

US Army Corps of Engineers

Toxic and Hazardous Materials Agency

PRELIMINARY SITE INSPECTION FOR HUNTER ARMY AIRFIELD

Site Inspection Report No. 91045

FINAL

February 1992

Prepared For:

U.S. Army Corps of Engineers
Toxic and Hazardous Materials Agency
Aberdeen Proving Ground, MD

Contract No. DAAA15-90-D-0001, Task 9

Prepared By:
Advanced Sciences, Inc.
165 Mitchell Road
Oak Ridge, TN 37830

PRELIMINARY SITE INSPECTION FOR HUNTER ARMY AIRFIELD

Site Inspection Report No. 91045

FINAL

February 1992

Prepared For:

U.S. Army Corps of Engineers Toxic and Hazardous Materials Agency Aberdeen Proving Ground, MD

Contract No. DAAA15-90-D-0001, Task 9

Prepared By:
Advanced Sciences, Inc.
165 Mitchell Road
Oak Ridge, TN 37830

TABLE OF CONTENTS

<u>Pag</u>	<u>e</u>
LIST OF TABLES	
LIST OF TABLES i	
LIST OF ACRONYMS	
EXECUTIVE SUMMARY	V .:
DADCOTTVE SOMMART	/1
1. INTRODUCTION	1
1.1 PURPOSE	
1.2 LIMITATIONS	
1.2 I OCATION	3
1.3 LOCATION	1
2. SITE CHARACTERISTICS	3
	3
	3
	3
	4
	5
	5
	6
	6
2.2.2 Sewage Treatment Plant	
2.2.3 Fire Training Pit	
2.2.4 Vehicle Washracks - Site Description	
2.2.5 Underground Storage Tanks (USTs) - Site Description	
2.2.6 Outside Storage Areas	
2.2.7 Drum Storage Yard	
2.2.8 Old Property Salvage Disposal Yard 24	
2.2.9 Bulk Fuel Storage	
2.2.10 Tactical Equipment Shop Refueling Station,	, S
Building 1343	1
2.2.11 Base Gas Station, Building 133	
2.2.12 Building 710	
2.3 ENVIRONMENTAL AND REGIONAL SETTING	
2.3.1 Demography	
2.3.2 Land Use	5
2.3.3 Biota	
2.4 HYDROLOGY 46	
2.4.1 Climatology	
2.4.2 Overland Drainage	-
2.4.3 Potentially Affected Water Bodies	5
2.5 REGIONAL AQUIFER CHARACTERISTICS	
2.5.1 Aquifer Description	
2.5.2 Aquifer Use	

TABLE OF CONTENTS (Continued)

	<u>Pay</u>	ge
3.	TARGET ANALYSIS	52 52 52
	FIELD INVESTIGATIONS	
5.	SUMMARY 6	55
RI	FERENCES 6	56
	PENDIX A SI Form PENDIX B Analytical Results	

LIST OF TABLES

<u>Table</u>	<u>Title</u> Page
2.1	Permits Issued to HAA
2.2	HAA Facility Assessment Report
2.3	Population for the Area of HAA
2.4	HAA Effective Population
2.5	Endangered or Threatened Species that Either Reside in or are Transient to the Area Around HAA and Along its Surface Water Migration Pathway. (Source: Harley 1991 and DNR Freshwater Wetlands and Heritage Inventory
	(FWHI) 40
2.6	Hunter Army Well Characterization
2.7	Public Water Supplies in Southeast Georgia
2.8	Well Characteristics for City of Savannah Potable Water Wells
	Within Four Miles of HAA

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
1-1	Location Map	2
2-1	Regional Map	7
2-2.a	Hazardous Waste Sites	9
2-2.b	Hazardous Waste Sites	10
2-2.c	Hazardous Waste Sites	11
2-3	Location of 87 Borehole Fire Pit	20
2-4	Proposed Boreholes Fire Pit	21
2-5	Sampling Locations, Bldg 1343	26
2-6	Sampling Locations, Leak Checks, Bldg 133	28
2-7	Leak Checks, Bldg 133	. : 29
2-8	Leak Checks, Bldg 133	30
2-9	Soil Gas Survey	31
2-10	Sampling Location Soil Gas Survey, Bldg 710	33
2-11	Population within 4 miles	36
2-12	Facility Map	38
2-13	Recreation Shellfish Harvest, Savannah River/Tybee	
	Island Area	48
2-14	Recreational Shellfish Harvest, Northern Portion	. 49
2-15	Recreational Shellfish Harvest, Southern Portion	50
2-16	Commercial Fishing Zones for the Savannah River and	
	Wassaw Sound Areas	51
2-17	Aquifer System	52
2-18	Composite Geol. Column	53
2-19	General Stratigraphic Section of Sediments	54
2-20	Approximate Well Location at HAA	56
2-21	Well Location for the City of Savannah and Chatham County	61
	The state of the s	. 01

LIST OF ACRONYMS

AEHA Army Environmental Hygiene Agency

AQCR Air Quality Control Region CAP Corrective Action Plan

DEH Directorate of Engineering and Housing

DPDO Defense Property Disposal Office EPA U.S. Environmental Protection Agency

FST Fort Stewart

FWHI Freshwater Wetlands Heritage Inventory

FY Fiscal Year

GaDNR Georgia Department of Natural Resources

HAA Hunter Army Airfield

HRS2 revised Hazard Ranking System

MGPD Million Gallons Per Day

NAAQS National Ambient Air Quality Standards

POL Petroleum, Oil, and Lubricant

SO₂ Sulfur Dioxide

SOCS Synthetic Organic Chemical Survey

STP Sewage Treatment Plant TSP Total Suspended Solids

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

UST Underground Storage Tanks
VOC Volatile Organic Compounds

EXECUTIVE SUMMARY

A. SITE DESCRIPTION

The U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) has contracted Advanced Sciences, Inc. to prepare a Preliminary Site Inspection for Hunter Army Airfield (HAA), Savannah Georgia. The U.S. Environmental Protection Agency (EPA), Region IV deemed it necessary to rescore selected U.S. Army installations not currently on the National Priority List (NPL) using EPA's revised Hazard Ranking System (HRS2). This report provides data updated since the previous Installation Assessment conducted at this facility. This report was prepared entirely from records and data gathered from a site visit to HAA on July 11, 1991, a site visit on February 5, 1992, and from data gathered from other sources. The scope of this report is based solely on the review of available reports and communications with Base personnel.

The Facility Commanding Officer for HAA is Major General Barry R. McCaffrey. The Facility Environmental Coordinator is Thomas Houston. The facility address is:

Hunter Army Airfield HQ 24th Infantry Division Environmental Office Bldg. 1135 ATTN: AFZP-DEN-E Ft. Stewart, GA 31314

HAA is located on 2,185 hectares of land in Chatham County, Georgia, adjacent to the southwest boundary of the City of Savannah. The area to the north of HAA is bounded by residential and light commercial areas and to the west by the Forest River.

B. HISTORY

HAA was acquired from the U.S. Air Force (USAF) in 1967 to support the increased U. S. helicopter pilot training program necessitated by the Vietnam Conflict. Advanced helicopter training for Vietnamese Air Force flight students was conducted at HAA from 1970 to 1972. Aviation training was phased out in 1973 when all aviation training was consolidated at Ft. Rucker, Alabama. HAA is currently employed to provide support facilities, conduct training opportunities, and prepare to mobilize and deploy the 24th Infantry Division (Mechanized). HAA is under the administrative and operations control of Fort Stewart, located approximately 40 miles west of HAA.

FIGURE 1.1. HUNTER ARMY AIRFIELD LOCATION MAP

2. SITE CHARACTERISTICS

2.1 SITE BACKGROUND AND HISTORY

2.1.1 History of Ownership

HAA was acquired from the U.S. Air Force (USAF) in 1967 to support the increased U.S. helicopter pilot training program necessitated by the Vietnam Conflict. Advanced helicopter training for Vietnamese Air Force flight students was conducted at HAA from 1970 to 1972. Aviation training was phased out in 1973 when all aviation training was consolidated at Ft. Rucker, Alabama.

An archaeological survey was conducted in 1984 to determine if any historically or archaeologically significant sites existed at HAA. Because this report was not available at the time of this investigation, the results could not be obtained.

2.1.2 Regulatory History

Fort Stewart (FST) filed a Resource Conservation and Recovery Act (RCRA) notification form with EPA for FST and HAA in July 1980. A RCRA Part A permit application for interim status as a generator and storage facility was filed in November 1980. Subsequently, HAA has obtained a Part A permit and is under interim status as a hazardous waste generation and storage facility. In 1983, EPA requested HAA to file a RCRA Part B permit application and conducted a compliance inspection of HAA. Following the compliance inspection, EPA advised the Department of Environmental Hygiene (DEH) personnel to withdraw the Part A permit application for HAA because hazardous wastes generated at HAA are not stored at HAA; they are transferred to the Defense Property Disposal Office (DPDO) storage yard at FST for storage. Because of this, it was found that HAA did not require a Part A or B permit. The Part A permit for FST was revised to include quantities of wastes generated at HAA (McMaster et al. 1983). Permits that have been issued to HAA by the Georgia Department of Natural Resources-Environmental Protection Division (Ga\DNR-EP) are listed in Table 2.1. A copy of the current permits issued to HAA are included in Appendix B.

Table 2.1. Permits issued to HAA

YEAR	PERMIT TYPE	PERMIT NUMBER
1982	Public water system operation	2025 J 1239
1978	Boiler Operation	9711 025 6356 0
1991	Discharge Authorization	GA0027588

2.1.3 Process and Waste Disposal History

The processing and disposal of industrial waste at HAA in the past was similar to current operations. Non-hazardous scrap material with no salvage value generated at HAA was shipped to the landfill located near the northwest boundary of the facility. The landfill was in operation from 1941 to 1980. Since 1980, non-salvageable materials have been transported to the City of Savannah sanitary landfill. Specific industrial wastes and their disposal history will be discussed in detail.

Vehicle maintenance and repair generates waste lubricating oil, hydraulic fluid, degreasing solvent, scrap metal and wire and waste asbestos. Prior to the mid-1960s segregation of waste oil, hydraulic fluid, and degreasing solvent reportedly was not practiced. These wastes were collected in 55-gal drums, creating a petroleum, oil and lubricant (POL) mixture (oil mixed with degreasing solvent). Since the mid-1960s, waste lubricating oil, hydraulic fluid, and degreasing solvent generated at HAA have been sold to reclamation contractors. Spent hydraulic fluid is collected in 55-gal drums and is not mixed with waste oil or degreasing solvents. However, waste oil and degreasing solvents are generally mixed together and collected in 55-gal drums or underground storage tanks. USTs are currently used for storage of waste POL at motor repair shops that conduct major maintenance and repair work. These wastes are then transported to the DPDO storage yard at FST in drums for storage prior to sale to reclamation contractors.

In the mid-1970s, oil/water separators were installed at the vehicle wash racks on HAA. Prior to the installation of the separators, wash rack waste water was discharged untreated to the storm drainage system. When the separators were installed, the separator effluent lines were directed to the storm drainage system. In 1986, the wash racks were connected to the sanitary sewer system.

Building maintenance and repair operations generate empty paint cans, scrap metal, wood, and wire. In the past, these wastes were taken to the on-site landfill. Large quantities of salvageable wastes, such as scrap metal and wire, are hauled to the DPDO storage yard at FST for storage prior to sale to salvaging contractors.

Operational maintenance of helicopters and fixed-wing aircraft conducted at HAA generates spent solvents (including benzene, xylene, and toluene), waste aircraft engine oil/transmission fluid, and contaminated fuel (JP-4). Disposal of theses wastes is by sale to reclamation contractors or by contract hauling to an EPA-approved hazardous waste disposal facility.

Waste water at HAA was treated at three sewage treatment plants on the Post. The sanitary and storm sewer systems are separate. Storm drains discharge untreated stormwater runoff to the various drainage canals that traverse the site. Prior to 1991, the secondary effluent from the sewage treatment

plant (STP) was chlorinated in a chlorine contact chamber prior to discharge to Lamar Canal, which eventually dumps into the Little Ogeechee River. Dewatered sludge was disposed of in the Base sanitary landfill which is now closed. Previously, three package plants were used to treat wastewaters generated at remote areas. These plants have since been abandoned and the discharges connected to the main STP. In 1991, secondary effluent from the STP was diverted to discharge to the Savannah River.

From the early 1940s to 1980, solid waste was disposed of at the sanitary landfill on HAA. It was probably operated as an area fill until its last year of operation when the trench method was employed. Burn pits were in use for garbage disposal until the late 1960s (McMaster et al. 1983).

2.1.4 Descriptions of Remedial Actions to Date

Several remedial activities have been conducted at HAA. The sites that have been or are in the process of being remediated are the Base Gas Station, Building 133; the Tactical Equipment Shop Refueling Station, Building 1343; and the Transportation Motor Pool, Building 710. Detailed explanations of these activities are provided in Section 2.2.

2.1.5 Previous Reports

Previous reports that have been written for investigations conducted at HAA in the past are listed below.

- Solid Waste Disposal Study of HAA, Savannah, Georgia, Contract No. DACA-21-80-C-0111,
 March 1982, by Gulf Tex Engineers, Inc.
- Installation Assessment of HQ, 24th Infantry Division and Fort Stewart, Georgia, Report No. 334, October 1983, by Environmental Sciences Engineering, Inc.
- U. S. Army Environmental Health Agency (AEHA), Hazardous Waste Study, No. 37-26-0127-88,
 Fort Stewart Georgia, 24-31 March 1987.
- U. S. Army Toxic and Hazardous Materials Agency (USATHAMA), Property Report, 1988.
- AEHA Environmental Program Review (EPR), No. 32-24-7038-89, August 1988.
- Water Quality Consultation, Report No. 31-62-0140-90,
- Tracer Leak Test for Five Underground Storage Tanks, HAA, Savannah, Georgia, February 1990,
 by Tracer Research Corporation.
- Tracer Tighttm Leak Test of Four Underground Storage Tanks, HAA, March 1990, by Tracer Research Corporation.
- Tracer Tighttm Leak Test of Two Underground Storage Tanks, HAA, July 1990 by Tracer Research Corporation.

- Shallow Soil Gas Investigation, HAA, Buildings 133 and 710, Savannah, Georgia, July 1990, by Tracer Research Corporation.
- Synthetic Organic Chemicals Survey, HSHB-ME-WR, August 1990.
- U.S. Army-COE, Savannah District, Phase II Site Investigation, Tactical Equipment Shop Refueling Station, Building 1343, HAA, Savannah, Georgia, Draft Report, April 1991.
- Design Remediation Report, Subsurface Remediation at the HAA Base Gas Station, June 1991,
 RMT, Inc.
- Corrective Action Plan, 90% Draft, HAA Building 710, Contract #DACA21-91-D-001, October 1991, Atlanta Testing and Engineering.

2.2 SITE DESCRIPTION AND FEATURES

HAA is adjacent to the City of Savannah. The facility is contained wholly in Chatham County, as shown in Fig. 2.1. HAA occupies approximately 2185 hectares. The ground surface at HAA slopes gently to the west toward the Little Ogeechee River. The area drains towards the west along a canal which runs west approximately 400 ft then runs southeast approximately 1500 ft where it intersects the Little Ogeechee River tidal floodplain. Most of the land within HAA is flat lying, planted pine woods interfingered with freshwater swamps and tidal creeks. Fig. 2.2a, 2.2b, and 2.2c show the locations of the hazardous waste sites on the facility. There are 24 waste sites identified from previous investigations. Twenty-two waste sites are in the cantonment area within 1 mile of each other and two waste sites are in the outlying areas. Accessibility to HAA is restricted by security gates and the facility is surrounded by a chain-link fence. Each of the waste sites at HAA are discussed individually in the following subsections with regards to size and features of site, accessibility, waste characteristics, waste types, and disposal methods. Table 2.2 gives a summary of all the waste sites at HAA.

2.2.1 Landfills

2.2.1.1 Inactive Landfill

Site Features. The HAA property contains one inactive landfill. This landfill is located approximately 3000 ft north of the western end of the runway and is approximately 10 acres in size. The landfill was used extensively from the early 1940s to March 1981, when it was closed for sanitary landfill purposes.

FIGURES 2.2 a., b., c. HAZARDOUS WASTE SITES LOCATED AT HUNTER ARMY AIRFIELD

Legend:

- 1 Closed Landfills
- 2 Fire Training Pit
- 3 Property Disposal Office
- 4 Sewage Treatment Plan
- 5-15 Wash Racks
- 16 Drum Storage Yard, Bldg. 840
- 17 Drum Storage Yard, Bldg. 850
- 18 Drum Storage Yard, Bldg. 860
- 19 Base Gas Station, Bldg. 133
- 20 Transmotor Pool, Bldg. 710
- 21 Tactical Equipment Shop and Refueling Sta., Bldg. 1343

FIGURE 2.2a. HAZARDOUS WASTE SITES LOCATED AT HUNTER ARMY AIRFIELD

Table 2.2 Hunter Army A. J. Facility Assessment Report

Releases	None Documented.	-7	Stained soil surrounding the site was evidence of spillage and leakage from the pit. Borehole samples contained various amounts of volatile organic compounds and base-neutral acid extractables due to burning JP4 and diesel fuels. Evidence of past POL spills exists. ²	Comments: Numerous cracks in the concrete bern exist. ² Pit is not currently in use. A contamination evaluation was conducted by Hunter/ESE and results reported in November 1990. Contamination of soil and groundwater was determined to be significant for a set of chemical parameters. ¹¹	None Documented.		None Documented.
Specific Waste Managed	Construction debris, trash, ash and some hospital wastes. ¹	.vi	Waste fuels: JP-4 and Gasoline, waste oil and waste solvents burned. ¹	was conducted by Hunt	a	mah River.	
Approx. Date of Use	Early 1940's to March 1981²	7.	N	ion evaluation		e to the Savar	·
Function of unit		vith native soil.¹	HAA used this facility to train fire fighters in a live fire sination and for storage of the JPA fuel used to produce the live fire. ²	Comments: Numerous cracks in the concrete berm exist. ² Pit is not currently in use. A contamination eval Contamination of soil and groundwater was determined to be significant for a set of chemical parameters. ¹¹	Sanitary Sewage	the City of Savannah force main and discharge to the Savannah River.	2 2 20 20 21
General Dimensions Capacity &/or Quantity	Approx. 10 acres located about 3,000 ft. north of the western end of the runway ²	Comments: Garbage and debris were put into a pit and covered with native soil. ¹	5000 ft.² foot square- shaped concrete lined area bermed on all sides. 1,000 gallons/burn.²	concrete berm exist. ² Pit is 1 was determined to be sign	1.1 MGD	ated to join with the City of	Spent small arms ammunition ¹
Detail Provided	yes	d debris were	yes	racks in the o	yes	uent was dive	OI .
Site Name	Sanitary Landfill	nents: Garbage and	Fire Training Pit	nents: Numerous c mination of soil an	Sewage Treatment Plant ¹	Comment: In 1991, effluent was diverted to join with	Firing Range
		Comm	_	Comp		Comn	

Table 2.2 Hunter Army An. Facility Assessment Report

yes frum containing fuel v s yes s ctive washracks have	Trash and dry rubble		1939-	P ()	None Documented.
Comments: One drum containing fuel was for Washracks ¹ yes Waste Comments: All active washracks have oil/wat	Trash and dry rubble		1939-		None Documented.
Comments: One drum containing fuel was fo Washracks ¹ yes Waste	l was found at this site. ¹			II	
Comments: One drum containing fuel was fo Washracks ¹ yes Waste Comments: All active washracks have oil/wai	l was found at this site.1		2		
Washracks ¹ yes Waste		н 25	5		
Washracks ¹ yes Waste Comments: All active washracks have oil/wa					
Comments: All active washracks have oil/wa	Waste oils	Used to clean vehicle engines with steam and vehicle exterior with pressurized water.2	-	waste oils	None Documented.
	e oil/water separators. 5-6 wa	Ish racks are active; the rest are in	active.1		
Base Gas yes Six Ui Station gasolii waste	Six USTs, five are for gasoline and one is a waste oil tank.			Gasoline	Gasoline scepage from underground storage tanks has resulted in contaminated soil over an area of approximately 190 x 350 feet. ³
Comment: A preliminary site investigation, ts	gation, tank tightness testing, a	and a phase I remediation have been	n completed.	. A Phase II remediation	Comment: A preliminary site investigation, tank tightness testing, and a phase I remediation have been completed. A Phase II remediation is being developed to complete closure of the base gas station. ³

Table 2.2 Hunter Army Air. Facility Assessment Report

595	None Documented.	Periodic spillage has occured at this site near hangar 860. ²	None Documented.
Specific Waste Releases Managed	Waste solvents ²	Period waste oil, and Period waste solvents ² 860. ²	P.4, waste oil, and None waste solvents?
Approx. S Date of N	нь	H 2	7 2
		н э н э	y v
Function of unit	e n		-
General Dimensions Capacity &/or Quantity	Consists of three, 600-gallon pods berned by three layers of sandbags. The base of each site is the in situ soil. One pod is for waste oil, one is for waste solvent, and one is for waste fuel. IP-4: 1 gal/day oil: 1/2 gal/day solvents: 8-10 gal/month?	Consists of three, 600-gallon pods bermed by three layers of sandbags. The base of each site is the in situ soil. One pod is for waste oil, one is for waste solvent, and one is for waste fuel. IP-4: 1 gal/day oil: 1/2 gal/day solvents: 8-10 gal/month IP-4, waste oil, and waste solvents?	Consists of three, 600-gallon pods bermed by three layers of broken sandbags. The base of each site is gravel. One pod is for waste oil, one is for waste solvent, and one is for waste solvent, and one is for waste fuel. JP-4: 1 gal/day oil: 1/2 gal/day solvents: 8-10 gal/month?
Detail Provided	yes	yes	yes
Site Name	Outside storage area. Two sets of pods NE of Hangar 850°	Outside storage area near hangar 860²	Outside storage area north of hangar 840²
			v ·

Table 2.2 Hunter Army Air. Facility Assessment Report

				0						4
Releases	None Documented	some of the drums were open to the atmosphere some not. Most of the drums showed some degree of corrosion.2	None Documented.	Comments: The 90 day accumulation deadline is usually exceeded. One bin housed a sand bermed 20,000 gal unsecured tank for waste oil. Another bin housed two smaller (400 gal, and 600 gal) unsecured tanks for waste solvents. Various 55 gallon drums and miscellaneous scrap metal. Contents of the drums ranged from aircraft cleaning compounds to waste solvents. Some drums were empty. Some open to atmosphere, corrosion or both. ²	None Documented.	6	None Documented.	None Documented.		None Documented
Specific Waste Managed	IP-4, waste oil, and waste solvents ²	ome not. Most of the dr	waste oil, PCB transformers, and waste solvent ²	insecured tank for waste or drums ranged from airc	Generator of waste oil, solvent²	rator.²		MEK, MIK²		Stored a variety of hazardous materials ranging from POL to Acids. ²
Approx. Date of Use	=	atmosphere s	1	1 20,000 gal u contents of the		nd water sepa				
Function of unit	Inside: Aircraft maintenance. Outside: A drum storage² yard.	me of the drums were open to the	The DEH at HAA collects the waste oil and waste solvents from the pod storage sites and delivers it to this site. ²	ed. One bin housed a sand bermed and miscellaneous scrap metal. C	Automobile maintenance, wask rack facilities, degreasing, minor engine repair ²	Comments: The wash rack, fueling point drainage, and grease pits were connected to the same oil and water separator.2	Storage site for diesel fuel and JP-4.	Cleaning, repairing and painting helicopter wheels?	cm.²	Aircraft maintenance including sheet metal work, hydraulic work, engine repair, NiCd battery repair, general maintenance, and CARC painting. ²
General Dimensions Capacity &/or Quantity	A drum storage yard containing 4 drums of a liquid analyzed to have hazardous waste.	Comments: Some of the drums had labeled contents some not, so	2-acre site containing concrete bins for material storage and enclosed by an eight foot chain link fence and topped with barbed wire. Capacity: 20,000 gal waste oil and 1,000 gal waste solvent 2	Comments: The 90 day accumulation deadlline is usually exceeded gal) unsecured tanks for waste solvents. Various 55 gallon drums drums were empty. Some open to atmosphere, corrosion or both.	The units dump waste oil and stoddard solvent II into the underground waste oil tanks²	oint drainage, and grease pit	This facility consists of several bulk fuel tanks with secondary containment.2	2 gallon per year²	Comment: The shop disposes of the spent solvent in the pod system. ²	
Detail Provided	yes	drums had I.	yes	accumulatior waste solven	yes	ack, fueling p	O.	2	sposes of the	OI .
Site Name	Aircraft Maintenance Hangar 840	nents: Some of the	Property Disposal Office?	nents: The 90 day nsecured tanks for were empty. Som	Consolidated Motor Pool, BLDG. 1336 ²	nents: The wash ra	Bulk Fuel Storage, Bldg 7001-7009	Hangar 813	nent: The shop dis	Hangar 813 and 811 ²
	¥	Сошш	2	Comn gal) u drums		Comm			Comir	

J Facility Assessment Report Table 2.2 Hunter Army

L								
	Site Name	Detail Provided	General Dimensions Capacity &/or Quantity	Function of unit	Approx. Date of Use	Specific Waste Managed	Releases	
	DEH Supply and Storage, bldgs 1020 and 1026 ²	9		Storage of a variety of hazardous materials used by the utility engineers of HAA.		Materials range from paints to acids, compressed gases to fuel. ²	None Documented.	1
	Tactical Equipment Shop, Bldg 1343	yes	6,000gal mogas tank, 30,000gal diesel tank ⁷	Refueling station consisting of 7 fuel dispensing islands?	1989	9	10/90 evidence of contamination found due to leaking fuel distribution lines. ⁷	
	A Phase I investigatio and underground tank	n was conducte s have resulted	A Phase I investigation was conducted in October 1990 at which time eviden and underground tanks have resulted in soil and groundwater contamination.	ime evidence of contamination was	s found. A Pt	nase II investigation was	A Phase I investigation was conducted in October 1990 at which time evidence of contamination was found. A Phase II investigation was conducted in April 1991. Fuel leaking from piping and underground tanks have resulted in soil and groundwater contamination.	T
	Transportation Motor Pool, Bldg	yes	4 underground storage tanks ⁶	2			In March 1990, a leak test was performed which indicated that a 12,000 gallon diesel fuel tank was leaking. ⁶ A shallow soil gas survey was conducted and significant concentrations of total hydrocarbon were detected. ⁹	
	Comment: Based on the findings of hte Leak test and	the findings of	hte Leak test and soil gas sur	soil gas survey it has been proposed that the four USTs be removed.8	our USTs be	removed.8		_
	Lockheed Hangar, Hangar 841²	Ou		Helicopter maintenance.2		Generator of waste oil, waste fuel, and solven:	None Documented.	7
	Comments: Lockheed	turns its waste	oil, waste fuel, and solvent i	Comments: Lockheed turns its waste oil, waste fuel, and solvent into the Coast Guard for disposal. The Coast Guard uses HAA's pod system, for its waste.2	The Coast Gu	ard uses HAA's pod sys	cm, for its waste.2	T

McMASTER ET AL 1983 HUNTERÆSE 1989 TRACER RESEARCH CORPORATION MARCH 1990

US ARMY-COE APRIL 1990

ATLANTA TESTING AND ENGINEERING 1991
 TRACER RESEARCH CORPORATION JULY 1990
 BUILDING 133 PROJECT SUMMARY
 HUNTER/ESE 1990

Waste Characteristics. Four groundwater monitoring wells were installed by COE, Savannah District, in the shallow aquifer around the landfill, as required by the State of Georgia for reporting and closure of the landfill. The initial sampling locations and analytical results can be found in Appendix B. Continued monitoring of these wells has not been required by the state, therefore no analysis data were available to substantiate any concern over leachate from the landfill into the aquifer.

2.2.1.2 Active Landfills (On-site and Off-site)

Site Features. There are no active landfills at HAA at this time. There is an 2 acre site proposed for a inert waste landfill for such materials as tree limbs and construction debris. The inert waste landfill will be operated under a permit by rule basis through the Ga-DNR/EPD. According to facility personnel, other wastes generated at HAA are hauled to the City of Savannah incinerator. Bulky items and non-cumbustibles are hauled to the city landfill which is located on Dean Forest Road between U.S. Highway 17 and Interstate Highway 16. The City of Savannah landfill is 458 acres in size and is permitted by the State of Georgia. The City of Savannah landfill, located on U.S. Highway 17 about 5.2 miles from the HAA main gate, was used by HAA from 1981 to 1984.

Waste Characteristics. Wastes which are hauled to the offsite landfill include both household/office and industrial wastes. Estimates of disposed wastes at the city landfills can be made from the daily logs of the landfills. For reference purposes, the total amount of refuse generated and disposed of at the existing landfill in fiscal year (FY) 1987 was 86,879 yd³ (AEHA 1988).

2.2.2 Sewage Treatment Plant

Site Features. The main STP at HAA is located near gate five. All wastewater generated on HAA, including industrial wastewater from wash racks, is discharged to the sanitary sewer for treatment at the main STP. Previously, three package plants were used to treat wastewater generated at remote areas; however, these plants have since been abandoned and the discharges connected to the main STP. The plant has a reported average design flow of 1.25 MGD.

Waste Characteristics. In July 1991, the HAA effluent was diverted to join with the City of Savannah effluent and discharges to the Savannah River. The sludge generated is anaerobically digested, dried on sand drying beds, and land applied to open areas surrounding the STP. In addition to the domestic wastewater generated at HAA, the industrial wastewater from the aircraft and vehicle washing operations are discharged to the sanitary sewer system. Wastewater from the washracks consists primarily of oils, fuels, suspended soils, and cleaning compounds such as soaps, detergents, and some organic cleaning solvents. Reportedly, no chlorinated organic solvents are used, although containers of low-flashpoint,

petroleum naphtha solvents were stored at the wash rack adjacent to Building 850 indicating that they were used for cleaning. There was no analytical monitoring of the STP influent to quantify whether any toxic, or incompatible wastes were being discharged to the sanitary sewer. Effluent data from the STP at HAA is included in Appendix B.

The HAA STP operators reported that they had not experienced any repeated significant problems with industrial type discharges to the STP, although they have received some oils and fuels on occasion (AEHA 1988).

2.2.3 Fire Training Pit

Description. The fire training pit is located on the northwest corner of the runway and until 1991 was used to train fire fighters in a live fire situation. Fire fighter training is a necessary part of the safety program of any post. The final test of a fire fighter's ability to deal with a real fire is by training using a real fire. This is recognized at the MACOM and the Department of the Army level by regulation, (FORSCOM 420-4 and AR 420-90, section 3).

Waste Characteristics. Until 1991, Fire training at HAA took place approximately eight times per year. Each burn used from 300 to 500 gal of material which amounts to approximately 4000 gal per year. The material used for burning consists of waste oil, solvents, and primarily waste fuels (AVGAS and JP-4) that may have been contaminated with water. During the EPR, it was noted that the pit was full of POL-contaminated sand, and some possible contaminated water was present within the pit. It was speculated that the sand probably blows or washes into the pit, as the concrete base or floor could not be seen. The oil/water separator or sump had a thin film of POL on top of the water. Some of this unburned POL may seep out of the pit and potentially contaminate the shallow aquifer in this area. An oil stained overflow area was observed immediately south of the pit at the time of the EPR. Because HAA currently produces approximately 20,000 gal/yr waste oil, a large surplus exists which HAA may have to handle as a hazardous waste. The on-site storage tank consists of a 20,000-gal tank bermed with in situ soil. The berm was noted to be cracked some greater than 0.5 in. in width (AEHA 1988).

Environmental Conditions. The fire pit consists of a 5000 ft² concrete pad, bermed on all sides. Crusher run gravel fills the internal volume. During the 1988 EPR, numerous cracks in the concrete berms were noticed. Stained soil around the site was evident, indicating that the pit had overflowed frequently. The AEHA, in its EPR, concluded that the operation of this site resulted in contamination of the surrounding soil as a result of spillage and leakage from the pit. The study also concluded that the contamination migrated to the watertable and possibly away from the Facility. The soils around this location are sandy (high permeability) and exhibit a high water table (approx. 8 ft below the surface). This area slopes

rapidly to two small drainage ditches, about 150 yds from the pit, which flank and drain this area. Based on topography and sandy soil conditions it is likely that runoff would migrate vertically from the site to the watertable and then move laterally west with groundwater flow towards two drainage ditches. Based on this scenario, groundwater contamination may enter streams, or drainage ditches and be drained to the Ossabaw Sound by the Forest River (AEHA 1987).

Monitoring History. During 24-31 March 1987, the AEHA drilled four boreholes (BH10-BH13), around the pit as shown in Fig. 2.3. Ten soil samples were collected and chemically analyzed from the four boreholes and split for quality control. One additional sample was collected of the rinse alcohol following the washing of the sampling equipment to ensure adequate equipment decontamination. A summary of these results is shown in Appendix C. The wash sample showed that the decontamination procedure was adequate as there were no total metals, volatile organics, or acid and base-neutral extractables from the burning of JP-4 and diesel fuels. In addition, three soil samples collected from the approximate top of the phreatic surface contained various priority pollutants. Samples were analyzed for total metals and extraction procedure (EP) toxicity. The analytical results for total metals showed the existence of various levels of arsenic, barium, mercury, and lead in all the samples. These metals were also found in the background samples in approximately the same concentration, except for lead. Four samples contained total lead levels which significantly exceeded the lead concentrations in the background samples. Other metals found in these samples were selenium in 6 out of 10 samples, chromium in 5 out of 10 samples, and cadmium in 3 out of 10 samples. The occurrence of these metals probably resulted from the past use of waste POLs which may have contained lead compounds or lead additives. The analyses for EP toxicity failed to reveal the existence of any metals; therefore, these metals are not leachable (AEHA 1988).

In 1989, a Work Plan to guide the field effort for contamination evaluation at two fire training areas associated with FST was prepared. The fire training areas are located at Wright Army Airfield and HAA. Only HAA's fire training area is considered here. The objective of the investigation will be to determine whether fuel used during fire training contaminated soil or water, and if so to define the extent of soil contamination and to make an initial estimate of the extent of groundwater contamination. The field activities consist of a soil gas survey, soil sampling, monitoring well installation and groundwater sampling, and sediment sampling. A summary of the analytical requirements are included in Appendix B. Locations of the proposed sampling sites are shown in Fig. 2.4. (Hunter/ESE 1989).

FIGURE 2.3. MAP SHOWING APPROXIMATE LOCATIONS OF FOUR BOREHOLES DRILLED IN MARCH 1987 AT THE FIRE TRAINIG PIT, HUNTER ARMY AIRFIELD, GA.

FIGURE 2.4. PROPOSED SAMPLING LOCATIONS - HUNTER ARMY AIRFIELD FIRE TRAINING AREA

A Contamination Evaluation Report was prepared by Hunter/ESE in November 1990. Hunter/ESE examined the extent of contamination in the groundwater and soil at HAA and established background levels of the contamination. Soil gas surveys, soils and groundwater samples were evaluated for volatile organic compounds (VOCs), metals, and polynuclear aromatic hydrocarbons (PAHs). Results of these analysis are included in Appendix B. The contamination of groundwater and soils was determined to be

significant for a set of chemical parameters. Because of potential health risks of metals, VOCs, and PAHs, Hunter/ESE recommended that the site not be closed until further studies and potential soil and groundwater remediation is conducted (Hunter/ESE 1990).

2.2.4 Vehicle Washracks

Site Description. Vehicle washracks are used throughout the cantonment area. There are six active washracks currently being used to clean vehicle engines with steam and vehicle exteriors with pressurized water. All vehicle washracks discharge to the installation sanitary sewer system. Waste oil/grease is recovered from oil/water separators. All of them are equipped with oil/water separators and generate waste oil.

2.2.5 Underground Storage Tanks (USTs)

Site Description. There are approximately 105 USTs buried at HAA. All have been tested for leaks according to their age group requirement. The USTs that are known to leak have been identified and are listed here as waste sites. The USTs in connection with hydrant refueling systems are exempt from testing provisions under RCRA. The exemptions from testing are defined in 40 CFR 280.10(c)(4), Subpart A, Program Scope and Interim Prohibition.

2.2.6 Outside Storage Areas

Site Description. There are several outside storage areas at HAA; these areas are used to collect waste solvents, and oils before transferring them to Fort Stewart. These area are located at Buildings 840, 850, and 860.

Waste Characterization. Waste fuels (JP-4) waste oil and waste solvents are temporarily stored at all of the outside storage areas, Buildings 840, 850, and 860. These waste are generated as a result of maintenance and repair of vehicles. The amount of wastes accumulated at each site are: JP-4, 1 gal/day; oil, 1/2 gal/day; and solvents, 8-10 gal/day.

Environmental Conditions. The outside storage areas consist of three 600-gal pods bermed by three layers of sandbags. The base of several are insitu soil and for others the base is gravel. One of the pods is for waste fuel, one is for waste oil and one is for waste solvent. At the time of the EPR, some evidence of spillage was noted around the site at hangar 860 (AEHA 1988).

2.2.7. Drum Storage Yard

Description. A drum storage yard outside of Hangar 840 contains drums of hazardous wastes. This hangar is used for aircraft maintenance.

Waste characteristics. During the EPR in 1988, four drums containing unknown liquids were found to contain hazardous wastes. Two drums contained trace levels of tetrachloroethylene and two drums contained organics and exceeded the EP toxicity limit for metals. The types of wastes managed at this site are waste solvent, waste oil, and waste fuel. Approximately 1 gal of JP-4 and 0.5 gal of oil are managed per day and 8 to 10 gal of solvent per month.

2.2.8. Property Disposal Office (PDO)

Description. The property disposal office is located close to the northwestern boundary of the Post. The DEH at HAA collects the waste oil and solvents from the pod storage sites and delivers it to the old property disposal salvage yard. This site consists of a 2-acre site containing concrete bins for material storage and enclosed by an 8-ft high chain link fence topped with barbed wire. One bin houses a sand-bermed 20,000 gal unsecured tank for waste oil, and another bin houses two smaller unsecured tanks (one 400 gallon and one 600 gallon) for storage of waste solvents. Other bins house miscellaneous scrap metal and 55-gal drums in varying amounts. In the past, this site frequently exceeded the RCRA 90-day accumulation deadline (AEHA 1988).

2.2.9 Bulk Fuel Storage

The bulk fuel storage area is located at Buildings 7001-7009. The site consists of bulk fuel tanks with secondary containment. It is used as a storage site for diesel fuel and JP-4.

2.2.10 Tactical Equipment Shop Refueling Station, Building 1343

Site Description. Building 1343 houses the Tactical Equipment Shop Refueling Station. It is located at HAA near Tubb Street approximately one-third mile southwest of Gate No. 1 on Wilson Boulevard. The refueling station consists of seven fuel dispensing islands with each island having two dispensers. Mogas is pumped from two islands and diesel is dispensed from the other five islands. The fuel is stored in a 6,000 gallon mogas tank and a 30,000 gallon diesel tank.

Waste Characterization and Environmental Conditions. A Phase I study conducted in October 1990 found evidence of contamination and recommended the drilling of additional borings and installation of groundwater monitoring wells for this site. A Phase II study followed so as to determine the magnitude of the contamination, delineate the extent of contamination, and determine if remediation would be required for the site. Fig. 2.5 shows the location of the Phase II monitoring wells and borings for the site. Appendix B contains the results of the soil and water sample analyses. Based on the findings of the Phase II Site Investigation, the U.S. Army Corps of Engineers (COE), Savannah District, made the following preliminary conclusions:

"Due to several instances of leakage of fuel at the facility, both soil and groundwater contamination are present at the site and are above the Georgia action levels. The Phase II investigation found considerably more contamination than the Phase I. This is partially because many of the borings of Phase II were drilled closer to the potential source. However, it also appears that further leakage had occurred since October of 1990. Leakage has occurred from the piping at various locations due to piping deterioration and the presence of faulty fitting. The tank tightness testing report indicated a slight possibility that the mogas tank is leaking also.

The limits of soil contamination do not appear to be far beyond the facility boundaries, and the contamination has not reached the small creek area. The eastern extent has not been fully defined. Groundwater contamination appears to be more widespread, with all wells yielding contaminated samples.

The action levels for groundwater at the site may be less stringent, because groundwater from the surficial aquifer is not used for drinking purposes in this area. Drinking water for the Cantonment Area is supplied by Well No. 1 and Well No. 2 Production from these wells is from the Floridan aquifer by two confining units. Furthermore, action levels for soils may also be less stringent. Any alteration of action levels will require state approval" (COE 1991).

2.2.11 Base Gas Station, Building 133

Site Description. The Base Gas Station, building 133, is located at the intersection of Barksdale Circle and Mitchell Boulevard. The gas station was closed due to contamination from leaking USTs. A total of 6 USTs are present, four of which are 6000-gal gasoline-containing tanks, one is a 4,000-gal tank that held diesel fuel for many years (but later contained gasoline) and one tank (behind the station) is for waste oil (COE 1991).

FIGURE 2.5. SAMPLING LOCATIONS, BUILDING 1343

Waste Characterization. A Phase I remediation was completed at the base gas station in 1990. A total of sixteen groundwater monitoring wells were installed and data from these wells indicated a contaminated area of approximately 190 by 350 feet. The Phase I remediation involved free product removal from the watertable using skimmers installed in recovery wells (RMT 1991). In February and July 1990, leak checks were conducted by Tracer Research Corporation, on several USTs at the Base Gas Station. Figs. 2.6, 2.7, and 2.8 show the sampling locations for these leak checks. Analytical data for these tests are in Appendix B. The results indicated that the Crown and Supercrown tanks had a leak status of "three", small or intermittent product leak, less than 0.05 g/h. The diesel fuel tank had a leak status of "two", indicating a vapor leak, maximum tracer concentration less than 1 g/L in soil vapor diminishing at depths below 3 ft (Tracer Research Corporation 1990a). During July 11 and 12, 1990, Tracer performed a shallow soil gas investigation. Fig. 2.9 shows the sampling locations for the soil gas survey as well as the isoconcentration contours for total hydrocarbons. Analysis of these contour maps indicate possible source areas for subsurface contamination. Analytical results for the soil gas survey are presented in Appendix B (Tracer Research Corporation 1990d). The free product has accumulated on the water table and is found at a depth of about 5 ft. In April and June 1991, two additional monitoring wells were installed. Twenty auger borings were also drilled. Groundwater and soil samples were analyzed for benzene, toluene, ethylbenzene, total xylenes (BTEX), total petroleum hydrocarbons (TPH), and lead. The results of these analyses were not available at the time of this report. A Phase II remediation plan is currently being prepared. The objective of this plan will be to remove the six tanks, the contaminated soil in the area and the remaining free product. Contaminated soil will be excavated free product will be recovered during tank removal; soil samples will be collected and analyzed and monitoring wells will be installed in the area of the former plume to evaluate the efficiency of the remedial actions. Vent pipes will be included for future remedial activities if needed.

In accordance with Rule 391-3-15-.09 of the Georgia Rules for UST management, the extent of action required is based on the location of the hydrocarbon plume with respect to public water systems and surface water bodies in close proximity to the contamination source. Based on a water system survey conducted by Atlanta Testing and Engineering (AT&E), it was determined that public water systems and surface water bodies exist within 3 miles of the site; however, the water withdrawal systems obtain their water from aquifers other than the surficial aquifers and therefore, are not hydraulically interconnected with the contaminant plume.

The Phase III interim remediation plan will consist of monitoring only. A confirmatory sample will be collected from the water supply well located approximately 1000 ft downgradient and analyzed for

FIGURE 2.6. SAMPLING LOCATIONS FOR USTS LEAK CHECK, BUILDING 133

FIGURE 2.7. SAMPLING LOCATIONS FOR USTS LEAK CHECK, BUILDING 133

FIGURE 2.8. SAMPLING LOCATIONS FOR USTS LEAK CHECK, BUILDING 133

FIGURE 2.9. SAMPLING LOCATIONS FOR SOIL GAS SURVEY, BUILDING 133

gasoline constituents. The dissolved hydrocarbon plume movement will be monitored to evaluate potential impacts to the water quality of the nearby lakes (AT&E 1991, a).

2.2.12 Building 710

Site Description. Building 710 is located on Moore Road at HAA. There are four USTs located at the site. In March 1990, leak tests were performed on two of these tanks. These tests indicated that the 12,000-gal diesel tank was leaking. Based on this information, a preliminary contamination assessment was conducted by Tracer Research Corporation. Results of this assessment indicated that soils in the vicinity of the USTs had been adversely affected by the leak.

Waste Characteristics. Soil borings and monitoring wells were installed at the site to further evaluate the extent of vertical and horizontal contamination. Sample analysis indicated that approximately 700 yd³ of soil have been highly contaminated and that free product is floating on the groundwater surface. Also, dissolved hydrocarbon appears to be present in the groundwater (AT&E 1991, b). Tracer Research Corporation conducted a soil gas survey at Building 710 in July 1990. Fig. 2.10 shows the sampling locations and isoconcentration contours for total hydrocarbons. Hydrocarbon concentrations were detected above the level of significance (1 g/L) at all of the sampling locations. Analytical data is presented in Appendix B (Tracer Research Corporation 1990d).

A water system survey was conducted to determine corrective action required at this site. Water withdrawal systems and surface water bodies exist within 3 miles; based on this finding, it was proposed that the four USTs be removed. Contaminated soil will be excavated and free product will be recovered during tank removal. Confirmatory soil samples will be collected and analyzed and one monitoring well will be installed in the area of the former plume to evaluate the efficiency of the remedial action.

Environmental Conditions. The nearest public withdrawal system is less than 150 ft away from the contaminant plume. Even though this well is upgradient and not hydraulically connected with the contaminated plume, a confirmatory sample of the groundwater will be collected and analyzed. A lake

FIGURE 2.10. SAMPLING LOCATIONS FOR SOIL GAS SURVEY, TOTAL HYDROCARBONS (THC), BUILDING 710

located approximately 0.5 mile downgradient from the contaminated plume, is the closest surface water body. The dissolved hydrocarbon plume movement will be monitored to evaluate potential impacts to the water quality of the lake (AT&E 1991b).

2.3 ENVIRONMENTAL AND REGIONAL SETTING

This section describes the general demographics, land uses and sensitive environments of HAA and the surrounding area. This information is based on previous investigations and the best available information.

2.3.1 Demography

HAA is located in south eastern Georgia. The coordinates for HAA are 32 00 minutes North and 81 08 minutes West. The Facility extends approximately 2 miles north to south and 5 miles east to west at its widest points. HAA is fully contained within Chatham County, Georgia.

Municipalities located in proximity to HAA include the City of Savannah, the Town of Thunderbolt and the Town of Vernonberg. The City of Savannah is adjacent to the northeast boundary of HAA. The Town of Thunderbolt is to the east and Vernonberg is to the southeast of HAA. Many unincorporated communities are also located close to HAA. Table 2.3 is a list of population distribution figures for the area as of the 1990 Census.

Table 2.3. Population Distribution for the HAA Vicinity

		TOTAL NO. OF		AVE. # OF PERSONS
LOCALITY	TOTAL POP.	OCCUPIED HOUSING	UNITS	IN HOUSEHOLD
Chatham Co.	216,935	81,178		Not available
City of Savannah	137,560	51,938	8	2.55
Town of Thunderbolt	2786	793		2.36
Town of Vernonberg	74	30		2.52

Source: City of Savannah, Georgia, Metropolitan Planning Commission, (telephone conversation with Mr. Al Quinn, October 31, 1991).

As shown in Fig. 2.11, the population distribution within a 4-mile radius of HAA includes the communities listed in Table 2.3 as well as rural areas in Chatham county. This population is estimated to be approximately 182,016. The population for HAA is presented in Table 2.4, showing the existing population and peak mobilization populations for both residents and non-residents (AEHA 1988). There are 488 officer and enlisted family units and 43 trailer spaces on the Post (U. S. Army 1991). There are no schools on the Facility property. Students are bused to schools in the Savannah area. The are two day care centers located on the Post. The number of public school students in the Savannah area school system enrolled in the elementary schools is 17,912. The total middle school population is 7,993 and the high school population is 7702. These populations are approximate and are based on the 1991-92 registration enrollment information.

2.3.2 Land Use

HAA covers an area of 5,400 acres (8.4 miles²). The majority of HAA is characterized by developed cantonment and aircraft runway and parking areas. The cantonment area is located in the northeastern portion of the Facility. Located on the site are storage and training areas, a firing range, and an airfield. The southern portion contains approximately 885 acres of national wetlands, recreational facilities and a small private cemetery. The southwestern boundary of the Facility follows the Little Ogeechee (Forest) River. The Seaboard Coast Line railroad runs along the northwestern boundary. A map of the facility is shown in Figure 2.12.

Within the cantonment area are recreational facilities such as baseball, football, and softball fields; tennis and basketball courts; playgrounds; bowling lanes; and several lakes. Also located within the cantonment area are a hospital, clinic, preschool and nursery school, and two private cemeteries.

Outside the boundary of HAA, land use consists of residential, institutional, industrial, and community businesses. The areas to the south and southeastern portion of the Facility are dominated mainly by residential communities and some businesses; the northeastern portion is mainly community business, institution, and light industry, while the western portion is almost entirely heavy industry. The south western boundary of HAA is bordered by marsh conservation and some residential areas (Higginbothom 1988).

2.3.3 Biota

Much of HAA is developed cantonment and aircraft runway and parking area, with associated open lawns. Natural habitats are restricted to the perimeter and the western portion of the facility. Pines are the dominant tree species in this area; predominantly, longleaf (*Pinus palustris*), slash (*Pinus caribea*), and

FIGURE 2.11. POPULATION WITHIN 4 MILES

Table 2.4. Hunter Army Airfield Effective Population¹

Type of Residents	Existing Population ¹	Peak Mobilization Population ²
Military (onpost)	500	4,600
Dependents (onpost)	1,305	1,208
Total Residents	1,805	5,808
Military (offpost)	1,832	1,650
Civilians (offpost)	904	956
Total Nonresidents	2,736	2,606
ř.		
Total Population	4,541	8,414
		a a dia
Effective Population	2,717	6,677

¹ The effective population is defined as the total number of onpost residents plus one-third of the nonresidents who work on post.

Source: ¹Directorate of Engineering and Housing, January 1992.

²Environmental Program Review, 32-24-7038-89, 1-12 August 1988.

FIGURE 2.12. HUNTER ARMY AIRFIELD FACILITY MAP

loblolly (*Pinus taeda*) are found. Live oaks (*Quercus virginiana*) and pin oaks (*Quercus palustris*) are also found abundantly but sweet gum (*Liquidambar styraciflua*), red maple (*Acer rubrum*), carolina poplar (*Poplulus canadensis*), southern magnolia (*Magnolia grandiflora*), cypress (*Taxodiem distichum*), pecan (*Caryo illinoensis*) and palms (*Sabal palmetto*) are found in lesser numbers scattered throughout the reservation. Ornamental species of trees and shrubs have been planted around buildings and along roads and walkways of the cantonment area (McMaster et al. 1983).

The wildlife management regime for HAA is structured so as not to promote populations of game species which may interfere with operations at the Facility. Hunts are conducted periodically to reduce populations of game species (Swindell 1991). The species found on HAA include deer (Odocoileus virginianis), raccoons (Procyon lotor), beaver (Castor canadensis), armadillo, oppossum (Didelphis virginiana), feral hogs (Porcinis spp.), skunks (Mephitis mephitis) and small rodents (Houston 1991). A variety of birds, reptiles and amphibian species, either as permanent or seasonal residents or as migrants, also may be found on the Facility. (McMaster et al. 1983).

Both Hallstrom and Oglethorpe ponds are stocked with game species of fish including large mouth bass (*Micropterus salmoides*), catfish (*Ictalurus* spp.), brim, and perch. Non-game species of fish include killifish (*Heterandria formosa*), minnows (*Fundulus* spp.), shiners (*Notropis* spp.). bullhead (*Ictalurus* spp.) and mosquitofish (*Gambusia affinis*).

Approximately 885 acres of HAA, mostly located in the western portion of the Facility, are wetlands regulated as part of the Coastal Plain-National Wetlands management system under the U.S. Fish and Wildlife Service (Houston 1991). It is assumed that there are no endangered species residing at HAA, but, no wildlife surveys have been conducted to confirm this. Several endangered species, the woodstork (*Mcytera americana*) and the bald eagle (*Haliaeetus leucocephalus*) have been seen on the Facility, but are not known to be residents (Houston 1991). The red-cockaded woodpecker (*Picoides borealis*) has not been seen on this facility, though this area of Georgia is considered to be within the historical range of the red-cockaded woodpecker (Metz 1991). Table 2.5 lists the species listed on the Federal and/or state endangered or threatened species list. These species are known to reside or are transient to the area including HAA and along the surface water migration pathway.

Table 2.5. Endangered or threatened species that either reside in or are transient to the area around HAA and along its surface water migration pathway. (source: Harley 1991 and GaDNR-FWHI 1991).

		Fede	eral	St	tate
Common Name	Scientific Name	Е	Т	Е	Т
Amber Darter	Percina Antesella	X			
American Peregrine Falcon	Falco Peregrinus Anatum	X		X	
American Alligator	Alligator Mississippiensis		X		
American Oystercatcher	Haematopus Palliatus				
Arctic Peregrine Falcon	Falco Peregrinus Tundrius		X		
Atlantic Ridley Turtle	Lepidochelys Kempi	X		X	
Bachmans Warbler	Vermivora Bachmanii	X		X	÷
Bald Eagle	Haliaeetus Leucocephalus	X		X	
Bannerfin Shiner	Notropis Leedsi				
Black Skimmer	Rynchops Niger	(e			
Black-Crowned Night-Heron	Nycticorax Nycticorax				
Black-necked Stilt	Himantopus Mexicanus				
Conasauga Logperch	Percina Jenkinsi	X	1		24
Curlands Warbler	7	X		X	
Eastern Mudminnow	Umbra Pygmaea				
Eastern Brown Pelican	Pelecanus Occidentalis			X	
Eastern Cougar	Felis Concolor Cougar	X		X	
False Killer Whale	Pseudorca Crassidens				
Finback Whale	Balaenoptera Physalus	X			
Florida Panther	Felis Concolor Coryi	X			
Georgia's Blind Cave Salamander	Haideotriton Wallacei				
Golden Topminnow	Fundulus Chrysotus				
Gray Bat	Myotis Grisescens	X		X	
Gray Kingbird	Tyrannus Dominicenis		22.00	11 2	

^{*} Possibly extinct Endangered

T Threatened

Table 2.5. Endangered or threatened species that either reside in or are transient to the area around HAA and along its surface water migration pathway. (source: Harley 1991 and GaDNR-FWHI 1991).

	2.1.10	Fed	Federal		tate
Common Name	Scientific Name	Е	Т	Е	Т
Green Sea Turtle	Chelonia Mydas		X		
Green-Fly Orchid	Epidendrum Conopseum				
Hawksbill Turtle	Eretmochelys Imbricata	X		X	
Humpback Whale	Megaptera Novaeangliae	X		X	
Indiana Bat	Myotis Sodalis	X		X	
Indigo Snake	Drymarchon Corais Couperi		X		X
Ivory-Billed Woodpecker*	Campephilus Principalis	X		X	
Kemp's Turtle		Х		X	
Kirtland's Warbler	Dendroica Kirtlandii	X		X	
Leatherback Turtle	Dermochelys Coriacea	Х		X	
Loggerhead Turtle	Caretta Caretta		X		
Manatee	Trichechus Manatus	Х		X	
Perigrine Falcon		X		X	
Piping Plover	Charadrius Melodus		X		
Red Wolf	Canis Rufus	X			2
Red-Cockaded Woodpecker	Picoides Borealis	X	=	X	
Right Whale	Balaena Glacialis	X		X	
Sea Lamprey	Petromyzon Marinus				
Seaside Sparrow	Ammodramus Maritimus	*) 5/	-		
Sei Whale	Balaenopter Borealis	X		22	
Sherman's Pocket Gopher	Geomys Pinetis Fontenalus	*		X	
Sherman's Pocket Gopher*	Geomys fontanelus			X	O
Short-nosed Sturgeon	Acipenser Brevirostrum	X		X	54
Smallfin Redhorse	Moxostoma Robustum				

Possibly extinct Endangered

T Threatened

Table 2.5. Endangered or threatened species that either reside in or are transient to the area around HAA and along its surface water migration pathway. (source: Harley 1991 and GaDNR-FWHI 1991).

2	0	Fede	eral	St	ate
Common Name	Scientific Name	Е	Т	Е	Т
Snail Darter	Percina Tanasi		X		-
Southern Cave Fish	Typhlichthys Subterraneus			X	
Southern Bald Eagle	Haliaeetus Leucocephalus	X		X	
Sperm Whale	Physeter Macrocephalus	X			
Spotfin Chub	Cyprinella Monacha		X		
Star-Nosed Mole	Condylura Cristata	Cristata			
Striped Newt	Notophthalmus Perstriatus	striatus			
Striped Mud Turtle	Kinosternon Baurii	on Baurii			
Tidewater Silverside	Menidia Beryllina				
West Indian Manatee	Trichechus Manatus	X		X	
Whitefin Shiner	Notropis Niveus				
Woodstork	Mycteria Americana	X			×
Yellow Flytrap	Sarracenia Flava				X
Yellow-Crowned Night-Heron	Nyctanassa Violacea				
Yellowfin Madtom	Noturus Flavipinnis		X		5
	ENDANGERED PLANTS				
Arrow-Wood	Viburnum Bracteatum	-		X	
Ashe Savory	Calamintha Ashei			=821	X
Bay Starvine	Schisandra Glabra				X
Biltmore Sedge	Carex Biltmoreana				X
Black-Spored Quillwort	Isoetes Melanospora	X			X
Blackwater Swamp	Blackwater Stream Floodplain Forest	2			
Bluestem	Schizachyrium Niveum		4		X

^{*} Possibly extinct Endangered

Threatened

Table 2.5. Endangered or threatened species that either reside in or are transient to the area around HAA and along its surface water migration pathway. (source: Harley 1991 and GaDNR-FWHI 1991).

Common Scientific		Fede	eral	S	tate
Name	Name	Е	Т	Е	Т
Buckthorn	Bumelia Thornei			X	
Canby Dropwort	Oxypolis Canbyi	X			X
Cooley Meadowrue	Thalictrum Cooleyi	X			
Croomia	Croomia Pauciflora	9			Х
Curtiss Loosestrife	Lythrum Curtissii	9		X	
Dwarf Witch-alder	Fothergilla Gardenii	e e			Х
False Pimpernel	Lindernia Saxicola			X	
False Dragon-Head	Physostegia Veroniciformis				X
Florida Willow	Salix Floridana				X
Florida Torreya	Torreya Taxifolia	X		X	
Fringed Campion	Silene Polypetala	X		X	
Georgia Rockcress	Arabis Georgiana			8	X
Georgia Plume	Elliottia Racemosa			X	
Glade-Cress	Leavenworthia Exiqua				X
Goldenseal	Hydrastis Canadensis			X	
Granite Rock Stonecrop	Sedum Pusillum				X
Green Pitcherplant	Sarracenia Oreophila	Х			
Hairy Rattleweed	Baptisia Arachnifera	X	0	X	2
Harper Fimbristylis	Fimbristylis Perpusilla	8		X	
Harper Dodder	Cuscuta Harperi	S 78)			X
Harperella	Ptilimnium Nodosum	х			
Hartwrightia	Hartwrightia Floridana				X
Hirst Panic Grass	Panicum Hirstii			X	
Hooded Pitcherplant	Sarracenia Minor				X

Possibly extinct

[∠] Endangered

T Threatened

Table 2.5. Endangered or threatened species that either reside in or are transient to the area around HAA and along its surface water migration pathway. (source: Harley 1991 and GaDNR-FWHI 1991).

		Fed	Federal		tate
Common Name	Scientific Name	Е	Т	Е	Т
Indian Olive	Nestronia Umbellula			751	X
Kral Water-Plantain	Sagittaria Secundifolia			X	72
Large-Flower Skullcap	Scutellaria Montana	X			X
Least Tern	Sterna Antillarum				
Mat-Forming Quillwort	Isoetes Tegetiformans	X			
Michaux Sumac	Rhus Michauxii	X	14		
Mohr Barbara-buttons	Marshallia Mohrii		X		
Needle Palm	Rhapidophyllium Hystrix	V			
Northern Pitcherplant	Sarracenia Purpurea			X	
Oconee-Bells	Shortia Galacifolia			X	
Oglethorpe Oak	Quercus Oglethorpensis				X
Open-ground Whitlow-Grass	Draba Aprica	ii l		X	
Parrot Pitcherplant	Sarracenia Psittacina			14	X
Persistent Trillium	Trillium Persistens	X		X	
Piedmont Barren Strawberry	Waldsteinia Lobata				X
Piedmont Water-Milfoil	Myriophyllum Laxum				X
Piedmont Ragwort	Senecio Millefolium				Х
Pink Ladyslipper	Cypripedium Acaule				
Plumleaf Azalea	Rhododendron Prunifolium				X
Pondberry	Lindera Melissifolia	X			
Pondspice	Litsea Aestivalis				X
Pool Sprite	Amphianthus Pusillus		X	X	
Purple Sedge	Carex Purpurifera				X
Relict Trillium	Trillium Reliquum	X			

Possibly extinct

Endangered T Threatened

Table 2.5. Endangered or threatened species that either reside in or are transient to the area around HAA and along its surface water migration pathway. (source: Harley 1991 and GaDNR-FWHI 1991).

Common Scientific		Fede	eral	St	State	
Common Name	Scientific Name	Е	Т	Е	Т	
Sedge	Carex Amplisquama				X	
Sedge	Carex Misera				X	
Shoals Spiderlily	Hymenocallis Coronaria			X		
Silky Camellia	nellia Stewartia Malacodendron					
Small Whorled Pogonia	Isotria Medeoloides	X				
Smooth Purple Coneflower	Echinacea Laevigata				X	
Soapberry	Sapindus Saponaria		V			
Southern Meadowrue	Thalictrum Debile				X	
Star-Flower	Trientalis Borealis			X		
Swamp Pink	Helonias Bullata		X			
Sweet Pitcherplant	Sarracenia Rubra			X		
Tennessee Yellow-eye Grass	Xyris Tennesseensis	X				
Three-Tooth Cinquefoil	Potentilla Tridentata			X		
Twinleaf	Jeffersonia Diphylla			X		
Variable-Leaf Indian Plantain	Cacalia Diversifolia				X	
Virginia Spirea	Spiraea Virgininana		X			
Wagner Spleenwort	Asplenium Heteroresiliens				X	
Whitetop Pitcherplant	Sarracenia Leucophylla				X	
Woods False Hellebore, Ozark Bunchflower	Veratrum Woodii			X		
Yellow Flytrap	Sarracenia Flava	* 1			X	
Yellow Ladyslipper	Cypridpedium Calceolus					
26	V					
2			34			

^{*} Possibly extinct Endangered

T Threatened

2.4 HYDROLOGY

2.4.1 Climatology

The climate of HAA is humid subtropical. Temperatures range from an average of 27 Celsius in July to 10 Celsius in December. The annual precipitation averages 124 cm. Under normal conditions, wind speeds rarely exceed five knots; however, thunderstorms are prevalent from May to September and may produce gusty surface winds over 25 knots from the northwest (McMaster et al. 1983).

2.4.2 Overland Drainage

HAA is located in the Little Ogeechee River (Forest River) watershed, which forms the Western boundary of HAA. The river is part of the Ogeechee River system. Surface drainage at HAA is conveyed to the Little Ogeechee River by a system of open drainage channels. This in turn flows south to the Atlantic via the Ogeechee system. Two small water bodies are located in the eastcentral portion of HAA, Hallstrom Lake and Borrow Pit. Hallstrom Lake is an unlined manmade structure (approximately 4 acres in area) for recreational use. It receives inflow via storm runoff and possibly groundwater infiltration during high water table conditions. Borrow Pit generally contains shallow standing water (no surface inlet or outlet) at a level consistent with the local water table (McMaster et al. 1983). Oglethorpe Lake (pond No. 29) was constructed in 1986 and opened as a fishery in 1987, it covers an area of approximately 10 acres and is located in the northwestern portion of the facility. Oglethorpe Lake receives storm water runoff from the area surrounding it. Both Oglethorpe and Hallstrom Lakes are fish-stocked recreational waters (Brice 1991).

2.4.3 Potentially Affected Water Bodies

Waterbodies located within HAA boundaries include Hallstrom and Oglethrope Lakes. Both lakes receive storm runoff and possibly groundwater infiltration. Lamar Canal is located along the northwestern boundary of the facility. It receives stormwater runoff and ultimately discharges to the Little Ogeechee River. The Little Ogeechee River receives surface drainage from HAA through a series of open drainage channels located throughout the Facility. The STP at HAA is connected to the City of Savannah sewer system and discharges to the Savannah River at Bull and Stephenson streets in Savannah. Discharge data (Appendix B) from the HAA sewage treatment plant indicates that the effluent meets NPDES requirements.

Due to tidal influence, the surface water migration pathway includes a 15 mile downgradient region and a fifteen mile upgradient region for the Little Ogeechee and Savannah Rivers. One surface water

intake on the Savannah River is located approximately thirteen miles upgradient from the point of entry of the HAA STP effluent. The surface water is primarily for industrial use.

The Little Ogeechee River is used primarily for recreational purposes but it has very little public access. The Savannah River and its tributaries are used for both industrial and recreational purposes. Commercial use is not permitted on restricted areas of the Savannah River. Recreational harvest areas are shown in figs. 2.13, 2.14, and 2.15 for the Savannah River, Ossawba Sound, and Wassaw Sound. Fig. 2.16 shows the commercial and sport bait shrimp zones for the Savannah area. Surface water quality reports collected from the Lathrop Avenue Booster Station indicate that contamination from the HAA STP effluent is not evident in the Savannah River (Appendix B). Water Discharge records for the Ogeechee River basin and the Savannah River basin are shown in Appendix B.

2.5 REGIONAL AQUIFER CHARACTERISTICS

2.5.1 Aquifer Description

Groundwater is the principle source of water in the thirteen-county coastal area of Georgia. There are two groundwater systems in the vicinity of HAA. The Floridan aquifer (formerly known as the Principal Artesian aquifer) and the shallow sand aquifer (Fig. 2.17). The Floridan aquifer consists of limestone units of the Miocene, Oligocene, and Eocene ages. The shallow sand aquifer is vulnerable to surface contamination because the upper part of the aquifer is unconfined and is overlain by a sandy overburden. Fig. 2.18 is a composite geological column for the Savannah area. The shallow sand aquifer ranges in depth from just below the ground surface to approximately 55 meters; it is separated from the lower Floridan aquifer by a relatively impermeable confining layer consisting of the Hawthorn formation (clay with interbedded dolomitic limestone). Depth to the Floridan aquifer ranges from 80 to 140 meters in the HAA vicinity. The rocks of the Floridan aquifer crop out in a belt 60-100 miles northwest of Sayannah, and this outcrop belt marks the recharge area for the aquifer. This aquifer consists of the Talahatta Formation, (the lower confining bed), the Lisbon Formation, (the lowermost unit of the aquifer in some areas and part of the lower confining bed in other areas), and the Gosport Sand, the Upper Eocene Ocala Limestone (the most productive zone of the aquifer), the undifferentiated limestones of Oligocene age (also a productive unit), the Lower Miocene Tampa Limestone equivalent (the uppermost unit of the aquifer) and the Middle Miocene Hawthorn Formation (the upper confining bed, as shown in Fig. 2.19 (AEHA 1988).

FIGURE 2.13. CHATHAM RECREATIONAL SHELLFISH HARVESTING AREAS FOR THE SAVANNAH RIVER TYBEE ISLAND AREA

FIGURE 2.14. CHATHAM RECREATIONAL SHELLFISH HARVEST AREA CLASSIFICATIONS, NORTHERN PORTION

FIGURE 2.15. CHATHAM RECREATIONAL SHELLFISH HARVEST AREA CLASSIFICATIONS, SOUTHERN PORTION

FIGURE 2.16. COMMERCIAL AND SPORT BAIT SHRIMP ZONES FOR THE SAVANNAH RIVER AND WASSAW SOUND AREAS

FIGURE 2.17. AQUIFER SYSTEMS IN THE SAVANNAH VICINITY

FIGURE 2.18. COMPOSITE GEOLOGICAL COLUMN OF HUNTER ARMY AIRFIELD

FIGURE 2.19. GENERAL STRATIGRAPHIC SECTION OF SEDIMENTS UNDERLYING THE REGION

Regional groundwater flow direction of the Floridan aquifer is greatly influenced by the heavy withdrawals of water by the city of Savannah for potable supply. This results in a flow direction most likely to be to the northeast. The shallow sand aquifer's direction of flow is generally from higher elevations to nearby streams. Local recharge of the shallow sand aquifer occurs through the bottom of streambeds and by rainfall infiltration. Recharge of the Floridan aquifer occurs upland. Low permeability of the confining layer impedes the infiltration of water from the shallow sand aquifer downward to the principal artesian aquifer. Although they are separate, an exchange of water may occur between the shallow sand aquifer and the Floridan aquifer under certain conditions (McMaster et al. 1983)

2.5.2 Aquifer Use

Potable Water. All of the wells at HAA pump from the Floridan aquifer. There are nine deep potable wells as can be seen in Fig. 2.20. Two water wells are in the cantonment area, and seven water wells occur in the outlying areas. Two of the outlying wells are not in use. The total pumping capacity is 5,494,000 gal/d and the total storage capacity is 822,080 gal (AEHA 1988). Potable water consumption at HAA is 1,017,058 gallons per day; the average per capita consumption was 252 gal/d (AEHA 1989).

The two deep potable wells, located in the cantonment area are the primary HAA potable water system. All of these wells are reportedly protected from surface runoff and properly constructed to prevent contaminated water or deleterious material from entering the well. Water treatment at the two main Post wells consists of chlorination and fluoridation automatically performed at each well site. The outlying facilities on the Post are supplied with water from individual wells. Water treatment consists of automatic chlorination at each outlying well. Table 2.6 lists the characteristics of all the wells on HAA (AEHA 1988). Table 2.7 lists groundwater uses for Chatham County. The City of Savannah has eight water systems with a total of 38 wells. Nineteen of these wells are within four miles of HAA; well characteristics for these wells are listed in Table 2.8 Analytical data for the City of Savannah potable wells is in Appendix B. There are 65,000 connections in the city; residential connections account for 58,500. The population served by the water system in Savannah is approximately 149,175. Chatham county owns and operates approximately fourteen wells, all of which tap into the Floridan aquifer at approximately 600 ft. Eight of these wells are within 4 miles of HAA. This system services a population of approximately 7936. The county system has 3200 connections, most of which are residential. (Dalson 1991). Since the rural areas are to the west and north of the facility and most of the private wells in the county are used by people in rural areas, it can be assumed that most of these wells are upgradient from HAA. There are over 1400 private wells scattered throughout the county. One hundred and fifty two of the private wells classified as community and noncommunity in Chatham Co. are permitted wells serving a population of approximately 72, 861. No further information is available on the permitted wells or the

FIGURE 2.20. MAP SHOWING APPROXIMATE LOCATIONS OF POTABLE WATER WELLS AT HUNTER ARMY AIRFIELD, GA.

Table 2.6 HUNTER ARMY AIRFIELD WELL CHARACTERIZATION

	3	,		20		sei se		Standby		
Well	Diameter (Inches)	Yr. of Constr	Location Bldg. No.	Provides Water for	Depth (Feet)	Depth (Feet)	Flow (Gpm)	Flow (Gpm)	Water Storage Facilities, Type	Water Storage Capacity, (Gallons)
Canto	Cantonment Area:			8					20	
-	12	1940	711	Main Post	550	250	1,300	1,300	Elevated	100,000
73	12	1942	1205	Golf course	009	250	1,300	1,300	Elevated	200,000
				94.					٠	
Outlyi	Outlying Areas:					8			ē	
8	4	1952	8455	FAA Bldg. and outdoor Recreation	360	40	30	N/A	Pressure Tank	1,000
4a	4	1952	8581	Air National Guard 702nd Radar	300	92	80	N/A	Pressure Tank	1,000
5	4	1955	8641	Horse Stables	380	85	30	N/A	Pressure Tank	008
6 We	6 Well abandoned; no information available	о informati	on available							
7	4	1960	8703	Lotts Island	450	330	70	N/A	Pressure Tank	5,000
∞	4	1957	8632	Ammunition supply point and Saber Hall	370	255	80	80	Elevated	15,000
6		1956	8661	Fire pump, Saber Hall						

Source: Environmental Program Review No. 32-24-7038-89, 1-12 August 1988.

Table 2.7. PUBLIC WATER SUPPLIES IN SOUTHEAST GEORGIA

CHATHAM COUNTY

Population: 216,935 (1990 Census)

Population served by public supply: 215,890

Acres irrigated: 930

Hydroelectric use (Mgal/d): 0

WITHDRAWALS IN MILLION GALLONS PER DAY							
	Public Supply	Domestic and Commercial	Industry and Mining	Irrig- ation	Live- stock	Thermoele ctric	TOTALS
Groundwater	31.31	2.69	36.06	1.3	0.01	2.31	73.68
Surface water	34.5	0	37.16	0.28	0.02	350	421.96
Totals	65.81	2.69	73.22	1.58	0.03	352.31	495.64

Withdrawals by Major Public Suppliers (Mgal/d) within 4 miles of HAA:

			No. of
	GW	SW	Supply Wells
Chatham county	0.89	0.00	14
HAA	1.03	0.00	8
City of Savannah	23.88	0.00	38
Savannah Ind. & Dom. Water Syst.	0.00	34.5	0
Town of Thunderbolt	0,43	0.00	2 .
Town of Vernonberg ¹			

Withdrawals by Major Industrial Groups (Mgal/d) within the county:

	GW	SW
Mining	0.01	0.00
Construction	0.15	0.00
Food	3.41	0.00
Lumber	0.06	0.00
Paper	23.89	25.00
Chemicals	7.07	12.16
Petroleum	0.72	0.00
Stone, Clay	0.17	0.00

¹ Information not available at the time of this report

TABLE 2.8. Well Characteristics For City of Savannah Potable Water Wells Within Four Miles of Hunter Army Airfield

Well No.	Bore Depth in feet	Well Capacity ¹ in Gal/Min	Casing Depth in feet
1	1006	1300	300
2	540	700	244
3	700	1875	220
4	700	2750	256
5	900	2850	265
6	750	1020	240
7	525	2880	200
9	710	1550	267
12	550	1600	265
13	1000	1300	270
14	800	700	338
15	414	1000	252
23	639	1100	320
25	540	1100	287
26	580	1340	308
27	550	1470	321
29	620	1235	311
30	608	1500	331
31	498	1000	340

¹ Well capacity is with well pumping into system against 60 psi static head.

unpermitted wells. Fig. 2.21 shows the location of U.S. Geological Survey Groundwater Site Inventory (GWSI) Database wells as well as potable water wells in the City of Savannah, Veronburg and Chatham County within 4 miles of HAA.

Monitoring. In 1980, groundwater monitoring wells were drilled at depths ranging from 50-100 ft below ground level in the shallow sand aquifer around the sanitary landfill at HAA. These wells were required by Ga-EPA for the 1980 reporting and closure of this site. Samples collected and chemically analyzed showed no groundwater quality problems and the landfill was closed. A review of soil boring data indicated that the groundwater level ranged from 5.7 to 18.6 ft below the surface. The soils ranged from clean sands to fat clays (AEHA 1988).

Groundwater supplies from the potable deep artesian wells within HAA boundaries are reportedly of good quality, having a relatively constant temperature and free from microbial contamination and sediment. This water is moderately hard to hard and is treated by chlorination and fluoridation. Hydrogen sulfide is detectable but does not pose a problem (AEHA 1988).

In 1987, the Synthetic Organic Chemicals Survey (SOCS) was initiated by the Office of the Surgeon General (OSG). The purpose of the survey is to obtain an organic pollutant scan for all Army-owned or Army-operated drinking water wells in order to ascertain the nature and magnitude of any local aquifer contamination caused by past practices. A copy of the SOCS report for HAA is included in Appendix B. All known sources of groundwater that could be used to supply drinking water were tested. Regulated contaminants were found in five of eight wells sampled. However, all of the contaminants were below the current or proposed EPA maximum contaminant levels (AEHA 1991).

3. TARGET ANALYSIS

3.1 SURFACE WATER MIGRATION PATHWAY

The region surrounding HAA is largely estuarine with many intracoastal waterways. The major population hub is the City of Savannah. There are no surface water intakes used for drinking water in the area. However, most of the surface waters are used for industrial, commercial and recreational purposes. As a receptacle of the effluent from the sewage treatment plant at HAA, the Savannah River is a potential target of contamination; however, no documented incidents of contaminant release have occured. Tidal effects on the Savannah River extend up to Ebenezer landing well beyond the 15-mile surface migration pathway. The population targeted for potential exposure is approximately 232,422. This population is based on those people in Chatham County, Georgia and Jasper County, South Carolina, who may contact the water because they live close to it, work on or near it or use it for recreation.

Drainage channels on HAA drain directly into the Little Ogeechee River. No surface water intakes are located on the Little Ogeechee. It is used mostly for recreational purposes; however, there is little public access. Tidal influence affects the Little Ogeechee River to Eden, well beyond the 15-mile migration pathway. The two lakes located on the Post, Hallstrom and Oglethorpe, are used for recreation.

3.2 GROUNDWATER MIGRATION PATHWAY

Evaluation of groundwater use within 4 miles of HAA reveals eight wells on HAA, nineteen water wells owned by the City of Savannah, and nine water wells owned by Chatham County. It is estimated that within 4 miles of HAA, there are 1200 privately owned unpermitted wells and approximately 156 privately owned permitted wells. The total population potentially affected by groundwater contamination is 182,016.

3.3 AIR MIGRATION PATHWAY

HAA is situated in the Savannah-Beaufort Interstate (Georgia-South Carolina) Air Quality Control Region (AQCR). Those portions of the AQCR which contain HAA have been classified by USEPA as "better than National Ambient Air Quality Standards (NAAQS)" for total suspended particles (TSP) and sulfur dioxide (SO₂); and "cannot be classified as better than NAAQS" for carbon monoxide (CO), ozone (O₃), and nitrous oxide (NO) (AEHA 1988).

HAA is permitted under the Ga-DNR permit number 9711-025-6356-0, to operate nine boilers firing natural gas, or number 2 fuel oil and associated fuel storage tanks. Spray painting operations at the facility produce volatile organic compounds (VOC) emissions. It has not yet been determined if these emission exceeds the 100-ton/yr limit and are consequently, subject to regulation under DNR regulations Chapter 391-3-1-.02 (2)(y).

Small-scale industrial operations at HAA that may adversely affect air quality include cold-bath solvent cleaning, woodworking operations, painting and construction/renovation projects. No permits have been required for these operations. The Georgia DNR maintains and operates numerous ambient air quality monitoring stations throughout the state (AEHA 1988). Monitoring data for those stations in

proximity to HAA are presented in Appendix B. The population potentially affected within 4 miles is 182,016.

3.4 ON-SITE EXPOSURE

The potentially affected population for on-site exposure includes the effective population on HAA as well as persons living close to HAA. This population is estimated to be approximately 7500. Exposure could come from recreational use of the two lakes located on the Post, groundwater, VOC emission from solvent cleaning baths, woodworking operations, painting, and construction.

4. FIELD INVESTIGATIONS

Field investigations were not conducted as part of this preliminary site investigation. Data from previous investigations were used, however, where possible to aid in the assessment process.

5. SUMMARY

Hunter Army Airfield is located adjacent to the City of Savannah, Chatham County, Georgia. The Facility covers an area of 2185 hectares within the Southern Coastal Plain physiographic province. HAA is underlain by a moderately thick wedge of unconsolidated and semiconsolidated sediments that dip towards the coast. Sediments range in permeability from low to moderate and consist of a sandy surface layer over a subsoil which may be sandy, clayey, loamy or a combination thereof. Potentially affected targets include human, animal, and plant populations on or near the facility. The possible pathways for contamination are groundwater, surface water, soil and air. There are 24 potential sources that exist on HAA.

Twenty-four waste sites have been identified on the Facility. Of these sites, 22 occur in the cantonment area within 1-mile of each other. The remaining 2 sites occur in the outlying areas. The cantonment area sites include, USTs, above ground waste solvent and oil tanks, STP, vehicle washracks, pod system storage areas, and a drum storage yard. A sanitary landfill and a fire training pit occur in the outlying areas. Several of the waste sites were investigated and found to have leaking USTs. Site investigations were begun to assess the extent of contamination and determine what steps to take to remediate the areas. These sites include the base gas station (Building 133), the Tactical Equipment Shop and Refueling Station (Building 1343), and the Transportation Motor Pool (Building 710) and a Corrective Action Plan (CAP) has been developed for each. The fire training pit is also being evaluated to determine the extent of contamination due to waste fuel spillage. Further investigation and monitoring is needed at these sites to evaluate the environmental conditions in the areas.

REFERENCES

- AEHA (U.S. Army Environmental Hygiene Agency) 1991. HSHB-ME-WR, Memorandum Subject: Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield.
- AEHA (U.S. Army Environmental Hygiene Agency) 1989. "Water Quality Consultation No. 31-62-0140-90 Ft Stewart & Hunter Army Airfield, 13-17 November 1989."
- AEHA (U.S. Army Environmental Hygiene Agency) 1988. "Environmental Program Review No. 32-24-7038-89, 24th Infantry Division (Mechanized) Fort Stewart and Hunter Army Airfield, Ft. Stewart, GA 1-12 August 1988."
- AEHA (U.S. Army Environmental Hygiene Agency) 1987. "Hazardous Waste Study No. 37-26-0127-88. Investigation of Soil Contamination, Ft. Stewart, Georgia, 24-31 March 1987."
- AT&E (Atlanta Testing and Engineering) 1991a. Corrective Action Plan, 90% Draft, Hunter Army Airfield Building 133 Area, Contract DACA21-91-0001, Executive Summary, December.
- AT&E (Atlanta Testing and Engineering) 1991b. Corrective Action Plan, 90% Draft, Hunter Army Airfield Building 710 Area, Contract DACA21-91-D-0001, Executive Summary, October 1991.
- Brice, Thomas November 8 1991. Ft. Stewart Fish & Wildlife Dept. Telephone Conversation.
- COE (United States Army Corps of Engineers), Savannah District 1991. "Phase II Site Investigations Tactical Equipment Shop Refueling Station Building 1343, Hunter Army Airfield, Savannah GA," Draft Report, April.
- Dalson, Brooks 1991. Savannah Office of Public Works. Telephone Conversation. November 26, 1991.
- Georgia Department of Natural Resources-Freshwater Wetlands Heritage Inventory 1991. List of Threatened and Endangered Species.
- Harley, Dwight November 20, 1991. Georgia Department of Natural Resources-Division of Non-Game Species, Telephone conversation.
- Higginbotham & Associates PC Mobilization Land Use Maps HAA 1988.
- Houston, Thomas 1991. Department of Environmental Hygiene, Environmental Coordinator. November 8, 1991.
- Hunter/ESE 1990. "Final Contamination Evaluation/Closure Plan, Ft. Stewart Fire Training Areas, Savannah, Georgia," No. 3-90-2018-0400, November.
- Hunter/ESE 1989. "Final Work Plan Contamination Evaluation/Closure Plan, Ft. Stewart Fire Training Areas, Savannah, Georgia," No. 3-90-2018-0200, November.

REFERENCES (continued)

- Krause, R.E., S.E. Matthews and H.E. Gill 1984. "Evaluation of the Ground-water Resources of Coastal Georgia Preliminary Report on the Data Available as of July 1983," Georgia Department of Natural Resources, Environmental Protection Division, Georgia Geological Survey, Atlanta.
- McMaster, et al. 1983. "Installation Assessment of Headquarters, 24th Infantry Division and Fort Stewart," GA Report No. 334, Environmental Science and Engineering, Inc.
- Metz, Pat 1991. US-FWS Personal Conversation November 15, 1991.
- Quinn, Al 1991. City of Savannah Metropolitan Planning Commission. October 31, 1991.
- RMT, Inc. 1991. "Design Recommendation Report, Subsurface Remediation at the Hunter Army Airfield Base Gas Station, Hunter Army Airfield, Georgia," June.
- Tracer Research Corporation 1990a. Tracer Leak Test, Five Underground Storage Tanks, Hunter Army Airfield, Savannah, Georgia. Hunter.Rep B-917-90-W, February.
- Tracer Research Corporation 1990b. Tracer Leak Test Four Underground Storage Tanks Hunter Army Airfield, Savannah, Georgia. COEHAAF.Rep 1-90-156-T, March.
- Tracer Research Corporation 1990c. "Tracer TightTM Leak Test of Two Underground Storage Tanks Hunter Army Airfield, Building 133, Savannah, Georgia," 384THAAF.REP 1-90-384-T, July.
- Tracer Research Corporation 1990d. "Shallow Soil Gas Investigation, Hunter Army Airfield, Buildings 133 and 710, Savannah, Georgia," 384HAAF.MSG 1-90-384-S, July.
- U.S. Army 1991. "Guide to Military Installations in the United States, November 4, 1991," Margaret Ruth, ed. U.S. Army Publishing Co., Springfield, Va.
- USATHAMA (U.S. Army Toxic and Hazardous Materials Agency) 1988. "USATHAMA Property Report, Hunter Army Airfield, Property No. 13070," April 12.
- USGS (U.S. Geological Survey) 1990. "Water Resources Data, Georgia, Water Year 1990," Report GA-90-1.

APPENDIX A
SI FORM

APPENDIX

SITE INSPECTION REPORT

Basic Information

Facility Name: Hunter Army Airfield	
EPA ID# CERCLIS	
City Savannah County Chatham State GA	
Facility Commanding Officer or Chief Executive Officer Major General Barry R. McCaffrey Address: Headquarters, 24th Infantry Division (Mechanized) and Ft. Stewart Ft. Stewart, Georgia 31314-5000 Phone # (606) 293-3911	
Facility Environmental Officer or Coordinator Tom Houston, Environmental Coordinator Address:	
Phone # (919) 767-2010	
Facility Environmental Command or Agency Contact same as above Address:	
Phone #	
Facility Major Command or Headquarters Contact Address:	
Phone #	
Facility Primary Mission or Purpose: Provide support facilities, conduct training opportunities and prepare to mobilize and deploy the 24th ID (m)	
Secondary Mission or Purpose:	

y Facility Ope	ste Types Generate erations: oil, solvents, fuels	ed e empty pesticide containers	
Other Hazardor Present on Faci			
CERCLA 103C		RCRA PART A	RCRA PART B
The state of the s		Submitted? (Date)	Submitted? (Date)
	itor	a (check where applicable): X Small Quantity Generator Corrective Action Order	Interim Status Violations
Other Permits:		# 9711-025-6356-0	
RCRA Correcti	ve Actions:		

	2		
ERCLA Reme	dial Actions:	2	
9			
9).
			- was
			8 II

Environmental Information

Land Uses Within Facility Boundary:
Urban Suburban Agricultural X Recreational Institutional
Potable Water System Serving Within the Facility Boundary:
Name: Principle Artesian Aquifer - 2 wells 1 & 2 BLDG 711, and 1205 are the only ones connected to the distribution system
Number of Connections:
Source Type: Groundwater X Surface Water
Intake,X _ Well, or Well Field Distance (feet) from Nearest Facility Boundary:
Land Uses With 4-Miles of Facility Boundary:
Intake, X Well, or Well Field Distance (feet) from Nearest Facility Boundary: 3/4 mile (near Armstrong St. College)
All Municipal Systems Serving Groundwater Within 4 miles or Surface Water Within 15 miles of Facility Boundary:
Name: City of Savannah
Number of Connections: 65K
Source Type: Groundwater X Surface Water
Intake,X Well, or Well Field Distance (feet) from Nearest Facility Boundary:
Name: Chatcham County
Number of Connections: 1600
Source Type: Groundwater X Surface Water
Intake X Well, or Well Field Distance (feet) from Nearest Facility Boundary:
Number of Private Potable Groundwater Wells Within 4 miles of Facility Boundary: -152 permitted wells -500 nonpermitted wells

Distance (feet) to Private Potable Groundwater Well Closest to Facility Boundary:	9 at
Number of Houses Served by Private Potable Groundway Wells Within 4 miles of Facility Boundary:	ater
Estimate Total Population Served by Groundwater Within 4 miles of Facility Boundary:	
Estimate Total Population Served by Surface Water Within 15 miles of Facility Boundary:	0
Sensitive Environments on Facility:	
X Wetlands Endangered or Threatened Species Commerical, Subsistance, or Recreational Fishi	Critical Habitat or Area X Fisheries National Monument or Park
Sensitive Environments Within 1-mile of Facility Bound	dary:
 X Wetlands X Endangered or Threatened Species X Commerical, Subsistance, or Recreational Fishing 	Critical Habitat or Area X Fisheries National Monument or Park
Sensitive Environments from 1 mile to 15 miles of Facil	lity Boundary:
 X Wetlands X Endangered or Threatened Species X Commerical, Subsistance, or Recreational Fishing 	X Critical Habitat or Area X Fisheries X National Monument or Park
Facility on: 10-year 100-year	r 500-year Floodplain
Distance (feet) to Nearest Off-Facility Residence:	
Number of Workers Living on Facility:	4600
Number of Other Residents on Facility:	1208
Number of Workers Working on Facility:	7200
Describe the Facility Access Controls:	

[]

Geologic and Hydrogeologic Information

Local Bedrock Geophysical Features:
None Karst Fractures Solution Pits None Faults
Predominant Local Unsaturated Zone Soil Type:
John John Lone John Hypo.
X Sands X Silts X Clays
Local Average Depth (feet) to Water Table:
Local Aquifers in Descending Order:
Water Table Aquifer - Name Shallow Sand Aquifer
Depth (feet) Below Land Surface
Thickness (feet)
Aquifer - Name Principle Artesian Aquifer (Ocala)
Depth (feet) Below Land Surface
Thickness (feet)
A multi-
Aquifer - Name
Depth (feet) Below Land Surface Thickness (feet)
Aquifer - Name
Depth (feet) Below Land Surface Thickness (feet)
Local Geologic Formations in Descending Order: From EPR '88 p. D-3
Unit Name Middle Miocene Hawthorn Formation
Depth (feet) Below Land Surface zero
Thickness (feet)
Unit Name Lower Miocene Tampa Limestone Depth (feet) Below Land Surface
Thickness (feet) 0-600 feet
Unit Name Undifferentiated Limestone of Oligocene Age
Depth (feet) Below Land Surface
Thickness (feet)
Unit Name Upper Eocene Ocala Limestone (most production zone of the aquifer)
Depth (feet) Below Land Surface
Thickness (feet) 0-155

Water Use Survey for Individual Residences

Name and	d address of n	esident(s)	H 2	*		
-						
()		2			
Theck wa	ater source(s)	used by resider	nt(s)			
. D	Orilled well		depth (feet)		water level (feet)	
. D	Oug well		depth (feet)		water level (feet)	
. S	pring	a .	Artesian _		Gravity _	
. Sı	urface Water				The state of the s	
Pı	ublic Supply					
O	Other					
heck wa	ater use(s) and	specify water	source of each			
D	rinking		Number of users	-	Source	
H	lousehold		Number of users	-	Source	
In	тigation		acres	сгор	Source	
O	ther					
ny probl	lems with water	er?			2	
	-		*		· · · · · · · · · · · · · · · · · · ·	
ow long	have sources	been is use?	S			
ny moni	itoring wells o	n property? _			, , , , , , , , , , , , , , , , , , ,	-
epared b	by			Dat	e	
omments	s:				a a	

APPENDIX B

ANALYTICAL RESULTS

DEPARTMENT OF THE ARMY

U. S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND. MARYLAND 21010-6422

DO NOT REMOVE FROM FACILITY

Ĩi.

REPLY TO ATTENTION OF HSHB-ME-WR (40)

14 JAN 1991

MEMORANDUM FOR Commander in Chief, FORSCOM, ATTN: FCEN-RDO, Fort McPherson, GA 30330-6000

Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield

1. References:

- a. Letter, USAEHA, HSHB-ME-WR, 25 February 1987, subject: Synthetic Organic Chemicals Survey (SOCS).
- b. Memorandum, USAEHA, HSHB-ME-WR, 24 August 1990, Drinking Water Surveillance Program.
- c. Title 40, Code of Federal Regulations (CFR) 141, National Drinking Water Regulations, 1990.
- d. The Installation Restoration Program Toxicology Guide, Volume 1, Biomedical & Environmental Information Analysis, Oak Ridge Tennessee, July 1989.
- Background. The SOCS was initiated in 1987 (reference la) under a tasking from the Office of The Surgeon General (OTSG), with the concurrence of the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA). The primary purpose of the survey is to obtain an organic pollutant scan for all Army owned or operated drinking water wells, in order to determine the nature and magnitude of any local aquifer contamination caused by past practices. The SOCS is not a part of the Drinking Water Surveillance Program (DWSP). Your installation should be making arrangements to have organic monitoring performed for regulatory compliance, as discussed in reference 1b.
- Results. Enclosed are the results of the SOCS analyses which were performed on water samples collected from the drinking water wells at Hunter Army Airfield. Summarized in Table 1 are the organic categories analyzed during the initial and confirmatory sampling phases. Presented in enclosure 1 is a list of all SOCS analyzed and their detection limits. A list of significant contaminants detected during the initial and confirmatory sampling is presented in Table 2. Other contaminants detected are listed in enclosure 2. All values are in micrograms per liter (ug/L).

HSHB-ME-WR

SUBJECT: Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield

TABLE 1. Wells Sampled.

		Pest:	lcide	Herbi	cide	VO	Cs	SVO	Cs	Explo	sives
Well	No.	I	С	I	С	I	С	I	C	Ī	С
1 - 8		x		X		x	X	x	x	x	X

I - Initial sample, April 1988.

C - Confirmatory sample, July 1990.

VOC - Volatile Organic Compounds

SVOC - Semivolatile Organic Compounds

TABLE 2. Significant Synthetic Organic Chemicals Detected, ug/L.

Well No.	Chemical	Initial	Confirm
1 .	Dichloromethane	BDL	0.9B
2	Dichloromethane	0.69B	BDL
5	Chloroform	8.93	BDL
	Bromodichloromethane	5.35	BDL
	Dibromochloromethane	3.05	BDL
	Bromoform	0.57	BDL
7	Dichloromethane	0.68B	BDL
8	Chloroform	7.75	BDL
	Bromodichloromethane	5.75	BDL
	Dibromochloromethane	4.46	BDL
2	Bromoform	0.93	BDL
	Propazine	0.235	BDL

B - compound found in blank sample.

BDL - below detection limit of 0.5 ug/L.

^{4.} Water Systems. Wells No. 1 and 2 serve as the primary source of potable water supply for the cantonment area of Hunter Army Airfield. The water supply system is regulated as a community water supply (system which serve year-round at least 15 service connections or 25 residents). A separate water system using well No. 4A serves the Air National Guard which is regulated as a non-transient non-community water system (NTNCWS) (system which serves the same 25 or more people at least 6 months of the year). All other wells provide water to Individual water systems which support recreational areas and are regulated as noncommunity water supplies.

HSHB-ME-WR SUBJECT: Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield

- 5. Regulatory Standards. The following health-based Maximum Contaminant Levels (MCLs) for drinking water have been established or proposed under the National Primary Drinking Water Regulations for the organic chemicals detected.
- a. The United States Environmental Protection Agency (EPA) has proposed a MCL for dichloromethane (methylene chloride) of 5 ug/L. These MCLs also apply to all community water systems and NTNCWS.
- b. Chloroform, chlorodibromomethane, bromoform, and bromochloromethane are regulated as part of the total trihalomethanes (TTHMs). The sum of the four regulated TTHMs must not exceed the EPA primary MCL of 100 ug/L. This MCL is applicable only to community water systems which serve populations greater than 10,000 and use a disinfectant to treat the water.
- c. The EPA has not established regulatory standards for propazine, a herbicide used for controlling annual weeds and grasses in sorghum. However, a lifetime health advisory level (HAL) of 10 ug/L has been established. A HAL represents a recommended maximum concentration of a contaminant in water that may safely be consumed over an average human lifetime.
- 6. Discussion and Conclusions. Regulated contaminants (see Table 2) were found in five of the eight wells sampled. However, all of these contaminants were below the current or proposed MCLs.
- a. Dichloromethane (methylene chloride) was found in the initial sampling of wells No. 2 and No. 8 at levels well below the proposed MCL. This contaminate was also found in the initial sampling blank at level above the detection limit. Confirmation testing did not identify dichloromethane as a contaminate. Therefore, dichloromethane is probably a laboratory contaminate and is of little concern.
- b. Low levels of all four regulated TTHMs were detected in wells No. 5 and No. 8 in the initial sampling. No TTHMs were detected in the confirmatory sampling. The SOCS samples were collected at the wellhead, before any treatment occurred. Usually, the maximum concentration of TTHMs occurs after chlorination, when the chlorine disinfectant combines with naturally occurring organic compounds in the water. TTHM concentration in the water at the point of consumption may be much higher than levels measured by SOCS. The TTHM regulations do not apply to the Hunter Army Airfield water system, but high levels of TTHMs are a health concern. The EPA is considering reducing the TTHM standard to 25 50 ug/L.

HSHB-ME-WR

SUBJECT: Results of Synthetic Organic Chemicals Survey for Hunter Army

- c. The pesticide propazine was detected during the initial sampling of well No. 8 at a level slightly above the detection level and well below the HAL. This pesticide was not identified in the confirmatory sampling. This chemical does not represent a problem at this time.
- d. Low level organics (unregulated) and unknowns are often introduced into samples during sampling, storage and analytical procedures. A number of unknown and unknown aliphatic hydrocarbon compounds were detected in the confirmatory samples and in the blank samples but were not detected in the initial samples. These compounds are not considered significant at this time. The identified compounds which were not found in the blank sample are listed in enclosure 2. All of these compounds are solvents and don't pose a significant health risk at measured concentrations. These contaminates are not considered significant at this time. If any are detected during future sampling, further investigation maybe warranted.
- 7. It is possible that the results of this survey may be used to meet a phase of the EPA monitoring requirements for organic chemicals. The SOCS used EPA Method 524.2 for VOCs analysis. However, SOCS samples were taken at the wellhead (before any treatment), not at the point where the water enters the distribution system. Maximum levels of organics should occur at the wellhead, except for TTHMs (bromoform, chloroform, bromodichloromethane, and chlorodibromomethane). Your State or Federal regulatory authority will have to decide if the SOCS results are acceptable to fulfill the requirements.
- 8. All known sources of ground water which could be used to supply drinking water at your installation were tested. If any sources were not included in the survey, or are brought on line in the future, please contact this Agency to make arrangements for analyses.
- 9. Recommendation. Analyze for TTHM at points of consumption which provide maximum residence time in each of the systems to determine if the TTHM concentration increases significantly after chlorination. If TTHMs exceed the standard investigate remedial actions.
- 10. The point of contact is CPT David Jones or 2LT Paul Rawlins, this Agency, DSN 584-3816/3554.

FOR THE COMMANDER:

2 Encls

ROBERT S. RYCZAK

Robert S. Rycak

MAJ, MS

Chief, Water Quality Engineering Division

HSHB-ME-WR SUBJECT: Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield

CF:
HQDA(SGPS-PSP) (wo/encl)
HQDA(ENVR-E) (wo/encl)
DA, USAEHSC, ATTN: CEHSC-F (wo/encl)
CINC, FORSCOM, ATTN: FCMD-PC (4 cys)(w/encl)
CDR, HSC, ATTN: HSCL-P (wo/encl)
CDR, Hunter Army Alrfield, ATTN: DEH (2 cys) (w/encl)
CDR, MEDDAC, Ft. Stewart, ATTN: PVNTMED Svc (wo/encl)
CDR, DDEAMC, ATTN: PVNTMED Svc (2 cys) (wo/encl)
CDR, USATHAMA, ATTN: CETHA-TE-E (w/encl)
CDR, USATHAMA, ATTN: CETHA-RM(TIC) (2 cys) (w/encl)
CDR, USAEHA-S (wo/encl)

HSHB-ME-WR SUBJECT: Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield

SYNTHETIC ORGANIC CHEMICAL SURVEY Organic Chemicals Analyzed

TABLE 1. Volatile Organic Chemicals (ug/L).*

			-
CHEMICAL	DL	CHEMICAL	Dr
Dichlorodifluoromethane	0.50	Chloromethane	DL 0.50
Vinyl Chloride	0.50	Bromomethane	0.50
Chloroethane	0.50	Trichlorofluorometha	0.50
1,1-Dichloroethene	0.50	Methylene Chloride	0.50
trans-1,2-Dichloroethene	0.50	1,1-Dichloroethane	
2,2-Dichloropropane	0.50	cis-1,2-Dichloroether	0.50
Chloroform	0.50	Bromochloromethane	
1,1,1-Trichloroethane	0.50	Carbon Tetrachloride	0.50
1,1-Dichloropropene	0.50	Benzene	0.50
1,2-Dichloroethane	0.50	Trichloroethene	2000 CO CARARAMAN
1,2-Dichloropropane	0.50	Bromodichloromethane	0.50 0.50
Dibromomethane	0.50	Toluene	
1,1,2-Trichloroethane	0.50	Tetrachloroethene	0.50
1,3-Dichloropropane	0.50	Dibromochloromethane	0.50
1,2-Dibromoethane	0.50	Chlorobenzene	0.50
1,1,1,2-Tetrachloroethane	0.50	Ethylbenzene	0.50
Total Xylene	0.50	Styrene	0.50
Bromoform	0.50	Isopropylbenzene	0.50
1,1,2,2-Tetrachloroethane	0.50	Bromobenzene	0.50
1,2,3-Trichloropropane	0.50	n-Propylbenzene	0.50
2-Chlorotoluene	0.50	1,3,5-Trimethylbenzen	0.50
4-Chlorotoluene	0.50	tert-Butylbenzene	
1,2,4-Trimethylbenzene	0.50	sec-Butylbenzene	0.50
p-Isopropyltoluene	0.50	1,3-Dichlorobenzene	0.50
1,4-Dichlorobenzene	0.50	n-Butylbenzene	0.50
Naphthalene	0.50	1,2,3-Trichlorobenzene	0.50
1,2,4-Trichlorobenzene	0.50	Hexachlorobutadiene	
1,2-Dichlorobenzene		-Dibromo 3chlomores	0.50
Military Specific	2,20 1,2	2-Dibromo-3chloropropane	0.50
trans-1,3-Dichloropropene	0.50	Cig-1 3-Dichloron	A 5A
2-Chloroethylvinyl ether	0.50	cis-1,3-Dichloropropene 1,4-Dithiane	
	3.30	T' A-DICHTRUG	0.50

DL - Detection Limit

^{* -} EPA Method 524.2 was used for analyses.

HSHB-ME-WR

SUBJECT: Results of Synthetic Organic Chemiclas Survey for Hunter Army Airfield

TABLE 2. Semi-Volatile Organic Chemicals (ug/L).

CHEMICAL	DL1988	DL1990	CHEMICAL	DL1988	DL1990
2-Chlorophenol	10.	10.	Pheno l	10.	10.
2-Nitrophenol	10.	10.	2.4-Dimethylphenol	10.	10.
2,4-Dichlorophenol	10.	10.	4-Chloro-3-methylphenol	10.	10.
2,4,6-Trichlorophenol	10.	10.	2,4-Dinitrophenol	25.	25.
4-Nitrophenol	25.	25.	2-Methyl-4,6-dinitropheno	1 25.	25.
Pentach loropheno l	25.	50.	N-Nitrosodimethylamine	10.	10.
bis(-2-Chloroethyl)ether	10.	10.	1,3-Dichlorobenzene	10.	10.
1,4-Dichlorobenzene	10.	10.	1,2-Dichlorobenzene	10.	10.
bis(2-Chloroisopropyl)et	her10.	10.	Hexach loroethane	10.	10.
N-Nitroso-Di-n-propylami	ne 10.	10.	Nitrobenzene	10.	10.
Isophorone	10.	10.	bis(-2-Chloroethoxy)methan	ne10.	10.
1,2,4-Trichlorobenzene	10.	10.	Naphtha lene	10.	10.
Hexach lorobutadiene	10.	10.	Hexach lorocyclopentadiene	10.	10.
2-Chloronaphthalene	10.	10.	Acenaphthylene	10.	10.
Dimethyl phthalate	10.	10.	2,6-Dinitrotoluene	10.	10.
Acenaphthene	10.	10.	2,4-Dinitrotoluene	10.	10.
Fluorene	10.	10.	4-Chlorophenyl-phenylether	10.	10.
Diethylphthalate	10.	10.	1,2-Diphenylhydrazine	10.	10.
N-Nitrosodiphenylamine +	10.	10.	4-Bromophenyl-phenylether	10.	10.
Hexach lorobenzene	10.	10.	Phenanthrene	10.	10.
Anthracene	10.	10.	di-n-Butylphthalate	10.	10.
Fluoranthene	10.	10.	Pyrene	10.	10.
Benzidine	25.	25.	Butylbenzylphthalate	10.	10.
Benzo(a)anthracene	10.	10.	Chrysene	10.	10.
3,3'-Dichlorobenzidine	25.	25.	bis(2-Ethylhexyl)phthalate	10.	10.
di-n-octyl Phthalate	10.	10.	Benzo(b)fluoranthene	10.	10.
Benzo(K)fluoranthene	10.	10.	Benzo(a)py rene	10.	10.
Indeno(1,2,3-cd)pyrene	10.	10.	Dibenz(a,h)anthracene	10.	10.
Benzo(g,h,i)perylene	10.	10.			
Military Specific SVOC					
2,3-Dinitrotoluene	10.	10.	2,5-Dinitrotoluene	10.	10.
3,4-Dinitrotoluene	10.	10.	3,5-Dinitrotoluene	10.	10.
1,3,5-Trinitrobenzene	10.	10.	Diphenylamine	10.	10.
Di-Isopropyl-methylphospl	onate 10.	10.	2000 magazine (2000 magazine 2000 magazine 2		

DL1987 - Detection Limit 1988 DL1989 - Detection Limit 1990 * - EPA Method 8270 was used for analysis. + - Cannot be separated from Diphenylamine.

HSHB-ME-WR

SUBJECT: Results of Synthetic Organic Chemicals Survey for Hunter Army Airfield

TABLE 3. Pesticides and PCBs (ug/L).

CHEMICAL	DL 1988	DL 1990**	CHEMICAL	DL 1988*	DL 1990**
Heptachlor	0.05	0.06	Aldrin	0.05	0.16
Heptachlor epoxide	0.05	0.16	Dieldrin	0.05	0.24
Endrin	0.05	0.04	Methoxychlor	0.05	1.6
PCB (Aroclor 1016)	5.	0.8	PCB (Aroclor 1221)	5.	0.8
PCB (Aroclor 1232)	5.	0.8	PCB (Aroclor 1242)	5.	0.8
PCB (Aroclor 1248)	5.	0.8	PCB (Aroclor 1254)	5.	0.8
PCB (Aroclor 1260)	5.	0.8	alpha-BHC	0.05	0.2
Beta-BHC	0.05	0.2	delta-BHC	0.05	0.2
000	0.05		DOE	0.05	•••
DOT	0.05		Chlordane	0.5	1.2
Endrin Aldehyde	0.5	0.6	Lindane	0.05	0.08
Endosulfan I	0.05	0.6	Endosulfan II	0.05	0.6
Endosulfan Cyclic Sulfate	0.2	0.6	Toxaphene	5.	1.6
Atrazine	0.20	0.2	Propazine	0.20	0.2
Simazine	0.20	0.2	Alachlor	0.8	0.8
Hexach lorobenzene		0.8	0.P'-DOD	3.5	0.4
P,P'-DDO		0.4	0.P'-DDE		0.4
P,P'-00E		0.4	0,P'-DOT		0.6
P,P'-00T		0.6	cis-Chlordane		0.16
trans-Chlordane		0.16	Oxych lordane		0.16
Hirex		0.04	Diazinon		0.10
Methyl Parathion		0.6	Parathion		0.4
Malathion Ronnel		1.6 0.2	Chlorpyrifos (Dursba	n)	0.24

DL - Detection Limit

^{* -} EPA Methods 608 was used for analyses.
** - EPA Methods 505, 507, and 508 were used for analyses.

 $\begin{array}{ll} {\sf HSHB-ME-HR} \\ {\sf SUBJECT:} & {\sf Results} \ \ {\sf of} \ \ {\sf Synthetic} \ \ {\sf Organic} \ \ {\sf Chemicals} \ \ {\sf Survey} \ \ {\sf for} \ \ {\sf Hunter} \ \ {\sf Army} \ \ {\sf Airfield} \end{array}$

TABLE 4. Herbicides (ug/L).*+

CHEMICAL	DL 1988	
2,4-D	1.0	
2,4,5-TP (Silvex)	0.50	
2,4,5-T	0.50	

DL - Detection Limit
* AEHA/OECD/PAB SOP #16.2 was used for analysis.

+ Acid equivalent.

TABLE 5. Explosives (ug/L).

CHEMICAL	DL
HMX	100
RDX	30
Tetryl	5
2,4,6-Trinitrotoluene	1
2,6-Dinitrotoluene	1
2,4-Dinitrotoluene	1

DL - Detection Limit 1988 and 1990

OTHER SYNTHETIC ORGANIC CHEMICALS (ug/L)

4		WELL	WELL NO.	
CONTAMINATE	4	5	6	11_
3-Methylpentane*				1.4
Methylcyclopentane*				1.2
1,13 - Tetradecadiene**	30J	40J	16J	10J

^{* -} Initial sampling
** - Confirmatory Sampling
J - Estimated value.

B - Contaminate was also found in the blank sample. Detection limit for all contaminates was 0.50 ug/L.

		Groundwater Samples
Project	Identification	n <u>at Hunter AAF, Ga.</u>
Location	n of Sample HA	AF-GW-6
Date of	Sample 1/	14/81
Time of	Sample 5:	15 PM
Date of	Analyses 1/14	/81-2/3/81

	11 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	, simetimine about	
Parameter			
Arsenic	< 0.001	Turbidity (NTU)	24
Barium Cadmium	< 0.001	Fecal Coliform Bacteria (colonies/100 mls)	0
Chromium (VI) Fluoride	< 0.005	Chloride Copper	< 0.01
Lead Mercury	< 0.01 < 0.0005	Foaming Agents (MBAS) Hydrogen Sulfide	< 0.05
Nitrate (as N)	< 0.00 < 0.002	Iron Manganese	0.1
Selenium Silver	< 0.001	Sulfate TDS	224
Endrin Lindane	< 0.0001 < 0.0001	Zinc Color (apparent) units	< 0.01
Methoxychlor Toxaphene	< 0.001 < 0.001 < 0.01	Corrosivity Odor (TON)	n <u>on-corros</u> ive
2, 4-D 2, 4, 5- TP Silvex	< 0.001	pH (units) BOD ₅	2.5
Radium 226 (pCi/1) Radium 228 (pCi/1)		SS DS	2.1
Gross Alpha (pCi/l) Gross Beta (pCi/l)	2.6		

	, A sa		ındwate		
Project	Identification			AAF,	Ga.
Locatio	n of Sample	HAAF-C	GW-6		
Date of	Sample	1/15/8	31		
Time of	Sample	4:30 F	M		1 1011 101 1001
Date of	Analyses 1/14	/81-2/	/3/81	in modernice and	

		,	
Parameter			
Arsenic	< 0.001	Turbidity (NTU)	12
Barium	< 0.001	Fecal Coliform Bacteria (colonies/100 mls)	0
Cadmium Chromium (VI)	< 0.005	Chloride Copper	7 < 0.01
Fluoride Lead Mercury	0.38 < 0.01 < 0.0005	Foaming Agents (MBAS) Hydrogen Sulfide	< 0.05
Nitrate (as N) Selenium	< 0.01	Iron Manganese	0.02
Silver	< 0.001	Sulfate TDS	234
Endrin Lindane	< 0.0001	Zinc Color (apparent) units	12
Methoxychlor Toxaphene	< 0.001	Corrosivity n Odor (TON)	on-corrosive
2, 4-D 2, 4, 5- TP Silvex	< 0.01	pH (units) BOD ₅	1.5
Radium 226 (pCi/1) Radium 228 (pCi/1)		SS DS	0.9
Gross Alpha (pCi/l) Gross Beta (pCi/l)	0.6	J	

	Groundwater Samples
Project Identification	at Hunter AAF, Ga.
	AAF-GW-6
Date of Sample 1	/16/81
Time of Sample 4	:20 PM
Date of Analyses 1/14/	81-2/3/81

	**			
	<u>Parameter</u>	150 1		(a).
50.	Arsenic	< 0.001	Turbidity (NTU)	14
	Barium	2.1	Fecal Coliform Bacteria (colonies/100 mls)	2
	Cadmium	< 0.001	Chloride	7
	Chromium (VI)	< 0.005	2	
	Fluoride	0.45	Copper	0.01
	Lead	< 0.01	Foaming Agents (MBAS)	0.02
	Mercury	< 0.0005	Hydrogen Sulfide	0.1
	Nitrate (as N)	0.02	Iron	0.1
	Selenium	< 0.002	Manganese	0.02
	See		Sulfate	4
	Silver	< 0.001	TDS	214
æ	Endrin	< 0.0001	Zinc	0.01
	Lindane	< 0.0001	Color (apparent) units	9
	Methoxychlor	< 0.001)
	Toxaphene	< 0.001		<u>on-corros</u> ive
	2, 4-D	< 0.01	Odor (TON)	6
	2, 4, 5- TP Silvex	< 0.001	pH (units)	6.8
			BOD ₅	2.1
	Radium 226 (pCi/1)		SS	1.9
	Radium 228 (pCi/1)		DS	214 .
	Gross Alpha (pCi/1)	0.9	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 _
	Gross Beta (pCi/1)	0.8	a .	V 1

Project Identification Location of Sample	Groundwater Samples at Hunter AAF, Ga. HAAF-GW-7
Date of Sample	1/14/81
Time of Sample	2:40 PM
Date of Analyses 1/14	/81-2/3/81

All values are expressed as mg/l unless otherwise specified.

<u>Parameter</u>

	Arsenic	< 0.001	Turbidity (NTU)	10
	Barium	1.0	Fecal Coliform Bacteria	0
	Cadmium	< 0.001	(colonies/100 mls)	9
	Chromium (VI)	< 0.005	Chloride	
	Fluoride	0.50	Copper	< 0.01
×	Lead	< 0.01	Foaming Agents (MBAS)	0.02
	Mercury	< 0.0005	Hydrogen Sulfide	s
	Nitrate (as N)	0.02	Iron	1.6
	Selenium	< 0.002	Manganese	0.02
	Silver	< 0.001	Sulfate	3
	Endrin	< 0.0001	TDS	122
	Lindane	< 0.0001	Zinc	< 0.01
	Methoxychlor	< 0.001	Color (apparent) units	9
	Toxaphene	< 0.001	Corrosivity	non-corrosiv
		< 0.01	Odor (TON)	28
	2, 4-D	***************************************	pH (units)	6.6
	2, 4, 5- TP Silvex	< 0.001	BOD ₅	4.1
	Radium 226 (pCi/1)		SS	1.8
	Radium 228 (pCi/1)		DS	122
	Gross Alpha (pCi/l)	0.2		II
	Gross Beta (pCi/1)	0.5		
(4)	• •			

	* 1 * 1 * 1 * 1 * 1	Groundwater Samples
	Identification	at Hunter AAF, Ga.
Location	n of Sample	HAAF-GW-7
Date of	Sample	1/15/81
Time of		1:50 PM
Date of	Analyses 1/14	/81-2/3/81

	Parameter			
7	Arsenic	< 0.001	Turbidity (NTU)	7
	Barium	0.9	Fecal Coliform Bacteria (colonies/100 mls)	
	Cadmium	< 0.001	Chloride	8
	Chromium (VI)	< 0.005	and the second of the second	. 0 01
	Fluoride	0.52	Copper Foaming Agents (MBAS)	< 0.01
	Lead	< 0.01	S 285 W	0.02
	Mercury	< 0.0005	Hydrogen Sulfide	0.7
	Nitrate (as N)	0.02	Iron	2.1
8	Selenium	< 0.002	Manganese	0.03
	Silver	< 0.001	Sulfate	5
	Endrin	< 0.0001	TDS	143
	Lindane	< 0.0001	Zinc	< 0.01
		< 0.001	Color (apparent) units	11
20	Methoxychlor		Corrosivity	n-corrosive
	Toxaphene	< 0.001	Odor (TON)	37
	2, 4-D	< 0.01	pH (units)	6.8
	2, 4, 5- TP Silvex	< 0.001	BOD ₅	7.9
	Radium 226 (pCi/1)	· ·	, a	
	Radium 228 (pCi/1)	51 22	SS	2.7
	Gross Alpha (pCi/1)	0.2	DS	143
	Gross Beta (pCi/1)	0.9		· · · · · · · · · · · · · · · · · · ·
			2	1

Project Identification	Groundwater Samples
Location of Sample H	AAF-GW-7
Date of Sample 1	/16/81
Time of Sample 2	:00 PM
Date of Analyses 1/14	/81-2/3/81

<u>Parameter</u>	8	* "	
Arsenic	< 0.001	Turbidity (NTU)	6
Barium	0.9	Fecal Coliform Bacteria (colonies/100 mls)	1
Cadmium	< 0.001	S	7
Chromium (VI)	< 0.005	Chloride	
Fluoride	0.45	Copper	< 0.01
Lead	< 0.01	Foaming Agents (MBAS)	0.05
Mercury	< 0.0005	Hydrogen Sulfide	0.9
8	**************************************	Iron	2.7
Nitrate (as N)	0.02	Manganese	0.03
Selenium	< 0.002	Sulfate	5
Silver	< 0.001	TDS	157
Endrin	< 0.0001	Zinc	0.01
Lindane	< 0.0001		7
Methoxychlor	< 0.001	Color (apparent) units	
Toxaphene	< 0.001	Corrosivity	ion-corrosive
2, 4-D	< 0.01	Odor (TON)	25
	< 0.001	pH (units)	6.7
2, 4, 5- TP Silvex	<u> </u>	BOD ₅	7.2
Radium 226 (pCi/1)	**************************************	SS	2.2
Radium 228 (pCi/1)		DS	157
Gross Alpha (pCi/l)	0.2	D 3	
Gross Beta (pCi/1)	0.3		
	27.0		

1 1	Groundwater Samples
Project Identification	at Hunter AAF, Ga.
Location of Sample	HAAF-GW-8
Date of Sample	1/14/81
Time of Sample	2:00 PM
Date of Analyses 1/14	/81-2/3/81

P	a	r	a	m	e	t	e	r

	Arsenic	< 0.001	Turbidity (NTU)	21
	Barium	0.9	Fecal Coliform Bacteria (colonies/100 mls)	0
	Cadmium	< 0.001	Chloride	12
	Chromium (VI)	< 0.005	Copper	< 0.01
	Fluoride Lead	0.69	Foaming Agents (MBAS)	< 0.01
	Mercury	< 0.01	Hydrogen Sulfide	< 0.05
	Nitrate (as N)	0.018	Iron	0.6
	Selenium	< 0.002	Manganese	0.01
	Silver	< 0.001	Sulfate TDS	6
	Endrin	< 0.0001	Zinc	< 0.01
•	Lindane	< 0.0001	Color (apparent) units	18
	Methoxychlor	< 0.001	Corrosivity	n-corrosive
ı,	Toxaphene 2, 4-D	< 0.001	Odor (TON)	< 1
	2, 4, 5- TP Silvex	< 0.001	pH (units)	6.8
	Radium 226 (pCi/1)		BOD ₅	2.1
	Radium 228 (pCi/1)		SS	222
	Gross Alpha (pCi/1)	8	DS	
	Gross Beta (pCi/1)	1.8	× 1 1	

Project Identification	Groundwater Samples n <u>at Hunter AAF</u> , Ga.
Location of Sample	HAAF-GW-8
Date of Sample	1/15/81
Time of Sample	1:15 PM
Date of Analyses 1/1	4/81-2/3/81

<u>Parameter</u>		e.	
Arsenic	< 0.001	Turbidity (NTU)	14
Barium	0.7	Fecal Coliform Bacteria (colonies/100 mls)	0
Cadmium	< 0.001	Chloride	13
Chromium (VI)	< 0.005	Copper	< 0.01
Fluoride	0.72		
Lead	< 0.01	Foaming Agents (MBAS)	< 0.01
Mercury	< 0.0005	Hydrogen Sulfide	
Nitrate (as N)	0.015	Iron	0.5
Selenium	< 0.002	Manganese	0.01
Silver	< 0.001	Sulfate	5
Endrin	< 0.0001	TDS	232
Lindane	< 0.0001	Zinc	< 0.01
Methoxychlor	< 0.001	Color (apparent) units	14
Toxaphene	< 0.001	Corrosivity	n-corros ive
	< 0.01	Odor (TON)	< 1
2, 4-D		pH (units)	6.9
2, 4, 5- TP Silvex	< 0.001	BOD ₅	1.4
Radium 226 (pCi/1)	-	SS	1.7
Radium 228 (pCi/1)	*	DS	232
Gross Alpha (pCi/1)	1.7		
Gross Beta (pCi/1)	< 0.1		

H 2	Groundwater Samples
Project Identification	at Hunter AAF, Ga.
Location of Sample	HAAF-GW-8
Date of Sample	1/16/81
Time of Sample	1:00 PM
Date of Analyses 1/14	1/81-2/3/81

	<u>Parameter</u>			
	Arsenic	< 0.001	Turbidity (NTU)	7
	Barium	0.7	Fecal Coliform Bacteria	0
	Cadmium	< 0.001	(colonies/100 mls)	10
	Chromium (VI)	< 0.005	Chloride	
	Fluoride	0.62	Copper	0.01
	Lead		Foaming Agents (MBAS)	< 0.01
		< 0.01	Hydrogen Sulfide	< 0.05
	Mercury	< 0.0005	Iron	0.4
	Nitrate (as N)	0.01	Manganese	0.01
	Selenium	< 0.002	Sulfate	5
	Silver	< 0.001		206
	Endrin	< 0.0001	TDS	
	Lindane	< 0.0001	Zinc	< 0.01
	Methoxychlor	< 0.001	Color (apparent) units	10
	(a)		Corrosivity no	n-corrosive
	Toxaphene	< 0.001	Odor (TON)	< 1
17.0	2, 4-D	< 0.01	pH (units)	6.8
	2, 4, 5- TP Silvex	< 0.001		1.7
9	Radium 226 (pCi/1)		BOD ₅	
	Radium 228 (pCi/1)		SS	2.9
	Gross Alpha (pCi/l)	0.5	DS	206
		2.9		en e
	Gross Beta (pCi/1)	2.3		

Project Identification Location of Sample	Groundwater Samples at Hunter AAF, Ga. HAAF-GW-9
	1/15/81
Time of Sample	11:00 AM
Date of Analyses 1/14	/81-2/3/81

iiii values are e	Apressed as	mg/ i diriess otherwise speci	illeu.
Parameter			
Arsenic	< 0.001	Turbidity (NTU)	30
Barium	0.8	Fecal Coliform Bacteria	9
Cadmium	< 0.001	(colonies/100 mls)	c
Chromium (VI)	< 0.005	Chloride	6
Fluoride	0.33	Copper (MDAG)	0.02
Lead	< 0.01	Foaming Agents (MBAS)	< 0.01
Mercury	< 0.0005	Hydrogen Sulfide Iron	0.7
Nitrate (as N)	0.02		2.4
Selenium	< 0.002	Manganese Sulfate	<u>0.02</u> 5
Silver	< 0.001	TDS	178
Endrin	< 0.0001	Zinc	0.04
Lindane	< 0.0001	Color (apparent) units	14
Methoxychlor	< 0.001	Corrosivity	non-corrosive
Toxaphene	< 0.001	Odor (TON)	26
2, 4-D	< 0.01	pH (units)	6.4
2, 4, 5- TP Silvex	< 0.001		7.1
Radium 226 (pCi/1)		BOD ₅	10.2
Radium 228 (pCi/1)	***	SS	178
Gross Alpha (pCi/1)	DS	170
Gross Beta (pCi/1)	1.2		
		* 1	

Project Identification	Groundwater Samples at Hunter AAF, Ga.
Location of Sample	HAAF-GW-9
Date of Sample	1/16/81
Time of Sample	11:00 AM
Date of Analyses 1/14	/81-2/3/81

All values are expressed as mg/l unless otherwise specified.

<u>Parameter</u>

Arsenic <	0.001	Turbidity (NTU)	21
Barium	0.7	Fecal Coliform Bacteria (colonies/100 mls)	7
Cadmium <	0.001	•	e _v
Chromium (VI) <	0.005	Chloride	6
Fluoride	0.30	Copper	0.02
		Foaming Agents (MBAS)	<_0.01
	0.01	Hydrogen Sulfide	0.6
Mercury <	0.0005	Iron	1,9
Nitrate (as N)	0.02		
Selenium <	0.002	Manganese	0.02
Silver <	0.001	Sulfate	4
		TDS	163
70.00		Zinc	0.03
	0.0001	Color (apparent) units	12
Methoxychlor <	0.001	Corrosivity	non-corrosiv
Toxaphene <	0.001	2 8	- 50 g
2, 4-D <	0.01	Odor (TON)	
2, 4, 5- TP Silvex <	0.001	pH (units)	6.7
		BOD ₅	5.4
Radium 226 (pCi/1)		SS	8.2
Radium 228 (pCi/1)		DS .	163
Gross Alpha (pCi/1) _	0.3	. ,	_100
Gross Beta (pCi/1)	2.8		

Project Identification Location of Sample	Groundwater Samples at Hunter AAF, Ga. HAAF-GW-10
Date of Sample	1/14/81
	11:00 AM
Date of Analyses 1/147	81-2/3/81

<u>Parameter</u>			
Arsenic	< 0.001	Turbidity (NTU)	13
Barium Cadmium	0.9 < 0.001	Fecal Coliform Bacteria (colonies/100 mls)	0
Chromium (VI) Fluoride Lead Mercury Nitrate (as N) Selenium Silver	< 0.005 0.46 < 0.01 < 0.0005 0.02 < 0.002 < 0.001	Chloride Copper Foaming Agents (MBAS) Hydrogen Sulfide Iron Manganese Sulfate TDS	4 < 0.005 < 0.01 < 0.05 < 0.1 0.02 2 207
Endrin Lindane Methoxychlor Toxaphene 2, 4-D	< 0.0001 < 0.0001 < 0.001 < 0.001 < 0.01	Odor (TON)	< 0.01 10 n-corrosive < 1
2, 4, 5- TP Silvex Radium 226 (pCi/l) Radium 228 (pCi/l) Gross Alpha (pCi/l) Gross Beta (pCi/l)	< 0.001 0.3 < 0.1	pH (units) BOD ₅ SS DS	1.6 1.9 207
And the second s			

	Groundwater Samples
Project Identification	at Hunter AAF, Ga.
Location of Sample	HAAF-GW-10
Date of Sample	1/15/81
Time of Sample	10:00 AM
Date of Analyses 1/14	/81-2/3/81

All values are expressed as mg/l unless otherwise specified.

	<u>Parameter</u>			報
	Arsenic	< 0.001	Turbidity (NTU)	10
	Barium	0.8	Fecal Coliform Bacteria	0
	Cadmium Chromium (VI)	< 0.001	(colonies/100 mls) Chloride	< 0.005
	Fluoride	0.42	Copper	< 0.003
	Lead Mercury	< 0.01 < 0.0005	Foaming Agents (MBAS) Hydrogen Sulfide Iron	< 0.05
	Nitrate (as N) Selenium	< 0.002	Manganese	0.01
	Silver Endrin	< 0.001 < 0.0001	Sulfate TDS	2 2 1 4
	Lindane Methoxychlor	< 0.0001	Zinc Color (apparent) units	11
	Toxaphene 2, 4-D	< 0.001 < 0.01	Odor (TON)	on-corrosive
ä	2, 4, 5- TP Silvex	< 0.001	pH (units) BOD ₅	1.4
	Radium 226 (pCi/1) Radium 228 (pCi/1)		SS DS	0.9
	Gross Alpha (pCi/l) Gross Beta (pCi/l)	1.1		

and the second second

	Groundwater Samples
Project Identificati	on at Hunter AAF, Ga.
Location of Sample	HAAF-GW-10
Date of Sample	1/16/81
Time of Sample	9:45 AM
Date of Analyses 1	/14/81-2/3/81

	<u>Parameter</u>			
	Arsenic	< 0.001	Turbidity (NTU)	11
	Barium	0.8	Fecal Coliform Bacteria (colonies/100 mls)	1
	Cadmium	< 0.001	Chloride	4
	Chromium (VI)	< 0.005	Copper	< 0.005
	Fluoride	0.37	9 91	77
	Lead	< 0.01	Foaming Agents (MBAS)	< 0.01
	Mercury	< 0.0005	Hydrogen Sulfide	< 0.05
	Nitrate (as N)	0.02	Iron	0.1
	Selenium	< 0.002	Manganese	0.02
25	Silver	< 0.001	Sulfate	2
	Endrin	< 0.0001	TDS	221
	Lindane	< 0.0001	Zinc	< 0.01
	Methoxychlor	< 0.001	Color (apparent) units	9
	- *	< 0.001	Corrosivity	o <u>n-corros</u> ive
	Toxaphene	< 0.001	Odor (TON)	2
	2, 4-D		pH (units)	6.6
	2, 4, 5- TP Silvex	< 0.001	BOD ₅	2.1
	Radium 226 (pCi/1)	C 121	SS	2.3
	Radium 228 (pCi/1)		DS	221
	Gross Alpha (pCi/1)	0.2		
	Gross Beta (pCi/l)	0.5	3 18	

Project Identification	Hunter SW
Location of Sample	HAAFSW 5-III
Date of Sample	8/28/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			
Arsenic	< 0.001	Turbidity (NTU)	25
Barium	0.11	Fecal Coliform Bacteria (colonies/100 mls)	32,000
Cadmium	< 0.001		
Chromium (VI)	< 0.005	Chloride	
Fluoride	1.3	Copper	< 0.01
Lead	0.01	Foaming Agents (MBAS)	1.7
Mercury	0.0003	Hydrogen Sulfide	< 0.05
Nitrate (as N)	< 0.1	Iron	0.4
Selenium	< 0.002	Manganese	< 0.05
Silver	< 0.001	Sulfate	14
Endrin	< 0.001	TDS	272
Lindane	< 0.0001	Zinc	0.02
	< 0.0001	Color (apparent) units	25
Methoxychlor		Corrosivity	no <u>n-corros</u> ive
Toxaphene	< 0.001	Odor (TON)	
2, 4-D	< 0.01	pH (units)	
2, 4, 5- TP Silvex	< 0.001	DO DO	6.3
Radium 226 (pCi/1)			1.3
Radium 228 (pCi/1)		Flow (cfm)	110
Gross Alpha (pCi/1)	0.1	Visual Description	cloudy
Gross Beta (pCi/1)	2.8	with settleable solids	
5. 555 Be 54 (po (/ 1 /			

Project Identification	Hunter SW
Location of Sample	HAAFSW 5-II
Date of Sample	8/27/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

WAS DE WAS EMPORTED THE PROPERTY CONTRACT COMMENTS	1 3	, . will don doller wise specifi	icu.
Parameter			
Arsenic	< 0.001	Turbidity (NTU)	16
Barium	0.19	Fecal Coliform Bacteria (colonies/100 mls)	47,000
Cadmium	< 0.001	are in the cooking and the an contrast to invest reconstruct.	0.0
Chromium (VI)	< 0.005	Chloride	
Fluoride	1.2	Copper	< 0.01
Lead	0.01	Foaming Agents (MBAS)	2.1
Mercury	0.0003	Hydrogen Sulfide	< 0.05
Nitrate (as N)	< 0.1	Iron	0.9
Selenium	< 0.002	Manganese	0.05
Silver		Sulfate	21
	< 0.001	TDS	237
Endrin		Zinc	0.02
Lindane	< 0.0001	Color (apparent) units	24
Methoxychlor	< 0.001	Corrosivity	on-corrosive
Toxaphene	< 0.001	Odor (TON)	21
2, 4-D	< 0.01	pH (units)	6.3
2, 4, 5- TP Silvex	< 0.001	DO DO	
Radium 226 (pCi/1)			1.5
Radium 228 (pCi/1)	15	Flow (cfm)	120
Gross Alpha (pCi/1)	0.1	Visual Description	cloudy
Gross Beta (pCi/1)	0.6	with settleable solids	***************************************

Project Identification	Hunter SW
Location of Sample	HAAFSW 5-I
Date of Sample	8/26/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			46
Arsenic	< 0.001	Turbidity (NTU)	_14
Barium	0.10	Fecal Coliform Bacteria (colonies/100 mls)	52,000
Cadmium	< 0.001	X	
Chromium (VI)	< 0.005	Chloride	_21
Fluoride	1.2	Copper	0.01
Lead		Foaming Agents (MBAS)	3.4
Mercury	0.01	Hydrogen Sulfide	0.07
**	0.0003	Iron	0.5
Nitrate (as N)	< 0.1	Manganese	0.09
Selenium	< 0.002	Sulfate	16
Silver	< 0.001	TDS	**************************************
Endrin	< 0.0001		222
Lindane	< 0.0001	Zinc	0.02
Methoxychlor	< 0.001	Color (apparent) units	_20
Toxaphene	< 0.001	Corrosivity n	o <u>n-corros</u> ive
-	< 0.01	Odor (TON)	13
2, 4-D		pH (units)	6.7
2, 4, 5- TP Silvex	< 0.001	DO	3.9
Radium 226 (pCi/1)		Flow (cfm)	90
Radium 228 (pCi/1)	7	,	NOTE BOOK TO SERVICE THE SERVICE STATE OF THE SERVI
Gross Alpha (pCi/1)	0.4	Visual Description	cloudy
Gross Beta (pCi/1)	2.3	with settleable solids	
, the state of the			

Project Identification	Hunter SW
Location of Sample	HAAFSW 4-III
Date of Sample	8/28/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			
Arsenic	< 0.001	Turbidity (NTU)	24
Barium	0.11	Fecal Coliform Bacteria	80,000
Cadmium	< 0.001	(colonies/100 mls)	
Chromium (VI)	< 0.005	Chloride	
Fluoride	1.0	Copper	< 0.01
Lead	0.01	Foaming Agents (MBAS)	2.1
Mercury	0.0003	Hydrogen Sulfide	< 0.05
Nitrate (as N)	< 0.1	Iron	0.6
Selenium	< 0.002	Manganese	< 0.05
Silver	< 0.001	Sulfate	17
	< 0.0001	TDS	267
Endrin		Zinc	0.02
Lindane	< 0.0001	Color (apparent) units	40
Methoxychlor	< 0.001	Corrosivity no	n-corrosive
Toxaphene	< 0.001	Odor (TON)	8
2, 4-D	< 0.01	pH (units)	6.3
2, 4, 5- TP Silvex	< 0.001	DO	(5)
Radium 226 (pCi/1)			0.2
Radium 228 (pCi/1)	(4)	Flow (cfm)	140
Gross Alpha (pCi/1)	0.2	Visual Description	cloudy
Gross Beta (pCi/1)	4.2	with settleable solids	

Project Identification	Hunter SW
Location of Sample	HAAFSW 4-II
Date of Sample	8/27/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			
Arsenic <	0.001	Turbidity (NTU)	_16
Barium _	0.17	Fecal Coliform Bacteria	96,000
Cadmium <	0.001	(colonies/100 mls)	
Chromium (VI) <	0.005	Chloride	20
Fluoride	1.4	Copper	< 0.01
 Lead	0.01	Foaming Agents (MBAS)	1.7
— Mercury	0.0002	Hydrogen Sulfide	0.11
	0.1	Iron	0.5
The second secon	0.002	Manganese	0.10
		Sulfate	13
· · · · ·	0.001	TDS	258
2000 00 00 00 00 00 00 00 00 00 00 00 00	0.0001	Zinc	0.01
Lindane <	0.0001	Color (apparent) units	40
Methoxychlor <	0.001		
Toxaphene <	0.001		no <u>n-corros</u> ive
2, 4-D <	0.01	Odor (TON)	17
2, 4, 5- TP Silvex <	0.001	pH (units)	6.4
Radium 226 (pCi/1)	1	DO	0.3
Radium 228 (pCi/1)		Flow (cfm)	140
Gross Alpha (pCi/1)		Visual Description	cloudy
-		with settleable solids	a
Gross Beta (pCi/1) _	4.5		

Project Identification	Hunter SW
Location of Sample —	HAAFSW 4-I
Date of Sample	8/26/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

<u>Parameter</u>			*
Arsenic	< 0.001	Turbidity (NTU)	12
Barium	0.23 .	Fecal Coliform Bacteria	28,000
Cadmium	< 0.001	(colonies/100 mls)	
Chromium (VI)	< 0.005	Chloride	
Fluoride	1.2	Copper	0.01
Lead	0.01	Foaming Agents (MBAS)	3.5
Mercury	0.0003	Hydrogen Sulfide	0.13
Nitrate (as N)	< 0.1	Iron	0.4
Selenium	< 0.002	Manganese	< 0.05
Silver	< 0.001	Sulfate	17
Endrin	< 0.0001	TDS	244
Lindane	< 0.0001	Zinc	0.02
Methoxychlor	< 0.001	Color (apparent) units	30
Toxaphene	< 0.001	Corrosivity	non-corrosive
2, 4-D	< 0.01	Odor (TON)	42
2, 4, 5- TP Silvex	< 0.001	pH (units)	6.6
	<u> </u>	DO	< 0.1
Radium 226 (pCi/1)		Flow (cfm)	120
Radium 228 (pCi/1)		Visual Description	cloudy
Gross Alpha (pCi/l)		with settleable solids	
Gross Beta (pCi/1)	2.0		=

Project Identification	Hunter SW
Location of Sample	HAAFSW 3-III
Date of Sample	8/28/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			
Arsenic	< 0.001	Turbidity (NTU)	_14
Barium	0.11	Fecal Coliform Bacteria (colonies/100 mls)	160,000
Cadmium	< 0.001	Chloride	20
Chromium (VI)	< 0.005	Copper	< 0.01
Fluoride	1.1	Foaming Agents (MBAS)	2.7
Lead	0.02	Hydrogen Sulfide	
Mercury	0.0003	Iron	0.15
Nitrate (as N)	< 0.1	Manganese	0.3
Selenium	< 0.002	Sulfate	< 0.05
Silver	< 0.001	TDS	8.
Endrin	< 0.0001	* ************************************	273
Lindane	< 0.0001	Zinc	0.03
Methoxychlor	< 0.001	Color (apparent) units	70
Toxaphene	< 0.001		o <u>n-corros</u> ive
2, 4-D	< 0.01	Odor (TON)	27
2, 4, 5- TP Silvex	< 0.001	pH (units)	6.2
Radium 226 (pCi/1)	5. 00000000000 E	DO .	< 0.1
Radium 228 (pCi/1)	St.	Flow (cfm)	120
Gross Alpha (pCi/l)	0.3	Visual Description	cloudy
Gross Beta (pCi/1)	4.1	with settleable solids	
• • • • • • • • • • • • • • • • • • • •	The same same same		

Project Identification	Hunter SW
Location of Sample	HAAFSW 3-II
Date of Sample	8/27/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			
Arsenic	< 0.001	Turbidity (NTU)	17
Barium	0.13	Fecal Coliform Bacteria (colonies/100 mls)	56,000
Cadmium	< 0.001	© 000 N S 1000 € 1	
Chromium (VI)	< 0.005	Chloride	24
Fluoride	1.2	Copper	< 0.01
Lead	0.02	Foaming Agents (MBAS)	3.4
Mercury	0.0002	Hydrogen Sulfide	0.06
Nitrate (as N)	< 0.1	Iron	0.6
Selenium	< 0.002	Manganese	0.3
Silver	**********	Sulfate	_12
	< 0.001	TDS	239
Endrin	< 0.0001	Zinc	0.02
Lindane	< 0.0001	Color (apparent) units	90
Methoxychlor	< 0.001	Corrosivity	non-corrosive
Toxaphene	< 0.001	Odor (TON)	
2, 4-D	< 0.01	* **	
2, 4, 5- TP Silvex	< 0.001	pH (units)	6.4
Radium 226 (pCi/1)		DO	0.5
Radium 228 (pCi/1)		Flow (cfm)	130
Gross Alpha (pCi/1) 0.9	Visual Description	cloudy
Gross Beta (pCi/1)		with settleable solids	
91033 Deta (poi/1)		* '	

Project Identification	Hunter SW
Location of Sample	HAAFSW 3-I
Date of Sample	8/26/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

	Parameter			
	Arsenic	< 0.001	Turbidity (NTU)	9
	Barium Cadmium	0.17 < 0.001	Fecal Coliform Bacteria (colonies/100 mls)	44,000
	Chromium (VI)	< 0.005	Chloride Copper	_21
	Fluoride Lead Mercury Nitrate (as N) Selenium	1.0 0.02 0.0002 < 0.1 < 0.002	Foaming Agents (MBAS) Hydrogen Sulfide Iron Manganese	< 0.01 3.2 0.10 0.3 < 0.05
	Silver Endrin Lindane Methoxychlor	< 0.001 < 0.0001 < 0.0001 < 0.001	Sulfate TDS Zinc Color (apparent) units	
F	Toxaphene 2, 4-D 2, 4, 5- TP Silvex	< 0.001 < 0.01 < 0.001	Odor (TON) pH (units) DO	on-corrosive246.7
	Radium 226 (pCi/1) Radium 228 (pCi/1) Gross Alpha (pCi/1) Gross Beta (pCi/1)	< 0.2 5.1	Flow (cfm) Visual Description with settleable solids	120 cloudy

Project Identification _	Hunter SW
Location of Sample	HAAFSW 2-III
Date of Sample	8/28/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			w
Arsenic	< 0.001	Turbidity (NTU)	2
Barium	0.15	Fecal Coliform Bacteria (colonies/100 mls)	24
Cadmium	< 0.001	20 PM	
Chromium (VI)	< 0.005	Chloride	5
Fluoride	0.7	Copper	< 0.01
Lead	0.01	Foaming Agents (MBAS)	0.2
Mercury	< 0.0002	Hydrogen Sulfide	< 0.05
Nitrate (as N)		Iron	0.3
Selenium	< 0.002	Manganese	< 0.05
Silver		Sulfate	8
	< 0.001	TDS	92
Endrin	< 0.0001	Zinc	0.02
Lindane	< 0.0001	Color (apparent) units	
Methoxychlor	< 0.001	0	
Toxaphene	< 0.001		o <u>n-corros</u> ive
2, 4-D	< 0.01	Odor (TON)	< 1
2, 4, 5- TP Silvex	< 0.001	pH (units)	5.6
Radium 226 (pCi/1)		DO	3.4
Radium 228 (pCi/1)		Flow (cfm)	_45
Gross Alpha (pCi/1)	0.7	Visual Description	clear
Gross Beta (pCi/1)	1.5		
2. 000 00 00 (po (/ 1)			

Project Identification	Hunter SW
Location of Sample	HAAFSW 2-II
Date of Sample	8/27/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

Parameter			*
Arsenic	< 0.001	Turbidity (NTU)	4
Barium	0.12	Fecal Coliform Bacteria (colonies/100 mls)	_28
Cadmium	< 0.001	25	
Chromium (VI)	< 0.005	Chloride	4
Fluoride	0.8	Copper	< 0.01
Lead	0.02	Foaming Agents (MBAS)	0.1
Mercury	< 0.0002	Hydrogen Sulfide	< 0.05
Nitrate (as N)	18	Iron	0.3
	0.1	Manganese	< 0.05
Selenium	< 0.002	Sulfate	9
Silver	< 0.001	TDS	
Endrin	< 0.0001	Zinc	0.02
Lindane	< 0.0001	Color (apparent) units	
Methoxychlor	< 0.001		
Toxaphene	< 0.001		o <u>n-corros</u> ive
2, 4-D	< 0.01	Odor (TON)	< 1
2, 4, 5- TP Silvex	< 0.001	pH (units)	5.7
Radium 226 (pCi/1)		DO	3.9
(2) (2) (2) (3)	1	Flow (cfm)	35
Radium 228 (pCi/1)		Visual Description	clear
Gross Alpha (pCi/l)	0.7		٠
Gross Beta (pCi/1)	0.9		

Project Identification	Hunter SW
Location of Sample	HAAFSW 2-I
Date of Sample	8/26/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

<u>Parameter</u>			
Arsenic	< 0.001	Turbidity (NTU)	4
Barium	0.10	Fecal Coliform Bacteria	20
Cadmium	< 0.001	(colonies/100 mls)	
Chromium (VI)	< 0.005	Chloride	6
Fluoride	0.7	Copper	< 0.01
		Foaming Agents (MBAS)	0.1
Lead	0.02	Hydrogen Sulfide	< 0.05
Mercury	< 0.0002	Iron	0.4
Nitrate (as N)	0.1		
Selenium	< 0.002	Manganese	< 0.05
Silver	< 0.001	Sulfate	7
Endrin	< 0.0001	TDS	58
Lindane	< 0.0001	Zinc	0.01
		Color (apparent) units	15
Methoxychlor	< 0.001	Corrosivity	non-corrosive
Toxaphene	< 0.001	Odor (TON)	66 949959933
2, 4-D	< 0.01		< 1
2, 4, 5- TP Silvex	< 0.001	pH (units)	6.9
Radium 226 (pCi/1)		DO	4.2
Radium 228 (pCi/1)		Flow (cfm)	_ 34
1000 1000 1000 1000 1000 1000 1000 100		Visual Description	clear
Gross Alpha (pCi/1)	0.6	No. of the state o	
Gross Beta (pCi/1)	1.6		á.

Project Identification	Hunter SW
Location of Sample	HAAFSW 1-III
Date of Sample	8/28/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

<u>Parameter</u>			
Arsenic	< 0.001	Turbidity (NTU)	6
Barium	<u>0.13</u> < 0.001	Fecal Coliform Bacteria (colonies/100 mls)	3
Cadmium Chromium (VI) Fluoride	< 0.005	Chloride Copper	< 0.01
Lead	0.01 < 0.0002	Foaming Agents (MBAS) Hydrogen Sulfide	0.1 < 0.05
Nitrate (as N) Selenium	0.3	Iron Manganese Sulfate	0.3 < 0.05
Silver Endrin Lindane	< 0.001 < 0.0001 < 0.0001	TDS Zinc	53
Methoxychlor Toxaphene	< 0.001 < 0.001	Color (apparent) units Corrosivity Odor (TON)	15 n <u>on-corro</u> siv
2, 4-D 2, 4, 5- TP Silvex	< 0.01	pH (units) DO	1 5.8 5.0
Radium 226 (pCi/1) Radium 228 (pCi/1) Gross Alpha (pCi/1)		Flow (cfm) Visual Description	d5 clear
Gross Beta (pCi/1)	2.9		

Project Identification	Hunter SW
Location of Sample	HAAFSW 1-II
Date of Sample	8/27/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

<u>Parameter</u>		e 12	
Arsenic	< 0.001	Turbidity (NTU)	3
Barium	0.10	Fecal Coliform Bacteria (colonies/100 mls)	_17
Cadmium	< 0.001	Chloride	5
Chromium (VI)	< 0.005		325
Fluoride	0.6	Copper	< 0.01
Lead	0.01	Foaming Agents (MBAS)	0.1
Mercury	< 0.0002	Hydrogen Sulfide	< 0.05
Nitrate (as N)	0.1	Iron	0.2
Selenium	< 0.002	Manganese	< 0.05
Silver	< 0.001	Sulfate	5
Endrin	< 0.0001	TDS	_64
Lindane	< 0.0001	Zinc	0.02
Methoxychlor	< 0.001	Color (apparent) units	9
,=,	< 0.001	Corrosivity	n <u>on-corro</u> si
Toxaphene	< 0.01	Odor (TON)	< 1
2, 4-D	Y 	pH (units)	6.1
2, 4, 5- TP Sil		DO	5.9
Radium 226 (pCi	i/1)	Flow (cfm)	32
Radium 228 (pCi		Visual Description	clear
Gross Alpha (p	Ci/1) <u>1.3</u>		Clear
Gross Beta (pC	i/1) <u>2.1</u>		
			70

Project Identification	Hunter SW
Location of Sample	HAAFSW 1-I
Date of Sample	8/26/80
Time of Sample	9:00AM
Date of Analyses	9/9/80

	Parameter			
	Arsenic	< 0.001	Turbidity (NTU)	2
	Barium	0.12	Fecal Coliform Bacteria (colonies/100 mls)	< 1
	Cadmium Chromium (VI) Fluoride Lead Mercury Nitrate (as N)	< 0.001 < 0.005 0.8 0.02 < 0.0002 0.4	Chloride Copper Foaming Agents (MBAS) Hydrogen Sulfide Iron Manganese	4 < 0.01 0.3 < 0.05 0.3 < 0.05
	Selenium Silver Endrin Lindane Methoxychlor Toxaphene	< 0.002 < 0.001 < 0.0001 < 0.0001 < 0.001 < 0.001	Sulfate TDS Zinc Color (apparent) units Corrosivity n Odor (TON)	9 38 0.02 10 on-corrosive
*	2, 4-D 2, 4, 5- TP Silvex Radium 226 (pCi/1) Radium 228 (pCi/1) Gross Alpha (pCi/1) Gross Beta (pCi/1)	< 0.01 < 0.001 	pH (units) DO Flow (cfm) Visual Description	6.4 6.2 38 clear
				-

REPORT OF _	EVALUATION OF SURFACE WATER SAMPLES
	AT HUNTER AAF, GA. LANDFILL
CLIENT _	U. S. ARMY CORPS OF ENGINEERS
_	Savannah District
	DATE9/29/80

SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES

P.O. Box 13842 • Savannah, Ga. 31406 • 912/354-7858

C-STEWART.2/CECP-V.4 10/30/90

Table 3-4. Soil Gas Results, Hunter AAF

Station ID	Date Installed	Depth (ft)	Date Sampled	FID Reading (ppm)
SG-01	1-23-90	4.08	1-24-90	1,000
SG-02	1-23-90	4.00	1-24-90	680
SG-03	1-23-90	3.58	1-24-90	2
SG-04	1-23-90	3.83	1-24-90	650
SG-05	1-23-90	4.17	1-24-90	250
SG-06	1-23-90	4.17	1-24-90	640
SG-07	1-23-90	4.17	1-24-90	1.4
SG-08	1-23-90	4.25	1-24-90	1,000
SG-09	1-23-90	3.92	1-24-90	1,000
SG-10	1-23-90	4.00	1-24-90	1,000
SG-11	1-23-90	3.92	1-24-90	90
SG-12	1-23-90	4.25	1-24-90	650
SG-13	1-23-90	3.75	1-24-90	9.0
SG-14	1-23-90	3.75	1-24-90	1,000
SG-15	1-23-90	3.66	1-24-90	1,000
SG-16	1-23-90	damaged dur	ing installation	
SG-17	1-23-90	damaged dur	ing installation	
SG-18	1-23-90	3.42	1-24-90	1,000

Source: Hunter/ESE, 1990.

PAGE 1

Table 3-5. Analytical Parameters Detected in Soil Samples - Hunter AAF (Continued, Page 2 of 2)

$\overline{}$			
7	~		
o	PAGE 2		
7			
Гаке			
STATUS:	PROJECT NAMBER FORT STEMART 1 AB COORDINATOR NEVIN MCHUCH SAMPLE 10/8 STEM-S STEM-S		
ATE 05/02/90	SOJECT MANAGER DAS COORDINATOR N SAMPLE ID/8	14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	12:00 NRQ
00	(1) 1575	6 (13/90	NRO :
Inc. ≅ Siras	ALL HYB S	02/12/90 02/13/90 02/13/90 02/13/90 02/13/90 02/13/90 02/13/90 02/13/90 03/	0.671 NRQ
Hunter/ESE, Inc. PROJECT NUMBER LIEED GROUP	HSB 4 SILL S	02/13/90 09:35	NRQ
PR T.	HSB 3 STUM S	02/13/90 08:35	NRQ
y a	HSB-2 STEM S	02/13/90 07:45	MRQ
	HSR-1 ST(M-5	02/12/90	NRQ
	STORFT MFTHOD		GF AA 34423 DMS
	ERS	SED	ETHYLENE CHLORIDE UG/L
	PARAMETERS UN DATE	TIME SELENIUM, SED	ME THYL ENE

Source: Hunter/ESE, 1990.

5.6

NRQ

Table 3-6. Analytical Parameters Detected in Groundwater Samples - Hunter AAF

DATE 05/02/90 STATUS: PROJECT NAME FORT STEMART PROJECT MANAGER DOYCE BLAIR LAB COORDINATOR REVIN MCHUCH	SAMPLE 10/8 TRPBLK SIEW-W	9.0	0	0	0	o	o	a	r	r	3			~	~		-			
DATE 05/02/90 PROJECT NAME PROJECT MANAC	SAMPLE TRPBLK S1EW-W	03/08/90	NRO	NRO	NRO	MRQ	NRO	NRO	į	3	i	i	NRQ	MRQ	NRO	NRO	NRQ	NRO	NRO	NRQ
2523	HMM-6 STEW-W-6	03/08/90	864	4.0	337	239	77.3	14.4	2	120	1.7	9.4	3.2	7.0	2.3	5.3	7.3	43	5.2	6.8
C. STEW-W ALL	HMM-5 STEM-W S	03/08/90	104	Ĭ	1	46.8	8.9	4.3	î	ł	1	ł	1	I	1	I	ť	1	: 1	II.
Hunter/ESE, Inc. PROJECT NUMBER FIELD GROUP S'	HMM-4 STEW-W	03/08/90	166	ŀ	28.6	46.7	8.5	5.2	6.1	1	1	1	;	F	1	1	1	ŧ	i	1
Hunt PROJ F IEL	HMM-3 STEM-W 3	03/08/90 09:20	36.8	1	Ē	12.0	2.4	i [7.8	}	. 0.74	3.3	1	1	Ĵ	1	J	1	ł	1
	HMM-2 STEW-W	03/07/90 10:20	1000	}	192	217	9.18	2.8	Ē	1	1.6	£	1	1	1	ŧ	:	ŀ	ľ	i
	HMM-1 STEM-W	03/07/90 16:55	59.5	1	1	11.2	3.1	1	É	ł	1	ľ	i	į	ŀ	ť	1	3	ł	1
	STORET		1007 DICAP	1027 DICAP	1051 DICAP	1034 DICAP	1002 Df AA	1147	34030	34371	340 10	B1551	34526 54526	34	34521	34320	34376 GMS	34696 GMS	34461	34469 GMS
	PARAME TERS UNITS	DATE	BARIUM, TOTAL UG/L	CADMIUM, TOTAL UG/L	LEAD, TOTAL UG/L	CHROMIUM, TOTAL UG/L	ARSENIC, TOTAL UG/L	SELENIUM, TOTAL	BENZENE 3272	ETHYLBENZENE	TOLUENE	UG/L XYLENES, TOTAL	DG/L BENZO(A)ANTHRACENE	BENZO(B)FLUORANTHENE	BENZO(GHI)PERYLENE	CHRYSENE UG/1	FL UORANTHENE UC/L	NAPHTHALENE UG/L	PHENANTHRENE UG/L	PYRENE UC/L

Source: Hunter/ESE, 1990.

•

PACE

SAMPLE 1D/# TRPBLK STEW-SE NRO NRO 10:30 NRO NRO NRO NRO NRO NRO NRO NRO NR0 NRO NRO MRO WR0 NRO NRO NRO NRO NRO NRO NR.O MRO 05/112/90 MRO NR0 NR0 MRO RINSEBLK STEM-SE NR0 05/15/90 NRO ARO M NEO. NRO NRO NRO NRO NR0 NRQ N 880 NRO MRO NRO NRO NRO NRO NRO NRO MRO NRO NRO NRO NRO STEW-SE Hunter/ESE, Inc. PROJECT NUMBER 62000 58000 229 SO-3 REPLICATE STEM-SE STEW-SE 02/12/90 09:30 4900 2000 9300 33000 27000 27000 17000 29000 52000 11000 62000 8300 23000 390 3 FIELD GROUP 15000 33000 43000 13.4 05/15/90 09:30 13000 17000 40000 8100 54000 2500 5 120 3100 8200 26000 18000 21000 SD-2 STEW-SE 8.46 09:20 05/115/90 12 2 23 -OS 1500 7900 27000 3000 13000 9200 0009 6200 7200 22000 4200 36000 02/12/90 00:60 7.0 1100 STEW-SE STORET METHOD 34323 34379 CHS 45510 34203 34223 34529 34250 34233 34245 34559 34464 78544 34208 GHS CMS GMS 34524 GMS DHS DHS GMS CMS GMS

NRO

NRO

7.71

7.65

MC/KG-DRY MC/KC-DRY

LEAD, SED

BARIUM, SED

INDENO(1,2,3-CD)PYRE NE UG/KG-DRY

MAPHTHALENE

UG/KG-DRY

I LUORE NE

UC/KC-DRY

PHE NAMTHRE NE

UC/KC-DRY UC/KC-DRY

PYRENE

DIBEN(A, H) ANTHRACENE

UG/KG-DRY UG/AG-DRY

CHRYSENE

UC/A.G-DRY

FLUORANTHENE

BENZO(K) FLUORANTHENE

UG/NG-DRY UG/KG-DRY

BENZO(A) ANTHRACE NE

UG/KG-DRY

CARBON DISULFIDE

UC/kC-DRY

XYLENE, SED

METHYLENE CHLORIDE UG/NG-DRY

BENZENE

UNITS

DATE

PARAME TERS

UG/KG-DRY UG/A.G-DRY UG/KG-DRY

> POLUENE ACE TONE

UC/KG-DRY UC/KG-DRY

ACE MAPHTHE NE

ACEMAPHTHYLENE

BENZO(B)FLUORANTHENE

UC/KG-DRY

BENZO(GHI)PERYLENE

UG/KG-DRY

UG/KG-DRY

BENZO(A)PYREME

UG/KG-DRY

ANTHRACENE

Table 3-7. Analytical Parameters Detected in Soil Sediment Samples - Hunter AAF (Continued, Page 2 of 2)

1

PAGE 2

DATE 05/02/90 STATUS: PROJECT NAME FORT STEWART PROJECT MANAGER DOYCE BLAIR LAB COORDINATOR KEVIN MCHUGH	SAMPLE ID/# SLN SE 6	30 30	NRQ	NRQ
	TRPBLN STEM-SE	02/12/	_	~
C. STEW-SE All	RINSEBLK STEW-SE 5	02/12/90	NRQ	NRO
Hunter (ESE, Inc.) PROJECT NUMBER FIELD GROUP ST	SD-3 REPLICATE RINSEBLK STEM-SE STEM-SE 3 4 5	02/12/90 09:30	52.0	i
Hunt PR0J F1E1	STEW-SE	02/12/90 09:30	69.7	E
-	SD-2 STEM-SE	02/12/90 02/12/90 02/12/90 02/12/90 02/12/90 09:20 09:30 09:30 10:45 10:30	2.20	092.0
	STEW-SE	05/15/90 (3.38	i
	STORET METHOD		1029 ADICP	1003 AGF
	PARAMETERS Units	DATE	CHROMIUM, SED MG/KG-DRY	ARSENIC, SED MG/AG-DRY

Source: Hunter/ESE, 1990.

Table 4-6. Groundwater Concentration Ranges of Metals and Organic Chemicals Identified at Hunter AAF (µg/L)

Exceedance of SDWA	HMW-2 and -6	HMW-3 and -6	HMW-6
Health-Based Value		i i	0.003 ⁺⁺ 0.003 ⁺⁺ 210*** 0.003 ⁺⁺ 280*** 280*** 210 ⁺⁺ 210 ⁺⁺
SDWA MCLG(p) +	ND 5,000 5 100 (0)5, 10**	ND 2,000 10,000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MCL*	50 1,000 10 50 50 10	S S S	
Location of Maximum Observed Concentration	HMW-6 HMW-2 HMW-6 HMW-6 HMW-6	HMW-6 HMW-6 HMW-6	HMW-6 HMW-6 HMW-6 HMW-6 HMW-6 HMW-6 HMW-6
Frequency	6/6 6/6 1/6 6/6 3/6 4/6	3/6 3/6 2/6	1/6 1/6 1/6 1/6 1/6 1/6
Range	2.4 - 77.3 36.8 - 1,000 BDL - 4.0 11.2 - 239 BDL - 337 BDL - 14.4	BDL - 44 BDL - 1.7 BDL - 9.4	BDL - 3.2 BDL - 7.0 BDL - 7.0 BDL - 5.3 BDL - 7.3 BDL - 43 BDL - 43 BDL - 6.8
			es .
Chemical	Inorganic Arsenic Barium Cadmium Chromium Lead	VOCs Benzene Toluene Xylenes, total	PAHs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Chrysene Fluoranthene Naphthalene Phenanthrene

C-STEWART.3/CECP-H.10

Table 4-6. Groundwater Concentration Ranges of Metals and Organic Chemicals Identified at Hunter AAF (µg/L) (Continued, Page 2 of 2)

MCL = maximum contaminant level. Note:

MCLG(p) = proposed maximum contaminant level goal.

ND = not determined.

-- = not exceeded.

* MCLs from 50 FR 46958.

⁺MCLG(p)s from 54 FR 22062.

** EPA is proposing an MCL of 5 µg/L at the sewage treatment facility and 10 µg/L at the tap because the MCLG of 0 is technically unachievable (53 FR 31516).

++ Risk-based value.

***Drinking water life-time health advisory.

Source: Hunter/ESE, 1990.

Figure 4-5
CONCENTRATIONS OF PAHs (µg/L) ABOVE
SOWA IN GROUNDWATER AT HUNTER AAF

FORT STEWART
FIRE TRAINING AREAS
SAVANNAH, GEORGIA

SOURCE: ESE, 1990.

FEET

C-STEWART.3/CECP-H.7

Table 4-4. Concentration Ranges of Organic Chemicals in Soil and Sediment at Hunter AAF (Continued, Page 3 of 3)

		Soil (mg/kg)				Sediment (mg/kg)	g/kg)
Chemical	Range	Frequency	Sample Location of Maximum Observed Concentration	Nonimpacted Site Boring (HSB-1)	Range	Frequency	Sample Location of Maximum Observed Concentration*
Naphthalene	BDL - 11.0	2/5	HSB-5	BDL	BDL - 0.39	1/3	SD-3
Phenanthrene	BDL - 7.90	3/5	HSB-2	BDL	BDL - 62.0	2/3	SD-3
Pyrene	BDL - 9.00	3/2	HSB-2	BDL	BDL - 58.0	2/3	SD-3
		-					

*Of the three sediment samples analyzed, PAH concentrations were below detection in SD-1, and detected at elevated levels in SD-2 and SD-3, with PAH concentrations in SD-3 consistently detected at levels two to three times as high as in SD-2. *Rinse blank and trip blank contained 3.7 µg/L and 3.3 µg/L of methylene chloride, respectively.

Source: Hunter/ESE, 1990.

Figure 4-2
CONCENTRATIONS OF POTENTIALLY
HARMFUL PAHS (mg/kg) IN DRAINAGE

DITCH SEDIMENTS AT HUNTER AAF

SOURCE: ESE, 1990.

FEET

FORT STEWART
FIRE TRAINING AREAS
SAVANNAH, GEORGIA

EPR No. 32-24-7038-89, 1-12 Aug 88

TABLE C-2. REGIONAL AMBIENT AIR QUALITY DATA*

Pollutant	Location Mean	Annual Geo (µg/m³)	1987 Annual Geo Mean (µg/m³)
TSP	Pump Station (Lantrop & Augusta)	73	64
	Pump Station (Abercorn & Columbus	42	40
ar ž	Windsor Forest	47	48
	Fire Station No. 2	52	46
	Water Works	43	38
	Shuman School	45	42
	Market Street	53	48
	Mercer Jr. High	45	40
	Strong Elem School	46	44
	GA Southern College	34	31
PM- ₁₀	Pump Station (Lathrop & Augusta)	42†	38†
	Fire Stat No. 2	36†	32†
Pb	Fire Station No. 2	0.04‡	0.04‡
so ₂ · .	Water Works	15.7†	-
	Farmers Market	15.7	0.002§
03	Bluffton Pump Station No. 2	167//	~ ~ ~ ~

^{*} Source of Data: Georgia DNR
† Annual arithmetic mean
† Quarterly arithmetic mean
§ Concentration in ppm instead of ug/m³
// Maximum 1-hr observation

Orenical Parameters Found in the Laboratory Analysis, Fire Training Pit, Munter AAF

Table

Diethyl- phthalace He/kg 1	BOL BOL BOL BOL BOL BOL BOL BOL BOL BOL
2 Nettryl- neth- thalene µg/Ng	80, 19,000 12,000 10,000 10,000 80, 80, 80, 80,
Neph- thalene #E/kg	80,000 7,000 80,000 80,000 80,000 80,000 80,000 80,000
Di-n-late butyl- phtbalate #g/kg	1,300 10 1,300 10 1,300 10 1,400 10 1,4
Fluorene Hg/kg 1	80 80 80 80 80 80 80 80 80 80 80 80 80 8
Perun. threre Hg/kg	E E E E E E E E E E E E E E E E E E E
Bis (2 ethyl-hexyl) Rithalate	1,700 1,700 800 800 801 801 801 801
Parameters Bis et the Parameters Bis et has Parameters et has bis parameters et et has	BDL BDL BDL 0.799 0.6 0.331 0.42 BDL BDL BDL
Cachnium He/B 1.98	BOL BOL 1.99 BOL BOL 2 3.87 2 2 BOL BOL
Arsenic µg/g 1.96	5.99 2 113.9 3.88 4 8DL 7.75 8 3.98 3.98 BDL
Orromium Hg/g 3.92	12.8 BOL 4.16 BOL 5.19 BOL BOL BOL BOL
Lead 1.98	645 35.9 1,090 73.7 102 19.3 1,185 1,152 13.8 27.8 BDL.
Barium He/8 0.01	64.4 9.19 33.5 18.1 7.19 8.28 16.8 10.3 BDL
Mercury He/8 0.04	0.4 0.388 0.388 0.38 0.4 0.387 0.38 0.4 EDL
Units Detection Limit	y
Depth (ft)	0 - 1 7.5 - 8.5 0 - 1 7.5 - 8.5 0 - 1 6.5 - 7.5 0 - 1
Sample ID	#64. Borehole 10 #65 Borehole 11 #67 Borehole 11 #68 Borehole 12 #69 Borehole 12 #70 Borehole 13 #71 Duplicate of #70 #72 Borehole 13 #73 Duplicate of #72 #74 Quality Control Wash #75 Alcohol used in QA Washings

Source: ABIA, 1987.

OGEECHEE RIVER BASIN

02202500 OGEECHEE RIVER NEAR EDEN, GA. (National Stream-Quality Accounting Network station)

CATION.-Lat 32°11'29", long 81°24'58", Effingham-Bryan County line, Hydrologic Unit 03060202, on right bank 600 ft downstream from bridge on U.S. Highway 80, 2 ml west of Eden, 2 ml upstream from Seaboard Coast Line Railroad bridge, and 3 ml upstream from Black DRAINAGE AREA. -2,650 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .- April 1937 to current year.

GAGE.-Water-stage recorder. Datum of gage is 19.64 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1939, nonrecording gage at site 600 ft upstream at same datum.

REMARKS.-Estimated daily discharges: Sept. 23-30. Records good, except those estimated daily discharges, which are fair.

AVERAGE DISCHARGE.-53 years, 2,280 ft³/s, 11.68 in/yr.

EXTREMES FOR PERIOD OF RECORD.-Maximum discharge, 28,800 ft³/s, Mar. 19, 1980, gage height, 14.77 ft; minimum daily, 106 ft³/s,

EXTREMES OUTSIDE PERIOD OF RECORD.-Maximum stage known since at least 1840, 20 ft in October 1929, from data furnished by Central of Georgia Railway Co. Flood of January 1925, reached a stage of 19.5 ft, from information as explained above. Flood of April 1936, reached a stage of 15.2 ft, from information as explained above, discharge, 30,000 ft³/s.

EXTREMES FOR CURRENT YEAR.-Peak discharges greater than base discharge of 4,800 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Oct. 16 Dec. 24	0100 0800	5,660 6,410	9.36 9.73	Jan. 10 Feb. 26	2000 2100	*9,430 5,000	*10.94 9.00
		V/22					

Minimum daily discharge, 106 ft³/s, July 14.

SAVANNAH RIVER BASIN

02198980 SAVANNAH RIVER AT FORT PULASKI, GA.

LOCATION.-Lat 32°02'02", long 80°54'12", Chatham County, Hydrologic Unit 03060109, at downstream side of Coast Guard pier at Coast Guard station on Cockspur Island, 1 ml upstream from the mouth, 0.7 ml west of Fort Pulaski.

PERIOD OF RECORD.-October 1987 to current year.

GAGE.-Water-stage recorder. Datum of gage is 3.02 ft below National Geodetic Vertical Datum of 1929, at low mean water, (levels by U.S. Army Corps of Engineers).

EXTREMES FOR PERIOD OF RECORD.-Maximum gage height recorded, 9.26 ft, Mar. 9, 1989; minimum gage height recorded, -3.73 ft, Apr. 7, 1989.

EXTREMES FOR CURRENT YEAR.-Maximum gage height recorded, 9.23 ft, May. 23; minimum gage height recorded, -3.08 ft, Feb. 24.

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MÁX	MIN	MAX	MIN
DAT	IVIZZX	IAIIIA	INITOX	IVIII	Wires	314111-4	W	14111.4	1017-01	TVIIICA #	IVICOX	IAIIIA
	C	CTOBER	NO	OVEMBER	DI	ECEMBER	J	IANUARY	F	BRUARY		MARCH
1	7.39	.24	7.18	.49	7.14	.08	5.78	-1.34	6.80	-0.83	8.33	-0.51
2	6.91	.27	7.30	.59	6.94	-0.26	6.66	-0.75	6.79	-0.77	7.97	-0.37
3	6.90	.39	7.21	1.29	5.70	-1.04	6.38	-0.92	6.60	-0.40	7.88	-0.25
4	7.01	.79	7.05	1.33	6.43	-0.27	6.27	-0.89	6.59	-1.05	7.30	.80
5	7.08	1.55	7.36	1.55	6.10	-0.60	6.43	-0.87	5.95	.18	7.42	1.07
6	6.50	1.16	6.89	.84	6.37	-0.18	6.84	-0.55	7.37	-0.75	7.64	.36
7	6.27	.67	6.55	.41	6.33	-0.35	7.45	-0.39	7.67	-1.09	7.56	1.77
8	6.59	1.04	6.81	.02	7.45	-0.12	8.27	-1.96	7.73	-1.47	8.24	.34
9	7.30	1.68	7.21	-1.19	8.31	-1.04	7.71	-1.74	7.67	-1.20	7.95	-0.24
10 .	7.45	1.03	7.77	-1.42	8.13	-1.23	7.45	-1.93	7.49	-1.35	7.29	-0.88
11	7.78	.05	7.82	-1.35	8.24	-1.26	7.85	-2.06	7.57	-1.23	7.32	-0.87
12	7.86	-0.56	8.15	-1.63	8.53	-1.53	7.23	-2.22	6.92	-0.79	7.09	-0.72
13	8.05	-0.65	8.47	-1.93	7.77	-1.56	7.16	-1.22	6.48	-0.58	6.98	-0.80
14	8.53	-1.07	8.60	-1.51	7.58	-1.84	7.31	-0.91	6.14	-0.45	7.13	-0.36
15	8.73	-1.20	8.35	-1.35	7.84	-1.36	7.01	-0.56	5.76	-0.01	6.93	.28
16	8.56	-1.42	6.67	-1.12	7.17	-1.15	6.30	-0.37	5.62	-0.21	6.51	.44
17	8.46	-1,24	7.15	-1.43	7.26	.16	6.06	-0.15	5.27	.15	6.21	-0.15
18	8.14	-0.75	6.59	-0.49	6.62	.14	5.90	.41	6.09	2.11	5.64	.24
19	7.21	-0.76	6.31	-0.09	6.74	.99	5.62	.48	6.09	.90	5.78	1.01
20	6.39	-1.25	5.95	-0.24	6.04	.48	6.27	1.04	5.99	1.45	5.92	.57
21	6.62	-0.05	5.68	-0.44	6.46	.68	5.84	-0.33	7.17	.58	6.45	1.22
22	6.75	.29	6.15	.29	6.03	1.12	5.12	-0.32	7.09	-0.47	6.65	.53
23	6.85	1.13	5.88	-0.32	6.93	.69	6.19	-0.10	6.94	-1.56	6.91	-0.54
24	6.87	.99	6.46	.47	6.89	.54	6.77	-0.20	5.99	-3.08	7.34	-0.73
25	7.16	1.38	6.94	.21	7.31	-0.57	7.16	-0.50	7.40	-2.42	8.12	-1.20
26	7.68	1.52	7.19	.20	6.22	-0.66	5.81	-1.71	8.09	-0.62	8.67	-1.33
27	7.88	1.37	7.18	.05	7.09	-0.91	6.82	-1.84	8.15	-1.36	9.02	-0.73
28	8.14	.95	7.18	-0.15	6.45	-1.48	7.06	-1.44	8.02	-1.44	8.98	-0.43
29	8.10	1.45	6.48	-0.61	6.96	-0.90	7.21	-1.43	-	, -1	8.34	-1.29
30	8.12	1.16	7.16	.22	6.99	-0.95	6.95	-1.54	-		8.05	-0.78
31	7.76	.60	-	_	7.17	-1.05	7.00	-1.50		-	7.57	-0.72
HTMOM	8.73	-1.42	8.60	-1.93	8.53	-1.84	8.27	-2.22	8.15	-3.08	9.02	-1.33

Project Identification Location of Sample	Groundwater Samples at Hunter AAF, Ga. HAAF-GW-9
Date of Sample	1/14/81
Time of Sample	11:45 AM
Date of Analyses 1/14	/81-2/3/81

<u>Parameter</u>	i 8		
Arsenic	< 0.001	Turbidity (NTU)	35
Barium	0.8	Fecal Coliform Bacteria (colonies/100 mls)	6
Cadmium	< 0.001	Chloride	7
Chromium (VI)	< 0.005		
Fluoride	0.29	Copper	0.017
Lead	< 0.01	Foaming Agents (MBAS)	< 0.01
Mercury	< 0.0005	Hydrogen Sulfide	0.6
Nitrate (as N)	0.020	Iron 	2.6
Selenium	< 0.002	Manganese	0.02
Silver	< 0.001	Sulfate	4
Endrin	< 0.0001	TDS	148
Lindane	< 0.0001	Zinc	0.03
Methoxychlor	< 0.001	Color (apparent) units	
Toxaphene	< 0.001	w ≈	no <u>n-corros</u> ive
2, 4-D	< 0.01	Odor (TON)	30
2, 4, 5- TP Silvex	< 0.001	pH _p (units)	6.5
Radium 226 (pCi/1)		BOD ₅	6.0
Radium 228 (pCi/1)	_	SS	12.2
Gross Alpha (pCi/l	0.2	DS	148
Gross Beta (pCi/1)	0.4		s
91033 De ou (poi/1/			

SAVANNAH RIVER BASIN

02198980 SAVANNAH RIVER AT FORT PULASKI, GA.-Continued

GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990

1												
DAY	MAX	MIN	MAX	MIN	`MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
		APRIL		MAY	æ	JUNE		JULY	i	AUGUST	SE	PTEMBER
1	7.57	.27	6.69	-0.51	7.26	.79	6.53	-0.06	6.60	.96	7.33	1.18
2	7.35	.20	6.98	.41	6.83	.65	6.92	.25	7.11	1.22	7.70	.90
2 3 4	6.95	-0.11	6.91	.46	6.86	.19	7.30	1.46	7.25	.68	7.74	.24
	6.69	-0.17	6.63	-0.04	7.01	.26	7.26	.96	7.37	.53	8.02	-0.04
5	6.54	-0.36	6.52	-0.91	7.97	.41	7.06	.15	7.49	.11	8.05	.04
6 7	6.60	-0.71	7.25	-0.74	7.60	.56	7.24	.01	7.54	-0.29	7.86	-0.33
7	7.01	-0.88	7.37	.13	7.13	.06	7.63	.32	7.62	-0.25	7.70	-0.78
8	7.39	-0.22	7.28	-0.25	7.09	-0.19	7.66	.26	7.36	-0.25	7.55	-0.96
9	7.39	-0.07	7.25	-0.29	7.00	-0.13	7.45	.04	7.27	-0.32	7.86	-0.62
10	7.18	-0.85	6.67	-0.50	6.54	-0.39	6.94	-0.30	7.39	-0.51	8.28	.05
11	6.06	-1.15	6.82	-1.17	7.65	-0.54	6.84	-0.63	7.41	-0.95	-	
12	6.80	-0.61	7.02	-0.22	-		6.64	-0.96	7.40	-0.42		-
13	6.85	-0.19	6.44	-0.08	-	-	6.58	-0.79	7.24	-0.25		•••
14	6.57	.91	6.47	-0.03	6.95	_	6.80	-0.59	7.29	-0.59		
15	6.21	.31	6.74	.50	6.94	.08	6.71	-1.09	7.31	-0.62	-	_
16	6.10	.65	6.69	.65	7.62	.71	6.99	-0.76	7.49	-0.62	•••	***
17	6.10	.91	6.47	.29	7.95	1.18	7.35	-0.92	8.06	-0.57		. =
18	6.27	1.61	6.63	-0.25	8.10	.20	7.44	-1.15	8.27	-0.53		.63
19	6.91	1.44	6.67	-0.37	8.33	-0.68	7.78	-1.14	8.40	-0.45		-
20	6.63	.11	7.26	-0.74	8.72	-0.99	8.00	-1.29	8.18	-0.85	-	-
21	6.69	-0.65	7.79	-1.66	8.59	-1,14	7.95	-1.77	7.93	-0.71	7.50	•••
22	7.82	-1.22	7.95	-2.10	8.16	-1.64	7.88	-1.73	8.11	-0.40	7.00	.39
23	8.17	-1.12	9.23	-0.77	8.21	-1.92	8.16	-1.27	7.56	.23	7.00	.12
24	8.29	-1.96	9.21	-1.00	8.32	-1.19	7.95	-0.71	7.19	.25	7.01	1.56
25	8.30	-2.37	8.85	-1.36	8.13	-0.95	7.97	-0.19	6.75	.34	6.67	1.51
26	8.28	-2.47	8.76	-1.23	7.78	-0.53	7.67	.40	6.53	.39	6.30	1.59
27	8.25	-1.99	8.33	-0.77	7.37	-0.08	7.55	1.19	6.46	.91	0.00	1.00
28	8.11	-1.15	8.30	-0.21	7.33	.00	7.35	1.55	6.65	1.20	6.63	1.76
29	7.51	-1.03	8.07	-0.44	6.59	.03	7.21	1.60	6.39	1.38	6.89	1.35
30	7.40	-0.97	7.32	.15	6.39	-0.14	6.73	1.31	6.63	1.32	7.14	.68
31			7.26	.78	-	•••	6.57	1.02	6.98	1.56	_	_
MONTH	8.30	-2.47	9.23	-2.10	-	: :	8.16	-1.77	8.40	-0.95		

SAVANNAH RIVER

		H	LINCOLN	ST. RA	RAMP					FORT	I JACK
	解ソセリン	Seeded	8.8	盟	Temp.	B.0.	Total Solids	7	Seeded	S.S.	風
1881	F. Coli	mg/1	mg/1		ပ	1/200	17/34	000	TIAM	100	1,0
JANUARY 8, 1990	300	2	61	7.3	14.0	1	72.6	2007	1,	36.5	ا ا
151.19	\$30	7	7:1	717	1,00	2.3	1,200	170	1	1,1	10
551 M	24 OD	1	20	01/	28		7990	320	V	8	7.5
1	700	7	0	11-11-11-11-11-11-11-11-11-11-11-11-11-	2	وَ	3/0/	250		00	1
Y	500	1	1/4	20	22.5	4		200		200	2.5
1	800		137	7.4		1	356	200	1	*	1
į į		I	1	20	28.0		3456			9	101
7		7	19	1	37,12	J.	385		1	4	1
$+$ $^{\prime}$	_	,	4/	6.5	256	4.2	100%		1		1-1
OCTOBER 12 1991	_	,	2	2,5	177	5:7	17,612		1	52	1
MOVEMBER 22, 145		-	20	7.3	5.7	1.0	7670		1	9	4
DECEMBER	_							 -			-
TOTAL			_		_					_	
						2					
	sgreen a	BOD	5.5.	쩐	Tenp.	D.0.	Solids mg/l		BOD me/1	S.S.	쩑
JANUARY			_	_			-	4			_
FEBRUARY							1			-	\downarrow
MARCM		_		_							_
APRIL					-	1		-		1	_
MAY				4	1	1	-			-	\downarrow
JUNE				-	1	+	\downarrow	-	-	1	\downarrow
JULY				-		1	$\frac{1}{1}$	-	1	-	1
AUGUST				4	-	1	+	-	-	1	_
SEPTEMBER			_	1	-	1	+	-		1	+
OCTOBER						4	1	+	-	+	1
MOVEMBER			4	1		4	+	-	1	-	1
DECEMBER			_	-	-	-	-	= =	_	\downarrow	-
TOTAL		-		_	_	_	_	=		1	
	_										
	L										

* Kin Bring delyed

DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION SAFE DRINKING WATER PROGRAM

71	7			The second secon	
1	INDRGANIC	CHEMISTRY REPO	ORT (TYPE 1)		
2314 50					
4	SYSTEM - Savennah-Main	***		w w	2501944_
5	- TOTAL WEST STITLE THE STITLE		NEW-ID#:	05	10003
10	Mr. Herry Jue - W Oper Di	a	DATE COLLE	CTED: 12	/ 3/90
. [2			TIME COLLE		
8	P. O. Box 1027		DATE RECEI		/ 7/90
10			DATE REPOR	HED: 2	/ 6/91
			The state of the s		
11	I LADE: TAP DESCRIPTION:		COLLECTED	BV.	
13	0400429_TAR_AT_WATER_OPERATI	ONS-STILES_AVE	BRUCE FOIS	BY:	
14		(-,	MINOR-019		
15					
10					
		LABORATORY	ESTABLISHED		DATE
17	TEST DESCRIPTION	RESULTS	LIMITS	UNITE	E A VM I PIE
10				414110	EXAMINE
8	pH (CaCO3 Stability S.U.)	7.8		BU	12/17/9
~	Conductivity(250 micromhos/c	m) 235	26 (6)		c12/17/90
22			10-00-	Onition	10/17/7
=	*Fluoride, Total (F)	0. 7	1, 00	mg/1	-12/17/9
23	*Silver, Total (Ag)	C30	50, 00	mg/1 Ug/1	1/15/9
24	#Ar-senieTotal (As)	C10	50,.00	ug/1	
1	*Barium, Total (Ba)	<50	1,000.00	ug/1	1/15/9
17	#Cadmium, Total (Cd)	<5	10.00	Ug/1	1/15/9
2B	#Chromium, Total (Cr)	C25	50,-00	ug/1	1/15/9:
70	Copper, Total (Cu)	59	1,000.00	Ug/1	1/15/9
\$	Iron, Total (Fe)	<50	300, 00	ug/l	1/15/9
31		<0_2	2,00		12/14/90
10	Manganese, Total (Mn)	C25	50.00	ug/l	1/15/9
	Sodium, Total (Na)	11	ಚಾತ್ರಾಣ ನ್ನಡ !	mg/1	1/15/9
33 34	#LeadTotal_(Pb)	<25	50,-00		1/15/91
	#Selenium, Total (Se)	<5	10.00	ug/1	12/13/90
12	Zinc, Total (Zn)	<50	5,000.00	na/1	1/15/9
219 9	Temperature_(Centigrade)	20.0	*************	C	
34	and the second s		100-1000		
10	9 -		·	ZUNITAGE	
10		- Proposition	WATER O	PERATIONS	3
41			WIEW O		M_{-}
12			الالتالثال	,	H = H
13				4 44.7A	111
44	· · · · · · · · · · · · · · · · · · ·	5 9	ICL WRA	v.001	IN
15		*	III TO	كا الالط	
16	P			-JU 4.	10
1				The State of	
48			MY		10
18	A CONTRACTOR				6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7
8	# ESTABLISHED LIMITS SHOWN AB	OVE. IS ALBO T	HE PRIMARY MC	L.	6
H			- TINIUNI IIV		<u>[0</u>
21	Mr_Harry_Jue, W_Oper_Dir		HAROLD_L	ANEGRA	6
27			LARGRATO	RY MANAGE	6
			=1761 GIVI (U	Langer	•rs [7
31					17
56	11	10	4-1 111		7
\.					
F					7.

DEPARTMENT OF	NATURAL RESOURCES
ENVIRONMENTAL	PROTECTION DIVISION
SAFE_DRINKI	NO WATER PROGRAM

INDRGANIC CHEMISTRY REPORT (TYPE 1)

	520	
SYSTEM - Savannah-I & D	OLD ID#: NEW-ID#:	302501953 0510004
Mr. Harry Joyner, Water Supt. Savannah 1 & D Water System <u>Post Office Box 4101</u> Port Wentworth, GA 31407	DATE COLLECTED: TIME COLLECTED: DATE RECEIVED : DATE REPORTED :	0853 4/23/91
LABH: TAP DESCRIPTION: 0400754 LATHROP AVENUE BOOSTER STATION	D CONNELLY	
Total and the statement of the statement		

					2
TEST DESCRIPTION	LABORATORY RESULTS	ESTABLISHED LIMIIS	UNITS	DATE EXAMINEI	2
pH (CaCO3 Stability S.U.) Conductivity(250 micrombo "Nitrate (ac N)	5/cm) 134		BU Umhos/c	5/ 6/91	80
*Fluoride, lotal (F)	<0. 5 0. 2	10.00	ng/1	4/25/91	
#Silver, Total (Au)	<u> </u>	1.00	mg/1	1 1	34
#Arsenic, Tutal (As)	C10	50.00	ug/1	5/14/91	
*Barium, Total (Ba)	C50	1,000.00	υ <u>α</u> /] υα/]	4/25/91 5/14/91	
*Cadmium, Total (Cd) *Chromium, Total (Cr)	<u> </u>	10.00	ug/1	5/14/91	
Copper, Total (Cu)	C25	50. OO	ug/1	5/14/91	
Iron Totel (Fe)	C50 53	1,000.00	Ug/1	5/14/91	48
*Morcury, Intel (He)	<0. ₽	2. 00	vg/1	5/14/91	
Manganese, Total (Mm)	くとも	50.00	Ug/1	5/ 1/91	
Sudium, Total (Na) *Lead, Total (Pb)	B. 2		mg/l	5/14/91	
*Selenium, Total (Se)	<35 <5	50.00	ug/l	5/14/91	
Zinc, Total (Zn)	<.5 <.50	10.00	ug/l	4/29/91	80 81
20 30 10 10 10 10 10 10 10 10 10 10 10 10 10	- Service Serv	5,000.00	nB\1	5/14/91	92
					83 84
					80

* ESTABLISHED LIMITS SHOWN ABOVE, IS ALSO THE PRIMARY MCL

Mr Arthur A Mendonse, City Mgr Mr Ed Hagan, Fac Maint Dir Mr. Harry Joyner, Water Supt

HAROLD LANFORD LABORATORY MANAGER

Soil Gas Survey Results, Bldg 710

ARMY CORPS OF ENGINEERS/HUNTER AAF/SAVANNAH, GEORGIA JOB#1-90-384-T

CONDENSED DATA

180000 3800 THC <0.3 ng∕1 XYLENE <150 <37 ×30 < 0.07 η/Jn 0.3 0.6 ETHYL < 0.08 <0.08 <0.08<0.08<0.08 <150 <0.4 <0.1 <0.2 <31 <39 ηď TOLUENE < 0.07 5500 1800 \/gu 8 BENZENE <0.08 <0.2 < 0.2 νgn < 0.1 <03 <0.7 < 0.3 <78 SAMPLE GS-10-5' GS-11-4' GS-9-5° GS-7-4° GS-8-4' GS 44' GS-1-4' GS-2-4' GS-3-4' GS-54' GS-6-4' AIR

I interference with adjacent peaks

Analyzed by: K. Ptak
Checked by: M. Flack
Proofed by: A. Agolande

Soil Gas Survey Results, Bldg 133

ARMY CORPS OF ENGINEERS/HUNTER AAF/SAVANNAH, GEORGIA JOB#1-90-384-T 07/11/90 CONDENSED DATA

THC	<0.24032	1600 36 4	750000 120000 < 0.08	0.8
XYLENE ug/l	<0.1 <0.07 <0.07	< 0.7< 0.1< 0.1	<35 <35 <0.07	<0.07
ETHYL BENZENE ug/l	<0.2 <0.08 <0.08	< 0.8< 0.2< 0.2	<42 <42 <0.08	< 0.08
TOLUENE .	00 4 4	14 4 0.8	18000 14000 <0.07	<0.07
BENZENE ug/l	0 × 4 × 4	27 6	38000 26000 < 0.08	< 0.08
SAMPLE	AIR SG-1-4' SG-2-4'	SG-34' SG-44' SG-54'	SG-64' SG-74' SG-84'	SG-9-5' SG-10-5'

<u>CERTIFICATION</u>

1-90-384-T

Date: July 1990

Location:

Hunter Army Air Field

Building 133

Savannah, Georgia

<u>Tank</u>	Capacity (gal)	Product	Tracer	Leak Status
Crown	6,000	Gasoline	DDM	Three
Super Crown	6,000	Gasoline	114B2	Three

Tracer Research Corporation certifies that the tank and pipe systems listed in the above table have been tested by means of Tracer TightTM, which meets the criteria set forth in NFPA 329 for a precision leak test.

Submitted by:

Tracer Research Corporation

The following criteria are used for the classification of leaks when tracer is detected.

LEAK STATUS

One NO LEAKAGE - Rate less than 0.005 gallons per hour.

Two VAPOR LEAK - Maximum tracer concentration less than 1 ug/L in soil vapor diminishing at depths below three feet.

Total volatile hydrocarbon concentrations less than 20,000 ug/L in soil vapor (if diesel is the only fuel present, substitute 100 ug/L in place of 20,000 ug/L).

Three SMALL OR INTERMITTENT PRODUCT LEAK less than 0.05 gph -Maximum tracer concentration less than 1 ug/L in soil vapor, sustaining or increasing at depths below three feet or to the top of the groundwater table. Hydrocarbon concentrations approximately equal to or greater than 20,000 ug/L in soil vapor (100 ug/L for diesel) sustaining or increasing below three feet. Distribution of elevated hydrocarbons is less than 200 square feet total area.

Four SIGNIFICANT PRODUCT LEAK 0.05 gph or greater - Maximum tracer concentration greater than 1 ug/L near source, increasing or sustaining concentration below three feet or to the top of the groundwater table. Hydrocarbon concentrations greater than 20,000 ug/L in soil vapor (100 ug/L for diesel) sustaining or increasing below three feet. Distribution of elevated hydrocarbons is equal to or greater than 200 square feet total area.

CERTIFICATION

Location:

Hunter Army Air Field

Building 133

Savannah, Georgia

Date: February 1990

Tank	Capacity (gal)	<u>Product</u>	<u>Tracer</u>	Pass/Fail	Leak Status
Service Station Crown (west) Super Crown	6,000 6,000	gasoline gasoline	*	Pass Pass	1
Economy Crown Crown (east) Diesel	6,000 6,000 4,000	gasoline gasoline diesel?	not tested * *	Pass Fail	1 2

^{* =} either 114B2 or DDM

Tracer Research Corporation certifies that the tanks and pipe systems listed in the above table have been tested by means of Tracer TightTM, which meets the criteria set forth in NFPA 329 for a precision leak test.

Submitted by:

Kacen L. Suess Tracer Research Corporation

The following criteria are used for the classification of leaks when tracer is detected.

LEAK STATUS

- 1 NO LEAKAGE Rate less than 0.005 gallons per hour.
- 2 VAPOR LEAK Maximum tracer concentration less than 1 ug/L in soil vapor diminishing at depths below three feet. Total volatile hydrocarbon concentrations less than 20,000 ug/L in soil vapor (if diesel is the only fuel present, substitute 100 ug/L in place of 20,000 ug/L).
- 3 SMALL OR INTERMITTENT PRODUCT LEAK less than 0.05 gph -Maximum tracer concentration less than 1 ug/L in soil vapor, sustaining or increasing at depths below three feet or to the top of the groundwater table. Hydrocarbon concentrations approximately equal to or greater than 20,000 ug/L in soil vapor (100 ug/L for diesel) sustaining or increasing below three feet. Distribution of elevated hydrocarbons is less than 200 square feet total area.
- 4 <u>SIGNIFICANT PRODUCT I.FAK</u> 0.05 gph or greater Maximum tracer concentration greater than 1 ug/L near source, increasing or sustaining concentration below three feet or to the top of the groundwater table. Hydrocarbon concentrations greater than 20,000 ug/L in soil vapor (100 ug/L for diesel) sustaining or increasing below three feet. Distribution of elevated hydrocarbons is equal to or greater than 200 square feet total area.

Analytical Results for Leak Checks of USTs at Building 133

ARMY CORPS OF ENGINEERS/HUNTER AAF/SAVANNAII, GEORGIA JOB#1-90-384-T 07-11-90 CONDENSED DATA

	THC	l/gu	<0.2	520000	800000	56000	760000	2000/	130000	860000	14000	200	300000				110	160	
	XYLENE	l∕gu	<0.1	N/A	A/A	N/A	N/A	47/17	N/A	N/A	A/N		N/A			= 1	₹/Z	N/A	
ETHYL	BENZENE	ηď	<0.2	N/A	N/A	N/A	A/A		N/A	N/A	A/A		A/A				K/N	N/A	
	TOLUENE	√gn	<0.1	N/A	N/A	N/A	N/A	1	N/A	N/A	N/A		N/A				K/Z	N/A	
	BENZENE	√3n	<0.2	N/A	N/A	N/A	N/A		N/A	A/N	N/A		N/A				N/A	N/A	
	114B2	/gn	<0.00000	<0.0002	0.005	<0.00009	<0.0000	00000	<0.00000	< 0.00009	<0.00009	00000	<0.0000			1000	<0.001	< 0.0001	51
	DDM	ug/l	<0.00006	0.008	<0.00006	<0.00006	90.0	200000	<0.00000	<0.00006	<0.00006	200000	< 0.00000			200000	100000	< 0.00007	
		SANIPLE	AIK	T-17	T-15	T-13	T-16	1.1	1-14	T-18	P-2	10	E	17 00	0/-17-70	T.10.4"	1	T-20-4	

N/A not analyzed

Analyzed by: M. Flack
Checked by: K. Ptak
Proofed by: A. Applandle

Source: Tracer Research Corporation, July 1990

Analytical Results for Leak Checks of USTs at Building 133 ARMY CORP OF ENGINEERS/HUNTER RAF/SRUANNAH, GEORGIA JOB#B-917-90-CONDENSED DATA

				-		
THC ug/1	<0.09° 0.2 <0.09	440000 9900 2100	200 1700 600000	420000 14000 160000	28000 360000 45000 390000	
11482 ug/1	<pre><0.00007 <0.00007 <0.00007 </pre>	<0.00007 <0.00007 <0.00007	<0.00007 <0.00007 0.01	<0.00007 <0.00007 <0.00007	0.001 0.001 <0.00007 0.0003	
00M 1/gn	<pre><0.00006 <0.00006 <0.00006 </pre>	<pre><0.00006 <0.00006 <0.00006</pre>	<0.00006 <0.00006 <0.00006	<0.00006 <0.00006 <0.00006	<0.00006 <0.00006 <0.00006 <0.00006	
SAMPLE	RIR W-01-6" W-02-4"	T-01-3° T-02-2° T-03-3°	T-04-2" T-05-3" T-06-4"	T-07-3° T-08-4° T-09-3°	T-10-1° T-11-2° T-11-4° T-12-4°	

	<0.1 280000 340000	490000 780000 160000	300000 800000 120000 18
	<0.00007 <0.00007 <0.00003	<0.00007 <0.00007 <0.00007	<0.00007 <0.0004 <0.00007 <0.00007
	<0.00006 <0.00006 <0.00009	<0.00006 <0.00006 <0.00006	<0.00006 <0.0003 <0.00006 <0.00006
05-08-90	AIR P-01-3* P-02-3*	T-13-5" T-14-5" T-15-5"	T-16-5' T-17-5' T-18-5' AIR

Chemical Test Data For Soil Samples
Phase II Site Investigation At Building 1343
Hunter Army Airfield, Savanne Pedral NARY

SUBJECT TO CORRECTION

				DE LA COMPANIE	8	24
*	1		4.5	Ethyl	¥	2,
	TPH	Benzene	Toluene	Benzene	V1	Total
Sample No.	mg/Kg	ug/Kg	ug/Kg		Xylenes	BTEX
		<u>-6:</u>	GE / VE	ug/Kg	ug/Kg	mg/Kg
HW-1-1	230	< 10000	280000	100000	590000	070
MW - 1 - 2	54	< 5700	89000	30000		970
MW-1-3	26	13000	260000	110000	180000	299
MW-1-4	68	76000	880000		590000	973
		70000	880000	360000	1700000	3016
MW-2-1	NA	< 6.5	⟨ 6,5			
	a a	` 0.5	(0.5	< 6.5	< 6.5	NA
MW-3-1	37	< 5.7	⟨ 5.7		20	(<u>*</u>
MW-3-2	55	2700		₹ 5.7	< 5.7	NA
		2100	8500	< 250	10000	21.2
MW-4-1	NA	27	17		80 (17 × × ×	
MW-4-2	13	₹5.8		. (5.7	13	0.057
		\ 3.6	9.1	< 5.8	< 5.8	0.009
MW-5-1	12	⟨ 6.1	2.5			
100 to 10	• •	\ 0.1	7.5	< 6.1	< 6.1	0.008
A6-1 (MW-6)	NA	< 29	110			
A6-1QC (MW-6)	NA	< 240	110	< 29	300	0.4
-2 (MW-6)	2200		980	1300	9000	11.3
2QC (MW-6)	520	NA	NA	NA	NA	NA
240 (1111 0)	320	NA	NA	NA	NA	NA
A1-1	19	4.5.0				
N	19	< 5.8	< 5.8	< 5.8	₹ 5.8	NA
A2-1	NA	/ 0700				•
A2-2	100	< 2300	33000	4300	< 2300	37.3
R4 Z	100	< 5.7	6.2	< 5.7	< 5.7	0.006
A3-1	000					
WO-1	290	27	170	89	630	0.9
A4-1	380					8
A4-2		NA	NA	NA	NA	NA
NY 6	170	< 5.8	(5.8	< 5.8	17	0.02
A5-1	410					
WO-1	<.12	< 6.1	< 6.1	< 6.1	< 6.1	NA
A77 1						27.44
A7-1	NA	(6.0	24	< 6.0	< 6.0	0.02
61.6	A00.0 (8)					0.02
SI-S	<12	NA	NA	NA	NA	NA
00.0	•					MA
S2-S	<12	NA	NA	NA	NA	NA
*				5457/	MA.	WW

^{1.} Action level for State of Georgia is 100 mg/Kg for TPH analysis.

Action level for State of Georgia is 20 mg/l for BTEX analysis. Values reported at < XX were not included in the summation of the 4 constituents to obtain total BTEX.

TABLE 3
Chemical Test Data For Water Samples
Phase II Site Investigation At Building 1343
Hunter Army Airfield, Savannah, Georgia

Sample_No.	TPH mg/l_	l Benzene ug/l_	Toluene	Ethyl Benzene <u>ug/l</u> _	Xylenes
MW1-A1	18	40000	60000	2700	23000
MW2 - A 1	< 1.0	< 1.0	< 1.0	< 1.0	1.2
MW3-A1	46	36000	54000	3400	17000
MW4-A1	< 1.0	34	6.6	< 1.0	8.9
MW5-A1 (QC)	< 1.0 < 1.0	21 13	2.0 67	< 1.0 14	(1.0 120
MW-6-A1 (A6)	22	13000	18000	730	6400
S1-W	< 1.0	NA	NA	NA	NA
\$2-W	(1.0	NA	NA	NA	NA
Rinsate	< 1.0	NA	NA	NA	NA NA
Trip Blank	NA	(1.0	< 1.0	< 1.0	< 1.0

^{1.} The action level for drinking water in the State of Georgia is 5 ug/l benzene. Separate action levels for ground water have not been developed. Depending on the site, less less stringent levels may be applied. This is subject to Georgia EPD approval.

PRECIMINARY SUBJECT TO CORRECTION

Sampling and Analytical Requirements for Hunter AAF Fire Training Area Table

	No. of	No. c	No. of QC Samples Analyzed by Hunter/ESE	383	No. Anal	No. of QC Samples Analyzed by USACE	8 E				
	Samples	Replicate	rield Samples Replicate Rinseate	Trip Blanks	Replicate Rinseate	Rinseate	Trip Blanks	₩ ₩	Parameters A B C D	le te	S
Soil Gas	18	1						'		1	>
Soil	9	1	ч	1			,	×	Þ	· >	4
Groundwater	9	ĵ		1	ŗ	н	1	×	¢ ><	¢ ×	
Sediment	Ŕ	, ,	# (#8	1	7	a F	н	×	×	×	. 1

A - volatile organic compounds (SW 8240). Note:

B = metals (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag).C = polynuclear aromatic hydrocarbons (SW 8270).D = total volatile organics (PID).

QC - quality control.

A number of trip blanks will be shipped dependent on the number of coolers with volatiles shipped.

Source: Hunter/ESE, 1989.

0027588

BECHNING 91 | 09101 DATE YR MO | DA END 91 | C9 | 30

Hunter Army Airtield Savannak GA 31409-5026

	- ומכג אטה בספר	100:	100	100	100 .	100	100	100	100		
Flow	1										
Continued Continued Compassive Compassive Continued Co	TANGET OF CODE			200	200	700		Tre-			
The Continuent	PARAMETER	Flow	Cion	٦. ١	. f	2.		L.d	tacal colitora		
Configurate Continuent Configurate Confi	E LINTS	=	m3 Day	mg/1	K. Day	m./1	- 1	24			
Continuent Continuent State	TYPE OF SAMPLE		_]	Composite	Campaciac	Compasite	Campoliza	Grab			İ
1.50 1.50	PALDADET OF ANALTES	Continuous	4	2/ week	Muck	2 liveck	2/week	Paily	1 week		
13.2 1.0	LINGTS	1.50 max].	No mag	142 1704 ×	45 max		games.			
1, 10		1	-	4	L	-	777	1	200		
1.25 2.000 1.0 1	+					- -	, .		× -		
1.22 2.074 6 17 8 16 1.25 1.	1	535	1.025			,		100			
1.20	in in	.637	2.4//					7:0			
128 233 31 35 13 14 14 14 14 14 14 14	-	548	2.074	9	7	8	1/6	7.62	1		
120 125 125 31 35 12 12 11 11 11 11 11 1	\$	827	2.377			3	*	3.5	14000		
1,450 1,452 1,45		056	2.839	3	88	13	26	7.1			
1971 2.43	7	099	1. 498		_			112	-		
1.27 2.42		. 656		1				101			
1.43 2.453	0 1	. 589	1 2.267					pr c			
1.47 2.445 5 12 5 12 5 134 95 134 135	. 1 0	1 . 693	1 2.633		_			7/1			
123 2.358 2.403		647	5#1-6	22	77	5	M.	720	4		
157 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 248 2 2 248 2 2 2 2 2 2 2 2 2	2	623	2358	Ŀ		-		131	þ		
100 100	3	159	137.6	7	1 4	2	74	137			
100 100	4	135	7.303	-	 -	1	17	577		3	
534 2034 3	-		2526			-		2.11		-	
125 2.17 2.25 2		1 536	1.679					5/7/			
110	2	185	2016					7.7.	4		
120 0.46 -2		85	-	0	9	1		7.43	9		
100 100		011		-	2		S	7.56			
125 2017 2.26 2	-	566		7-1	1 1			1.70			
120 120	-	1 1 533	 -		-		S	1.50	- -		
120 3894 3 320 3 340 3 340 3 340 3 340 3 340 3 350 3	2 2	956	L					2.5			
1031 3.926 3.900		1030	L	Ŀ				17.7	-		
3.500 3 3.500 3 4 7.34 - 4 7.34 - 4 5.500	-	11 1 1058	_	1.				7.76	X		
3.350 3.50 3.50 4 3.44 - 3.44 - 3.44 - 3.44 - 3.44 - 3.44 - 3.44 - 3.45		118-	_	_	6 !	=	2	27.6	4		
THE STATE OF THE S		1 - 28	H		\ 		> -	300	-		
2.65 1.40 4.5 informed the Savan 1.30 4.5 informed the Savan 1.40 4.5 informed the Savan 1.50 4.50	-	1.1	_	-		1.2	7	1000			
2.165	1	F	8	- اخذ اختند مدخد			-	1.30	-	The state of the s	
### 2.513 1450	42	7	<u>a</u>		 —				-	I TOR IM	Jack Mag
30 30 4 100 40 4 100 6 4 100 6 5 100 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				:	١.	-		-	-	2727	
30 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 100 100 4 100 1			をかり 1	إخبارة خريرت يمتسخ	1.0	_	1			2000	52/165
2.450 6.6	Design II	=				_	80	30	 - -	7	V
MARK VALLE 1/10 0.116 31 88 12 36 3.76 7.66 7.66 7.66 7.66 7.66 7.66 7	AVERAGE VALUE	1	i !		1 /6-	5	14	7.70	L		
INCENTIVE OFFICER TATE OF THE OFFICER THE OFFICER TATE OF THE OFFICER	MAXABLE VALUE		1. 3.766		. 88	11	36	256	1		
INTERNAL EXECUTIVE OFFICER TUNE OF THE OFFICE THE OFFI	MEMBER VALLE		0.46		ф		n	2000	-	-	
TOTE OF THE OFFICE - DATE I CATHY THAT I AM farmed with the alichmation Continued in this to a continued in this to a continue of the continue	COLUMN 1	4	:		#	A	1	6	-		
Deput DEH 911	NAME CF	PRINCIPAL EXECUTIVE OFF		TO THE OF THE OF	1	DATE		4		1000	
Jeputy Jt T	MAIR	DOV RINI-	4	1 1		L	certity that I am farranar w	off. It's elementon conta	of but transfer and in being	hittle Shirming	1 min
	The state of the s	KILL PARTE	Z	-	<u>.</u>	21	O THE DEST OF THE PROPERTY OF	On and beloe and and an order		· Aller	1

Mil 2 Throughton Ŋ I certify that I am famear with the internation contained in this report and traff to the best of my knowledge and belief such information is true, complete, the Facal Colitorn 57.54 22000 702 men has my 400 Week 22000 1 week 200000 9 Gras いったできるからいっちょう 702 222222 90 mas amin a 7.61 0 Poily 9 Grab He Ky Day 213 max 172 049 00 0 33 23 44 23 23 155 30 28 063 ma /1 2 Judeck 30 645 45 max 155 911 018112 00 wa 01 DATE 41 07 01 YR /NO DA Juseck Street 91 107 13, 142 Max KIDAY 95 aug 28 00 23 42 192 BOD 4 ī 0 TITLE OF THE OFFICE P DEH DATE BEGINNING Composite 2) week 100 SNS male BOD 07 3 6 93 Deputy 5477 max Continuous 23/46. Continuous 4731 ave 2930 2930 2930 2105 2343 1937 1**5**03 1484 1839 3358 2820 1968 Flow NAME OF PRINCIPAL EXECUTIVE OFFICER Continuous .50 max Continuous THORNBERRY BILL F. 1.15 aug 2347 0.619 1.429 5.931 1.725 0.401 0.546 10 401 10 401 10 636 10 537 0.504 0.503 0.503 0.503 552 0.42 0 486 0.421 0.456 0.424 0.388 Flow me h 100 MENNAGA VALLE LOCATION CODE PARAMETER CODE AVERAGE VALUE MAXIMURE VALUE TYPE OF SAMPLE PARAMETER PREGLEDICY OF ABALTES & UNITS NAME LIMETS 8 2 DATE 2 2 2 25 25 H

:: ::

0027588

PURMIT

楽

30

H. Ler Army Airfield

Savannah Ga. 31409

DATE

END

BEGINNING

0027588

PCRINT PLANCES

SIGNATURE OF PAYORA (PRECUTARION OF SIGNATURE OF THE PAYOR OF THE PAYO Lightly that I am lammar with the information contained in this report and unit to the best of my knownedge and basel such information is tive, comparing any eccurate Facal Colitorn mem /100 ms 400 Week म् द्विति Luleck 200000 9 Grab Grab Paily games La min 705 200 22.23 47.000.1 9 Hid Campaciza 213 max 34 24 2 Juleck 56 00 155 Composite 2 liveck 30 645 45 max 9 0 91/ CI9/11/ 5 755 五十五 7 100 M DATE Jampasite Deck 000 180 26 142 Max KADAY 33 95 aug 00 BOD 450 TITLE OF THE OFFICE P 2) week Des 44 30 mag α 0 2 E E 20 00 9 100 BOD 790 00 5477 max Continueus 4731 aug Continuous 43.40 3913 m3 Day 1321 00 ۱۲ NAME OF PRINCIPAL EXECUTIVE OFFICER Continuous 1.50 max 1.25 04 30. Flow 130 150 MGD 13: 11 Fact 00 Thornberry MEMBERN VALUE AVERAGE VALUE PARAMETER CODE TYPE OF SAMPLE PRODUCT OF AMALTEE LDCA TION CODE NAME LIMITS 22 25 DATE ŭ 7 22 23 11 0 12 15 13 20 21

æ Colitora 400 Week 1100 m 0.0 0.0 Meck lagana 0.0 Fecal I Ou 1 min 7.33 9 7.33 2.40 75.6. 2.24 7.23 7.49 2.35 Daily 2,15 2.09 2.31 2.15 7.29 7.07 6126 2.19 2.12 H.C Composize 213 max 242 049 9 58 00 58 ZA. 48 3 755 48 30 645 45 mex 755 23 mal 3 d 00 5 19/ 5 1 YR MO DA Compasize 151 15 131 142 max 0027588 K Day 95 ang 87 33 89 00 2 3 BOD 24 1 DATE BEGINNING 2) Week 30 mag 20.04 4.3 6.2 36 20 100 14 P.Chear? S S The/L BOD 1 Continuous 5477 max Continuous 4731 aug m3 Day 4043 4043 37846 41456 41456 3099 3099 3099 3437 3077 3850 3979 3594 4005 Flow 100.1 Continuous 1.25.am Continuous 1.029 1.367 Flow 8960 0.999 1.058 Meh 0.945 1.137 1.068 1.184 0.856 1.072 1.017 1.040 0.996 1.187 1.051 00 OF SAMPLE TE 3000 FE 134 TION CODE 3/2 = . RAMETER STINS LIMITS NAME

0.0 Ø

7.27

3550

5427

5287

10 30 14 14 Tine of the officer

3240

1.033 0.856

SEAGE VALUE AXIAGRA VALUE THINGE VALUE

86

-

1.126

0 5

3

MIN 0027588

BEGINNING

DATE YR MO DA

END

GO

Ļ

4,

Facal Coliforn 56.19 2000 2 0 2 men /100 mi 400 Week 20002 20002 20000 1 week 20 9 0 7,13 7,02 8.07 7.03 7.07 7.31 7.08 30 7.00 7,20 7.05 a min 7.37 7.33 7,20 7.27 7.35 7,14 Ø 9 Poily 27 Grah He Composite 213 max 142 049 2000 2/wicek 20 401 00 59 69 28 155 5 Œ Composite 45 max 30 645 27 7 15 18 5 155 20/20 mo 1 00 27 Ky Day Composite 142 max 95 000 17. 44 33 00 5 4 20 BOD Tine of the office of Composite
2/ wheek
30 mag 20 00 2.5 5.5 43 0000 100 BOD 30 Tae/ 2 m 00 Continuous Continuous 5477 max 3649 4731 aug 3910 m3 Day 4130 4406 3943 3343 4251 3839 4047 3888 4406 3343 4/53 3869 3725 4/15 3725 3608 3914 3880 3808 3490 3963 3509 001 Flow NEWINALM VALUE 0,883
NAME TAKES
NAME OF PRINCIPAL EXECUTIVE OFFICER Continuous 1.50 max Continuous 1.2504 0.883 1.0:22 1,064 1.034 0.922 1.047 1.087 0.984 0.927 1.069 0.953 1.006 .123 1.001 1.164 6.883 1,002 0.974 0.964 1033 .092 1,056 1,007 1.669 1.014 Flow $m \in \mathcal{D}$ 00 AVERAGE VALUE MAXIMUM VALUE RIF TYPE OF SAMPLE PROUBICY OF AMALYSIS PARAMETER CODE LOCATION CODE E 3 3 PARAMETER LIMITS F A UNITS NAME DATE 12 13 0 E 2 4 \$2 2 2 n 23 13 22 23 30 24

FORT LAUDERDALE . SAVANNAL

CLIENT
SAMPLE LOCATION
SAMPLE NUMBER
DATE RECEIVED
DATE SAMPLED
SAMPLE TYPE
SUBMITTER

SAVANNAH, CITY OF WELL #1 026-082991 08/29/91 08/29/91 WATER HARRY SHEAROUSE

DATE REPORTED: 09/18/91

EPA: # FL095

FL DRINKING WATER: # 86144

FL ENVIRONMENTAL: # E86006

GEORGIA: # 828

SOUTH CAROLINA: # 96015

TEST

ADCENTO	EDN OOS O				
			<0.002	MG/L	
			<0.1		
			<0.0001	MG/L	
		- T	<0.001		
			0.003		
			<0.002		
			1.13		
	EPA 245.1		<0.0002		
NITRATE NIT			<0.05		N-NO3
	EPA 272.2			MG/L	
ALVALINITA,	TOTAL SM 403		135		
			108		
			18.2		
			<0.002		
			<0.02		
			16.00		
	SM 427C				
T DISSOL SO			187.0		
		*	.04) × (1)	
			<5		INTT
			<0.1		V.1.2.2
			<0.1		
		5 83	<0.1		
		*			
	EPA 615	\$5			
2,4,5-TP, S	LLVEX EPA 615	8	the same and the s	and the second s	
	0 280			A CONTRACTOR OF THE PROPERTY O	
PKOMODICHTO	ROMETHANE				
DIBKOMOCHTO					
	EPA 501'3	20			*1
TOTAL TRIHAI	OMETHANES	6			1
FEDERAL VOLA	TILE ORGANIC	2.0			
	LEAD SELENIUM FLUORIDE MERCURY NITRATE NIT SILVER ALKALINITY, HARDNESS CA CHLORIDE COPPER IRON MANGANESE SODIUM SULFATE T DISSOL SO ZINC COLOR TURBIDITY ENDRIN LINDANE METHOXYCHLOR TOXAPHENE 2,4-D 2,4,5-TP, SI CHLOROFORM BROMODICHLOR BROMOFORM TOTAL TRIHAI	BARIUM EPA 208.1 CADMIUM EPA 213.2 CHROMIUM, T EPA 218.2 LEAD EPA 239.2 SELENIUM EPA 270.2 FLUORIDE SM 413C MERCURY EPA 245.1 NITRATE NITROGEN SM 418B SILVER EPA 272.2 ALKALINITY, TOTAL SM 403 HARDNESS CALCIUM CHLORIDE SM 407A COPPER EPA 220.2 IRON EPA 236.1 MANGANESE EPA 243.1 SODIUM EPA 236.1 SULFATE SM 427C T DISSOL SOLIDS SM 209B ZINC EPA 289.1 COLOR SM 204A TURBIDITY EPA 180.1 ENDRIN EPA 608 LINDANE EPA 608 LINDANE EPA 608 LINDANE EPA 608 CALCIUM EPA 508 TOXAPHENE EPA 608 EPA 608 EPA 608 EPA 608 CALCIUM EPA 508 EPA 608 EPA 608 EPA 608 EPA 608 EPA 608 EPA 608 CALCIUM EPA 508 EPA 608 EPA 608 EPA 608 EPA 608 EPA 608 EPA 615 CHLOROFORM BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE	BARIUM EPA 208.1 CADMIUM EPA 213.2 CHROMIUM, T EPA 218.2 LEAD EPA 239.2 SELENIUM EPA 270.2 FLUORIDE SM 413C MERCURY EPA 245.1 NITRATE NITROGEN SM 418B SILVER EPA 272.2 ALKALINITY, TOTAL SM 403 HARDNESS CALCIUM CHLORIDE SM 407A COPPER EPA 220.2 IRON EPA 236.1 MANGANESE EPA 243.1 SODIUM EPA 273.1 SULFATE SM 427C T DISSOL SOLIDS SM 209B ZINC EPA 289.1 COLOR SM 204A TURBIDITY EPA 180.1 ENDRIN EPA 608 LINDANE EPA 608 LINDANE EPA 608 METHOXYCHLOR EPA 508 TOXAPHENE EPA 608 2,4-D EPA 615 2,4,5-TP, SILVEX EPA 615 CHLOROFORM BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE BROMOFORM EPA 501'3 TOTAL TRIHALOMETHANES	BARIUM EPA 208.1 CADMIUM EPA 213.2 CHROMIUM, T EPA 218.2 LEAD EPA 239.2 SELENIUM EPA 270.2 FLÜORIDE SM 413C NITRATE NITROGEN SM 418B SILVER EPA 272.2 ALKALINITY, TOTAL SM 403 HARDNESS CALCIUM CHORIDE SM 407A CHORIDE SM 407A CHORIDE SM 407A CHORIDE SM 407A COPPER EPA 220.2 IRON EPA 236.1 MANGANESE EPA 243.1 SODIUM EPA 273.1 SULFATE SM 427C T DISSOL SOLIDS SM 209B ZINC EPA 289.1 COLOR SM 204A TURBIDITY EPA 180.1 ENDRIN EPA 608 LINDANE EPA 608 LINDANE EPA 608 CO.1 EVA 208. TOXAPHENE EPA 608 CO.1 EVA 608 CO.0 E	BARIUM EPA 208.1

CARBON DIOXIDE

EPA 150.1

4.65 7.5

MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

CLIENT: SAVANNAH, CITY OF

SAMPLE: WELL #1/026-082991 COMM. WELL

DATA FILE: >SA11A::D3 DATE ANALYZED:

9/03/91 20:51 DILUTION FACTOR:

.20000

-CERTIFICATIONS-

EPA: #FL095

FL DRINKING WATER: #86144 FL ENVIRONMENTAL: #E86006

GA # 828 SC # 96015

FEDERAL VOLATILE ORGANICS

CAS No 71-43-2 56-23-5 107-06-2 106-93-4 127-18-4 '1-55-6 '9-01-6	PARAMETER BENZENE CARBON TETRACHLORIDE 1,2-DICHLOROETHANE 1,2-DIBROMOETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE	CONCENTRATION (ug/1) 0.0 0.0 0.0 0.0 0.0 0.0	*MDL (ug/1) (0.20) (0.50) (0.20) (0.20) (0.14) (0.30)
75-01-4	VINYL CHLORIDE	0.0	(0.30) (0.20) (0.17)

* ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

> JOHNSON Chemist

FORT LAUDERDALE . SAVANNAH

CLIENT
SAMPLE LOCATION
SAMPLE NUMBER
DATE RECEIVED
DATE SAMPLED
SAMPLE TYPE
SUBMITTER

SAVANNAH ,CITY OF WELL #2 029-080791 08/07/91 08/07/91 WATER M. SNELLING

DATE REPORTED: 08/20/91

EPA: # FL095

FL DRINKING WATER: # 86144

FL ENVIRONMENTAL: # E86006

GEORGIA: # 828

SOUTH CAROLINA: # 96015

TEST

							<u> </u>	
	ARSENIC	EDA DOC 6			71 20	3		Miles.
:	BARIUM	EPA 206.2	/ 3	8	<0.002	MG/L		-
	CADMIUM	EPA 208.1			<0.1	MG/L		
	CHROMIUM, T	EPA 213.2			<0.000	1 MG/L		
	LEAD	EPA 218.2			<0.001	MG/L		
	SELENIUM	EPA 239.2	(#		0.003	MG/L	- 2	
	FLUORIDE	EPA 270.2			.003	MG/L		
	MERCURY	SM 413C			.82	MG/L		
	NITRATE NITR	EPA 245.1			<0.0002	MG/I		
	SILVER				<0.05		N-N03	52
	ALKALINITY,	EPA 272.1			<0.01	MG/L	. 1103	
	HARDNESS CAL	CTIME SM 403			108	MG/L		
	CHLORIDE				279	MG/L		
	COPPER				10.6	MG/L	i.	
	IRON	EPA 220.1			<0.02	MG/L		
	MANGANESE	EPA 236.1			<0.02	MG/L		
	SODIUM	EPA 243.1			<0.02	MG/L		
	SULFATE	EPA 273.1			9.20	MG/L		
	T DISSOL SOLI	SM 427C	8		7.0	MG/L		
	ZINC				174.0	MG/L		
	COLOR	EPA 289.1			<0.01	MG/L		
	TURBIDITY	SM 204A			<5	PT-CO	UNTT	
	ENDRIN	EPA 180.1			<0.1	NTU	01121	
	LINDANE	EPA 608			<0.1	UG/L		
	METHOXYCHLOR	EPA 608			<0.1	UG/L		
	TOXAPHENE	EPA 508	4		<0.1	UG/L		
	2,4-D	EPA 608			<5	UG/L		
	2,4,5-TP, SIL	EPA 615			<0.1	UG/L		
	CHLOROFORM	VEX EPA 615	ii.		<0.1	UG/L		
	BROMODICHLORO	MEMILLAND	Š.		6.13	ug/l		
	DIBROMOCHLORO	METHANE			3.23	UG/L		
	BROMOFORM				1.50	ug/l		
	TOTAL TRIHALOR	EPA 501'3			and the same of the same	UG/L		
	FEDERAL VOLAM	TETHANES				UG/L		
	FEDERAL VOLATI	LLE ORGANIC			NEGATIVE	-,-		
	ii -	6			ht -	0		

CARBON DIOXIDE

EPA 150.1

2.79 7.6

MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

-CERTIFICATIONS-

EPA: #FL095

FL DRINKING WATER: #86144 SAMPLE: WELL #2/029-080791 COMM. WELL 25M FL ENVIRONMENTAL: #E86006

GA # 828 SC # 96015

DATA FILE: >AA12A::DB

DATE ANALYZED: 8/08/91 10:47

DILUTION FACTOR:

.20000

CLIENT: SAVANNAH, CITY OF

FEDERAL VOLATILE ORGANICS

CAS No.	PARAMETER	CONCENTRATION (ug/1)	*MDL (ug/1)
71-43-2 56-23-5 107-06-2 106-93-4 127-18-4 71-55-6 79-01-6 75-01-4	BENZENE CARBON TETRACHLORIDE 1,2-DICHLOROETHANE 1,2-DIBROMOETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE	0.0 0.0 0.0 0.0 0.0 0.0	(0.20) (0.50) (0.20) (0.20) (0.14) (0.30) (0.20) (0.17)

* ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

JOHNSON - Chemist

CLIENT SAMPLE LOCATION SAMPLE NUMBER DATE RECEIVED DATE SAMPLED SAMPLE TYPE SUBMITTER

SAVANNAH , CITY OF WELL #3 030-080791 08/07/91 08/07/91 WATER M. SNELLING

DATE REPORTED: 08/20/91 EPA: # FLO95 FL DRINKING WATER: # 86144 FL ENVIRONMENTAL: # E86006 GEORGIA: # 828 SOUTH CAROLINA: # 96015

TEST

. 3	100000	Si ti						
	ARSENIC	EPA 206.2	(£ =		<0.002	MC /T		
	BARIUM	EPA 208.1			<0.1	, -		
	CADMIUM	EPA 213.2				MG/L		
	CHROMIUM, T	EPA 218.2			<0.000 <0.001			
	LEAD	EPA 239.2			<0.001			
	SELENIUM	EPA 270.2						
	FLUORIDE	SM 413C	2	20 10	<0.002 .44			
	IERCURY	EPA 245.1				MG/L		
Ŋ	ITRATE NITRO	EN SM 418B			<0.0002			
S	SILVER	EPA 272.1			.14	MG/L	N-NO3	
A	LKALINITY, TO	TAL SM 403			.01	MG/L		
n	IARDNESS CALCI	UM			118	MG/L		
C	HLORIDE	SM 407A			210	MG/L		
C	OPPER	EPA 220.1			5.89	MG/L		
I	RON	EPA 236.1			<0.02	MG/L		
M	ANGANESE	EPA 243.1		E)	<0.02	MG/L		
S	ODIUM	EPA 273.1			<0.02	MG/L		
	ULFATE	SM 427C			9.80	MG/L		
${f T}$	DISSOL SOLID	S SM 209R			4.0	MG/L		
2	INC	EPA 289.1			177.0	MG/L		
C	OLOR	SM 204A			<0.01	MG/L		
T	URBIDITY	EPA 180.1			<5	PT-CO	UNIT	
E	NDRIN	EPA 608			<0.1	NTU		
L	INDANE	EPA 608			<0.1	UG/L		
MI	ETHOXYCHLOR	EPA 508			<0.1	UG/L		
	DXAPHENE	EPA 608	-		<0.1	UG/L		
2,	4-D	EPA 615			<5	UG/L		
2,	4,5-TP, SILVI	EX EPA 615			<0.1	UG/L	E	
CH	ILOROFORM				<0.1	UG/L		
BF	ROMODICHLOROME	THANE			5.31	ug/l		
DI	BROMOCHLOROME	THANE			3.77	UG/L		
BR	OMOFORM	EPA 501'3			1.85	ug/l		
	TAL TRIHALOME	THANES				UG/L		
FE	DERAL VOLATIL	E ORGANIC			10.9	UG/L		
		- ONGUITE			NEGATIVE	7		

CARBON DIOXIDE EPA 150.1

1.84 7.8

MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

-CERTIFICATIONS-

CLIENT: SAVANNAH, CITY OF

SAMPLE: WELL #3/030-080791 COMM. WELL 25M FL ENVIRONMENTAL: #E86006 DATA FILE: >AA13A::DB

DATE ANALYZED: 8/08/91 11:55

DILUTION FACTOR: .20000 EPA: #FL095 ...

FL DRINKING WATER: #86144

GA # 828 SC # 96015

FEDERAL VOLATILE ORGANICS

CAS No 71-43-2 56-23-5 107-06-2 106-93-4 127-18-4 71-55-6 79-01-6	PARAMETER BENZENE CARBON TETRACHLORIDE 1,2-DICHLOROETHANE 1,2-DIBROMOETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE	CONCENTRATION (ug/l) 0.0 0.0 0.0 0.0 0.0 0.0	*MDL (ug/1) (0.20) (0.50) (0.20) (0.20) (0.14) (0.30)
75-01-4	VINYL CHLORIDE	0.0	(0.30) (0.20) (0.17)

ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

JOHNSON - Chemist

FORT LAUDERDALE . SAVANNAH

CLIENT
SAMPLE LOCATION
SAMPLE NUMBER
DATE RECEIVED
DATE SAMPLED
SAMPLE TYPE
SUBMITTER

SAVANNAH ,CITY OF WELL #5
031-080791
08/07/91
08/07/91
WATER
M. SNELLING

DATE REPORTED: 08/23/91
EPA: # FL095
FL DRINKING WATER: # 86144
FL ENVIRONMENTAL: # E86006
GEORGIA: # 828
SOUTH CAROLINA: # 96015

п	יבי	C	m
- 1	· r		8

			•	
ARSENIC	EPA 206.2		<0.002	MG/L
BARIUM	EPA 208.1		<0.1	
CADMIUM	EPA 213.2		<0.0001	R. 100 1♥1. 500
CHROMIUM, T	EPA 218.2		<0.001	MG/L
LEAD	EPA 239.2		<0.002	MG/L
SELENIUM	EPA 270.2		<0.002	MG/L
FLUORIDE	SM 413C	æ	.84	MG/L
MERCURY	EPA 245.1		<0.0002	
NITRATE NITRO	SEN SM 418B		<0.05	MG/L N-NO3
SILVER	EPA 272.1		.07	MG/L
ALKALINITY, TO			113	MG/L
HARDNESS CALCI	UM		147	MG/L
CHLORIDE	SM 407A		15.3	MG/L
	EPA 220.1	97	<0.02	MG/L
IRON	EPA 236.1		<0.02	MG/L
MANGANESE	EPA 243.1	**	<0.02	MG/L
SODIUM	EPA 273.1		19.00	MG/L
SULFATE	SM 427C		7.0	MG/L
T DISSOL SOLID			202.0	MG/L
ZINC	EPA 289.1		.04	MG/L
COLOR	SM 204A		<5	PT-CO UNIT
TURBIDITY	EPA 180.1		<0.1	NTU
ENDRIN	EPA 608	*	<0.1	UG/L
LINDANE	EPA 608		<0.1	UG/L
METHOXYCHLOR	EPA 508		<0.1	UG/L
TOXAPHENE	EPA 608		<5	UG/L
2,4-D	EPA 615		<0.1	UG/L
2,4,5-TP, SILV	EX EPA 615		<0.1	UG/L
CHLOROFORM			3.34	ug/l
BROMODICHLOROM			5.40	UG/L
DIBROMOCHLOROM			3.84	ug/l
BROMOFORM	EPA 501'3		1.16	UG/L
TOTAL TRIHALOM			13.7	UG/L
FEDERAL VOLATI	LE ORGANIC		NEGATIVI	E

CARBON DIOXIDE	2 22	
PH EPA 150.1	2.38	MG/L
TOTAL ORGANIC CARBON	7.7	
TOTAL CHOMIC CARBON	<5	MG/L
•		

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

-CERTIFICATIONS-

EPA: #FL095 .

FL DRINKING WATER: #86144

SAMPLE: WELL #5/031-080791 COMM. WELL 25M FL ENVIRONMENTAL: #E86006

DATA FILE: >AA15A::DB DATE ANALYZED: 8/08/91 14:29

CLIENT: SAVANNAH, CITY OF

GA # 828

DILUTION FACTOR: 1.00000 SC # 96015

FEDERAL VOLATILE ORGANICS

0.0 0.0 0.0 0.0 0.0 0.0	(0.20) (0.50) (0.20) (0.20) (0.14) (0.30) (0.20) (0.17)
	0,0 0.0 0.0 0.0

* ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

. JOHNSON - Chemist

FORT LAUDERDALE . SAVANNAL

CLIENT
SAMPLE LOCATION
SAMPLE NUMBER
DATE RECEIVED
DATE SAMPLED
SAMPLE TYPE
SUBMITTER

SAVANNAH, CITY OF
WELL #6
030-082991 FL
08/29/91 F)
08/29/91
WATER
HARRY SHEAROUSE

DATE REPORTED: 09/18/91
EPA: # FL095
FL DRINKING WATER: # 86144
FL ENVIRONMENTAL: # E86006
GEORGIA: # 828
SOUTH CAROLINA: # 96015

TEST

1 DADILLA			14 Mariana - Mariana Mariana		
ARSENIC	EPA 206.2		<0.002	MG/L	
BARIUM	EPA 208.1		<0.1	MG/L	
CADMIUM	EPA 213.2	*	<0.0001	MG/L	9-1
CHROMIUM, T	EPA 218.2		<0.001	MG/L	
LEAD	EPA 239.2		<0.002	MG/L	
SELENIUM	EPA 270.2		<0.002	MG/L	
FLUORIDE	SM 413C		1.10	MG/L	
MERCURY	EPA 245.1		<0.0002	MG/L	
NITRATE NITROG			<0.05	MG/L N-NO3	3
SILVER	EPA 272.2		<0.0007		
ALKALINITY, TO			133	MG/L	
HARDNESS CALCI	UM		88.0	MG/L	
CHLORIDE	SM 407A		13.2	MG/L	
COPPER	EPA 220.2		<0.002	MG/L	
IRON	EPA 236.1		<0.02	MG/L	
MANGANESE	EPA 243.1		<0.02	MG/L	
SODIUM	EPA 273.1		12.00	MG/L	
SULFATE	SM 427C		4.00	MG/L	
T DISSOL SOLID	S SM 209B		168.0	MG/L	
ZINC	EPA 289.1		. 04	MG/L	
COLOR	SM 204A		<5	PT-CO UNIT	l)
TURBIDITY	EPA 180.1		<0.1	NTU	
ENDRIN	EPA 608		<0.1	UG/L	
LINDANE	EPA 608		<0.1	UG/L	
METHOXYCHLOR	EPA 508		<0.1	UG/L	
TOXAPHENE	EPA 608		<1	UG/L	
2,4-D	EPA 615		<0.1	UG/L	
2,4,5-TP, SILV	EX EPA 615		<0.1	UG/L	
CHLOROFORM			. 25	ug/l	
BROMODICHLOROM	ETHANE		<0.04	UG/L	
DIBROMOCHLOROM			<0.04	ug/l	
BROMOFORM	EPA 501'3		<0.04	UG/L	
TOTAL TRIHALOM			0.25	UG/L	
FEDERAL VOLATI			NEGATIVE		
				100	

CARBON DIOXIDE

pH

EPA 150.1

7.6

MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

-CERTIFICATIONS-

EPA: #FL095

FL DRINKING WATER: #86144

GA # 828

SC # 96015

CLIENT: SAVANNAH, CITY OF

SAMPLE: WELL #6/030-082991 25ML COMM. WEL FL ENVIRONMENTAL: #E86006

DATA FILE: >SA12A::D3 DATE ANALYZED: 9/03/91 21:55

DILUTION FACTOR:

.20000

FEDERAL VOLATILE ORGANICS

CAS No.	PARAMETER	CONCENTRATION (ug/1)	*MDL (ug/l)
71-43-2 56-23-5 107-06-2 106-93-4 127-18-4 71-55-6 79-01-6 75-01-4	BENZENE CARBON TETRACHLORIDE 1,2-DICHLOROETHANE 1,2-DIBROMOETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE	0.0 0.0 0.0 0.0 0.0 0.0 0.0	(0.20) (0.50) (0.20) (0.20) (0.14) (0.30) (0.20) (0.17)

* ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

FORT LAUDERDALE • SAVANNAH

CLIENT	
SAMPLE	LOCATION
SAMPLE	NUMBER
DATE RE	CEIVED
DATE SA	MPLED
SAMPLE	TYPE
SUBMITT	ER

SAVANNAH, CITY OF WELL #7 005-083091 08/30/91 08/30/91 WATER HARRY SHEAROUSE DATE REPORTED: 09/18/91
EPA: # FL095
FL DRINKING WATER: # 86144
FL ENVIRONMENTAL: # E86006
GEORGIA: # 828
SOUTH CAROLINA: # 96015

TEST

ARSENIC	EPA 206.2		<0.002	MC /T	
BARIUM	EPA 208.1		<0.002	MG/L	
CADMIUM	EPA 213.2		0.001	MG/L	
CHROMIUM, T	EPA 218.2		<0.001	MG/L) i=
LEAD	EPA 239.2		<0.001	MG/L	
SELENIUM	EPA 270.2		<0.002	MG/L	
FLUORIDE	SM 413C		.88	MG/L	
MERCURY	EPA 245.1		<0.0002	MG/L	
NITRATE NITR	OGEN SM 418B		<0.05	,	M MOO
SILVER	EPA 272.2		<0.007		N-N03
ALKALINITY,	TOTAL SM 403		140		
HARDNESS CAL	CIUM		58.7	MG/L	
CHLORIDE	SM 407A		18.2	MG/L	
COPPER	EPA 220.2		<0.002	MG/L	1)*
IRON	EPA 236.1	1	<0.02	MG/L	
MANGANESE	EPA 243.1		<0.02	MG/L	
SODIUM	EPA 273.1		14.00	MG/L	
SULFATE	SM 427C		9.00	MG/L	
T DISSOL SOL			182.0	MG/L	
ZINC ·	EPA 289.1		.02	MG/L MG/L	
COLOR	SM 204A		<5	PT-CO	YINI T (T)
TURBIDITY	EPA 180.1			NTU	ONLT
ENDRIN	EPA 608			UG/L	
LINDANE	EPA 608				
METHOXYCHLOR	EPA 508			UG/L	
TOXAPHENE	EPA 608			UG/L	
2,4-D	EPA 615		303- 303- 0	UG/L	
2,4,5-TP, SI				UG/L	
CHLOROFORM	2 2 2 2 7 7			UG/L	
BROMODICHLORO	OMETHANE			ug/l	
DIBROMOCHLORO				UG/L	
BROMOFORM	EPA 501'3			ug/l	
TOTAL TRIHALO				UG/L UG/L	
FEDERAL VOLAT			16.7 NEGATIVE		
			MEGWIIA		

CARBON DIOXIDE

EPA 150.1

2.71 7.7

MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

-CERTIFICATIONS-

EPA: #FL095

FL DRINKING WATER: #86144

SAMPLE: WELL #7/005-083091 25ML COMM. WEL FL ENVIRONMENTAL: #E86006

GA # 828 SC # 96015

DATA FILE: >SA15A::D3

CLIENT: SAVANNAH, CITY OF

DATE ANALYZED:

9/04/91 1:06

DILUTION FACTOR: .20000

FEDERAL VOLATILE ORGANICS

CAS No.	PARAMETER	CONCENTRATION (ug/1)	*MDL (ug/l)
71-43-2 56-23-5 107-06-2 106-93-4 127-18-4 71-55-6 79-01-6 75-01-4	1,2-DIBROMOETHANE	0.0 0.0 0.0 0.0 0.0 0.0	(0.20) (0.50) (0.20) (0.20) (0.14) (0.30) (0.20) (0.17)

* ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

JOHNSON - Chemist

FORT LAUDERDALE . SAVANNAH

CLIENT
SAMPLE LOCATION
SAMPLE NUMBER
DATE RECEIVED
DATE SAMPLED
SAMPLE TYPE
SUBMITTER

SAVANNAH, CITY OF WELL #15 024-090691 09/06/91 09/06/91 WATER M. SNELLINGS

DATE REPORTED: 09/18/91
EPA: # FL095
FL DRINKING WATER: # 86144
FL ENVIRONMENTAL: # E86006
GEORGIA: # 828
SOUTH CAROLINA: # 96015

m	ccm	

ARSENIC	EPA 206.2		<0.002	MG/L
BARIUM	EPA 208.1		<0.1	MG/L
CADMIUM	EPA 213.2		<0.0001	
CHROMIUM, T	EPA 218.2		<0.001	
LEAD	EPA 239.2		<0.002	MG/L
SELENIUM	EPA 270.2		<0.002	MG/L
FLUORIDE	SM 413C		.97	MG/L
MERCURY	EPA 245.1		<0.0002	
NITRATE NITRO	GEN SM 418B		<0.05	MG/L N-NO3
SILVER	EPA 272.2	*	<0.0007	
ALKALINITY, T	OTAL SM 403		110	MG/L
HARDNESS CALC	IUM		117	MG/L
CHLORIDE	SM 407A		16.3	MG/L
COPPER	EPA 220.2		<0.002	MG/L
IRON	EPA 236.1		<0.02	MG/L
MANGANESE	EPA 243.1		<0.02	MG/L
SODIUM	EPA 273.1		11.00	MG/L
SULFATE	SM 427C		<1.0	MG/L
T DISSOL SOLI			189.0	MG/L
ZINC	EPA 289.1		.03	MG/L
COLOR	SM 204A		5	PT-CO UNIT
TURBIDITY	EPA 180.1		0.1	NTU
ENDRIN	EPA 608		<0.1	UG/L
LINDANE	EPA 608		<0.1	UG/L
METHOXYCHLOR	EPA 508	MEN	<0.1	UG/L
TOXAPHENE	EPA 608		<5	UG/L
2,4-D	EPA 615		<0.1	UG/L
2,4,5-TP, SIL	VEX EPA 615		<0.1	UG/L
CHLOROFORM		±/	2.96	ug/l
BROMODICHLORO			2.02	UG/L
DIBROMOCHLORO			0.97	ug/l
BROMOFORM	EPA 501'3		<0.04	UG/L
TOTAL TRIHALO			5.95	UG/L
FEDERAL VOLAT	ILE ORGANIC		NEGATIV	E

CARBON DIOXIDE pH

EPA 150.1

1.64 7.8 MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

FORT LAUDERDALE . SAVANNAH

-CERTIFICATIONS-

EPA: #FL095

CLIENT: SAVANNAH, CITY OF FL DRINKING WATER: \$86144

SAMPLE: WELL #15/024-090691 COMM. WELL 25 FL ENVIRONMENTAL: #E86006 DATA FILE: >SA33A::D3

GA # 828 SC # 96015

DATE ANALYZED: 9/10/91 14:43 ILUTION FACTOR: .20000

FEDERAL VOLATILE ORGANICS

CAS No.	PARAMETER	CONCENTRATION (ug/1)	*MDL (ug/1)
71-43-2	BENZENE	0.0	(0.20)
F6-23-5	CARBON TETRACHLORIDE	0.0	(0.50)
07-06-2 106-93-4	1,2-DICHLOROETHANE	0.0	(0.20)
127-18-4	1,2-DIBROMOETHANE	0.0	(0.20)
L-55-6	TETRACHLOROETHENE	0.0	(0.14)
3-01-6	1,1,1-TRICHLOROETHANE TRICHLOROETHENE	0.0	(0.30)
75-01-4	VINYL CHLORIDE	0.0	(0.20)
	VINID CHLORIDE	0.0	(0.17)

ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT x DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

LYLE A JOHNSON - Chemist

Laboratories, Inc.

FORT LAUDERDALE . SAVANNAH

CLIENT
SAMPLE LOCATION
SAMPLE NUMBER
DATE RECEIVED
DATE SAMPLED
SAMPLE TYPE
SUBMITTER

SAVANNAH, CITY OF WELL #27 025-090691 09/06/91 09/06/91 WATER M. SNELLINGS DATE REPORTED: 09/18/91
EPA: # FL095
FL DRINKING WATER: # 86144
FL ENVIRONMENTAL: # E86006
GEORGIA: # 828
SOUTH CAROLINA: # 96015

m	73		773	
Т.	Ľ	2	т	

RESULTS

3 DODUTO		(A			
ARSENIC	EPA 206.2	1 607	<0.002	MG/L	
BARIUM	EPA 208.1		<0.1	MG/L	
CADMIUM	EPA 213.2		<0.0001	MG/L	
CHROMIUM, T	EPA 218.2		<0.001	MG/L	
LEAD	EPA 239.2		<0.002	MG/L	
SELENIUM	EPA 270.2		<0.002	MG/L	
FLUORIDE	SM 413C		.70	MG/L	
MERCURY	EPA 245.1		<0.0002		
NITRATE NITRO	GEN SM 418B		<0.05		N-NO3
SILVER	EPA 272.2		<0.0007		
ALKALINITY, T			105	MG/L	
HARDNESS CALC			132	MG/L	
CHLORIDE	SM 407A		11.6	MG/L	
COPPER	EPA 220.2	#S	<0.002	MG/L	
IRON	EPA 236.1		<0.02	MG/L	
MANGANESE	EPA 243.1		<0.02	MG/L	
SODIUM	EPA 273.1		11.00	MG/L	
SULFATE	SM 427C		3.0	MG/L	
T DISSOL SOLI	DS SM 209B		154.0	MG/L	
ZINC	EPA 289.1		.02	MG/L	
COLOR	SM 204A		5	PT-CO	UNTT
TURBIDITY	EPA 180.1		<0.1	NTU	01122
ENDRIN	EPA 608		<0.1	UG/L	
LINDANE	EPA 608		<0.1	UG/L	
METHOXYCHLOR	EPA 508		<0.1	UG/L	
TOXAPHENE	EPA 608		<5	UG/L	
2,4-D	EPA 615		<0.1	UG/L	
2,4,5-TP, SIL	VEX EPA 615		<0.1	UG/L	
CHLOROFORM			3.43	ug/1	
BROMODICHLORON	IETHANE		2.64	UG/L	
DIBROMOCHLORON	1ETHANE		max mannadi	ug/1	
BROMOFORM	EPA 501'3			UG/L	
TOTAL TRIHALON	1ETHANES			UG/L	
FEDERAL VOLATI			NEGATIVE		59 =
and the second s			TANTA A D	E.	

CARBON DIOXIDE

pH

EPA 150.1

7.9

MG/L

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT ME.

DONALD S. MCCORQUODALE, JR. PH.D. MICROBIOLOGIST

Laboratories, Inc.

-CERTIFICATIONS-

EPA: #FL095

CLIENT: SAVANNAH, CITY OF FL DRINKING WATER: #86144

SAMPLE: WELL #27/025-090691 COMM. WELL 25 FL ENVIRONMENTAL: #E86006 DATA FILE: >SA34A::D3

GA # 828

DATE ANALYZED: 9/10/91 16:53 SC # 96015

[LUTION FACTOR: .20000

FEDERAL VOLATILE ORGANICS

CAS No.	PARAMETER	CONCENTRATION (ug/1)	*MDL (ug/1)
71-43-2	BENZENE	0.0	(0.20)
55-23-5	CARBON TETRACHLORIDE	0.0	(0.50)
)7-06-2	1,2-DICHLOROETHANE	0.0	(0.20)
106-93-4	1,2-DIBROMOETHANE	0.0	(0.20)
127-18-4	TETRACHLOROETHENE	0.0	(0.14)
1-55-6	1,1,1-TRICHLOROETHANE	0.0	(0.30)
J-01-6	TRICHLOROETHENE	0.0	(0.20)
75-01-4	VINYL CHLORIDE	0.0	(0.17)

· ACTUAL DETECTION LIMIT = METHOD DETECTION LIMIT * DILUTION FACTOR A value of 0.0 = BMDL (BELOW METHOD DETECTION LIMIT)

> TOHNSON Chemist

APPENDIX D
PERMITS

APPENDIX D

PERMITS

PERMIT NO. 2025 J 1239

COUNTY .

CHATHAM

EFFECTIVE DATE OF PERMIT: DECEMBER 18, 1982 MODIFIED: MARCH 20, 1987

PERMIT TO OPERATE A PUBLIC WATER SYSTEM

In compliance with the provisions of the GEORGIA SAFE DRINKING WATER ACT of 1977, OCGA 12-5-170 et. seq., and the RULES, CHAPTER 391-3-5, adopted pursuant to the ACT

UNITED STATES ARMY

is issued a PERMIT TO OPERATE A PUBLIC WATER SYSTEM named the

HUNTER ARMY AIRFIELD - MAIN

and located at

FORT STEWART, GEORGIA

THIS PERMIT to operate the above public water system shall become effective on the date shown above and the permit shall expire at midnight, December 17, 1992 absent any prior revocation or modification.

THIS PERMIT is issued subject to the terms, conditions and schedules of compliance as follows:

- 1. THE PERMITTEE shall at all times operate the public water system in full compliance with the GEORGIA SAFE DRINKING WATER ACT of 1977, and the RULES, CHAPTER 391-3-5, adopted under the ACT. THE DIRECTOR may modify, suspend or revoke this permit as provided therein.
- 2. THIS PERMIT is transferrable only with a change of ownership. Any Transferee becomes the Permittee and assumes the responsibilities under this Permit. Such Transferee must notify the Division of the transfer in writing immediately.
- 3. THIS PERMIT is further subject to the terms, conditions and schedules of compliance specified on the attached pages.

PHYLICON DIVISION PROTECTION DIVISION

Owner: United States Army

Effective: December 18, 1982

Modified: March 20, 1987

System: Hunter Army Airfield-Main

Permit No.: 2025 J 1239

PERMIT CONDITIONS

- 4. This permit is for the operation of two (2) wells as sources of water supply as indicated on your application. Any additional sources must have written approval from the Director before installation. Failure to comply will be considered a permit violation.
- 5. The permittee must continuously chlorinate all water distributed by the system to maintain a free chlorine residual of at least 0.5 parts per million in all parts of the distribution system.
- 6. The permittee shall collect and submit, or have collected and submitted to a state certified water supply laboratory, a minimum of eight (8) drinking water samples per month for coliform density analysis on the date assigned during which the system provides water to the public. Date assigned to submit samples: first and third Monday.

Results of these analyses must be maintained by the permittee and reported to the Division in accordance with Section 391-3-5-.15 and .25 of the Rules. Results reported to the Division must be identified by the system ID number 302 522 176 and the results sent to the following address:

Ground Water Program, EPD/DNR Floyd Towers East, Room 1066 205 Butler Street, S. E. Atlanta, Georgia 30334

7. Operation records must be maintained by the permittee on or near the premises of the water system and available for inspection. A true and correct copy of these records must be sent, by the tenth day of the month following the month being reported, to the following address:

Environmental Protection Division Southeast Regional Office 1200 Glynn Ave. Brunswick, Georgia 31523

Owner: United States Army

Effective: December 18, 1982

Modified: March 20, 1987

System: Hunter Army Airfield-Main

Permit No.: 2025 J 1239

PERMIT CONDITIONS

8. The permittee shall insure that the person in responsible charge of this public water system is a certified operator in accordance with the Georgia Certification of Water and Wastewater Treatment Plant Operators and Laboratory Analysts Act, as amended, and the Rules adopted thereunder, and holds a certification classification consistent with the public water system classification specified by Subparagraph 391-3-5-.48 of the Rules for Safe Drinking Water. A public water system whose only source of water supply is groundwater and serves a population of less than 1000 is only required to have a trained operator.

9. The permittee shall insure that any person employed by the water system as a laboratory analyst, is a certified laboratory analyst in accordance with the Georgia Certification of Water and Wastewater Treatment Plant Operators and Laboratory Analysts Act, as amended, and the Rules adopted thereunder. A public water system whose only source of water supply is groundwater and serves a population of less than 1000 is not required to have a certified laboratory analyst.

PERMIT NO. 9711-025-6356-0

Chatham

COUNTY

EFFECTIVE DATE OF PERMIT: RGV 13 1978

PERMIT TO OPERATE

In compliance with the provisions of Georgia's Air Quality Act of 1978 and the Rules and Regulations, Chapter 391-3-1, adopted pursuant to or in effect under that Act, Headquarters, 24th Infantry Division and Fort Stewart DFAE, Environmental office, Fort Stewart, Georgia 31313 is issued a Permit to Operate the following:

Nine boilers (Source Codes II-850a, II-850b, II-850c, II-1277a, II-1277b, II-1277c, II-1451a, II-1451b, II-1451c) firing natural gas or No. 2 fuel oil, and associated fuel storage tanks

located at: Hunter Army Airfield, Georgia

This Permit to Operate is conditioned upon compliance with all provisions of Georgia's Air Quality Act of 1978, the Rules and Regulations of Chapter 391-3-1 adopted or in effect under that act, or any other condition of this Permit.

evidence of noncompliance with any of the above; or for any misrepresentation made in the application(s) dated May 17, 1978 , supporting data entered therein or attached thereto, or any subsequent submittals or This Permit may be subject to revocation, suspension, modification or amendment by the Director for cause including supporting data; or for any alterations affecting the emissions from this source.

This Permit is further subject to and conditioned upon the terms, conditions, limitations, standards, or schedules con-0 page(s), which page(s) are a part of this Permit. tained in or specified on the attached

Director Environmental Protection Division

PERMIT NO. GA 0027588

STATE OF GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Georgia Water Quality Control Act (Georgia Laws 1964, p. 416, as amended), hereinafter called the "State Act," the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq.), hereinafter called the "Federal Act," and the Rules and Regulations promulgated pursuant to each of these Acts,

> Hunter Army Airfield Utility Street, Building 1139 Fort Stewart, Georgia 31314

is authorized to discharge from a facility located at

Bull & Stephenson Street Savannah, Chatham County, Georgia

to receiving waters

Savannah River

in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts I, II, and III hereof.

This permit shall become effective on July 1, 1991.

This permit and the authorization to discharge shall expire at midnight, May 31, 1996.

Signed this 1st. day of July, 1991

Environmental Protection Division

ENVIRONMENTAL PROTECTION DIVISION DEPARTMENT OF NATURAL RESOURCES STATE OF GEORGIA

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS A.

the permittee is authorized to discharge from outfall(s) serial number(s) 001 - treated sewage. During the period beginning effective date and lasting through May 31, 1996,

Such discharges shall be limited and monitored by the permittee as specified below:

Effluent Characteristic Flow (MGD) BOD5 (mg/l) BOD5 (kg/day) TSS (mg/l) TSS (kg/day)		Discharge Limitations Mass Based Concentration Based Daily Avg. Daily Max. 1.25 1.50 - - <tr< th=""><th>Concentration Based Daily Avg. Daily M 20 30 20 30 </th><th>on Based Daily Max 30 - 45</th><th>Monitoria Measurement Frequency Daily 2/Week 2/Week 2/Week</th><th>Monitoring Requirements urement Sample S uency Type L y Continuous O Recorder ek Composite O ek Composite O ek Composite O ek Composite O ek Composite O</th><th>Sample Location Outfall Outfall Outfall Outfall</th></tr<>	Concentration Based Daily Avg. Daily M 20 30 20 30	on Based Daily Max 30 - 45	Monitoria Measurement Frequency Daily 2/Week 2/Week 2/Week	Monitoring Requirements urement Sample S uency Type L y Continuous O Recorder ek Composite O Sample Location Outfall Outfall Outfall Outfall	
Fecal Colitorm (MPN) T. Residual Chlorine (mg/l)	mg/1) -	e E	Z00/100 mI	- m 001/007	Weekly Daily	Grab	Outfall Outfall

The pH shall not be less than 6.0 standard units nor greater than 9.0 standard units and shall be monitored daily by grab sample. There shall be no discharge of floating solids or visible foam in other than trace amounts.

The outfall shall be defined as the nearest accessible point after final treatment but prior to mixing with any other waters in the effluent force main.

PART I

Page 3 of 15 Permit No. GA 0027588

B. SCHEDULE OF COMPLIANCE

 The permittee shall achieve compliance with the effluent limitations specified for discharges in accordance with the following schedule:

N/A

2. No later than 14 calendar days following a date identified in the above schedule of compliance, the permittee shall submit either a report of progress or, in the case of specific actions being required by identified dates, a written notice of compliance or noncompliance. In the latter case, the notice shall include the cause of noncompliance, any remedial actions taken, and the probability of meeting the next scheduled requirement.

PART I

Page 4 of 15 Permit No. GA 0027588

Note: EPD as used herein means the Environmental Protection Division of the Department of Natural Resources.

C. MONITORING AND REPORTING

1. Representative Sampling

Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge.

2. Reporting

Monitoring results obtained during the previous one month shall be summarized for each month and reported on an Operation Monitoring Report (Form WQ 1.45). Forms other than Form WQ 1.45 may be used upon approval by EPD. These forms and any other required reports and information shall be completed, signed and certified by a principal executive officer or ranking elected official, or by a duly authorized representative of that person who has the authority to act for or on behalf of that person, and submitted to the Division, postmarked no later than the 15th day of the month following the reporting period. Signed copies of these and all other reports required herein shall be submitted to the following address:

Georgia Environmental Protection Division Industrial Wastewater Program Suite 1070, Floyd Towers East 205 Butler Street, S.E. Atlanta, Georgia 30334

All instances of noncompliance not reported under Part I. B. and C. and Part II. A shall be reported at the time the operation monitoring report is submitted.

3. Definitions

- a. The "daily average" discharge means the total discharge by weight during a calendar month divided by the number of days in the month that the production or commercial facility was operating. Where less than daily sampling is required by this permit, the daily average discharge shall be determined by the summation of all the measured daily discharges by weight divided by the number of days sampled during the calendar month when the measurements were made.
- b. The "daily maximum" discharge means the total discharge by weight during any calendar day.

PART I

Page 5 of 15 Permit No. GA 0027588

- c. The "daily average" concentration means the arithmetic average of all the daily determinations of concentration made during a calendar month. Daily determinations of concentration made using a composite sample shall be the concentration of the composite sample.
- d. The "daily maximum" concentration means the daily determination of concentration for any calendar day.
- e. For the purpose of this permit, a calendar day is defined as any consecutive 24-hour period.
- f. "Bypass" means the intentional diversion of waste streams from any portion of a treatment facility.
- g. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.

4. Test Procedures

Monitoring must be conducted according to test procedures approved pursuant to 40 CFR 136 unless other test procedures have been specified in this permit.

5. Recording of Results

For each measurement or sample taken pursuant to the requirements of this permit, the permittee shall record the following information:

- a. The exact place, date, and time of sampling or measurements, and the person(s) performing the sampling or the measurements;
- The dates the analyses were performed, and the person(s) who performed the analyses;
- c. The analytical techniques or methods used; and
- d. The results of all required analyses.

PART I

Page 6 of 15 Permit No. GA 0027588

6. Additional Monitoring by Permittee

If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified above, the results of such monitoring shall be included in the calculation and reporting of the values required in the Operation Monitoring Report Form (WQ 1.45). Such increased monitoring frequency shall also be indicated. The Division may require by written notification more frequent monitoring or the monitoring of other pollutants not required in this permit.

7. Records Retention

The permittee shall retain records of all monitoring information, including all records of analyses performed, calibration and maintenance of instrumentation, recordings from continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Division at any time.

8. Penalties

The Federal Clean Water Act and the Georgia Water Quality Control Act provide that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit, makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance shall, upon conviction, be punished by a fine or by imprisonment, or by both. The Federal Clean Water Act and the Georgia Water Quality Control Act also provide procedures for imposing civil penalties which may be levied for violations of the Act, any permit condition or limitation established pursuant to the Act, or negligently or intentionally failing or refusing to comply with any final or emergency order of the Director of the Division.

PART II

Page 7 of 15 Permit No. GA 0027588

A. MANAGEMENT REQUIREMENTS

1. Change in Discharge

- a. Advance notice to the Division shall be given of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements. Any anticipated facility expansions, production increases, or process modifications must be reported by submission of a new NPDES permit application or, if such changes will not violate the effluent limitations specified in this permit, by notice to the Division of such changes. Following such notice, the permit may be modified to specify and limit any pollutants not previously limited.
- b. All existing manufacturing, commercial, mining, and silvicultural dischargers shall notify the Division as soon as it is known or there is reason to believe that any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant not limited in the permit, if that discharge will exceed (i) 100 μg/l, (ii) five times the maximum concentration reported for that pollutant in the permit application, or (iii) 200 μg/l for acrolein and acrylonitrile, 500 μg/l for 2,4 dinitrophenol and for 2-methyl-4-6-dinitrophenol, or 1 mg/l antimony.
- c. All existing manufacturing, commercial, mining, and silvicultural dischargers shall notify the Division as soon as it is known or there is reason to believe that any activity has occurred or will occur which would result in any discharge on a nonroutine or infrequent basis, of any toxic pollutant not limited in the permit, if that discharge will exceed (i) 500 µg/l, (ii) ten times the maximum concentration reported for that pollutant in the permit application, or (iii) 1 mg/l antimony.

2. Noncompliance Notification

If, for any reason, the permittee does not comply with, or will be unable to comply with any effluent limitation specified in this permit, the permittee shall provide the Division with an oral report within 24 hours from the time the permittee becomes aware of the circumstances followed by a written report within five (5) days of becoming aware of such condition. The written submission shall contain the following information:

a. A description of the discharge and cause of noncompliance;
 and

PART II

Page 8 of 15 Permit No. GA 0027588

b. The period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

3. Facilities Operation

The permittee shall at all times maintain in good working order and operate as efficiently as possible all treatment or control facilities or systems installed or used by the permittee to achieve compliance with the terms and conditions of this permit. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems only when necessary to achieve compliance with the conditions of the permit.

4. Adverse Impact

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

5. Bypassing

- a. If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Division at least 10 days (if possible) before the date of the bypass. The permittee shall submit notice of any unanticipated bypass with an oral report within 24 hours from the time the permittee becomes aware of the circumstances followed by a written report within five (5) days of becoming aware of such condition. The written submission shall contain the following information:
 - A description of the discharge and cause of noncompliance; and
 - 2. The period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Page 9 of 15 Permit No. GA 0027588

b. Any diversion from or bypass of facilities covered by this permit is prohibited, except (i) where unavoidable to prevent loss of life, personal injury, or severe property damage; (ii) there were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime (this condition is not satisfied if the permittee could have installed adequate back-up equipment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance); and (iii) the permittee submitted a notice as required above. The permittee shall operate the treatment works, including the treatment plant and total sewer system, to minimize discharge of the pollutants listed in Part I of this permit from combined sewer overflows or bypasses. Upon written notification by the Division, the permittee may be required to submit a plan and schedule for reducing bypasses, overflows, and infiltration in the system.

6. Sludge Disposal Requirements

Hazardous sludge shall be disposed of in accordance with the regulations and guidelines established by the Division pursuant to the Federal Clean Water Act (CWA) and the Resource Conservation and Recovery Act (RCRA). For land application of nonhazardous sludge, the permittee shall comply with any applicable criteria outlined in the Division's "Guidelines for Land Application of Municipal Sludges." Prior to disposal of sludge by land application, the permittee shall submit a proposal to the Division for approval in accordance with applicable criteria in the Division's "Guidelines for Land Application of Municipal Sludges." Upon evaluation of the permittee's proposal, the Division may require that more stringent control of this activity is required. Upon written notification, the permittee shall submit to the Division for approval, a detailed plan of operation for land application of sludge. Upon approval, the plan will become a part of the NPDES permit. Disposal of nonhazardous sludge by other means, such as landfilling, must be approved by the Division.

7. Sludge Monitoring Requirements

The permittee shall develop and implement procedures to insure adequate year-round sludge disposal. The permittee shall monitor the volume and concentration of solids removed from the plant. Records shall be maintained which document the quantity of solids removed from the plant. The ultimate disposal of solids shall be reported monthly (in the unit of lbs/day) to the Division with the Operation Monitoring Report Forms required under Part I (C)(2) of this permit.

PART II

Page 10 of 15 Permit No. GA 0027588

8. Power Failures

Upon the reduction, loss, or failure of the primary source of power to said water pollution control facilities, the permittee shall use an alternative source of power if available to reduce or otherwise control production and/or all discharges in order to maintain compliance with the effluent limitations and prohibitions of this permit.

If such alternative power source is not in existence, and no date for its implementation appears in Part I, the permittee shall halt, reduce or otherwise control production and/or all discharges from wastewater control facilities upon the reduction, loss, or failure of the primary source of power to said wastewater control facilities.

B. RESPONSIBILITIES

1. Right of Entry

The permittee shall allow the Director of the Division, the Regional Administrator of EPA, and/or their authorized representatives, agents, or employees, upon the presentation of credentials:

- a. To enter upon the permittee's premises where a regulated activity or facility is located or conducted or where any records are required to be kept under the terms and conditions of this permit; and
- b. At reasonable times, to have access to and copy any records required to be kept under the terms and conditions of this permit; to inspect any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and to sample any substance or parameters in any location.

2. Transfer of Ownership or Control

A permit may be transferred to another person by a permittee if:

- a. The permittee notifies the Director in writing of the proposed transfer at least thirty (30) days in advance of the proposed transfer;
- b. A written agreement containing a specific date for transfer of permit responsibility and coverage between the current and new permittee (including acknowledgement that the existing permittee is liable for violations up to that date, and that the new permittee is liable for violations from that date on) is submitted to the Director at least thirty (30) days in advance of the proposed transfer; and

PART II

Page 11 of 15 Permit No. GA 0027588

- c. The Director, within thirty (30) days, does not notify the current permittee and the new permittee of the Division's intent to modify, revoke and reissue, or terminate the permit and to require that a new application be filed rather than agreeing to the transfer of the permit.
- 3. Availability of Reports

Except for data deemed to be confidential under O.C.G.A. § 12-5-26 or by the Regional Administrator of the EPA under the Code of Federal Regulations, Title 40, Part 2, all reports prepared in accordance with the terms of this permit shall be available for public inspection at an office of the Division. Effluent data, permit applications, permittee's names and addresses, and permits shall not be considered confidential.

4. Permit Modification

After written notice and opportunity for a hearing, this permit may be modified, suspended, revoked or reissued in whole or in part during its term for cause including, but not limited to, the following:

- a. Violation of any conditions of this permit;
- Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts;
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the permitted discharge; or
- d. To comply with any applicable effluent limitation issued pursuant to the order the United States District Court for the District of Columbia issued on June 8, 1976, in Natural Resources Defense Council, Inc. et.al. v. Russell E. Train, 8 ERC 2120(D.D.C. 1976), if the effluent limitation so issued:
 - (1) is different in conditions or more stringent than any effluent limitation in the permit; or
 - (2) controls any pollutant not limited in the permit.
- 5. Toxic Pollutants and Best Available Technology Economically Achievable

The permittee shall comply with effluent standards or prohibitions established pursuant to Section 307(a) and Section 301(b)2 of the Federal Clean Water Act for pollutants, toxic and otherwise,

PART II

Page 12 of 15 Permit No. GA 0027588

which are present in the discharge within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

6. Civil and Criminal Liability

Nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance.

7. State Laws

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable State law or regulation under authority preserved by Section 510 of the Federal Clean Water Act.

8. Water Quality Standards

Nothing in this permit shall be construed to preclude the modification of any condition of this permit when it is determined that the effluent limitations specified herein fail to achieve the applicable State water quality standards.

9. Property Rights

The issuance of this permit does not convey any property rights in either real or personal property, or any exclusive privileges, nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations.

10. Expiration of Permit

Permittee shall not discharge after the expiration date. In order to receive authorization to discharge beyond the expiration date, the permittee shall submit such information, forms, and fees as are required by the agency authorized to issue permits no later than 180 days prior to the expiration date.

11. Contested Hearings

Any person who is aggrieved or adversely affected by an action of the Director of the Division shall petition the Director for a hearing within thirty (30) days of notice of such action.

PART II

Page 13 of 15 Permit No. GA 0027588

12. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

13. Best Management Practices

The permittee will implement best management practices to control the discharge of hazardous and/or toxic materials from ancillary manufacturing activities. Such activities include, but are not limited to, materials storage areas; in-plant transfer, process and material handling areas; loading and unloading operations; plant site runoff; and sludge and waste disposal areas.

14. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

15. Duty to Provide Information

- a. The permittee shall furnish to the Director of the Division, within a reasonable time, any information which the Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit or to determine compliance with this permit. The permittee shall also furnish upon request copies of records required to be kept by this permit.
- b. When the permittee becomes aware that it failed to submit any relevant facts in a permit application or submitted incorrect information in a permit application or any report to the Director, it shall promptly submit such facts and information.

16. Stormwater Runoff

In addition to the outfalls identified in Part I, Section A. of this permit, the permittee is authorized to discharge stormwater runoff from point sources at this facility provided that these discharges do not cause violations of State water quality standards in the receiving streams.

PART II

Page 14 of 15 Permit No. GA 0027588

17. Upset Provisions

Provisions of 40 CFR 122.41(n)(1)-(4), regarding "Upset" shall be applicable to any civil, criminal, or administrative proceeding brought to enforce this permit.

PART III

A. PREVIOUS PERMITS

1. All previous State water quality permits issued to this facility, whether for construction or operation, are hereby revoked by the issuance of this permit. This action is taken to assure compliance with the Georgia Water Quality Control Act, as amended, and the Federal Clean Water Act, as amended. Receipt of the permit constitutes notice of such action. The conditions, requirements, terms and provisions of this permit authorizing discharge under the National Pollutant Discharge Elimination System govern discharges from this facility.

B. SPECIAL REQUIREMENTS

1. After July 1, 1991, all discharge must be directed to the Savannah River via the City of Savannah Windsor/Wilshire force main.

PART III

Page 15 of 15 Permit No. GA 0027588

C. BIOMONITORING AND TOXICITY REDUCTION REQUIREMENTS

The permittee may not discharge toxic wastes in concentrations or combinations which are harmful to humans, fish or aquatic life. The permittee shall ensure that the effluent being discharged does not kill 10% or more of the exposed test organisms in 96 hours or less, when the test solution contains volumes of effluent and stream water proportional to the plant design flow and the 7Q10 flow of the receiving stream.

- 1. If toxicity is suspected in the permittee's effluent, the Division may require the permittee to develop a program for whole effluent biomonitoring. The schedule will be as follows;
 - a. Within 90 days of Division notification, a study plan detailing the test methodology and test organisms shall be submitted for conducting forty-eight hour acute static renewal tests of the final effluent. If residual chlorine is present in the final effluent from treatment and/or disinfection processes, a prechlorinated or dechlorinated sample will also be tested.
 - b. Within 90 days of Division approval of the study plan, the permittee will conduct and submit the results of the forty-eight hour static renewal tests.
- 2. If toxicity is found in the permittee's effluent, the permittee shall, within 90 days of written notification by the Division, submit a Toxicity Reduction Evaluation (TRE) plan to the Division. The TRE plan shall detail the action the permittee will implement to eliminate toxicity. Within 270 days of Division approval of the TRE plan, the permittee shall complete implementation of the TRE plan and conduct follow-up biomonitoring of the effluent in accordance with the approved TRE plan. If toxicity is still indicated, the permittee shall continue the TRE plan. The TRE plan shall not be complete until the permittee has eliminated the toxicity in its effluent. On a case specific basis, chronic toxicity testing procedures may be required for the definitive determination that toxicity has been eliminated.
- 3. If toxicity is not indicated initially, or if there are substantial changes in the effluent composition, the permittee may be required to repeat the forty-eight hour static renewal test upon notification by the Division. On a case specific basis, chronic toxicity testing procedures may also be required.

Upon approval by the Division, all study plans and TRE plans will become part of the requirements of this permit.