Table A MRS Background Information DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS to mark, Unitely describe the UXO, DDM, or MC that are known or suspected to be present, the exposure setting (the MRS physical environment), any other incidental normunitons-related contaminants (e.g., benzene, thickney physical amp of the MRS. Munitions Response Site Name:: ANTI-AIRCRAFT RANGE 90 MM - 2, FTSW-002-R-01 Component: Active HQASE: 13305.1091 Installation/Property Name:: For Stewart Location (Ctry, County, State): For Stewart Location (Ctry, County, State): For Stewart, Liberty County, Georgia Site Name/Project Name (Project No.): ANTI-AIRCRAFT RANGE 90 MM - 2, FTSW-002-R-01 Date Information Entered/Updated: 15 Sptember 2023 Point of Contact (Name/Phone): Tavy Wade, (912) 767-2196 Project Phase (check only one): PA Si IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									
Component: Active HQAES: 13305.1091 Installation/Property Name: Fort Stewart, Liberty County, Georgia Site Name/Project Name (Project No.): ANTI-AIRCRAFT RANGE 90 MM - 2, FTSW-002-R-01 Date Information Entered/Updated: 15 September 2023 Point of Contact (Name/Phone): Tavy Wade, (912) 767-2196 Project Phase (check only one): Image: RA-C Image: RA-C Image: RA-C Image: RA-O Image: RA-O Image: RA-C Image: RA-O Image: RA-O Image: Groundwater Image: Sediment (human receptor) Image: Summary: Image: Sediment (human receptor) Image: Summary: RC Date is 2053 09 30. Documents used throughout this MRSPP include the following: - Corrective Measure Study (CMS) Report, Dated August 2020. - RCRA Facility Investigation (RFI) Report, Dated, August 2014. The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90MM-2 MRS include 40mm and 90mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4). During the RFI, three MEC items (40mm projectiles) were recovered from the subsurface at the MRS. Per previous DoD guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was ebundant in most grids and along t	DIR	DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary , briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a							
Point of Contact (Name/Phone): Tavy Wade, (912) 767-2196 Project Phase (check only one): Image: State S	Con Ins Loc	nponent: tallation/Pro cation (City, C	Active perty l County	HQAES: 1330! Name: Fort Stewa State): Fort Stew	5.1091 art art, Liberty C	County, G	eorgia		
Image: Control of the second secon	Poi	nt of Contact	: (Nam	e/Phone): Tavy W	September 2 /ade, (912) 7	.023 67-2196			
Media Evaluated (check all that apply): Image: Control of the cont control of the control of the control of th		D PA		□ SI	🗆 RI		G FS	🗖 RD	
□ Groundwater □ Sediment (human receptor) □ Surface Soil □ Surface Water (ecological receptor) □ Sediment (ecological receptor) □ Surface Water (human receptor) MRS Summary: RC Date is 2053 09 30. Documents used throughout this MRSPP include the following: - Corrective Measure Study (CMS) Report, Dated August 2020. - RCRA Facility Investigation (RFI) Report, Dated, August 2014. - Corrective Measure Study (CMS) Report, Dated, August 2014. The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90MM-2 MRS through EOD call responses, including C-4 plastic explosives, an M-222 Dragon anti-tank missile, M-7 grenades, and MK-2 grenades. Munitions documented at the Anti-Aircraft Range 90MM-2 MRS include 40mm and 90mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4). During the RFI, three MEC items (40mm projectiles) were recovered from the subsurface at the MRS. Per previous DoD guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4). <td< td=""><th></th><td>RA-C</td><td></td><td></td><td>🗵 RA-O</td><td></td><td>□ RC</td><td></td><th>-</th></td<>		RA-C			🗵 RA-O		□ RC		-
Image: Surface Soil Image: Surface Water (ecological receptor) Image: Sediment (ecological receptor) Image: Surface Water (human receptor) Image: Sediment (ecological receptor) Image: Surface Water (human receptor) Image: Summary: RC Date is 2053 09 30. Documents used throughout this MRSPP include the following: Corrective Measure Study (CMS) Report, Dated August 2020. - RCRA Facility Investigation (RFI) Report, Dated, August 2014. RC Date is 2053 09 30. The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90MM-2 MRS through EOD call responses, including C-4 plastic explosives, an M-222 Dragon anti-tank missile, M-7 grenades, and MK-2 grenades. Munitions documented at the Anti-Aircraft Range 90MM-2 MRS include 40mm and 90mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4). During the RFI, three MEC items (40mm projectiles) were recovered from the subsurface at the MRS. Per previous DoD guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.4, Page 5).	Med	dia Evaluated	(check	all that apply):	<u> </u>			·	
Image: Sediment (ecological receptor) Image: Surface Water (human receptor) Image: MRS Summary: RC Date is 2053 09 30. Documents used throughout this MRSPP include the following: Corrective Measure Study (CMS) Report, Dated August 2020. - Corrective Measure Study (CMS) Report, Dated August 2014. RCRA Facility Investigation (RFI) Report, Dated, August 2014. The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90MM-2 MRS through EOD call responses, including C-4 plastic explosives, an M-222 Dragon anti-tank missile, M-7 grenades, and MK-2 grenades. Munitions documented at the Anti-Aircraft Range 90MM-2 MRS include 40mm and 90mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4). During the RFI, three MEC items (40mm projectiles) were recovered from the subsurface at the MRS. Per previous DoD guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 1.4.2, Page 4). HHE is rated as NKSH: During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as par		Groundwa	ter			⊠ Sediment (human receptor)			
MRS Summary: RC Date is 2053 09 30. Documents used throughout this MRSPP include the following: . . Corrective Measure Study (CMS) Report, Dated August 2020. . . RCRA Facility Investigation (RFI) Report, Dated, August 2014. . The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90MM-2 MRS through EOD call responses, including C-4 plastic explosives, an M-222 Dragon anti-tank missile, M-7 grenades, and MK-2 grenades. Munitions documented at the Anti-Aircraft Range 90MM-2 MRS include 40mm and 90mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4). During the RFI, three MEC items (40mm projectiles) were recovered from the subsurface at the MRS. Per previous DoD guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4) & (CMS Report, Section 1.4.4, Page 5). HHE is rated as NKSH: During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21). Based on the results of this		⊠ Surface S	Soil			Surface Water (ecological receptor)			
 Documents used throughout this MRSPP include the following: Corrective Measure Study (CMS) Report, Dated August 2020. RCRA Facility Investigation (RFI) Report, Dated, August 2014. The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90MM-2 MRS through EOD call responses, including C-4 plastic explosives, an M-222 Dragon anti-tank missile, M-7 grenades, and MK-2 grenades. Munitions documented at the Anti-Aircraft Range 90MM-2 MRS include 40mm and 90mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4). During the RFI, three MEC items (40mm projectiles) were recovered from the subsurface at the MRS. Per previous DoD guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4) & (CMS Report, Section 1.4.4, Page 5). HHE is rated as NKSH: During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21). Based on the results of this RFI and the associated human health and ecological risk assessments, there		⊠ Sediment	(ecolo	gical receptor)		Surface Water (human receptor)			
 guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to high" (CMS Report, Section 1.4.4, Page 5). MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4) & (CMS Report, Section 1.4.4, Page 5). HHE is rated as NKSH: During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21). Based on the results of this RFI and the associated human health and ecological risk assessments, there 	Doc - Co - RC The throi MK-	uments used th prrective Measu CRA Facility Inv HRR identified ugh EOD call r 2 grenades. M	re Stuc vestigati d specifi espons funition	ly (CMS) Report, Dat ion (RFI) Report, Dat ic secondary explosiv es, including C-4 pla s documented at the	ted August 2 ted, August 2 ves and mun stic explosive Anti-Aircraft	020. 2014. itions rer es, an M- Range 9	222 Dragon anti-tanł 0MM–2 MRS include	Aircraft Range 90MM-2 < missile, M-7 grenades	MRS , and
 Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27). CHE is rated as NKSH: Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4) & (CMS Report, Section 1.4.4, Page 5). HHE is rated as NKSH: During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21). Based on the results of this RFI and the associated human health and ecological risk assessments, there 	guidance and the results of the RFI, the probability of encountering MPPEH at the MRS was deemed to be "moderate to								
 MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4) & (CMS Report, Section 1.4.4, Page 5). HHE is rated as NKSH: During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21). Based on the results of this RFI and the associated human health and ecological risk assessments, there 	MD Pier	MD was abundant in most grids and along the transects. Nearly-intact rounds that were MDAS included two 90mm Armor Piercing (AP) rounds, and one fired 37mm round (RFI Report, Section 5.1.1, Page 27).							
concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21). Based on the results of this RFI and the associated human health and ecological risk assessments, there	MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS								
	cono 4.2,	cern in any env Page 21). Ba	/ironme ised on	ntal media. No addit the results of this RF	ional MC sar I and the as	mpling was sociated	as conducted as part human health and ec	of the QR (CMS Repor cological risk assessmer	t, Section

Continued on the Next Page.

Table A Continued

Stakeholder Involvement: xxxxxxx

Description of Pathways for Human and Ecological Receptors: The 2014 CSM confirms the current CSM, indicating that there is one potentially complete pathway: exposure to MPPEH in subsurface soil by a construction worker or trespasser during intrusive activities. Exposure pathways to MPPEH exist through direct contact by current and future users to the potential explosive hazard and potential localized MC contamination (CMS Report, Section 3.3, Page 17).

The ecological receptors generally associated with potential MC contamination are not typically considered to be at risk to explosive hazards associated with MEC in CERCLA evaluations. Consequently, ecological receptors are not indicated to be associated with any complete MEC exposure pathways on the updated CSM (CMS Report, Section 3.3 Page 17).

A potentially complete exposure pathway to current and future receptors has been identified; MPPEH and MC exposure pathways at the MRS are considered potentially complete and require action be taken to protect potential human receptors (CMS Report, Section 3.3 Page 17).

The potential soil, sediment, and surface water exposure pathways for terrestrial organisms include direct contact, such as ingestion or dermal contact, or indirect contact, such as bioaccumulation of contaminants through the food chain (RFI Report, Section 6.3.2, Page 59).

Description of Receptors (Human and Ecological): Contact with a subsurface MPPEH item by a future construction worker or trespasser during intrusive activities (CMS Report, Section 4.3, Page 22).

Biota (e.g., birds, mammals, soil invertebrates, reptiles) (RFI Report, Table 6-1, Page 45).

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Highlight the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

	Description	Scor
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	 UXO or DMM containing a riot control agent filler (e.g., tear gas). 	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
	DIRECTIONS: Record the single highest score from above in the box to the	

The HRR identified specific secondary explosives and munitions removed from the Anti-Aircraft Range 90-MM-2 MRS through EOD call responses, including C-4 plastic explosives, an M-222 Dragon anti-tank missile, M-7 grenades, and MK-2 grenades. Munitions documented at the Anti-Aircraft Range 90-MM–2 MRS include 40-mm and 90-mm anti-aircraft projectiles and unknown tank munitions (CMS Report, Section 1.4.2, Page 4).

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Highlight the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	• The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	• The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5
Former industrial operating facilities	• The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	• The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system).	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10

DIRECTIONS: Document any MRS-specific data used in selecting the Source of Hazard classifications

The Anti-Aircraft Range 90-MM–2 MRS is a 77-acre area located within a former 90-mm anti-aircraft range fan; six other former anti-aircraft and tank ranges also overlap this MRS shown in Figure 3 (CMS Report, Section 1.2, Page 2).

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Highlight the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.
 Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are

defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost, heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) 	1
Evidence of no munitions	• Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	15

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

During the RFI, three MEC items (40-mm projectiles) were recovered from the subsurface at the MRS (CMS Report, Section 1.4.4, Page 5).

The Anti-Aircraft Range 90-mm - 2 MRS is relatively flat and covered with maintained grass; buildings, gravel and paved roads and parking areas, including the munition storage bunkers that are all located within the fenced area (RFI Report, Section 2.1.1, Page 7).

No MPPEH or MD items were located on the surface within the 57-acre investigation area (CMS Report, Section 3.1, Page 14).

The MRS covers a total of 77 acres including structures, storage bunkers, and paved areas (57 acres excluding structures, storage bunkers and paved areas). The subsurface clearance for the 2014 RFI covered approximately 7.102 acres or approximately 12.5% of the 57-acre searchable area of the MRS (CMS Report, Section 5.2.3, Page 32).

Table 4 EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Highlight the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score
No barrier	• There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10
Barrier to MRS access is incomplete	• There is a barrier preventing access to parts of the MRS, but not the entire MRS.	8
Barrier to MRS access is complete but not monitored	 There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	5
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	0
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	10
DIRECTIONS: Document any M provided.	IRS-specific data used in selecting the <i>Ease of Access</i> classification in the sp	ace
	Range 90-MM–2 MRS is located within the fenced and gated ASP, with only a ce line (CMS Report, Section 2.1, Page 10).	small

Table 5 EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Highlight the score that corresponds with the status of property at the MRS.

Classification	Description	Score
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. 	5
	 The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	0
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	0
DIRECTIONS: Document any	MRS-specific data used in selecting the Status of Property classification in the	space
The Final Land Use Control Im	plementation Plan (LUCIP) for FTSW (USACE, 2019) classifies the current land	use

as part of the active US Army facility, industrial-type and military training use only (CMS Report, Section 2.2, Page 12).

Table 6 EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Highlight the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score		
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.			
100–500 persons per square mile	 There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located. 	3		
< 100 persons per square mile	• There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1		
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5		
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.				
There are 797.1 persons p	There are 797.1 persons per square mile on Fort Stewart, Georgia			
https://www.census.gov/qu	ickfacts/fact/table/fortstewartcdpgeorgia/PST045222			

Table 7 EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and highlight the score that corresponds with the number of inhabited structures.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	5
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the **Population Near Hazard** classification in the space provided.

Forty munitions storage bunkers are located on the middle to western portion of the fenced in area within the MRS (Figure 2). Several storage buildings and paved staging areas are spread throughout the southeastern portion of the fenced area of the MRS (CMS Report, Section 2.1, Page 10).

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and highlight the scores that correspond with <u>all</u> the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	5
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4
Agricultural, forestry	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry. 	3
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2
No known or recurring activities	 There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary. 	1
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	2

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The Final Land Use Control Implementation Plan (LUCIP) for FTSW (USACE, 2019) classifies the current land use as part of the active U.S. Army facility, industrial-type and military training use only (CMS Report, Section 2.2, Page 12).

Table 9 EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and highlight the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Description	Score
There are both ecological and cultural resources present on the MRS.	5
There are ecological resources present on the MRS.	3
There are cultural resources present on the MRS.	3
There are no ecological resources or cultural resources present on the MRS.	0
DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	0
	 There are ecological resources present on the MRS. There are cultural resources present on the MRS. There are no ecological resources or cultural resources present on the MRS. DIRECTIONS: Record <u>the single highest score</u> from above in the box to

classification in the space provided.

No threatened or endangered species or species of concern are present within the MRS (CMS Report, Section 2.1.8, Page 12).

Based on available information, there is no indication that cultural, archaeological, or historical resources are present in this MRS (RFI Report, Table 5-3, Page 35).

Table 10 Determining the EHE Module Rating

- 1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- 3. Add the three **Value** boxes and record this number in the **EHE Module Total** box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
Explosive Hazard Factor Data Ele	ements		
Munitions Type	Table 1	30	40
Source of Hazard	Table 2	10	40
Accessibility Factor Data Elemer	nts		
Location of Munitions	Table 3	15	
Ease of Access	Table 4	10	25
Status of Property	Table 5	0	
Receptor Factor Data Elements	-	-	-
Population Density	Table 6	5	
Population Near Hazard	Table 7	5	10
Types of Activities/Structures	Table 8	2	12
Ecological and/or Cultural Resources	Table 9	0	
EHE	MODULE	E TOTAL	77
EHE Module Total	EHE	Module R	ating
92 to 100		А	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47	F		
less than 38	G		
	E	valuation Pe	ending
Alternative Module Ratings	Alternative Module Ratings No Longer Required No Known or Suspected Explosive Hazard		uired
EHE MODULE RATING		С	

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Highlight the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.

Note: The terms *CWM/UXO*, *CWM/DMM*, *physical evidence*, and *historical evidence* are defined in Appendix C of the Primer

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	0
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0

Per the CMS, only conventional munitions were used. There is no historical use of CWM at the MRS and no documentation of CWM use was found during the review of historical documents of FTSW-002-R-01 (CMS Report, Section 1.4.2, Page 4) & (CMS Report, Section 1.4.4, Page 5).

Tables 12 – 19 are intentionally omitted IAW Army Guidance.

Table 20 Determining the CHE Module Rating

		Sourco	Sooro	Value
	CWM Hazard Factor Data Elemer	Source	Score	Value
		1	_	
the	CWM Configuration	Table 11	0	0
	Sources of CWM	Table 12		
	Accessibility Factor Data Elemen	nts		
ch ord	Location of CWM	Table 13		
xes	Ease of Access	Table 14		
	Status of Property	Table 15		
and IE	Receptor Factor Data Elements			
	Population Density	Table 16		
for	Population Near Hazard	Table 17		
W.	Types of Activities/Structures	Table 18		
i ng le	Ecological and/or Cultural Resources	Table 19		
ue in x	СНЕ МО	DULE TO	TAL	0
ıble.	CHE Module Total	CHE	Module R	ating
	92 to 100		А	
e ng is	82 to 91		В	
ıle	71 to 81		С	
on is	60 to 70		D	
S was o	48 to 59		Е	
as	38 to 47		F	
	less than 38		G	
		Eva	luation Pen	ding
	Alternative Module Ratings	No l	_onger Requ	uired
		No Know	n or Suspec Hazard	ted CWM
	CHE MODULE RATING	No Know	n or Suspe Hazard	cted CWM

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- Circle the CHE Module Rating that corresponds to the range selected and record this value in the CHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE Module: Groundwater Data Element Table

comparecorde recorde concen togethe use the	Contaminant Hazard Factor (CHF) RECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHI use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.				
Contaminant	Maximum Concentration (μg/L)	Comparison Value (μg/L)	Ratios		
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)	CHF = $\sum_{n=1}^{\infty}$ [Maximum Concentration of C	ontaminant]		
100 > CHF > 2 2 > CHF	M (Medium)	[Comparison Value for Conta	- minant]		
Z > CHF CONTAMINANT	L (Low)				
HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right			
DIRECTIONS: Highligh Classification	· · · · · · · · · · · · · · · · · · ·	v <mark>ay Factor</mark> y to the groundwater migratory pathway at tl cription	ne MRS. Value		
Evident		that contamination in the groundwater is present at,	Н		
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to the controls).	ant migration from the source via the groundwater to presence of geological structures or physical	L		
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the				
PATHWAY FACTOR	right (maximum value = Receptor F a				
DIRECTIONS: Highligh Classification	nt the value that corresponds most closel	y to the groundwater receptors at the MRS.	Value		
Identified		cription dient of the source and the groundwater is a current her beneficial uses such as irrigation/agriculture	H		
	(equivalent to Class I or IIA aquifer).				
Potential	or potentially usable for drinking water, irrigation, aquifer).		М		
Limited	There is no potentially threatened water supply w is not considered a potential source of drinking w Class IIIA or IIIB aquifer, or where perched aquife		L		
RECEPTOR	DIRECTIONS: Record the single high				
FACTOR	right (maximum value =	,			
	No Kno	wn or Suspected Groundwater MC Hazard			

Media not Sampled. Groundwater samples were not collected at the MRS (RFI Report, Section 7.4, Page 64).

=	lable		
DIRECTIONS: Record compa record	arison values (from Appendix B of the Pr ed on Table 27. Calculate and record the	•	nants can be maximum
togeth use the	er, including any additional surface water e CHF Scale to determine and record the	contaminants recorded on Table 27. Based CHF Value. If there is no known or suspect face water, select the box at the bottom of th	on the CHF , ed MC
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
Aluminum	2.3	16000	.0001
Copper	.0054	620	.000008
Lead	.0025	15	.0001
Zinc	.075	4700	.00001
CHF Scale	CHF Value	Sum The Ratios	.000218
CHF > 100	H (High)	— Maximum Concentration of Co	ntaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum \frac{[Maximum Concentration of Concentration]}{[Maximum Concentration of Concentration]}$	
2 > CHF	L (Low)	[Comparison Value for Conta	minantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right	L
DIRECTIONS: Highlig	<u>Migratory Pathw</u> ht the value that corresponds most closel	v <mark>ay Factor</mark> y to the surface water migratory pathway at t	he MRS.
Classification		cription	Value
Evident	Analytical data or observable evidence indicates to moving toward, or has moved to a point of exposit	that contamination in the surface water is present at, ure.	Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined	Information indicates a low potential for contamin a potential point of exposure (possibly due to the controls).	ant migration from the source via the surface water to presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =		L
DIRECTIONS: Highlig	ht the value that corresponds most close	<u>actor</u> y to the surface water receptors at the MRS.	
Classification		cription	Value
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.		L
RECEPTOR DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).			
			L

Sampling Data can be found in the RFI on Page 436.

MPF Rated as L: The majority of the Anti-Aircraft Range 90-MM–2 MRS is located within the fenced and gated ASP, with only a small buffer zone lying outside the fence line (CMS Report, Section 2.1, Page 10). Permit processes prevent inadvertent exposure to contamination by controlling access to

contaminated media. FTSW has a robust Dig Permit process in place; any intrusive activities conducted on base must first be reviewed and approved by the FTSW DPW (CMS Report, Section 5.1.1.1.2, Page 24).

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Aluminum	6540	77000	.085
Copper	1.9	3100	.0006
Lead	7.1	400	.018
Zinc	10.9	23000	.0004
CHF Scale	CHF Value	Sum The Ratios	.104
CHF > 100 100 > CHF > 2	H (High) M (Medium)	$CHF = \sum_{i=1}^{i} [Maximum Concentration of Concentrati$	ontaminant]
2 > CHF	L (Low)	[Comparison Value for Contaminant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right	L

Migratory Pathway Factor

DIRECTIONS: Highlight the value that corresponds most closely to the sediment migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Highlight the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L
	No Known or Suspected Sediment (Human Endpoint) MC Hazard	

Sampling Data can be found in the RFI on Page 435.

MPF Rated as L: The majority of the Anti-Aircraft Range 90-MM–2 MRS is located within the fenced and gated ASP, with only a small buffer zone lying outside the fence line (CMS Report, Section 2.1, Page 10). Permit processes prevent inadvertent exposure to contamination by controlling access to contaminated media. FTSW has a robust Dig Permit process in place; any intrusive activities conducted on base must first be reviewed and approved by the FTSW DPW (CMS Report, Section 5.1.1.1.2, Page 24).

Table 24				
HHE M	odule: Surface Water – Ecologi	ical Endpoint Data Element Table		
comparecorde recorde concent togethe use the	<u>Contaminant Hazard Factor (CHF)</u> DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.			
Contaminant	Maximum Concentration (µg/L)	Comparison Value (μg/L)	Ratios	
Aluminum	2.3	87	.026	
Copper	.0054	9	.0006	
Lead	.0025	2.5	.001	
Zinc	.075	120	.000625	
CHF Scale	CHF Value	Sum the Ratios	.028225	
CHF > 100	H (High)	CHF = $\sum_{i=1}^{i}$ [Maximum Concentration of Concentr	ontaminant1	
100 > CHF > 2	M (Medium)	CHF =[Comparison Value for Conta	minantl	
2 > CHF CONTAMINANT				
HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).		L	
DIRECTIONS: Highligh	Migratory Pathw It the value that corresponds most closel	vay Factor y to the surface water migratory pathway at	the MRS.	
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		Н	
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М	
Confined	Information indicates a low potential for contamir to a potential point of exposure (possibly due to t controls).	nant migration from the source via the surface water the presence of geological structures or physical	L	
MIGRATORY PATHWAY FACTOR	right (maximum value =		L	
	Receptor Fa			
		y to the surface water receptors at the MRS.		
Classification		cription r to which contamination has moved or can move.	Value	
Identified			Н	
Potential	Potential for receptors to have access to surface move.		М	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR			L	
	No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard			

Sampling Data can be found in the RFI on Page 436.

MPF Rated as L: The majority of the Anti-Aircraft Range 90-MM–2 MRS is located within the fenced and gated ASP, with only a small buffer zone lying outside the fence line (CMS Report, Section 2.1, Page 10). Permit processes prevent inadvertent exposure to contamination by controlling access to

contaminated media. FTSW has a robust Dig Permit process in place; any intrusive activities conducted on base must first be reviewed and approved by the FTSW DPW (CMS Report, Section 5.1.1.1.2, Page 24).

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios
Aluminum	6540	14000	.467
Copper	1.9	31.6	.060
Lead	7.1	35.8	.198
Zinc	10.9	121	.090
CHF Scale	CHF Value	Sum the Ratios	.815
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = $\sum_{n=1}^{\infty}$ [Maximum Concentration of Co	ontaminant]
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR			L
<u>Migratory Pathway Factor</u> DIRECTIONS: Highlight the value that corresponds most closely to the sediment migratory pathway at the MRS.			

Classification	Description	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	Μ
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L

Receptor Factor

DIRECTIONS: Highlight the value that corresponds most closely to the sediment receptors at the MRS.

Classification	Description	Value
Identified	Identified receptors have access to sediment to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	L
	No Known or Suspected Sediment (Ecological Endpoint) MC Hazard	

Sampling Data can be found in the RFI on Page 435.

MPF Rated as L: The majority of the Anti-Aircraft Range 90-MM–2 MRS is located within the fenced and gated ASP, with only a small buffer zone lying outside the fence line (CMS Report, Section 2.1, Page 10). Permit processes prevent inadvertent exposure to contamination by controlling access to

contaminated media. FTSW has a robust Dig Permit process in place; any intrusive activities conducted on base must first be reviewed and approved by the FTSW DPW (CMS Report, Section 5.1.1.1.2, Page 24).

Table 26 HEE Module: Surface Soil Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.							
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio				
Aluminum	10900	77000	.142				
Copper	4.6	3100	.001				
Lead	7.8	400	.020				
Zinc	11.6	23000	.0005				
CHF Scale	CHF Value	Sum the Ratios	.1635				
CHF > 100 100 > CHF > 2	H (High) M (Medium)	CHF = $\sum_{n=1}^{\infty}$ [Maximum Concentration of Co	ntaminant]				
2 > CHF	L (Low)	[Comparison Value for Contar	ninant]				
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).						
DIRECTIONS: Highlig Classification	Migratory Pathway Factor DIRECTIONS: Highlight the value that corresponds most closely to the surface soil migratory pathway at the MRS. Classification Description Value						
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at,						
Potential	 moving toward, or has moved to a point of exposure. Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined. 						
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).						
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H). L						
Receptor Factor DIRECTIONS: Highlight the value that corresponds most closely to the surface soil receptors at the MRS.							
Classification		escription	Value				
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.						
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move. M						
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.						
	can move.						
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hi</u> right (maximum value	ghest value from above in the box to the e = H). nown or Suspected Surface Soil MC Hazard	L				

Sampling Data can be found in the RFI, Pages 421-422.

MPF Rated as L: The majority of the Anti-Aircraft Range 90-MM–2 MRS is located within the fenced and gated ASP, with only a small buffer zone lying outside the fence line (CMS Report, Section 2.1, Page 10). Permit processes prevent inadvertent exposure to contamination by controlling access to contaminated media. FTSW has a robust Dig Permit process in place; any intrusive activities conducted on base must first be reviewed and approved by the FTSW DPW (CMS Report, Section 5.1.1.1.2, Page 24).

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)	L	L	L	LLL	G
Sediment/Human Endpoint (Table 23)	L	L	L	LLL	G
Surface Water/Ecological Endpoint (Table 24)	L	L	L	LLL	G
Sediment/Ecological Endpoint (Table 25)	L	L	L	LLL	G
Surface Soil (Table 26)	L	L	L	LLL	G

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS. HHE MODULE RATING

NKSH

The Raings (for reference only)					
Combination	Rating				
ННН	А				
ННМ	В				
HHL					
НММ	С				
HML	Ĺ				
MMM	D				
HLL	_				
MML	E				
MLL	F				
LLL	G				
Alternative Module Ratings	Evaluation Pending				
Note: Surface soil sampling results were determined to not pose a risk to human	No Longer Required				
receptors.	No Known or Suspected MC Hazard				

HHE Ratings (for reference only)

Based on the results of this RFI and the associated human health and ecological risk assessments, there is no release of MC at either the Anti-Aircraft Range 90mm -2 MRS (RFI Reports, Section 8.2, Page 66). During the 2014 RFI, no MC (explosives or metals) were identified as potential contaminants of concern in any environmental media. No additional MC sampling was conducted as part of the QR (CMS Report, Section 4.2, Page 21).

Table 29 MRS Priority

DIRECTIONS: In the chart below, highlight the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Highlight the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the **MRS Priority or Alternative MRS Rating** at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority	
	-	А	1		-	
A	2	В	2	A	2	
В	3	С	3	В	3	
С	4	D	4	С	4	
D	5	E	5	D	5	
E	6	F	6	E	6	
F	7	G	7	F	7	
G	8			G	8	
Evaluation	Evaluation Pending		Evaluation Pending		Evaluation Pending	
No Longer	No Longer Required		No Longer Required		Required	
	No Known or Suspected Explosive Hazard		No Known or Suspected CWM Hazard		No Known or Suspected MC Hazard	
MRS PF	MRS PRIORITY or ALTERNATIVE MRS RATING			2	4	