<b>%</b> RECV	RECV CRIT	UNITS	TARGET	FOUND	_
03/25/92	SP*QC*1	1148*GFAA	SELENIUM, SED	90.8	71-129	MG/KG-DRY	1.95	1.77	_
Sample Mat	rix Spike Recovery S	ummary							
DATE	SAMPLE	STORET	PARAMETER	%RECV	RECV CRIT	UNSP]KED	UNITS	TARGET	FOUND
03/25/92	SPM1*WRITS1*6	1148*GFAA	SELENIUM, SED	30.5	71-129	0.0	MG/KG-DRY	2.33	0.710
03/25/92	SPM2*WRITS1*6	1148*GFAA	SELENIUM, SED	32.0	71-129	0.0	MG/KG-DRY	2.33	0.745
Spike Into Matrix Recovery Summary									
DATE	SAMPLE	STORET	PARAMETER	<b>XRECV</b>	RECV CRIT	UNITS	TARGET	FOUND	_
03/25/92	SPX*WR1TS1*1	1148*GFAA	SELENIUM, SED	54.2	85-115	MG/KG-DRY	11.6	6.29	
03/25/92	SPX*WR1TS1*13	1148*GFAA	SELENIUM, SED	56.2	85-115	MG/KG-DRY	11.6	6.52	

#### ESE BATCH : G26733 Environmental Science and Engineering Analytical Services Computer QC Checks

#### Batch No.: 626733 Analysis Date: 03/25/92 Analyst: LISA SWAYZE

			"Exceptions"
Analysis holding time within criteria?	<u>Yes</u> X	<u>No</u>	<u>Comment / Corrective Action</u>
Extract holding time within criteria?	X		
Method blank present? Method blank within acceptance criteria?	X X		
Standard matrix spike present? Standard matrix spike within acceptance criteria?	x x		
Sample matrix spike present? Sample matrix spike within acceptance criteria?	x	x	1148*GFAA
Sample matrix spike duplicate present? Sample matrix spike duplicate within acceptance criteria?	x	x	1148*GFAA

Note: Any "NO" answer requires a comment.

# OVERRIDE_COMMENTS

PROB.:SAMPLE MATRIX SPIKE NOT WITHIN ACCEPTANCE GRITERIA. EXPL.:POSSIBLE MATRIX INTERFERENCE. SPX'S WERE LOW ALSO./MFB PROB.:SAMPLE MATRIX SPIKE DUPLICATE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.:SEE ABOVE./MFB

.

ESE BATCH : G26765 CLASSIFICATION : ICAP METALS SCAN-SW3050/SW6010

.

QC TYPE ANALYST EXTRACTOR DATA ENTRY	: FDER/SH ; JEFF MILLER : DAVID NICHOLS : ICAP UPLOAD	REPORT DATE/TIME ANALYSIS DATE Extract date	: 04/22/92 : 03/20/92 : 03/18/92	10:27:36

STATUS

: FINAL

METHOD BLANK CORRECTION METHOD : NONE

PROJECT NUMBER	PROJECT NAME	LAB COORDINATOR
	COE - FT. STEWART	SUZANNE WOODWARD

SAMPLE	CLIENT	DATE	TIME
CODE	ID	ANALYZED	ANALYZED
WRITS1*1	WS-1	03/20/92	01:56PH
WRITS1*2	WS-2	03/20/92	02:03PM
WRITS1*3	WS-3	03/20/92	02:22PH
WRITS1*4	NS-4	03/20/92	02:30PM
WRITS1*5	NS-5	03/20/92	02:37PM
WRITS1*6	NS-6	03/20/92	02:48PN
WRITS1*7	WS-7	03/20/92	02:55PH
WR1TS1*8	MS-B	03/20/92	03:02PM
WRITS1*9	WS-9	83/20/92	03:09PM
WRITS1*10	WS-DUP	03/20/92	03:19PM
WRITSI*12	WSD-1	83/20/92	03:41PM
WR1TS1*13	WSD-2	03/20/92	03:58PM
WR1TS1*14	WSD-DUP	03/20/92	04:06PM

Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/20/92	MB*QC*1	1078*1CAP	SILVER, SED	MC/KG-DRY	ND
03/20/92	MB*QC*1	1008*1CAP	BARIUM, SED	MG/KG- DRY	2.71
03/20/92	HB*QC*1	1028*ICAP	CADHIUN, SED	MG/KG-DRY	ND
03/20/92	MB*0C*1	1029*1CAP	CHRONIUM, SED	MG/KG-DRY	ND
03/20/92	MB*QC*1	1052*1CAP	LEAD, SED	MC/KG-DRY	ND

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	KRECV	RECV CRI	UNITS	TARGET	FOUND
03/20/92	SP*QC+1	1078*1CAP	SILVER, SED	98.0	73-107	MG/KG-DRY	4.92	4.82
03/20/92	SP*0C#1	1008*ICAP	BARIUM, SED	99.0	86-106	MG/KG- DRY	197	195
03/20/92	SP*QC*1	1026*[CAP	CADHIUN, SED	90.0	80-108	MG/KG-DRY	4.92	4.43
03/20/92	SP*0C*1	1029*1CAP	CHRONIUM, SED	94.4	79-109	MG/KG-DRY	19.7	18.6
03/20/92	SP*QC#1	1052*ICAP	LEAD, SED	97.0	79-109	MG/KG-DRY	49.2	47.7

# Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>XRECV</b>	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/20/92	SPM1*WRITS1*10	1078*1CAP	SILVER, SED	100.0	73-107	0.0	MG/KG-DRY	5.3I	5.31	
03/20/92	SPM1*NRITS1*10	1008*1CAP	BARIUM SED	99.1	86~106	16.0	MG/KG- DRY	213	211	
03/20/92	SPM1*WRITS1*10	1028*1CAP	CADMIUN, SED	71.2	80-108	1.96	MG/KG-DRY	5.31	3.78	
03/20/92	SPM1*WRITS1*10	1029*1CAP	CHROM J UM . SED	55.9	79-109	16.1	MG/KG-DRY	21.3	11.9	
03/20/92	SPM1#WR1TS1#10	1052*1CAP	LEAD, SED	94.9	79-109	5.13	MG/KG-DRY	53.1	50.4	
03/20/92	SPM2*WR1TS1*10	1078*1CAP	SILVER, SED	98.0	73-107	0.0	MG/KG-DRY	5.52	5.41	2.02
03/20/92	SPM2*HR1TS1*10	1008*1CAP	BARIUM SED	102.3	86-106	16.0	MG/KG- DRY	221	226	2.88
03/20/92	SPM2*HRITS1*10	1028*1CAP	CADHIUM.SED	. 94.6	80-108	1.96	MG/KG-DRY	5.52	5.22	28.1
03/20/92	SPM2*WR1TS1*10	1029#1CAP	CHROMIUM, SED	114.9	79-109	16.1	MG/KG-DRY	22.1	25.4	69.2
03/20/92	SPM2*WR1TS1*10	1052*1CAP	LEAD SED	105.4	79-109	5.13	MG/KG-DRY	55.2	58.2	10.1

#### ESE BATCH : G26765 Environmental Science and Engineering Analytical Services Computer QC Checks

### Batch No.: G26765 Analysis Date: 03/20/92 Analyst: JEFF MILLER

	Yes	No	"Exceptions" Comment / Corrective Action
Analysis holding time within criteria?	X	<u></u>	
Extract holding time within criteria?	X		
Nethod blank present? Method blank within acceptance criteria?	X X		
Standard matrix spike present? Standard matrix spike within acceptance criteria?	X X		
Sample matrix spike present? Sample matrix spike within acceptance criteria?	x	x	1028*1CAP
Sample matrix spike duplicate present? Sample matrix spike duplicate within acceptance criteria?	x	x	1028*ICAP

Note: Any "NO" answer requires a comment.

#### OVERRIDE COMMENTS

PROB.:SAMPLE MATRIX SPIKE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.:LACK OF HOMOGENEITY OF SAMPLES./JLM PROB.:SAMPLE MATRIX SPIKE DUPLICATE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.:SEE ABOVE./JLM

#### ESE BATCH : G26768 CLASSIFICATION : ARSENIC-SW7060

.

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92 10:02:34
ANALYST	: CHRISTOPHER HORRELL	ANALYSIS DATE	: 03/19/92
EXTRACTOR	: DAVID NICHOLS	EXTRACT DATE	: 03/17/92
DATA ENTRY	: GFAA UPLOAD		

٠.

STATUS

: FINAL

METHOD BLANK CORRECTION METHOD : NONE

FIELD CRP	PROJECT NUMBER	PROJECT NAME	LAB COORD INATOR
HUNTHI	3924018G 0201	COE - ST. STEWART	SUZANNE HOODWARD
WRITW1	3924018G 0201	COE - FT. STEWART	SUZANNE HOODHARD

SAMPLE CODE	CLIENT ID	DATE ANALYZED	TIME ANALYZED
WRITH!*1	WMH-1		
WRITH1*2	WHW-2		
WRITW1*3	WMW-3		
NRITNI*4	WMW-4		
WRITW1*5	HHH-S		
WRITHI*6	HWH-6		
WRITH1*7	WMH-7		
WRITW1*8	WMW-DUP		
WRITW1*10	WSOURCE		
WRITW1*11	EQPBLK		
HUNTW1*1	HMW-1		
HUNTH1*2	HMN-2		
HUNTH1*3	HMW-3		
HUNTH1*4	HMW-4		
HUNTW1*5	HMW~5		•
HUNTW1*6	HMW-6		
HUNTW1*7	HMW-7		
HUNTH1*8	HMW-8		
HUNTW1*9	HHW-9		
HUNTW1*10	HMW-DUP		
HUNTW1*12	HSOURCE		
HUNTW1*16	EQPBLK		

S. . . . .

### Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
83/19/92	MB*QC*1	1002*CFAA	ARSENIC, TOTAL	UG/L	ND
03/19/92	MB*QC*2	1002*GFAA	ARSENIC, TOTAL	UG/L	ND

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>XRECV</b>	RECV CRIT UNITS	TARGET	FOUND
03/19/92	SP1*QC*1	1002*GFAA	ARSENIC, TOTAL	88.5	72-120 UG/L	20.0	17.7
03/19/92	SP2*QC*1	1002*GFAA	ARSENIC, TOTAL	88.0	72-120 UG/L	20.0	17.6

Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARANETER	<b>XRECV</b>	RECV CRI	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/19/92	SPM1*HR1TH1*7	1002*CFAA	ARSENIC, TOTAL	90.0	72-120	3.7	UC/L	20.0	18.0	
03/19/92	SPM2*WR TW1*7	1002*GFAA	ARSENIC, TOTAL	90.0	72-120	3.7	UG/L	20.0	18.0	0.0
03/19/92	SPM1*HUNTW1*9	1002*GFAA	ARSENIC, TOTAL	79.5	72-120	5.2	UG/L	20.0	15.9	
@3/19/92	SPM2*HUNTH1*9	1002*GFAA	ARSENIC, TOTAL	77.5	72-120	5.2	UG/L	20.0	15.5	2.5

### Spike into Matrix Recovery Summary

DATE	SAMPLE	STORET	PARAMETER		%RECV	RECV CRIT	UNITS	TARGET	FOUND
03/19/92	SPX*WRITW1*4	1002*GFAA	ARSENIC, TOTAL		124.0	85-115	UG/L	100.0	124
03/19/92	SPX*WRITW1*7	1002*GFAA	ARSENIC, TOTAL		106.0	85-115	UG/L	100.0	106
03/19/92	SPX*HUNTW1*9	1002*GFAA	ARSENIC TOTAL	•	98.8	85-115	UG/L	100.0	98.8

#### Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26768 Analysis Date: 03/19/92 Analyst: CHRISTOPHER HORRELL "Exceptions" Comment / Corrective Action No Yes Analysis holding time within criteria? X Extract holding time within criteria? X ۰. Method blank present? X Method blank within acceptance criteria? X Standard matrix spike present? Х Standard matrix spike within acceptance criteria? X Sample matrix spike present? X Sample matrix spike within acceptance criteria? X Sample matrix spike duplicate present? X Sample matrix spike duplicate within acceptance criteria? X

Note: Any "NO" answer requires a comment.

#### OVERRIDE COMMENTS

#### ESE BATCH : G26772 CLASSIFICATION : SELENIUM-SW7740

QC TYPE ANALYST EXTRACTOR DATA ENTRY	: FDER/SW : PAMELA YOUNG : DAVID NICHOLS : GFAA UPLOAD	REPORT DATE/TIME ANALYSIS DATE EXTRACT DATE	: 04/22/92 10:03:04 : 03/20/92 : 03/17/92
-----------------------------------------------	-----------------------------------------------------------------	---------------------------------------------------	-------------------------------------------------

·-. .

#### STATUS

.

# METHOD BLANK CORRECTION METHOD : NONE

: FINAL

HUNTHI	PROJECT NUMBER 39240186 0201	PROJECT NAME COE - ST. STER	ADT	LAB COORDINATOR
MRITHI	39240186 0201 39240186 0201			SUZANNE WOODWARD
HIST ( H1	37240186 6201	COE - FT. STEH	IAR I	SUZANNE HOODHARD
SAMPLE	CLIENT	DATE	TIME	
CODE	<u>ID</u>	ANALYZED	ANALYZED	
WRITWI*1	HUH-1			<b>-</b>
WRITW1*2	HMH-2			
HRITH1*3	HMH-3			
WRITW1*4	WMW-4			
HRITHI*5	WMW-5			
WRITW1*6	WMW-6			
WRITHI*7	₩MW-7			
WRITW1*8	WNW-DUP			
WRITW1*10	NSOURCE			
WRETW1*11	EQPBLK			
HUNTWI*I	HMW-I			
HUNTW1*2	HMH-2			
HUNTW1*3	HMW-3			
HUNTW1*4	HMW-4			
HUNTW1*5	HMW-5		•	
HUNTH1*6	HNN-6			
HUNTW1*7	HMW-7			
HUNTW1*8	HWM-8			
HUNTW1*9	HMW-9			
HUNTHI*10	HMW-DUP			
HUNTW1*12	HSOURCE			
HUNTW1*16	EQPBLK			

# Method Blank Sample Summary

DATE		STORET	PARAMETER	UNITS	FOUND
03/20/92	MB*QC*1	1147*GFAA	SELENIUM, TOTAL	UG/L	ND
03/20/92	MB*QC*2	1147*GFAA	SELENIUM, TOTAL	UG/L	ND

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	RECV RECV CRIT UNITS	TARGET FOUND
03/20/92 03/20/92	SP*QC#1	1147*GFAA	SELENIUH, TOTAL	104.0 71-129 UG/L	20.0 20.8
03/20/92	SP*QC*2	1147*GFAA	SELENIUM, TOTAL	104.0 71-129 UG/L	20.0 20.8

Sample Matrix Spike Recovery Summary

DATE SAMPLE	STORET	PARAMETER	<b>%</b> RECV	RECV CRI	T UNSPIKED	UNITS	TARGET	FOUND	RPD
03/20/92 SPH1+WR1TW1+7 03/20/92 SPH2+URITW1+7 03/20/92 SPH3+HUNTW1+9 03/20/92 SPH2+HUNTW1+9	1147*GFAA 1147*GFAA 1147*GFAA 1147*GFAA 1147*GFAA	SELENIUH, TOTAL SELENIUH, TOTAL SELENIUH, TOTAL SELENIUH, TOTAL SELENIUH, TOTAL	54.0 45.0 82.5 77.5	71-129 71-129 71-129 71-129 71-129	0.0 0.0 0.0 0.0 0.0	UG/L UG/L UG/L UG/L UG/L	20.0 20.0 20.0 20.0 20.0	10.8 9.0 16.5 15.5	18.2

# Spike into Matrix Recovery Summary

DATE	SAMPLE	STORET	PARAMETER		#RECV	RECV CRI	TUNITS	TARGET	FOUND
03/20/92 03/20/92	SPX*WRITWJ*5 SPX*WR1TW1*7		SELENIUM, TOTAL SELENIUM, TOTAL		96.5	85-115	UG/L	100.0	96.5
03/20/92	SPX*HUNTW1*9		SELENIUM, TOTAL	•	72.4 94.4	85-115 85-115	UG/L UG/L	100.0 100.0	

#### ESE BATCH : G26772 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: 626772 Analysis Date: 03/20/92	Analyst: PAMELA YOUNG
	"Exceptions"
	Yes No Comment / Corrective Action
Analysis holding time within criteria?	X
Extract holding time within criteria?	Χ -
Nethod blank present?	X
Method blank within acceptance criteria?	X
Standard matrix spike present?	X
Standard matrix spike within acceptance criteria?	X
Sample matrix spike present?	X
Sample matrix spike within acceptance criteria?	X 1147*GFAA
Sample matrix spike duplicate present?	x
Sample matrix spike duplicate within acceptance cri	teria? X 1147*GFAA

348

Note: Any "NO" answer requires a comment.

# OVERRIDE COMMENTS

PROB.: SAMPLE MATRIX SPIKE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.: POSSIBLE MATRIX INTERFERENCE./HFB PROB.: SAMPLE MATRIX SPIKE DUPLICATE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.: SEE ABOVE./MFB ESE BATCH : G26775 CLASSIFICATION : SEMIVOLATILE ORGANIC CMPDS-E625

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92 10:08:34
ANALYST	: SCOTT KEERAN	ANALYSIS DATE	: 03/19/92
EXTRACTOR	:	EXTRACT DATE	: 03/18/92
DATA ENTRY	: TODD ROMERO		

٠.

STATUS

METHOD BLANK CORRECTION METHOD : BY CONCENTRATION

: FINAL

BATCH NOTES DOWNLOAD FILE WRIWSK

	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
HUNTHI	39240186 0201	COE - ST. STEW	IART	SUZANNE WOODWARD
WRITW1	3924018G 0201	COE - FT. STEH	IART	SUZANNE WOODWARD
SAMPLE	CLIENT	DATE	TINE	
CODE	10	ANALYZED	ANALYZED	
WRITWI*1	NMH-1	63/19/92	10:50AM	
WRITHI*2	WMH-2	63/19/92	11:42AM	
HRITH1*3	WMH-3	03/19/92	12:34PM	
WRITW1*4	WMW-4	03/19/92	01:25PM	
WRITW1*5	WMW-5	03/19/92	02:17PM	
WRITW1*6	WNW-6	03/19/92	03:09PM	
WRITW1*7	WMW-7	03/19/92	04:02PM	
WRITHI*8	WNW-DUP	03/19/92	04:54PM	•
WRITW1*10	HSOURCE	03/19/92	05:46PM	
HRITW1×11	EQPBLK	03/19/92	06:38PM	
HUNTW1*1	HKH-1	03/19/92	07:30PM	
HUNTW1*2	HMH-2	03/19/92	09:42PH	
HUNTH1*3	HMW-3	03/19/92	10:34PM	
HUNTH1*4	HMH-4	03/19/92	11:27PM	
HUNTHINS	HHH-5	03/20/92	12:19AM	
HUNTW1*6	HNN-6	03/20/92	01:11AM	

#### Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/19/92	HB*QC*1	34696*GMS	NAPHTHALENE	UG/L	ND
03/19/92	MB*QC*1	34200*GM\$	ACENAPHTHYLENE	ŲĠ/L	ND
03/19/92	MB*QC*1	34205*GMS	ACENAPHTHENE	UG/L	ND
03/19/92	MB*QC*1	34381*GMS	FLUORENE	UG/L	ND.
03/19/92	MB*QC*1	34461*GMS	PHENANTHRENE	UG/L	ND
03/19/92	MB*QC*1	34220*GMS	ANTHRACENE	UG/L	ND
03/19/92	MB*QC*1	34376*GMS	FLUORANTHENE	UG/L	ND
03/19/92	NB*QC*1	34469*GMS	PYRENE	UG/L	ND
03/19/92	MB*QC+1	34526*GHS	BENZO(A)ANTHRACENE	UG/L	ND
03/19/92	MB*QC*1	34320*GHS	CHRYSENE	UG/L	ND
03/19/92	MB*0C*1	34230*GMS	BENZO(B)FLUORANTHENE	UG/L	ND
03/19/92	MB*QC*1	34242*GMS	BENZO(K)FLUORANTHENE	UG/L	ND
03/19/92	NB*OC*1	34247*GHS	BENZO(A)PYRENE	UG/L	ND
03/19/92	MB*OC*1	34403*GMS	INDENO(1,2,3-CD) PYRENE	UG/L	ND
83/19/92	MB*0C*1	34556*GMS	DIBEN' (A H)ANTH'CENE	UG/L	ND
83/19/92	MB*QC*I	34521*GMS	BENZO(GHI)PERYLENE	UG/L	ND
				· · · •	

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>XRECV</b>	RECV CRIT	UNITS	TARGET	FOUND
03/19/92	SP1*QC*1	34205*GMS	ACENAPHTHENE	78	46-118	UG/L	50	39
03/19/92	SP 1*QC*1	34469*GMS	PYRENE	104	26-127	UG/L	50	52

Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>XRECV</b>	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/19/92	SPM1*WR]TW1*1	34205*GMS	ACENAPHTHENE	79	46-118	0.0	UG/L	56	44	
03/19/92	SPM1*WRITW1*1	34469*GMS	PYRENE	107	26-127	0.0	UG/L	56	60	
03/19/92	SPM2*WRITHI*1	34205*GMS	ACENAPHTHENE	75	46-118	0.0	UG/L	56	42	3.9
03/19/92	SPM2*WRITW1*1	34469*GMS	PYRENE	86	26-127	0.0	UG/L	56	48	24

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	<b>XRECV</b>	RECV CRIT
03/19/92	MB*QC*1	98316*SUR	2-FLUOROPHENOL	UG/L	100	66	66	21-100
03/19/92	MB*QC*1	98317*SUR	PHENOL-D(5)	UG/L	100	40	40	10-94
03/19/92	MB*QC*1	98318*SUR	NITROBENZENE-D(5)	UG/L	50	39	78	35-114
03/19/92	HB*QC*1	98321*SUR	2-FLUOROBIPHENYL	UG/L	50	35	70	43-116
03/19/92	MB*QC*1	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	100	88	88	10-123
03/19/92	MB*QC*1	97447*SUR	TERPHENYL-D(14)	UG/L	50	40	80	33-141
03/19/92	DA*WR1TW1*1	98316*SUR	2-FLUOROPHENOL	UG/L	100	75	75	21-100
Ø3/19/92	DA*WRITWI*I	98317*SUR	PHENOL-D(5)	UG/L	160	47	47	10-94
03/19/92	DA*WRITW1*1	98318*SUR	NITROBENZENE-D(5)	UG/L	50	40	80	35-114
03/19/92	DA*WR] TN 1*1	98321*SUR	2-FLUOROB1PHENYL	UG/L	50	41	82	43-116
03/19/92	DA*WR1TW1*1	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	100	100	100	10-123
03/19/92	DA*WRITW1*1	97447*SUR	TERPHENYL-D(14)	UG/L	50	41	82	33-141
03/19/92	DA*WRITW1*2	98316*SUR	2-FLUOROPHENOL	UG/L	100	76	76	21-100
03/19/92	DA*WRITH1*2	98317*SUR	PHENOL-D(5)	UG/L	100	50	50	10-94
03/19/92	DA*WR1TH1*2	98318*SUR	NI TROBENZENE-D(5)	UG/L	50	36	72	35-114
03/19/92	DA*WRITHI*2	98321*SUR	2-FLUOROB   PHENYL	UG/L	50	38	76	43-116
03/19/92	DA*WRITHI*2	97446*SUR	2,4,6-TRIBROHOPHENOL	UG/L	100	97	97	10-123
03/19/92	DA*WRITW1*2	97447*SUR	TERPHENYL-D(14)	UG/L	50	42	84	33-141
03/19/92	DA*WRITW1*3	98316*SUR	2-FLUOROPHENOL	UG/L	100	80	80	21-100
03/19/92	DA*WRITW1*3	98317*SUR	PHENOL-D(5)	UG/L	100	51	51	10-94
03/19/92	DA*WRITH1*3	98318*SUR	NITROBENZENE-D(5)	UG/L	50	39	78	35-114
03/19/92	DA*WRITW1*3	98321*SUR	2-FLUOROBIPHENYL	UG/L	50	39	78	43-116
03/19/92	DA*WR1TW1*3	97446*SUR	2.4.6-TRIBROMOPHENOL	UG/L	100	100	100	10-123
03/19/92	DA*WRITW1*3	97447*SUR	TERPHENYL-D(14)	UG/L	50	36	72	33-141
03/19/92	DA*WRITW1*4	98316*SUR	2-FLUOROPHENOL	UG/L	100	81	61	21-190
03/19/92	DA*NRITW1*4	98317*SUR	PHENOL-D(5)	UG/L	100	52	52	10-94
03/19/92	DA*WR1TH1*4	98318*SUR	NITROBENZENE-D(5)	UG/L	50	40	80	35-114
03/19/92	DA*WR]TH]*4	98321*SUR	2-FLUOROBIPHENYL	UG/L	50	40	80	43-116
03/19/92	DA*HRITHI*4	97446*SUR	2.4.6-TRIBROMOPHENOL	UG/L	100	110	110	10-123
03/19/92	DA*WRITH1*4	97447*SUR	TERPHENYL-D(14)	UG/L	50	38	76	33-141
03/19/92	DA*WRITH1*5	98316*SUR	2-FLUOROPHENOL	UG/L	100	83	83	21-108
03/19/92	DA*WRITH1*5	98317*SUR	PHENOL-D(5)	UG/L	100	54	54	10-94
03/19/92	DA*WRITH1*5	98318*SUR	NITROBENZENE-D(5)	ՍԵՐԼ	50	40	80	35-114
03/19/92	DA*WRITWI*5	98321*SUR	2-FLUOROBIPHENYL	UG./L	50	39	78	43-116
03/19/92	DA*NR[TN1*5	97446*SUR	2.4.6-TRIBROMOPHENOL	UG/L	100	92	92	43-110
03/19/92	DA*WRITW1*5	97447*SUR	TERPHENYL-D(14)	UG/L	50	92 41	92 82	
03/19/92								33-141
03/19/92	DA*WRITHI*6	98316*SUR	2-FLUOROPHENOL	UG/L	100	77	77	21-100
03/19/92	DA*WRITWI*6	98317*SUR	PHENOL-D(5)	UG/L	100	50	50	10-94
	DA*WRITW1*6	98318*SUR	NITROBENZENE-D(5)	UG/L	50	38	76	35-114
03/19/92	DA*WRITW1*6	98321*SUR	2-FLUOROBIPHENYL	UG/L	50	38	76	43-116
03/19/92	DA*WRITW1*6	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	100	100	100	10-123
03/19/92	DA*WRITW1*6	97447*SUR	TERPHENYL-D(14)	UG/L	50	44	88	33-141
03/19/92	DA*WRITW1*7	98316*SUR	7 FLUOROPHENOL	UG/L	100	75	75	21-100

310

2É

٠,

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	<b>XRECV</b>	RECV CRIT
03/19/92	DA*NRITH1*7	98317*SUR	PHENOL-D(5)	UG/L	100	48	48	10-94
03/19/92	DA*WRITW1*7	98318*SUR	NITROBENZENE-D(5)	UG/L	50	40	80	35-114
03/19/92	DA*WRITH1*7	98321*SUR	2-FLUOROB1PHENYL	UG/L	50	42	84 98	43-116 10-123
03/19/92	DA*HRITH1*7	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	100	98 45	90	33-141
03/19/92	DA*HRITH1*7	97447*SUR	TERPHENYL-D(14)	UG/L	50 100	45 73	73	21-100
03/19/92	DA*HRITH1*8	98316*SUR	2-FLUOROPHENOL	UG/L	100	47	47	10-94
03/19/92	DA*WRITHI*8	98317*SUR	PHENOL-D(5)	UG/L		47. 35	70	35-114
03/19/92	DA*WRITW1*8	98318*SUR	NITROBENZENE-D(5)	UG/L	50 50	35	70	43-116
03/19/92	DA*HRITH1*8	98321*SUR	2-FLUOROBIPHENYL	UG/L	100	98	98	10-123
03/19/92	DA*WRITH1*8	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L UG/L	50	37	74	33-141
03/19/92	DA*HRITHI*8	97447*SUR	TERPHENYL-D(14)		100	81	61	21-100
03/19/92	DA*WRITH1*10	98316*SUR	2-FLUOROPHENOL	UG/L UG/L	100	52	52	10-94
03/19/92	DA*WRITW1*10	98317*SUR	PHENOL-D(5)	UG/L	50	34	68	35-114
03/19/92	DA*HRITH1*10	98318*SUR	NITROBENZENE-D(5)	UG/L	50	35	70	43-116
03/19/92	DA*WRITW1*10	98321*SUR	2-FLUOROBIPHENYL	UG/L	105	98	98	10-123
03/19/92	DA*WRITH1*10	97446*SUR	2,4,6-TR1BROMOPHENOL	UG/L	50	38	76	33-141
03/19/92	DA*WR TW1*10	97447*SUR	TERPHENYL-D(14) 2-FLUOROPHENOL	UG/L	166	77	77	21-100
03/19/92	DA*WRITW1*11	98316*SUR	PHENOL-D(5)	UG/L	100	49	49	10-94
03/19/92	DA*WRITW1*11	98317*SUR	NITROBENZENE-D(5)	UG/L	50	37	74	35-114
03/19/92	DA*WRITW1*11	98318*SUR 98321*SUR	2-FLUOROBIPHENYL	UG/L	50	37	74	43-116
03/19/92	DA*WRITH1*11		2,4,6-TRIBROHOPHENOL	UG/L	100	100	100	10-123
03/19/92	DA*WRITH1*11	97446*SUR 97447*SUR	TERPHENYL-D(14)	UG/L	50	46	92	33-141
03/19/92	DA*HR1TH1*11	98316*SUR	2-FLUOROPHENOL	UG/L	100	75	75	21-100
03/19/92	DA*HUNTH1*1			UG/L	100	48	48	10-94
03/19/92	DA*HUNTH1*1	98317*SUR	PHENOL-D(5)	UG/L	50	36	72	35-114
03/19/92	DA*HUNTH1*I	98318*SUR	NITROBENZENE-D(5)	UG/L	50	36	72	43-116
03/19/92	DA*HUNTW1*1	98321*SUR	2-FLUOROBIPHENYL	UG/L	100	110	110	10-123
03/19/92	DA*HUNTW1*1	97446*SUR	2,4,6-TRIBROHOPHENOL	UG/L	50	44	88	33-141
03/19/92	DA*HUNTW1*1	97447*SUR	TERPHENYL-D(14)	UG/L	100	69	69	21-100
03/19/92	DA*HUNTH1*2	98316*SUR-	2-FLUOROPHENOL	UG/L	100	46	46	10-94
03/19/92	DA*HUNTW1*2	98317*SUR	PHENOL-D(5)	UG/L	50	37	74	35-114
03/19/92	DA*HUNTW1*2	98318*SUR	NITROBENZENE-D(5)	UG/L	50	36	72	43-116
03/19/92	DA*HUNTW1*2	98321*SUR	2-FLUOROBIPHENYL	UG/L	100	88	88	10-123
03/19/92	DA*HUNTHI*2	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	50	30	68	33-141
03/19/92	DA*HUNTH1*2	97447*SUR	TERPHENYL-D(14)	UG/L	100	77	77	21-100
03/19/92	DA*HUNTH1*3	98316*SUR	2-FLUOROPHENOL	UG/L	100	49	49	10-94
03/19/92	DA*HUNTH1*3	98317*SUR	PHENOL-D(5)	UG/L	50	39	78	35-114
03/19/92	DA*HUNTH1*3	98318*SUR	NITROBENZENE-D(5)	UG/L	50	38	76	43-116
03/19/92	DA*HUNTH1*3	98321*SUR	2-FLUOROBIPHENYL	UG/L	100	94	94	10-123
03/19/92	DA*HUNTH1*3	97446*SUR	2.4.6-TRIBROMOPHENOL	UG/L	50	47	94	33-141
03/19/92	DA*HUNTH1*3	97447*SUR	TERPHENYL-D(14)		100	62	62	21-100
03/19/92	DA*HUNTH1*4	98316*SUR	2-FLUOROPHENOL	UG/L UG/L	100	41	41	10-94
03/19/92	DA*HUNTH1*4	98317*SUR	PHENOL-D(5)		50	31	62	35-114
03/19/92	DA*HUNTW1*4	98318*SUR	NITROBENZENE-D(5)	UG/L	50 50	33	66	43-116
03/19/92	DA*HUNTW1*4	98321*SUR	2-FLUOROB1PHENYL	UG/L UG/L	100	93	93	10-123
03/19/92	DA*HUNTN1*4	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	50	53	110	33-141
03/19/92	DA*HUNTH1*4	97447*SUR		UG/L	108	79	79	21-100
03/20/92	DA*HUNTH]*5	98316*SUR	2-FLUOROPHENOL	UG/L	100	49	49	10-94
03/20/92	DA*HUNTW1*5	98317*SUR	PHENOL-D(S)	UG/L	50	37	74	35-114
03/20/92	DA*HUNTH1*5	98318*SUR	NITROBENZENE-D(5)	UG/L	50	36	72	43-116
03/20/92	DA*HUNTW1*5	98321*SUR	2-FLUOROBIPHENYL	UG/L	100	97	97	10-123
03/20/92	DA*HUNTH1*5	97446*\$UR	2,4,6-TRIBROMOPHENOL		50	46	92	33-141
03/20/92	DA*HUNTH1*5	97447*SUR	TERPHENYL-D(14)	UG/L	100	79	79	21-100
03/20/92	DA*HUNTH1*6	98316*SUR	2-FLUOROPHENOL	UG/L	100	60	60	10-94
03/20/92	DA*HUNTH1*6	98317*SUR	PHENOL-D(5)	UG/L	50	33	66	35-114
03/20/92	DA*HUNTH1*6	98318*SUR	NITROBENZENE-D(5)	UG/L UG/L	50	55 51	100	43-116
03/20/92	DA*HUNTH1*6	98321*SUR	2-FLUOROBIPHENYL		50 100	51 100	100	10-123
03/20/92	DA*HUNTH1*6	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	50	48	96	33-141
03/20/92	DA*HUNTH1*6	97447*SUR	TERPHENYL-D(14)	UG/L		48 86	90 78	21-100
03/20/92	SPM1*WRITH1*1	98316*SUR	2-FLUOROPHENOL	UG/L UG/L	110 110	86 63	78 57	21-100
03/20/92	SPM1*WR TW1*1	98317*SUR	PHENOL-D(5)		56	45	80	35-114
03/20/92	SPM1*WRITH1*1	98318*SUR	NITROBENZENE-D(5)	UG/L			77	43-116
03/20/92	SPM1*WRITW1*1	98321*SUR	2-FLUOROBIPHENYL	UG/L	56 110	43 120	110	10-123
03/20/92	SPM1*WRITW1*1	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L				
03/20/92	SPM1*WR TH1*1	97447*SUR	TERPHENYL-D(14)	UG/L	56	54 00	96 80	33-141 21-100
03/20/92	SPM2*WRITW1*1	98316*SUR	2-FLUOROPHENOL ·	UG/L	110	88 4 5	80 50	21-100
03/20/92	SPM2*WR TW1*1	98317*SUR	PHENOL-D(5)	UG/L	110	65	59	10-94
03/20/92	SPM2*WRITH1*1	98318*SUR	NITROBENZENE-D(5)	UG/L	56	42	75	35-114
03/20/92	SPM2*WR1TW1*1	98321*SUR	2-FLUOROBIPHENYL	UG/L	56	39	70	43-116
03/20/92	SPM2*WR TW1*1	97446*SUR	2,4,6-TR LBROMOPHENOL	UG/L	110	110	100	10-123
83/20/92	SPM2*WRITW1*1	97447*SUR	TERPHENYL-D(14)	UG/L	56	43	77	33-141
03/20/92	SP 1*QC * 1	98316*SUR	2-FLUOROPHENOL	UG/L	100	72	72	21-100
03/20/92	SP1+QC+1	98317*SUR	PHENOL-D(5)	UG/L	100	52	52	10-94
03/20/92	SP1#QC*1	98318*SUR	NITROBENZENE-D(5)	UG/L	50	37	74	35-114
03/20/92	SP1*QC*1	98321*SUR	2-FLUOROBIPHENYL	UG/L	50	36	72	43-116
03/20/92	SP1*QC*1	97446*SUR	2,4,6-TRIBROMOPHENOL	UG/L	166	98	98	10-123
03/20/92	SP1*QC*1	97447*SUR	TERPHENYL-D(14)	UG/L	50	43	86	33-141

# ESE BATCH : 626775 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26775	Analysis Date: 03/19/92 A	nalyst: SCO	TT KEERAN
		<u>Yes</u> X	<u>"Exceptions"</u> No <u>Comment / Corrective Action</u>
Analysis holding time	within criteria?	X	
Extract holding time w	ithin criteria?	x	ʻ.
Method blank present?		Х	
Method blank within ac	ceptance criteria?	x	
Standard matrix spike	present?	X	
	within acceptance criteria?	X	
Sample matrix spike pr	esent?	x	
Sample matrix spike wi	thin acceptance criteria?	x	
Sample matrix spike du	plicate present?	X	
Sample matrix spike du	plicate within acceptance crite	ria? X	
Surrogate present?		X	
Surrogate within accep	tance criteria?	x	
Note: Any "NO" answer	requires a comment.		

۱

#### OVERRIDE COMMENTS

352

ESE BATCH : G26777 CLASSIFICATION : SEMIVOLATILE ORGANIC CMPDS-SW3540/SW8270

: FINAL

QC TYPE	: FDER/SW	REPORT DATE/TIME	: 04/22/92	10:35:17
ANALYST Extractor	: D. M. RITTER ;	ANALYSIS DATE Extract date	: 03/19/92 : 03/12/92	
DATA ENTRY	: FINNIGAN UPLOAD			

STATUS

METHOD BLANK CORRECTION METHOD : NONE

BATCH NOTES DOWNLOAD FILE WRITSI.MSQ

FIELD GRP	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
WRITSI	3924018G 0201	COE - FT. STEW	IART	SUZANNE HOODWARD
SAMPLE	CLIENT	DATE	TIME	
CODE	10	ANALYZED	ANALYZED	
WRITS1*1	WS-1	03/19/92	11:03AM	
WRITS1*2	WS-2	03/20/92	03:41AM	
WRITS1*3	WS-3	03/20/92	04:43AM	
WRITSI*4	₩S-4	83/20/92	85:47AM	
WRITSI*5	₩S-5	03/20/92	02:29PM	
WRITSI*6	WS-6	83/28/92	03:30PM	
WRITS1*7	WS-7	03/19/92	08:20PM	
WRITS1*8	WS-B	03/19/92	09:22PM	
WRITS1*9	₩S-9	03/19/92	10:24PM	
WRITS1*10	WS-DUP	03/19/92	11:28PM	
WRITS1*13	₩SD-2	03/20/92	12:32AM	
WRITS1*14	WSD-DUP	03/20/92	01:34AM	
WRITS1*12	WSD-1	03/20/92	04:30PM	

Ţ.

Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/19/92	MB*0312*1	34569*GMS	1, 3-DICHLOROBENZENE	UG/KG-DRY	ND
03/19/92	MB×0312×1	34574*GMS	1,4-DICHLOROBENZENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34539*CMS	1, 2-DICHLOROBENZENE	UG/KG-DRY	ND
03/19/92	MB+0312+1	34445*GMS	NAPHTHALENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34203*GMS	ACENAPHTHYLENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34208*GMS	ACENAPHTHENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34384*GMS	FLUORENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34464*GMS	PHENANTHRENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34223*GMS	ANTHRACENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34379*GMS	FLUORANTHENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34472*GMS	PYRENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34529*CMS	BENZO(A)ANTHRACENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34323*GMS	CHRYSENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34233*GMS	BENZO(B)FLUORANTHENE	UG/KG~DRY	ND
03/19/92	MB*0312*1	34245*GMS	BENZO(K)FLUORANTHENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34250*GMS	BENZO(A)PYRENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34406*GMS	INDENO(1,2,3-CD) PYRENE	UC/KG-DRY	ND
03/19/92	MB*0312*1	34559*CMS	DIBEN(A, H)ANTHRACENE	UG/KG-DRY	ND
03/19/92	MB*0312*1	34524*GMS	BENZO(GHI)PERYLENE	UG/KG-DRY	ND

Standard Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>%</b> RECV	RECV CRIT	UNITS	TARGET	FOUND
03/19/92	SP1*0312*1	34569*GMS	1, 3-DICHLOROBENZENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	\$P1*0312*1	34574*GMS	1,4-DICHLOROBENZENE	82	28-104	UG/KG-DRY	3300	2700
03/19/92	SP1*0312*1	34539*GMS	1,2-DICHLOROBENZENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34445*GMS	NAPHTHALENE	0.0	B0-120	UG/KG-DRY	3300	ND
03/19/92	SP1#0312*1	34203*CMS	ACENAPHTHYLENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34208*GMS	ACENAPHTHENE	82	31-137	UG/KG-DRY	3300	2700
03/19/92	SP1*0312*1	34 384*GMS	FLUORENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34464*GMS	PHENANTHRENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34223*GMS	ANTHRACENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34379*GMS	FLUORANTHENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34472*GMS	PYRENE	94	35-142	UG/KG-DRY	3300	3100
03/19/92	SP1*0312*1	34529*GMS	BENZO(A)ANTHRACENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34323*GMS	CHRYSENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34233*GMS	BENZO(B)FLUORANTHENE	0,0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34245*GMS	BENZO(K)FLUORANTHENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34250*GMS	BENZO(A)PYRENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34406*GMS	INDENO(1,2,3-CD) PYRENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1*0312*1	34559*6MS	DIBEN(A, H)ANTHRACENE	0.0	80-120	UG/KG-DRY	3300	ND
03/19/92	SP1+0312+1	34524*GMS	BENZO(GH1)PERYLENE	8.8	80-120	UG/KG-DRY	3300	ND

Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>#</b> RECV	RECV CRI	T UNSPIKED	UNITS	TARGET	FOUND	RPD
03/19/92	SPH1*WRITS1*4	34569*GMS	1, 3-DICHLOROBENZENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34574*GMS	1,4-DICHLOROBENZENE	81	28-104	0.0	UG/KG-DRY	3700	3000	
03/19/92	SPM1*WRITS1*4	34539*GMS	1, 2-DICHLOROBENZENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34445*CMS	NAPHTHALENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1#WR1TS1#4	34203*GMS	ACENAPHTHYLENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34208*GMS	ACENAPHTHENE	78	31-137	0.0	UG/KG-DRY	3700	2900	
03/19/92	SPM1*WR1TS1*4	34384*GMS	FLUORENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*HRITS1*4	34464*GMS	PHENANTHRENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34223*GMS	ANTHRACENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34379*GMS	FLUORANTHENE	0.68	80-120	0.0	UG/KG-DRY	3700	25	
03/19/92	SPM1*WR]TS1*4	34472*GMS	PYRENE	89	35-142	0.0	UG/KG-DRY	3700	3300	
03/19/92	SPM1*HR1TS1*4	34529*GMS	BENZO(A)ANTHRACENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WR1TS1*4	34323*CMS	CHRYSENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34233*GMS	BENZO(B)FLUORANTHENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WR1TS1*4	34245*GMS	BENZO(K)FLUORANTHENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WR1TS1*4	34250#GMS	BENZO(A)PYRENE	0.0	80-120	0.0	UG/KG-DRY	3780	ND	
03/19/92	SPM1*WR1TS1*4	34406*GMS	INDENO(1,2,3-CD) PYRENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WR1TS1*4	34559*GMS	DIBEN(A, H)ANTHRACENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM1*WRITS1*4	34524*GHS	BENZO(GHI)PERYLENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34569*GNS	I, 3-DICHLOROBENZENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WR]TSJ*4	34574*GNS	1 4-D1CHLOROBENZENE	78	28-104	0.0	UG/KG-DRY	3700	2900	2.5
03/19/92	SPM2*WR1TS1*4	34539*GMS	1 2-DICHLOROBENZENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34445*GMS	NAPHTHALENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34203*CMS	ACENAPHTHYLENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WR1TS1*4	34208*GMS	ACENAPHTHENE	78	31-137	0.0	UG/KG-DRY	3700	2900	1.3
03/19/92	SPM2*WR1TS1*4	34384*GMS	FLUORENE	9.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WR1TS1*4	34464*GMS	PHENANTHRENE	0.0	80-120	0.0	UG/KG-DRY	3708	ND	
03/19/92	SPM2*WRITS1*4	34223*GMS	ANTHRACENE	8.0	80-128	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34379*GMS	FLUORANTHENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	200
03/19/92	SPM2*WR1TS1*4	34472*GMS	PYRENE	<b>\$</b> 6	35-142	0.0	UG/KG-DRY	3700	3200	2.3
03/19/92	SPM2*WRITS1*4	34529*GMS	BENZO(A)ANTHRACENE	<b>ð</b> .0	80-120	0.0	UG/KG-DRY	3700	ND	2.13
		J 1-2 / 0.10		***		*.*	COVING DINT	3100	ND .	

(

Sample Matrix Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	<b>%</b> RECV	RECV CRIT	UNSPIKED	UNITS	TARGET	FOUND	RPD
03/19/92	SPM2*WRITS1*4	34323*GMS	CHRYSENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WR1TS1*4	34233*GMS	BENZO(B)FLUORANTHENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34245*GMS	BENZO(K)FLUORANTHENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34250*GMS	BENZO(A)PYRENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34406*GMS	INDENO(1,2,3-CD) PYRENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WRITS1*4	34559*GMS	DIBEN(A, H)ANTHRACENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	
03/19/92	SPM2*WR1TS1*4	34524*GMS	BENZO(GHI)PERYLENE	0.0	80-120	0.0	UG/KG-DRY	3700	ND	

215

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	<b>KRECV</b>	RECV_CRIT_
03/19/92	MB*0312*1	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5600	84	25-121
03/19/92	MB*0312*1	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5410	81.1	24-113
03/19/92	HB*0312*1	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79	23-120
03/19/92	MB*0312*1	98330*SUR	2-FLUOROB   PHENYL	UG/KG-DRY	3300	2800	85	30-115
03/19/92	MB*0312*1	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	6360	95.4	19-122
03/19/92	MB*0312*1	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	3050	91.6	18-137
03/19/92	SP1*0312*1	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5900	88	25-121
03/19/92	SP1+0312+1	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6678	5510	82.6	24-113
03/19/92	SP1#0312#1	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2800	85	23-120
03/19/92	SP1*0312*1	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2900	88	30-115
03/19/92	SP 1*0312*1	97448*SUR	2,4,6-TRIBROMOPHENOL	UC/KC	6670	6420	96.3	19-122
03/19/92	SP 1+0312+1	97449*SUR	TERPHENYL-D(14)	UC/KC	3330	2960	88.9	18-137
03/19/92	DA*WRITS1*1	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5900	88	25-121
03/19/92	DA*WRITSI*I	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5450	81.7	24-113
03/19/92	DA*WR1TS1*1	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79	23-120
03/19/92	DA*WR1TS1*1	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2900	88	30-115
03/19/92	DA*WRITSI*1	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KC	6670	5840	87.6	19-122
03/19/92	DA*WRITS1*1	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2530	76.0	18-137
03/20/92	DA*WRITS1*2	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5700	85	25-121
03/20/92	DA*WR1TS1*2	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5180	77.7	24-113
03/20/92	DA*NRITS1*2	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2800	85	23-120
03/20/92	DA*WRITS1*2	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2800	85	30-115
03/20/92 03/20/92	DA*WB1TS1*2	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	4690	70.3	19-122
03/20/92	DA*WRITS1*2	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	3240	97.3	18-137
03/20/92	DA*WRITSI*3 DA*WRITSI*3	98325*SUR 98326*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5500	82	25-121
03/20/92	DA*WRITSI*3		PHENOL-D(5)	UG/KG-DRY	6670	5070	76.0	24-113
03/20/92	DA*WRITS1*3	98327*SUR 98330*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2700	82	23-120
03/20/92	DA*HRITSI*3	97448*SUR	2-FLUOROBIPHENYL 2.4.6-TRIBROMOPHENOL	UG/KG-DRY	3300	2700	82	30-115
03/20/92	DA*WRJTS1*3	97448*SUR 97449*SUR		UG/KG	6670	4790	71.8	19-122
03/20/92	DA*WRITS1*4	98325*SUR	TERPHENYL-D(14)	UG/KG	3330	3070	92.2	18-137
03/20/92	DA*WR1TS1*4	98326*SUR	2-FLUOROPHENOL PHENOL-D(5)	UG/KG-DRY	6700	5400	81	25-121
03/20/92	DA*WRITS1*4	98327*SUR	NITROBENZENE-D(5)	UC/KG-DRY	6670	4990	74.8	24-113
03/20/92	DA*WRITS1*4	98327×308 98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2600	79	23-120
03/20/92	DA*WR1TS1*4	97448*SUR	2,4,6-TRIBRONOPHENOL	UG/KG-DRY	3300	2600	79	30-115
03/20/92	DA*WRITS1*4	97449*SUR	TERPHENYL-D(14)	UG/KG UG/KG	6670	5630	84.4	19-122
03/19/92	SPM1#WRITS1#4	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	3330 6700	3600	108	18-137
03/19/92	SPM1*WRITS1*4	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5700 5200	85 78.0	25-121
03/19/92	SPM1*WRITS1*4	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2500		24-113
03/19/92	SPM1*WR1TS1*4	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2500	76 88	23-120 30-115
03/19/92	SPM1*WR1TS1*4	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	6910	104	19-122
03/19/92	SPM1*WRJTS1*4	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	3010	90.4	19-122
03/19/92	SPM2*WRITS1*4	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5500	62	25-121
03/19/92	SPM2*WRITS1*4	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5100	76.5	24-113
03/19/92	SPH2*WRITS1*4	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79.5	23-120
03/19/92	SPH2*WRITS1*4	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	3100	94	30-115
03/19/92	SPM2*WR1TS1*4	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	6380	94 95.7	19-122
03/19/92	SPM2*WRITS1*4	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2770	83.2	19-122
03/20/92	DA*WRITS1*5	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	5350 6700	5100	76	25-121
03/20/92	DA*WRITS1*5	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5160	77.4	24-113
03/20/92	DA*WR1TS1*5	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79	23-120
03/20/92	DA*WRITS1*5	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2808	85	30-115
03/20/92	DA*WRITS1*5	97448*SUR	2.4.6-TRIBROMOPHENOL	UG/KG	6670	5410	81.1	19-122
03/20/92	DA*WRITS1*5	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2620	78.7	18-137
03/20/92	DA*WRITS1*6	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5600	84	25-121
03/20/92	DA#WRITS1*6	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5090	76.3	24-113
03/20/92	DA*WRITS1*6	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79	23-120
03/20/92	DA*WRITS1*6	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2900	88	30-115
03/20/92	DA*WRITS1*6	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	5650	84.7	19-122
03/20/92	DA*WRITS1*6	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2320	69.7	19-122
03/19/92	DA*WRITSI*7	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5800	87	25-121
03/19/92	DA*WRITS1*7	98326*SUR	PHENOL-D(5)	UC/KG-DRY	6670	5400	81.0	24-113
03/19/92	DA*WRITS1*7	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2800	85	23-120
03/19/92	DA*WRITSI*7	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2800	85	30-115
03/19/92	DA+WRITS1+7	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	2000 5540	83.1	19-122
03/19/92	DA*HRITS1*7	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2850	85.6	19-122
				00/NU	3330	2000	00.0	10-157

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	XRECV	RECV CRIT
03/19/92	DA*WRITS1*8	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5600	84	25-121
03/19/92	DA*WR]TS1*8	98326*SUR	PHENOL-D(5)	UC/KG-DRY	6670	5250	78.7	24-113
03/19/92	DA*WRITS1*8	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2700	82	23-120
03/19/92	DA*WRITS1*B	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2500	76	30-115
03/19/92	DA*WR TS1*B	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	4460	66.9	19-122
03/19/92	DA*WRITS1*8	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2760	82.9	18-137
03/19/92	DA*WRITS1*9	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5700	85	25-121
03/19/92	DA*WRITS1*9	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5260	78.9	24-113
03/19/92	DA*WRITS1*9	9B327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79	23-120
03/19/92	DA*WR1TS1*9	98330*SUR	2-FLUOROB1PHENYL	UG/KG-DRY	3300	2600	79	30-115
03/19/92	DA*WRITS1*9	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	3890	58.3	19-122
03/19/92	DA*WRITS1*9	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	3430	103	18-137
03/19/92	DA*WRITS1*10	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5200	78	25-121
03/19/92	DA*WRITS1*10	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5020	75.3	24-113
03/19/92	DA*WRITSI*10	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2700	62	23-120
03/19/92	DA*WRITS1*10	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2700	82	30-115
03/19/92	DA*WRITS1*10	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	4430	66.4	19-122
03/19/92	DA*WRITSI*10	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2690	80.8	18-137
03/20/92	DA+WRITSI+13	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5400	81	25-121
03/20/92	DA*WRITSI*13	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5350	80.2	24-113
03/20/92	DA*WRITS1*13	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2800	85	23-120
03/20/92	DA+WR1TS1+13	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2600	79	30-115
03/20/92	DA*WRITS1*13	97448*SUR	2.4.6-TRIBROMOPHENOL	UC/KG	6670	4790	71.8	19-122
03/20/92	DA*WRITSI*13	97449*SUR	TERPHENYL-D(14)	UC/KG	3330	3270	98.2	18-137
03/20/92	DA*WRITS1*14	98325*SUR	2-FLUOROPHENOL	UG/KG-DRY	6700	5300	79	25-121
03/20/92	DA*WRITS1*14	98326*SUR	PHENOL-D(5)	UG/KG-DRY	6670	5050	75.7	24-113
03/20/92	DA*WRITS1*14	98327*SUR	NITROBENZENE-D(5)	UG/KG-DRY	3300	2600	79	23-120
03/20/92	DA*WRITS1*14	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2500	76	30-115
03/20/92	DA*WRITS1*14	97448*SUR	2 4 6-TR JBROMOPHENOL	UG/KG	6670	4350	65.2	19-122
03/20/92	DA*WRITS1*14	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2780	83.5	18-137
03/20/92	DA*WRITS1*12	98325*SUR	2-FLUOROPHENOL	UC/KG-DRY	6700	5100	76	25-121
03/20/92	DA*WR1TS1#12	98326*SUR	PHENOL-D(5)	UC/KG-DRY	6670	4940	74.1	24-113
03/20/92	DA*WRITS1*12	98327*SUR	NITROBENZENE-D(5)	UC/KG-DRY	3300	2300	70	23-120
03/20/92	DA*WRITS1*12	98330*SUR	2-FLUOROBIPHENYL	UG/KG-DRY	3300	2700	82	30-115
03/20/92	DA*WRITS1*12	97448*SUR	2,4,6-TRIBROMOPHENOL	UG/KG	6670	5010	75.1	19-122
03/20/92	DA*WRITS1*12	97449*SUR	TERPHENYL-D(14)	UG/KG	3330	2240	67.3	18-137

#### ESE BATCH : G26777 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26777	Analysis Date: 03/19/92	Analyst: D.	M. A	ITTER
Analysis holding time	within criteria?	<u>Yes</u> X	No	"Exceptions" Comment / Corrective Action
Extract holding time w	ithin criteria?	х		

X X

Х

Х

X X

X

X

X X

Note: Any "NO" answer requires a comment.

Sample matrix spike duplicate present?

Surrogate within acceptance criteria?

Method blank present? Method blank within acceptance criteria?

Standard matrix spike within acceptance criteria?

Sample matrix spike present? Sample matrix spike within acceptance criteria?

Sample matrix spike duplicate within acceptance criteria?

Standard matrix splke present?

OVERRIDE COMMENTS

Surrogate present?

ESE BATCH : G26802 CLASSIFICATION : MERCURY-SW7470

C	: FDER/SH : LISA SHAYZE : LISA SHAYZE : LISA SHAYZE	REPORT DATE/TIME ANALYSIS DATE EXTRACT DATE	: 04/22/92 : 03/24/92 : 03/23/92	10:03:34
---	--------------------------------------------------------------	---------------------------------------------------	----------------------------------------	----------

#### STATUS

METHOD BLANK CORRECTION METHOD : NONE

: FINAL

FIELD GRP	PROJECT NUMBER	PROJECT NAME		LAB COORDINATOR
HUNTHI	3924018G 0201	COE - ST. STEW	ĀRT	SUZANNE WOODWARD
WRITHI	3924018G 0201	COE - FT. STEW	ART	SUZANNE WOODWARD
SAMPLE	CLIENT	DATE	TIME	
CODE	1D	ANALYZED	ANALYZED	_
WRITWI*I	HMH-1			
WRITH1*2	HUH-2			
WRITH1*3	HNH-3			
WR1TW1*4	HNH-4			
WRITH1*5	WMW-5			
WRITW1*6	NMH-6			
WRITW1*7	WMH-7			
WRITW1*8	HMH-DUP			
WRITW1*10	WSOURCE			
WRITW1*11	EQPBLK			
HUNTH1*1	HMW-1			
HUNTH1*2	HNN-2			
HUNTW1*3	HMM-3			
HUNTW1*4	HMW-4		•.	
HUNTW1*5	HHH-5			
HUNTW1*6	HNW-6			
HUNTW1*7	HHH-7			
HUNTWI¥B	HMH-8			
HUNTW1*9	HKM-9			
HUNTH1*10	HMW-DUP			
HUNTH1*12	HSOURCE			
HUNTH1*16	EOPBLK			

#### Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/24/92	MB*0C*1	71900*CVAA	MERCURY, TOTAL	UG/L	ND
03/24/92	MB*QC*2	71900*CVAA	MERCURY, TOTAL	UG/L	ND

# Standard Matrix Spike Recovery Summary

	•						•
A. 70	CANDLE	STORET PARA	METER	<b>%</b> RECV	RECV CRIT UNITS	TARGET	FOUND
DATE	SAMPLE				83-125 UG/L		5.22
	SP*0C*1	71900*CVAA MERC	URY TOTAL				
		71900*CVAA MERC		196.0	83-125 UG/L	5.00	5.30
03/24/92	SP*QC*2	71900*0VAA DENU	UN1, IVIAL	10010			

Sample Matrix Spike Recovery Summary

•			NA DAME TE D	<b>X</b> RECV	RECV CRIT	T UNSPIKED	UNITS	TARGET	FOUND	RPD
DATE 03/24/92	SAMPLE SPM1*WR1TW1*6	<u>STORET</u>	PARAMETER MERCURY, TOTAL	92.6	83-125	0.0	UG/L	5.00	4.63	
03/24/92	SPM2*WRITW1*6	71900*CVAA	-	94.2 100.4	83-125 83-125	0.0 0.0	UG/L UG/L	5.00 5.00	4.71	1.71
03/24/92 03/24/92	SPM1*HUNTH1*2 SPM2*HUNTH1*2	71900*CVAA 71900*CVAA	MERCURY, TOTAL MERCURY, TOTAL	100.4	83-125	0.0	UG/L	5.00	5.02	0.0

#### ESE BATCH -: 626602 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26802	Analysis Date: 03/24/92	nølyst: LiSA S₩/	YZE
Analysis holding time	within criteria?	the statement of the st	<u>'Exceptions"</u> <u>Comment / Corrective Action</u>
Extract holding time w	ithin criteria?	x	
No, of calibration sta	ndards present acceptable?	x	
Curve correlation coef	ficient >= 0.995?	x	
Calibration curve y-in	tercept < curve detection limit	? X	
Sample responses within	n highest standard response?	x	
Method blank present? Method blank within ac	ceptance criteria?	x x	
Standard matrix spike Standard matrix spike	present? within acceptance criteria?	x x	
Sample matrix spike pro Sample matrix spike wi	esent? thin acceptance criteria?	x x	
Sampie matrix spike du Sampie matrix spike du	plicate present? plicate within acceptance crite	X ria? X	
Note: Any "NO" answer i	requires a comment.		

### OVERRIDE COMMENTS

Ĺ

ESE BATCH : G26918 CLASSIFICATION : NON-HALOGENATED VOLATILE-SH 8240

QC TYPE	: FDER/SN	REPORT DATE/TIME	: 04/22/92 10:40:32
ANALYST	: LARRY SHROADS	ANALYSIS DATE	: 03/15/92
	: TODD ROMERO	EXTRACT DATE	;

STATUS

Ĺ

7

: FINAL

METHOD BLANK CORRECTION METHOD : NONE

### BATCH NOTES

FIELD GRP		PROJECT NAME		LAB COORDINATOR
WRITSI	3924018G 6201	COE - FT. STEN	IART	SUZANNE WOODWARD
SAMPLE	CLIENT	DATE	TIME	
CODE	ID	ANALYZED	ANALYZED	
WRITS1*13	₩SD-2	03/16/92	12:24AM	-
WRITSI*I	HS-1	03/16/92	02:44AM	
WRITSI*4	HS-4	03/16/92	05:03AM	
WRITS1*5	NS-5	03/16/92	05:48AM	
WRITS1*6	WS-6	03/16/92	06:34AM	
WRITS1*7	WS-7	03/16/92	07:20AM	
WRITSI*B	NS-8	03/16/92	08:06AM	
WRITSI*2	₩S-2	03/16/92	06:31PM	
WR]TS[*3	WS-3	03/16/92	07:17PM	
WRITSI*9	WS-9	03/16/92	08:03PM	
WRITSJ*10	WS-DUP	03/16/92	08:49PM	
RITS1*12	WSD-I	03/16/92	09:35PM	
RITS1*14	WSD-DUP	03/16/92	10:21PM	

### Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	FOUND
03/15/92	MB*0C*0315	34421*GMS	CHLOROME THANE	UG/KG-DRY	ND
03/15/92	MB*QC*0315	34416*GMS	BROMOMETHANE	UG/KG-DRY	ND
03/15/92	MB*0C*0315	34495*GMS	VINYL CHLORIDE	UG/KG-DRY	ND
03/15/92	MB*QC*0315	34314*GMS	CHLOROETHANE	UG/KG-DRY	ND
03/15/92	MB*QC*0315	34426*GMS	METHYLENE CHLORIDE	UG/KG-DRY	ND
03/15/92	MB*QC*0315	78544*GMS	CARBON DISULFIDE	UG/KG-DRY	ND
33/15/92	MB*QC*0315	34491*GMS	TRICHLOROFLUOROMETHANE	UG/KG-DRY	ND
03/15/92	MB*QC*0315	34504*GMS	1, 1-DICHLOROETHYLENE	UG/KG-DRY	ND
03/15/92	MB*QC*0315	34499*GMS	1, 1-DICHLOROETHANE	UG/KG-DRY	NÐ
3/15/92	MB*QC*0315	96464*GMS	1, 2-DICHLOROETHENE(TOTAL)	UG/KG	ND
3/15/92	MB*QC*0315	97201*GMS	DIETHYL ETHER	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34318×GMS	CHLOROFORM	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34534*GMS	1.2-DICHLOROETHANE	UG/KG-DRY	ND
13/15/92	MB*QC*0315	75078*GMS	NETHYL ETHYL KETONE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34509*GMS	1,1,1-TRICHL'ETHANE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34299*GMS	CARBON TETRACHLORIDE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34330*6MS	BROMODICHLORONETHANE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34544*GMS	1, 2-DICHLOROPROPANE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34702*GMS	CIS-1.3-DICHLORO- PROPENE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34487*GMS	TRICHLOROETHENE	UG/KG-DRY	1.4
3/15/92	MB*QC*0315	34309×GMS	DIBROMOCHLOROMETHANE	UG/KC-DRY	ND
3/15/92	MB*QC*0315	34237*GMS	BENZENE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34514*GMS	1,1,2-TRICHL'ETHANE	UG/KG-DRY	ND
3/15/92	MB*QC#0315	34579*GMS	2-CHLOROETHYLVINYL- ETHER	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34697*GMS	TRANS-1, 3-DICHLORO- PROPENE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34290*GMS	BROHOFORM	UG/KG-DRY	ND
3/15/92	MB*QC*0315	75169*GMS	METHYL I SOBUTYLKE TONE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34478*GMS	TE TRACHLOROE THENE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34519*GMS	1,1,2,2-TETRACHLORO- ETHANE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34483*GMS	TOLUENE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	34304*GHS	CHLOROBENZENE	UG/KG-DRY	ND
3/15/92	NB*QC*0315	34374*GNS	ETHYLBENZENE	UG/KG-DRY	ND
3/15/92	MB*QC*0315	45510*GHS	XYLENE TOTAL	UG/KG-DRY	ND
3/15/92	HB*QC*0315	98578*CMS	DI CHLOROBENZENE, TOTAL	UG/KG-DRY	6.1
3/15/92	MB*QC*0316	34421*GMS	CHLOROMETHANE	UG/KG-DRY	ND
3/15/92	MB*0C*0316	34416*GMS	BROMONETHANE	UG/KG-DRY	ND
3/15/92	MB*QC*0316	34495*GMS	VINYL CHLORIDE	UG/KG-DRY	ND
3/15/92	MB*QC*0316	34314*GMS	CHLOROETHANE	UG/KG-DRY	ND
3/15/92	MB*QC*0316	34426*GMS	METHYLENE CHLORIDE	UG/KG-DRY	
3/15/92	MB*QC*0316	78544*GMS	CARBON DISULFIDE	UG/KG-DRY	ND ND

# 361

.

ESE BATCH : 626918

Method Blank Sample Summary

DATE	SAMPLE	STORET	PARAMETER	10417				
03/15/92	MB*QC*0316	34491*GHS		<u>UNIT:</u> UG/KO		IND		
03/15/92	MB*QC*0316	34504*GMS	1, 1-DICHLOROETHYLENE	UG/K				
03/15/92	MB*QC*0316	34499*GMS	I, I-DICHLOROETHANE	UG/KC				
03/15/92	MB*QC*0316	96464*GHS	1.2-DICHLOROETHENE(TOTAL)	UG/KG				
03/15/92	MB*QC*0316	97201*GHS	DIETHYL ETHER	UG/KC				
03/15/92	MB*QC*0316	34318*GMS	CHLOROFORM					
03/15/92	MB*QC*0316	34534*GMS	1,2-DICHLOROETHANE	UG/KC				
03/15/92	MB*QC*0316	75078*GMS	NETHYL ETHYL KETONE	UG/KO				
03/15/92	MB*QC*0316	34509*GMS	1,1,1-TRICHL'ETHANE	UG/KG				
03/15/92	MB*QC*0316	34299*GMS	CARBON TETRACHLORIDE	UG/KG				
03/15/92	MB*QC*0316	34330*GMS	BROMODICHLOROMETHANE	UG/KG	=			
03/15/92	MB*QC*0316	34544+GMS	1,2-DICHLOROPROPANE	UG/KG				
03/15/92	MB*QC*0316	34702*GHS	CIS-1, 3-DICHLORO- PROPER	UG/KG				
03/15/92	MB*QC*0316	34487*GMS	TRICHLOROETHENE					
03/15/92	MB*QC*0316	34309×6MS	DIBROMOCHLOROMETHANE	UG/KG				
03/15/92	MB*QC*0316	34237*GHS	BENZENE	UG/KG				
03/15/92	MB*QC*0316	34514*GHS	1,1,2-TRICHL'ETHANE	UG/KG UG/KG				
03/15/92	MB*QC*0316	34579*GMS	2-CHLOROETHYLVINYL- ETHER	UG/KG				
03/15/92	MB*QC*0316	34697*GMS	TRANS-1, 3-DICHLORO- PROPEN					
83/15/92	MB*QC*0316	34290*6MS	BROMOFORM					
73/15/92	MB*QC*0316	75169*GMS	NETHYL I SOBUTYLKE TONE	UG/KG UG/KG				
03/15/92	MB*QC*0316	34478*GMS	TETRACHLOROETHENE		• • • • • • • • •			
3/15/92	MB*QC*0316	34519*GMS	1, 1, 2, 2-TETRACHLORO- ETHANE	UG/KG				
03/15/92	MB*QC*0316	34483*GMS	TOLUENE	UG/KG UG/KG				
93/15/92	MB*QC*0316	34304*GMS	CHLOROBENZENE	UG/KG-				
3/15/92	MB*QC*0316	34374*GMS	ETHYLBENZENE	UG/KG				
3/15/92	MB*QC*0316	45510*GMS	XYLENE, TOTAL	UG/KG-				
3/15/92	MB*QC*0316	98578*GMS	DICHLOROBENZENE, TOTAL	UG/KG-				
tandard M	latrix Spike Recove	ry Summary						
ATE	SAMPLE	STORET	PARAMETER	<b>X</b> RECV	RECV CRIT	UNITS	TADALT	F 011110
3/15/92	SP1#QC*0315	34504*GHS	1, 1-DICHLOROETHYLENE	82	59-172	UG/KG-DRY		FOUND
3/15/92	SP1*QC*0315	34487#GMS	TRICHLOROE THENE	90	62-137	UG/KG-DRY	50 50	41 45
3/15/92	SP1*QC*0315	34237*GMS	BENZENE	100	66-142	UG/KG-DRY		
3/15/92	SP1*QC*0315	34483*GMS	TOLUENE	100	59-139	UG/KG-DRY		50 50
3/15/92	SP [*QC*0315	34304*GMS	CHLOROBENZENE	102	60-133	UG/KG-DRY		
3/15/92	SP1*QC*0316	34504*GMS	1, 1-DICHLOROETHYLENE	72	59-172			51
3/15/92	SP1*QC*0316	34487*CMS	TRICHLOROETHENE	102	62-137	UG/KG-DRY	+ +	36
3/15/92	SP1*QC*0316	34237*GMS	BENZENE	94	66-142	UG/KG-DRY UG/KG-DRY	- •	51
3/15/92	SP1*QC*0316	34483*GMS	TOLUENE	94	59-139	UG/KG-DRY		47
3/15/92	SP1*QC*0316	34304*GMS	CHLOROBENZENE	94	60-133	UG/KG-DRY		47 47
ample Mata	rix Spike Recovery	Summary						
TE	SAMPLE	STORET	PARAMETER	<b>%</b> RECV	RECV CRIT	INSPIRES	INTO	
3/15/92	SPM1*WRITS1*13	34504*GMS	1, 1-DICHLOROETHYLENE	83	59-172	0.0	UNITS	TARGE
3/15/92	SPM1*WR1TS1*13	34487*GMS	TRICHLOROETHENE	58	62-127	0.0	UG/KG-DRY	59

DATE	SAMPLE	STORET	PARAMETER	<b>K</b> RECV	RECV CRIT	INSPIRED	UNITS	TADORT	FOUND		
03/15/92 03/15/92 03/15/92 03/15/92 03/15/92 03/15/92 03/15/92 03/15/92 03/15/92 03/15/92	SPM1*WRITS1*13 SPM1*WRITS1*13 SPM1*WRITS1*13 SPM1*WRITS1*13 SPM1*WRITS1*13 SPM1*WRITS1*13 SPM2*WRITS1*13 SPM2*WRITS1*13 SPM2*WRITS1*13 SPM2*WRITS1*13 SPM2*WRITS1*13	STORET 34504*GRS 34487*GRS 34287*GRS 34483*GRS 34304*GRS 34504*GRS 34487*GRS 34487*GRS 34483*GRS 34483*GRS	PARAMETER J, I-DICHLOROETHYLENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE J, I-DICHLOROETHYLENE TRICHLOROETHENE BENZENE FOLUENE CHLOROBENZENE	<u>#RECV</u> 83 58 98 98 102 81 64 97 98 102	RECV CRIT 59-172 62-137 66-142 59-139 60-133 59-172 62-137 66-142 59-139 60-133	UNSPIKED 0.0 40 0.0 1.9 0.0 40 0.0 40 0.0 1.9 0.0 0.0	UNITS UG/KG-DRY UG/KG-DRY UG/KG-DRY UG/KG-DRY UG/KG-DRY UG/KG-DRY UG/KG-DRY UG/KG-DRY UG/KG-DRY	TARGET 59 59 59 59 59 59 59 59 59 59 59	FOUND 49 34 58 58 60 48 38 57 58 60	RPD 1.2 11 1.0 1.0 0.0	
									••	0.0	

# Surrogate Spike Recovery Summary

# 362

ESE BATCH : G26918

Surrogate Spike Recovery Summary

DATE	SAMPLE	STORET	PARAMETER	UNITS	TARGET	FOUND	#RECV	RECV_CRIT_
03/16/92	DA*WRITS1*13	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	46	92	70-121
03/16/92	DA*WRITS1*13	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	50	100	81-117
03/16/92	DA*WR TS1*13	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	49	98	74-121
03/16/92	DA*WRITS1*1	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	47	94	70-121
03/16/92	DA*WRITS1*1	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	51	100	81-117
03/16/92	DA*WRITS1*1	97027*SUR	BRONOFLUOROBENZENE	UG/KG-DRY	50	48	96	74-121
03/16/92	DA*WRITS1*4	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	50	100	70-121
03/16/92	DA*WR1TS1*4	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	53	110	81-117
03/16/92	DA*WR1TS1*4	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	48	96	74-121
03/16/92	DA*WRITSI*5	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	50	100	70-121
03/16/92	DA*WR1TS1*5	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	53	110	81-117
03/16/92	DA*WRITSI*5	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	51	100	74-121
03/16/92	DA*WRITSI*6	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	49	98	70-121
03/16/92	DA*WRITS1*6	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	52	190	81-117
03/16/92	DA*WR1TS1*6	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	50	100	74-121
03/16/92	DA*WRITSI*7	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	51	100	70-121
03/16/92	DA*WRITS1*7	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	51	100	81-117
03/16/92	DA*NRITSI*7	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	50	100	74-121
03/16/92	DA*WRITSI*8	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	50	100	70-121
03/16/92	DA*WRITS1*8	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	51	100	81~117
03/16/92	DA*WRITSI*8	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	50	100	74-121
03/16/92	DA*WRITSI*2	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	43	86	70-121
03/16/92	DA*WRITS1*2	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	48	96	81-117
03/16/92	DA*WRITSI*2	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	50	100	74-121
03/16/92	DA*WRITS1*3	97031*SUR	1,2-D1CHLOROETHANE-D(4)	UG/KG-DRY	50	44	88	70-121
03/16/92	DA*WR1TS1*3	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	49	98	81-117
03/16/92	DA*WR1TS1*3	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	51	100	74-121
03/16/92	DA*WRITS1*9	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	45	90	70-121
03/16/92	DA*WRITS1*9	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	48	96	81-117
03/16/92	DA*WRITS1*9	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	51	100	74-121
03/16/92	DA#WRITS1*10	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	46	92	70-121
03/16/92	DA*WRITSI*10	97026*SUR	TOLUENE-D(8)	UC/KG-DRY	50	48	96	81-117
03/16/92	DA*WR1TS1*10	97027*SUR	BROMOFLUOROBENZENE	UC/KG-DRY	50	51	100	74-121
03/16/92	DA*WR1TS1*12	97031*SUR	1,2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	43	86	70-121
03/16/92	DA*WR1TS1*12	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	46	92	81-117
03/16/92	DA*WRITS1*12	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	49	98	74-121
03/16/92	DA*WRITS1*14	97031*SUR	I, 2-DICHLOROETHANE-D(4)	UG/KG-DRY	50	44	88	70-121
03/16/92	DA*WRITSI*14	97026*SUR	TOLUENE-D(8)	UG/KG-DRY	50	48	96	81-117
03/16/92	DA*WRITSI*14	97027*SUR	BROMOFLUOROBENZENE	UG/KG-DRY	50	51	100	74-121

#### ESE BATCH : 626918 Environmental Science and Engineering Analytical Services Computer QC Checks

Batch No.: G26918	Analysis Date: 03/15/92	Analyst: LAR	RY Ş	HROADS
Analysis holding time wi	thin criteria?	<u>Yes</u> X	No	"Exceptions" Comment / Corrective Action
Extract holding time wit	hin criteria?	x		
Method blank present? Method blank within acce	ptance criteria?	x x		
Standard matrix spike pr Standard matrix spike wi	esent? thin acceptance criteria?	X X		
Sample matrix spike pres Sample matrix spike with		x	x	34487*GMS
Sample matrix spike dupl Sample matrix spike dupl	icate present? icate within acceptance crit	X eria? X		
Surrogate present? Surrogate within accepta	nce criteria?	x x		
Note: Any "NO" answer rea	quires a comment.			

### OVERRIDE COMMENTS

,ť

PROB.:SAMPLE MATRIX SPIKE NOT WITHIN ACCEPTANCE CRITERIA. EXPL.:TRICHLOROETHANE WAS FOUND IN THE UNSPIKED SAMPLE AT A LEVEL THAT WAS SIGNIFICANT WHEN IT WAS SUBTRACTED FROM THE SPIKED SAMPLE./ALS

4