FINAL CONFIRMATORY SAMPLING REPORT FORT STEWART HINESVILLE, GEORGIA

NOVEMBER 2007

Prepared for:

UNITED STATES ARMY CORPS OF ENGINEERS, BALTIMORE DISTRICT P.O. Box 1715 Baltimore, Maryland 21203-1715

Prepared by:

MALCOLM PIRNIE, INC. 300 East Lombard Street, Suite 610 Baltimore, Maryland 21202-3227

FINAL CONFIRMATORY SAMPLING REPORT FORT STEWART HINESVILLE, GEORGIA

DoD Contract Number:

W912DR-05-D-0004

Reviewed and Approved by:

thather tolinsh

Heather Polinsky, Vice President Program Officer Malcolm Pirnie, Inc.

Shelly Kolb Project Manager Malcolm Pirnie, Inc.

Malcolm Pirnie, Inc., prepared this report at the direction of the United States Army Corps of Engineers (USACE). This document should be used only with the approval of the USACE. This report is based, in part, on information provided in other documents and is subject to the limitations and qualifications presented in the referenced documents.

NOVEMBER 2007

TABLE OF CONTENTS

TABLE OF ACRONYMSa					
GLOSSARY OF TERMSI					
E	XECUTIVE	SUMMARY	.ES-1		
A	CKNOWLE	EDGMENTS	A		
1	1 INTRODUCTION1-1				
-					
		itary Munitions Response Program Overview			
		pose, Scope, and Objectives			
2	- J	iect Drivers			
4					
-		vious Investigations			
3	CONFIL	RMATORY SAMPLING OVERVIEW	3-1		
	3.1 Con	Ifirmatory Sampling Tasks	3-1		
	3.2 Dev	viations From Work Plan	3-5		
		Ifirmatory Sampling Findings			
4	CONFIE	RMATORY SAMPLING DETAILS	4-1		
	4.1 Ant	i-Aircraft Range - 1	4-1		
	4.1.1	Site Description and Historical Overview			
	4.1.2	Fieldwork Activities			
	4.1.3	Fieldwork Results			
	4.1.4	Conceptual Site Model			
	4.1.5	Site Summary and Conclusions			
	4.1.6	Site Recommendations			
	4.2 Ant	i-Aircraft Range 90-mm - 2	. 4-10		
	4.2.1	Site Description and Historical Overview	.4-10		
	4.2.2	Fieldwork Activities	.4-10		
	4.2.3	Fieldwork Results	.4-11		
	4.2.4	Conceptual Site Model			
	4.2.5	Site Summary and Conclusions			
	4.2.6	Site Recommendations			
		i-Tank Range 90-mm			
	4.3.1	Site Description and Historical Overview			
	4.3.2	Fieldwork Activities			
	4.3.3	Fieldwork Results			
	4.3.4	Conceptual Site Model			
	4.3.5	Site Summary and Conclusions			
	4.3.6	Site Recommendations			
		d Grenade Course			
	4.4.1	Site Description and Historical Overview			
	4.4.2	Fieldwork Activities			
	4.4.3	Fieldwork Results			
	4.4.4	Conceptual Site Model	.4-35		

	4.4.5	Site Summary and Conclusions	
	4.4.6	Site Recommendations	
4.5 Small Arms Range - 1			
	4.5.1	Site Description and Historical Overview	
	4.5.2	Fieldwork Activities	
	4.5.3	Fieldwork Results	
	4.5.4	Conceptual Site Model	
	4.5.5	Site Summary and Conclusions	
	4.5.6	Site Recommendations	
4.6	6 5	Small Arms Range - 2	
	4.6.1	Site Description and Historical Overview	
	4.6.2	Fieldwork Activities	
	4.6.3	Fieldwork Results	
	4.6.4	Conceptual Site Model4-42	
	4.6.5	······································	
	4.6.6		
4.7	7 5	Small Arms Range - 3	
	4.7.1	~	
	4.7.2		
	4.7.3		
	4.7.4		
	4.7.5	······································	
	4.7.6		
		Hero Road Trench Area	
	4.8.1	I	
	4.8.2		
	4.8.3		
	4.8.4		
	4.8.5	······································	
	4.8.6		
		Chemical Data Quality Assessment	
5	REC	OMMENDATIONS REVIEW	
5.	1 5	Summary of Site Inspection Recommendations	
5.2		Rationale For Final Acreage	
6		ERENCES	

LIST OF APPENDICES

Appendix A: Field Notes
Appendix B: Field Forms and Photographic Log
Appendix C: Analytical Data and Chemical Data Quality Assessment
Appendix D: Global Positioning System Data
Appendix E: Cost-to-Complete
Appendix F: Munitions Response Site Prioritization Protocol
Appendix G: Ordnance Technical Data Sheets
Appendix H: Technical Project Planning Meeting Minutes

LIST OF FIGURES

Figure 4-1: Grid layout for surface walk looking towards the Rocket Range (north west)	4-3
Figure 4-2: Rocket Range facing west-northwest from the firing berm	4-3
Figure 4-3: Expended M18 smoke grenade (Yellow)	4-4
Figure 4-4: Expended M125A1 pop flare	4-4
Figure 4-5: Expended M-73 subcaliber rockets	4-4
Figure 4-6: Subcaliber rocket in tire targets	4-5
Figure 4-7: MEC Exposure Pathway Analysis - Anti-Aircraft Range 90-mm - 2	4-25
Figure 4-8: MC Exposure Pathway Analysis - Anti-Aircraft Range 90-mm - 2	4-26
Figure 4-9: Sign indicating a mine field area	4-37
Figure 4-10: Inert landmine hanging from a tree	4-37
Figure 4-11: MEC Exposure Pathway Analysis – Hero Road Trench Area	4-68
Figure 4-12: MC Exposure Analysis Pathway – Hero Road Trench Area	4-69

LIST OF MAPS

2-4
4-7
4-12
4-33
4-43
4-46
4-58
5-3

LIST OF TABLES

Table ES-1: CS Findings and Recommendations	3
Table 3-1: Summary of 12 September 2006 TPP MEC Decisions	3-3
Table 3-2: Summary of 12 September 2006 TPP MC Decisions	3-4
Table 4-1: Site Discoveries at Anti-Aircraft Range - 1	4-5
Table 4-2: Anti-Aircraft Range - 1 Site Analytical Data	4-8
Table 4-3: Anti-Aircraft Range 90-mm – 2- Analytical Data	
Table 4-4: Summary of Potential and Actual Munitions Debris and MEC	4-20
Table 4-5: Summary of Expected MEC Penetration Depths - Anti-Aircraft Range 90-mm - 2	4-21
Table 4-6: Hand Grenade Course – Analytical Table	4-34
Table 4-7: Site Discoveries at Small Arms Range - 1	4-38
Table 4-8: Small Arms Range - 1 Analytical Data	4-40
Table 4-9: Small Arms Range - 3 Analytical Data - Soil	4-47
Table 4-10: Small Arms Range - 3 Analytical Data - Aqueous	4-48
Table 4-11: Summary of Potential and Actual Munitions Debris and MEC - Small Arms Range - 3	4-53
Table 4-12: Hero Road Trench – Analytical Table	4-59
Table 4-13: Summary of Potential and Actual Munitions Debris and MEC	4-63
Table 5-1: Summary of CS Recommendations	5-1
Table 5-2: Final Acreage Rationale	5-2

TABLE OF ACRONYMS

Acronym	Definition	
°F	Degrees Fahrenheit	
3ID(M)	Third Infantry Division (Mechanized)	
AEDB-R	Army Environmental Database – Restoration	
amsl	Above Mean Sea Level	
bgs	Below Ground Surface	
BRAC	Base Realignment and Closure	
cal	Caliber	
CCC	Criterion Continuous Concentration	
CMP AB	Composition AB	
CMS	Corrective Measures Study	
CN	Chloracetophenone	
CS	Confirmatory Sampling	
CSM	Conceptual Site Model	
СТС	Cost-to-Complete	
DERP	Defense Environmental Restoration Program	
DMM	Discarded Military Munitions	
DoD	Department of Defense	
DOE	Department of Energy	
DPW	Directorate of Public Works	
EOD	Explosive Ordnance Disposal	
ft	Feet	
FTSW	Fort Stewart	
FUDS	Formerly Used Defense Site	
FY	Fiscal Year	
GA	Georgia	
GPS	Global Positioning System	

TABLE OF ACRONYMS

Acronym	Definition	
HBX	High Blast Explosive	
HE	High Explosive	
HEP	High Explosive Plastic	
HMX	Cyclotetramethylenetetranitramine	
HRR	Historical Records Review	
ID	Infantry Division	
m	meters	
MC	Munitions Constituents	
MEC	Munitions and Explosives of Concern	
mm	Millimeter	
MMRP	Military Munitions Response Program	
mph	Miles Per Hour	
MRS	Munitions Response Site	
MS/MSD	Matrix Spike / Matrix Spike Duplicate	
MRSPP	Munitions Response Site Prioritization Protocol	
NCO	Noncommissioned Officer	
NFA	No Further Action	
PRG	Preliminary Remediation Goal	
RCRA	Resource Conservation and Recovery Act	
QC	Quality Control	
RDX	Cyclotrimethylene trinitramine	
RFI	Resource Conservation and Recovery Act Facility Investigation	
SARA	Superfund Amendments and Reauthorization Act	
SI	Site Inspection	
TAL	Target Analyte List	
TNT	Trinitrotoluene	

TABLE OF ACRONYMS

Acronym	Definition	
TPP	Technical Project Planning	
U.S.	United States	
USACE	United States Army Corps of Engineers	
U.S.C.	United States Code	
USEPA	United States Environmental Protection Agency	
UXO	Unexploded Ordnance	

GLOSSARY OF TERMS

Closed Range – A military range that has been taken out of service as a range and that either has been put to new uses that are incompatible with range activities or is not considered by the military to be a potential range area. A closed range is still under the control of a Department of Defense (DoD) component.

Defense Site – Locations that are or were owned by, leased to, or otherwise possessed or used by the DoD. The term does not include any operational range, operating storage or manufacturing facility, or facility that is used for or was permitted for the treatment or disposal of military munitions.

Discarded Military Munitions (DMM) – Military munitions that have been abandoned without proper disposal or removed from storage in a military magazine or other storage area for the purpose of disposal. The term does not include unexploded ordnance (UXO), military munitions that are being held for future use or planned disposal, or military munitions that have been properly disposed of, consistent with applicable environmental laws and regulations.

Explosive Ordnance Disposal (EOD) – The detection, identification, on-site evaluation, rendering safe, recovery, and final disposal of UXO and other munitions that have become an imposing danger (for example, by damage or deterioration).

Explosives Safety – A condition where operational capability and readiness, people, property, and the environment are protected from the unacceptable effects of risks of potential mishaps involving military munitions.

Formerly Used Defense Site (FUDS) – A DoD program that focuses on compliance and cleanup efforts at sites that were formerly used by the DoD. A FUDS property is eligible for the Military Munitions Response Program if the release occurred prior to October 17, 1986; the

property was transferred from DoD control prior to October 17, 1986; and the property or project meets other FUDS eligibility criteria.

Military Munitions – All ammunition products and components produced for or used by the armed forces for national defense and security, including ammunition products or components under the control of the DoD, United States Coast Guard, Department of Energy (DOE), and National Guard. The term includes confined gaseous, liquid, and solid propellants; explosives, pyrotechnics, chemical and riot control agents, smokes, and incendiaries, including bulk explosives and chemical warfare agents; chemical munitions; rockets; guided and ballistic missiles; bombs; warheads; mortar rounds; artillery ammunition; small arms ammunition; grenades; mines; torpedoes; depth charges; cluster munitions and dispensers; demolition charges; and devices and components thereof.

The term does not include wholly inert items; improvised explosive devices; and nuclear weapons, nuclear devices, and nuclear components other than non-nuclear components of nuclear devices that are managed under the nuclear weapons program of the DOE after all required sanitization operations under the Atomic Energy Act of 1954 (42 United States Code [U.S.C.] 2011 et seq.) have been completed.

Munitions and Explosives of Concern (MEC) – This term, which distinguishes specific categories of military munitions that may pose unique explosives safety risks, includes: UXO, as defined in 10 U.S.C. 101(e)(5); DMM, as defined in 10 U.S.C. 2710(e)(2); and munitions constituents (e.g., trinitrotoluene [TNT], cyclotrimethylenetrinitramine [RDX]) present in high enough concentrations to pose an explosive hazard.

Munitions Constituents (**MC**) – Any materials originating from UXO, DMM, or other military munitions, including explosive and nonexplosive materials, and emission, degradation, or breakdown elements of such ordnance or munitions.

Munitions Debris – Remnants of munitions (e.g., fragments, penetrators, projectiles, shell casings, links, fins) remaining after munitions use, demilitarization, or disposal.

November 2007

Operational Range – A range that is under the jurisdiction, custody, or control of the Secretary of Defense and that is used for range activities or, although not currently being used for range activities, that is still considered by the Secretary to be a range and has not been put to a new use that is incompatible with range activities.

Range – A designated land or water area set aside, managed, and used for range activities of the DoD. The term includes firing lines and positions, maneuver areas, firing lanes, test pads, detonation pads, impact areas, electronic scoring sites, buffer zones with restricted access, and exclusionary areas. The term also includes airspace areas designated for military use in accordance with regulations and procedures prescribed by the Administrator of the Federal Aviation Administration.

Transferred Range – A range that is no longer under military control and had been leased by the DoD, transferred, or returned from the DoD to another entity, including federal entities. This includes a military range that is no longer under military control, but that was used under the terms of an executive order, special-use permit or authorization, right-of-way, public land order, or other instrument issued by the federal land manager. Additionally, property that was previously used by the military as a range, but did not have a formal use agreement, also qualifies as a transferred range.

Transferring Range – A range that is proposed to be leased, transferred, or returned from the DoD to another entity, including federal entities. This includes a military range that was used under the terms of a withdrawal, executive order, special-use permit or authorization, right-of-way, public land order, or other instrument issued by the federal land manager or property owner. An active range will not be considered a transferring range until the transfer is imminent (generally defined as the transfer date is within 12 months and a receiving entity has been notified).

Unexploded Ordnance (UXO) – Military munitions that (A) have been primed, fused, armed, or otherwise prepared for action; (B) have been fired, dropped, launched, projected, or placed in

such a manner as to constitute a hazard to operations, installations, personnel, or material; and (C) remain unexploded either by malfunction, design, or any other cause.

EXECUTIVE SUMMARY

The Department of Defense (DoD) established the Military Munitions Response Program (MMRP) under the Defense Environmental Restoration Program to address defense sites with munitions and explosives of concern (MEC) (which include unexploded ordnance [UXO] and discarded military munitions [DMM]) and munitions constituents (MC) located on current and former military installations. Properties classified as operational military ranges, permitted munitions disposal facilities, or operating munitions storage facilities are not eligible for the MMRP, nor are sites that had releases after September 30, 2002. The United States Army's inventory of closed, transferred, and transferring military ranges and defense sites has identified sites with UXO, DMM, or MC eligible for action under the MMRP. This report presents the results of the MMRP Resource Conservation and Recovery Act (RCRA) Confirmatory Sampling (CS) conducted at Fort Stewart (FTSW) in Bryan, Evans, Liberty, Long, and Tattnall counties, Georgia (GA).

FTSW consists of 279,081 acres and is located north of Hinesville, GA, approximately 40 miles southwest of Savannah, GA. FTSW is the largest Army installation east of the Mississippi River, spanning portions of Bryan, Evans, Liberty, Long, and Tattnall counties. Georgia Highway 119, which runs north to south from Pembroke to Hinesville, and Georgia Highway 144, which runs east to west from Richmond Hill to Glennville, bisect FTSW. Situated south of Interstate 16 and west of Interstate 95, the installation boundaries are roughly defined by the intersection of Interstate 16 and Interstate 95 and the cities of Richmond Hill, Hinesville, Glennville, Claxton, and Pembroke.

The Phase 3 Inventory report identified seven munitions response sites (MRSs) at FTSW. Research performed during the Historical Records Review (HRR) resulted in the addition of the Hero Road Trench Area as an MRS and the removal of Small Arms Range - 2 as an MRS. Small Arms Range - 2 was found to be ineligible for the MMRP as it is positioned completely within the operational footprint of FTSW. The seven MMRP eligible sites identified in the HRR dated September 2006 and, therefore, included in this CS are as follows:

- Anti-Aircraft Range 1
- Anti-Aircraft Range 90-millimeter (mm) 2
- Anti-Tank Range 90-mm
- Hand Grenade Course
- Small Arms Range 1
- Small Arms Range 3
- Hero Road Trench Area

The CS at the MMRP sites at FTSW included both MEC and MC field activities, which were conducted from March 13, 2007, through March 15, 2007, and April 30, 2007, through May 1, 2007.

MEC field activities included a magnetometer-assisted site walk and visual survey of ranges where HRR findings indicated a potential for MEC. The goal of the MEC fieldwork was to determine whether MEC are present on the MRSs. This goal was achieved through the magnetometer-assisted site walk and visual survey.

MC fieldwork included the collection and analysis of various environmental media samples, including surface soil, surface water, and sediment samples, for a select set of metals and explosives, as appropriate based on the HRR findings and agreements made during and after the Technical Project Planning (TPP) meeting. The goal of the MC field activities was to determine the presence or absence of residual MC resulting from activities conducted by the DoD during operation of these sites that may pose a threat to human health and/or the environment. This determination is made by obtaining biased or random surface soil, sediment and surface water samples (when available) and analyzing the samples for MC.

The standard analytical methods include Environmental Protection Agency Methods 6010B and 6020 for metals and United States Environmental Protection Agency (USEPA) Method 8330 for explosives. USEPA Method 6010B was used for the analysis of aluminum, copper, and zinc, and USEPA Method 6020 was used for the analysis of lead and antimony. USEPA Method 6020 was used in lieu of 6010B to achieve the reporting limits consistent with the screening criteria

agreed upon at the Technical Project Planning session. All laboratory method detection and reporting limits were set to achieve screening against the following, in the listed order:

- FTSW Inorganic/Metal Background Study (April 2000)
- USEPA Region 9 preliminary remediation goals (PRGs) for residential soil
- Region 4 ecological screening values for surface soil
- USEPA water quality standards for freshwater criterion continuous concentration (CCC) chronic
- Region 4 ecological screening values for surface water

Table ES-1 summarizes the results of the CS activities and recommendations for each MRS.

MRS	CS	Basis for Recommendation	
	Recommendation	MEC	MC
Anti-Aircraft Range - 1	Not eligible under the MMRP	Based on the evidence of recent observed during the field activit for the MMRP.	
Anti-Aircraft Range 90- mm - 2	RFI/CMS	As agreed upon during the TPP meeting, this MRS is recommended for further investigation (RFI/CMS) based on historical evidence of multiple overlapping range fans and multiple explosive ordnance disposal calls.	
Anti-Tank Range 90-mm	Not eligible under the MMRP	As agreed upon during the TPP eligible for the MMRP because monitored under the RCRA land recommended that this MRS con RCRA.	it is currently being Ifill permit. It is
	÷	•	
Hand Grenade Course	Not eligible under the MMRP	Based on information obtained f Range Officer, the Hand Grenac footprint of an operational small as such this MRS is not eligible	le Course is located within the l arms range impact area and
Small Arms Range - 1 Not eligible under the MMRP Based on the evidence of recent munitions related trai observed during the field activities this MRS is not eligible for the MMRP			

Table ES-1: CS Findings and Recommendations

MRS	CS Recommendation	Basis for Recommendation		
MKS		MEC	MC	
Small Arms Range - 3	NFA	Recommend NFA based on historical evidence that only small arms were used on site.	Recommend NFA based on analytical results of soil samples not exceeding the FTSW background values for inorganic compounds. Additionally, the analytical results of sediment and surface water samples did not exceed selected screening criteria.	
	DELCO			
Hero Road Trench Area	RFI/CMS	recommended for further inve information presented in the I	eed upon during the TPP meeting, this MRS is nended for further investigation (RFI/CMS) based on ation presented in the HRR regarding alleged burials mical Agent Identification Sets Detonation, M1.	

ACKNOWLEDGMENTS

The Confirmatory Sampling (CS) field activities were performed at Fort Stewart (FTSW) from March 13, 2007 to March 15, 2007 and April 30, 2007 by Malcolm Pirnie, Inc., as part of the Military Munitions Response Program (MMRP) for the Department of Defense. The entire CS process began in October 2006 and is scheduled to conclude in late 2007. Malcolm Pirnie, Inc. would like to acknowledge the following people for their participation and cooperation throughout the CS process:

United States Army Environmental Command

Mary Ellen Maly MMRP Program Manager

Timothy Rodeffer MMRP Project Manager

Alan Freed Restoration Oversight Manager

United States Army Corps of Engineers

FTSW

Malcolm Pirnie, Inc.

Kimberly Gross FTSW MMRP Site Inspection Project Manager

> Algeana Stevenson Installation Restoration Program Manager

> > Randy Powell-Jones Restoration Manager

> > > Shelly Kolb Project Manager

David Smith Deputy Project Manager and Field Team Leader

> Dan Hains Unexploded Ordnance Technician

> > Nicole Ukura Field Team

Marla Miller Project Chemist

А

1 INTRODUCTION

1.1 MILITARY MUNITIONS RESPONSE PROGRAM OVERVIEW

The Department of Defense (DoD) established the Military Munitions Response Program (MMRP) under the Defense Environmental Restoration Program (DERP) to address unexploded ordnance (UXO), discarded military munitions (DMM), and munitions constituents (MC) located on current and former military installations. Properties classified as operational military ranges, permitted munitions disposal facilities, or operating munitions storage facilities are not eligible for the MMRP, nor are sites that had releases after September 30, 2002. The United States (U.S.) Army's (Army's) inventory of closed, transferred, and transferring military ranges and defense sites has identified sites with munitions and explosives of concern (MEC) (which include both UXO and DMM) and/or MC that are eligible for action under the MMRP.

In late 2003, the Phase 3 Range Inventory was completed for FTSW by Malcolm Pirnie, Inc. A site visit was conducted on October 22 through 24, 2002. The Phase 3 Range Inventory concentrated on the non-operational range areas identified from the Phase 2 Inventory and the surrounding areas to identify CTT ranges (now referred to as MRS). Seven MRSs were identified in the Historical Records Review (HRR) dated May 2006. Descriptions of these sites are provided in Sections 4.1 through 4.7 (more detailed descriptions of these sites are presented in the HRR). Map 2-1 provides an overview of the MRSs.

This report presents the results of the MMRP Resource Conservation and Recovery Act (RCRA) Confirmatory Sampling (CS) conducted at Fort Stewart (FTSW) in Bryan, Evans, Liberty, Long, and Tattnall counties, Georgia (GA), and is intended to meet the requirements of an MMRP Site Inspection (SI) report under the Comprehensive Environmental Response, Compensation, and Liability Act. Malcolm Pirnie is performing the CS on the FTSW installation from February 2006 to October 2007.

The following MMRP eligible sites were investigated as part of this CS:

- Anti-Aircraft Range 1 (Army Environmental Database Restoration Identification Number [AEDB-R ID]: FTSW-001-R-01)
- Anti-Aircraft Range 90-millimeter (mm) 2 (AEDB-R ID: FTSW-002-R-01)

- Anti-Tank Range 90-mm (AEDB-R ID: FTSW-003-R-01)
- Hand Grenade Course (AEDB-R ID: FTSW-004-R-01)
- Small Arms Range 1 (AEDB-R ID: FTSW-005-R-01)
- Small Arms Range 3 (AEDB-R ID: FTSW-007-R-01)
- Hero Road Trench Area (AEDB-R ID: FTSW-008-R-01)

1.2 PURPOSE, SCOPE, AND OBJECTIVES

The primary goal of the CS was to collect a sufficient amount of information necessary to make one of the following decisions: 1) whether a RCRA Facilities Investigation (RFI) / Corrective Measures Study (CMS) is required at an Munitions Response Site; 2) whether an immediate response is needed; or 3) whether the MRS qualifies for no further action (NFA). The CS at FTSW addressed MEC and MC on seven ranges for these MMRP eligible sites. The secondary goal of the CS was to collect information for building the MMRP, including Cost-to-Complete (CTC) estimates and site prioritization for the MMRP eligible sites.

The field activities for the CS were not intended to confirm all types of MEC present, determine MEC density, or define the limits of the MEC impacts. The goal of the field sampling activities is to determine if MEC were present or absent at the MRSs and to determine if the MRSs have been impacted by the MC associated with there historical use. The CS field activities were not intended to delineate the nature and extent of MC contamination.

1.3 PROJECT DRIVERS

The key legislative, administrative, and historical precedents for managing MMRP sites include the following:

Defense Environmental Restoration Program (DERP) Management Guidance (September 2001)

The DERP Management Guidance established an MMRP element for UXO, DMM, and MC defense sites. The history of DERP dates back to the Superfund Amendments and Reauthorization Act (SARA) of 1986. The scope of the DERP is defined in 10 United States Code (U.S.C.) §2701(b), which states that the:

Goals of the program shall include the following: ... (1) The identification, investigation, research and development, and cleanup of contamination from hazardous substances, and pollutants and contaminants. (2) Correction of other environmental damage (such as detection and disposal of unexploded ordnance) which creates an imminent and substantial endangerment to the public health or welfare or to the environment.

Army DERP Management Guidance for Active Installations (November 2004)

The Army DERP Management Guidance provides guidance for active installations and non-Base Realignment and Closure (BRAC) excess properties on the management of the Army Installation Restoration Program, the MMRP, and the Building Demolition and Debris Removal Program categories that are related to environmental cleanup. The Army DERP Management Guidance does not apply to Army restoration activities overseas, the BRAC Environmental Restoration Program, the Compliance-Related Cleanup Program, or the Formerly Used Defense Sites Restoration Program. The guidance document was provided to implement the Army's DERP in accordance with the DoD Management Guidance for the DERP (September 2001). The Army DERP Management Guidance supplements the roles, responsibilities, and procedures contained in Army Regulation 200-1 and Department of the Army Pamphlet 200-1.

National Defense Authorization Act (Fiscal Year [FY] 02) (Sections 311-312)

Sections 311-312 of the National Defense Authorization Act of FY02 reinforced the DoD's 2001 DERP Management Guidance by tasking the DoD to develop and maintain an inventory of defense sites that are known or suspected to contain MEC or MC. Section 311 requires the DoD to develop a protocol for prioritizing defense sites for response activities in consultation with the states and Tribes. Section 312 requires the DoD to create a separate program element to ensure that the DoD can identify and track munitions response funding.

The September 2001 DoD Management Guidance for the DERP and the National Defense Authorization Act of FY02, described above, established the MMRP. The DERP and the MMRP provide guidance and methods for conducting a baseline inventory of defense sites containing, or potentially containing, UXO, DMM, or MC.

Munitions Response Site Prioritization Protocol

The Munitions Response Site Prioritization Protocol (MRSPP) reflects the statement in 10 U.S.C. § 2710(b)(2) that the priority assigned should be based on the overall conditions at each location, taking into consideration various factors relating to safety and environmental hazard potential. As required under 10 U.S.C. § 2710(b)(1), the priority assigned to each munitions response site (MRS) will be included with the inventory information made publicly available. The requirement for an inventory of munitions response sites known or suspected of containing unexploded ordnance (UXO), discarded military munitions (DMM), or munitions constituents (MC) is found at 10 U.S.C. § 2710(a). The assigned priority will be updated annually to reflect new information that becomes available.

The Department of Defense first published the MRSPP in the Federal Register as a proposed rule on 22 August 2003. The rule was finalized on 05 October 2005 under the authority of Section 311(b) of the National Defense Authorization Act, codified at Section 10 U.S.C. § 2710(b). The following tables reflect the changes incorporated in the final rule, many of which pertained to clarification of terms and definitions based on new statutory definitions promulgated in the National Defense Authorization Act for 2004 and codified at 10 U.S.C. § 101. The following tables also include the revised module that evaluates potential health hazards associated with MC. This module now has seven potential outcomes (i.e., A through G) rather than the three potential outcomes described in the proposed rule (i.e., high, medium, and low).

2 INSTALLATION OVERVIEW

FTSW consists of 279,081 acres and is located north of Hinesville, GA, approximately 40 miles southwest of Savannah, GA. FTSW is the largest Army installation east of the Mississippi River, spanning portions of Bryan, Evans, Liberty, Long, and Tattnall counties. Georgia Highway 119, which runs north to south from Pembroke to Hinesville, and Georgia Highway 144, which runs east to west from Richmond Hill to Glennville, bisect FTSW. Situated south of Interstate 16 and west of Interstate 95, the installation boundaries are roughly defined by the intersection of Interstate 16 and Interstate 95 and the cities of Richmond Hill, Hinesville, Glennville, Claxton, and Pembroke.

Construction of the reservation that was to become FTSW began on September 10, 1940, on what was formerly the Camp Savannah Anti-Aircraft Firing Center. On November 18, 1940, the reservation's name was changed from Camp Savannah to Camp Stewart in honor of the Revolutionary War Brigadier General Daniel Stewart. The reservation was established as an anti-aircraft center with facilities to prepare artillery troops for overseas deployment.

The reservation's mission of training anti-aircraft units ended on November 20, 1944, and all training terminated in December 1944. Army ground forces units were to have departed by April 30, 1945. A prisoner-of-war camp that was operated at the reservation was also closed. The reservation's mission was reestablished as a separation center for redeployed troops from August 6, 1945, until September 2, 1945. On September 30, 1945, Camp Stewart was inactivated, and the reservation became a location for training the Georgia National Guard. From a peak strength of 55,000 soldiers during the spring of 1944, only two officers, 10 enlisted men, and 50 civilian employees remained by the fall of 1945 to maintain the facilities.

With the outbreak of hostilities in Korea in June 1950, Camp Stewart was reactivated on August 9, 1950, and was designated the 3rd Army Anti-Aircraft Artillery Training Center. In 1953, armor and tank training was added to the mission of the reservation. On March 21, 1956, Camp Stewart was redesignated as Fort Stewart and was designated a permanent Army installation. In

1959, FTSW became an armor and artillery firing center. Troop training at FTSW peaked in 1961 and 1962 in response to the Berlin and Cuban crises, respectively. The 1st Armored Division was relocated to the reservation during the Cuban crisis.

In response to a need for more helicopter and light fixed wing aircraft in support of the Vietnam conflict, an element of the U.S. Army Aviation School at Fort Rucker, Alabama, was transferred to FTSW in 1966. Helicopter pilot training and helicopter gunnery courses became the new mission for FTSW.

In 1967, the main mission for FTSW was to train Army aviators. The reservation was also used to maintain readiness for other active duty, Reserve, and National Guard personnel. In 1970, Vietnamese helicopter pilots began training at FTSW. Aviation training at FTSW was phased out in 1973, when all aviation training was consolidated at Fort Rucker. By 1974, FTSW had become a training and maneuver area, providing tank, field artillery, helicopter gunnery, and small arms training for Regular Army and National Guard units. FTSW supported training by providing facilities, conducting training opportunities, and assisting in the mobilization and deployment of troops.

In 1974, the 1st Battalion, 75th Infantry Regiment (Ranger) was reactivated at FTSW. Later that year, the 24th Infantry Division was activated on the reservation. Currently, the 3rd Infantry Division (Mechanized) (3ID[M]) is the major unit located at FTSW.

FTSW is the home of the third infantry division (mechanized) (3ID[M]), with the following major units: 1st Brigade, 3ID(M); 2nd Brigade, 3ID(M); 3ID Artillery; 3ID Support Command; 3ID Engineer Brigade; 3/7 Cavalry; 1/3 Air Defense Artillery; 103d Military Intelligence Battalion; 123d Signal Battalion; 3d Military Police Battalion (Provisional); and 24th Corps Support Groups. The 3d Brigade, 3ID(M) operates out of Fort Benning, GA, but often trains at FTSW. Currently, the mission of FTSW is to sustain a quality of life and reservation support at the level necessary for divisions and non-divisional, tenant, and Reserve Component units to accomplish their training missions.

Hunter Army Airfield is a subinstallation to FTSW and is located approximately 45 miles southwest of FTSW. It occupies approximately 5,400 acres and, along with FTSW, acts as a home to the 3ID

2.1 PREVIOUS INVESTIGATIONS

Detailed descriptions of the previous investigations that were conducted at FTSW are presented in the HRR. Based on the data repositories reviewed for the CS, the following additional investigation that contains relevant information and supplements information presented in the HRR at FTSW was identified:

• Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart, Georgia, Volume I of III (April 2000)

3 CONFIRMATORY SAMPLING OVERVIEW

3.1 CONFIRMATORY SAMPLING TASKS

The FTSW CS included both MEC and MC field activities, which were conducted from March 13, 2007, through March 15, 2007, and April 30, 2007, through May 1, 2007. Field activities included locating surface evidence of MEC and munitions debris through instrument-assisted visual surveys and collecting surface soil, surface water, and sediment samples to analyze for MC of concern (aluminum, antimony, copper, lead, zinc, and explosives, where appropriate). The MC were selected based on the types of munitions known to have been used at the MRSs. The purpose of the field activities was to collect sufficient information to determine whether MEC or MC above selected screening criteria are present at each MRS to support one of the following decisions: 1) whether an RFI/CMS is required at an MRS; 2) whether an immediate response is needed; or 3) whether the MRS qualifies for NFA.

Summaries of both the MEC and MC activities conducted at each of the MRSs are provided in Section 4. The MEC and MC activities conducted at each of the MRSs were selected based on results of the Technical Project Planning (TPP) session held on 12 September 2006, and decisions made and agreed upon after the TPP session. The Work Plan, finalized March 2007, dictated both the MEC and MC sampling/field activities conducted at FTSW.

The goal of the MEC field activities at each MRS was to determine if MEC are present on the surface. Due to the potential hazards associated with the presence of MEC, the UXO Technician escorted the field team members during the reconnaissance activities using MEC avoidance techniques. The locations of munitions debris items encountered were documented using a handheld Global Positioning System (GPS). MEC were not encountered at any of the MRSs on FTSW. Additionally, each MEC training related feature or munitions debris encounter was documented in the field logbook (Appendix B). If no items were encountered it was also documented in the field logbook. Observations made during the site walk were used to determine biased soil sampling locations where possible.

The MEC field activities were conducted at the following MRSs:

- Anti-Aircraft Range 1
- Anti-Aircraft Range 90-mm 2
- Hand Grenade Course
- Hero Road Trench Area

The goal of the MC field activities was to determine if MC is present at levels potentially posing an unacceptable risk at each MRS. As agreed at the 12 September 2006 TPP session and as described in the Work Plan dated March 2007, MC field activities were conducted at all MRS, with the exception of the Anti-Tank Range 90-mm. Anti-Tank Range 90-mm is currently being managed under the Resource Conservation and Recovery Act (RCRA) program. During the 12 September 2006 TPP session the project stakeholders agreed that the area would continue to be monitored under this program and no further action would be taken under the MMRP. Where possible, samples were collected in biased locations where evidence of munitions related use was observed. An all-metals detector assisted visual survey was conducted to locate remnants of small arms rounds in an attempt to identify biased sample locations. Rationale for each soil sample location is provided in the Soil Sample Logs included in Appendix B. A hand-held GPS unit was used to record all sample locations. Samples were analyzed for metals, and/or explosives using United States Environmental Protection Agency (USEPA) Methods 6010B (aluminum, copper, zinc), 6020 (lead, antimony), 8330 (explosives). Anomaly avoidance techniques were utilized during the MC field sampling activities Table 3-1 and Table 3-2 summarize the TPP decisions that dictated the field activities at FTSW.

MDC	MEC CS Activities		
MRS	Activity	Purpose	
Anti – Aircraft Range - 1	Magnetometer assisted visual survey during sampling activities	Support MEC no further action (NFA) or RFI/CMS determination Recommend NFA if no MEC is encountered on	
		the surface	
		Recommend RFI/CMS if MEC is encountered on the surface	
Anti – Aircraft Range	Magnetometer assisted visual	Recommend RFI/CMS for MRS based on	
90mm - 2	survey during sampling activities	historical evidence of multiple overlapping range fans and multiple explosive ordnance disposal (EOD) responses.	
Anti – Tank Range 90mm	Document historical use in Installation Master Plan	Recommend NFA under the MMRP because current/future use as a RCRA permitted landfill.	
Hand Grenade Course	Magnetometer assisted visual survey during sampling activities	Recommend RFI/CMS for MRS based on historical evidence of multiple overlapping range fans.	
Small Arms Range - 1	No MEC field activities are required because only small arms were used at the MRS.		
Small Arms Range - 3	No MEC field activities are required because only small arms were used at the MRS.		
Hero Road Trench Area	Conduct a visual survey of unfenced portions of MRS to ensure no MEC or MEC debris remains on the surface.	Recommend RFI/CMS for MRS based on historical evidence and results of current investigation.	

Table 3-1:	Summary of 12 September 2006 TPP MEC Decisions
------------	--

MDC	MC CS Activities		
MRS	Activity ^a	Purpose ^b	
Anti – Aircraft Range - 1	Collect 4 composite surface soil samples Sample locations will be randomly distributed unless biased locations are identified. Analyze for explosives and metals using Environmental Protection Agency (EPA) Methods 8330 and 6010B/6020	 Support CTC/Prioritization Protocol. Support MC NFA or RFI/CMS determination. Screen data using: FTSW Inorganic/Metal Background Study EPA Region 9 Preliminary Remediation Goal (PRG) for Residential Soil Region 4 Ecological Screening Values for surface soil 	
Anti – Aircraft Range 90mm - 2	Collect 1 biased composite surface soil sample at the location of one of the EOD response locations. Analyze for explosives and metals using EPA Methods 8330 and 6010B/6020	 Support CTC/Prioritization Protocol. RFI/CMS recommended for MRS based on historical evidence of multiple overlapping range fans and multiple EOD responses. Compare data to: FTSW Inorganic/Metal Background Study EPA Region 9 PRG for Residential Soil Region 4 Ecological Screening Values for surface soil 	
Anti – Tank Range 90mm	None	Recommend NFA because RCRA permitted landfill is currently being monitored under the RCRA program.	
Hand Grenade Range	Collect 1 biased composite surface soil sample in the center of the MRS. Analyze sample for explosives and metals using EPA Methods 8330 and 6010B/6021.	RFI/CMS recommended for MRS based on historical evidence of multiple overlapping range fans.	
Small Arms Range - 1	Collect 4 composite surface soil samples collected in the undeveloped portions (~41 acres) of the MRS. Antimony and Lead by EPA Method 6020	 Support CTC/Prioritization Protocol. Support MC NFA or RFI/CMS determination. Screen data using: FTSW Inorganic/Metal Background Study EPA Region 9 PRG for Residential Soil Region 4 Ecological Screening Values for surface soil 	

Table 3-2: Summary of 12 September 2006 TPP MC Decisions

MRS	MC CS Activities		
MIKS	Activity ^a	Purpose ^b	
Small Arms Range -3	Collect 2 sediment, 2 surface water and 3 composite surface soil samples.	Support CTC/Prioritization Protocol. Support MC NFA or RFI/CMS determination.	
	Soil samples: 1 in northern and 2 in the southern portions. Sediment samples: 1 on each of the man-made damns of the pond. Antimony and Lead by EPA Method 6020	 Screen data using: FTSW Inorganic/Metal Background Study EPA Region 9 PRG for Residential Soil Region 4 Ecological Screening Values for surface soil EPA Water Quality Standards for Freshwater Criterion Continuous Concentration (CCC) chronic Region 4 Ecological Screening Values for surface water 	
Hero Road Trench Area	Collect 1 composite surface soil sample Explosives and metals using EPA Methods 8330 and 6010B/6020	 Support CTC/Prioritization Protocol. RFI/CMS recommended for the MRS based on historical evidence and results of current investigation. Screen data using: FTSW Inorganic/Metal Background Study EPA Region 9 PRG for Residential Soil Region 4 Ecological Screening Values for surface soil 	

^a As per an agreed upon decision made after the TPP meeting, analysis for the full Target Analyte List (TAL) metals list was not conducted. The metals analysis was limited to primary or indicator compounds associated with the munitions history of each MRS. Aluminum, antimony, copper, lead, and zinc were identified as primary or indicator compounds for the munitions associated with the FTSW MRSs, and the metals analysis was limited to these compounds. The primary MC for the munitions items were determined utilizing the U.S. Army Technical Manuals 43-0001-28, 43-0001-29, and 43-0001-30 and the Munitions Items Disposition Action System database created by the Defense Ammunition Center Technology Directorate. For MRSs where historical evidence indicates small arms use only, metals analysis was limited to lead, as agreed upon during the TPP meeting.

^b As per an agreed upon decision made after the TPP meeting, additional screening values, including ecological soil / surface water and human surface water criteria, were added and are presented.

3.2 DEVIATIONS FROM WORK PLAN

The TPP Meeting Minutes are provided as Appendix H. The details regarding the field sampling procedures are presented in the Final CS Work Plan. Deviations from the procedures described in the work plan during the CS field activities are outlined below:

• Anti-Aircraft Range -1 - due to obstacles including an antennae building and associated structures encountered on the MRS, slight variations in the direct path of the proposed transects were necessary.

- Anti-Aircraft Range 90-mm 2 due to operational issues with the GPS unit the location of the former EOD call could not be located therefore the sample was collected randomly within the MRS as the biased location could not be located.
- Hand Grenade Course the sample collected from this MRS was collected from within the Hand Grenade Course based on field observations of range features. This location was not consistent with the location on the map presented in the CS Work Plan but provided a biased sample that was representative of the conditions on the Hand Grenade Course.
- Small Arms Range 1 due to site conditions and obstacles including impassably thick underbrush and numerous logs encountered on the MRS, variations in the direct path of the proposed transects were necessary.
- Small Arms Range 3 all-metals detector assisted visual survey could not be conducted in portions of this MRS due to wetlands and standing water in the northwestern portion of the MRS. The visual survey was conducted in all other areas of the MRS.
- Hero Road Trench Site magnetometer assisted visual survey was conducted in the area south of the fenced portion of the MRS as proposed in the CS Work Plan. In addition, a magnetometer assisted visual survey was conducted along the fence-line to provide an accurate depiction of the fence-line. The magnetometer assisted visual survey conducted along the fence-line was not consistent with the proposed activities in the CS Work Plan.

3.3 CONFIRMATORY SAMPLING FINDINGS

The results of the CS field activities conducted at FTSW, including MEC and MC findings for each MRS, are discussed in Section 4. The munitions debris items identified, as well as other significant visual observations, were recorded using a Trimble Geoexplorer XT handheld GPS unit. Sampling locations were recorded using the handheld GPS unit and were photo documented; notes regarding each location were written in the Soil Sample Logs. The field notes and observations made during the CS field activities are summarized in Appendix A (Field Notes) and Appendix B (Field Forms and Photographic Log). Analytical results and the quality control data are provided as Appendix C. Geographic coordinates of field observations (including MEC items, munitions debris items, and other notable items), surface water sampling

locations, sediment sampling locations, and surface soil sampling locations are provided in Appendix D. The CTC data extraction tables and the MRSPP are included in Appendix E and Appendix F, respectively. The Ordnance Technical Data Sheets are provided in Appendix G. The TPP Meeting Minutes are provided as Appendix H.

FTSW background levels of metals in soils were used as initial screening criteria for MC results. Analytical data were compared to the following criteria:

- FTSW Inorganic/Metal Background Study (April 2000)
- USEPA Region 9 PRGs for residential soil
- Region 4 ecological screening values for surface soil
- USEPA water quality standards for freshwater CCC chronic
- Region 4 ecological screening values for surface water

4 CONFIRMATORY SAMPLING DETAILS

This section presents the site-specific information for each MRS at FTSW. Each MRS subsection includes: a site description and historical overview, an overview of the fieldwork activities that occurred on the MRS, the results of the fieldwork, the conceptual site model (CSM), a site summary, and site recommendations. Analytical tables 4-3, 4-5, 4-11, 4-12, 4-13, and 4-14 include the following:

- FTSW inorganic background values,
- regulatory screening criteria,
- method detection limits,
- laboratory reporting limits, and
- analytical results.

4.1 ANTI-AIRCRAFT RANGE - 1

4.1.1 Site Description and Historical Overview

The MRS layout, location, and approximate sample points are presented on Map 4-1. This MRS is a 42-acre parcel that was overlapped by the buffer area of one historical range fan. The MRS is currently a parade field associated with the Noncommissioned Officer (NCO) Academy located in the northernmost part of the installation. Based on the HRR, it appears that this MRS is located in a downrange buffer area and is not located at a firing point or an impact area. It is assumed that Anti-Aircraft Range - 1 was used continuously from 1957 to 1964. Archival documents from 1941 documenting munitions and weapons allocations confirmed that 37-mm, 40-mm, and 90-mm (M1) anti-aircraft guns were used on FTSW. Based on the range type, period of usage, and the 1941 documents, it is assumed that these munitions were used on Anti-Aircraft Range - 1. No EOD responses have been reported for this MRS. Table 4-3 lists the specific munitions that potentially were used at Anti-Aircraft Range - 1 based on the HRR findings.

4.1.2 Fieldwork Activities

4.1.2.1 MEC Activities and Purpose

Based on information presented in the HRR, the potential exists for MEC at the site; therefore, activities associated with MEC presence were performed, including a magnetometer-assisted surface sweep / visual survey during sampling activities. A magnetometer-assisted site walk was used to determine the presence of MEC on surface at the MRS. Field personnel (escorted by the UXO Technician) executed the magnetometer-assisted surface sweep / visual survey by walking 5-foot-wide transects spaced 40 ft apart (42.5 ft on center accounting for the 5-foot width of the transect) across the MRS. The transects are presented on Map 4-1.

4.1.2.2 MC Activities and Purpose

Two biased and one duplicate composite surface soil samples were collected from the subcaliber rocket range (one from the target berm and one near a tire that was used as a target). Two additional random composite surface soil samples were collected from the parade field. Soil samples were analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). Data were compared to FTSW inorganic/metal background values, USEPA Region 9 residential PRGs, and Region 4 ecological screening values for surface soil.

4.1.3 Fieldwork Results

4.1.3.1 MEC Results

The UXO Technician used a magnetometer for anomaly avoidance and to aid in the detection of ferrous metal objects on the surface that may have been covered by vegetation. There were no known areas of focus prior to the site walk; however as shown on Map 4-1 a sub-caliber rocket range was identified in the westernmost portion of the MRS. The presence of this range was not identified during the research conducted for the HRR. It is estimated that the sub-caliber rocket range was operational more than ten years ago based on the physical condition of the munitions debris found on the range. In addition, across the entire range there was munitions debris including expended smoke grenades, snap flares, booby trap simulators, and blank small arms cartridges, which based on physical condition are assumed to be less than three years old. No

MEC were observed on the MRS. Figure 4-1 through Figure 4-6 contains photos of the types of munitions debris found at the MRS. Table 4-1 presents the items observed, the associated map item identification name, and item description.

Figure 4-1: Grid layout for surface walk looking towards the Rocket Range (north west)

Figure 4-2: Rocket Range facing west-northwest from the firing berm

Figure 4-3: Expended M18 smoke grenade (Yellow)

Figure 4-4: Expended M125A1 pop flare

Figure 4-5: Expended M-73 subcaliber rockets

Figure 4-6: Subcaliber rocket in tire targets

Table 4-1: Site Discoveries at Anti-Aircraft Range - 1

Map 4-1 Item ID	Description
MEC Item	
None	None
Munitions Debris	
Subcaliber rockets	Rusted launcher tubes of 35-mm subcaliber practice M73 were identified. The UXO Technician estimated the age of these items to be approximately 10 years.
Smoke grenades	The UXO Technician estimated the age of these items to be less than approximately 3 years.
Snap flares	The UXO Technician estimated the age of these items to be less than approximately 3 years.
Booby trap simulators	The UXO Technician estimated the age of these items to be less than approximately 3 years.
Blank small arms cartridges	The UXO Technician estimated the age of these items to be less than approximately 3 years.
Structures/Debris	
Range sign	Sign reading "Phase II Land Nav Day and Night Course"
Surface Features	
Berm	Two 4-foot-tall berms were located on the western portion of the site as part of the sub-caliber rocket range.

4.1.3.2 MC Results

Four composite surface soil samples were collected at Anti-Aircraft Range - 1 and analyzed for aluminum, copper, and zinc by USEPA Method 6010B, lead and antimony by USEPA Method 6020, and explosives by USEPA Method 8330. Two of the composite surface soil samples were collected from biased (FTSW-AA1-03, FTSW-AA1-04) locations on the observed subcaliber

rocket range. The other two surface soil samples were collected randomly (FTSW-AA1-05, FTSW-AA1-06) throughout the site. The analytical data are summarized in Table 4-2, and sample locations are shown on Map 4-1. The following are the results of the soil sampling analysis at Anti-Aircraft Range - 1:

- Lead: No samples exceed the lead PRG. Three soil samples including a duplicate exceed the background levels and the ecological levels.
- **Other metals:** Aluminum, Antimony, Copper, and Zinc were detected well below background levels.
- **Explosives:** No explosives were detected above method detections or laboratory reporting limits.

Analyte	MDLs	Laboratory RLs	FTSW ¹ Inorganic Metal Background Concentrations	EPA Region 9 PRGs	Region 4 Ecological Surface Soil Screening Values	FTSW-AA1-03	FTSW-AA1-03D	FTSW-AA1-04	FTSW-AA1-05	FTSW-AA1-06
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
METALS (mg/kg)										
Aluminum	2	10	-	76,000	-	3,100	3,010	2,700	4,790	7,830
Antimony	0.6	3	-	31	-	0.055 (J)	0.030 (J)	0.2	0.074 (J)	0.016 (J)
Copper	0.3	1.5	-	31,000	9	1 (J)	1 (J)	2 (J)	2 (J)	0.8 (J)
Lead	0.3	1.5	11.1	400	2.5	65.3	67.7	19.8	4.8	4.4
Zinc	0.7	3.5	15.5	23,000	120	5	5	12	9	4
EXPLOSIVES (ug/k	xg)		_							
1,3,5-TNB	0.05	0.25	N/A ²	1,800	-	ND	ND	ND	ND	ND
1,3-DNB	0.05	0.25	N/A	6.1	-	ND	ND	ND	ND	ND
2,4,6-TNT	0.03	0.25	N/A	16	-	ND	ND	ND	ND	ND
2,4-DNT	0.04	0.25	N/A	120	20	ND	ND	ND	ND	ND
2,6-DNT	0.05	0.25	N/A	61	-	ND	ND	ND	ND	ND
2-AM-4,6-DNT	0.1	0.5	N/A	-	-	ND	ND	ND	ND	ND
2-NT	0.03	0.25	N/A	180	-	ND	ND	ND	ND	ND
3-NT	0.02	0.25	N/A	180	-	ND	ND	ND	ND	ND
4-AM-2,6-DNT	0.1	0.5	N/A	-	-	ND	ND	ND	ND	ND
4-NT	0.03	0.25	N/A	12	-	ND	ND	ND	ND	ND
HMX	0.04	0.25	N/A	3,100	-	ND	ND	ND	ND	ND
NB	0	1	N/A	20	40	ND	ND	ND	ND	ND
RDX	0.1	0.5	N/A	4.4	-	ND	ND	ND	ND	ND
TETRYL	0.2	1	N/A	16	-	ND	ND	ND	ND	ND

Table 4-2: Anti-Aircraft Range - 1 Analytical Data

Notes:

Definitions:

(1) Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

(2) NA = Not Applicable

exceeded FTSW background

exceeded Region 4 Water Screening Values

xceeded Region 4 Ecological Soil Screening Values

AM Amino

C Carcinogen

DNB Dinitrobenzene

HMX High Melting Point Explosive

J Analyte was positively identified; however, the result should be considered an estimated value

mg/kg milligram/kilogram

µg/kg microgram/kilogram

N Non-carcinogen

NB Nitrobenzene

NT Nitrotoluene

RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

TNB Trinitrobenzene

U Analyte not detected above the reporting limit

UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.

ND Analyte not detected above the reporting limit or laboratory reporting limit.

4.1.4 Conceptual Site Model

Based on the evidence of recent munitions related training observed during the field activities this MRS is not eligible for the MMRP, a CSM was therefore not completed.

4.1.5 Site Summary and Conclusions

4.1.5.1 MEC

Based on field observations, both recent (later than 2002) and historical munitions debris are present on this MRS. MEC were not observed on the ground surface and, as such, are not expected to exist at this MRS. Map 4-1 shows the areas covered during the magnetometer-assisted visual survey. Historical munitions debris observed at Anti-Aircraft Range -1 includes subcaliber rockets. Based on the evidence of recent munitions related training activities, it appears that this area is not be eligible for the MMRP, as munitions related training appears to be ongoing on this site.

4.1.5.2 MC

Four surface soil samples were collected from Anti-Aircraft Range - 1 and analyzed for aluminum, copper, zinc, lead, antimony, and explosives. Analytical results indicate that none of the metal concentrations exceeded residential PRGs and no explosive compounds were detected above laboratory detection or reporting limits. With the exception of lead, none of the metals concentrations exceeded the FTSW established inorganic background values or the Region 4 ecological screening values. Established background concentrations for lead on FTSW exceed the Region 4 ecological screening value for surface soil. The lead concentration in one of the samples collected was within the established background levels. The concentrations of lead observed at this MRS were less than an order of magnitude above the established background levels; this is likely indicative of naturally occurring conditions and not evidence of an impact of the former land use.

4.1.6 Site Recommendations

The findings of the MEC CS field activities indicate that MEC are likely not present on Anti-

Aircraft Range 1. Additionally, the observations and analytical results obtained from the CS field activities indicate that an impact from the former land use is unlikely. As a result of the evidence of recent munitions related training observed during field activities the Anti-Aircraft Range - 1 is not eligible for the MMRP.

4.2 ANTI-AIRCRAFT RANGE 90-MM - 2

4.2.1 Site Description and Historical Overview

The MRS layout, location, and sample point are presented on Map 4-2. This MRS is a 77-acre parcel, located northwest of the cantonment area, where two different types of historical munitions uses occurred. These uses included anti-aircraft and tank training and occurred on a total of six separate/collocated ranges from 1941 through 1964. The MRS is positioned in the downrange portion of these ranges and does not overlap impact/target areas or firing points. The known munitions associated with this MRS include 40-mm and 90-mm anti-aircraft projectiles. The munitions used on the tank range are unknown. However, archival documents from 1941 indicate that 37-, 40-, and 90-mm HE and 37-, 40-, and 90-mm practice rounds with tracers were issued to FTSW. Therefore, it is assumed that these munitions could have been used on this MRS. Numerous EOD calls involving C-4 plastic explosives (secondary explosives), M-222 Dragon HE anti-tank guided missiles, M-7 grenades (riot control agent), and MK-2 fragmentation hand grenades were reported on this site. Table 4-4 lists the specific munitions that potentially were used at Anti-Aircraft Range 90-mm - 2 based on the HRR findings.

4.2.2 Fieldwork Activities

4.2.2.1 MEC Activities and Purpose

Based on information presented in the HRR, the potential for MEC at the site was likely. As such a limited magnetometer assisted visual survey, consisting of a five-foot wide path to the sample location, was conducted. No MEC or munitions debris was observed along the path to the sample location. See Map 4-2 for an illustration of the walking path and sampling location. As agreed upon during the TPP session (documented in TPP Meeting Minutes provided in Appendix H) this MRS is recommended for RFI/CMS due to historical evidence of multiple overlapping range fans (Map 2-1) and multiple EOD responses.

4.2.2.2 *MC* Activities and Purpose

One random composite surface soil sample was collected in order to complete the MRSPP. The soil sample was analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). Data were compared to FTSW inorganic/metal background values, USEPA Region 9 residential PRGs, and Region 4 ecological screening values for surface soil. This site is recommended for RFI/CMS based on historical evidence of multiple overlapping range fans (Map 2-1) and multiple EOD responses.

4.2.3 Fieldwork Results

4.2.3.1 MEC Results

A limited magnetometer assisted visual survey consisting of a five-foot wide to the sample location, was conducted. No MEC or munitions debris was observed along the path to the sample location.

4.2.3.2 MC Results

One composite surface soil sample was collected and was analyzed for aluminum, copper, zinc (USEPA Method 6010B), lead, antimony (USEPA Method 6020), and explosives (USEPA Method 8330) from the Anti-Aircraft Range 90mm – 2. The analytical data were summarized in Table 4-4, and the sample location is shown on Map 4-2. The results of the soil sampling analysis at the Anti-Aircraft Range 90 mm – 2 indicate that, with the exception of zinc, all metals analyzed were below FTSW established background levels. No explosive compounds were detected above laboratory detection or method reporting limits.

Confimatory Sampling Report Fort Stewart, GA

Map 4-2 Anti-Aircraft Range 90-mm - 2

Legend

Installation Boundary

Munitions Response Site

Building

/ Site Reconnaissance

Surface Soil Sample Location

Military Range Area

Operational Range Area

Non Range, Non UXO-DMM-MC Area

3532000

Table 4-3: Anti-Aircraft Range 90-mm - 2

	MDLs	Laboratory RLs	FTSW ¹ Inorganic Metal Concentrations	EPA Region 9PRGs	Region 4 Ecological Surface Soil Screening	FTSW-AA90MM2-02
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
METALS (mg/kg						
Aluminun	2	10	-	76,000	-	3,960
Antimony	0.6	3	-	31	-	0.007 (J)
Copper	0.3	1.5	-	31,000	9	1 (J)
Lead	0.3	1.5	11.1	400	2.5	6.5
Zinc	0.7	3.5	15.5	23,000	120	25
EXPLOSIVES (u	g/kg)					
1,3,5-TNB	0.05	0.25	N/A ²	1,800	-	ND
1,3-DNB	0.05	0.25	N/A	6.1	-	ND
2,4,6-TNT	0.03	0.25	N/A	16	-	ND
2,4-DNT	0.04	0.25	N/A	120	20	ND
2,6-DNT	0.05	0.25	N/A	61	-	ND
2-AM-4,6-DNT	0.1	0.5	N/A	-	-	ND
2-NT	0.03	0.25	N/A	180	-	ND
3-NT	0.02	0.25	N/A	180	-	ND
4-AM-2,6-DNT	0.1	0.5	N/A	-	-	ND
4-NT	0.03	0.25	N/A	12	-	ND
HMX	0.04	0.25	N/A	3,100	-	ND
NB	0	1	N/A	20	40	ND
RDX	0.1	0.5	N/A	4.4	-	ND
TETRYL	0.2	1	N/A	16	-	ND

Notes:

(1) Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

Bold	exceeded FTSW background
	exceeded Region 4 Water Screening Values
	exceeded Region 4 Ecological Soil Screening Values
	exceeded EPA Region 9 PRGs for Residential Soil

Definitions:

AM Amino

C Carcinogen

DNB Dinitrobenzene

HMX High Melting Point Explosive

J Analyte was positively identified; however, the result should be considered an estimated value

mg/kg milligram/kilogram

µg/kg microgram/kilogram

N Non-carcinogen

NB Nitrobenzene

NT Nitrotoluene

RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

TNB Trinitrobenzene

U Analyte not detected above the reporting limit

UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.

ND Analyte not detected above the method detection limit or laboratory reporting limit.

4.2.4 Conceptual Site Model

4.2.4.1 MMRP Site Profile

4.2.4.1.1 Area and Layout

The MRS encompasses approximately 77 acres and is located in the southern portion of the installation, approximately 3 miles northwest of the cantonment area. The area within Anti-Aircraft Range 90-mm - 2 is currently developed, with many structures and roads passing through the range.

4.2.4.1.2 Structures

There are 42 buildings and one ammunition supply point on the MRS. There is a fence surrounding the ammunition supply point. The exact locations of these structures are presented on Map 4-2.

4.2.4.1.3 Utilities

The Anti-Aircraft Range 90-mm - 2 site is currently developed, with many buildings and roads passing through the MRS. Specific information on any utilities located at the site is unknown.

4.2.4.1.4 Boundaries

The entire area surrounding Anti-Aircraft Range 90-mm - 2 is undeveloped, heavily wooded, and cut by several trails and unimproved roads.

4.2.4.1.5 Security

Access to the ammunition supply point, which is a portion of the MRS, is restricted by guards and a fence.

4.2.4.2 Physical Profile

4.2.4.2.1 Climate

The climate of FTSW is humid subtropical. Temperatures range from an average of 52 degrees Fahrenheit (°F) in January to 81°F in July. The annual precipitation is approximately 48 inches, with slightly over one-half falling from June to September. Average wind speed is from zero to 5 miles per hour (mph), with the prevailing wind direction to the northwest. However, thunderstorms, hurricanes, and tropical storms, occurring most frequently from May through September, produce gusty surface winds with speeds over 5 mph.

4.2.4.2.2 Geology

Known geology of coastal Georgia dates to the Paleozoic epoch and extends to 4000 meters (m) below the ocean surface. The sedimentary section consists of 700 m of Paleozoic rocks of Late Devonian age overlain by 2300 m of Early and Late Cretaceous sediments from the Mesozoic era. Cretaceous rocks are overlain by 100 m of Cenozoic sediments, most of which are Eocene in age.

FTSW is located within the Southern Atlantic Coastal Plain physiographic province. It is characterized by a wedge of gentle, southeast-dipping, clastic sediments that covers crystalline basement rock. The unconsolidated clastic (sand, silt, and clay) sediments thicken in an easterly direction. The basement rocks underlying the sediments dip coastward at about 5.7 m per kilometer from the Fall Line near Macon and Augusta; they appear near the surface in the Savannah area. The basement complex is composed of metamorphic and igneous rocks that range in age from Precambrian to Triassic. The overlying coastal plain sediments are dominated by clastics in the western areas (near the Fall Line) and become more nonclastic near the coast.

No specific geologic information pertaining to this area was available.

4.2.4.2.3 Topography

Most of the installation is flat, with typical elevations of 2 to 30 m above mean sea level (amsl). The northwestern portion is characterized by rolling hills and has elevations from 30 to 55 m.

The topography at Anti-Aircraft Range 90-mm - 2 is gently sloping to the southwest. The ground surface elevation at the site ranges from approximately 70 to 50 ft amsl (USGS, 2007).

4.2.4.2.4 Soil

The most common soil series are Ellabelle loamy sand, Ogeechee, Pelham, Stilson, Rutlege, Leefield, and Mascotte. Most of the soils exhibit a sandy surface layer overlying a subsoil that may be sandy, clayey, loamy, or any combination thereof. The natural soil types range from excessively drained to poorly drained; the poorly drained soil tends to be higher in organic matter than other soils. The excessively drained soil tends to occur at lower elevations in association with swamps. The soil is especially vulnerable to erosion once vegetation has been removed. In coastal Georgia, drainage from three physiographic provinces (the Blue Ridge Mountains, Piedmont Plateau, and Coastal Plain) affects the composition of the alluvial deposits. Near FTSW, the parent material for all soils is water-lain sediments deposited prior to and during the Pleistocene Age.

The soil at Anti-Aircraft Range 90-mm - 2 is classified as sand-silt/sand-clay.

4.2.4.2.5 Hydrogeology

There are three distinct aquifer systems in the FTSW region. The principle artesian aquifer is a deep sequence of limestone of the Eocene to Oligocene age, the primary source of large groundwater withdrawals in the coastal area. This aquifer is generally 92 to 153 m below the surface and is comprised of two different layers. The upper layer is derived from the Oligocene series of sandy, phosphatic limestone and, generally, is not used as a water source. It is underlain by the Ocala Limestone of Eocene age. Primary recharge to the principal aquifer occurs approximately 50 to 90 miles northwest of FTSW, where the rocks composing the aquifer outcrop at the surface. The principal artesian aquifer is overlain by two shallow aquifer systems. A 120- to 150-meter-thick series of Miocene clays, sandy clays, and gravel lies directly above

the principal artesian aquifer. The surface aquifer is composed of a relatively thin layer of sands, gravels, and clays. It is recharged directly from rainfall percolating through sediments. It is used almost exclusively as a source for domestic water, but primarily as a secondary water supply rather than for drinking water.

FTSW has its own potable water distribution system. There are 31 groundwater wells located on the installation; five of these are used to supply water through the distribution system to the cantonment area. The cantonment area wells range in depth from 500 to 800 feet and are cased to depths of 400 to 470 feet. The potable water capacity from these five active wells is approximately 10.4 million gallons per day. There are four other active groundwater supply wells located elsewhere on the installation that act as individual water supplies. These wells reportedly range from depths of 500 to 560 feet and are cased to about 400 feet. The remaining 22 wells are distributed across the installation. Of these, two are on standby and the remaining 20 wells are no longer in use.

No specific information about hydrogeologic conditions at the site was available.

4.2.4.2.6 Hydrology

The majority of FTSW is located within the Canoochee River watershed. Most of the surface waters on FTSW drain into the Canoochee River, which passes through the northwestern, central, and southeastern areas of the installation and joins the southward-flowing Ogeechee River. The Canoochee River merges with the Ogeechee River about 35 miles inland from the Ossabaw Sound. The northeastern section of the installation drains directly into the Ogeechee River, and the southwestern section drains into the Altamaha River. The Ogeechee River forms part of the northeastern boundary of FTSW. The remaining surface waters represent a relatively small percentage of the total volume of water leaving the area. In the eastern half of the installation, 60% of the surface area is comprised of marshes and swamps. Four major lakes and ponds are located on FTSW: Pineview Lake, Glissons Pond, Holbrook Pond, and Cantonment Pond. There are no hydrologic features near Anti-Aircraft Range-2.

4.2.4.2.7 Vegetation

On a broad scale, there are four types of ecosystems on FTSW: sand hills, pine flatwoods, upland forests, and wetlands. The installation acreage is made up of approximately 57% upland forest, approximately 29% forested wetlands, and approximately 14% cleared areas. Major tree species found at FTSW include longleaf pine (*Pinus palustris*), slash pine (*Pinus elliottii*), loblolly pine (*Pinus taeda*), tupelo (*Nyssa sylvatica*), other gums (*Nyssa spp.*), water oak (*Quercus nigra*), and bald cypress (*Taxodium distichum*).

This property is developed and has few grasses.

4.2.4.3 Land Use and Exposure Profile

4.2.4.3.1 Current Land Use / Activities

There are 42 buildings and one ammunition supply point on the MRS. Its current use is as an ammunition supply point.

4.2.4.3.2 Current Human Receptors

The current human receptors of potential MEC or MC on Anti-Aircraft Range 90-mm - 2 include authorized installation personnel, contractors, visitors.

4.2.4.3.3 Potential Future Land Use

There is no known change in land use at this time; the potential future land use of Anti-Aircraft Range 90-mm - 2 is assumed to be the same as the current land use (ammunition supply point).

4.2.4.3.4 Potential Future Human Receptors

As there is no known change in land use at this time, the future human receptors of potential MEC or MC remain the same as the current human receptors (authorized installation personnel, contractors, visitors, and trespassers).

4.2.4.3.5 Zoning / Land Use Restrictions

There are no known zoning or access restrictions at FTSW. Site-specific zoning or land use restrictions are unknown.

4.2.4.3.6 Beneficial Resources

General information about the beneficial resources on FTSW is presented in Section 4.1.4.3.6. There are no known site-specific beneficial resources.

4.2.4.3.7 Demographics/Zoning

According to the 2000 U.S. Census, the population at FTSW was 11,205. The city of Hinesville, which is located at the southern boundary of FTSW, has a population of 30,392 according to the 2000 U.S. Census. The city of Savannah, located northeast of FTSW, has a population of 131,510.

4.2.4.4 Ecological Profile

4.2.4.4.1 Habitat Type

General information on habitat types at FTSW is provided in Section 4.1.4.4.1. Anti-Aircraft Range 90-mm - 2 is developed, consisting of buildings and paved or landscaped areas. The site is adjacent to a wooded area with deciduous trees.

4.2.4.4.2 Degree of Disturbance

The current degree of disturbance at the Anti-Aircraft Range 90-mm - 2 is moderate to high, as the area is largely developed.

4.2.4.4.3 Ecological Receptors

FTSW has a large portion of forested property and wetlands; therefore, it serves as a habitat for the many animals and fish that reside on FTSW. Based the fact that the site is particularly developed and fenced, the ecological diversity is low.

4.2.4.5 *Munitions/Release Profile*

4.2.4.5.1 Munitions Types and Release Mechanisms

Table 4-4 presents a summary of the types of munitions debris and MEC that are expected to exist at the Anti-Aircraft Range 90-mm - 2 based on information collected for the HRR and EOD records.

MRS	Munitions Debris / MEC Observed During CS Field Activities	Munitions Debris / MEC Identified During HRR	Primary Release Mechanism
Anti-Aircraft Range 90-mm – 2	No MEC or munitions debris were observed along the five- foot wide path to the sample location.	C-4 plastic explosives MK-2 fragmentation grenades M-7 grenades M-222 and Dragon guided missiles (ground) 37-mm HE M54, 40-mm, 40-mm HEP, 90-mm, 90-mm HE, and 90-mm M71 HE projectiles	Hand thrown Munitions firing Malfunctioned munitions Discarded munitions

Table 4-4: Summary of Potential and Actual Munitions Debris and MEC –
Anti-Aircraft Range 90-mm - 2

4.2.4.5.2 Maximum Probable Penetration Depth

Table 4-5 provides the expected penetration depths for MEC for various types of soils that are expected to be found at Anti-Aircraft Range 90-mm - 2 (USACE, Engineering Manual 1110-1-4009 *Ordnance and Explosives Response*). For Anti-Aircraft Range 90-mm - 2, the soil type is considered sand-silt/sand-clay. Therefore, the depths of penetration for this MRS are based upon the penetration depth for a loamy soil. As discussed in Section 4.1.4.5.2, these penetration depths are estimated on a worst-case scenario. Anti-Aircraft Range 90-mm - 2 was developed after its use as a range. The site was filled and graded during the construction of the ammunition supply point. Thus, the depths to MEC may not be representative of the depths presented in Table 4-5, and MEC could be encountered at any depth within the construction or fill areas.

Ordnance Item/Weapon	Depth of Penetration (ft bgs)				
	Sand	Loam	Clay		
MK-2 fragmentation grenades M-7 grenades	0.0	0.0	0.0		
M-222 and Dragon guided missiles (ground)	9.0	1.0	7.0		
37-mm projectiles	3.9	5.2	7.9		
40-mm and 40-mm HEP projectiles	0.2	0.3	0.4		
90-mm, 90-mm HE, and 90-mm M71 HE projectiles	0.0	7.0	1.0		

Table 4-5: Summary of Expected MEC Penetration Depths – Anti-Aircraft Range 90-mm - 2

4.2.4.5.3 MEC Density

A limited magnetometer assisted visual survey of a five-foot wide lane was conducted along the path to the sampling location. No MEC or munitions debris was observed along the path to the sample location. The majority of the area appeared to be developed so it is unlikely that MEC will be found on the surface. MEC density on the surface is expected to be low due to the amount of the site that has been developed; MEC density is unknown in the subsurface.

4.2.4.5.4 Munitions Debris

A limited magnetometer assisted visual survey of a five-foot wide lane was conducted along the path to the sampling location. No MEC or munitions debris was observed along the path to the sample location. However, there is potential for munitions debris items because; the EOD has responded to several emergency calls in the area. Previously, they have encountered MK-2 fragmentation hand grenades, M-7 grenades, C-4 plastic explosives, and M-222 and GM Dragon missiles.

4.2.4.5.5 Associated MC

Associated MC from MK-2 hand grenades include TNT and minimal black powder (potassium nitrate, sulfur, and charcoal) in the fuse. Potential MC associated with M-7 grenades include Octol (cyclotetramethylenetetranitramine [HMX] and TNT). Potential MC associated with M-

222 and Dragon guided missiles include Octol, perchlorate, pyrotechnic smoke, and a tearing agent. Potential MC associated with 37-mm, 40-mm, 40-mm HEP, 90-mm, 90-mm HE, and 90-mm M71 HE projectiles include Tetryl, CMP AB, and TNT. Ordnance Technical Data Sheets are in Appendix G.

One composite soil sample was collected within the boundary of Anti-Aircraft Range 90-mm - 2. The sample was analyzed for metals, including aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). Based on the analytical results, the soil sample exceeds FTSW background values and Region 4 Ecological Soil Screening values for zinc. No explosive compounds were detected above laboratory detection or reporting limits.

4.2.4.5.6 Transport Mechanisms / Migration Routes

The primary transport mechanisms identified for Anti-Aircraft Range 90-mm - 2 include:

Erosion: Anti-Aircraft Range 90-mm - 2 is a heavily developed area; therefore, erosion is not expected in this area and is not a factor in transporting and migrating possible MC contaminated soil.

Soil Disturbance: The current degree of disturbance is relatively high, as the area has been developed and cleared since the range was used. Future development could unveil potential MC that are in the subsurface.

Infiltration: Based on the soil types associated with Anti-Aircraft Range 90-mm - 2, the potential exists for MC to migrate from one environmental medium to another (surface to subsurface soil to groundwater) through filtration.

4.2.4.6 Pathway Analysis

4.2.4.6.1 MEC

Based on the historical use of the site as a 90-mm anti-aircraft range fan, the potential exists for

MEC to be present on the site. Although there were no MEC or munitions debris observed while walking to the sampling location, the historical use of the site indicates MEC may be present at the site within undeveloped areas on the surface or in former excavations used in training activities. It is unlikely for MEC to be present on the surface of the developed portion of the MRS as the site is currently an ammunition supply point and is well maintained (mowed). As illustrated in the Exposure Pathway Analysis for MEC (Figure 4-7), the pathway for all human and ecological receptors are potentially complete as there is potential for these receptors to encounter MEC on the surface. Since MEC density in the subsurface is unknown, potentially complete pathways for installation personnel, contractors, and biota for MEC in the subsurface may exist as these receptors have the potential to conduct intrusive activities. The pathway for MEC in the subsurface is incomplete for all other receptors.

4.2.4.6.2 MC

As illustrated in the MC Exposure Pathway Analysis (Figure 4-8), soil and groundwater represent the potential primary source media. One surface soil samples collected within the boundary of Anti-Aircraft Range 90-mm – 2 was analyzed for aluminum, copper, and zinc by USEPA Method 6010B, lead and antimony by USEPA Method 6020, and explosives by USEPA Method 8330. Analytical results indicate no explosives were detected and no metals exceeded regulatory PRGs. Zinc was found at a concentration that exceeds background and the ecological values but not PRGs.

Food Chain

A potentially complete pathway to MC in the source media through uptake into vegetation exists for grazing/foraging biota. This exposure pathway is incomplete for all other receptors as there are no agricultural activities on this MRS. As there are no domestic animals on FTSW and only ecological screening values were exceeded, the pathway to MC in the source media through this exposure route is incomplete for all human receptors. The pathway to MC in the source media through the game/fish/prey exposure route is potentially complete for biota. This exposure pathway is incomplete for all other receptors as hunting is not permitted in this area.

Groundwater

Precipitation infiltration may provide for contaminant mobility into the shallow or surficial groundwater aquifer. However, based on a review of hydrogeological data (Section 4.2.4.2.5), it is unlikely that MC in shallow groundwater would migrate to the deeper aquifers that are used as a water supply for FTSW. Receptor contact with groundwater is possible if the soil is disturbed through excavation or construction activities, creating possible migration routes/mechanisms for MC in shallow groundwater. However since only ecological screening limits were exceeded only biota have potentially complete pathways to MC in subsurface soil and/or shallow groundwater through the (incidental) ingestion and dermal contact exposure routes.

Subsurface Soil

The potential exists for MC in the subsurface soil in the Anti-Aircraft Range 90-mm – 2 area however only at concentrations exceeding ecological screening limits. Ecological receptor contact with subsurface soil is possible during burrowing activities, creating possible receptor pathways to MC in subsurface soils. As such, biota have potentially complete pathways to MC in subsurface soil through the (incidental) ingestion, dermal contact, and inhalation (dust) exposure routes. All human exposure routes are incomplete based on analytical results.

Surface Soil

Based on the sampling data presented above, exposure pathways via surface soil are considered incomplete for human receptors based on analytical results. Ecological receptors within the Anti-Aircraft Range 90-mm – 2 area may be exposed to zinc in the surface soil. Therefore, the pathways to MC in surface soil through the (incidental) ingestion, dermal contact, and inhalation of dust exposure routes are potentially complete for biota.

4.2.5 Site Summary and Conclusions

4.2.5.1 MEC

A limited magnetometer assisted visual survey of a five foot wide lane was conducted along the short path to the sampling location. No MEC or munitions debris was observed along the path to the sample location. It is unlikely for MEC to be present on the surface of the developed portion of the MRS as the site is currently an ammunition supply point and is well maintained (mowed). However, based on historical evidence MEC may be present in the undeveloped portions of the site.

4.2.5.2 MC

One composite surface soil sample was collected and analyzed for aluminum, copper, zinc, lead, antimony, and explosives from the Anti-Aircraft Range 90mm - 2 in order to complete the MRSPP. Based on the results of the metals analysis, the sample exceeded the Region 4 ecological screening value for lead in surface soil, but was within the FTSW established background value for lead. No other metals were detected in concentrations exceeding regulatory screening values. No explosive compounds were detected above laboratory detection or reporting limits.

4.2.6 Site Recommendations

As agreed upon during the TPP session (documented in the TPP Meeting Minutes provided in Appendix H), this site is recommended for RFI/CMS due to historical evidence of multiple overlapping range fans (Map 2-1) and multiple EOD responses.

4.3 ANTI-TANK RANGE 90-MM

4.3.1 Site Description and Historical Overview

The MRS layout and location are presented on Map 4-3. This MRS is a 124-acre parcel that had three overlapping historical munitions uses and is currently an active landfill west of the cantonment area. The MRS is located near the firing points of a former 90-mm anti-tank range and a former 40-mm anti-aircraft range. The MRS is also positioned within the downrange

buffer area of a small arms range. The period of usage of the 90-mm anti-tank range and the 40mm anti-aircraft range could have been from 1941 through 1947. The history of FTSW implies that this type of training likely ceased in 1944. Based on the research conducted, the small arms ranges were in operation from 1941 through 1971. However, small arms use only overlapped this MRS in 1941. The known munitions associated with this MRS include 40-mm anti-aircraft projectiles and 90-mm anti-tank projectiles. According to documents reviewed for the HRR, munitions used on the small arms range were .50-caliber (cal) or less; however, the exact caliber is unknown. No EOD responses have been reported for this MRS. Map 4-3 shows the Anti-Tank Range 90-mm MRS.

4.3.2 Fieldwork Activities

4.3.2.1 *MEC Activities and Purpose*

No MEC field activities were conducted on the Anti-Tank Range 90-mm MRS because of the MRS's current and future anticipated use as a RCRA permitted landfill. It was recommended that the historical use of this area be documented in the Installation Master Plan and that the site continue to be monitored under the RCRA program.

4.3.2.2 MC Activities and Purpose

No MC field activities were planned for the Anti-Tank Range 90-mm MRS because of the MRS's current and future anticipated use as a RCRA permitted landfill. It was recommended that the historical use of this area be documented in the Installation Master Plan.

4.3.3 Fieldwork Results

No MEC and MC field activities were conducted on the Anti-Tank Range 90-mm MRS because of the MRS's current and future anticipated use as a RCRA permitted landfill.

4.3.4 Conceptual Site Model

Because of the MRS's current and future anticipated use as a RCRA permitted landfill, a CSM was not completed.

4.3.5 Site Summary and Conclusions

No MEC or MC field activities were conducted at the Anti-Tank Range 90-mm because of the MRS's current and future anticipated use as a RCRA permitted landfill. This MRS is not MMRP eligible and therefore a CSM was not created. It is recommended that the historical use of this area be documented in the Installation Master Plan.

4.3.6 Site Recommendations

NFA under the MMRP is recommended for the Anti-Tank Range 90-mm. It is recommended that this site continue to be monitored as part of the landfill under the RCRA program. Additionally, it is recommended that the historical use of this area be documented in the Installation Master Plan.

4.4 HAND GRENADE COURSE

4.4.1 Site Description and Historical Overview

The MRS layout, location, and sample location are presented on Map 4-4. This MRS is a 67acre undeveloped parcel and is located in an isolated area of the installation, northwest of the cantonment area. Four different types of historical munitions uses occurred from 1941 through 1994 on five different overlapping ranges. These uses included 40-mm anti-aircraft, 90-mm anti-tank, hand grenade, and small arms training. The MRS is located near the firing point of the active small arms range and in the downrange portions of a 40-mm anti-aircraft range and a 90mm anti-tank range. The MRS is almost completely overlapped by the footprint of the hand grenade course. The known munitions associated with this MRS include 40-mm anti-aircraft projectiles, 90-mm anti-tank projectiles, small arms, and hand grenades. The exact caliber of small arms use is unknown.

4.4.2 Fieldwork Activities

4.4.2.1 MEC Activities and Purpose

Based on information presented in the HRR, the potential for MEC at the site was likely. As such, a limited magnetometer-assisted visual survey, consisting of a five-foot wide path to the sample location, was conducted. No MEC or munitions debris was observed along the path to the sample location. See Map 4-4 for an illustration of the walking path and sampling location. As agreed upon during the TPP session (documented in TPP Meeting Minutes provided in Appendix H) this MRS is recommended for RFI/CMS due to historical evidence of multiple overlapping range fans (Map 2-1) and multiple EOD responses.

4.4.2.2 MC Activities and Purpose

One random composite surface soil sample was collected on this MRS in order to complete the MRSPP. The soil sample was analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). Data were compared to FTSW inorganic/metal background values, USEPA Region 9 residential PRGs, and Region 4 ecological screening values for surface soil. This site is recommended for RFI/CMS based on historical evidence of multiple overlapping range fans (Map 2-1) and its historical use as a hand grenade range.

4.4.3 Fieldwork Results

4.4.3.1 MEC Results

A limited magnetometer assisted visual survey consisting of a five-foot wide to the sample location, was conducted. No MEC or munitions debris was observed along the path to the sample location.

4.4.3.2 MC Results

One soil sample was collected from the Hand Grenade Course and analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and

explosives (USEPA Method 8330). The analytical data are summarized in Table 4-6, and sample locations are shown on Map 4-4.

The following are the results of the soil sampling analysis at the Hand Grenade Course:

- Lead: The sample did not exceed the residential PRG for lead. The sample exceeded the FTSW established background level for lead and the Region 4 ecological screening value for lead in surface soil.
- Other metals: The sample exceeded the FTSW established background levels for lead and zinc. The Region 4 ecological screening value for copper, and zinc was also exceeded.
- **Explosives:** No explosives were detected above laboratory detection or method reporting limits.

Confimatory Sampling Report Fort Stewart, GA

Map 4-4 Hand Grenade Course

Legend

Installation Boundary Munitions Response Site Site Reconnaissance Generation Surface Soil Sample Location **Military Range Area** Operational Range Area

Non Range, Non UXO-DMM-MC Area

Table 4-6:	Hand	Grenade	Course	Analytical	Tables
------------	------	---------	--------	------------	--------

Analysis	MDLs	Laborator y RLs	FTSW ¹ Inorganic Metal <u>Concentra</u>	EPA Region 9PRGs	Region 4 Ecological Surface Soil	FTSW-HGC-01
Analyte METALS (1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Aluminum	2	10	_	76,000		15,000
Antimony	0.6	3	-	31	-	0.011 (J)
Copper	0.3	1.5	-	31,000	9	16.0
Lead	0.3	1.5	11.1	400	2.5	12.5
Zinc	0.7	3.5	15.5	23,000	120	175
EXPLOSIV				-,		
1,3,5-TNB	0.05	0.25	N/A ²	1,800	-	ND
1,3-DNB	0.05	0.25	N/A	6.1	_	ND
2,4,6-TNT	0.03	0.25	N/A	16	-	ND
2,4-DNT	0.04	0.25	N/A	120	20	ND
2,6-DNT	0.05	0.25	N/A	61	-	ND
2-AM-4,6-			N/A		-	
DNT	0.1	0.5		-		ND
2-NT	0.03	0.25	N/A	180	-	ND
3-NT	0.02	0.25	N/A	180	-	ND
4-AM-2,6-			N/A		-	
DNT	0.1	0.5		-		ND
4-NT	0.03	0.25	N/A	12	-	ND
HMX	0.04	0.25	N/A	3,100	-	ND
NB	0	1	N/A	20	40	ND
RDX TETRYL	0.1	0.5	N/A N/A	4.4	-	ND ND

Notes:

(1)

Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

Bold	exceeded FTSW background
	exceeded Region 4 Water Screening Values
	exceeded Region 4 Ecological Soil Screening Values
	exceeded EPA Region 9 PRGs for Residential Soil

Definitions:

- AM Amino
- C Carcinogen
- DNB Dinitrobenzene

 $HMX\,$ High Melting Point Explosive

J Analyte was positively identified; however, the result should be considered an estimated value

- mg/kg milligram/kilogram
- $\mu g/kg\ microgram/kilogram$
 - N Non-carcinogen
 - NB Nitrobenzene
 - NT Nitrotoluene
- RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

- TNB Trinitrobenzene
 - U Analyte not detected above the reporting limit
 - UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.

ND Analyte not detected above the method detection limit or laboratory reporting limit.

Final CS Report Fort Stewart Hinesville, GA

4.4.4 Conceptual Site Model

Based on information obtained from the Range Control Range Officer, the Hand Grenade Course is located within the footprint of an operational small arms range impact area and as such this MRS is not eligible under the MMRP, a CSM was therefore not completed.

4.4.5 Site Summary and Conclusions

4.4.5.1 MEC

A limited magnetometer assisted visual survey of a five-foot wide lane was conducted along the short path to the sampling location. No MEC or munitions debris was observed along the path to the sample location; however, based on the multiple overlapping range fans, there is a possibility that MEC may remain at the Hand Grenade Course.

4.4.5.2 MC

One composite surface soil sample was collected from the Hand Grenade Course and analyzed for aluminum, copper, zinc, lead, antimony, and explosives in order to complete the MRSPP. Based on the results of the metals analysis, metals were detected in concentrations exceeding FTSW established background levels and Region 4 ecological screening values for lead and zinc. The sample also exceeded the Region 4 ecological screening value for copper. No explosive compounds were detected above laboratory detection or reporting limits.

4.4.6 Site Recommendations

Based on information obtained from the Range Control Range Officer, the Hand Grenade Course is located within the footprint of an operational small arms range impact area and as such this MRS is not eligible under the MMRP.

4.5 SMALL ARMS RANGE - 1

4.5.1 Site Description and Historical Overview

The MRS layout and location are presented on Map 4-5. This MRS is a 136-acre parcel located at Evans Heliport/Airfield, northeast of the cantonment area, and was overlapped by two historical small arms ranges. These ranges were operational in 1962 and 1964. According to documents reviewed for the HRR, munitions used on the small arms range were .50-cal or less; however, the exact caliber is unknown. No EOD responses have been reported for this MRS.

4.5.2 Fieldwork Activities

4.5.2.1 MEC Activities and Purpose

No MEC field activities were recommended for this MRS because historical evidence suggests that only small arms were used at the site.

4.5.2.2 MC Activities and Purpose

An all-metals detector assisted visual survey was conducted in order to locate remnants of small arms rounds in an attempt to located biased sample locations. The all-metals detector assisted visual survey was completed by traversing 5-foot-wide transects spaced 40 ft apart. A visual depiction of the visual survey transects can be found on Map 4-5. Four composite surface soil samples were collected at biased locations when possible (near remnants of small arms, if identified) or at random locations on undeveloped portions of the MRS. Based on the historical layout and use of this MRS, berms or burial areas were not anticipated; therefore, only surface soil samples (at a depth of zero to 6 inches) were collected. Soil samples were analyzed for antimony and lead using USEPA Method 6020 and copper using USEPA Method 6010B. Analytical data were compared to the FTSW background values, then the USEPA Region 9 residential PRGs for copper, antimony, and lead and the Region 4 ecological screening values for copper, antimony, and lead in surface soil.

4.5.3 Fieldwork Results

4.5.3.1 MEC Results

No MEC field activities were recommended for this MRS because historical evidence suggests that only small arms were used at the site. During the all-metals detector assisted visual survey, evidence of recent training activities was observed, including an area that was marked with a sign that said "mines." Several landmines were observed hanging from trees and lying on the ground. The mines were had the word "Inert" written on them in black permanent marker. The items were assumed to be practice mines and, therefore, are characterized as munitions debris. Based on the physical condition of the munitions debris observed, the items are estimated to be less than five years old and, therefore, the debris items are not eligible under the MMRP. Figure 4-9 and Figure 4-10 contains photos of the types of munitions debris found at the MRS. Map4-5 shows the locations of the discoveries at Small Arms Range - 1. Table 4-7 presents the discoveries, the associated Map 4-5 item identification names, and item descriptions.

Figure 4-10: Inert landmine hanging from a tree

Map 4-5 Item ID	Description
MEC Item	
None	None
Munitions Debris	
Blank ammunition	Blank ammunition
Expended M143 pop flare	Expended M143 pop flare
Landmines	Inert landmines lying on the ground and hanging from trees
Structures/Debris	
Barbed wire fence	Two areas (separate of the mine field area) are surrounded by barbed wire fence appeared to be used for recent training activities.
Surface Features	
None	None

Table 4-7: Site Discoveries at Small Arms Range - 1

4.5.3.2 MC Results

Two biased (FTSW-SA1-08, FTSW-SA1-09) and two random (FTSW-SA1-07, FTSW-SA1-10) composite surface soil samples were collected from Small Arms Range - 1 and analyzed for antimony and lead using USEPA Method 6020 and copper using USEPA Method 6010B. The analytical data are summarized in Table 4-12, and sample locations are shown on Map 4-5.

The following are the results of the soil sampling analysis at Small Arms Range - 1:

- Lead: No samples exceeded the residential PRG or the FTSW established background level for lead.
- Other metals: No samples exceeded the residential PRGs, the FTSW established background values, or the Region 4 ecological screening values for antimony or copper.

Confimatory Sampling Report Fort Stewart, GA

Map 4-5 Small Arms Range - 1

Legend

0

150

Lake or Pond
Site Reconnia

Site Reconniassance

Surface Soil Sample Location

▲ Munitions Debris

Military Range Area

Operational Range Area

300

Non Range, Non UXO-DMM-MC Area

450

600 Meters

Data Source: CTT Inventory Data Microsoft TerraServer USGS Digital Raster Graphics

Coordinate System: UTM Zone 17N Datum: WGS 84 Units: Meters

Contract: DACA31-00-D-0043 Edition: Final Confimatory Sampling Report Date: November 2007

Table 4-8: Small Arms Range 1 Analytical Data

Analyte	MDLs mg/kg	Laboratory RLs mg/kg	FTSW ¹ Inorganic Metal Background Concentrations mg/kg	PRGs	Region 4 Ecological Surface Soil Screening mg/kg	FTSW-SA1-07	FTSW-SA1-08	FTSW-SA1-09	FTSW-SA1-10
METALS (mg/kg	g)								
Antimony	0.6	3	-	31	-	0.056 (J)	0.010 (J)	0.019 (J)	0.017 (J)
Copper	0.3	1.5	-	31,000	9	2 (J)	6	0.8 (J)	1 (J)
Lead	0.3	1.5	11.1	400	2.5	6.8	6.1	5.2	7.9

Notes:

Bold

Definitions:

(1) Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

exceeded FTSW background

exceeded Region 4 Water Screening Values

exceeded Region 4 Ecological Soil Screening Values

exceeded EPA Region 9 PRGs for Residential Soil

AM Amino

C Carcinogen

DNB Dinitrobenzene

HMX High Melting Point Explosive

J Analyte was positively identified; however, the result should be considered an estimated value

mg/kg milligram/kilogram

 $\mu g/kg\ microgram/kilogram$

N Non-carcinogen

NB Nitrobenzene

NT Nitrotoluene

RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

TNB Trinitrobenzene

U Analyte not detected above the reporting limit

UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.
4.5.4 Conceptual Site Model

Based on the evidence of recent munitions related training observed during the field activities this MRS is not eligible for the MMRP, a CSM was therefore not completed.

4.5.5 Site Summary and Conclusions

4.5.5.1 MEC

MEC activities were not performed at the Small Arms Range -1, as historical evidence indicates only small arms use at this MRS.

4.5.5.2 MC

Two biased and two random composite surface soil samples were collected and analyzed for antimony and lead using USEPA Method 6020 and copper using USEPA Method 6010B. The lead PRG and background level were not exceeded, indicating that lead levels are likely not evidence of an impact of the former land use. Analytical results do not indicate a presence of MC at the Small Arms Range - 1. Additionally, based on evidence of recent munitions related training activities, it appears that this area is not eligible for the MMRP, as munitions related training appears to be ongoing on this site.

4.5.6 Site Recommendations

The observations and analytical results obtained from the CS field activities indicate that an impact from the former land use is unlikely. Based on the evidence of recent munitions related training observed during the field activities Small Arms Range - 1 is not eligible for the MMRP.

4.6 SMALL ARMS RANGE - 2

4.6.1 Site Description and Historical Overview

This MRS was identified during the Phase 3 Range Inventory. As part of the HRR a thorough review of the documents used to generate the Phase 3 Range Inventory was conducted. As a result of this review it was determined that the historical small arms range fans that made up this MRS did overlap the cantonment area (non operational area) and as such this MRS is not eligible for the MMRP. It was therefore agreed upon during the TPP meeting that no further action is required for this MRS under the active installation MMRP, and no CSM was developed for this site.

4.6.2 Fieldwork Activities

As mentioned above no further action is required at this MRS, therefore no MEC/MC activities will be performed.

4.6.3 Fieldwork Results

No fieldwork was conducted at this site.

4.6.4 Conceptual Site Model

Based on the evidence from the HRR, this site is not eligible for the MMRP. Therefore a CSM was not completed.

4.6.5 Site Summary and Conclusions

As mentioned above no further action is required at this MRS.

4.6.6 Site Recommendations

No further action is required at this MRS.

Confirmatory Sampling Report Fort Stewart, GA

Map 4-6 Small Arms Range - 2

Legend

4.7 SMALL ARMS RANGE - 3

4.7.1 Site Description and Historical Overview

The MRS layout and location are presented on Map 4-7. This MRS is a 32-acre parcel in the area northeast of the cantonment area, within 1 mile of the Holbrook Pond Recreational Area. The overlapping historical munitions use is a small arms range used in 1964. According to documents reviewed for the HRR, munitions used on the small arms range are believed to have been .50-cal or less; however, the exact caliber is unknown. No EOD responses have been reported for this MRS. Table 4-11 provides a summary of the specific munitions that potentially were used at Small Arms Range - 3 based on the HRR findings.

4.7.2 Fieldwork Activities

4.7.2.1 MEC Activities and Purpose

No MEC field activities were recommended for this MRS because historical evidence suggests that only small arms were used at the site.

4.7.2.2 MC Activities and Purpose

An all-metals detector assisted visual survey was conducted in order to locate remnants of small arms rounds in an attempt to locate biased sample locations. The all-metals detector assisted visual survey was completed by traversing transects spaced 40 ft apart. A visual depiction of the transects can be found on Map 4-7. Three composite surface soil samples were collected at biased locations when possible (near remnants of small arms, if identified) or at random locations throughout the site. Two sediment and two surface water samples were also collected at this MRS. Based on the historical layout and use of this MRS, berms or burial areas are not anticipated; therefore, only surface soil samples (at a depth of zero to 6 inches) were collected in the southern portion of this MRS. A sediment sample was collected from each of the man-made dams of the pond. The surface water samples were collected near the sediment sample locations. All samples were analyzed for copper using USEPA Method 6010B and for antimony and lead using USEPA Method 6020. Data were compared to the FTSW background values and then the

USEPA Region 9 residential PRGs, Region 4 ecological screening values for surface soil, USEPA water quality standards for freshwater CCC chronic, and Region 4 ecological screening values for surface water for copper, antimony, and lead, as appropriate.

4.7.3 Fieldwork Results

4.7.3.1 MEC Results

No MEC field activities were recommended for this MRS because historical evidence suggests that only small arms were used at the site.

4.7.3.2 MC Results

Three composite surface soil samples were collected from random locations, as no evidence of small arms rounds was observed. Two sediment and two surface water samples were also collected at this MRS. None of the samples exceeded the PRGs or background limits for antimony, copper, or lead. The analytical data are summarized in Tables 4-9 and 4-10, and sample locations are shown on Map 4-7.

The following are the results of the sampling analysis at Small Arms Range - 3:

- Lead: No samples exceeded the residential PRG or the FTSW established background level for lead.
- Other metals: No samples exceeded the residential PRGs, the FTSW established background values, or the Region 4 ecological screening values for antimony or copper.

Confimatory Sampling Report Fort Stewart, GA

Map 4-7 Small Arms Range - 3

Legend

Installation Boundary

Munitions Response Site

Streams/Rivers

Lake or Pond

/ Site Reconnaissance

Surface Soil Sample Location

Surface Water and Sediment Sample Location

Military Range Area

Closed
Operational Range Area
Non Range, UXO-DMM-MC Area

3531000

Table 4-9: Small Arms Range 3 Analytical Data

Analyte	MDLs		FTSW ¹ Inorganic Metal Background Concentrations	Region 9	Region 4 Ecological Surface Soil		FTSW-SA3-12D	FTSW-SA3-13	FTSW-SA3-14	FTSW-SA3-SD01	FTSW-SA3-SD01D	FTSW-SA3-SD02
	mg/kg	mg/kg	mg/kg	mg/kg	Screening mg/kg	Soil		Sediment				
METALS (mg	g/kg)											
Antimony	0.6	3	-	31	-	0.072 (J)	0.039 (J)	0.026 (J)	0.017 (J)	0.084 (J)	0.032 (J)	0.017 (J)
Copper	0.3	1.5	-	31,000	9	1 (J)	1 (J)	1 (J)	0.8 (J)	0.4 (J)	0.4 (J)	2 (J)
Lead	0.3	1.5	11.1	400	2.5	6.7	6.6	8.6	4.6	1.4	1.1	5.4

Notes:

Definitions: AM Amino

 Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

C Carcinogen

DNB Dinitrobenzene

HMX High Melting Point Explosive

J Analyte was positively identified; however, the result should be considered an estimated value

Bold	exceeded FTSW background		
	exceeded Region 4 Water Screening Values		
	exceeded Region 4 Ecological Soil Screening Values		
	exceeded EPA Region 9 PRGs for Residential Soil		

mg/kg milligram/kilogram μg/kg microgram/kilogram N Non-carcinogen NB Nitrobenzene

NT Nitrotoluene

RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

TNB Trinitrobenzene

U Analyte not detected above the reporting limit

UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.

ND Analyte not detected above the method detection limit or laboratory reporting limit.

Analyte	MDLs µg/l	Laboratory RLs µg/l	Human Health Consumption of Water Consumption µg/l	Region 9 PRGs Tap Water µg/l	Region 4 Ecological Screening Values Surface Water µg/l	FTSW-SA3-SW01	FTSW-SA3-SW02
METALS (
Antimony	0.3	2	6	15	160.0	ND	ND
Copper	0.3	2	1,300	15	6.54	0.005 (J)	0.005 (J)
Lead	0.3	2	-	-	1.32	0.0003 (J)	0.0008 (J)
	0.3	2	-	- -	1.32		

Notes:

 Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

Bold ex ex ex ex

exceeded FTSW background

exceeded Region 4 Water Screening Values

exceeded Region 4 Ecological Soil Screening Values

exceeded EPA Region 9 PRGs for Residential Soil

Definitions:

AM Amino

C Carcinogen

DNB Dinitrobenzene

HMX High Melting Point Explosive J Analyte was positivel

Analyte was positively identified; however, the result should be considered an estimated value

mg/kg milligram/kilogram

µg/kg microgram/kilogram

N Non-carcinogen

NB Nitrobenzene

NT Nirotoluene

RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

TNB Trinitrobenzene

U Analyte not detected above the reporting limit

UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.

ND Analyte not detected above the method detection limit or laboratory reporting limit.

4.7.4 Conceptual Site Model

4.7.4.1 MMRP Site Profile

4.7.4.1.1 Area and Layout

The Small Arms Range – 3 MRS is approximately 32 acres located along the southern portion of the installation. The area is located approximately 2.5 miles northeast of the cantonment area.

4.7.4.1.2 Structures

There are five buildings on site. Additional structures on site include a pier and a playground area.

4.7.4.1.3 Utilities

Specific information on any utilities located at the site is unknown.

4.7.4.1.4 Boundaries

The eastern boundary of -the MRS is an unidentified road. Undeveloped property surrounds the site to the north, south, and west. A camping area is located just outside of the southern boundary.

4.7.4.1.5 Security

There is no security on this site.

4.7.4.2 Physical Profile

4.7.4.2.1 Climate

General installation climate information is presented in Section 4.2.4.2.1.

4.7.4.2.2 Geology

General information about the geology at FTSW is presented in Section 4.2.4.2.2. No specific geologic information pertaining to the site was available.

Final CS Report Fort Stewart Hinesville, GA

4.7.4.2.3 Topography

General information about installation topography is presented in Section 4.2.4.2.3. The site is approximately 33 ft amsl and is flat and level.

4.7.4.2.4 Soil

General information about the soil types present on FTSW is presented in Section 4.2.4.2.4. The soil at the site is classified as sand-silt/sand-clay.

4.7.4.2.5 Hydrogeology

General information about the hydrogeologic conditions at FTSW is presented in Section 4.2.4.2.5. No specific hydrogeologic information pertaining to the site was available.

4.7.4.2.6 Hydrology

General information about hydrologic conditions at FTSW is presented in Section 4.2.4.2.6. Specific site hydrology includes a stream located northeast of site and a pond on the site. Holbrook Pond covers approximately 75% of the site.

4.7.4.2.7 Vegetation

General information about vegetation at the installation is presented in Section 4.2.4.2.7. The site is a combination of forested area and grasslands as well as some wetland vegetation.

4.7.4.3 Land Use and Exposure Profile

4.7.4.3.1 Current Land Use / Activities

The current land use includes a recreational area, a pond, little undeveloped property, and five buildings.

4.7.4.3.2 Current Human Receptors

Current human receptors include installation personnel, contractors, recreational users, visitors, and trespassers.

4.7.4.3.3 Potential Future Land Use

There is no known change in land use at this time; the potential future land use is assumed to be the same as the current land use.

4.7.4.3.4 Potential Future Human Receptors

As there is no known change in land use at this time, the future human receptors of potential MEC or MC remain the same as the current human receptors.

4.7.4.3.5 Zoning / Land Use Restrictions

General information about zoning and land use restrictions at FTSW is presented in Section 4.2.4.3.5. Site-specific information about zoning and land use is unknown.

4.7.4.3.6 Beneficial Resources

General information about the beneficial resources at FTSW is found within Section 4.2.4.3.6. Site-specific resources include the pond and the forested areas, which act as habitat. During the field effort, wetlands were observed adjacent to Small Arms Range - 3 to the north and to the west.

4.7.4.3.7 Demographics/Zoning

General information about the demographics/zoning at FTSW is presented in Section 4.2.4.3.7.

4.7.4.4 Ecological Profile

4.7.4.4.1 Habitat Type

General information on habitat types at FTSW is provided in Section 4.2.4.4.1. Site-specific habitat types include the pond and the forested and grassy areas.

4.7.4.4.2 Degree of Disturbance

Currently, there is a low degree of disturbance. The site includes Holbrook Pond and a forested area with little development.

4.7.4.4.3 Ecological Receptors

General information about the ecological receptors on FTSW is presented in Section 4.2.4.4.3. Site-specific ecological receptors include alligators and all other species that may be found at FTSW.

4.7.4.5 Munitions/Release Profile

4.7.4.5.1 Munitions Types and Release Mechanisms

Table 4-11 presents a summary of the types of munitions debris and MEC that were identified either during CS field activities or during research conducted for the HRR. The mechanisms by which the munitions, if present, could have been released into the environment are also presented in the table. It is important to note that because this area is suspected of being a small arms range, MEC are not expected and the primary concern would be associated with MC.

	Range - 3					
MRS	Munitions Debris / MEC Observed During CS Field Activities	Munitions Debris / MEC Identified During HRR	Primary Release Mechanism			
Small Arms Range - 3	None	0.22-cal, 0.30-cal, 0.30-cal (with tracer), 0.45-cal, 0.50-cal, 0.50-cal (with tracer), and 0.50-cal (armor piercing)	Munitions firing Malfunctioned munitions Discarded munitions			

Table 4-11: Summary of Potential and Actual Munitions Debris and MEC - Small Arms

4.7.4.5.2 MEC Density

Due to the nature of small arms ammunition, MEC are not expected.

4.7.4.5.3 Munitions Debris

Based on the activities that occurred at the former range, MEC is not expected. Potential munitions debris associated with small arms ammunition include spent projectiles, fragments, and shell casings. No EOD calls have been reported at this site.

4.7.4.5.4 Associated MC

Potential MC associated with small arms used on Small Arms Range - 3 include lead, antimony, tin, arsenic, copper, zinc, iron, strontium, magnesium, and lead styphante/lead azide. Ordnance Technical Data Sheets are in Appendix H.

Surface soil, sediment, and surface water samples collected within the boundary of Small Arms Range - 3 have been analyzed for antimony and lead using USEPA Method 6020 and copper using USEPA Method 6010B. None of the samples exceeded the residential PRGs for antimony, copper, and lead. Analytical results indicate that lead concentrations are within FTSW established background level and, therefore, are likely naturally occurring and are likely not evidence of an impact of the former land use. It is unknown if this is used for drinking water.

4.7.4.5.5 Transport Mechanisms / Migration Routes

The primary transport mechanisms identified for Small Arms Range - 3 include the following:

- **Erosion:** Small Arms Range 3 is mostly a pond; therefore, erosion is possible in this area and is a factor in transporting and migrating possible MC contaminated soil.
- Soil disturbance: The current degree of disturbance is relatively low, as most of the area has not been developed since the range was used. More development, especially in the forested area, could unveil potential MC that are in the surface or subsurface.
- **Infiltration:** Based on the soil types associated with Small Arms Range 3, the potential exists for MC to migrate from one environmental medium to another (surface to subsurface soil to groundwater) through filtration.

4.7.4.6 Pathway Analysis

4.7.4.6.1 MEC

Based on historical documents and information obtained during the data collection process, there is no evidence of MEC at Small Arms Range -3, as only small arms ammunition is assumed to have been used. MEC are not associated with small arms ranges; therefore, an MEC Exposure Pathway Analysis was not created.

4.7.4.6.2 MC

Analytical results indicate that lead concentrations are within the FTSW established background level and, therefore, likely naturally occurring and are likely not evidence of an impact of the former land use. Analytical results do not indicate a presence of MC. Therefore, no complete or potentially complete pathways exist at the Small Arms Range - 3. Based on this, an MC Exposure Pathway Analysis was not created.

4.7.5 Site Summary and Conclusions

4.7.5.1 MEC

MEC activities were not performed at the Small Arms Range -3, as historical evidence indicates that only small arms were used at this MRS.

4.7.5.2 MC

Three composite surface soil, two sediment, and two surface water samples were collected and analyzed for antimony and lead using USEPA Method 6020 and copper using Method 6010B. The residential PRG and background level were not exceeded, indicating that lead is likely naturally occurring at the levels found at this MRS and is likely not evidence of an impact of the former land use. Analytical results do not indicate a presence of MC at Small Arms Range - 3.

4.7.6 Site Recommendations

The analytical results obtained from the CS field activities indicate an impact from the former land use is unlikely. No evidence of small arms munitions was observed during the field activities. Based on this information, the Small Arms Range - 3 is recommended for NFA.

4.8 HERO ROAD TRENCH AREA

4.8.1 Site Description and Historical Overview

The MRS layout, location, and approximate sample point are presented on Map 4-8. The Hero Road Trench Area is a 10-acre parcel located within the cantonment area; it was identified in January 2003, when a former FTSW Directorate of Public Works (DPW) staff member reported to the DPW Environmental Office that materials (i.e., mustard gas) had been buried in the DPW Family Housing Maintenance parking lot located on Hero Road. Aerial photographs indicate disturbances from January 1941 to January 1957 that are indicative of possible burial activities. Items were allegedly buried at the MRS, but not used on this MRS. Chemical Agent Identification Set, Detonation, M1, containing 5% solution of mustard, 5% solution of lewisite, 50% solution of chloropicrin, and pure agent phosgene. No EOD responses have been reported for this MRS. This MRS is partially fenced.

4.8.2 Fieldwork Activities

4.8.2.1 MEC Activities and Purpose

MEC field activities planned for this MRS included conducting a limited magnetometer-assisted visual survey in the unfenced portions of the MRS. The primary purpose of the visual survey was to ensure that no MEC or munitions debris remains on the surface during sampling

activities. The secondary purpose of the visual survey was to confirm the MRS acreage and boundaries.

4.8.2.2 *MC* Activities and Purpose

One random composite surface soil sample was collected from the Hero Road Trench Area in order to complete the MRSPP. The soil sample was analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). Data were compared to FTSW inorganic/metal background values, USEPA Region 9 residential PRGs, and Region 4 ecological screening values for surface soil. This site is recommended for RFI/CMS based on historical evidence that MEC was used at the site.

4.8.3 Fieldwork Results

4.8.3.1 MEC Results

A limited magnetometer-assisted visual survey was conducted along the perimeter of the fence line and in the non-fenced portions located in the southern most point of the MRS. No MEC or munitions debris was observed at the Hero Road Trench Area. The path walked during the limited magnetometer-assisted visual survey is presented on Map 4-8. As a result of the limited magnetometer-assisted visual survey the MRS acreage was found to be 34.5-acres. The MRS contained both a northern fenced portion and a southern unfenced portion with areas of approximately 31 and 3.5 acress respectively.

Observations made during the visual survey indicate that the ground surface is very uneven and inconsistent in the southern most portion of the area. According to storm water management division staff at FTSW, this area is not a storm water run off area. The uneven and inconsistent ground surface is believed to be associated with the historical land fill indicating that some of the landfill remains unfenced. Map 4-8 shows the limited magnetometer-assisted visual survey area and locations of the ditch surface features observed at the Hero Road Trench Area.

4.8.3.2 MC Results

One composite surface soil sample was collected from the Hero Road Trench Area and analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). The analytical data are summarized in Table 4-17, and sample locations are shown on Map 4-8.

The following are the results of the soil sampling analysis at the Hero Road Trench Area:

- Lead: The sample did not exceed the residential PRG for lead. The sample exceeded the FTSW established background level for lead and the Region 4 ecological screening value for lead in surface soil.
- **Other metals:** The sample did not exceed the residential PRGs, the FTSW established background levels, or the Region 4 ecological screening values for aluminum, antimony, copper, or zinc.
- **Explosives:** No explosives were detected above laboratory reporting or method detection limits.

Table 4-12:	Hero Road	Trench	Analytical	Tables

Analyte	MDLs mg/kg	Laboratory RLs mg/kg	FTSW ¹ Inorganic Metal <u>Concentrations</u> mg/kg	EPA Region 9PRGs mg/kg	Region 4 Ecological Surface Soil mg/kg	FTSW-HRT-11
METALS (1						
Aluminum	2	10	-	76,000	-	1,390
Antimony	0.6	3	-	31	-	0.83
Copper	0.3	1.5	-	31,000	9	1 (J)
Lead	0.3	1.5	11.1	400	2.5	25.8
Zinc	0.7	3.5	15.5	23,000	120	2 (J)
EXPLOSIV	'ES (ug/kg))				
1,3,5-TNB	0.05	0.25	N/A ²	1,800	-	ND
1,3-DNB	0.05	0.25	N/A	6.1	-	ND
2,4,6-TNT	0.03	0.25	N/A	16	-	ND
2,4-DNT	0.04	0.25	N/A	120	20	ND
2,6-DNT	0.05	0.25	N/A	61	-	ND
2-AM-4,6-			N/A		-	
DNT	0.1	0.5		-		ND
2-NT	0.03	0.25	N/A	180	-	ND
3-NT	0.02	0.25	N/A	180	-	ND
4-AM-2,6-			N/A		-	
DNT	0.1	0.5		-		ND
4-NT	0.03	0.25	N/A	12	-	ND
HMX	0.04	0.25	N/A	3,100	-	ND
NB	0	1	N/A	20	40	ND
RDX	0.1	0.5	N/A	4.4	-	ND
TETRYL	0.2	1	N/A	16	-	ND

Notes:

(1) Information provided by Phase II RCRA Facility Investigation Report for 16 Solid Wate Management Units At Fort Stewart, GA

Bold	exceeded FTSW background
	exceeded Region 4 Water Screening Values
	exceeded Region 4 Ecological Soil Screening Values
	exceeded EPA Region 9 PRGs for Residential Soil

Definitions:

- AM Amino
- C Carcinogen
- DNB Dinitrobenzene
- HMX High Melting Point Explosive
 - J Analyte was positively identified; however, the result should be considered an estimated value
- mg/kg milligram/kilogram
- µg/kg microgram/kilogram
 - N Non-carcinogen
 - NB Nitrobenzene
 - NT Nitrotoluene
- RDX Ciclotrimethylene trinitramine

TETRYL 2, 4, 6, Trinitrophenylmethyinitramine (Explosive)

TNB Trinitrobenzene

- U Analyte not detected above the reporting limit
- UJ Analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.
- ND Analyte not detected above the method detection limit or laboratory reporting limit.

4.8.4 Conceptual Site Model

4.8.4.1 MMRP Profile

4.8.4.1.1 Area and Layout

The Hero Road Trench Area is approximately 34.5 acres located in the southern portion of the installation. The area is located in the center of the cantonment area.

4.8.4.1.2 Structures

The only structure on the site is a chain link fence that secures the majority of the Hero Road Trench Area.

4.8.4.1.3 Utilities

During the CS field effort, overhead power lines were observed running along the roads to the east and west of the MRS.

4.8.4.1.4 Boundaries

The area to the north of the site is undeveloped. The east, south, and west boundaries of the site are bordered by roads.

4.8.4.1.5 Security

A fence surrounds the north portion of the Hero Road Trench Area. There is no security on the southern portion of the site.

4.8.4.2 Physical Profile

4.8.4.2.1 Climate

General installation climate information is presented in Section 4.2.4.2.1.

4.8.4.2.2 Geology

General geologic information for FTSW is presented in Section 4.2.4.2.2. No specific geologic information pertaining to the site was available.

4.8.4.2.3 Topography

General information about the topography of FTSW is presented in Section 4.2.4.2.3. The Hero Road Trench Area is approximately 66 ft amsl; the site is generally flat and has level terrain. However in the southern most portion of this MRS the ground surface was observed to be very uneven and inconsistent in areas, indicating that some of the landfill remains unfenced..

4.8.4.2.4 Soil

General information about the soil types present on FTSW is presented in Section 4.2.4.2.4. The soil at the Hero Road Trench Area is classified as clay-sand/clay-silt.

4.8.4.2.5 Hydrogeology

General information about the hydrogeologic conditions at FTSW is presented in Section 4.2.4.2.5. There is no site-specific information on hydrogeology.

4.8.4.2.6 Hydrology

General information about hydrologic conditions at FTSW is presented in Section 4.2.4.2.6. There are no hydrology features on the site; however, there is a wetland near the site.

4.8.4.2.7 Vegetation

General information about vegetation at the installation is presented in Section 4.2.4.2.7. Hero Road Trench Area is primarily forested vegetation

4.8.4.3 Land Use and Exposure Profile

4.8.4.3.1 Current Land Use / Activities

The southern portion of the Hero Road Trench Area is undeveloped property. A portion of the area is being used as a parking lot. The northern portion of the Hero Road Trench Area is currently fenced off, and no use has been identified.

4.8.4.3.2 Current Human Receptors

The current human receptors of the Hero Road Trench Area are authorized installation personnel, contractors, and trespassers.

4.8.4.3.3 Potential Future Land Use

There is no known change in land use at this time; the potential future land use is assumed to remain the same as the current land use.

4.8.4.3.4 Potential Future Human Receptors

There is no known change in land use at this time; therefore, the potential future human receptors of potential MEC or MC remain the same as the current human receptors (authorized installation personnel, contractors, and trespassers.).

4.8.4.3.5 Zoning / Land Use Restrictions

General information about zoning and land use restrictions at FTSW is presented in Section 4.2.4.3.5. Site-specific information about zoning and land use is unknown.

4.8.4.3.6 Beneficial Resources

General information about the beneficial resources on FTSW is presented in Section 4.2.4.3.6. Site-specific resources include the forested areas, which act as habitat.

4.8.4.3.7 Demographics/Zoning

General information about the demographics/zoning on FTSW is presented in Section 4.2.4.3.7.

4.8.4.4 Ecological Profile

4.8.4.4.1 Habitat Type

General information on habitat types at FTSW is provided in Section 4.2.4.4.1. Site-specific habitat types include the forested areas.

4.8.4.4.2 Degree of Disturbance

Currently, there is a low degree of disturbance because the forest remains.

4.8.4.4.3 Ecological Receptors

General information about the ecological receptors on FTSW is presented in Section 4.2.4.4.3.

4.8.4.5 Munitions/Release Profile

4.8.4.5.1 Munitions Types and Release Mechanisms

Table 4-13 presents a summary of the types of potential munitions that were identified during research conducted for the HRR. The mechanisms by which the munitions, if present, could have been released into the environment are also presented in the table.

Table 4-13: Summary of Potential and Actual Munitions Debris and MEC –Hero Road Trench Area

MMRP Site	Munitions Debris / MEC Observed During CS Field Activities	Munitions Debris / MEC Identified During HRR	Primary Release Mechanism
Hero Road Trench Area	None	Chemical Agent Identification Sets Kits (M1)	Intentionally or unintentionally disposed items

November 2007

Final CS Report Fort Stewart Hinesville, GA

4.8.4.5.2 Maximum Probability Penetration Depth

There is no associated maximum probability penetration depth for the Hero Road Trench Area since this site is a former trench and landfill area. The depths at which MEC could be located depend on the amount of fill placed on top of the items and are not representative of the depths presented in Engineering Manual 1110-1-4009 *Ordnance and Explosives Response*. MEC could be encountered at any depth within the landfill.

4.8.4.5.3 MEC Density

The MEC density of the Hero Road Trench Area is considered to be low since the activities conducted at Hero Road Trench Area did not include the firing of explosives. However, M1 detonation kits may be buried at the Hero Road Trench Area, and a small explosive charge is associated with M1 detonation. There have been no reported finds of MEC; however, the majority of the area is undeveloped.

4.8.4.5.4 Munitions Debris

A visual survey was conducted as part of the CS, and no MEC or munitions debris was observed; however, based on the activities that occurred at the site, there is the potential for munitions debris items. A geophysical survey was conducted in September 2003 on 4 acres off of Hero Road around the Family Housing Maintenance parking lot. Anomalies were recorded, but it could not be determined if they were from burial items or interference. No MEC or munitions debris is known to have been reported; however, a significant portion of the area is undeveloped.

4.8.4.5.5 Associated MC

One composite surface soil sample was collected from the MRS. The sample was analyzed for metals including aluminum, copper, zinc (USEPA Method 6010B), lead, antimony (USEPA Method 6020), and explosives (USEPA Method 8330). Explosives were not detected at the site. Based on analytical results, lead was the only metal detected in concentrations exceeding FTSW established background levels and Region 4 ecological values but below PRGs. No explosive compounds were detected above laboratory detection or reporting limits.

4-64

Final CS Report Fort Stewart Hinesville, GA

4.8.4.5.6 Transport Mechanisms / Migration Routes

The primary transport mechanisms identified for the Hero Road Trench Area include the following:

- **Erosion:** The Hero Road Trench Area is near a wetland; therefore, erosion is possible in this area and is a factor in transporting and migrating possible MC contaminated soil.
- Soil disturbance: The current degree of disturbance is relatively low, as most of the area has not been developed since the range was used. More development, especially in the forested area, could unveil potential MC that are in the surface or subsurface.
- **Infiltration:** Based on the soil types associated with Hero Road Trench Area, the potential exists for MC to migrate from one environmental medium to another (surface to subsurface soil to groundwater) through filtration.

4.8.4.6 Pathway Analysis

4.8.4.6.1 MEC

Based on historical documents and information obtained during the data collection process, M1 detonation kits may be buried at the Hero Road Trench Area. A small explosive charge is associated with M1 detonation kits; therefore, the potential exists for MEC on the MRS. The northern portion of the MRS is currently fenced and the southern portion of the MRS is not fenced; therefore, access is partially controlled. Since the site is reportedly a burial site, no MEC are expected to be present on the surface. As illustrated in the MEC Exposure Pathway Analysis (Figure 4-11), no complete or potentially complete pathways for human or ecological receptors for MEC on the surface are expected to exist. Potentially complete pathways exist for authorized installation personnel, authorized contractors, and biota for MEC in the subsurface as these receptors have the potential to conduct intrusive activities. The pathway for MEC in the subsurface is incomplete for all other receptors.

4.8.4.6.2 MC

As illustrated in the MC Exposure Pathway Analysis (Figure 4-12), soil and groundwater represent the potential primary source media. One surface soil sample collected within the boundary of the Hero Road Trench Area was analyzed for aluminum, copper, and zinc by USEPA Method 6010B, lead and antimony by USEPA Method 6020, and explosives by USEPA

November 2007

Final CS Report Fort Stewart Hinesville, GA

Method 8330. Analytical results indicate no explosives were detected and no metals exceeded regulatory PRGs. Lead and zinc were found at concentrations that exceed background and the lead copper and zinc exceeded the ecological value.

Food Chain

A potentially complete pathway to MC in the source media through uptake into vegetation exists for grazing/foraging biota. This exposure pathway is incomplete for all other receptors as there are no agricultural activities taking place on the MRS. As there are no domestic animals on FTSW and only ecological screening values were exceeded, the pathway to MC in the source media through this exposure route is incomplete for all human receptors. The pathway to MC in the source media through the game/fish/prey exposure route is potentially complete for biota. This exposure pathway is incomplete for all other receptors as hunting is not permitted in this area.

Groundwater

Precipitation infiltration may provide for contaminant mobility into the shallow or surficial groundwater aquifer. However, based on a review of hydrogeological data (Section 4.3.4.2.5), it is unlikely that MC in shallow groundwater would migrate to the deeper aquifers that are used as a water supply for FTSW. Receptor contact with groundwater is possible if the soil is disturbed through excavation or construction activities, creating possible migration routes/mechanisms for MC in shallow groundwater. However since only ecological screening limits were exceeded only biota have potentially complete pathways to MC in subsurface soil and/or shallow groundwater through the (incidental) ingestion and dermal contact exposure routes.

Subsurface Soil

The potential exists for MC in the subsurface soil in the Hero Road Trench Area at concentrations exceeding ecological screening limits. Ecological receptor contact with subsurface soil is possible during burrowing activities, creating possible receptor pathways to MC in subsurface soils. As such, biota have potentially complete pathways to MC in subsurface soil through the (incidental) ingestion, dermal contact, and inhalation (dust) exposure routes. All human exposure routes are incomplete based on analytical results.

4-66

November 2007

Final CS Report Fort Stewart Hinesville, GA

Surface Soil

Based on the sampling data presented above, exposure pathways via surface soil are considered incomplete for human receptors based on analytical results. Ecological receptors within the Hero Road Trench Area may be exposed to copper, lead, and zinc in the surface soil. Therefore, the pathways to MC in surface soil through the (incidental) ingestion, dermal contact, and inhalation of dust exposure routes are potentially complete for biota.

4.8.5 Site Summary and Conclusions

4.8.5.1 MEC

A limited magnetometer-assisted visual survey was conducted along the perimeter of the fence line and in the non-fenced portions of the MRS. The MRS acreage was found to be 34.5-acres. The MRS contained both a northern fenced portion and a southern unfenced portion with areas of approximately 31 and 3.5 acres respectively. No MEC or munitions debris was observed; however, based on based on information presented in the HRR regarding alleged burials of Chemical Agent Identification Sets Detonation, M1, the potential for MEC to remain at the Hero Road Trench Area exist.

4.8.5.2 MC

One composite surface soil sample was collected from the Hero Road Trench Area and analyzed for aluminum, copper, zinc, lead, antimony, and explosives in order to complete the MRSPP. Based on the results of the metals analysis, no residential PRGs were exceeded and lead was the only metal detected in concentrations exceeding FTSW established background levels and Region 4 ecological screening values. No explosive compounds were detected above laboratory detection or reporting limits.

4.8.6 Site Recommendations

As agreed upon during the TPP session (documented in the TPP Meeting Minutes provided in Appendix H), this site is recommended for RFI/CMS, including the fenced and unfenced portions of the site, based on information presented in the HRR regarding alleged burials of Chemical Agent Identification Sets Detonation, M1. It is also recommended that the MMRP acreage be increased from 10 acres to 34.5 acres.

4.9 CHEMICAL DATA QUALITY ASSESSMENT

The MC data were verified by a senior chemist at Malcolm Pirnie. Data review was performed in accordance with the procedures specified in the Quality Assurance Project Plan (Malcolm Pirnie, 2004), USEPA Functional Guidelines for Inorganic and Organic Data Review, and quality control (QC) parameters set forth by the project laboratory, Analytical Laboratory Services, Inc.

Sample results were subject to a Level III data review that includes an evaluation of the following QC parameters:

- Sample preservation and temperature upon laboratory receipt
- Holding times
- Method blank contamination
- Surrogate recovery (for explosives analyses)
- Laboratory control sample recovery
- Matrix spike / matrix spike duplicate (MS/MSD) recovery and relative percent difference
- Field duplicates

The data quality for the sampling at FTSW was also measured and evaluated in terms of the following specific indicators:

- Precision
- Bias
- Representativeness
- Comparability
- Completeness
- Sensitivity

The data validation concluded that several metals required data qualification based on MS/MSD recoveries that were outside of acceptance limits. Overall, the sample analyses were completed with quality assurance and control protocols met. The data set is considered usable and meets project data quality objectives.

5 RECOMMENDATIONS REVIEW

5.1 SUMMARY OF SITE INSPECTION RECOMMENDATIONS

The recommendations for the MRSs at FTSW are presented in Table 5-1 and graphically on Map 5-1. They are based on decisions made and agreed upon during the TPP session held on February 21, 2006, the data collected during the CS field activities, and the conclusions presented in Section 4 of this report. The final site acreages are presented in Section 5.2.

MRS	CS	Basis for I	Recommendation	
MIND	Recommendation	MEC	MC	
Anti-Aircraft Range - 1	Not eligible under the MMRP	Based on the evidence of recent munitions related training observed during the field activities this MRS is not eligible for the MMRP.		
Anti-Aircraft Range 90-mm - 2	RFI/CMS	As agreed upon during the TPP meeting, this MRS is recommended for further investigation (RFI/CMS) based on historical evidence of multiple overlapping range fans and multiple explosive ordnance disposal calls.		
Anti-Tank Range 90-mm	Not eligible under the MMRP	As agreed upon during the TPP meeting, this MRS is not eligible for the MMRP because it is currently being monitored under the RCRA landfill permit. It is recommended that this MRS continue to be monitored under RCRA.		
Hand Grenade Course	Not eligible under the MMRP	Based on information obtained from the Range Control Range Officer, the Hand Grenade Course is located within the footprint of an operational small arms range impact area and as such this MRS is not eligible under the MMRP.		
Small Arms Range - 1	Not eligible under the MMRP		munitions related training observed RS is not eligible for the MMRP.	
Small Arms Range - 3	NFA	Recommend NFA based on historical evidence that only small arms were used on site.	Recommend NFA based on analytical results of soil samples not exceeding the FTSW background values for inorganic compounds. Additionally, the analytical results of sediment and surface water samples did not exceed selected screening criteria.	
Hero Road Trench Area	RFI/CMS	As agreed upon during the TPP meeting, this MRS is recommended for further investigation (RFI/CMS) based on information presented in the HRR regarding alleged burials of Chemical Agent Identification Sets Detonation, M1.		

Table 5-1:	Summary	of CS	Recommendations
------------	---------	-------	-----------------

5.2 RATIONALE FOR FINAL ACREAGE

MRS	AEDB-R ID	Phase 3 Range Inventory Acreage	HRR Acreage	CS Acreage	Rationale for Change
Anti-Aircraft Range – 1	FTSW- 001-R-01	42	42	0	NFA under MMRP –Operational Range Area
Anti-Aircraft Range 90-mm - 2	FTSW- 002-R-01	77	77	77	No Change – Further Investigation Recommended
Anti-Tank Range 90-mm	FTSW- 003-R-01	124	124	0	NFA under MMRP – Monitor Under RCRA
Hand Grenade Course	FTSW- 004-R-01	67	67	0	NFA under MMRP – Operational Range Area
Small Arms Range - 1	FTSW- 005-R-01	136	136	0	NFA under MMRP –Operational Range Area
Small Arms Range - 2	FTSW- 006-R-01	4	0	0	Not Eligible for MMRP
Small Arms Range - 3	FTSW- 007-R-01	32	32	0	NFA
Hero Road Trench Area	FTSW- 008-R-01	N/A	10	34.5	Increase in acreage due to field observation of MRS acreage and boundaries. – Further Investigation Recommended

Table 5-2: Final Acreage Rationale

6 REFERENCES

Handbook on the Management of Ordnance and Explosives at Closed, Transferred and Transferring Ranges and Other Sites. 2002.

Malcolm Pirnie, Inc. July 2004. Quality Assurance Project Plan.

- Malcolm Pirnie, Inc. 2002. Closed, Transferring, and Transferred Range/Site Inventory Report for Fort Stewart.
- Malcolm Pirnie, Inc. 2006. Final Historical Records Review, Fort Stewart.

Malcolm Pirnie, Inc. 2006. Final Confirmatory Sampling Work Plan, Fort Stewart.

- United States Army Corps of Engineers, Engineering Manual 1110-1-4009 Ordnance and Explosives Response.
- United States Army Corps of Engineers Savannah District. 2000. Phase II RCRA Facility Investigation Report for 16 Solid Waste Management Units at Fort Stewart.
- United States Environmental Protection Agency. 2004. Region 9 Preliminary Remediation Goals Table.
- United States Environmental Protection Agency. Region 4. Ecological Screening Values Table.
- United States Environmental Protection Agency. National. Recommended Water Quality Criteria.

United States Geological Survey. 2007. Digital Raster Graphics.

Final CS Report Fort Stewart Hinesville, GA

Appendix A: Field Notes
sub Calilaer rocket cange	Walking Juths. Flags 404	S ww	Smile Grenide Pap Flare	nm SSC	0	Dan Hains co Safety Tuilent	Visit Ficst Site Anti Alicenti Raugel	Visit Environmental	to get map. W.	m Breakfast Mits in Introductions
	4	(Casing		mai blast	3	conducts to	Site 1	fal artiq	1 <u>1</u>	lebby
two hundred	nake					tailgate mtg			value station were directed to	
										Phone -
										C I A d
ы										NOV
										ž Z

		10 30	4:30	89 15	Lizeath s
	met Alexina the site to gate set t	e to se e t	Fist Sit	rive to	Partial Morning
	k · y Gr to escor bos tradic	por inter Survey tangate	addition	r Stewart	is not
	S and t hur th to minst	a ola ce i paths after insta	a charge	gps	3-1407 High & BB Hotel Hotel
		C. 15: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5	14:50 S Caller 10 ms	30	
10 10 Alle	Merco and a	in the second	ample F1	Olants u	noting 10%s
	15 95 1 1 2 5 5 1 2 5 5 1 2 5 5 1 2 5 5 1 2 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 1 2 1 2	Sw - SMA	SW-SAZ-CE	Me caps many Form	at always

A CM A CARANT RE SAS	13	a Fenced in	F &	scil Scomple HRT - 10 malFonchim he	It is Here Road Trench And Walk Site in random path Unferced Portion	past
		1 to Teller 5 Surennes Commer petrichen	SAS &		on Sal San As notes	Barris Maria

Appendix B: Field Forms and Photographic Log

MALCOLM PIRNIE	SITE INVESTIGATIO	N PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No. Date: 001		
Location of Photo: NCO Academy		
Direction Facing: West		
Description: Grid layout for surface walk looking towards the Rocket Range		

MALCOLM PIRNIE		SITE INVESTIG	TION PHOTOGRAPHIC LOG
Installation	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range - 1	
Photo No . 002	Date:		
Location of NCO Acader	my	R. S. March and T. and March	
Direction Fa West North			
Description Grid layout, s walk facing v west, Rocket to the left in t	surface vest north t Range is		

MALCOLM PIRNIE	SITE INVESTIGAT	TION PHOTOGRAPHIC LOG	
Installation Name:	Site Name:	Location:	
Fort Stewart	Anti-Aircraft Range - 1		
Photo No. Date: 003		ANDELAN PAR	の教
Location of Photo: NCO Academy			は御野
Direction Facing: Not Applicable		SIMULATOR	
Description: Simulator Booby Trap, Whistling M119 found during surface walk		BOOBY TRAP WHISTLING M119 LOT NO.	No. Xee

MALCOLM PIRNIE		SITE INVESTIGAT	ION PHOTOGRAPHIC LOG
Installation N	lame:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No. 004 Location of F			
NCO Academ	у		
Direction Fac South	cing:		
Description: Equipment Ch and calibration			

MALCOLM PIRNIE		SITE INVESTIGAT	ON PHOTOGRAPHIC LOG
Installation	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No . 002	Date:	Maria Anna	and the second se
Location of Former Rock			
Direction Fa West North		S-B-o-PB-ATT	
Description: Rocket Range facing west north west from the firing berm			Le la

MALCOLM PIRNIE		SITE INVESTIGAT	ION PHOTOGRAPHIC LOG
Installation	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No . 003	Date:		
Location of Former Rock			
Direction Fa	icing:		
Description Site of forme with expende sub-caliber r	r target ed M 73		

MALCOLM PIRNIE		SITE INVESTIGATIO	N PHOTOGRAPHIC LOG
Installation	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No . 004	Date:	1 Alterate	
Location of Former Rock		A Carlo	
Direction Fa West North	cing: West		
Description: Expended .3 blank cartrido	0 caliber		

MALCOLM PIRNIE		SITE INVESTIGATIO	ON PHOTOGRAPHIC LOG
Installation	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No . 005	Date:		
Location of Former Rock			
Direction Fa	icing:		
Description Expended M Grenade (Ye	18 Smoke		

MALCOLM PIRNIE	SITE INVESTIG	ATION PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Anti-Aircraft Range - 1	Fort Stewart, GA
Photo No. Date:		
Location of Photo: Former Rocket Range		
Direction Facing: Non Applicable		
Description: Expended M125A1 pop flare		

MALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG			
Installation Name:	Site Name:	Location:	
Fort Stewart	Anti-Aircraft Range 90 mm	Fort Stewart, GA	
Photo No. Date: 001 001		and the second s	
Location of Photo: ASP			
Direction Facing: North West	at a tract		
Description: Site Survey at ASP			

MALCOLM PIRNIE	COLM RNIE SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range 90 mm	Fort Stewart, GA
Photo No . 002	Date:		
Location of ASP	Photo:		
Direction Fa	acing:		
Description Soil Samplin			

MALCOLM PIRNIE	MALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG			
Installation Na	ame:	Site Name:	Location:	
Fort Stewart		Anti-Aircraft Range 90 mm	Fort Stewart, GA	
Photo No . 003	Date:		and Alexandress	
Location of P ASP	hoto:			
Direction Fac Non Applicab				
Description:			La Carta and a sure of	
Soil Sampling homogenizatio				

MALCOLM PIRNIE		SITE INVESTIGA	TION PHOTOGRAPHIC LOG
Installation I	Name:	Site Name:	Location:
Fort Stewart		Anti-Aircraft Range 90 mm	Fort Stewart, GA
Photo No . 004	Date:		
Location of ASP	Photo:		
Direction Fa North	cing:		
Description: Soil Sampling storage/main facilities in ba	g with tenance		

MALCOLM PIRNIE	SITE INVESTIGATI	ON PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Hand Grenade Course	Fort Stewart, GA.
Photo No. Date:		
Location of Photo: Grenade Range		
Direction Facing: South West		
Description: Dirt road leading into the Grenade Range from SR 144		

MALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG			
Installation	Name:	Site Name:	Location:
Fort Stewart		Hand Grenade Course	Fort Stewart, GA.
Photo No . 002	Date:		
Location of Grenade Ra		1 Alexan	
Direction Fa South West	acing:		
Description Soil sampling at the Grena	g location		

Installation Name:	Site Name:	Location:
Fort Stewart	Hand Grenade Course	Fort Stewart, GA.
Photo No. Date:		
Location of Photo: Grenade Range		
Direction Facing: South West		
Description: Soil sampling location as seen from throwing pit at the Grenade Range		

MALCOLM PIRNIE	SITE INVESTIGATION PI	HOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Hand Grenade Course	Fort Stewart, GA.
Photo No. 004Date:Location of Photo: Grenade Range		
Direction Facing: North East		
Description: Grenade throwing positions at former Grenade Range		

MALCOLM PIRNIE	MALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation	Name:	Site Name:	Location:
Fort Stewart		Small Arms Range 1	Fort Stewart, GA
Photo No . 001	Date:		
Location of Former Smal Range			
Direction Fa South East	cing:		
Description: Access road helicopter Fie south east	to former		

MALCOLM PIRNIE	ALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation	Name:	Site Name:	Location:
Fort Stewart		Small Arms Range 1	Fort Stewart, GA
Photo No . 002	Date:		the same of the
Location of Drainage Dit Small Arms	ch, Former		
Direction Fa West South			
Description Soil sample I former Small Range,	location,		

MALCOLM PIRNIE	ALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation	Name:	Site Name:	Location:
Fort Stewart		Small Arms Range 1	Fort Stewart, GA
Photo No . 003	Date:	100 C	
Location of Former Sma Range			
Direction Fa East North E		Ŧ	
Description Soil sampling magnetomet surface surve	g site and er assisted		

MALCOLM PIRNIE		SITE INVESTIGAT	ION PHOTOGRAPHIC LOG
Installation I	Name:	Site Name:	Location:
Fort Stewart		Small Arms Range 1	Fort Stewart, GA
Photo No . 004	Date:		
Location of I Former Smal		Br. Anna	Section Andrews
Direction Fa	cing:		
Description: Helicopter Fie road crossing former Small Range	eld Access the		

MALCOLM PIRNIE	SITE INVESTIG	ATION PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Small Arms Range 1	Fort Stewart, GA
Photo No. Date: 005	. A Martin Martin	
Location of Photo: Former Small Arms Range		
Direction Facing: North East		
Description: Magnetometer assisted surface survey		

MALCOLM PIRNIE		SITE INVESTIGA	TION PHOTOGRAPHIC LOG
Installation N	Name:	Site Name:	Location:
Fort Stewart		Small Arms Range 1	Fort Stewart, GA
Photo No . 006	Date:	MAN AND STREET AND AND A	
Location of I Former Small Range		- Contraction	
Direction Fac North East	cing:		
Description: Soil Sampling former Small Range	g site		

MALCOLM PIRNIE	Site Name:	TION PHOTOGRAPHIC LOG Location:	
Fort Stewart	Small Arms Range 1	Fort Stewart, GA	
Photo No. Date: 007 Location of Photo: Former Small Arms Range Direction Facing: South West Description: Magnetometer assisted surface survey			

MAICOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation Name	e: Site Name:	Location:
Fort Stewart	Small Arms Range 1	Fort Stewart, GA
Photo No. Da	ate:	
Location of Phot Former Small Arm Range		
Direction Facing South West		
Description: Magnetometer ass surface survey	sisted	

MALCOLM PIRNIE	SITE INVESTIC	GATION PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Small Arms Range 3	Fort Stewart, GA
Photo No. 001Date: 001Location of Photo: PondDirection Facing: 		

MALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG			
Installation	Name:	Site Name:	Location:
Fort Stewart		Small Arms Range 3	Fort Stewart, GA
Photo No . 002	Date:		
Location of Pond Shore	Photo:		
Direction Fa	acing:		
Description	:	4 48 517	
Water Samp	le Location		

MALCOLM PIRNIE		SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation N	Name:	Site Name:	Location:	
Fort Stewart		Small Arms Range 3	Fort Stewart, GA	
Photo No. 003	Date:			
Location of I Pond	Photo:			
Direction Fac North	cing:			
Description: Taking water				

Installation Name:	Site Name:	Location:
Fort Stewart	Small Arms Range 3	Fort Stewart, GA
Photo No. Date: 004		
Location of Photo: Pond		
Direction Facing: South		
Description: De-contamination of sediment sampling equipment		

MALCOLM PIRNIE		SITE INVESTIG	ATION PHOTOGRAPHIC LOG
Installation N	lame:	Site Name:	Location:
Fort Stewart		Small Arms Range 3	Fort Stewart, GA
Photo No . 005	Date:		and a state of a state of a state
Location of P West shore of Direction Fac North East Description: Sediment San	Pond		

MALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG		
Installation Name:	Site Name:	Location:
Fort Stewart	Small Arms Range 3	Fort Stewart, GA
Photo No. 006Date:006IntervalueLocation of Photo: PondPondDirection Facing: South EastDescription: 		

MALCOLM PIRNIE	SITE INVESTIGA	TION PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Hero Road Trench Area	Fort Stewart, GA
Photo No. Date: 001 Location of Photo:		
Former Landfill		
Direction Facing: West		
Description: Former Landfill area, showing suspected mounds		

MALCOLM PIRNIE		SITE INVESTIGA	TION PHOTOGRAPHIC LOG
Installation	Name:	Site Name:	Location:
Fort Stewart		Hero Road Trench Area	Fort Stewart, GA
Photo No . 002	Date:		
Location of	Photo:		
Direction Fa West South			
Description Suspected n former landfi	nound in		

MALCOLM PIRNIE	SITE INVESTIGA	TION PHOTOGRAPHIC LOG
Installation Name:	Site Name:	Location:
Fort Stewart	Hero Road Trench Area	Fort Stewart, GA
Photo No. Date: 003		
Location of Photo: Former Landfill area		
Direction Facing: North West		
Description: Ravine where soil samples were taken		

MALCOLM PIRNIE	ALCOLM PIRNIE SITE INVESTIGATION PHOTOGRAPHIC LOG					
Installation Name:	Site Name:	Location:				
Fort Stewart	Hero Road Trench Area	Fort Stewart, GA				
Photo No. 004Date:004Location of Photo:Former Landfill AreaDirection Facing: NorthDescription:						
GPS of suspected mounds in former landfill area.						

Final Quality Assurance Program Plan Military Munitions Response Program Site Inspections

Figure 10- 1: Daily Quality Control Report MMRP: (Installation name) DAILY QUALITY CONTROL REPORT DAY S M T W TH F S		
USACE PROJECT MGR. Kim Gross PROJECT Fort Stewarth (1997) 70-85 >85 PROJECT Fort Stewarth (1997) 70-85 >85		
JOB NO. <u>2118 - 093</u> CONTRACTNO. <u>w112 DR-05-D-0004</u> WIND <u>STIL</u> MODERATE HIGH REPORT NO HUMIDITY DRY MODERATE HOME 1		
SUBCONTRACTORS ON-SITE:		e
		Range 1
QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS): Schmestardt and athetes metal dedectors were tested against Known items. Doplieste MS & MSD Samples were collected. For analyt St.	èa l	
HEALTH AND SAFETY LEVELS AND ACTIVITIES: Safety Tailgote Nuting in the Morning Site Specific Staty Write at each site upon arrival	g	
PROBLEMS ENCOUNTERED/CORRECTIVE ACTION TAKEN: GPS whit will not hold charge back ground data, wouldn't load onto GPS unit. A new GPS Unit was shipped from Tamps office. Again prosects were Maswerd with tage and wilked without porkgrowing data a GPS Unit.	whe	
TOMORROWS EXPECTATIONS: Conduct piscal survey and collect samples at Small Arms Ranges 1 and 3.		
BY Dawid Smith TITLE Environmenta Eng	incer -	

Final Quality Assurance Program Plan Military Munitions Response Program Site Inspections

Figure 10- 1: Daily Quality Control Repo	rt								
MMRP: (Installation name) DAILY QUALITY CONTROL REPORT	DAY	S I	M C	ŢŴ	THF	FS			
USACE PROJECT MGR. Kim Groos	WEATHER		<u> </u>	\leq	OVERCA]	
PROJECT Fort Stewart	TEMPERATURE			32 - 50	50-70				
JOB NO. 2118 - 693	WIND		シ M	IODERATE	HIGH		PORT NO		
CONTRACT NO. W91JDR-05-D-0004	HUMIDITY	DRY		IODERATE	HUMID		2		
SUBCONTRACTORS ON-SITE: NONE								}	
Soffice Where Sampling Equiperint, Gl 100 tape measure Pin Flogs, Comer WORK PERFORMED (INCLUDING SAMPLING): Cond	100' type measure! Pid Plans, Comerce WORK PERFORMED (INCLUDING SAMPLING): Conducted Visual Survey and collected								
	QUALITY CONTROL ACTIVITIES INCLUDING FIELD CALIBRATIONS): Schonstecht and Whites tested against Known Shjects								
HEALTH AND SAFETY LEVELS AND ACTIVITIES: Safe Safety heir yon artival	ety Tailor at eac	h =	yeo-	ting.	Sile	 	e i Fiè		
PROBLEMS ENCOUNTERED/CORRECTIVE ACTION TAKEN: GPS unit only had enough Charage to take sample points if we wanted it to y last all day Vison, Society transacts will be recorded Tommorow Port Small Arm Bodyers 183.									
special Notes: <u>GPS unit a</u> shy AM tomorrow.	rrives F	Forn	TA	-mpa	E.	Fiez	ň		
TOMORROW'S EXPECTATIONS: Kist Conduct Return to Small arms to complete visual surv	tange 1		<u>vis</u> mal		Surr MS F	rey ang	at ile 3	to Rock	d Trench
BY Dervic	J Smith	1	TTLE	En	viron	mente	<u>IE</u>	nginuer.	I

June 2006

Final Quality Assurance Program Plan Military Munitions Response Program Site Inspections

Figure 10- 1: Daily Quality Control Report
MMRP: (Installation name) DAILY QUALITY CONTROL REPORT DAY S M T W TH' F S
USACE PROJECT MGR. Kim Gross
PROJECT Fort Stewart TEMPERATURE <32 32.50 50.70 70.85 >85
JOB NO. 3118-093
CONTRACT NO. W912DR -05-D-0004 HUMIDITY DRY MODERATE HUMID 3
SUBCONTRACTORS ON-SITE:
EQUIPMENT ON SITE: GPS Unit, Soil Sampling Fouriement, Digital Country 12 hitos Metal Detector Schonstratt Hacagetometer
WORK PERFORMED (INCLUDING SAMPLING): Rol only ted Site Vision Surveys at Small Acms Manues NE 3 inorder to record travsects on GRS Conduct Soundlike and Vision Survey on these Road Treach Arece QUALITY CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS): Metal Detectors tosted appinest Karnon Objects
HEALTH AND SAFETY LEVELS AND ACTIVITIES: Site Safety Tailget Meeting
PROBLEMS ENCOUNTERED/CORRECTIVE ACTION TAKEN: (2) hites Magnetometer wasn't working contacted dealer gro Family a mar by contrins to purchase a new one
SPECIAL NOTES:
TOMORROW'S EXPECTATIONS:
Demobilization
BY Javid Smith TITLE Environmental Engineer

June 2006

SITE SAFETY TAILGATE MEETING

MALCOLM PIRNIE

PROJECT NAME:		Ft Stewart SI	CLIENT N.	AME: Ft. Stewart, GA	4.
PROJECT NUMBER:		2118093	FIELD PROJECT LEADER:	Shelly Kolb	
PREPARED		Dan S. Hains	DATE:3/	3/07	
ON-SITE SA	FETY ME	ETING RECO	RD (/		
LOCATION:	Ft Stewa	urt. GA			
TASK TO BE	C PERFOI		e Inspection		
I. Purpo	se for mee	ting: (check all			
		Y SAFETY BRIEF	ING		
	Begin	New Task. Tas	k:	· · · · · · · · · · · · · · · · · · ·	
	Perio	dic Safety Meeti	ng		
		Site Procedures			
		Site Conditions /	Information		
		Site Workers			
MEETING A	TTENDE	ES:			
NAME (Print)	SIGNAT	TURE	COMPANY	
1. Dan S. Ha	ins	Dattle	- /	Malcolm Pirnie Inc.	
2. Shelly Kol	b	Milli	Totel	Malcolm Pirnie Inc.	
3. David Smi	th	David	TH-	Malcolm Pirnie Inc.	
4. Nicole Uk	ura	MOAR	Ne	Malcolm Pirnie Inc.	
5.					

OM	TTE CARETY MEETING DECODD		Page 2 of 2		
<i>Оц</i> -51 П.	TE SAFETY MEETING RECORD Topic (check all that apply)	i contra cont			
	Site Safety Personnel	4	Decontamination	' 	
1	Work Area Description		Emergency Response		
	Site Characterization		Hazard Communication		
\checkmark	Equipment Hazard(s)		On-site Emergency		
1	Biological Hazard(s)		On-site Injuries	-	
0	Chemical Hazard(s)	V	Evacuation Procedures		
1	Physical Hazard(s)	K	Rally Point	- 	
1	Heat Stress		Emergency Communications		
i	Cold Stress	1	Directions to Hospital		
/	Site Control		Emergency Equipment		
V	, Work and Support Zones	L	Drug and Alcohol Policies		
/	PPE	\checkmark	Medical Monitoring		
×	Air Monitoring	~	Task Training		
V	Safe Work Practices		Unexploded Ordnance (UXO)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
III. Remarks					
	·			-	
				• Kr	
V.	Verification				
I certify that the personnel listed on this roster received the briefing described above. Site personnel not attending this meeting will be briefed before beginning their assigned duties.					

•

All and a second s

Jury's Journal College

SITE SAFETY TAILGATE MEETING

MALCOLM PIRNIE

PROJECT NAME:	Ft Stewart SI	CLIENT NAME:	Ft. Stewart, GA.
PROJECT NUMBER:	2118093	FIELD PROJECT LEADER:	Shelly Kolb
PREPARED BY:		DATE: 3/14/01	Shill all
ON-SITE SAFE1	Y MEETING RECOR	RD	U
LOCATION: Ft.	Stewart, GA		
TASK TO BE PE		Inspection	
I. Purpose fo	or meeting: (check all t	that apply)	
	DAILY SAFETY BRIEFI	NG	
	Begin New Task. Task. Periodic Safety Meetin		
	New Site Procedures		
	New Site Conditions / I	Information	
	New Site Workers		
MEETING ATTH	ENDERS:		
NAME (Prin	(t) SIGNAT	URE C	OMPANY
1. Dan S. Hains	- Offi	∠ ́ M	alcolm Pirnie Inc.
2. Shelly Kolb	Thelle	M M	alcolm Pirnie Inc.
3. David Smith	Mill OF.	И М	alcolm Pirnie Inc.
4. Nicole Ukura	MARIAN	M	alcolm Pirnie Inc.
5.		<i>z</i>	

Page 2 of 2 ON-SITE SAFETY MEETING RECORD						
II.						
V	Site Safety Personnel		Decontamination			
\mathcal{V}	Work Area Description		Emergency Response			
	Site Characterization	⁄	Hazard Communication			
	Equipment Hazard(s)	V	On-site Emergency			
/	Biological Hazard(s)	~	On-site Injuries			
/	Chemical Hazard(s)	V	Evacuation Procedures			
	Physical Hazard(s)	~	Rally Point			
)	Heat Stress		Emergency Communications			
~	Cold Stress	1	Directions to Hospital			
V	Site Control		Emergency Equipment			
	Work and Support Zones	\langle	Drug and Alcohol Policies			
1	PPE	V	Medical Monitoring			
	Air Monitoring	$\overline{\langle}$	Task Training			
\checkmark	Safe Work Practices	V	Unexploded Ordnance (UXO)			
III. Remarks						
V. Verification						
I certify that the personnel listed on this roster received the briefing described above. Site personnel not attending this meeting will be briefed before beginning their assigned duties. Field Project Manager Date UXO Safety Supervisor Date						

SITE SAFETY TAILGATE MEETING

MALCOLM

PROJECT NAME:	Ft Stewart SI	CLIENT NAME:	Ft. Stewart, GA.				
PROJECT NUMBER:	2118093	FIELD PROJECT LEADER:	Shelly Kolb				
PREPARED BY:		DATE:3/15/07	· · · · · · · · · · · · · · · · · · ·				
ON-SITE SAFET	Y MEETING RECOR	RD '					
LOCATION: Ft.	Stewart, GA						
TASK TO BE PE		Inspection					
I. Purpose fo	or meeting: (check all t						
\checkmark	DAILY SAFETY BRIEFI	NG					
	Begin New Task. Task Pariodic Safaty Maatin						
	Periodic Safety Meeting New Site Procedures						
	New Site Conditions / I	Information					
	New Site Workers						
MEETING ATTH	ENDEES:						
NAME (Prin	(t) SIGNAT	URE C	OMPANY				
1. Dan S. Hains	Dattle	<u>м</u>	alcolm Pirnie Inc.				
2. Shelly Kolb	Malson	UL M	alcolm Pirnie Inc.				
3. David Smith	David J.	M M	alcolm Pirnie Inc.				
4. Nicole Ukura	Mang	АМ	alcolm Pirnie Inc.				
5.							

Page 2 of 2						
ON-SITE SAFETY MEETING RECORD						
II.	Topic (check all that apply)		1			
	Site Safety Personnel	Ĺ	Decontamination			
	Work Area Description		Emergency Response			
	Site Characterization	V	Hazard Communication			
\checkmark	Equipment Hazard(s)	ž	On-site Emergency			
V	Biological Hazard(s)	V	On-site Injuries			
i	Chemical Hazard(s)	~	Evacuation Procedures			
\checkmark	Physical Hazard(s)	/	Rally Point			
V	Heat Stress	V	Emergency Communications			
,	Cold Stress	~	Directions to Hospital			
	Site Control		Emergency Equipment			
•	Work and Support Zones	V	Drug and Alcohol Policies			
\checkmark	PPE	V	Medical Monitoring			
	Air Monitoring	V	Task Training			
V	Safe Work Practices	V	Unexploded Ordnance (UXO)			
III.	Remarks					
	1.0 10.1 (0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		······································			
V.	V. Verification					
	I certify that the personnel listed on this roster received the briefing described above. Site personnel not attending this meeting will be briefed before beginning their assigned duties. Field Project Manager Date $3 - 15 - \partial 7$					
	UXO Safety Supervisor Date					

.

		ADMINISTRATIVE D.	АТА			
Project Number	2118093		Date	3-13-07		
Project Name	Fort ster	wart	Time	17:00		
Site Location	Anticient		Sampler(s)	David Smith		
Site Contact	Algeano	i stevenson	Others Present	NICU UKCWA, SI	belly	Kall
Weather Conditions (7(p Sunni	light brelt	l	Dan Hains		
SAMPLE LOCATION	N DESCRIPTION				197 4 1	
Random / Biased (des	cribe)	Random				
Depth of Sample		0-6 inches				
Location Description ((GPS?) X=	437831.3M Y	= 355 175	5.183 Z= 24.146]	
Grab or Composite Sa		(om positi			-	
SOIL SAMPLE						
Sample No.		FSTSW- AAI-	06			
Lab Analysis Require	d	EXPLOSIVES 8330	Al, Sb, Cu	1,Pb,Zn		
Sample Collection Tin	ne	17:00		, , , ,		
Sample Collection Dep	oth	0-binches				
Sample Collection Dev	/ice	plastic sho	vel			
Grab or Composite Sa	imple?	COMPOSEDA				
	state states and states s	AMPLE LOG REVIEW INFO	DRMATION		- A demonstra	
REVIEWED BY: DATE/TIME:						
NOTES:						
					1	

		ADMINISTRATIVE D	ATA			
Project Number	2118093	3	Date	3-13-07		
Project Name	Fort ste	wart	Time	F\$50- 16:45-		
Site Location	Anti-niv	craft pange 1	Sampler(s)	David Smith		
Site Contact	Algeana	Stevenson	Others Present	Nicole Ukuror, she Dan Hains	ly.	<i>Kolb</i>
Weather Conditions (7 70	"Sunny,			Dan Hains		
SAMPLE LOCATION	DESCRIPTION					
Random / Biased (desc	ribe)	Random				
Depth of Sample		0-Vinches				
Location Description (GPS?)	x = 9374A.050	V = 35	5838.325 7.23.19	r)	
Grab or Composite Sa	mple?	Composite			ĺ	
SOIL SAMPLE						
Sample No.		FTSW-AAI-C	5			
Lab Analysis Required	1	EXPLOSIVES 833	30, Al, Sh,	Cu, Pb, Zn		
Sample Collection Tim	ic	16:45	, , ,	, ,		
Sample Collection Dep	oth	0-6 inches				
Sample Collection Dev	ice	0-6 inches Plastic sh	iove l			
Grab or Composite Sa	mple?	(omposite				
	S	SAMPLE LOG REVIEW INFO	ORMATION			
REVIEWED BY: DATE/TIME:						
NOTES:						

	en al la come en la care	ADMINISTRATIVE	ATA		
Project Number	2118093		Date	3-13-07	
Project Name	Fort Stew	art	Time	16:20	
Site Location		Ft Range - 1	Sampler(s)	David Smith	
Site Contact Weather Conditions (Others Present	David Smith Shelly Kell Nicole UK	wa
Weather Conditions (Temperature, Wind, H	lumidity, Sky):			~~~
Suni	24 76 light	breeze			
SAMPLE LOCATION	NDESCRIPTION				
Random / Biased (dese	cribe)	Biused			
Depth of Sample		0-c inches			
Location Description	(GPS?) X-4		· = 355186	5.727 7=22.549	
Grab or Composite Sa		Composite			
SOIL SAMPLE					
Sample No.		TSW-AAI-04;	Frow-A	AI - 04-MS / 1575W-A	A1-04-
Lab Analysis Require	d	ALSH. CU.P.	, Zn. Exp	AI -04-MS / 175W-1	
Sample Collection Tin	ne	16:20			
Sample Collection De	oth	O-C inches			
Sample Collection Dev	vice	Plastic S	:cop		
Grab or Composite Sa	ample?	Composite	V		
	contra successive and a success of the second successive and the successive succes	IPLE LOG REVIEW INF	ORMATION		
REVIEWED BY: DATE/TIME:					
NOTES:					

		ADMINISTRATIVE D.	ATA	
Project Number	2118 093		Date	3-13-09
Project Name	Fort Stew	art	Time	16:05
Site Location	•		Sampler(s)	David Smith
Site Contact	Alexand St	att Rangel Grenson	Others Present	Nicole Illenca
Weather Conditions (Te	emperature, Wind, H	umidity, Sky):		Shelly Colly
	76 Sunni	1 light breeze		
SAMPLE LOCATION	DESCRIPTION) (<u>)</u>		
Random / Biased (descr	·ibe) ·	Biased		
Depth of Sample		0-6 inches		
Location Description (G	SPS?)	= 437183, 558	4-35518	80.885 7=24.895
Grab or Composite San		Composite	U	
SOIL SAMPLE				
Sample No.	F	TSN-AA 1-03	FTSN	1-AA1-03D
Lab Analysis Required		Al, Sb, Co, P		Explosives
Sample Collection Time		16:05		
Sample Collection Dept	h (D-G inche	5	
Sample Collection Devi	ce	Plastic S	000	
Grab or Composite San	nple?	Composite	/	
	SAM	PLE LOG REVIEW INFO	RMATION	
REVIEWED BY: DATE/TIME:				
NOTES:				

		ADMINISTRATIVE D	ATA			
Project Number	2118093	>	Date	3-13-07		
Project Name	Fort Sta	cwart SI	Time	1500		
Site Location	Anti-Airc	craft Range 90m	MSampler(s)	Dave Smith		
Site Contact		· -2	Others Present	Nicole Ukura, she Dan Hains	lly	Kolb
Weather Conditions () 7		1, Humidity, Sky): 1, light breef		Dan Hains'	ſ	
SAMPLE LOCATION	DESCRIPTION					
Random / Biased (desc	eribe)	Random				
Depth of Sample		0-le inches				
Location Description (GPS?)	x= 433781.100	y = 353199	17.495 2= 19.825	 	
Grab or Composite Sa	mple?	Lomposite	Sample			
SOIL SAMPLE					ł	
Sample No.		FTSW-AA90n		,	ļ	
Lab Analysis Required	3	SID, CU. Pb, AI	Zn Er	xplosives/8330		
Sample Collection Tin	10	1500				
Sample Collection Dep)th	6-6 inches				
Sample Collection Dev	vice	Plastic Scoop)			
Grab or Composite Sa	mple?	Composite				
	S	AMPLE LOG REVIEW INFO	ORMATION			
REVIEWED BY: DATE/TIME:						
NOTES:						
					1	

		ADMINISTRATIVE I	DATA		YA 2000
Project Number	211809	3	Date	3-13-07	
Project Name	Ect S	tewert SI	Time	13:55	
Site Location		Grenade Caurse Fi	Sampler(s)	Nicole Ukura	
Site Contact		Stevenson	Others Present	Dove Smith Skill	. Krill
Weather Conditions (7	Cemperature, Wind 74 <i>°</i>	l, Humidity, Sky): Sunny light l	oreeze	Dan Itains	
SAMPLE LOCATION	DESCRIPTION				
Random / Biased (desc	ribe)	Random			
Depth of Sample		O-6 inche	5		
Location Description (GPS?)	X= 436422.406 Composite :	y= 3530	862.252 7= 18];177
Grab or Composite Sa	mple?	Composite :	Simple		
SOIL SAMPLE					
Sample No.		FTSW- HGC-	0\	. •	
Lab Analysis Required]	Sb. Cu, Pb, A	1,7n E	Explasives (8330)	
Sample Collection Tim	ie	13:55	J -	/ ()	
Sample Collection Dep	oth	0-6 inches			
Sample Collection Dev	ice	Plastic Sc			
Grab or Composite Sa	mple?	Composite 5	ample		
REVIEWED BY:	S	AMPLE LOG REVIEW INF	ORMATION		
DATE/TIME:					-
NOTES:					
					1

		ADMINISTRATIVE D.	ATA	
Project Number	2118-09	13	Date	3-15-07
Project Name	Fort St	tenarl	Time	1855
Site Location		7-ms Rarry 3	Sampler(s)	David Smith
Site Contact	Algean	a Stevenson	Others Present	Shellie Koll
Weather Conditions (1	emperature, Wind		•	Nide Ukura
Portly S	which is the second	79°F Humid		Dan Hains
SAMPLE LOCATION	DESCRIPTION			
Random / Biased (desc	ribc)	Random		
Depth of Sample		O-G inch	es.	
Location Description (GPS?) 乂	- 447418.242	4= 35307	68.299 3-=15.924
Grab or Composite Sa	mple?	Composit		
SOIL SAMPLE				
Sample No.		FTSW-SAS	3-13	
Lab Analysis Required	l	Sb, Cu, Pb		
Sample Collection Tim	e	1855		
Sample Collection Dep	th	0-6 inche	5	
Sample Collection Dev	ice	Plastic S	a	
Grab or Composite Sa	mple?	Composit	د '	
	S	AMPLE LOG RÉVIEW INFO	DRMATION	
REVIEWED BY: DATE/TIME:				
NOTES:				

		ADMINISTRATIVE I	DATA		
Project Number	2118-0	2 3	Date	3-15-07	
Project Name	Fat Ster	exart	Time	18:30	
Site Location		ns Range 3	Sampler(s)	David Smith	
Site Contact		Stevenson	Others Present	Shelly Kolb	Nicole Uku
Weather Conditions ('I	emperature, Wind	d, Humidity, Sky):		Ten Hain	
Partly Sunn	<u></u>	F Humid			5
SAMPLELOCATION	DESCRIPTION				
Random / Biased (desc	ribe)	Random		······	
Depth of Sample		0-6 inches			
Location Description (GPS?)	x 447248,653	૯= ૩૮૩ૡ	79, 791 2	= 13.584
Grab or Composite Sa	mple?	Composite	•	-	
SOIL SAMPLE					
Sample No.		FTSW- SA3.	-12 /FT	TSW-SA3-	<u> </u>
Lab Analysis Required	l	Sb, Cu, Pb			
Sample Collection Tim	e	18,30			
Sample Collection Dep	th	0-6 inche	5		
Sample Collection Dev	ice	0-6 inche Plastic Sci	DUP		
Grab or Composite Sa	mple?	Composite			
	S	SAMPLE LOG REVIEW INF	ORMATION		
REVIEWED BY: DATE/TIME:					
NOTES:					

		ADMINIS	TRATIVE D.	ATA	
Project Number	2118 0	13		Date	3-14-07
Project Name	Fort :	Stewart		Time	14:16
Site Location		Ims Re	ince 1	Sampler(s)	David Smith
Site Contact	Algeana	Stevense	U	Others Present	Nicole UKura
Weather Conditions (T	emperature, Wind	, Humidity, Sky)	:		Jan Hains
	Cloudy	750	light	breze	
SAMPLE LOCATION	DESCRIPTION				
Random / Biased (desc	ribe)	Rando	m		
Depth of Sample		0-6 in	ches		
Location Description (GPS?) 🔀=	451342	.156	1=353388	56.959 Z=9.666
Grab or Composite Sa	mple?	Compa	Site		
SOIL SAMPLE		V			
Sample No.		FTSW -	SAL-C	07	
Lab Analysis Required		<u>Sb, P6</u>	<u>`Cu</u>		
Sample Collection Tim	e	14,10			
Sample Collection Dep	th	0-6 in	ches		
Sample Collection Dev	ice	Plasti	e Sca	<i>р</i>	
Grab or Composite Sa	mple?	Compos	ite		
	S.	AMPLE LOG RI	EVIEW INFO	RMATION	
REVIEWED BY: DATE/TIME:					
NOTES:					

		ADMINISTRATIVE D	АТА		
Project Number	2118 0	13	Date	3-14-07	
Project Name	Fort -	Stewart	Time	14:50	
Site Location	Small Pr	ms Range 1	Sampler(s)	David Smith	
Site Contact	Algeana	Stevenson	Others Present	Shelly Rolb, Nicol	R
Weather Conditions (1	Femperature, Wind	l, Humidity, Sky):		Ukura, Dan Hain	5
SAMPLE LOCATION	DESCRIPTION				
Random / Biased (desc	cribe)	Biasec	(black to	ound reflective of curr	nt llys
Depth of Sample		0-6 inch	ves		of training
Location Description (GPS?)	X= 4517,28,497		646,168 7-9,270	J.
Grab or Composite Sa	mple?	Composite			
SOIL SAMPLE					
Sample No.		FTSW- SAL-	08		
Lab Analysis Required	1	Sb, Cu, Pb			
Sample Collection Tim	10	14:50			
Sample Collection Dep	oth	0-6 inches			
Sample Collection Dev	vice	Plastic S	ccop		
Grab or Composite Sa	mple?	Composite	• 		
	S	AMPLE LOG REVIEW INFO	DRMATION		
REVIEWED BY: DATE/TIME:					
NOTES:					

		ADMI	NISTRATIVE D.	ATA		
Project Number	2118 00	13		Date	3-14-07	,
Project Name	Fort	Stewal	nt	Time	15:45	
Site Location			Rang I	Sampler(s)	Shelly Kon Nicole VK. Dan Haing	16
Site Contact	Algeana	Ster	enson	Others Present	Nicole VK.	Va .
Weather Conditions (T	Cemperature, Win	d, Humidity, S	ky):		then Ili's	
Partly	cloudy	Slight	Breeze		Jan rainz	
SAMPLE LOCATION	DESCRIPTION					
Random / Biased (desc	ribe)	Bias	ed (1	M143 Pop	Fair)	
Depth of Sample		0-61		•		
Location Description (GPS?)	x=45a118	.689 4) = <u>3534</u> 2	73.55	2=7,83=
Grab or Composite Sa	mple?	Comp				
SOIL SAMPLE						
Sample No.		FTSU	J- 5A1-	09		
Lab Analysis Required	I	Sb, (Cu, Ph	-		
Sample Collection Tim	e	15:4	,			
Sample Collection Dep	ťh	0-6	inches			
Sample Collection Dev	ice	Plast	Lie Sea	<u></u>		
Grab or Composite Sa	mple?	C	omposit	é		
	5	SAMPLE LOG	REVIEW INFO	RMATION		
REVIEWED BY: DATE/TIME:						
NOTES:						

Project Number	2118 00	30			
	0	B	Date	3-14-07	
Project Name	Fort St	ewast	Time	16:05	
Site Location		Arms Range 1	Sampler(s)	Shelly Kolls	
Site Contact	Algcan	e Stevenson	Others Present	Nicola VKura Da	THO
Weather Conditions (To Partley		, Humidity, Sky): 75			*% *%
SAMPLE LOCATION					
Random / Biased (descr	ribe)	Randow			
Depth of Sample		0-6 inches			
Location Description (C	GPS?) 🗡 =	4522 07.037	9=35343	00.086 7=7.6	55
Grab or Composite San	nple?	Composite			
SOIL SAMPLE					
Sample No.		FTSW- SAL	16		
Lab Analysis Required		Sb, Cu, Ph			
Sample Collection Time	e	16:05			
Sample Collection Dept	h	O-6 inches			
Sample Collection Devi	ce	Plastic	5000		
Grab or Composite San	nple?	Composi	te		
	S	AMPLE LOG REVIEW INFO	ORMATION		8
REVIEWED BY: DATE/TIME:					
NOTES:					

	ADMINISTRATIVE D	ATA		
Project Number	8-093	Date	3-15-07	
Project Name For	t Stewart	Time	48:30 1845	
Site Location Sma		Sampler(s)	David Smith	
Site Contact Ala	eand Stevenson	Others Present	Nicola Uleura	
Weather Conditions (Temperat		Λ	Shelly Kolb Dan Hains	
Partly Sunny	, 79°F Humid	, 	Since y . Or yall in its	
SAMPLE LOCATION DESCR	· · · · · · · · · · · · · · · · · · ·			
Random / Biased (describe)	Random			
Depth of Sample	O-Ginches			
Location Description (GPS?)	*=447169.866	y = 35	30757,578 Z= 2.573	7.
Grab or Composite Sample?	Composite	-, <u> </u>		
SOIL SAMPLE				
Sample No.	FFSW-SA3-14	· /FTSW-	SA3-14MS / FTSW-5193-	MAR
Lab Analysis Required	Pb Co Sh			
Sample Collection Time	18:30 845	/		
Sample Collection Depth	D-Ginches			
Sample Collection Device	Plastic Scoop	2		
Grab or Composite Sample?	Composite			
	SAMPLE LOG REVIEW INFO	ORMATION		
REVIEWED BY: DATE/TIME:				
NOTES:				
······				

		ADMINISTRATIVE D	АТА				
Project Number	2118 093		Date	3-15-07			
Project Name	Fort Ste	wart	Time	12:05			
Site Location	Hero Raa	d Trench	Sampler(s)	David Smith			
Site Contact		Stevenson	Others Present	Day Hains			
Weather Conditions (1	emperature, Wind	, Humidity, Sky):					
Brt	Partly Sunny 70°F light breeze						
SAMPLE LOCATION	DESCRIPTION						
Random / Biased (desc	ribe)	Biased (near	suspected	trench)			
Depth of Sample		O-G inclus	•	-			
Location Description (GPS?) X	= 4423 12.266 4=3527197.396 Z=31.414 Composite					
Grab or Composite Sa	mple?	Composite					
SOIL SAMPLE							
Sample No.		FTSW- HRT-14					
Lab Analysis Required		Sh. Cu, Al, Pl		plosives 8330			
Sample Collection Tim	c	12:05	,				
Sample Collection Dep	th	0-6 inches					
Sample Collection Dev	ice	Plastic So	cap				
Grab or Composite Sa	Grab or Composite Sample? Composite						
	S.	AMPLE LOG REVIEW INFO	ORMATION				
REVIEWED BY: DATE/TIME:							
NOTES:							

	ADMINISTRATI	IVE DATA	er medez en service der stractig ander einer ander sollter
Project Number 21	18 093	Date	3-14-07
Project Name	Est Stewalt	Time	17:25
Site Location St	mall Droms Banke -	Sampler(s)	Shet David Smit
Site Contact	Algegra Stevenson	Others Prese	nt Sholly Kalb Nic
Weather Conditions (Temp	perature, Wind, Humidity, Sky):		- Salary - S Isc
Parbl	<u>y Cloudy 75</u> Instrumentat	Breezy	
Water Quality Meters		ION DATA A	
	pH	570	
	Temperature	22.5	
Water Quality Readings	Turbidity (NTUs)	4	
	DO (mg/l)	5.78	
	Spec. Cond. (umhos/cm)	<i>-088</i>	
Sample No./Well Number	FTSW-SA3-		/MSD & FTSW-SA
Lab Analysis Required	Sh Cu PI	•	/MSD & FTSW-SA FTSW-SA3-SEE
Sample Collection Time	17:25		
Sample Collection Device	PLOSTIC Bot	Hlo	
Grab or Composite Sample	· · · · ·	¥	
	SAMPLE LOG REVIEW	INFORMATION	
REVIEWED BY: DATE/TIME:			
NOTES:			

.

Surface GROUNDWATER SAMPLING LOG

			ADMINISTRAT	IVE D	ATA			
Project Number	21	18 093			Date	3-1'	1-07	
Project Name	For	- Stru	part		Time	1715	>	
Site Location	Sm		ns Rame 3		Sampler(s)	Oarid	Smith	
Site Contact	Alg	Pang	Stevenson		Others Present	Shelly	Kolb, Nicolo Hains	CULURA
Weather Condition PdrTly			, Humidity, Sky): 5°, brcczy			Dan	Hains	
, ' J			INSTRUMENTA	TION I	DATA			
Water Quality Me	ters	Bo						
		- 520 pH		5	15			
		Tempera	ture	6	p,9°C			
Water Quality I	Readings	Turbidit	y (NTUs)		3			
		DO (mg/	1)	3	5,35			
		Spec. Co	nd. (umhos/cm)		,087 mS	/EM		
Sample No./Well N	lumber		FTSW-SA	13-	SWOI,	/ F	TSW-SA	3-SEDO
Lab Analysis Requ	lired		SID, Cu, PK)	-			
Sample Collection	Time		1715					
Sample Collection	Device		PLASTIC E	Gttl	Ĺ			
Grab or Composit	e Sample?		Gryb					_
	da esta da la	S	AMPLE LOG REVIEN	V INEC	DRMATION			
REVIEWED BY: DATE/TIME:								
NOTES:								
					÷]

Appendix C: Analytical Data and Chemical Data Quality Assessment

Chemical Data Quality Assessment

For the

CONFIRMATORY SAMPLING REPORT

OF

FORT STEWART

FOR

BALTIMORE DISTRICT – U.S. ARMY CORPS OF ENGINEERS BALTIMORE, MARYLAND

CONTRACT NO. W912DR-05-D-0004

MALCOLM PIRNIE, INC. 300 EAST LOMBARD STREET, SUITE 610 BALTIMORE, MARYLAND

June 2007

TABLE OF CONTENTS

1.0	Proj	ect Scope		1
2.0	Proj	ect Descr	iption	1
3.0	Qual	lity Cont	rol Activities	1
	3.1	Labora	tory Quality Control	3
		3.1.1	Data Qualifier Flags	3
		3.1.2	Sample Preservation and Temperature upon	
			Laboratory Receipt	3
		3.1.3	Holding Times	3
		3.1.4	Method Blanks	3
		3.1.5	Surrogate Recovery	5
		3.1.6	Instrument Calibrations	5
		3.1.7	ICP Interference Check Samples	5
		3.1.8	ICP Serial Dilutions	5
		3.1.9	Laboratory Control Samples	5
		3.1.10	Matrix Spike/Matrix Spike Duplicate Recovery and Relative	
			Percent Difference	5
		3.1.11	Field Duplicates	7
4.0	Fyal	uation of	Quality Control Parameters	7
T •U	4.1		on	
	4.2	Bias		
	4.3		entativeness	
	4.4	-	rability	
	4.5	-	eteness	
	4.6	-	vity	
5.0	C	.1	•	10
5.0	Cond	clusion	•••••••••••••••••••••••••••••••••••••••	12

LIST OF TABLES

Table No.	Description
1	Sampling and Analysis Schedule
2	Qualified Results
3	Field Duplicate Summary
4 Completeness Summary	

1.0 **Project Scope**

This Quality Control Summary Report presents the data verification for samples collected on March 13, 14, and 15, 2007 at the Fort Stewart FTSW in Hinesville, Georgia. Data verification was performed in accordance with the procedures specified in the Quality Assurance Project Plan (QAPP) for Military Munitions Response Program (MMRP) Site Inspections (SIs) (Malcolm Pirnie Inc., June 2006), United States Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2004), USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999), and quality control (QC) parameters set forth by the project laboratory, Analytical Laboratory Services, Inc. (ALSI).

2.0 **Project Description**

A total of twenty-one surface soil, sediment, and surface water samples were collected from Fort Stewart and were submitted to ALSI for the following analyses:

- Explosives by USEPA Method 8330
- Metals by USEPA Methods 6010B and 6020
- Wet Chemistry (Percent Moisture and Total Solids) by Standard Method (SM)20-2540G

Three QC samples (field duplicate) were submitted to ALSI. A complete list of samples with their respective analyses is presented in Table 1.

3.0 Quality Control Activities

Sample results were subject to an examination of precision, accuracy, and completeness, in accordance with the specifications listed in the QAPP for MMRP SIs. An evaluation of the following QC parameters was conducted:

- Sample Preservation and Temperature Upon Laboratory Receipt
- Holding Times
- Method Blank Contamination
- Surrogate Recovery (for explosives analyses)
- Laboratory Control Sample (LCS) Recovery
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and Relative Percent Difference (RPD)
- Field Duplicates

Results that required qualification based on the data verification are presented in Table 2 and are described in the following sections.

3.1 Laboratory Quality Control

3.1.1 Data Qualifier Flags

Data qualifier flags are used by the laboratory and during data verification to notify the user of any possible uncertainty. Definitions of the most widely used data qualifiers in this assessment are:

- J The analyte was positively identified; however, the result should be considered an estimated value.
- UJ The analyte was not detected above the reporting limit; however, the reporting limit is considered an estimated value.
- R Quality control parameters indicate that data is not usable.

Results qualified as "J" or UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

3.1.2 Sample Preservation and Temperature upon Laboratory Receipt

Samples were received by ALSI at the correct temperature (4 ± 2 degrees Celsius); therefore, data qualification was not required.

3.1.3 Holding Times

Samples were extracted and analyzed within the holding time limits set by the respective USEPA and standard methods.

3.1.4 Method Blanks

Method blanks were performed at the required frequencies. Method blanks were evaluated based on the following criteria:

Blank contamination was evaluated by the following criteria.

- If the concentration in the associated samples is less than 10 times the concentration in the blank, the sample should be qualified with a U.
- If the concentration in the associated samples is greater than 10 times the concentration in the blank, the sample should not be qualified.

Target compounds were not detected in the blanks with the following exceptions:

• Copper was detected in two method blanks at concentrations of 0.002 and 0.6

mg/L. Copper results for all samples in the associated batches were qualified with a U.

- Antimony was detected in two method blanks at concentrations of 0.0063 and 0.023 mg/L. Antimony results for all samples in the associated batches were qualified with a U.
- Lead was detected in three method blanks at concentrations of 0.017, 0.024, and 0.0077 mg/L. No qualification was required because the concentrations in the samples were greater than ten times the concentrations in the blanks.

3.1.5 Surrogate Recovery

Surrogate compounds are analyzed in order to evaluate the extent of matrix effects on the samples such as interferences or high concentrations. Surrogate recoveries were within control limits.

3.1.6 Laboratory Control Samples

Laboratory control samples are generated in order to evaluate the accuracy of the analytical method. LCSs were performed at the required frequency and recoveries were within acceptable control limits. LCS/LCS duplicates were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for LCS or LCS duplicate but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J".
- If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J" for detected results).
- If the analyte recovery was less than 10 percent, the analyte results in the associated analytical batch were rejected and qualified "R".

3.1.7 Matrix Spike/Matrix Spike Duplicate Recovery and Relative Percent Difference

Matrix spike and matrix spike duplicates were performed at the required frequency. MS/MSD samples were evaluated by the following criteria:

- If MS or MSD recovery for an analyte is above acceptance limits but the analyte is not detected in the associated samples, then data qualification was not required.
- If MS or MSD recovery for an analyte is above acceptance limits and the analyte is detected in the associated samples, the analyte results were qualified "J".
- Low MS/MSD recoveries for inorganic parameters result in sample qualification of the associated analytical batch.
- Low MS/MSD recoveries for organic parameters result in the data qualification of the unspiked sample rather than the analytical batch.
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

MS/MSD percent recoveries and RPDs were within acceptance limits except for the following:

- The MS/MSD for sample FTSW-AA04 had recoveries outside of acceptance limits and exceeded the RPD limit for antimony and lead. Data qualification was required for this sample to indicate a potential bias.
- The MS/MSD for sample FTSW-SA3-SD02 for antimony did not meet the recovery limits. Data qualification was required for this sample to indicate a potential bias.
- The MS/MSD for sample FTSW-SA3-14 had recoveries outside of acceptance limits and exceeded the RPD limit for antimony. Data qualification was required for this sample to indicate a potential bias.

3.1.8 Field Duplicates

Three field duplicate samples were collected and submitted for analyses. The RPDs between the field sample and its associated sample were calculated and are presented in Table 3. The field duplicate evaluation criteria are as follows:

- If an analyte is detected at a concentration greater than five times the method reporting limit, the RPD should be less than 30 percent.
- If an analyte is detected in the sample and field duplicate, but is less than five times the method reporting limit, the difference between the sample and the field duplicate should not exceed the method reporting limit.

Field duplicate RPDs were within acceptance limits.

4.0 Evaluation of Quality Control Parameters

The data quality for the sampling at the FTSW site has been measured and evaluated in terms of specific indicators:

- Precision
- Bias
- Representativeness
- Comparability
- Completeness
- Sensitivity

Many of these indicators are evaluated in a quantitative manner and acceptance limits are described in the sections below. Two of these parameters are more qualitative in nature (i.e., representativeness and comparability). The following sections describe the data quality indicators and the quality level of this data.

4.1 Precision

Precision is a measure of the reproducibility of analyses under a given set of conditions. Sampling precision is demonstrated through collection and analysis of field duplicates. MS/MSD data can be used to evaluate both sampling and/or analytical precision depending on their preparation. Precision is measured by calculating the RPD. MS/MSD outliers resulted in the qualification of antimony results in three samples and lead results in one samples and their associated field duplicates. Other sample results did not required qualification based on MS/MSD or field duplicate RPDs thus indicating good sampling precision.

4.2 Bias

Bias refers to the systematic or persistent distortion of a measurement process that causes errors in one direction (above or below the true value or mean). Accuracy is a measure of closeness between an observed value and the 'true' value, but it does not differentiate between random error and systematic error (i.e. bias). Bias is impacted by errors introduced through the sampling process, handling, analytical procedures, and the sample matrix. Bias is evaluated through the collection and analysis of MS/MSD, LCS, and surrogate compounds. There were cases of MS/MSD percent recoveries outside of the established control limits for two metals resulted in qualification. Overall, there is little bias in the data with the exception of several metals.

4.3 Representativeness

Representativeness is a qualitative parameter that evaluates the degree to which sample data accurately and precisely represent a characteristic of a population, a sampling point, or an environmental condition. Sample handling protocols (e.g., collection, storage, preservation, and transportation) have been established to ensure samples are representative of field

conditions. The overall representativeness of the data is good as indicated by the sample handling protocols and satisfactory holding times.

4.4 Comparability

Comparability is a qualitative parameter that expresses the confidence with which one data set may be compared to another. This is a concern when current data are being integrated with historical data. Comparability of data is maximized through the use of standard operating procedures in the field and the laboratory, standardized analytical methods, and consistent units of measure. The overall comparability of the data is good as indicated by the use of standardized analytical and sampling procedures.

4.5 Completeness

Completeness is a measure of the amount of valid data obtained compared to the total number of measurements planned. Completeness shall be evaluated qualitatively and quantitatively. The qualitative evaluation of completeness shall be determined as a function of the events contributing to the sampling event. This includes items such as samples arriving at the laboratory intact, properly preserved, and in sufficient quantity to perform the requested analyses all of which were achieved.

The quantitative description of completeness shall be defined as the percentage of QC parameters that are acceptable. Contractual completeness is defined as the number of samples that have not been qualified for QC reasons divided by the number of requested sample results multiplied by 100. Technical completeness is defined as the total number of usable results divided by the number of requested sample results multiplied by the number of requested sample results divided by the number of requested sample results multiplied by 100. The completeness goal for sample holding times is 100 percent; for all other QC parameters, the goal is 90 percent. Table 4-1 summarizes the contractual and technical compliance for this sampling event.

Project data was within technical compliance control limits for all analytes. The contractual compliance for two metals was less than 90 percent due to blank contamination and MS/MSD recoveries and RPD that were outside of acceptance limits.

4.6 Sensitivity

Sensitivity describes the relationship between the reporting limits and the project quality goals. This is important for project objectives eliminating the chance of an analyte being reported as "not detected" at a concentration that is greater than a regulatory guidance value. The reporting limits for all but one of the analytes in the soil samples were below the ARBCA Residential Soil Screening Levels. The reporting limit for thallium was below the ARBCA Residential SSL, and this is noted in the Summary and Conclusions section of the SI Report.

5.0 Conclusion

Three metals required data qualification based on MS/MSD recoveries that were outside of acceptance limits and method blank contamination. Overall, the sample analyses were completed with quality assurance and control protocols met. This data set is considered usable and meets project data quality objectives.

Table 1Quality Control Summary ReportFort Stewart

Sample ID	Lab ID	Collected	Sample Type	Parameters
FTSW-HGC-01	9678547-01	3/13/2007	Ν	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-AA90MM2-02	9678547-02	3/13/2007	N	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-AA1-03	9678547-03	3/13/2007	Ν	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-AA-03D	9678547-04	3/13/2007	FD of FTSW-AA1-03	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-AA-04	9678547-05	3/13/2007	Ν	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-AA1-05	9678547-06	3/13/2007	Ν	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-AA1-06	9678547-07	3/13/2007	Ν	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-SA1-07	9678547-08	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA1-08	9678547-09	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA1-09	9678547-10	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA1-10	9678547-11	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-SW01	9678547-12	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-SW02	9678547-13	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-HRT-11	9678547-14	3/15/2007	Ν	Explosives, Sb, Cu, Pb, Al, Zn, Wet Chemistry
FTSW-SA3-13	9678547-15	3/15/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-14	9678547-16	3/15/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-12	9678547-17	3/15/2007	N	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-12D	9678547-18	3/15/2007	FD of FTSW-SA3-12	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-SD02	9678547-19	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-SD01	9678547-20	3/14/2007	Ν	Sb, Cu, Pb, Wet Chemistry
FTSW-SA3-SD01-D	9678547-21	3/14/2007	FD of FTSW-SA3-SD01	Sb, Cu, Pb, Wet Chemistry

Table 2Quality Control Summary ReportFort Stewart

				Qualified	
Sample ID	Analyte	Result	Units	Results	Comments
FTSW-HGC-01	Antimony	0.011J	mg/L	0.011UJ	Qualified due to method blank contamination
FTSW-AA90MM2-02	Antimony	0.007J	mg/L	0.007UJ	Qualified due to method blank contamination
FTSW-AA1-03	Antimony	0.055J	mg/L	0.055UJ	Qualified due to method blank contamination
FTSW-AA-03D	Antimony	0.03J	mg/L	0.03UJ	Qualified due to method blank contamination
FTSW-AA-04	Antimony	0.2	mg/L	0.2U	Qualified due to method blank contamination
FTSW-AA1-05	Antimony	0.074J	mg/L	0.074UJ	Qualified due to method blank contamination
FTSW-AA1-06	Antimony	0.016J	mg/L	0.016UJ	Qualified due to method blank contamination
FTSW-SA1-07	Antimony	0.056J	mg/L	0.056UJ	Qualified due to method blank contamination
FTSW-SA1-08	Antimony	0.010J	mg/L	0.010UJ	Qualified due to method blank contamination
FTSW-SA1-09	Antimony	0.019J	mg/L	0.019UJ	Qualified due to method blank contamination
FTSW-SA1-10	Antimony	0.017J	mg/L	0.017UJ	Qualified due to method blank contamination
FTSW-HRT-11	Antimony	0.83	mg/L	0.83U	Qualified due to method blank contamination
FTSW-SA3-13	Antimony	0.026J	mg/L	0.026UJ	Qualified due to method blank contamination
FTSW-SA3-12	Antimony	0.072J	mg/L	0.072UJ	Qualified due to method blank contamination
FTSW-SA3-12D	Antimony	0.039J	mg/L	0.039UJ	Qualified due to method blank contamination
FTSW-SA3-SD01	Antimony	0.017J	mg/L	0.017UJ	Qualified due to method blank contamination
FTSW-SA3-SW01	Copper	0.005J	mg/L	0.005UJ	Qualified due to method blank contamination
FTSW-SA3-SW02	Copper	0.005J	mg/L	0.005UJ	Qualified due to method blank contamination
FTSW-SA1-09	Copper	0.8J	mg/L	0.8UJ	Qualified due to method blank contamination
FTSW-SA1-10	Copper	1J	mg/L	1UJ	Qualified due to method blank contamination
FTSW-HRT-11	Copper	1J	mg/L	1UJ	Qualified due to method blank contamination
FTSW-SA3-13	Copper	1J	mg/L	1UJ	Qualified due to method blank contamination
FTSW-SA3-14	Copper	0.8J	mg/L	0.8UJ	Qualified due to method blank contamination
FTSW-SA3-12	Copper	1J	mg/L	1UJ	Qualified due to method blank contamination
FTSW-SA3-12D	Copper	1J	mg/L	1UJ	Qualified due to method blank contamination
FTSW-SA3-SD02	Copper	2J	mg/L	2UJ	Qualified due to method blank contamination
FTSW-SA3-SD01	Copper	0.4J	mg/L	0.4UJ	Qualified due to method blank contamination
FTSW-SA3-SD01-D	Copper	0.4J	mg/L	0.4UJ	Qualified due to method blank contamination
FTSW-SA3-14	Antimony	0.017J	mg/L	0.017UJ	Qualified due to method blank contamination
					Qualified due to MS/MSD does not meet recovery
FTSW-AA04	Antimony	0.2	mg/L	0.2J	limits, and RPD exceeds limit
FTSW-AA04	Lead	13.8	mg/L	13.8J	MS/MSD and RPD exceeds recovery limits
FTSW-SA3-SD02	Antimony	0.017J	mg/L	0.017J	MS/MSD does not meet recovery limits
FTSW-SA3-14	Antimony	0.017J	mg/L	0.017J	MS/MSD and RPD exceeds recovery limits

Notes:

mg/L - milligram per liter

J = estimated value

RPD = Relative Percent Difference

Table 3Field Duplicate SummaryFort Stewart

Sample ID / Field Duplicate ID	Parameters	Sample Result	Field Duplicate Result	RPD (%)
FTSW-AA1-03/FTSW-AA	Explosives		••••••••••••••••••••••••••••••••••••••	
03D	All analytes	ND	ND	NC
	Metals			
	Aluminum	3100	3010	2.9
	Antimony	0.055J	0.030J	NC
	Copper	1J	1J	NC
	Lead	65.3	67.7	3.6
	Zinc	5	5	0.0
	Water Chemistry			
	Moisture	19.8	20.9	5.4
	Total Solids	80.2	79.1	1.4
FTSW-SA3-12/	Metals			
FTSW-SA3-12D	Antimony	0.072J	0.039J	NC
	Copper	1J	1J	NC
	Lead	6.7	6.6	1.5
	Water Chemistry			
	Moisture	27.9	28.1	0.7
	Total Solids	72.1	71.9	0.3
FTSW-SA3-SD01/	Metals		1	
FTSW-SA3-SD01-D	Antimony	0.084J	0.032J	NC
	Copper	0.4J	0.4J	NC
	Lead	1.4	1.1	24.0
	Water Chemistry			
	Moisture	16.7	16.1	3.7
	Total Solids	83.3	83.9	0.7

Notes:

RPD = Relative percent difference; [(difference)/(average*1/2)]*100

ND = No analytes detected

NC = Not calculated

* = Field duplicate outlier

Table 4Completeness SummaryFort Stewart

Parameters	Total Number of Samples	Number in Contractual Compliance	Percent Contractual Compliance	Number of Usable Results	Percent Technical Compliance
Explosives					
All Analytes	8	8	100	8	100
Metals					
Aluminum	8	8	100	8	100
Antimony	21	3 ^{a,b,c}	14	21	100
Copper	21	9 ^a	43	21	100
Lead	21	20 ^{b,d}	95	21	100
Zinc	8	8	100	8	100
Water Chemistry					
Moisture	21	21	100	21	100
Total Solids	21	21	100	21	100

Notes:

Number of samples used in completeness calculationsincludes field samples and field duplicates

Percent Contractual Compliance = (Number of contract compliant results/Number of reported results) * 100

Percent Technical Compliance = (Number of usable results/Number of reported results) * 100

^a = Qualified due to method blank contamination

 b = Qualified due to high RPD

^c = Qualified due to MS/MSD not meeting recovery limits

^d = Qualified due to MS/MSD exceeding recovery limits

34 Dogwood Lane 🔹 Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

Certificate of Analysis

Project Name:	FT STEWART -GA - REV 022607	Workorder:	9678547
Purchase Order:		Workorder ID:	FT STEWART -GA - REV 022607

Mr. David Smith Malcolm Pirnie-MD 300 East Lombard Street Suite 610 Baltimore, MD 21202

April 12, 2007

Dear Mr. Smith,

Enclosed are the analytical results for samples received by the laboratory on Saturday, March 17, 2007

ALSI is a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAC.

If you have any questions regarding this certificate of analysis, please contact Tonya Hironimus (Project Coordinator) or Raymond Martrano (Laboratory Manager) at (717) 944-5541.

Please visit us at www.analyticallab.com for a listing of ALSI's NELAC accreditations and Scope of Work, as well as other links to Water Quality documentation on the internet.

This laboratory report may not be reproduced, except in full, without the written approval of ALSI.

Analytical Laboratory Services, Inc.

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Report ID: 9678547

Raymond J. Martrano Laboratory Manager

34 Dogwood Lane 🔶 Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

Discard Date: 06/11/2007

SAMPLE SUMMARY

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
9678547001	FTSW-HGC-01	Solid	3/13/07 13:55	3/17/07 09:00	Customer
9678547002	FTSW-AA90MM2-02	Solid	3/13/07 15:00	3/17/07 09:00	Customer
9678547003	FTSW-AA1-03	Solid	3/13/07 16:05	3/17/07 09:00	Customer
9678547004	FTSW-AA-03D	Solid	3/13/07 16:05	3/17/07 09:00	Customer
9678547005	FTSW-AA-04	Solid	3/13/07 16:20	3/17/07 09:00	Customer
9678547006	FTSW-AA1-05	Solid	3/13/07 16:45	3/17/07 09:00	Customer
9678547007	FTSW-AA1-06	Solid	3/13/07 17:00	3/17/07 09:00	Customer
9678547008	FTSW-SA1-07	Solid	3/14/07 14:10	3/17/07 09:00	Customer
9678547009	FTSW-SA1-08	Solid	3/14/07 14:50	3/17/07 09:00	Customer
9678547010	FTSW-SA1-09	Solid	3/14/07 15:45	3/17/07 09:00	Customer
9678547011	FTSW-SA1-10	Solid	3/14/07 16:05	3/17/07 09:00	Customer
9678547012	FTSW-SA3-SW01	Water	3/14/07 17:15	3/17/07 09:00	Customer
9678547013	FTSW-SA3-SW02	Water	3/14/07 17:25	3/17/07 09:00	Customer
9678547014	FTSW-HRT-11	Solid	3/15/07 12:05	3/17/07 09:00	Customer
9678547015	FTSW-SA3-13	Solid	3/15/07 18:45	3/17/07 09:00	Customer
9678547016	FTSW-SA3-14	Solid	3/15/07 18:55	3/17/07 09:00	Customer
9678547017	FTSW-SA3-12	Solid	3/15/07 18:30	3/17/07 09:00	Customer
9678547018	FTSW-SA3-12D	Solid	3/15/07 18:30	3/17/07 09:00	Customer
9678547019	FTSW-SA3-SD02	Solid	3/14/07 17:45	3/17/07 09:00	Customer
9678547020	FTSW-SA3-SD01	Solid	3/14/07 18:00	3/17/07 09:00	Customer
9678547021	FTSW-SA3-SD01-D	Solid	3/14/07 18:00	3/17/07 09:00	Customer

Workorder Comments:

34 Dogwood Lane 🔶 Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

SAMPLE SUMMARY

Workorder: 9678547 FT	T STEWART -GA - REV 022607				Discard Date: 06/11/2007
Lab ID Sample	e ID	Matrix	Date Collected	Date Received	Collected By

Notes

-- Samples collected by ALSI personnel are done so in accordance with the procedures set forth in the ALSI Field Sampling Plan (20 - Field Services Sampling Plan).

- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.

Standard Acronyms/Flags

- J, B Both flags indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference

34 Dogwood Lane
Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547001		Date Collected: 3/13/2007 13:55					Matrix: Solid					
Sample ID: FTSW-HGC-0	1		Date Re	ceived: 3/17/2007 09								
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLm		
EXPLOSIVES												
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLm		
3-Nitrochlorobenzene (S)	97	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А			
WET CHEMISTRY												
Moisture	18.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А			
Total Solids	81.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A			
METALS												
Aluminum, Total	15500	mg/kg	10	SW846 6010B	3/22/07	CMD	3/23/07 07:45	TED	A1			
Antimony, Total	0.011J	mg/kg	0.15	SW846 6020	3/23/07	CMD	3/29/07 16:52	AJB	A2			
Copper, Total	16	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 07:45	TED	A1			
Lead, Total	12.5	mg/kg	0.15	SW846 6020	3/23/07	CMD	3/29/07 16:52	AJB	A2			

Sample Comments:

Raymond J. Martrano Laboratory Manager

34 Dogwood Lane
Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547002			Date Collected: 3/13/2007 15:00 Date Received: 3/17/2007 09:00			Matrix: Solid				
Sample ID: FTSW-AA90N	IM2-02		Dale Re	ceived. 3/17/2007-09.	.00					
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	98	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
WET CHEMISTRY										
Moisture	39.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	60.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	3960	mg/kg	13	SW846 6010B	3/22/07	CMD	3/23/07 07:51	TED	A1	
Antimony, Total	0.0070J	mg/kg	0.20	SW846 6020	3/23/07	CMD	3/29/07 16:55	AJB	A2	
Copper, Total	1J	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 07:51	TED	A1	
Lead, Total	6.5	mg/kg	0.20	SW846 6020	3/23/07	CMD	3/29/07 16:55	AJB	A2	
,	25	5 5	3	SW846 6010B	3/22/07	CMD	3/23/07 07:51	TED	A1	

Sample Comments:

Raymond J. Martrano Laboratory Manager

34 Dogwood Lane 🖌 Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547003 Sample ID: FTSW-AA1-03	3	Date Collected:3/13/2007 16:05Matrix:SolidDate Received:3/17/2007 09:00								
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLm
3-Nitrochlorobenzene (S)	99	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
WET CHEMISTRY										
Moisture	19.8	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	80.2	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	3100	mg/kg	11	SW846 6010B	3/22/07	CMD	3/23/07 07:57	TED	A1	
Antimony, Total	0.055J	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 16:58	AJB	A2	
Copper, Total	1J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 07:57	TED	A1	
Lead, Total	65.3	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 16:58	AJB	A2	
,		5 5		SW846 6010B	3/22/07				A1	

Sample Comments:

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547004 Sample ID: FTSW-AA-031	D			eceived: 3/13/2007 16		I	Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	By	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	102	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
WET CHEMISTRY										
Moisture	20.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	79.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	3010	mg/kg	8	SW846 6010B	3/22/07	CMD	3/23/07 08:13	TED	A1	
Antimony, Total	0.030J	mg/kg	0.23	SW846 6020	3/23/07	CMD	3/29/07 17:00	AJB	A2	
Copper, Total	1J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:13	TED	A1	
Lead, Total	67.7	mg/kg	0.23	SW846 6020	3/23/07	CMD	3/29/07 17:00	AJB	A2	
Zinc, Total	5	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:13	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547005 Sample ID: FTSW-AA-04				eceived: 3/13/2007 16 ceived: 3/17/2007 09		I	Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	By	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLm
3-Nitrochlorobenzene (S)	100	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
WET CHEMISTRY										
Moisture	3.5	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	96.5	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	2700	mg/kg	8	SW846 6010B	3/22/07	CMD	3/23/07 08:19	TED	A1	
Antimony, Total	0.20 1	mg/kg	0.12	SW846 6020	3/23/07	CMD	3/29/07 17:03	AJB	A2	
Copper, Total	2J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:19	TED	A1	
Lead, Total	19.8 1,2	mg/kg	0.12	SW846 6020	3/23/07	CMD	3/29/07 17:03	AJB	A2	
Zinc, Total	12	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:19	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547006 Sample ID: FTSW-AA1-09	5			llected: 3/13/2007 16 ceived: 3/17/2007 09		I	Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	By	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLm
3-Nitrochlorobenzene (S)	100	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
WET CHEMISTRY										
Moisture	27.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	72.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	4790	mg/kg	13	SW846 6010B	3/22/07	CMD	3/23/07 08:36	TED	A1	
Antimony, Total	0.074J	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:23	AJB	A2	
Copper, Total	2J	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 08:36	TED	A1	
Lead, Total	4.8	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:23	AJB	A2	
	-	5 5								

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547007 Sample ID: FTSW-AA1-06	6			eceived: 3/13/2007 17		I	Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	By	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	104	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
WET CHEMISTRY										
Moisture	5.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	94.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	7830	mg/kg	11	SW846 6010B	3/22/07	CMD	3/23/07 08:42	TED	A1	
Antimony, Total	0.016J	mg/kg	0.17	SW846 6020	3/23/07	CMD	3/29/07 17:26	AJB	A2	
Copper, Total	0.8J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:42	TED	A1	
Lead, Total	4.4	mg/kg	0.17	SW846 6020	3/23/07	CMD	3/29/07 17:26	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547008 FTSW-SA1-07				ollected: 3/14/2007 14: eceived: 3/17/2007 09:		I	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	ſRY										
Moisture		35.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		64.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.056J	mg/kg	0.31	SW846 6020	3/23/07	CMD	3/29/07 17:29	AJB	A2	
Copper, Total		2J	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 08:48	TED	A1	
Lead, Total		6.8	mg/kg	0.31	SW846 6020	3/23/07	CMD	3/29/07 17:29	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547009 FTSW-SA1-08				Collected: 3/14/2007 14: Received: 3/17/2007 09:		I	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture		12.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		87.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.010J	mg/kg	0.21	SW846 6020	3/23/07	CMD	3/29/07 17:32	AJB	A2	
Copper, Total		6	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:54	TED	A1	
Lead, Total		6.1	mg/kg	0.21	SW846 6020	3/23/07	CMD	3/29/07 17:32	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547010 FTSW-SA1-09				bllected: 3/14/2007 15: eceived: 3/17/2007 09:		I	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture		30.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		69.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.019J	mg/kg	0.28	SW846 6020	3/23/07	CMD	3/29/07 17:35	AJB	A1	
Copper, Total		0.8J	mg/kg	3	SW846 6010B	3/26/07	CMD	3/28/07 12:13	JWK	A2	
Lead, Total		5.2	mg/kg	0.28	SW846 6020	3/23/07	CMD	3/29/07 17:35	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547011 FTSW-SA1-10				ollected: 3/14/2007 16: eceived: 3/17/2007 09:		I	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	ſRY										
Moisture		32.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		67.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.017J	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:38	AJB	A1	
Copper, Total		1J	mg/kg	3	SW846 6010B	3/26/07	CMD	3/28/07 12:19	JWK	A2	
Lead, Total		7.9	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:38	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 96785470 Sample ID: FTSW-SA				ollected: 3/14/2007 17: eceived: 3/17/2007 09:		I	Matrix: Water	ſ		
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
METALS										
Antimony, Total	ND	mg/L	0.0020	SW846 6020	3/22/07	CMD	3/29/07 10:56	AJB	A2	
Copper, Total	0.005J	mg/L	0.011	SW846 6010B	3/22/07	CMD	3/26/07 13:11	JWK	A1	
Lead, Total	0.0003J	mg/L	0.0020	SW846 6020	3/22/07	CMD	3/29/07 10:56	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 967854701 Sample ID: FTSW-SA				bllected: 3/14/2007 17: eceived: 3/17/2007 09:		I	Matrix: Wate	r		
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
METALS										
Antimony, Total	ND	mg/L	0.0020	SW846 6020	3/22/07	CMD	3/29/07 11:01	AJB	A2	
Copper, Total	0.005J	mg/L	0.011	SW846 6010B	3/22/07	CMD	3/26/07 13:15	JWK	A1	
Lead, Total	0.0008J	mg/L	0.0020	SW846 6020	3/22/07	CMD	3/29/07 11:01	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547014 Sample ID: FTSW-HRT-11				llected: 3/15/2007 12		I	Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	By	Analyzed	By	Cntr	RegLm
EXPLOSIVES						_,	· ·····,	_,		
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	A	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	Bv	Analyzed	By	Cntr	RegLm
3-Nitrochlorobenzene (S)	109	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
WET CHEMISTRY										
Moisture	23.8	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	76.2	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	1390	mg/kg	11	SW846 6010B	3/26/07	CMD	3/28/07 12:25	JWK	A2	
Antimony, Total	0.83	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:40	AJB	A1	
Copper, Total	1J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 12:25	JWK	A2	
Lead, Total	25.8	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:40	AJB	A1	
Zinc, Total	2J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 12:25	JWK	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547015 FTSW-SA3-13				ollected: 3/15/2007 18: eceived: 3/17/2007 09:		I	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	ſRY										
Moisture		26.7	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		73.3	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.026J	mg/kg	0.21	SW846 6020	3/23/07	CMD	3/29/07 17:49	AJB	A1	
Copper, Total		1J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 12:31	JWK	A2	
Lead, Total		8.6	mg/kg	0.21	SW846 6020	3/23/07	CMD	3/29/07 17:49	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547016 FTSW-SA3-14				Collected: 3/15/2007 18: Received: 3/17/2007 09:		l	Matrix: Solid			
Parameters		Results Fla	g Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture		31.2	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		68.8	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.017J 1	mg/kg	0.15	SW846 6020	4/2/07	CMD	4/4/07 16:40	AJB	A3	
Copper, Total		0.8J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 12:37	JWK	A2	
Lead, Total		4.6	mg/kg	0.15	SW846 6020	4/2/07	CMD	4/5/07 03:08	AJB	A3	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547017 FTSW-SA3-12				ollected: 3/15/2007 18: eceived: 3/17/2007 09:		I	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture		27.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		72.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.072J	mg/kg	0.24	SW846 6020	3/23/07	CMD	3/29/07 18:06	AJB	A1	
Copper, Total		1J	mg/kg	3	SW846 6010B	3/26/07	CMD	3/28/07 13:23	JWK	A2	
Lead, Total		6.7	mg/kg	0.24	SW846 6020	3/23/07	CMD	3/29/07 18:06	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547018 FTSW-SA3-12[)			Collected: 3/15/2007 18: Received: 3/17/2007 09:			Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture		28.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		71.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.039J	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:09	AJB	A1	
Copper, Total		1J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:29	JWK	A2	
Lead, Total		6.6	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:09	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547019 FTSW-SA3-SD	02		Date Collected:3/14/2007 17:45Matrix:SolidDate Received:3/17/2007 09:00							
Parameters		Results Flag	Units	RDL	Method	Prepared	By	Analyzed	Ву	Cntr	RegLmt
WET CHEMIST	ſRY										
Moisture		23.5	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		76.5	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.017J 1	mg/kg	0.24	SW846 6020	3/26/07	CMD	3/29/07 18:26	AJB	A2	
Copper, Total		2J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:35	JWK	A1	
Lead, Total		5.4	mg/kg	0.24	SW846 6020	3/26/07	CMD	3/29/07 18:26	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

	9678547020 FTSW-SA3-SD	01	ollected: 3/14/2007 18: eceived: 3/17/2007 09:								
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMISTR	RY										
Moisture		16.7	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		83.3	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Total		0.084J	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:12	AJB	A1	
Copper, Total		0.4J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:52	JWK	A2	
Lead, Total		1.4	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:12	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

	0678547021 TSW-SA3-SD01-	Đ			d: 3/14/2007 18:0 d: 3/17/2007 09:0		ľ	Matrix: Solid			
Parameters	F	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMISTR	Y										
Moisture	1	6.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	8	3.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Total	0	.032J	mg/kg	0.20	SW846 6020	3/26/07	CMD	3/29/07 18:40	AJB	A2	
Copper, Total	0	.4J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:58	JWK	A1	
Lead, Total	1	.1	mg/kg	0.20	SW846 6020	3/26/07	CMD	3/29/07 18:40	AJB	A2	

Raymond J. Martrano Laboratory Manager

ANALYTICAL RESULTS QUALIFIERS\FLAGS

Workorder: 9678547 FT STEWART -GA - REV 022607

PARAMETER QUALIFIERS\FLAGS

- [1] The recovery of the Matrix Spike (MS) associated to this analyte was outside of the established control limits. The sample was post-digestion spiked, and this matrix spike was within acceptable recovery limits.
- [2] One of the two matrix spike analyses performed on this sample failed to meet acceptable recovery limits. The other matrix spike was within acceptable recovery limits. Matrix interferences are the possible cause for the failure.

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607

QC Batch:	HPLC/	/1766		Analysis Method:	SW846 8330A		
QC Batch Method:	SW84	6 8330A					
Associated Lab Samp	les:	9678547001 9678547007	9678547002 9678547014	9678547003	9678547004	9678547005	9678547006

METHOD BLANK: 349700

Parameter	Result	Qualifiers	Units	Reporting Limit			
2-Amino-4,6-Dinitrotoluene	ND		ug/kg	250			
4-Amino-2,6-dinitrotoluene	ND		ug/kg	250			
1,3-Dinitrobenzene	ND		ug/kg	250			
2,4-Dinitrotoluene	ND		ug/kg	250			
2.6-Dinitrotoluene	ND		ug/kg	250			
HMX	ND		ug/kg	250			
Nitrobenzene	ND		ug/kg	250			
4-Nitrotoluene	ND		ug/kg	250			
2-Nitrotoluene	ND		ug/kg	250			
3-Nitrotoluene	ND		ug/kg	250			
RDX	ND		ug/kg	250			
Tetryl	ND		ug/kg	250			
1,3,5-Trinitrobenzene	ND		ug/kg	250			
2,4,6-Trinitrotoluene	ND		ug/kg	250			
Surrogate Recoveries							
3-Nitrochlorobenzene	99		%	50-150			
LABORATORY CONTROL SAMPLE	: 349701						
	LCS			Spike	LCS	% Rec	
Parameter	Result	Qualifiers	Units	Conc.	% Rec	Limits	
2-Amino-4,6-Dinitrotoluene	840		ug/kg	1000	84	70-130	
4-Amino-2,6-dinitrotoluene	826		ug/kg	1000	83	70-130	
1,3-Dinitrobenzene	868		ug/kg	1000	87	70-130	
2,4-Dinitrotoluene	747		ug/kg	1000	75	70-130	

2,4-Dinitrotoluene	747	ug/kg	1000	75	70-130
2,6-Dinitrotoluene	818	ug/kg	1000	82	70-130
HMX	794	ug/kg	1000	79	70-130
Nitrobenzene	860	ug/kg	1000	86	70-130
4-Nitrotoluene	900	ug/kg	1000	90	70-130
2-Nitrotoluene	889	ug/kg	1000	89	70-130
3-Nitrotoluene	883	ug/kg	1000	88	70-130
RDX	872	ug/kg	1000	87	70-130
Tetryl	433	ug/kg	1000	43	70-130
1,3,5-Trinitrobenzene	700	ug/kg	1000	70	70-130
2,4,6-Trinitrotoluene	822	ug/kg	1000	82	70-130
Surrogate Recoveries					

3-Nitrochlorobenzene

50-150

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607

percent recoveries. This rest	ılt is not a fin	al value and o	cannot be us	ed as such.							
	Original			Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Result	Qualifiers	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD
2-Amino-4,6-Dinitrotoluene	0		ug/kg	952	781	877	82	86	70-130	4.8	50
4-Amino-2,6-dinitrotoluene	0		ug/kg	952	704	792	74	78	70-130	5.3	50
1,3-Dinitrobenzene	0		ug/kg	952	828	918	87	90	70-130	3.4	50
2,4-Dinitrotoluene	0		ug/kg	952	733	825	77	81	70-130	5.1	50
2,6-Dinitrotoluene	0		ug/kg	952	818	913	86	90	70-130	4.5	50
НМХ	0		ug/kg	952	754	831	79	82	70-130	3.7	50
Nitrobenzene	0		ug/kg	952	788	883	83	87	70-130	4.7	50
4-Nitrotoluene	0		ug/kg	952	892	1040	94	103	70-130	9.1	50
2-Nitrotoluene	0		ug/kg	952	875	935	92	92	70-130	0	50
3-Nitrotoluene	0		ug/kg	952	833	995	87	98	70-130	12	50
RDX	0		ug/kg	952	835	866	88	85	70-130	3.5	50
Tetryl	0		ug/kg	952	689	749	72	74	20-175	2.7	50
1,3,5-Trinitrobenzene	0		ug/kg	952	750	820	79	81	70-130	2.5	50
2,4,6-Trinitrotoluene	0		ug/kg	952	768	848	81	84	70-130	3.6	50
Surrogate Recoveries											
3-Nitrochlorobenzene	100		%				99	102	50-150	3	

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607 QC Batch: MDIG/14329 Analysis Method: SW846 6010B QC Batch Method: SW846 3050 9678547006 9678547002 9678547003 9678547004 9678547005 Associated Lab Samples: 9678547001 9678547008 9678547007 9678547009 METHOD BLANK: 350298 Reporting Qualifiers Parameter Result Units Limit Aluminum, Total ND mg/kg 10 Copper, Total ND mg/kg 2 Zinc, Total ND mg/kg 2 LABORATORY CONTROL SAMPLE: 350299 LCS Spike LCS % Rec Parameter Result Qualifiers Units Conc. % Rec Limits Aluminum, Total 115 100 115 mg/kg 80-120 107 107 Copper, Total mg/kg 100 80-120 Zinc, Total 112 mg/kg 100 112 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 350300 350301 Original: 9678547005 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. MS Original Spike MS MSD MSD % Rec Max Result Qualifiers Units Limit RPD RPD Parameter Conc. Result Result % Rec % Rec Aluminum, Total 2610 3 mg/kg 81 3040 2900 396 232 75-125 52 25 Copper, Total 2 mg/kg 81 92 92 108 107 75-125 0.9 25

mg/kg

81

107

105

112

110

75-125

1.8

25

12

Zinc, Total

Workorder: 9678547 F	T STEWART -GA - RE	EV 022607									
QC Batch: N	/IDIG/14334			Analysis Meth	od:	SW846 60)10B				
QC Batch Method: S	SW846 3015										
Associated Lab Sample	es: 9678547012	9678	547013								
METHOD BLANK: 350	318										
					Reporting						
Parameter	Re	esult Qu	alifiers	Units	Limit						
Copper, Total	0.0)02J		mg/L	0.011						
LABORATORY CONTR	ROL SAMPLE: 3503	19									
	L	CS			Spike		LCS	% Rec			
Parameter	Re	sult Qua	alifiers	Units	Conc.	%	Rec	Limits			
Copper, Total	1	.07		mg/L	1.11		96	80-120			
MATRIX SPIKE & MAT	RIX SPIKE DUPLICA	TE: 35032	0	350321		Original:	96785470	13			
****NOTE - The Origin percent recoveries. The						e of calcula	ating Matrix	Spike			
	Original			Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Result	Qualifiers	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD
Copper, Total	0.005		mg/L	1.11	1.10	1.12	99	101	75-125	2	20

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607

QC Batch:	MDIG/14335		А	nalysis Meth	od:	SW846 60)20				
QC Batch Method:	SW846 3015										
Associated Lab Sam	nples: 96785470	12 96785	547013								
MATRIX SPIKE & M			-	350325			96785470				
	iginal Result shown This result is not a			•	• •	se of calcula	ating Matrix	Spike			
	Origin	al		Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Resu	ult Qualifiers	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD
Antimony, Total	3e-00)5	mg/L	0.111	0.110	0.110	99	99	75-125	0	20
Antimony, iotai			•								

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607

QC Batch:	MDIG/14345			Analysis Meth	ad.	SW846 60	120			
				Analysis wet	100.	50040 00	120			
QC Batch Method:	SW846 3050									
Associated Lab Sam	•		9678547002			78547004		378547005		547006
	96785		9678547008	96785470		78547010		678547011	9678	547014
	96785	47015	9678547017	96785470)18 96	578547020)			
METHOD BLANK: 3	50677									
					Reporting					
Parameter		Resu	t Qualifiers	Units	Limit					
Antimony, Total		0.0063	J	mg/kg	0.20					
Lead, Total		0.017	J	mg/kg	0.20					
LABORATORY CON	ITROL SAMPLE	: 350678								
		LCS			Spike		LCS	% Rec		
Parameter		Result	Qualifiers	Units	Conc.	%	Rec	Limits		
Antimony, Total		9.5		mg/kg	10		95	80-120		
Lead, Total		10.4		mg/kg	10		104	80-120		
MATRIX SPIKE & M	ATRIX SPIKE D	UPLICATE:	350679	350680		Original:	9678547	005		
****NOTE - The Or	-					e of calcula	ating Matri	x Spike		
percent recoveries.	This result is n	ot a final va	lue and cannot	be used as such						
	0	riginal		Spike	MS	MSD	MS	MSD	% Rec	Ma
Parameter	F	Result Qua	alifiers Un	its Conc.	Result	Result	% Rec	% Rec	Limit F	RPD RPE
		0.40		kg 5.9	0.99	1.7	13	24	75-125	59 20
Antimony, Total		0.19	mg/	kg 5.9	0.99	1.7	15	24	10-120	J9 Z

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QC Batch:	MDIG	/14355			Analysis Method	d:	SW846 60	10B				
QC Batch Method:	SW84	6 3050										
Associated Lab San	nples:	9678547010 9678547018		78547011 78547019	9678547014 9678547020		78547015 78547021		678547016	967	78547	017
METHOD BLANK: 3	351058											
						Reporting						
Parameter		Re	sult	Qualifiers	Units	Limit						
Aluminum, Total			ND		mg/kg	10						
Copper, Total		().6J		mg/kg	2						
Zinc, Total			ND		mg/kg	2						
LABORATORY CON		SAMPLE: 3510	59									
		L	CS			Spike		LCS	% Rec			
Parameter		Res	ult C	Qualifiers	Units	Conc.	%	Rec	Limits			
Aluminum, Total		1	15		mg/kg	100		115	80-120			
Copper, Total		-	04		mg/kg	100		104	80-120			
Zinc, Total		1	14		mg/kg	100		114	80-120			
MATRIX SPIKE 8 M												
MATINIA OF INE & IV		SPIKE DUPLICAT	E: 351	1060	351061		Original:	9678547	016			
****NOTE - The Or	iginal Re	esult shown below	v is a ra	w result and	is only used for t	he purpose	0					
	iginal Re	esult shown belov esult is not a final	v is a ra	w result and	is only used for t used as such.		e of calcula	ating Matr	ix Spike	% Poc		Max
****NOTE - The Or percent recoveries.	iginal Re	esult shown belov esult is not a final Original	v is a ra value a	aw result and and cannot be	is only used for t used as such. Spike	MS	e of calcula MSD	ating Matr MS	ix Spike MSD	% Rec	RPD	Max
****NOTE - The Or percent recoveries. Parameter	iginal Re	esult shown belov esult is not a final Original	v is a ra	aw result and and cannot be rs Units	is only used for t a used as such. Spike Conc.	MS Result	MSD Result	ating Matr	ix Spike	% Rec Limit	RPD	
****NOTE - The Or percent recoveries. Parameter Aluminum, Total	iginal Re	esult shown belov esult is not a final Original Result (v is a ra value a	aw result and and cannot be rs Units mg/kg	is only used for t a used as such. Spike Conc.	MS Result 1000	MSD Result	ating Matr MS % Rec	ix Spike MSD % Rec	Limit		RPD
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total	iginal Re	esult shown belov esult is not a final Original	v is a ra value a	aw result and and cannot be rs Units mg/kg mg/kg	is only used for t a used as such. Spike Conc.	MS Result 1000 88	MSD Result 1130 88	ating Matr MS	ix Spike MSD		RPD 0.9	
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total	iginal Re	esult shown belov esult is not a final Original Result (v is a ra value a	aw result and and cannot be rs Units mg/kg	is only used for t a used as such. Spike Conc.	MS Result 1000	MSD Result	ating Matr MS % Rec	ix Spike MSD % Rec	Limit		RPD
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & M	iginal Re This re	esult shown below esult is not a final Original Result 0 0.5 SPIKE DUPLICAT	v is a ra value a Qualifie E: 351	w result and and cannot be rs Units mg/kg mg/kg mg/kg	is only used for t a used as such. Spike Conc. 57 351063	MS Result 1000 88 99	MSD Result 1130 88 98 Original:	ating Matr MS % Rec 106 9678547	ix Spike MSD % Rec 105	Limit		RPD
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total Zinc, Total	iginal Re This re <mark>IATRIX S</mark> iginal Re	esult shown below esult is not a final Original Result (0.5 SPIKE DUPLICAT esult shown below	v is a ra value a Qualifie <u>E: 351</u> v is a ra	w result and and cannot be rs Units mg/kg mg/kg mg/kg 1062 w result and	is only used for the used as such. Spike Conc. 57 <u>351063</u> is only used for the	MS Result 1000 88 99	MSD Result 1130 88 98 Original:	ating Matr MS % Rec 106 9678547	ix Spike MSD % Rec 105	Limit		RPD
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & M ****NOTE - The Or	iginal Re This re <mark>IATRIX S</mark> iginal Re	esult shown belov esult is not a final Original Result 0 0.5 SPIKE DUPLICAT esult shown belov esult is not a final	v is a ra value a Qualifie <u>E: 351</u> v is a ra	w result and and cannot be rs Units mg/kg mg/kg mg/kg 1062 w result and	is only used for the used as such. Spike Conc. 57 <u>351063</u> is only used for the used as such.	MS Result 1000 88 99	MSD Result 1130 88 98 Original:	ating Matr MS % Rec 106 9678547	ix Spike MSD % Rec 105	Limit		RPD
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & M ****NOTE - The Or	iginal Re This re <mark>IATRIX S</mark> iginal Re	esult shown belov esult is not a final Original Result 0 0.5 SPIKE DUPLICAT esult shown below esult is not a final Original	v is a ra value a Qualifie <u>E: 351</u> v is a ra	aw result and and cannot be rs Units mg/kg mg/kg 1062 aw result and and cannot be	is only used for the used as such. Spike Conc. 57 <u>351063</u> is only used for the	MS Result 1000 88 99 he purpose	MSD Result 1130 88 98 Original: e of calcula	ating Matr MS % Rec 106 9678547 ating Matr	ix Spike MSD % Rec 105 019 ix Spike	Limit 75-125	0.9	RPD 25 Max
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & M ****NOTE - The Or percent recoveries. Parameter	iginal Re This re <mark>IATRIX S</mark> iginal Re	esult shown belov esult is not a final Original Result 0 0.5 SPIKE DUPLICAT esult shown below esult is not a final Original	v is a ra value a Qualifie <u>E: 351</u> v is a ra value a	aw result and and cannot be rs Units mg/kg mg/kg 1062 aw result and and cannot be rs Units	is only used for the used as such. Spike Conc. 57 351063 is only used for the used as such. Spike Conc.	MS Result 1000 88 99 he purpose	MSD Result 1130 88 98 Original: of calcula MSD	ating Matr MS % Rec 106 9678547 ating Matr MS	ix Spike MSD % Rec 105 io19 ix Spike MSD	Limit 75-125 % Rec	0.9	RPD 25 Max
****NOTE - The Or percent recoveries. Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & M ****NOTE - The Or percent recoveries.	iginal Re This re <mark>IATRIX S</mark> iginal Re	esult shown belov esult is not a final Original Result 0 0.5 SPIKE DUPLICAT esult shown below esult is not a final Original	v is a ra value a Qualifie <u>E: 351</u> v is a ra value a	aw result and and cannot be rs Units mg/kg mg/kg 1062 aw result and and cannot be	is only used for the used as such. Spike Conc. 57 351063 is only used for the used as such. Spike Conc.	MS Result 1000 88 99 <i>he purpose</i> MS Result	MSD Result 1130 88 98 Original: a of calcula MSD Result	ating Matr MS % Rec 106 9678547 ating Matr MS	ix Spike MSD % Rec 105 io19 ix Spike MSD	Limit 75-125 % Rec	0.9	RPD 25 Max

Workorder: 9678547 FT S	TEWART -GA - REV 0	22607								
	G/14356 346 3050		Analysis Meth	od:	SW846 60)20				
Associated Lab Samples:	9678547019	9678547021								
METHOD BLANK: 351064										
Parameter	Result	Qualifiers	Units	Reporting Limit						
Antimony, Total Lead, Total	ND 0.024J		mg/kg mg/kg	0.20 0.20						
LABORATORY CONTROL	SAMPLE: 351065									
Parameter	LCS Result	Qualifiers	Units	Spike Conc.	%	LCS Rec	% Rec Limits			
Antimony, Total Lead, Total	9.6 9.3		mg/kg mg/kg	10 10		96 93	80-120 80-120			
MATRIX SPIKE & MATRIX ****NOTE - The Original F percent recoveries. This	Result shown below is	a raw result and			0	96785470 ating Matrix				
Parameter	Original Result Qua	lifiers Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F		Max RPD
Antimony, Total Lead, Total	0.013 4.1	mg/kg mg/kg		2.1 15.7	2.4 15.8	18 86	20 88	75-125 75-125	11 2.3	20 20

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

							-				
	1DIG/14429			Analysis Metho	d:	SW846 602	20				
	W846 3050										
Associated Lab Sample			79276001	967927600		79276003	-	679276004		92760	
	9679276006	967	9276007	967927600	8 96	79276009	9	679276010	9679	92760	11
METHOD BLANK: 3528	308										
					Reporting						
Parameter		Result (Qualifiers	Units	Limit						
Antimony, Total).023J		mg/kg	0.20						
METHOD BLANK: 3528	308										
Parameter		Result (Qualifiers	Units	Reporting Limit						
Lead, Total		.0077J	gaamero	mg/kg	0.20						
LABORATORY CONTR		2809									
LABORATORT CONTR	OL SAIVIPLE. 35				a						
Parameter	F	LCS Result Q	ualifiers	Units	Spike Conc.		LCS Rec	% Rec Limits			
Antimony, Total		9.6		mg/kg	10		96	80-120			
LABORATORY CONTR	OL SAMPLE: 35	2809									
		LCS			Spike	l	CS	% Rec			
Parameter	F	Result Q	ualifiers	Units	Conc.	%	Rec	Limits			
Lead, Total		9.6		mg/kg	10		96	80-120			
MATRIX SPIKE & MATH	RIX SPIKE DUPLIC	ATE: 352	810	352811		Original:	9678547	016			
****NOTE - The Origin percent recoveries. Th					the purpose	e of calculat	ing Matr	ix Spike			
	Original			Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Result	Qualifier	s Units	Conc.	Result	Result	% Rec	% Rec	Limit F	RPD F	RPD
Antimony, Total	0.012		mg/kg	5.2	2.8	2.9	36	39	75-125	8	20
MATRIX SPIKE & MATE	RIX SPIKE DUPLIC	ATE: 352	810	352811		Original:	9678547	016			
****NOTE - The Origin percent recoveries. Th				•	the purpose	e of calculat	ing Matr	ix Spike			
	Original			Spike	MS	MSD	MS	MSD	% Rec		Max
	-	0	o Unito		Result	Result	% Rec	% Rec	Limit F	י חפצ	RPD
Parameter	Result	Qualifier	s Units	Conc.	Result	Result	/0 1100	/0 1100			

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607

QC Batch:	WETC/40012		Analysis Method:	SM	20-2540 G		
QC Batch Method:	SM20-2540 G						
Associated Lab Sam		47001 9678547002 47007 9678547008 47015 9678547016	9678547009	9678	547004 547010 547018	9678547005 9678547011 9678547019	9678547006 9678547014 9678547020
SAMPLE DUPLICAT	E: 349371		Original: 9678542	001			
	-	d Duplicate Result shown and the second s					
calculating campio	Duplicato poroc	Original		DUP		Max	
Parameter		Result Qualifiers	Units	Result	RPD	RPD	
Moisture		14.9	%	14.5	2.7	10	
Total Solids		85.1	%	85.5	0.5	5	
SAMPLE DUPLICAT			Original: 9678542				
	-	d Duplicate Result shown ent recoveries. This result		•			
Salualing Sample		Original		DUP		Max	
Parameter		Result Qualifiers	Units	Result	RPD	RPD	
Moisture		12.3	%	12.0	2.5	10	
Total Solids		87.7	%	88.0	0.3	5	
SAMPLE DUPLICAT			Original: 9678547				
	-	d Duplicate Result shown ent recoveries. This result					
calculating oumple		Original		DUP		Max	
Parameter		Result Qualifiers	Units	Result	RPD	RPD	
Moisture		31.2	%	32.0	2.5	10	
Total Solids		68.8	%	68.0	1.2	5	
SAMPLE DUPLICAT			Original: 9678547				
	-	d Duplicate Result shown ent recoveries. This result					
calculating oumple		Original		DUP		Max	
Parameter		Result Qualifiers	Units	Result	RPD	RPD	
Moisture		3.5	%	3.5	0	10	
Total Solids		96.5	%	96.5	0	5	
SAMPLE DUPLICAT			Original: 9678547				
	•	d Duplicate Result shown and the second s		-			
g cumple		Original		DUP		Max	
Parameter		Result Qualifiers	Units	Result	RPD	RPD	
Moisture		23.5	%	25.6	8.6	10	
Total Solids		76.5	%	74.4	2.8	5	

QUALITY CONTROL DATA QUALIFIERS\FLAGS

Workorder: 9678547 FT STEWART -GA - REV 022607

QUALITY CONTROL PARAMETER QUALIFIERS

[3] The concentration of this analyte was greater than ten times the concentration of the spike added to the matrix spike. According to protocol, the calculation for percent recovery of the matrix spike is not valid.

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 9678547 FT STEWART -GA - REV 022607

9678547002 FTSW-AA90MM2-02 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547003 FTSW-AA1-03 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547004 FTSW-AA-03D SW846 8330A HPLC/1766 SW846 8330A HPLC/1773	Lab ID Sa	ample ID	Prep Batch Method	Prep Batch	Analytical Method	Analytical Batch
bit 05/10102 FTSW-AA1-03 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547005 FTSW-AA-03D SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547005 FTSW-AA-04 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547006 FTSW-AA1-05 SW846 8330A HPLC/1776 SW846 8330A HPLC/1773 9678547007 FTSW-AA1-06 SW846 8330A HPLC/1776 SW846 8330A HPLC/1773 9678547001 FTSW-AA1-06 SW846 8300 MDIG/14329 SW846 8010B META/16178 9678547002 FTSW-AA1-03 SW846 3050 MDIG/14329 SW846 8010B META/16178 9678547004 FTSW-AA1-03 SW846 3050 MDIG/14329 SW846 8010B META/16178 9678547005 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547006 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547006 FTSW-SA1-06 SW846 3050 MDIG/14329 SW846 6010B	9678547001 F	TSW-HGC-01	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Biological FTSW-AA-03D SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547006 FTSW-AA-04 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 9678547006 FTSW-AA-05 SW846 8330A HPLC/17766 SW846 8330A HPLC/1773 9678547006 FTSW-AA-06 SW846 8330A HPLC/17766 SW846 8330A HPLC/1773 967854701 FTSW-HRT-11 SW846 8330A HPLC/17766 SW846 8330A HPLC/1773 967854701 FTSW-AA-050 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547004 FTSW-AA-03D SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547006 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547006 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547008 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547012 FTSW-SA1-05 SW846 3050 MDIG/14329 SW846 6010B M	9678547002 F	TSW-AA90MM2-02	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Biologianos FTSW-AA-04 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 Be78547005 FTSW-AA-106 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 Be78547007 FTSW-AA-106 SW846 8330A HPLC/1766 SW846 8330A HPLC/1778 Be78547001 FTSW-AA1-06 SW846 8330A HPLC/1766 SW846 8330A HPLC/1773 Be78547001 FTSW-AA1-06 SW846 8050 MDIG/14329 SW846 6010B META/16178 Be78547002 FTSW-AA1-03 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547003 FTSW-AA-03D SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547006 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547007 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547009 FTSW-SA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547009 FTSW-SA1-08 SW846 3050 MDIG/14329 SW846 6010B	9678547003 F	TSW-AA1-03	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Biological Strate Fistorial Strate Strate <td>9678547004 F</td> <th>TSW-AA-03D</th> <td>SW846 8330A</td> <td>HPLC/1766</td> <td>SW846 8330A</td> <td>HPLC/1773</td>	9678547004 F	TSW-AA-03D	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Bit Bit Noto F150000 F1500000 F1500000 F1500000 F15000000000000000000000000000000000000	9678547005 F	TSW-AA-04	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Biological Strate FTSW-HRT-11 SW846 8330A HPLC/1776 SW846 8330A HPLC/1778 Bio78547001 FTSW-HRT-11 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547002 FTSW-AA1-03 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547003 FTSW-AA-03D SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547005 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547006 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547006 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547007 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547009 FTSW-SA3-SW01 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547010 FTSW-SA3-SW02 SW846 3050 MDIG/14334 SW846 6010B META/16178 Bio78547010 FTSW-SA3-SW02 SW846 3050 MDIG/14355	9678547006 F	TSW-AA1-05	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Bordschult FTSW-HGC-01 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547002 FTSW-AA300MW2-02 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547003 FTSW-AA-03D SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547004 FTSW-AA-03D SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547005 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547006 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547007 FTSW-AA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547009 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547009 FTSW-SA3-SW01 SW846 3050 MDIG/14329 SW846 6010B META/16178 Be78547012 FTSW-SA3-SW02 SW846 3050 MDIG/14355 SW846 6010B META/16178 Be78547011 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B<	9678547007 F	TSW-AA1-06	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
Biological FTSW-A800MM2-02 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547002 FTSW-AA1-03 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547004 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547005 FTSW-AA-04 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547006 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547008 FTSW-AA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547009 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547009 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bio78547012 FTSW-SA3-08002 SW846 3050 MDIG/14334 SW846 6010B META/16178 Bio78547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16128 Bio78547016 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846	9678547014 F	TSW-HRT-11	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
No.000000000000000000000000000000000000	9678547001 F	TSW-HGC-01	SW846 3050	MDIG/14329	SW846 6010B	META/16178
No.10.1003 ITTSW-AR-IG3D SW846 3050 MDIG/14329 SW846 6010B META/16178 6785847006 FTSW-AA.04 SW846 3050 MDIG/14329 SW846 6010B META/16178 1678547006 FTSW-AA.04 SW846 3050 MDIG/14329 SW846 6010B META/16178 1678547006 FTSW-AA.1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 1678547008 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 1678547009 FTSW-SA1-08 SW846 3050 MDIG/14329 SW846 6010B META/16178 1678547012 FTSW-SA3-SW01 SW846 3050 MDIG/14334 SW846 6010B META/16194 1678547013 FTSW-SA3-SW02 SW846 3050 MDIG/14355 SW846 6010B META/16194 1678547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547014 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547015 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B <td>9678547002 F</td> <th>TSW-AA90MM2-02</th> <td>SW846 3050</td> <td>MDIG/14329</td> <td>SW846 6010B</td> <td>META/16178</td>	9678547002 F	TSW-AA90MM2-02	SW846 3050	MDIG/14329	SW846 6010B	META/16178
No.63/1004 FTSW-AA-03D SW846 3050 MDIG/14329 SW846 6010B META/16178 N6763547006 FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 N6763547006 FTSW-AA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 N6763547008 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 N676547009 FTSW-SA1-08 SW846 3050 MDIG/14329 SW846 6010B META/16178 N676547012 FTSW-SA3-SW01 SW846 3015 MDIG/14334 SW846 6010B META/16194 N676547013 FTSW-SA3-SW02 SW846 3050 MDIG/14335 SW846 6010B META/161228 N676547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16128 N676547011 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16128 N676547016 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 N676547015 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B<	9678547003 F	TSW-AA1-03	SW846 3050	MDIG/14329	SW846 6010B	META/16178
Bords Artols FTSW-AA1-05 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bor85547006 FTSW-AA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bor8547007 FTSW-AA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bor8547009 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bor8547012 FTSW-SA1-08 SW846 3015 MDIG/14334 SW846 6010B META/16194 Bor8547012 FTSW-SA3-SW01 SW846 3015 MDIG/14334 SW846 6010B META/16194 Bor8547010 FTSW-SA3-SW02 SW846 3050 MDIG/14355 SW846 6010B META/161228 Bor8547011 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/161228 Bor8547013 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/161228 Bor8547016 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 Bor8547019 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 601	9678547004 F	TSW-AA-03D	SW846 3050	MDIG/14329	SW846 6010B	META/16178
Bords Anoto FTSW-AA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bords Aroos FTSW-SA1-06 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bords Aroos FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 Bords Aroos FTSW-SA1-08 SW846 3015 MDIG/14329 SW846 6010B META/16178 Bords Aroos FTSW-SA3-SW01 SW846 3015 MDIG/14334 SW846 6010B META/16194 Bords Aroos SW846 3050 MDIG/14335 SW846 6010B META/16194 Bords Aroos SW846 3050 MDIG/14355 SW846 6010B META/16194 Bords Aroos SW846 3050 MDIG/14355 SW846 6010B META/16194 Bords Aroos SW846 3050 MDIG/14355 SW846 6010B META/16128 Bords Aroos SW846 3050 MDIG/14355 SW846 6010B META/16228 Bords Aroos SW846 3050 MDIG/14355 SW846 6010B META/16228 Bords Aroos SW846 3050 MDIG/14355 SW846 6010B	9678547005 F	TSW-AA-04	SW846 3050	MDIG/14329	SW846 6010B	META/16178
Construct FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547009 FTSW-SA1-07 SW846 3050 MDIG/14329 SW846 6010B META/16178 9678547012 FTSW-SA1-08 SW846 3015 MDIG/14324 SW846 6010B META/16194 9678547013 FTSW-SA3-SW01 SW846 3015 MDIG/14334 SW846 6010B META/16194 9678547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16194 9678547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16228 9678547014 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 9678547015 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 9678547016 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 9678547019 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 9678547020 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B	9678547006 F	TSW-AA1-05	SW846 3050	MDIG/14329	SW846 6010B	META/16178
NordShubb FTSW-SA1-08 SW846 3050 MDIG/14329 SW846 6010B META/16178 N678547009 FTSW-SA1-08 SW846 3015 MDIG/14334 SW846 6010B META/16178 N678547012 FTSW-SA3-SW01 SW846 3015 MDIG/14334 SW846 6010B META/16194 N678547013 FTSW-SA3-SW02 SW846 3015 MDIG/14334 SW846 6010B META/16194 N678547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/161228 N678547011 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547014 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547015 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547016 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547019 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547012 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6020 </td <td>9678547007 F</td> <th>TSW-AA1-06</th> <td>SW846 3050</td> <td>MDIG/14329</td> <td>SW846 6010B</td> <td>META/16178</td>	9678547007 F	TSW-AA1-06	SW846 3050	MDIG/14329	SW846 6010B	META/16178
678547003 FTSW-SA3-SW01 SW846 3015 MDIG/14334 SW846 6010B META/16194 678547013 FTSW-SA3-SW02 SW846 3015 MDIG/14334 SW846 6010B META/16194 678547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547011 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547014 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547015 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547016 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547018 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547019 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547012 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547012 FTSW-SA3-SW01 SW846 3050 MDIG/14355 SW846 6020	678547008 F	TSW-SA1-07	SW846 3050	MDIG/14329	SW846 6010B	META/16178
No.0347012 FTSW-SA3-SW02 SW846 3015 MDIG/14334 SW846 6010B META/16194 1678547013 FTSW-SA3-SW02 SW846 3050 MDIG/14335 SW846 6010B META/16194 1678547010 FTSW-SA1-09 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547011 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547014 FTSW-HRT-11 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547016 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547017 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547018 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547019 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547021 FTSW-SA3-SD01-D SW846 3050 MDIG/14355 SW846 6010B META/16228 1678547012 FTSW-SA3-SW01 SW846 3050 MDIG/14355 SW846 6	678547009 F	TSW-SA1-08	SW846 3050	MDIG/14329	SW846 6010B	META/16178
678547013 FTSW-SAI-09 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547010 FTSW-SAI-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547011 FTSW-SAI-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547014 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547016 FTSW-SA3-14 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547016 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547018 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 678547020 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547021 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 678547012 FTSW-SA3-SD01-D SW846 3050 MDIG/14355 SW846 6010B META/16228 678547012 FTSW-SA3-SW01 SW846 3050 MDIG/14335 SW846 6020	678547012 F	TSW-SA3-SW01	SW846 3015	MDIG/14334	SW846 6010B	META/16194
No.05.7010 FTSW-SA1-10 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547014 FTSW-HRT-11 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547015 FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547016 FTSW-SA3-14 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547016 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547018 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547019 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547020 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547021 FTSW-SA3-SD01-D SW846 3050 MDIG/14335 SW846 6020 META/16227 N678547001 FTSW-SA3-SW01 SW846 3015 MDIG/14335 SW846 6020 META/16247 N678547001 FTSW-SA3-SW02 SW846 3050 MDIG/14335 SW846 602	678547013 F	TSW-SA3-SW02	SW846 3015	MDIG/14334	SW846 6010B	META/16194
Nordshift Fisw-Rit SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-14 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshift FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nords 3050 FTSW-SA3-SD01-D SW846 3015 MDIG/14335 SW846 6010B META/16228 Nords 3050 FTSW-SA3-SW01 SW846 3015 MDIG/14335 SW846 6020	678547010 F	TSW-SA1-09	SW846 3050	MDIG/14355	SW846 6010B	META/16228
MORSHOLL FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547016 FTSW-SA3-14 SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547017 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547017 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547018 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547019 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547020 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 M678547012 FTSW-SA3-SD01-D SW846 3050 MDIG/14355 SW846 6020 META/16247 M678547013 FTSW-SA3-SW01 SW846 3015 MDIG/14335 SW846 6020 META/16247 M678547002 FTSW-SA3-SW02 SW846 3050 MDIG/14345 SW846 6020 META/16247 M678547002 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 M678547003 FTSW-AA90MM2-02	9678547011 F	TSW-SA1-10	SW846 3050	MDIG/14355	SW846 6010B	META/16228
Nordstrints FTSW-SA3-13 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547017 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547017 FTSW-SA3-12 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547018 FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547019 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547020 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547021 FTSW-SA3-SD01-D SW846 3050 MDIG/14355 SW846 6010B META/16228 N678547012 FTSW-SA3-SW01 SW846 3015 MDIG/14335 SW846 6020 META/16247 N678547001 FTSW-SA3-SW02 SW846 3050 MDIG/14335 SW846 6020 META/16258 N678547002 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 N678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846)678547014 F	TSW-HRT-11	SW846 3050	MDIG/14355	SW846 6010B	META/16228
MD16/14355 SW846 6010B META/16228 MD16/14335 SW846 6010B META/16228 MD16/14335 SW846 6020 META/16247 MD16/14335 SW846 6020 META/16247 MD16/14345 SW846 6020 META/16247 MD16/14345 SW846 6020 META/16258 MD16/14345 SW846 6020 META/16258 MD16/14345 SW846 6020 META/162	9678547015 F	TSW-SA3-13	SW846 3050	MDIG/14355	SW846 6010B	META/16228
Nordshruin FTSW-SA3-12D SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshruin FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshruin FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshruin FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshruin FTSW-SA3-SD01-D SW846 3050 MDIG/14355 SW846 6010B META/16228 Nordshruin FTSW-SA3-SD01-D SW846 3015 MDIG/14355 SW846 6020 META/16247 Nordshruin FTSW-SA3-SW02 SW846 3015 MDIG/14335 SW846 6020 META/16247 Nordshruin FTSW-HGC-01 SW846 3050 MDIG/14335 SW846 6020 META/16258 Nordshruin FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 Nordshruin FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 NM16/14345 SW846 6020 META/16258 SW846 6020 META/16258 NM26/14345 SW846 6020 META/16258 SW	678547016 F	TSW-SA3-14	SW846 3050	MDIG/14355	SW846 6010B	META/16228
Norss47016 FTSW-SA3-SD02 SW846 3050 MDIG/14355 SW846 6010B META/16228 Norss47020 FTSW-SA3-SD01 SW846 3050 MDIG/14355 SW846 6010B META/16228 Norss47021 FTSW-SA3-SD01-D SW846 3050 MDIG/14355 SW846 6010B META/16228 Norss47012 FTSW-SA3-SD01-D SW846 3015 MDIG/14355 SW846 6020 META/16247 Norss47013 FTSW-SA3-SW02 SW846 3015 MDIG/14335 SW846 6020 META/16247 Norss47001 FTSW-SA3-SW02 SW846 3050 MDIG/14335 SW846 6020 META/16247 Norss47002 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 Norss47003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 NN846 3050 MDIG/14345 SW846 6020 META/16258 META/16258 Norss47003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 NN846 3050 MDIG/14345 SW846 6020 META/16258 META/16258 META/16258)678547017 F	TSW-SA3-12	SW846 3050	MDIG/14355	SW846 6010B	META/16228
META/16228 META/16247 META/16258)678547018 F	TSW-SA3-12D	SW846 3050	MDIG/14355	SW846 6010B	META/16228
MDIG/14355 SW846 6010B META/16228 MDIG/14355 SW846 6020 META/16247 MDIG/14335 SW846 6020 META/16247 MDIG/14345 SW846 6020 META/16258 MDIG/14345 SW846 6020 META/16258 </td <td>9678547019 F</td> <th>TSW-SA3-SD02</th> <td>SW846 3050</td> <td>MDIG/14355</td> <td>SW846 6010B</td> <td>META/16228</td>	9678547019 F	TSW-SA3-SD02	SW846 3050	MDIG/14355	SW846 6010B	META/16228
P678547012 FTSW-SA3-SW01 SW846 3015 MDIG/14335 SW846 6020 META/16247 P678547013 FTSW-SA3-SW02 SW846 3015 MDIG/14335 SW846 6020 META/16247 P678547011 FTSW-SA3-SW02 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547001 FTSW-HGC-01 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547002 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258	9678547020 F	TSW-SA3-SD01	SW846 3050	MDIG/14355	SW846 6010B	META/16228
Nords4r012 FTSW-SA3-SW01 SW846 3015 MDIG/14335 SW846 6020 META/16247 Nords4r012 FTSW-HGC-01 SW846 3050 MDIG/14345 SW846 6020 META/16258 Nords4r012 FTSW-HGC-01 SW846 3050 MDIG/14345 SW846 6020 META/16258 Nords4r002 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 Nords4r003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 NNR46 3050 MDIG/14345 SW846 6020 META/16258 NNR46 3050 MDIG/14345 SW846 6020 META/16258	9678547021 F	TSW-SA3-SD01-D	SW846 3050	MDIG/14355	SW846 6010B	META/16228
P678547001 FTSW-HGC-01 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547002 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 P678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258)678547012 F	TSW-SA3-SW01	SW846 3015	MDIG/14335	SW846 6020	META/16247
9678547001 FTSW-AA90MM2-02 SW846 3050 MDIG/14345 SW846 6020 META/16258 9678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 9678547003 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258	9678547013 F	TSW-SA3-SW02	SW846 3015	MDIG/14335	SW846 6020	META/16247
OF78547002 FTSW-AA1-03 SW846 3050 MDIG/14345 SW846 6020 META/16258 SW846 2050 SW846 2050 MDIG/14345 SW846 6020 META/16258	9678547001 F	TSW-HGC-01	SW846 3050	MDIG/14345	SW846 6020	META/16258
5076347003 FISW-RRI-03 SW046 2050 MDIC (44245 SW046 6020 META (46259	9678547002 F	TSW-AA90MM2-02	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547004 FTSW-AA-03D SW846 3050 MDIG/14345 SW846 6020 META/16258	9678547003 F	TSW-AA1-03	SW846 3050	MDIG/14345	SW846 6020	META/16258
	9678547004 F	TSW-AA-03D	SW846 3050	MDIG/14345	SW846 6020	META/16258

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID	Sample ID	Prep Batch Method	Prep Batch	Analytical Method	Analytical Batch
9678547005	FTSW-AA-04	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547006	FTSW-AA1-05	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547007	FTSW-AA1-06	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547008	FTSW-SA1-07	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547009	FTSW-SA1-08	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547010	FTSW-SA1-09	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547011	FTSW-SA1-10	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547014	FTSW-HRT-11	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547015	FTSW-SA3-13	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547017	FTSW-SA3-12	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547018	FTSW-SA3-12D	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547019	FTSW-SA3-SD02	SW846 3050	MDIG/14356	SW846 6020	META/16258
9678547020	FTSW-SA3-SD01	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547021	FTSW-SA3-SD01-D	SW846 3050	MDIG/14356	SW846 6020	META/16258
9678547016	FTSW-SA3-14	SW846 3050	MDIG/14429	SW846 6020	META/16326
9678547016	FTSW-SA3-14	SW846 3050	MDIG/14429	SW846 6020	META/16334
9678547001	FTSW-HGC-01			SM20-2540 G	WETC/40012
9678547002	FTSW-AA90MM2-02			SM20-2540 G	WETC/40012
9678547003	FTSW-AA1-03			SM20-2540 G	WETC/40012
9678547004	FTSW-AA-03D			SM20-2540 G	WETC/40012
9678547005	FTSW-AA-04			SM20-2540 G	WETC/40012
9678547006	FTSW-AA1-05			SM20-2540 G	WETC/40012
9678547007	FTSW-AA1-06			SM20-2540 G	WETC/40012
9678547008	FTSW-SA1-07			SM20-2540 G	WETC/40012
9678547009	FTSW-SA1-08			SM20-2540 G	WETC/40012
9678547010	FTSW-SA1-09			SM20-2540 G	WETC/40012
9678547011	FTSW-SA1-10			SM20-2540 G	WETC/40012
9678547014	FTSW-HRT-11			SM20-2540 G	WETC/40012
9678547015	FTSW-SA3-13			SM20-2540 G	WETC/40012
9678547016	FTSW-SA3-14			SM20-2540 G	WETC/40012
9678547017	FTSW-SA3-12			SM20-2540 G	WETC/40012
9678547018	FTSW-SA3-12D			SM20-2540 G	WETC/40012
9678547019	FTSW-SA3-SD02			SM20-2540 G	WETC/40012
				01400 0540 0	
9678547020	FTSW-SA3-SD01			SM20-2540 G	WETC/40012

Environmental + Industrial Hygiene + Field Services	es, Inc.		ALL S	SHADED AREAS MUST BE COMPLETED BY SAMPLE AREAS MUST BE COMPLETED BY SAMPLEP INSTRUCTIONS ON THE BA	REAS MU	ST BE CO	ANAL MPLETE		THE CLIENT	1	×	6785	* 2 4		1 of 3
Client Name: Male of an P. CA 14	-212	944.1430	"Container Type									Receipt Inf	Receipt Information (completed by Receiving Lab)	pleted by Rec	iving Lab)
Address:			"Container Size									Cooler Temp:	-	Therm. ID: 5 1023 559	23559
SOO E. LOMBORI SF, SUIT 610 Raitmark . M. D 2000	20110		 Preservative						-			No. of Coolers:	SIS:	Υ.Ν	Initial
Contact David Switt					ANA	NLYSES/M	ETHOD R	ANALYSES/METHOD REQUESTED				3	Custody Seals Present?	ent?	N &Y
Phone#: 410 333 - 4809	6			Q	7u! 9		0					đ ti	(if present) Seals Intact?	act?	2
Project Name#: 3118.093 Fo.	Ford Shurlert	t	9 01	1	z' w 010		222					COC/Labels	Received on Ice? COC/Labels Complete/Accurate?	ate? /	
1	12 business d	avs.	02		n v!	'n	22.00						Cont. In Good Cond.?	Ind.?	
TAT Rush-Subject to ALSI approval and surcharges.	wal and surch	arges.	7 100	ony:	mol	nou	521:					-	Correct Containers?		
Date Required: A Email: 1.1.5.01	Approved By:			-row HUN	ec'y wot	lton	5010					a c	Correct Sample Volumes? Correct Presevation?	Case Card	
-Y NO: MAICALO	Ichie.		N #.		9990		da 3				-	بر ج	ieadspace/ydiati		AC
Sample Description/Location	Sample	itary		3	202	27	3					Courier/Tracking #:	cking # / イソー	44	26191
as it will appear on the lab report)	7 17-01 17-0	1000	1.5	Enter	Enter Number of C	ontainers	Per Analys	Containers Per Analysis Requested or Field Results Below	or Field R	esults Bek	÷.	1	Sample/COC Comments	Comments	1 metak
1 1 3 m 11 G - U	10 Q-0	22	220		-	-	-						Y	1010	Sout.
2 FTSW - AATOMMA	3-18-07	1500 C 50	C 20		-	-	-					2125	Darstotal a	metals in	ONC
3FTSW-441-02	3-13-07/605	(oc	१ र		-		-					2442.6	S Metals	ni sla	one
4FTSW-44-08D	3-13-07 1605	190	8	1	-	-	-					1000	_		
FTTSW-AROH	3-13- 01 16-20		B		1	-	-					No. Belleville			
\$ FTSW-AA-O4 MS	3-13-07 1 600		C 89		-	4	-				MARIE				
PTSN-44-N217	2-13-07 1630	0071	C.SU		~	-				5ट		R	_		
4-BFTSW-AA1-05	3-13-01 1645		5 2			ч				Ð	1	2			
857321-AAI-06	3-1307	1700 C	<u>(</u> 8)		1		1	183 9 326		\forall	391	I HAY	>		
5	314-07	1410	C 40 1	-								One.	AR 7	To Tal	
No.	- 	LOGGED BY(signature):	ignature):	122	111	J	31.40	3-15-07	07 \$9Am	N		Standard	tate Samptos SI Collected In	DWA Forms AL	ALSI Field Services
DAVE Smith/Nicole Smith/Shily	Scully R	REVIEWED BY(signature):	(signature):	Э		25	3143		384			CLP-Itte			Pickup
Relinquished By / Company Name	me J	Date	Time	Reci	Received By / Company Name	Company	Name				2][2	NJ-Reduced		 g	Labor
			26	Shell.	- Ch	They		20	31.7 9	and		NJ-Full		1	Composite Samolino
3			4									-			Rental Eouloment
5			9					-	+	800	<u>گ</u>	a, format type: 0	-		Other
			20 ç					-	+		BOD Criteria Ran	cheed?			
2			2					ļ	ľ	and the second se			and the second se	and the second se	

The relation of the solution		ALSI Quote #:
Mitment <		
Address: 300 E. Lonntoord St. Image in the source of St. Image in the source of St. Route: Rout Harton, Crup 2102. Address: Address: Address: Context: Null String St. Address: Address: Address: Depertements: Man Standard St. Address: Address: Address: Depertements: Man Standard St. Address: Address: Address: Depertements: Man Standard St. Address: Address: Address: Depertements: Address: Address: Address: Address: Depertements: Address: Address: Address: Address: DescriptionLocation Sample Man Standard St. Address: Address: Sample DescriptionLocation Sample Man Standard St. Address: Address: Sample DescriptionLocation Sample Manner Address: Address: Address: Sample DescriptionLocation Sample Mann		Receipt Information (completed by Receiving Lab)
Gui ITTOUC Gui ITTOUC Mary SESMETHON 2102 main Aux/SESMETHON REQUESTED Context: DV0-327 ThEO? Phones: "U0-327 ThEO? Aux/SESMETHON REQUESTED Phones: "U0-327 ThEO? Phones: "U0-327 ThEO? Aux/SESMETHON REQUESTED Phones: "U0-327 ThEO? Phones: "U0-327 ThEO? Aux/SESMETHON REQUESTED Phones: "U0-327 ThEO? Aux/SESMETHON REQUESTED Aux/SESMETHON REQUESTED Phones: "U0-327 ThEO? Aux/SESMETHON REQUESTED Aux/SESMETHON REQUESTED Rint Xiv discriming: Available to Alsi approver and surcharges. Approved Bit in the two subject to Alsi approver and surcharges. Sample DescriptionLocienting Rint Provided Bit in the two subject to Alsi approver and surcharges. Aux/SESMETHON REQUESTED Rint Similary Trains: Available to Alsi approver and surcharges. Aux/SESMETHON REQUESTED Rint Similary Trains: Available to Alsi approver and surcharges. Aux/SESMETHON REQUESTED Rint Similary Trains: Available to Alsi approver and surcharges. Aux/SESMETHON REQUESTED Rint Informer Antimation Simple units and surcharges. Aux/SESMETHON REQUESTED Rint Informer Antimation Simple units and surcharges. Aux/SESMETHON REQUESTED Rint Informer Antimation Simple units and surcharges. Aux/SESMETHON REQUESTED Rint Informer Antimation Simple units and surcharges. Aux/SESMETHON REQUESTED Rint Informer Anting Sinterron Als		Cooler Temp: / Therm. ID: 51023559
Context: Conte	CONTRACTOR CONTRA	
Phone +Wo -337 4/6/01 Project Hammer 21 (DOG3) Rivit Structure Rill Mrt Rin Mrt Rin <td>STED</td> <td>Custody Seals Present?</td>	STED	Custody Seals Present?
Project Names 21 (2003) Tury Structure Bull To: W1 (2003) Tury Structure Int Manual Standard TAT is 10-12 business obs. Int Returnes. Manual Standard TAT is 10-12 business. Int Manual Standard TAT is 10-12 business. Manual Standard TAT is 10-12 business. Int Manual Standard TAT is 10-12 business. Manual VI is 10-12 business. Int Manual Standard TAT is 10-12 business. Manual VI is 10-12 business. Int Manual TAT is 10-12 business. Manual VI is 10-12 business. Int Manual TAT is 10-12 business. Manual VI is 10-12 business. Int Manual TAT is 10-12 business. Manual VI is 10-12 business. Int Manual TAT is 10-12 business. Manual TAT is 10-12 business. Int Manual TAT is 10-12 business. Manual TAT is 10-12 business. Int Manual TAT is 10-12 business. Manual TAT is 10-12 business. Int Manual TAT is 10-12 business. Manual TAT is 10-12 business. Int Manual TAT is 10-12 business. Manual TAT is 10-12 business. Int Manual TAT is 10-12 business.		(if present) Seals Intact?
Bill Te. Mrt T. Tur Numerikstandard TAT is 10-12 business days. Tur Numerikstandard TAT is 10-12 business days. Tur Numerikstandard TAT is 10-12 business days. Tur Numerikstandard TAT is 10-12 business days. Tur Numerikstandard TAT is 10-12 business days. Approved Byr. Tean Numerikstandard TAT is 10-12 business days. Approved Byr. Tean Numerikstandard TAT is 10-12 business days. Approved Byr. Tean Numerikstandard TAT is 10-12 business days. Approved Byr. Tean Numerikstandard TAT is 10-12 business days. Approved Byr. Tata Tagear on teal normal Barnip Description/Location Barnip Description/Location Barnip Description/Location Barnip Description/Location		Received on lce?
Tut Micromalistandard TAT is 10-12 business days. FC Dig Construction Tut Runsh Standard TAT is 10-12 business days. Approved By. Data Required. Approved By. Approved By. Enail Required. Approved By. Approved By. Earl Y. Mc. Millor/N. Pl. Millor Far No. Millor/N. Pl. Millor By. Earl Y. Mc. Millor/N. Pl. Millor Far No. Barnel Description(Location Bate Inter Data Time Print Earl Far Number of Containers Per Analysis Requested or Field Reach Below. Far Number of Sampolic Caston Bar Harbi 1715 G SM I Inter Far Number of Sampolic Caston Bar Harbi 1715 G SM I I Far Sun - SA3 - Suvor Bar Harbi 1715 G SM I I I Far Sun - SA3 - Suvor Bar Harbi 1715 G SM I I I Far Sun - SA3 - Suvor Bar Harbi 1725 G SM I I I Far Sun - SA3 - Suvor Bar Harbi 1725 G SM I I I Far Su		COC/Labels Complete/Accurate?
Image: Construction Approved Bit: Construction Approved Bit: Construction Inse Required: Approved Bit: Construction Approved Bit: Construction Approved Bit: Construction Inse Required: Approved Bit: Construction Approved Bit: Construction Approved Bit: Construction Inse Required: Approved Bit: Construction Approved Bit: Construction Approved Bit: Construction Inse Required: Approved Bit: Construction Approved Bit: Construction Approved Bit: Construction Sample Description Sample Description Sample Bit: Construction Sample Bit: Construction Sample Description Sample Description Sample Bit: Construction Sample Bit: Construction Sample Description Sample Description Sample Bit: Construction Sample Bit: Construction Sample Description Sample Description Sample Bit: Construction Sample Bit: Construction Sample Description Sample Description Sample Bit: Construction Sample Bit: Construction Amolicition Sample Description Sample Bit: Construction Sample Bit: Construction Amolicition Sample Description Sample Bit: Construction Sample Bit: Construction Amolicition Sample Bit: Construction Sample Bit: Construction Sample Bit: Construction Amolicition Sample Bit: Construction Sample Bit: C		Cont. in Good Cond.?
Date Required: Approved BY: C & K + K + V Family Simith (2) from: com Family Simith (2) from: com C & K + K + V Family Simith (2) from: com Family Simith (2) from: com C & K + K + V Family Simith (2) from: com Sample Million P million Sample Million Barnin P million P million Sample Million Barnin P million P million Sample Million D = 14401 15415 C SD 1 F TSW -SA1-06 B -14401 15415 C SD 1 F FTSW -SA1-07 B -14401 15415 C SD 1 F FTSW -SA1-08 B -14401 15415 C SD 1 F FTSW -SA1-10 B -14401 15415 C SD 1 F FTSW -SA1-10 B -14401 1225 G SM 1 1 F FTSW -SA3-SWU2-ming 3-14401 1725 G SM 1 1 1 F FTSW -SA3-SWU2-ming 3-14401 1725 G SM 1 1 1 F FTSW -SA3-SWU2-ming 3-14401 1725 G SM 1 1 1 F FTSW -SA3-SWU2-ming 3-14401 1325 G SM 1 1 1 F FTSW -SA3-SWU2-ming 3-1401 1725 G SM 1		Correct Containers /
Fair No. No. No. No. No. Fair W. No. No. No. No. No. No. Sample Description/Location Sample Millary 0 6 6 8 8 8 A FTSUM Sample Vector Date Time 9 7 Enter Number of Containers Par Analysis Requested of Field Results Below A FTSW SAT-106 S-144011S415 SO 1 1 1 1 A FTSW SAT-106 S-144011S415 SO 1 1 1 1 A FTSW SAT-10 S-14401125 G N 1 1 1 A FTSW SAT-210 S-144011725 G N 1 1 1 A FTSW SAT-5NOL S-144011725 G N 1 1 1 A FTSW SAT-5NOL S-144011725 G N 1 1 1 A FTSW SAT-5NOL S-144011725 G N 1 1 1 A FTSW SAT-5NOL S-144011725 G N 1 1 1 A <t< td=""><td></td><td>Correct Sample Volumes /</td></t<>		Correct Sample Volumes /
Sample Description/Coation Sample Millary S H J		HeadspaceVolatiles?
Image: contraction of the horizon of the ho		Couriefritracking #: 1941050
1. FTSW SA1-06 3-14011545 50 1 1 1.1 FTSW -SA1-06 3-14011545 50 1 1 1.1 FTSW -SA1-00 3-14011545 50 1 1 1.1 FTSW -SA1-10 3-14011545 50 1 1 1.1 FTSW -SA3-SWOL 3-14011715 59 50 1 1 1.1 FTSW -SA3-SWOR-mag 3-14011725 65 50 1 1 1.1 FTSW -SA3-SWOR-mag 3-14011725 65 50 1 1 1.1 State 3-14011725 50 50 1 1 1.1 3-1500125 50 1 1 1 1 1.1 3-15011205 50 1 1 1 1 1.1 3-15011205 50 1 1 1 1 1.1 3-15011205 50 1 1 1 1 1.1 3-15011205 50 1 1 1 1 1.1 1.1 1 1 1 1 1 1.1 1.1 1 1 1 1 1 1.2 1.2 1.2	uested or Field Results Below.	Sam
FTSW-SH1-C9 3-14011545 50 1 1 1 FTSW-SA1-10 3-14011515 50 1 1 1 1 FTSW-SA3-SW01 3-14011715 65 1 1 1 1 1 FTSW-SA3-SW01 3-14011715 65 1 1 1 1 1 1 FTSW-SA3-SW01 3-14011725 65 5 1 1 1 1 1 1 FTSW-SA3-SW02-mag 3-14011725 6 5 1 <td></td> <td>I Jar total</td>		I Jar total
11 FTSW-SA3-10 3-14-07 11005 C So 1 1 1 11 FTSW-SA3-SWOL 3-14-07 1715 G5N 1 1 1 1 11 FTSW-SA3-SWOL 3-14-07 1715 G5N 1 1 1 1 1 11 FTSW-SA3-SWOL 3-14-07 1725 G Sw 1		I Jar total
11. FTSW -SA3-SWO1 3-14-07 1715 595 1 1 12. FTSW -SA3-SWO1 3-14+07 1725 693 1 1 12. FTSW -SA3-SWO2-m3 3-14+07 1725 653 1 1 12. FTSW -SA3-SW02-m3 3-14+07 1725 653 1 1 14. FTSW -SA3-SW02-m3 3-14+07 1725 653 1 1 14. FTSW -SA3-SW02- 3-14+07 1725 653 1 1 14. FTSW -SA3-SW02 3-14+07 1725 653 1 1 14. FTSW -SA3-SW02 3-14+07 1725 650 1 1 1 17. 515:001 120.5 50 1 1 1 1 15. FTSW -SA3-14 3:15:07 120.5 50 1 1 16. FTSW -SA3-14 3:15:07 120.5 1 1 1 17. BTSW -SA3-14 3:15:07 120.5 50 1 1 17. D 13:16 56 1 1 1 14. D FTSW -SA3-14 3:15:05 1005 14. D		I Jar total
6F TSW - S.A.3-SW02-m 3-14-011725 6 SW 1 1		I dar total
IFTSW - SA3-SWD-msg 3-14-01125 6 SW 1 1 IFTSW - SA3-SWD2-msg 3-14-01125 6 SW 1 1 IFTSW - SA3-SWD2 3-15-01 205 50 1 1 IFTSW - SA3-13 3-15-01 205 50 1 1 IF PTSW - SA3-14 3-15-01 205 50 1 IF PTSW - SA3-14 3-15-01 205 1 1 IF PTSW - SA3-14 3-15-01 2 1 1 IF PTSW - SA3-14 3-15-01 2 1 1 SalleLED BY (Please Print): N : Lol L ULL 1 1 1 Aute Smrith Sulfue fulls France 1 1		I Jar totul
FTSIN-SA3-SNO2 3-1407 1725 6 N 1 N #FTSIN-SR2 3-1501 1205 5 1 1 1 N #FTSIN-SR2 3-1501 1205 5 1 1 1 N #FTSIN-SR2 3-1501 1205 5 1 1 1 N #FTSIN-SR3 3-1501 1205 5 1 1 1 N #FTSIN-SR3 3-1503 1005 5 1 1 1 1 #FTSIN-SR3 3-1503 1005 1005 1 1 1 Britishin: N.: w/u <u td=""> 3-1503 1 1 1 1 1 Builteed Britishin: N.: w/u<u td=""> 1 1 1 1 1 1 AuleSmith Sulfue Iclib Reveree Britishin: M 5 1 1 1</u></u>	N'STREE	I Jar total
#FTSW-#RRT-11 3-15-00 12.0.5 C 50 1 <th1< th=""> 1 <th1< th=""> 1 1 1<td></td><td>I Jar total</td></th1<></th1<>		I Jar total
FTSW-SA3-13 3-15-03 1955 C SO 1 1 1 P FTSW-SA3-14 3-15-03 1955 C SO 1 1 1 1 P FTSW-SA3-14 3-15-03 1955 C SO 1 1 1 1 1 SAMPLED BY (Please Print): N: Lot L 3-15-03 15 1 <	N WILL IN	2 Jars total
10 FTSW-SA3-14 3:15/09 1895 C DO 1 6 1 1 23-15/09 1895 C DO 1 2 1 6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		I Jar total
SAMPLED BY (Please Print): W): W/L U) KU/Z LOGGED BY(sequence): ALULU/U/U/L = 3-16-07 = 4 MM = 18 Baule Smithth Shully IG/L REVIEWED BY(sequence): 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0		4
		Standard State Samples SOWA Forms ALSI Field Services Collected In Regelered? ALSI Field Services
		CLP-#ke NCyeePretwo
	e0 s	NJ-Reduced NJ - 2m - Labor
2 Author Dale 3/1 900 3	900 00	NJ-Full NY Tree Composite
3		A Partial Rental
66 66 C	C. C. Control	f yes, termetippe Other
ž		e the pusso
9 10 Crteria Required	DOD Criteria R	equired?
Grab; C=Composite "Matrix: AI=AIr; DW=Drinking Water; GN=Groundwater; OI=OII; OL=Other Liquid; SL=Sludge; SO=Soli; WP=Wipe; WW=Water)	ar Liquid; SL=Sludge; SO=Soll; WP=Wipe; V	MM=Wastewater

All Contraction in trigger + Fail (3 contract a Dependent are + industrient in the All (3 contract Friend Rame: The All (1) The All (3 contract All (1) 2 (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	SAMPLER INSTRUCTIONS ON THE BACK. ALSI QUODE #: SAMPLER INSTRUCTIONS ON THE BACK. Receipt information (completed by Receiving Lab) SAMPLER INSTRUCTIONS ON THE BACK. Receipt information (completed by Receiving Lab) SAMPLER INSTRUCTIONS ON THE BACK. Receipt information (completed by Receiving Lab) SAMPLER INSTRUCTIONS ON THE BACK. Receipt information (completed by Receiving Lab) AMALYSES/METHOD REQUESTED No. of Coolerr Temp: // Therm. ID: 5/10-23.55 AMALYSES/METHOD REQUESTED No. of Coolerr Temp: // Therm. ID: 5/10-23.55 AMALYSES/METHOD REQUESTED No. of Coolerr Temp: // Therm. ID: 5/10-23.55 AMALYSES/METHOD REQUESTED No. of Coolerr Temp: // Therm. ID: 5/10-23.55 AMALYSES/METHOD REQUESTED Concel temps of the temp of the temp of t
Me. Marked M. Pirkine "Continue 300 E Lombard St. "Continue 200 E Lombard St. "Montinue 200 E Lombard St. "Montinue 200 E Lombard St. "Montinue 200 E Lombard IAT is 10-12 business days. "Montinue Montinue Approval and surcharges. "Montinue MPF "Montinue "Montinue <th>Receipt Information (c Cooler Temp: / No. of Coolers: Custoby Seals (if present) Seals (if present) Seals (if present) Seals (if present) Seals Received Coortect Cont Correct Preset Correct Preset Correct Preset (1 d. d. d. d. d.</th>	Receipt Information (c Cooler Temp: / No. of Coolers: Custoby Seals (if present) Seals (if present) Seals (if present) Seals (if present) Seals Received Coortect Cont Correct Preset Correct Preset Correct Preset (1 d. d. d. d. d.
Address: 300 E. Lombarcd St	Cooler Temp: / No. of Coolers: Custody Seals (if present) Seals Received Coort in Good Connect Complete/Ac Connect Sample Vo Correct Preset Correct Sample Vo Sample/O
Some Some Solutions Minimized Minimized Minimized Contact: Data Standard TAT is 10-12 business days. Phonest: -1/D 332-490071 Project Namelt: 21(B - 09-3 Ent Steam Minimized Fax No. Minimized Minimized Minimized Sample Description/Location Sample Minimized Minimized Minimized (a tul appear on the lab report) Date Time Minimized Minimized (a tul appear on the lab report) 21(H of 1 Minimized Minimized (a tul appear on the lab report) 21(H of 1 Minimized	No. of Coolers: Custoby Seals (if present) Seals (if present) Seals Received Coort in Good Contect Cont Correct Sample Vo Correct Sample Vo Correct Sample Vo Correct Sample Vo
Contact: Tavid Smith Phones: 4/10 332- 4/8,054 Project Namels: 21(8 - 033 Eart Strewert Bill To: MPT Rush Subject to ALSI approval and surcharges. Date Required: Approved By: Tat Rush Subject to ALSI approval and surcharges. Date Required: Approved By: Email: N. Clearnith Colimities to comment Early No. Matcolim Printics Email: N. No. Matcolim Printics Early No. Matcolim Printics	Custody Seals Present? If present Seals Intact? Received on Ico? Received on Ico? Received on Ico? Received on Ico? Cont. In Good Cond.? Cont. In Cond.? Sample/COC Comments
Phomet: -/IO 332-USOCH Project Namet: 21(8-043 Froject Namet: 21(8-043 Bill To: Moreal-Standard TAT is 10-12 business days. Tat Moreal-Standard TAT is 10-12 business days. Date Required: Approved By: Date Required: Approved By: Email? V. Sample Description/Location Sample Miliary 0 (as i will apper on the lin lengent) Date FTSW SR3 AFTSW SR4 AFTSW SR5	(if pre cocluaters c. correct correct correction trackin
Project Namelit: 2118 - Cq 3 Fart Stewart Bill To: M. PT Ital Monmal-Standard TAT is 10-12 business days. Bill To: M. PT Date Required: Approved By: Email Y. clearn th C pinnit - ccm Fax? Y No: Y No: Multity C claim Fax? Y No: Fax? Proved By: Fax? Y No: Fax? Y No: Sample Description/Location Date I FTSW SRCPC Sc FTSW SRCP Sc FTSW	Cochabels C Correct Correct Correction Her Counter/Trackin
Bill To: W.P.T. IAT Mormal-Standard TAT is 10-12 business days. TAT Mormal-Standard TAT is 10-12 business days. Date Required: Approved BY: Appro	Cochabels C Correct Correct Correct Contert CountertTrackin
TAT Momain-Standard TAT is 10-12 business days. Tat Rush-Subject to ALSI approval and surcharges. Date Required: Approved By: Date Required: Approved By: Email? Y Email? Y Sample Description/Location Sample Military C Sample Description/Location Sample Approved By: No: Approved By: Approved By: Fax Y No: Matrix Colstnn: Approved By: Sample Description/Location Sample Approved By: Approved By: Sample Description/Location Sample Approved By: Approved By: Sample Description/Location Date Approved By: Approved By: Sample Description/Location Date Approved By: Approved By: Approved By: Approved By: Amount and suchanges Approved By: Amount and approved By: Approved By:	Contect Contect Contect Counter/Trackin
Rush-Subject to ALSI approval and surcharges. Approved By: Date Required: Approved By: Email? P: Email? P: Email? P: Fax? P: P: P: P: P: P: P: P: P: Sample Description/Location P: Sample Description/Location Date FTSW SAP P: P: P: <td>Correct Correct</td>	Correct Correct
Date Required: Approved By: Email \mathbb{P} ************************************	Contect Contection Contecting
Email? X-Y closen: H. Colm. H.m. Cern Fax -Y No: Malcolm. H.m. Cern Closen: H. Colm. No. Fax -Y No: Malcolm. H.m. Cern C No. No. Sample Description/Location Sample Millary C No. No. No. Sample Description/Location Sample Millary C No. No. No. FTSM SRD BFS 3:8707 1875 Sc 1 FTSM SRD BFS 3:8707 1830 Sc 1 FTSM SRD 1 <td>Courter/Trackin</td>	Courter/Trackin
Sample Description/Location Sample Military C Military Military <th< td=""><td>CounterTrackin</td></th<>	CounterTrackin
(as i will appear on the lab report) Date Time P P 1 FTSW - SA3 - 14 MSD / / / / / / / / / / / / / / / / / / /	1 dar
1 FTSW-SA3-HMS 1885 38676 1 8 FTSW-SA3-HMS 1846 3.8676 1 8 FTSW-SA3-13 1846 13.867 2 8 FTSW-SA3-13 1846 1830 2 8 FTSW-SA3-13 1846 1830 2 8 FTSW-SA3-13 1846 1930 2 8 11 11 5 1 8 11 11 5 1 9 10 3.140 100 1	1 chr 1 dar 1 dar
P FTSW - SA3-14 mSD 18 FK 3-859 C SO 1 1 5 FTSW - SA3-13 REPT 18 20 C SO 1 1 5 FTSW - SA3-13 REPT 18 20 C SO 1 1 6 FTSW - SA3-13 REPT 18 20 C SO 1 1 6 FTSW - SA3-13 3-140 1870 C SO 1 1 6 FTSW - SA3-5002(MD) 3-140 1870 S 1 1 6 FTSW SAV-7 1-145 1870 S 1 1 8 9 3-140 1870 3-140 1870 S 1 9 9 3-140 1870 1 1 1 1 1 3-140 1870 S 1 1 8 9 3-140 1 1 1 1 9 9 10 1 1 1 1	
6 FTSW -SA3-13 REPT 1820 1 1 6 FTSW -SA3-13 3-1502 1820 50 1 1 6 FTSW -SA3-13 3-1502 1820 50 1 1 6 FTSW -SA3-13 3-1502 1820 50 1 1 6 FTSW -SA3-5102 3-140 1870 5 1 1 7 FTSW SA1 3-140 1870 5 1 1 8 1 1 3-140 1870 5 1 1 9 10 10 10 10 1 1 1	
#FTSW - SA3 - 1210 3-15-03 18:30 6 80 [1 F (1311-543-5)02(120) 3-14-01 175 5 5 1 F (1311-543-5001-3) 3-14-01 1800 5 1 1 (51311-543-5001-3) 3-14-01 1800 5 1 1 (51311-543-5001-5000 5 100000000	
8 FT3U-SH2-SIDO2(20) 3-14-01 (745 5 8 FTSW-SH2-SIDO2(20) 3-14-02 (800 8 8 9 10 10	Idar total
8 FTSM-SH3_SDOI 3-142 1800 8 FTSM-SH7-SDOI - D 3-1496 1800 8 9 10 10	a it i lo .) raid but a
7 (5) 3 U - SA-> SD01 - D 3.1496 1800	1
I DOOLD DU	AN SHAP IN THE
Anime LED BI (Frages rimit) Do COL & CON DO ONE BI (Signamus: ANAL / CON	Let 2 イビの1 2 年代、 第一Standard State Services SDWA Forms ALSI Field Services Contexted in Security ALSI Field Services
Darlid Sinith, Chall Kall REVIEWED BYINGRAMMI	
Relinquished By / Company Name Date Time Reenviced By / Company Name	Date Time
1 2 Aller	2/ 3/4 gas a Duriu w m
3	
5	B B V Is year, homent space Other
2	Base (M pase
9 10	10 Criteria Required? U.L.C.

www.analyticailab.com

PROJECT TITLE Malcolm Pirnie – MD

Fort Stewart - GA

LABORATORY WORK ORDERS 9678547

SAMPLES COLLECTED March 13-15, 2007

LIMS-QC DATA PACKAGE

Prepared by: Analytical Laboratory Services, Inc.

Date:

04/12/07

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

Certificate of Analysis

Project Name:	FT STEWART -GA - REV 022607	Workorder:	9678547
Purchase Order:		Workorder ID:	FT STEWART -GA - REV 022607

Mr. David Smith Malcolm Pirnie-MD 300 East Lombard Street Suite 610 Baltimore, MD 21202

April 12, 2007

Dear Mr. Smith,

Enclosed are the analytical results for samples received by the laboratory on Saturday, March 17, 2007

ALSI is a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAC.

If you have any questions regarding this certificate of analysis, please contact Tonya Hironimus (Project Coordinator) or Raymond Martrano (Laboratory Manager) at (717) 944-5541.

Please visit us at www.analyticallab.com for a listing of ALSI's NELAC accreditations and Scope of Work, as well as other links to Water Quality documentation on the internet.

This laboratory report may not be reproduced, except in full, without the written approval of ALSI.

Analytical Laboratory Services, Inc.

Raymond J. Martrano Laboratory Manager

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

Discard Date: 06/11/2007

SAMPLE SUMMARY

Workorder: 9678547 FT STEWART -GA - REV 022607

Leb ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
9678547001	FTSW-HGC-01	Solid	3/13/07 13:55	3/17/07 09:00	Customer
9678547002	FTSW-AA90MM2-02	Solid	3/13/07 15:00	3/17/07 09:00	Customer
9678547003	FTSW-AA1-03	Solid	3/13/07 16:05	3/17/07 09:00	Customer
9678547004	FTSW-AA-Ò3D	Solid	3/13/07 16:05	3/17/07 09:00	Customer
9678547005	FTSW-AA-04	Solid	3/13/07 16:20	3/17/07 09:00	Customer
9678547006	FTSW-AA1-05	Solid	3/13/07 16:45	3/17/07 09:00	Customer
9678547007	FTSW-AA1-06	Solid	3/13/07 17:00	3/17/07 09:00	Customer
9678547008	FTSW-SA1-07	Solid	3/14/07 14:10	3/17/07 09:00	Customer
9678547009	FTSW-SA1-08	Solid	3/14/07 14:50	3/17/07 09:00	Customer
9678547010	FTSW-SA1-09	Solid	3/14/07 15:45	3/17/07 09:00	Customer
9678547011	FTSW-SA1-10	Solid	3/14/07 16:05	3/17/07 09:00	Customer
9678547012	FTSW-SA3-SW01	Water	3/14/07 17:15	3/17/07 09:00	Customer
9678547013	FTSW-SA3-SW02	Water	3/14/07 17:25	3/17/07 09:00	Customer
9678547014	FTSW-HRT-11	Solid	3/15/07 12:05	3/17/07 09:00	Customer
9678547015	FTSW-SA3-13	Solid	3/15/07 18:45	3/17/07 09:00	Customer
9678547016	FTSW-SA3-14	Solid	3/15/07 18:55	3/17/07 09:00	Customer
9678547017	FTSW-SA3-12	Solid	3/15/07 18:30	3/17/07 09:00	Customer
9678547018	FTSW-SA3-12D	Solid	3/15/07 18:30	3/17/07 09:00	Customer
9678547019	FTSW-SA3-SD02	Solid	3/14/07 17:45	3/17/07 09:00	Customer
9678547020	FTSW-SA3-SD01	Solid	3/14/07 18:00	3/17/07 09:00	Customer
9678547021	FTSW-SA3-SD01-D	Solid	3/14/07 18:00	3/17/07 09:00	Customer

Workorder Comments:

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

SAMPLE SUMMARY

RT -GA - REV 022607	Discard Date: 06/11/2007
Matrix Date Collected Date	te Received Collected By
Matrix Date Collected Date	le Received Collected By

Notes

- -- Samples collected by ALSI personnel are done so in accordance with the procedures set forth in the ALSI Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.

Standard Acronyms/Flags

- J, B Both flags indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547001 FTSW-HGC-01		Date Collected:3/13/2007 13:55Matrix:SolidDate Received:3/17/2007 09:00								
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
EXPLOSIVES	· · · · · · · · · · · · · · · · · · ·							*******			
2-Amino-4,6-[Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
4-Amino-2,6-c		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	A	
1,3-Dinitrober	izene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
2,4-Dinitrotolu	iene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
2,6-Dinitrotolu	iene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
HMX		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
Nitrobenzene		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
4-Nitrotoluene	•	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
2-Nitrotoluene)	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
3-Nitrotoluene	•	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
RDX		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
Tetryl		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
1,3,5-Trinitrob	enzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
2,4,6-Trinitrote	oluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELC	А	
Surrogate Red	coveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorob	enzene (S)	97	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 15:33	ELÇ	А	
WET CHEMIS	ſRY										
Moisture		18.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		81.4	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A	
METALS											
Aluminum, Tol	tal	15500	mg/kg	10	SW846 6010B	3/22/07	CMD	3/23/07 07:45	TED	A1	
Antimony, Tota	al	0.011J	mg/kg	0.15	SW846 6020	3/23/07	CMD	3/29/07 16:52	AJB	A2	
Copper, Total		16	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 07:45	TED	A1	
Lead, Total		12.5	mg/kg	0.15	SW846 6020	3/23/07	CMD	3/29/07 16:52	AJB	A2	
Zinc, Total		175	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 07:45	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547002 Sample ID: FTSW-AA90N	IM2-02			ollected: 3/13/2007 15 eceived: 3/17/2007 09						
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	EL¢	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	Α	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	Α	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
НМХ	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	Α	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	Α	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	Α	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	98	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 16:19	ELC	Α	
WET CHEMISTRY										
Moisture	39.1	%	0.1	· SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	60.9	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A	
METALS										
Aluminum, Total	3960	mg/kg	13	SW846 6010B	3/22/07	CMD	3/23/07 07:51	TED	A1	
Antimony, Total	0.0070J	mg/kg	0.20	SW846 6020	3/23/07	CMD	3/29/07 16:55	AJB	A2	
Copper, Total	1J	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 07:51	TED	A1	
Lead, Total	6.5	mg/kg	0.20	SW846 6020	3/23/07	CMD	3/29/07 16:55	AJB	A2	
Zinc, Total	25	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 07:51	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: 9678547003			Date	Collected: 3/13/2007 16	:05		Matrix: Solid			
Sample ID: FTSW-AA1-03	3 Date Received: 3/17/2007 09:00									
Parameters	Results Flag	Units	RDL	Melhod	Prepared	Ву	Analyzed	Ву	Cntr	RegLm
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
НМХ	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	Α	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	99	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 17:05	ELC	А	
WET CHEMISTRY										
Moisture	19.8	%	0.1	· SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	80.2	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
WETALS										
Aluminum, Total	3100	mg/kg	11	SW846 6010B	3/22/07	CMD	3/23/07 07:57	TED	A1	
Antimony, Total	0.055J	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 16:58	AJB	A2	
Copper, Total	1J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 07:57	TED	A1	
Lead, Total	65.3	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 16:58	AJB	A2	
Zinc, Total	5	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 07:57	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547004 Sample ID: FTSW-AA-03	D	Date Collected:3/13/200716:05Matrix:SolidDate Received:3/17/200709:00								
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Вy	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELĊ	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	Α	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	Α	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	Α	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	Α	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	102	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 17:51	ELC	Α	
WET CHEMISTRY										
Moisture	20.9	%	0.1	· SM20-2540 G			3/19/07 21:00	MW O	A	
Total Solids	79.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	3010	mg/kg	8	SW846 6010B	3/22/07	CMD	3/23/07 08:13	TED	A1	
Antimony, Total	0.030J	mg/kg	0.23	SW846 6020	3/23/07	CMD	3/29/07 17:00	AJB	A2	
Copper, Total	1J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:13	TED	A1	
Lead, Total	67.7	mg/kg	0.23	SW846 6020	3/23/07	CMD	3/29/07 17:00	AJB	A2	
Zinc, Total	5	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:13	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547005 Sample ID: FTSW-AA-04					ollected: 3/13/2007 16 eceived: 3/17/2007 09		I	Matrix: Solid			
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
EXPLOSIVES											
2-Amino-4,6-Dinitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
4-Amino-2,6-dinitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
1,3-Dinitrobenzene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
2,4-Dinitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
2,6-Dinitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
НМХ	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
Nitrobenzene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
4-Nitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
2-Nitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
3-Nitrotoluene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
RDX	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
Tetryl	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
1,3,5-Trinitrobenzene	ND		mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	Α	
2,4,6-Trinitrotoluene	NÐ		mg/kg	0.25	SW846 8330A	3/24/07	ELÇ	3/27/07 18:37	ELC	Α	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	100		%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 18:37	ELC	А	
WET CHEMISTRY											
Moisture	3.5		%	0.1	· SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	96.5		%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Aluminum, Total	2700		mg/kg	8	SW846 6010B	3/22/07	CMD	3/23/07 08:19	TED	A1	
Antimony, Total	0.20	1	mg/kg	0.12	SW846 6020	3/23/07	CMD	3/29/07 17:03	AJB	A2	
Copper, Total	2J		mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:19	TED	A1	
Lead, Total	19.8	1,2	mg/kg	0.12	SW846 6020	3/23/07	CMD	3/29/07 17:03	AJB	A2	
Zinc, Total	12		mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:19	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547006 Sample ID: FTSW-AA1-0	95			ected: 3/13/2007 16 eived: 3/17/2007 09			Matrix: Solid			
Parametera	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
EXPLOSIVES										
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	EL.C	3/27/07 20:55	ELC	А	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	Α	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
НМХ	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	Α	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	Α	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELÇ	Α	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	Α	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	Α	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	Α	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	100	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 20:55	ELC	А	
WET CHEMISTRY										
Moisture	27.6	%	0.1 ·	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	72.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Aluminum, Total	4790	mg/kg	13	SW846 6010B	3/22/07	CMD	3/23/07 08:36	TED	A1	
Antimony, Total	0.074J	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:23	AJB	A2	
Copper, Total	2J	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 08:36	TED	A1	
Lead, Total	4.8	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:23	AJB	A2	
Zinc, Total	9	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 08:36	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID:	9678547007			Date Co	bliected: 3/13/2007 17	:00		Matrix: Solid			
Sample ID:	FTSW-AA1-06			Date Re	eceived: 3/17/2007 09	:00					
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLml
EXPLOSIVES						alle de la compa				1111	10 (1 ana 11) - 110
2-Amino-4,6-	Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
4-Amino-2,6-	dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	Α	
1,3-Dinitrobe	nzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	Α	
2,4-Dinitrotol	uene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2,6-Dinitrotol	uene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
НМХ		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
Nitrobenzene	•	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
4-Nitrotoluen	e	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2-Nitrotoluen	e	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
3-Nitrotoluen	e	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	Α	
RDX		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
Tetryl		ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	Α	
1,3,5-Trinitrol	oenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
2,4,6-Trinitrot	oluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	А	
Surrogate Re	coveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochloro	benzene (S)	104	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 21:41	ELC	A	
WET CHEMIS	TRY										
Moisture		5.4	%	0.1	· SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		94.6	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A	
METALS											
Aluminum, To	otal	7830	mg/kg	11	SW846 6010B	3/22/07	CMD	3/23/07 08:42	TED	A1	
Antimony, Tol		0.016J	mg/kg	0.17	SW846 6020	3/23/07	CMD	3/29/07 17:26	AJB	A2	
Copper, Total		0.8J	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:42	TED	A1	
Lead, Total		4.4	mg/kg	0.17	SW846 6020	3/23/07	CMD	3/29/07 17:26	AJB	A2	
Zinc, Total		4	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:42	TED	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547008 FTSW-SA1-07			Date Collected: 3/14/2007 14:10 Date Received: 3/17/2007 09:00				Matrix: Solid				
Farameters		Results Flag	Units	RDL	Method	Prepared	By	Analyzed	Ву	Cntr	RegLmt	
WET CHEMIS	TRY .											
Moisture		35.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А		
Total Solids		64.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A		
METALS												
Antimony, Tota	al	0.056J	mg/kg	0.31	SW846 6020	3/23/07	CMD	3/29/07 17:29	AJB	A2		
Copper, Total		2J	mg/kg	3	SW846 6010B	3/22/07	CMD	3/23/07 08:48	TED	A1		
Lead, Total		6.8	mg/kg	0.31	SW846 6020	3/23/07	CMD	3/29/07 17:29	AJB	A2		

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547009 FTSW-SA1-08				Date Collected: 3/14/2007 14:50 Date Received: 3/17/2007 09:00				Matrix: Solid					
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt			
WET CHEMIS	TRY .													
Moisture		12.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А				
Total Solids		87.9	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A				
METALS														
Antimony, Tot	al	0.010J	mg/kg	0.21	SW846 6020	3/23/07	CMD	3/29/07 17:32	AJB	A2				
Copper, Total		6	mg/kg	2	SW846 6010B	3/22/07	CMD	3/23/07 08:54	TED	A1				
Lead, Total		6.1	mg/kg	0.21	SW846 6020	3/23/07	CMD	3/29/07 17:32	AJB	A2				

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547010 FTSW-SA1-09				collected: 3/14/2007 15: teceived: 3/17/2007 09:			Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	By	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY 、										
Moisture		30.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
Total Solids		69.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tot	ai	0.019J	mg/kg	0.28	SW846 6020	3/23/07	CMD	3/29/07 17:35	AJB	A1	
Copper, Total		0.8J	mg/kg	3	SW846 6010B	3/26/07	CMD	3/28/07 12:13	JWK	A2	
Lead, Total		5.2	mg/kg	0.28	SW846 6020	3/23/07	CMD	3/29/07 17:35	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547011 FTSW-SA1-10				ollected: 3/14/2007 16 eceived: 3/17/2007 09		ſ	Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture		32.6	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	Α	
Total Solids		67.4	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tot	al	0.017J	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:38	AJB	A1	
Copper, Total		1J	mg/kg	3	SW846 6010B	3/26/07	CMD	3/28/07 12:19	JWK	A2	
Lead, Total		7.9	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:38	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: Sample ID:	9678547012 FTSW-SA3-SW01			Date Collected: 3/14/2007 17:15 Matrix: Wat Date Received: 3/17/2007 09:00 100					r			
Parameters	Re	sults Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt	
METALS Antimony, Tota Copper, Total Lead, Total	0.0))05J)003J	mg/L mg/L mg/L	0.0020 0.011 0.0020	SW846 6020 SW846 6010B SW846 6020	3/22/07 3/22/07 3/22/07	CMD CMD CMD	3/29/07 10:56 3/26/07 13:11 3/29/07 10:56	AJB JWK AJB			

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547013 FTSW-SA3-SV	V02			cted: 3/14/2007 17 ived: 3/17/2007 09			Matrix: Wate	r		
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
METALS											
Antimony, Tota	ıl	ND	mg/L	0.0020	SW846 6020	3/22/07	CMD	3/29/07 11:01	AJB	A2	
Copper, Total		0.005J	mg/L	0.011	SW846 6010B	3/22/07	CMD	3/26/07 13:15	JWK	A1	
Lead, Total		0.0008J	mg/L	0.0020	SW846 6020	3/22/07	CMD	3/29/07 11:01	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID: 9678547014 Sample ID: FTSW-HRT-11	I			ed: 3/15/2007 12 ed: 3/17/2007 09			Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	By	Analyzed	By	Cnlr	RegLmt
EXPLOSIVES									_	
2-Amino-4,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
4-Amino-2,6-dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	Α	
1,3-Dinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	Α	
2,4-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
2,6-Dinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
HMX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
Nitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
4-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	Α	
2-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	Α	
3-Nitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	Α	
RDX	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
Tetryl	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
1,3,5-Trinitrobenzene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
2,4,6-Trinitrotoluene	ND	mg/kg	0.25	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
Surrogate Recoveries	Results Flag	Units	Limits	Method	Prepared	By	Analyzed	By	Cntr	RegLmt
3-Nitrochlorobenzene (S)	109	%	50-150	SW846 8330A	3/24/07	ELC	3/27/07 22:27	ELC	А	
WET CHEMISTRY										
Moisture	23.8	%	0.1 ·	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	76.2	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A	
METALS										
Aluminum, Total	1390	mg/kg	11	SW846 6010B	3/26/07	CMD	3/28/07 12:25	JWK	A2	
Antimony, Total	0.83	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:40	AJB	A1	
Copper, Total	1J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 12:25	JWK	A2	
Lead, Total	25.8	mg/kg	0.26	SW846 6020	3/23/07	CMD	3/29/07 17:40	AJB	A1	
Zinc, Total	2J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 12:25	JWK	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547015 FTSW-SA3-13				e Collected: 3/15/2007 18:45 e Received: 3/17/2007 09:00		I	Matrix: Solid			
Parameters	TU.N. 201	Results Flag	Units	RDL	Method Pre	epared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY .	111 - 111 -							*****		
Moisture		26.7	%	0.1	\$M20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		73.3	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A	
METALS											
Antimony, Tot	al	0.026J	mg/kg	0.21	SW846 6020 3/2	23/07	CMD	3/29/07 17:49	AJB	A1	
Copper, Total		1J	mg/kg	2	SW846 6010B 3/2	26/07	CMD	3/28/07 12:31	JWK	A2	
Lead, Total		8.6	mg/kg	0.21	SW846 6020 3/2	23/07	CMD	3/29/07 17:49	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547016 FTSW-SA3-14					e Collected: 3/15/2007 18:55 e Received: 3/17/2007 09:00		I	Matrix: Solid			
Parameters		Results	Flag	Units	RDL	Method Prep	pared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY .											
Moisture		31.2		%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		68.8		%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS												
Antimony, Tot	al	0.017J	1	mg/kg	0.15	SW846 6020 4/2	2/07 C	CMD	4/4/07 16:40	AJB	A3	
Copper, Total		0.8J		mg/kg	2	SW846 6010B 3/2	26/07 C	CMD	3/28/07 12:37	JWK	A2	
Lead, Total		4.6		mg/kg	0.15	SW846 6020 4/2	2/07 C	MD	4/5/07 03:08	AJB	A3	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547017 FTSW-SA3-12				lected: 3/15/2007 18: ceived: 3/17/2007 09:			Matrix: Solid			
Parameters		Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	By	Cntr	RegLml
WET CHEMIS	TRY .										
Moisture		27.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids		72.1	%	0.1	SM20-2540 G			3/19/07 21:00	мw О	A	
METALS											
Antimony, Tot	al	0.072J	mg/kg	0.24	SW846 6020	3/23/07	CMD	3/29/07 18:06	AJB	A1	
Copper, Total		1J	mg/kg	3	SW846 6010B	3/26/07	CMD	3/28/07 13:23	JWK	A2	
Lead, Total		6.7	mg/kg	0.24	SW846 6020	3/23/07	CMD	3/29/07 18:06	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547018 FTSW-SA3-12D			Date Collecte Date Receive				Matrix: Solid			
Parameters	Ŗ	esults Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY										
Moisture	2	8.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	7	1.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al 0	.039J	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:09	AJB	A1	
Copper, Total	1	J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:29	JWK	A2	
Lead, Total	6	.6	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:09	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547019 FTSW-SA3-SI	002		Date Collected: 3/14/2007 17:45 Matrix: Solid Date Received: 3/17/2007 09:00							
Parameters		Results Flag	Units	RDL	Method	Prepared	By	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY .										
Moisture		23.5	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
Total Solids		76.5	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS											
Antimony, Tota	al	0.017J 1	mg/kg	0.24	SW846 6020	3/26/07	CMD	3/29/07 18:26	AJB	A2	
Copper, Total		2J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:35	JWK	A1	
Lead, Total		5.4	mg/kg	0.24	SW846 6020	3/26/07	CMD	3/29/07 18:26	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547020 FTSW-SA3-SD01			ollected: 3/14/2007 18 eceived: 3/17/2007 09			Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	By	Cntr	RegLml
WET CHEMIS	TRY .									
Moisture	16.7	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	А	
Total Solids	83.3	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Antimony, Tota	al 0.084J	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:12	AJB	A1	
Copper, Total	0.4J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:52	JWK	A2	
Lead, Total	1.4	mg/kg	0.19	SW846 6020	3/23/07	CMD	3/29/07 18:12	AJB	A1	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS

Lab ID: Sample ID:	9678547021 FTSW-SA3-SD01-D			bliected: 3/14/2007 18: eceived: 3/17/2007 09:		I	Matrix: Solid			
Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	RegLmt
WET CHEMIS	TRY .	_								
Moisture	16.1	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	Α	
Total Solids	83.9	%	0.1	SM20-2540 G			3/19/07 21:00	MW O	A	
METALS										
Antimony, Tota	al 0.032J	mg/kg	0.20	SW846 6020	3/26/07	CMD	3/29/07 18:40	AJB	A2	
Copper, Total	0.4J	mg/kg	2	SW846 6010B	3/26/07	CMD	3/28/07 13:58	JWK	A1	
Lead, Total	1.1	mg/kg	0.20	SW846 6020	3/26/07	CMD	3/29/07 18:40	AJB	A2	

Raymond J. Martrano Laboratory Manager

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

ANALYTICAL RESULTS QUALIFIERS\FLAGS

Workorder: 9678547 FT STEWART -GA - REV 022607

PARAMETER QUALIFIERS\FLAGS

- [1] The recovery of the Matrix Spike (MS) associated to this analyte was outside of the established control limits. The sample was post-digestion spiked, and this matrix spike was within acceptable recovery limits.
- [2] One of the two matrix spike analyses performed on this sample failed to meet acceptable recovery limits. The other matrix spike was within acceptable recovery limits. Matrix interferences are the possible cause for the failure.

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

QC Batch: HPLC	2/1766		Analysis Method:	SW846 8330A		
QC Batch Method: SW84	46 8330A					
Associated Lab Samples:		9678547002 9678547014	9678547003	9678547004	9678547005	9678547006
METHOD BLANK: 349700						
			R	eporting		
Parameter	Result	Qualifiers	Units	Limit		
2-Amino-4,6-Dinitrotoluene	ND		ug/kg	250		
4-Amino-2,6-dinitrotoluene	ND		ug/kg	250		
1,3-Dinitrobenzene	ND		ug/kg	250		
2,4-Dinitrotoluene	ND		ug/kg	250		
2,6-Dinitrotoluene	ND		ug/kg	250		
HMX	ND		ug/kg	250		
Nitrobenzene	ND		ug/kg	250		
4-Nitrotoluene	ND		ug/kg	250		
2-Nitrotoluene	ND		ug/kg	250		
3-Nitrotoluene	ND		ug/kg	250		
RDX	ND		ug/kg	250		
Tetryl	ND		ug/kg	250		
1,3,5-Trinitrobenzene	ND		ug/kg	250		
2,4,6-Trinitrotoluene	ND		ug/kg	250		
Surrogate Recoveries						
3-Nitrochlorobenzene	99		%	50-150		

LABORATORY CONTROL SAMPLE: 349701

Distantion of the country							
and a second	LCS		11.111.11	Spike	LCS	% Rec	
Parameter	Result	Qualifiers	Units	Conc.	% Rec	Limits	
2-Amino-4,6-Dinitrotoluene	840		ug/kg	1000	84	70-130	
4-Amino-2,6-dinitrotoluene	826		ug/kg	1000	83	70-130	
1,3-Dinitrobenzene	868		ug/kg	1000	87	70-130	
2,4-Dinitrotoluene	747		ug/kg	1000	75	70-130	
2,6-Dinitrotoluene	818		ug/kg	1000	82	70-130	
HMX	794		ug/kg	1000	79	70-130	
Nitrobenzene	860		ug/kg	1000	86	70-130	
4-Nitrotoluene	900		ug/kg	1000	90	70-130	
2-Nitrotoluene	889		ug/kg	1000	89	70-130	
3-Nitrotoluene	883		ug/kg	1000	88	70-130	
RDX	872		ug/kg	1000	87	70-130	
Tetryl	433		ug/kg	1000	43	70-130	
1,3,5-Trinitrobenzene	700		ug/kg	1000	70	70-130	
2,4,6-Trinitrotoluene	822		ug/kg	1000	82	70-130	
Surrogate Recoveries							
3-Nitrochlorobenzene			%		98	50-150	

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA

Workorder: 9678547 FT STEWART -GA - REV 022607

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 349702 349703 Original: 9678547005
****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike
percent recoveries. This result is not a final value and cannot be used as such.

Parameter	Original Result	Qualifiers	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
2-Amino-4,6-Dinitrotoluene	0		ug/kg	952	781	877	82	86	70-130	4.8	50
4-Amino-2,6-dinitrotoluene	0		ug/kg	952	704	792	74	78	70-130	5.3	50
1,3-Dinitrobenzene	0		ug/kg	952	828	918	87	90	70-130	3.4	50
2,4-Dinitrotoluene	0		ug/kg	952	733	825	77	81	70-130	5.1	50
2,6-Dinitrotoluene	0		ug/kg	952	818	913	86	90	70-130	4.5	50
HMX	0		ug/kg	952	754	831	79	82	70-130	3.7	50
Nitrobenzene	0		ug/kg	952	788	883	83	87	70-130	4.7	50
4-Nitrotoluene	0		ug/kg	952	892	1040	94	103	70-130	9.1	50
2-Nitrotoluene	0		ug/kg	952	875	935	92	92	70-130	0	50
3-Nitrotoluene	0		ug/kg	952	833	995	87	98	70-130	12	50
RDX	0		ug/kg	952	835	866	88	85	70-130	3.5	50
Tetryl	0		ug/kg	952	689	749	72	74	20-175	2.7	50
1,3,5-Trinitrobenzene	0		ug/kg	952	750	820	79	81	70-130	2.5	50
2,4,6-Trinitrotoluene	0		ug/kg	952	768	848	81	84	70-130	3.6	50
Surrogate Recoveries											
3-Nitrochlorobenzene	100		%				99	102	50-150	3	

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

110 75-125 1.8

25

QUALITY CONTROL DATA

QC Batch: MDIG	6/14329			Analysis Metho	d:	SW846 6	010B				
QC Batch Method: SW84	46 3050										
Associated Lab Samples:	9678547001 9678547007	967854 967854		967854700 967854700		37854700	4	9678547005	96	78547	'006
METHOD BLANK: 350298									n ang li		10
Parameter	Re	sult Quali	ifiers	Units	Reporting Limit						
Aluminum, Total		ND		mg/kg	10			······			
Copper, Total		ND		mg/kg	2						
Zinc, Total		ND		mg/kg	2						
LABORATORY CONTROL	SAMPLE: 35029	99					uin iy			ΠŴ	
	LC	cs			Spike		LCS	% Rec			
Parameter	Res	ult Qualif	iers	Units	Conc.	%	6 Rec	Limits			
Aluminum, Total	1	15		mg/kg	100		115	80-120			
Copper, Total	1	07		mg/kg	100		107	80-120			
Zinc, Total	1	12		mg/kg	100		112	80-120			
MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 350300		350301		Original:	967854	7005			
percent recoveries. This re-				CONTRACTOR OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT. OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT.	he purpose	of calcul	ating Mal	rix Spike			
	Original			Spike	MS	MSD	MS	S MSD	% Rec		Max
Parameter	Result C	Qualifiers	Units	Conc.	Result	Result	% Red	c % Rec	Limit	RPD	RPD
Aluminum, Total	2610	3	mg/kg	81	3040	2900	396	5 232	75-125	52	25
Copper, Total	2		mg/kg	81	92	92	108	3 107	75-125	0.9	25

81

107

105

112

Zinc, Total

12

mg/kg

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

	DIG/14334 W846 3015			Analysis Metho	d:	SW846 60	010B			
Associated Lab Sample		! !	9678547013							
NETHOD BLANK: 3503	18 .									
Parameter		Result	Qualifiers	Units	Reporting Limit					
Copper, Total		0.002J		mg/L	0.011					
LABORATORY CONTR	OL SAMPLE: 35	0319								
Parameter		LCS Result	Qualifiers	Units	Spike Conc.	9	LCS 6 Rec	% Rec Limits		
Copper, Total		1.07		mg/L	1. 1 1		96	80-120		
MATRIX SPIKE & MATE	XIX SPIKE DUPLIC	CATE: 3	50320	350321		Original:	96785470	13		
****NOTE - The Origina percent recoveries. Th	MINING SUBOUR MORE LIGHT	95211100-012	ATTEND IN DORSET MALCORE NO.	040400000000000000000000000000000000000	he purpose	o of calcul	aling Matrix	Spike		
Parameter	Original Result		fiers Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RF	Max D RPD
Copper, Total	0.005		mg/L	. 1.†1	1.10	1.12	99	101	75-125	2 20

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

	DIG/14335 N846 3015		1	Analysis Metho	od:	SW846 60	20				
Associated Lab Samples	: 9678547012	96785470	13								
MATRIX SPIKE & MATR	IX SPIKE DUPLIC	ATE: 350324		350325		Original:	96785470	13	9 <u>-</u> - Mark		
		An entry of the second second		OUDULU.		-originan.	30100410				
****NOTE - The Origina percent recoveries. Thi	Contraction of the second s	ow is a raw resul		s only used for	the purpo	12 - 22 - 22 - 22 - 24 - 24 - 24 - 24 -	Development of the	11 A A A A A A A A A A A A A A A A A A			
Set by a first when a set of the	Contraction of the second s	ow is a raw resul		s only used for	the purpo. MS	12 - 22 - 22 - 22 - 24 - 24 - 24 - 24 -	Development of the	11 A A A A A A A A A A A A A A A A A A	% Rec		Max
A STATISTICS AND A STATISTICS AND A STATISTICS AND	s rasult is not a fin	ow is a raw resul al value and canr		s only used for used as such		e of calcula	iting Matrix	Spike		RPD	
percent recoveries. This	s result is not a fin Original	ow is a raw result al value and cann Qualifiers	iot be i	s only used for used as such Spike	MS	se of calcula MSD	iting Matrix MS	Spike MSD		RPD 0	RPD

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

QC Batch:	MDIG/14345			Analysis Metho	d:	SW846 60	20				
QC Batch Method:	SW846 3050										
Associated Lab Samp	les: 9678547001 9678547007 9678547015	9	678547002 678547008 678547017	967854700 967854700 967854701	9 96	378547004 378547010 378547020) g	678547005 678547011		78547 78547	
METHOD BLANK: 35	0677						WILLW,		-		
Parameter		Result	Qualifiers	Units	Reporting Limit						
Antimony, Total Lead, Total	C	0.0063J 0.017J		mg/kg mg/kg	0.20 0.20						
LABORATORY CONT	ROL SAMPLE: 35	0678	n wa in		_				n n	W.	
Parameter		LCS Result	Qualifiers	Units	Spike Conc.	%	LCS Rec	% Rec Limits			
Antimony, Total Lead, Total		9.5 10.4		mg/kg mg/kg	10 10		95 104	80-120 80-120			
MATRIX SPIKE & MA ****NOTE - The Origi percent recoveries.	nal Result shown b	low is a r	aw result and	and the second se	he purpose	Original: of calcula	Contraction of the second second				-
	Original Result		ers Units	Spike Coric.	MS Result	MSD Result	MS % Rec		% Rec Limit	RPD	Max RPD
Parameter											

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QC Batch: M	DIG/14355		Ana	alysis Metho	d: S	SW846 60	10B				
QC Batch Method: \$	W846 3050										
Associated Lab Sample:	s: 9678547010 9678547018	9678547 9678547		967854701 967854702		78547015 78547021	-	678547016	967	78547	017
METHOD BLANK: 3510	58	T <u>mu</u> N					Willia				Timi
Deremeter	Da	ault Ouslif	I	1	Reporting						
Parameter	Re	sult Qualif	iers (Jnits	Limit						
Aluminum, Total		ND	rr	ng/kg	10						
Copper, Total	C).6J		ig/kg	2						
Zinc, Total		ND	л	ig/kg	2						
LABORATORY CONTRO	OL SAMPLE: 35105	59									
	LC	CS			Spike		LCS	% Rec			
Parameter	Res	ult Qualifie	ers U	nits	Conc.	%	Rec	Limits			
Aluminum, Total	1	15	mį	j/kg	100		115	80-120			
Copper, Total	4	~ .									
	-	04		j/kg	100		104	80-120			
	-	04 14)/kg j/kg	100 100		104 114	80-120 80-120			
Zinc, Total	1	14			100	Original:	114	80-120			
Zinc, Total	1 IX SPIKE DUPLICAT I Result shown below	14 E: 351060 v is a raw resu	mç ill and is or	y/kg 351061 Ny used for t	100	Contract Contraction	114 9678547	80-120 016			
Zinc, Total	1 IX SPIKE DUPLICAT I Result shown below is result is not a final	14 E: 351060 v is a raw resu	mç ill and is or	351061 Ny used for t d as such	100 he purpose	of calcula	114 9678547 ting Matr	80-120 016 x Spike			
Zinc, Total MATRIX SPIKE & MATR NOTE - The Origina percent recoveries. Th	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original	14 E: 351060 v is a raw rest value and car	mç ill and is or inot be use	g/kg 351061 Ily used for I d as such Spike	100 he purpose MS	of calcula MSD	114 9678547 ting Matr MS	80-120 016 <i>x Spike</i> MSD	% Rec		Max
Zinc, Total MATRIX SPIKE & MATR NOTE - The Origina percent recoveries. Th	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original	14 E: 351060 v is a raw resu	mç ill and is or	351061 Ny used for t d as such	100 he purpose	of calcula	114 9678547 ting Matr	80-120 016 x Spike	% Rec Limit	RPD	
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. Th Parameter Aluminum, Total	1 RIX SPIKE DUPLICAT al Result shown below is result is not a final Original Result C	14 E: 351060 v is a raw rest value and car Qualifiers	nt and is or onot be use Units mg/kg	y/kg 351061 Ily used for I d as such Spike Conc.	100 <i>he purpose</i> MS Result 1000	of calcula MSD Result 1130	114 9678547 ting Matr MS % Rec	80-120 016 <i>x Spike</i> MSD	Limit	RPD	
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. Th Parameter Aluminum, Total Copper, Total	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original	14 E: 351060 v is a raw rest value and car Qualifiers	nt and is or mot be use Units mg/kg mg/kg	g/kg 351061 Ily used for I d as such Spike	100 he purpose MS Result 1000 88	of calcula MSD Result 1130 88	114 9678547 ting Matr MS	80-120 016 <i>x Spike</i> MSD	,	RPD 0.9	
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. Th Parameter Aluminum, Total	1 RIX SPIKE DUPLICAT al Result shown below is result is not a final Original Result C	14 E: 351060 v is a raw rest value and car Qualifiers	nt and is or onot be use Units mg/kg	y/kg 351061 Ily used for I d as such Spike Conc.	100 <i>he purpose</i> MS Result 1000	of calcula MSD Result 1130	114 9678547 ting Matr MS % Rec	80-120 018 <i>x Spike</i> MSD % Rec	Limit		RPD
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The Parameter Aluminum, Total Copper, Total Zinc, Total	1 IX SPIKE DUPLICAT al Result shown below is result is not a final Original Result C 0.5	14 E: 351060 v is a raw resu value and car Qualifiers	nt and is or mot be use Units mg/kg mg/kg	y/kg 351061 Ily used for I d as such Spike Conc.	100 he purpose MS Result 1000 88 99	of calcula MSD Result 1130 88	114 9678547 ting Matn MS % Rec 106	80-120 016 x <i>Spike</i> MSD % Rec 105	Limit		RPD
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina	1 IX SPIKE DUPLICAT al Result shown below is result is not a final Original Result 0.5 IX SPIKE DUPLICAT al Result shown below	14 E: 351060 v is a raw resu value and car Qualifiers E: 351062 v is a raw resu	III and is or mot be use Units mg/kg mg/kg mg/kg	y/kg 351061 hly used for H d as such Spike Conc. 57 351063 hly used for H	100 he purpose MS Result 1000 88 99	of calcula MSD Result 1130 88 98 Original:	114 9678547 ting Main MS % Rec 106 9678547	80-120 016 x <i>Spike</i> MSD % Rec 105	Limit		RPD
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & MATR	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original Result C 0.5 IX SPIKE DUPLICAT I Result shown below is result is not a final	14 E: 351060 v is a raw resu value and car Qualifiers E: 351062 v is a raw resu	III and is or mot be use Units mg/kg mg/kg mg/kg	ykg 351061 Ny used for t d as such Spike Conc. 57 351063 Ny used for t d as such,	100 he purpose MS Result 1000 88 99 he purpose	of calcula MSD Result 1130 88 98 Original: of calcula	114 9678547 ting Main MS % Rec 106 9678547 ting Main	80-120 016 x Spike MSD % Rec 105 019 x Spike	Limit 75-125		RPD 25
Zinc, Total MATRIX SPIKE & MATR WINOTE - The Origina percent recoveries. The Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original Result of 0.5 IX SPIKE DUPLICAT I Result shown below is result is not a final Original	14 E: 351060 v is a raw resuvalue and car Qualifiers E: 351062 v is a raw resuvalue and car	III and is or mot be use Units mg/kg mg/kg mg/kg	y/kg 351061 hly used for t d as such Spike Conc. 57 351063 hly used for t d as such, Spike	100 he purpose MS Result 1000 88 99 he purpose MS	of calcula MSD Result 1130 88 98 Original:	114 9678547 ting Main MS % Rec 106 9678547 ting Main MS	80-120 016 x Spike MSD % Rec 105 019 x Spike MSD	Limit 75-125 % Rec	0.9	RPD 25 Max
Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The Parameter	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original Result of 0.5 IX SPIKE DUPLICAT I Result shown below is result is not a final Original	14 E: 351060 v is a raw resuvalue and car Qualifiers E: 351062 v is a raw resuvalue and car Qualifiers	It and is or mot be use Units mg/kg mg/kg itt and is or mot be use Units	ykg 351061 Ny used for t d as such Spike Conc. 57 351063 Ny used for t d as such,	100 he purpose MS Result 1000 88 99 he purpose MS Result	of calcula MSD Result 1130 88 98 Original: of calcula MSD Result	114 9678547 ting Main MS % Rec 106 9678547 ting Main	80-120 016 x Spike MSD % Rec 105 019 x Spike	Limit 75-125	0.9	RPD 25 Max
Zinc, Total MATRIX SPIKE & MATR WINOTE - The Origina percent recoveries. The Parameter Aluminum, Total Copper, Total Zinc, Total MATRIX SPIKE & MATR WOTE - The Origina percent recoveries. The	1 IX SPIKE DUPLICAT I Result shown below is result is not a final Original Result of 0.5 IX SPIKE DUPLICAT I Result shown below is result is not a final Original	14 E: 351060 v is a raw resuvalue and car Qualifiers E: 351062 v is a raw resuvalue and car Qualifiers	ult and is or mot be use Units mg/kg mg/kg ilt and is or mot be use	y/kg 351061 hly used for t d as such Spike Conc. 57 351063 hly used for t d as such, Spike	100 he purpose MS Result 1000 88 99 he purpose MS	of calcula MSD Result 1130 88 98 Original: of calcula MSD	114 9678547 ting Main MS % Rec 106 9678547 ting Main MS	80-120 016 x Spike MSD % Rec 105 019 x Spike MSD	Limit 75-125 % Rec	0.9	RPD 25 Max

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

Workorder: 9678547 FT ST	EWART -GA - REV 02	2607								
	6/14356 16 3050		Analysis Meth	od:	SW846 60	020				
Associated Lab Samples:	9678547019	9678547021							-	
METHOD BLANK: 351084,				0		olun				wa Tu
Parameter	Result	Qualifiers	Units	Reporting Limi	-					
Antimony, Total Lead, Total	ND 0.024J		mg/kg mg/kg	0.20 0.20						
LABORATORY CONTROL	SAMPLE: 351065									
Parameter	LCS Result	Qualifiers	Units	Spike Conc.	%	LCS Rec	% Rec Limits			
Antimony, Total Lead, Total	9.6 9.3		mg/kg mg/kg	10 10		96 93	80-120 80-120			
MATRIX SPIKE & MATRIX S MOTE - The Original Re percent recoveries. This re	sult shown below is a	raw result and	A REAL PROPERTY AND A REAL	the purpose	U service a service ser	96785470 aling Matrix	and the second second			
Parameter	Original Result Quali	fiers Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Antimony, Total Lead, Total	0.013 4.1	mg/kg mg/kg		2.1 15.7	2.4 15.8	18 86	20 88	75-125 75-125	11 2.3	20 20

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

9679276006 9679276007 9679276008 9679276009 9679276010 967 METHOD BLANK: 352808	_										2607	REV 02	EWART -GA - F	FTST	er: 9678547	Workorde
9679276006 9679276007 9679276008 9679276009 9679276010 967 METHOD BLANK: 352808)	346 6020	sw	od:	nalysis Meth							
ParameterResultQualifiersUnitsReporting LimitAntimony, Total0.023Jmg/kg0.20METHOD BLANK: 352808	9276005 9276011	9679276 9679276						-						ples:	ed Lab Samp	Associate
ParameterResultQualifiersUnitsLimitAntimony, Total0.023Jmg/kg0.20METHOD BLANK: 352808GualifiersUnitsReporting LimitParameterResultQualifiersUnitsLead, Total0.0077Jmg/kg0.20LABORATORY CONTROL SAMPLE:352809SpikeParameterLCS% RecParameterLCSQualifiersUnitsSpikeLCSParameterResultQualifiersParameterLCS% RecParameterLCS% RecParameterLCSSpikeAntimony, Total9.6mg/kg109680-120LABORATORY CONTROL SAMPLE:352809ParameterLCSSpikeParameterLCSSpikeLaBORATORY CONTROL SAMPLE:352809ParameterLCSSpikeParameterLCSSpikeParameterResultQualifiersUnitsSpikeLCSParameterResultQualifiersParameterResultSpikeParameterResultSpikeParameterResultSpikeParameterQualifiersUnitsSpikeMSMSMSDMATRIX SPIKE & MATRIX SPIKE DUPLICATE:352810OriginalResult is not a final value and cannot be used as such.ParameterResult QualifiersUnitsParameterResult is not a final value and cannot		i.												52808	BLANK: 35	METHOD
METHOD BLANK: 352808 Result Qualifiers Units Limit Parameter Result Qualifiers Units Limit Lead, Total 0.0077J mg/kg 0.20 LABORATORY CONTROL SAMPLE: 352809 Spike LCS % Rec Parameter Result Qualifiers Units Conc. % Rec Limits Antimony, Total 9.6 mg/kg 10 96 80-120 LABORATORY CONTROL SAMPLE: 352809 Parameter Result Qualifiers Units Conc. % Rec Limits Parameter LCS Kesult Qualifiers Units Spike LCS % Rec Parameter LCS Qualifiers Units Conc. % Rec Limits Lead, Total 9.6 mg/kg 10 96 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352811 Onginat: 967547016 """NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike Parameter Result Qualifiers Units Conc. Result % Rec <td></td> <td></td> <td></td> <td></td> <td></td> <td>11. (j. 11. sta</td> <td>-</td> <td>, ,</td> <td>Units</td> <td>ïers</td> <td>Quali</td> <td>Result</td> <td>F</td> <td></td> <td>er</td> <td>Paramete</td>						11. (j. 11. sta	-	, ,	Units	ïers	Quali	Result	F		er	Paramete
Parameter Result Qualifiers Units Emitt Lead, Total 0.0077J mg/kg 0.20 LABORATORY CONTROL SAMPLE: 352809							0	0.20	mg/kg).023J	0		, Total	Antimony,
ParameterResultQualifiersUnitsLimitLABORATORY CONTROL SAMPLE:3528090.20LABORATORY CONTROL SAMPLE:352809ParameterLCS ResultQualifiersUnitsSpikeLCS Conc.% Rec LimitsAntimony, Total9.6mg/kg109680-120LABORATORY CONTROL SAMPLE:352809109680-120LABORATORY CONTROL SAMPLE:3528095000000000000000000000000000000000000		A X		-	-1-	*****	777					=		52808	BLANK: 35	METHOD
LABORATORY CONTROL SAMPLE: 352809 Parameter LCS Result Qualifiers Units Spike Conc. % Rec % Rec Limits Antimony, Total 9.6 mg/kg 10 96 80-120 LABORATORY CONTROL SAMPLE: 352809 Parameter LCS Result Qualifiers Units Spike LCS Conc. % Rec Limits Parameter LCS Result Qualifiers Units Conc. % Rec Limits Lead, Total 9.6 mg/kg 10 96 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. Parameter Original Result Qualifiers Units Conc. Result % Rec Limit Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Origi							-		Units	iers	Quali	Result	F		÷ŕ	Paramete
LCS Parameter LCS Result Qualifiers Units Spike Conc. LCS % Rec % Rec Limits Antimony, Total 9.6 mg/kg 10 96 80-120 LABORATORY CONTROL SAMPLE: 352809							0	0.20	mg/kg			0077J	0.0		al	Lead, Tota
ParameterResultQualifiersUnitsConc.% RecLimitsAntimony, Total9.6mg/kg109680-120LABORATORY CONTROL SAMPLE:352809LABORATORY CONTROL SAMPLE:352809ParameterLCS ResultQualifiersUnitsSpike Conc.LCS % Rec% Rec LimitsLead, Total9.6mg/kg109680-120MATRIX SPIKE & MATRIX SPIKE DUPLICATE:352810352811Original:9678547016""NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveriesMSDMSMSD% RecParameterOriginal ResultQualifiersUnitsConc.Result% RecLimitsParameterOriginal ResultQualifiersUnitsConc.Result% RecLimitsAntimony, Total0.012mg/kg5.22.82.9363975-125MATRIX SPIKE & MATRIX SPIKE DUPLICATE:352810352811Original: 9678547018% RecLimits""NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such:Original: 96785470189678547018"""NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such:Original: 9678547018MSD% Rec <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WW</td> <td></td> <td></td> <td></td> <td></td> <td>2809</td> <td>SAMPLE: 352</td> <td>TROLS</td> <td>TORY CONT</td> <td>LABORAT</td>							WW					2809	SAMPLE: 352	TROLS	TORY CONT	LABORAT
LABORATORY CONTROL SAMPLE: 352809 LCS Spike LCS % Rec Parameter Result Qualifiers Units Conc. % Rec Limits Lead, Total 9.6 mg/kg 10 96 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. MS MSD MS MSD % Rec Limit Parameter Original Result Qualifiers Units Conc. Result Result % Rec Limit Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ************************************								•	Units	ərs	Qualifi				er	Paramete
LCS Parameter LCS Result Qualifiers Units Spike Conc. LCS % Rec % Rec Limits Lead, Total 9.6 mg/kg 10 96 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. MS MSD MS MSD % Rec Limits Parameter Original Result Qualifiers Units Conc. Result % Rec % Rec Limits Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ************************************				80-120	96	96		10	ng/kg			9.6			, Total	Antimony,
Parameter Result Qualifiers Units Conc. % Rec Limits Lead, Total 9.6 mg/kg 10 96 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. MS MSD MS MSD % Rec Limits Parameter Original Qualifiers Units Conc. Result % Rec % Rec Limits Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 16 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1							Π					809	SAMPLE: 352	TROL S	TORY CONT	LABORAT
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. Original Original Spike MS MSD MS MSD % Rec Parameter Result Qualifiers Units Conc. Result % Rec % Rec Limit Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ************************************								•	Units	ers	Qualifi				er	Paramete
****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. Original Parameter Original Result Qualifiers Units Spike Conc. MS MSD MSD MSD % Rec Limit Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. MSD MSD % Rec Original Spike MS MSD MSD % Rec				80-120	96	96		10	ng/kg			9.6			al	Lead, Tota
Parameter Result Qualifiers Units Conc. Result Result % Rec % Rec Limit Antimony, Total 0.012 mg/kg 5.2 2.8 2.9 36 39 75-125 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547016 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. MS MS MSD % Rec MS				796 ·	Same and Street and Street	Sold a country of both of many street		the purpos	only used for		raw res	ow is a	sult shown bek	ninal Re	E - The Orig	****NOTI
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 352810 352811 Original: 9678547018 ****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. Original 9678547018 Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Spike percent recoveries. This result is not a final value and cannot be used as such. Original Spike MS MSD MSD % Rec	Max RPD RPD								•	Units	fiers	Qualif	-		er	Paramete
****NOTE - The Original Result shown below is a raw result and is only used for the purpose of calculating Matrix Splke percent recoveries. This result is not a final value and cannot be used as such. Original Spike MS MSD MSD % Rec	8 20	25 8	75-125	39	36	2.9		2.8	5.2	mg/kg			0.012		, Total	Antimony,
					C1.124.000.000	A) 1.558 (QC 0.559 (Ref.)	2908	the purpos	only used for		raw res	ow is a	sult shown belo	ninal Re	E - The Orig	****•NOTE
	Max RPD RPD								-	Units	liers	Qualif	-		er	Paramete
Lead, Total 3.2 mg/kg 5.2 12.5 12.4 103 104 75-125	1 20	25 1	75-125	104	103	2.4		12.5	5.2	mg/kg			3.2		al	Lead, Tota

TEL: 717-944-5541 FAX: 717-944-1430 www.analyticallab.com

QC Batch: WE	TC/40012	Analysis Method:	SM2	0-2540 G		
QC Batch Method: SM	20-2540 G					
Associated Lab Samples:	9678547001 967854700 9678547007 967854700 9678547015 967854701 9678547021 9678547021	9678547009	967854 967854 967854	47010	9678547005 9678547011 9678547019	9678547006 9678547014 9678547020
AMPLE DUPLICATE: 3	49371	Original: 96785420	01			THE REPORT OF
	Result and Duplicate Result shown cale percent recoveries. This resul					
Parameter	Original Result Qualifiers	Units	DUP Result	RPD	Max RPD	
Moisture Fotal Solids	14.9 85.1	% %	14.5 85.5	2.7 0.5	10 5	
SAMPLE DUPLICATE: 3	49372	Original: 96785420	11			
	Result and Duplicate Result shown cate percent recoveries. This resul					
Parameter	Original Result Qualifiers	Units	DUP Result	RPD	Max RPD	
Moisture Total Solids	12.3 87.7	% %	12.0 88.0	2.5 0.3	10 5	
SAMPLE DUPLICATE: 3	19376	Original: 96785470	16			
	Result and Duplicate Result shown cate percent recoveries. This resul					
Parameter	Original Result Qualifiers	Units	DUP Result	RPD	Max RPD	
Moisture Total Solids	31.2 68.8	% %	32.0 68.0	2.5 1.2	10 5	
	19377 Result and Duplicate Result shown cate percent recoveries. This result		nd are only u			
Parameter	Original Result Qualifiers	Units	DUP Result	RPD	Max RPD	
Moisture Fotal Solids	3.5 96.5	%	3.5 96.5	0 0	10 5	
SAMPLE DUPLICATE: 34	Result and Duplicate Result shown		nd are only u			
****NOTE - The Original I	cate percent recoveries. This result	ris not a final value and	and all and an an an an an an an an			
****NOTE - The Original I	cate percent recoveries. This resul Original Result Qualifiers	Units	DUP Result	RPD	Max RPD	
****NOTE - The Original i calculating Sample Dupli	Original		DUP	RPD 8.6		

TEL: 717-944-5541 + FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA QUALIFIERS\FLAGS

Workorder: 9678547 FT STEWART -GA - REV 022607

.

QUALITY CONTROL PARAMETER QUALIFIERS

[3] The concentration of this analyte was greater than ten times the concentration of the spike added to the matrix spike. According to protocol, the calculation for percent recovery of the matrix spike is not valid.

34 Dogwood Lane
Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID	Sample ID	Prep Batch Method	Prep Batch	Analytical Method	Analytical Batch
9678547001	FTSW-HGC-01	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547002	FTSW-AA90MM2-02	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547003	FTSW-AA1-03	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547004	FTSW-AA-03D	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547005	FTSW-AA-04	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547006	FTSW-AA1-05	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547007	FTSW-AA1-06	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547014	FTSW-HRT-11	SW846 8330A	HPLC/1766	SW846 8330A	HPLC/1773
9678547001	FTSW-HGC-01	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547002	FTSW-AA90MM2-02	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547003	FTSW-AA1-03	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547004	FTSW-AA-03D	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547005	FTSW-AA-04	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547006	FTSW-AA1-05	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547007	FTSW-AA1-06	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547008	FTSW-SA1-07	SW846 3050	MDIG/14329	SW846 6010B	META/16178
9678547009	FTSW-SA1-08	SW846 3050 .	MDIG/14329	SW846 6010B	META/16178
9678547012	FTSW-SA3-SW01	SW846 3015	MDIG/14334	SW846 6010B	META/16194
9678547013	FTSW-SA3-SW02	SW846 3015	MDIG/14334	SW846 6010B	META/16194
9678547010	FTSW-SA1-09	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547011	FTSW-SA1-10	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547014	FTSW-HRT-11	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547015	FTSW-SA3-13	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547016	FTSW-SA3-14	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547017	FTSW-SA3-12	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547018	FTSW-SA3-12D	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547019	FTSW-SA3-SD02	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547020	FTSW-SA3-SD01	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547021	FTSW-SA3-SD01-D	SW846 3050	MDIG/14355	SW846 6010B	META/16228
9678547012	FTSW-SA3-SW01	SW846 3015	MDIG/14335	SW846 6020	META/16247
9578547013	FTSW-SA3-SW02	SW846 3015	MDIG/14335	SW846 6020	META/16247
9678547001	FTSW-HGC-01	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547002	FTSW-AA90MM2-02	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547003	FTSW-AA1-03	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547004	FTSW-AA-03D	SW846 3050	MDIG/14345	SW846 6020	META/16258

34 Dogwood Lane + Middletown, PA. 17057

TEL: 717-944-5541 • FAX: 717-944-1430 www.analyticallab.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 9678547 FT STEWART -GA - REV 022607

Lab ID	Sample ID	Prep Batch Method	Prep Batch	Analytical Method	Analytical Batch
9678547005	FTSW-AA-04	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547006	FTSW-AA1-05	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547007	FTSW-AA1-06	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547008	FTSW-SA1-07	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547009	FTSW-SA1-08	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547010	FTSW-SA1-09	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547011	FTSW-SA1-10	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547014	FTSW-HRT-11	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547015	FTSW-SA3-13	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547017	FTSW-SA3-12	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547018	FTSW-SA3-12D	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547019	FTSW-SA3-SD02	SW846 3050	MDIG/14356	SW846 6020	META/16258
9678547020	FTSW-SA3-SD01	SW846 3050	MDIG/14345	SW846 6020	META/16258
9678547021	FTSW-SA3-SD01-D	SW846 3050	MDIG/14356	SW846 6020	META/16258
9678547016	FTSW-SA3-14	SW846 3050	MDIG/14429	SW846 6020	META/16326
9678547016	FTSW-SA3-14	SW846 3050	MDIG/14429	SW846 6020	META/16334
9678547001	FTSW-HGC-01			SM20-2540 G	WETC/40012
9678547002	FTSW-AA90MM2-02			SM20-2540 G	WETC/40012
9678547003	FTSW-AA1-03			SM20-2540 G	WETC/40012
9678547004	FTSW-AA-03D			SM20-2540 G	WETC/40012
9678547005	FTSW-AA-04			SM20-2540 G	WETC/40012
9678547006	FTSW-AA1-05			SM20-2540 G	WETC/40012
9678547007	FTSW-AA1-06			SM20-2540 G	WETC/40012
9678547008	FTSW-SA1-07			SM20-2540 G	WETC/40012
9678547009	FTSW-SA1-08			SM20-2540 G	WETC/40012
9678547010	FTSW-SA1-09			SM20-2540 G	WETC/40012
9678547011	FTSW-SA1-10			SM20-2540 G	WETC/40012
9678547014	FTSW-HRT-11			SM20-2540 G	WETC/40012
9678547015	FTSW-SA3-13			SM20-2540 G	WETC/40012
9678547016	FTSW-SA3-14			SM20-2540 G	WETC/40012
9678547017	FTSW-SA3-12			SM20-2540 G	WETC/40012
9678547018	FTSW-SA3-12D			SM20-2540 G	WETC/40012
9678547019	FTSW-SA3-SD02			SM20-2540 G	WETC/40012
9678547020	FTSW-SA3-SD01			SM20-2540 G	WETC/40012
9678547021	FTSW-SA3-SD01-D			SM20-2540 G	WETC/40012

Clear Marie Malsolm Prim 18 1		SAMP	REAS MUK Ler. Inst	ST BE CO RUCTION	ALL SHADED AREAS MUST DE COMPLETED BY THE CLIENT SAMPLER. INSTRUCTIONS ON THE BACK.	S THE CI BACK.	/ ANEL		0. *	* 2 * 5 8 2 *	
	Type				36 844					Receipt laformation (completed by Receiving Lab)	ceiving Lab)
 Ken	A Consider	and the second	1995					ŝ.	12	Cooler Temp: 1 Therm. (D:51.023.555	135.55
i dan	Precision		in the second	1522	ALL ROOM	24.				No. of Coolers: Y	4 Initial
Phone: 410 322-4309			ANA	LYSESIME	ANAL YSESIMETHOD REQUESTED	ESTED	-			Custody Seals Prevent?	スタント
Project Namate au 18093 Ford Shubert	*** ฟิจมา	Qeor	901e	~ <u>***</u> *						(if present) Seals Intect? Received on ker?	
IStandard TAT Is Subject to ALSI a	07 portion of	A Anima of	ה מפורים ה	portion a	294,20 laga		A			Center In Good Cond.7 Connect Containers? Connect Stimple Volumeer? Connect Preservision?	
Sample Description/Location Sample Willery (as it will appear on the lab report) Date Titre	xitisM**	<u> 197</u>	15		1.5	sis Requested at Field Results Below	Md Resul	is Below.		Courter/Tracking # 791 by	124
1 FTSW + 166 -01 3-13-07 1355 C	Coo					1				2 containers total	1 mstak
2-02	C SD		ster.			1546 2564			180	mars bats 1 metuls	
3575W-441-02 3-13-07 1605 C	3		242	1	派网	94 19.25341	Addinate Constant			JAGS Methols	1 7
3-13-01 1405	8	946 978 &		al spe	100		19.34		2.47		
8-13-01 1620	8	35	10		10	10	100				
\$ FTSW-4A-04 MS 3-13-071630	C So	- (1963) - (1966) - (1966)		4.20	• 法公	200	41 41 49	E URA	at and		
D 0691 10-81-8 DSWHO- NO-NOLY	c.So		1	1				N.S	NO NO		
6 P T SW-AN1-05 3-13-01645 C	CS			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	at l	1000		5	4.		
30.4	C S0	57 56 723	13	also -				5 1	UN	A VW	
TO PIE T	12			2	1	and the second	1		TRIS	One JAR TOTAL	
SAMPLED BY (Please Print): U.V.A. Loadin Bringwares		6.29 L	and the		С. 1941	3- 5-07	134	70	Babrad .		ALSI FIEID Services
DATE SAME AND A REVENUED B	BY(signature): /	>			We3		3412	nevi	00-400		#letup
Relinquished By / Company Name Date		Rec	Received By / Company Name	N Aueduo	Ine		-	00 ea		Mr.Rootsoo	Luke
		NWC	Z	(Kur)		C1%	8	D			
2 43	* *							194	Y MK		Cliner
~	69							georg ED	Sec.	2	l.
	10	10 200 Criteria Stephened?						COD Critteria Req	ria Requi		

Thursday, April 12, 2007 12:18:29 PM

.

ļ

Enmonmants + Industrial Hypere + Field Services	Field Services		-	YHS TY	OED A	REAS M	JAT BE	ALL SHADED AREAS MUST BE COMPLETED BY THE CLIENT /	TEB BY	THE CL	ENT		VISI	ALSYQUENSIA			
24 Do wood Lane + Middletown, PA 17057 + 717 pH 5041 - Fax: 712 944 1430	541 + Fax, 717.94	100	Cultiver.	1 - S.C.	LINKO I	NT NT	in nu n	ALIO AL		-	1000			Recent in	lormalian teo	Beceint information (completed by Receiving Lab)	Centring
THAT THE COLUMN THE	2	1000	Type				10	10.0	Contraction of the local data				ľ				
Address: 500 E. LOVIDOVE			Sue		Ser.	ti ti		25		100000				Cooler Temp:	_	Ihem. D. 2/02/3559	20 H 3
Pathnore MD 21202	1202	4	Proservation.			いたの							1.50	No. of Coolers:	ers:	≻[s (jilia)
set David Smith	1.2	100			11.1 F. 10.1	A	ALYSES	ANALYSESIMETHOD REQUESTED	REQUES	STED	3			3	Custody Seals Prevent?		<u>S</u>
Phonest +40 -222 - 4509	8.000	0		3	Ċ	5	2							Ξ.	(if present) Seels Intect?		•
	chemoty	197	_	SSE H	20	90 C C C	192	が国		193					Received on tot	V	
BINTO: NITT	CONTRACTOR OF			PC	10	a lui	38		X					COCREMENT	COCE abolis Completel Accurate?	Autorie?	
TAT Mormal-Standard TAT is 10-12 business days.	2 business day	ź		200 M4	Ro	un Fa	> Pa							-	Cont. (n Good Cond.? Parant Containant?	Sand.3 V	
Rush-Subject to ALSI approval and surcharges	and surch	ġ.		91	4	陸	۹/ ۱۴	No.		ų dr.			5. KC				
uired:	Approved By:			U V S	4 M	Sw	119		742					193 2011	Correct Sample Volumes?	Z	
Email? NºY dosmith@pirne.com	ne.com			¥ ₽	10	100	80573							Ň	Correct Proservation?	Current Current	
Far Try Not nighter fi	irnig .				90. 4 c							N ? • •		2	Handspace/Volatiles?		7
Sample Description/Location	Sample N	ĥ	9,40	201	23		12				S. S. S. S.			CourterTrac	diffracking # 79	491050	061811
(as it will appear on the lab report)		Time			Enter	Number o	Containe	Enter Number of Containers Per Analysis Requested or Field Results 8: 10	y eis Raqu	asled or F.	leld Resul	ts Bulow.			SamplelC	Sample/COC Comments	2
FTSW-SA1-06 2	3-14014	150 C	3	-	1		and a	¥.	2437 1	5.00 8867946	म. ए- अ	<u>.</u> 3.v		1 Jar		total	
	3-14-07 1545	SHE	3	T	all						Newser	4.#.X		1 191		tota!	
1899	3-14-21 1005	05 0	8	5.18	A LOU			1						1 Jar		total	
10	3-H-DILTE	11183	G SN	112	100	No.	100	1. S.		-10	0			1 Jar		to tra l	
E	110-1-12		G SW	1	-			. deste		6		1929	4	1 201		totul	
FT5W+5A3-5W0-ms 3-14-01025	3-14-6717		6 SW	Self-	the second	Sec.	No.12	kan kut	E	SCR75	- Section	_		بع		tota l	
2790-543-5WD7_2	3-14-07 1725	1	5 5	201 - A	- Total		1		Se la		192	-	78.2	1 Jar	hotal	<u>ai</u>	
No.	3-15-01 1205	1	8			- Ker	al al	n.G	R	2	p q	t		2 Jars	J on	ta l	
13	3-15-09 194		80		-			63 ^{- 0}				HIS C	3ª	1 200		total	
P FTSN-583-14	3-15-09 1895	102.5	8	1	5	H.	and the			25	Sec.					total	
2		LOGGED BYM	Stylepathers:	AL	un	ter	1		1 2 Y	1-0-01-2	19.1	10	Standard	(84.5 (2) (2)	Contraction of the last	BURK Kins	ALSI Peld Service
Buesmith . Shill talk		REVENED BY(uprature)	(dentard)		0				390		Mai	tanavi	50	335 235			
Relinguisted By/ Company Name		pate	Time		Rec	sived By	Received By / Company Name	ny Name		Date	Time			N. Rectuoso	*		Labor
					R			C. lay		3	8	1007			. i .		Compet
	•			4			1					1		1	M 📄	L m - N	Renta
												254 9(Cornel Type:	Ober		
				-00								8**** 103	Sec.	- Weight	- Oraș	101525	
		Ī		Ę								DODCH	beria Roqu	ind? V	5	Nigo Zal	
				-			A REAL PROPERTY AND A REAL	in and and and a state of the			and the second s	A REAL PROPERTY AND A REAL					

Americanistic constraint Americanistic constraint Americanistic constraint Americanistic constraint Intrinsic Intrinsic <td< th=""><th>Laboratory Services, Inc.</th><th>Inc.</th><th></th><th>2012/12/20</th><th>RECU</th><th>ESTFO</th><th>ANA M</th><th>LYSIS</th><th></th><th></th><th></th><th></th><th>ARI NO</th><th>/ Zof</th></td<>	Laboratory Services, Inc.	Inc.		2012/12/20	RECU	ESTFO	ANA M	LYSIS					ARI NO	/ Zof
Totole Non-1 Receipt Homolecular (complexed of the intermediate (co	Elivitorungidal + rhalugtuar Appleine + Field. Degresod tenn + Middleinner, PA 17057 + 717.544.5541	/ Services • Fax: 717,944,14(30		all SHAI	JED ARE Samplei	as must b a instruc	E COMPLE	I THE BA	THE CLIE	NT/	53	NOIS	6 4	
Red State Team And TERMETHO REQUERTED Colorer Tomm P 0.1 S(0) And TERMETHO REQUERTED 0.1 10.1 10.1 10.1 And TERMETHO REQUERTED And	at Name. Malealine Printe		CONTRACTOR OF THE OWNER OWNE	Hanna and Anna and An		2						8	elpt Information (com	pleted by Receiving
3 (3.05) main main MAXVSSNETHOD REQUESTED MAXVSSNETHOD REQUESTED 2.3 3.4 A.0 <	trees 300 6 Lambard St		Colorse		1		100		いた地			Coo		m. D:≺/o23
Weight (1) Add (1	Definition WD 2000		Pression						Ì			No.		N X
Control to balance of the second s	Hart David Smith		10.11			ANALYSI	ESIMETHOD	REQUES		5		1	Custody Seals Preu	
A Tech Statest Andread Constant framework Will style (AD laneness days Will style (AD laneness days Constant framework Will style (AD laneness days Mill style (AD laneness days Constant framework All style (AD laneness days Mill style (AD laneness days Constant framework All style (AD laneness days Mill style (AD laneness days Constant framework All style (AD laneness days Mill style (AD laneness days Constant framework All style (AD laneness days Mill style (AD laneness days Constant framework All style (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All style (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the field (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the field (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the field (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the field (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the field (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the field (AD laneness days Mill style (AD laneness days Mill style (AD laneness days All the	332-48091				5	ALC: NOT THE REAL PROPERTY OF	201						(I proceed) Seale Into	
Mit is (141 binness dynamics) Mit is (141 binness dynamics) Contained framework All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and synthesis All signoring and s	1001 Namelik 2118 - 093 Fort		612		-0				125		95-1 6-12 184	Ne.	Received en	24
Mit is tech shallness dign. Mit is tech shallnes	to write		2010	77	14. 13			i in Ye T	a de la comercia de la Comercia de la comercia de la comer Comercia de la comercia de la comerc			9	Labels Complete/Accur	
Also approval and surpluses Also approval and surpluses Also approval and surpluses Also approval and surpluses Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also approval by Also	LINE	Isiness days.	1000	id.	put	90						N.	Cont. In Good Co.	
Approved By Account in the contrast of the co	383	nd surcharges.		D	4	9		1827d					Correct Contain	-
Construction Construction <thconstruction< th=""> Construction <thc< td=""><td>a Required: Approve</td><td>ted By:</td><td></td><td></td><td>tur</td><td>the the second</td><td></td><td>(78)</td><td>J.</td><td>:</td><td>1 </td><td>100</td><td>Cisrnect Sample Vehim</td><td></td></thc<></thconstruction<>	a Required: Approve	ted By:			tur	the the second		(78)	J.	:	1 	100	Cisrnect Sample Vehim	
Inclusion Secretion Production	all Ar cleanith Paimic	L' com			× v	m	(23) (23)				1		Cornect Preserval	
No. Sample March Solution Dist Dis Dis Dist	1 TY No. Malcolm Pl	2,00	_		2/	H					<u> </u>	C S S S S S S S S S S S S S S S S S S S	i KardineraMolafi	
Min Dia Time Z Einterfunction of Containers for Analysis in Requestion of Texa field and the second	Sample Description/Location San	mple Military	-		(3	P			de.	0		Court	Tracting 66	\overline{A}
(IVS) (BSK) (S & 567 C (S) (1 1 (IIIS) (BSK) (S & 57 C (S) (1 1 (IIIS) (BSK) (S & 57 C (S) (1 1 (IIIS) (BSK) (S & 57 C (S) (S & 1 1 (IIIS) (BSK) (S & 57 C (S) (S & 1 1 (IIIS) (BSK) (BSK) (S & 1 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIS) (S & 1 (S & 1 (S & 1 (S & 1 (IIIIS) (IIIIS) (S & 1 (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIS) (IIIIIS) (IIIIS) (IIIIS) (IIIIS) <td></td> <td>_</td> <td></td> <td>South Strain</td> <td>Enter Nun</td> <td>ber of Contal</td> <td>wes Per Ana</td> <td></td> <td>sted or Fie</td> <td>d Results Br</td> <td>- How</td> <td></td> <td>Sampler Sampler COC</td> <td>11</td>		_		South Strain	Enter Nun	ber of Contal	wes Per Ana		sted or Fie	d Results Br	- How		Sampler Sampler COC	11
Instruction Instruction Instruction Instruction 20 Refer 1 1<	15.11	25.53		-	1					1	F			1
MIND BHX 3.664 1 1 Let Febral 3 MiNO BHX 3.664 BHX 1.1 Let Febral 3 MiNO BHX BHX 1.1 BHX Febral 3 BHX BHX BHX BHX BHX Febral 3 BHX BHX BHX BHX BHX BHX 3 SHUCH HX BHX BHX BHX BHX 3 SHUCH HX B <x< td=""> BHX BHX BHX 3 SHUCH HX B<x< td=""> BHX BHX BHX 3 SHUCH HX B<x< td=""> BHX BHX BHX BHX 3 SHUCH HX B<x< td=""> BHX BHX BHX BHX 3 SHUCH HX B<x< td=""> BHX BHX BHX BHX 3 SHUCH HX B<x< td=""> BHX BHX BHX BHX 3 SHUCH HX B<x< td=""> BHX BHX BHX 3 SHUKH HX B<x< td=""> BHX BHX BHX 3 BHX B<x< td=""> B<x< td=""> B<x<< td=""><td>10.00</td><td>200 4</td><td>3</td><td>000</td><td>1</td><td></td><td>*</td><td></td><td>81 K</td><td></td><td></td><td>-</td><td>н.</td><td></td></x<<></x<></x<></x<></x<></x<></x<></x<></x<></x<></x<>	10.00	200 4	3	000	1		*		81 K			-	н.	
3 ŘŠŘT ISS.05 IE. I. I.	52.54	55 3.86	3	.111-	1			1000	faren a	100	Sec. 1			1
DD 31505 1650 1 <th1< th=""> <th1< th=""> 1 1 <t< td=""><td>- C-</td><td>18-2 18-2</td><td>8</td><td></td><td>and the second</td><td></td><td></td><td>No.</td><td></td><td></td><td>New York</td><td></td><td></td><td></td></t<></th1<></th1<>	- C-	18-2 18-2	8		and the second			No.			New York			
MD SULAT INS SULAT INS SULAT INS I	0	192	25	and the second		10 A 10	i.		0550			1		
Juild Mail	0X	1×2	133	200		с ()	676		1				,	4 –
Alt 1400 Alt 1400 Alt 1400 Alt 1400 Alt 1400 3 3 (1) 4 (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10 10 1 (1) (1) 10 10 10	and the second	10.000	100	122	1000		しお花	Sur	NIX.		atter 1		<u>, ia ()</u>	1
MOV Movement Image: Section of the sec		1001 101		the state of the	1000							8	1261	
Image: Second	100 100	000 200				2	-	四十	SHO SHO	Sale of the second seco	202			
International International International I			0 0 0	No.12				26	11100	-	1.1			
Doctor Diffusion A <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AN I</td> <td>中</td> <td>臣</td> <td></td> <td></td> <td></td> <td></td>		+						AN I	中	臣				
RetWrite Wassen RetWrite Wassen RetWrite Wassen RetWrite Wassen Date This Base Wassen RetWrite Wassen Date This Base Market By / Company Name Date Date This Date This Date This Date Market By / Company Name RetWrite Wassen RetWrite Wassen RetWrite Wassen	UPLED BY (Please Print): N. Col- Curr	LOGGED	(inignature)	the	120	4		2	1.01			Chandlerd -		
Data Time Data Time Data Time Data Time 2 Image: Second state Data Time 3 3 Sh1 Second state 4 Image: Second state Data Data 6 1 Sh1 Second state 8 1 Second state Second state 10 1 Second state Second state 10 10 Second state Second state		DEMIDINED									-JL		5	
Date Time Beee/red By / Company Name Date Time Montentioned Multiple 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 4 3 3 3 3 3 3 3 6 6 6 6 6 6 6 10 10 10 10 10 10	AND THE NEW STORE							101			evite T			
	Relinquished By/ Company Name	1	Time		Reelive	d By / Comp	any Name		Date	Time		NJ-Reducer	2	odi i
4 1				2		L.	A CA	5	34	2	nea l	W-Ful) *	
6 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10				4		7				Ī	-		<u>।</u> इ	
				3 8							-	in the	and	
-				2							O Criteria	Nequired?	220	N.L.

933

ł

i

۴ 5

ĩ

Appendix D: Global Positioning System Data

GPS Data

Data Point	Description	Coordi (mete	
		Easting	Northing
Anti-Aircraft Range - 1			
munitions debris	munitions debris	437334.165	3551927.307
munitions debris	munitions debris	437333.134	3551923.953
smoke grenade	smoke grenade		
expended	expended	437338.446	3551919.903
pop flare	pop flare	437245.908	3551939.193
sub cal rocket	sub cal rocket	437184.683	3551949.153
sub cal rocket	sub cal rocket	437185.369	3551922.245
sub cal rockets	sub cal rockets	437183.731	3551921.151
sub cal rockets	sub cal rockets	437183.908	3551878.070
sub cal rockets	sub cal rockets	437183.317	3551856.219
sub cal rockets	sub cal rockets	437181.281	3551808.420
unknown met debris	unknown met debris	437209.290	3551928.011
sub cal rockets	sub cal rockets	437207.325	3551880.791
sub cal rockets 20 plus	sub cal rockets 20 plus	437207.695	3551881.090
sub cal rockets 20 plus	sub cal rockets 20 plus	437217.516	3551887.077
sub cal rockets	sub cal rockets	437219.205	3551892.539
sub cal rockets	sub cal rockets	437224.390	3551867.024
tire	tire	437221.563	3551863.073
mound	mound	437231.374	3551804.066
table	table	437271.286	3551892.442
pop flare	pop flare	437272.713	3551831.399
flare	flare	437318.775	3551904.251
flare	flare	437327.068	3551900.185
flare	flare	437339.847	3551876.393
unknown debris	unknown debris	437569.019	3551844.777
booby trap simulator	booby trap simulator	438220.929	3551672.510
FTSW-AAR1-03	FTSW-AAR1-03	437183.588	3551880.885
FTSW-AAR1-04	FTSW-AAR1-04	437221.401	3551865.727
FTSW-AAR1-05	FTSW-AAR1-05	437419.050	3551838.325
FTSW-AAR1-06	FTSW-AAR1-06	437831.319	3551755.183
Anti-Aircraft Range 90	mm - 2		
FTSW-AAR90mm-02	FTSW-AAR90mm-02	437781.100	3531997.495
Hand Grenade Course			
FTSW-HGC-01	FTSW-HGC-01	436422.406	3530862.252
Small Arms Range - 1			
FTSW-SA1-10	FTSW-SA1-10	452207.037	3534300.086
FTSW-SA1-09	FTSW-SA1-09	452118.689	3534293.755
FTSW-SA1-08	FTSW-SA1-08	451728.497	3533606.168
FTSW-SA1-07	FTSW-SA1-07	451542.156	3533856.459
Small Arms Range – 3			

Internal Draft Confirmatory Sampling Report Fort Stewart Hinesville, Georgia

, 0			
FTSW-SM3-02SW	FTSW-SM3-02SW	447325.650	3531005.312
FTSW-SM3-02SED	FTSW-SM3-02SED	447325.650	3531005.312
FTSW-SA3-14	FTSW-SA3-14	447169.886	3530757.518
FTSW-SM3-12	FTSW-SM3-12	447418.242	3530768.299
FTSW-SM3-01SW	FTSW-SM3-01SW	447475.693	3530871.459
FTSW-SM3-01SED	FTSW-SM3-01SED	447475.693	3530871.459
FTSW-SM3-13	FTSW-SM3-13	447248.653	3530979.791
SignMine	Sign stating "mines"	452402.753	3534168.313
BarbedWire	Barbed wire fence area	452348.681	3534195.986
Hero Road Trench Are	a		
FTSW-HRT-11	FTSW-HRT-11	442312.266	3527197.396

Coordinate System: UTM Zone 17 North; Datum: NAD 1983; Units: Meters.

Appendix E: Cost-to-Complete

Army Environmental Database-Restoration (AEDB-R) Data

Version 11/10/2006

The information below was initially collected during the Phase 3 Inventory as ARID data. Since that time, a Historical Records Review (HRR) and Site Inspection (SI) have been completed at the site. As a result of the HRR and SI findings, some responses have been updated from those initially indicated. Note that several items have drop down lists. Select the cell and the drop down list will appear.

Installation Name: Fort Stewart, Georgia

	GENERAL
AEDBR Site ID:	FTSW-002-R-01
Site Description:	Anti-Aitcraft Range 90-mm - 2
NPL Status:	No
Site Narrative:	This MRS is a 77-acre parcel, located northwest of the cantonment area, where two different types of historical munitions uses occurred. These uses included anti-aircraft and tank training and occurred on a total of six separate/collocated ranges from 1941 through 1964. The MRS is positioned in the downrange portion of these ranges and does not overlap impact/target areas or firing points. The known munitions associated with this MRS include 40-mm and 90-mm anti-aircraft projectiles. The munitions used on the tank range are unknown. However, archival documents from 1941 indicate that 37-, 40-, and 90-mm HE and 37-, 40-, and 90-mm practice rounds with tracers were issued to FTSW. Therefore, it is assumed that these munitions could have been used on this MRS. Numerous EOD calls involving C-4 plastic explosives (secondary explosives), M-222 Dragon HE anti-tank guided missiles, M-7 grenades (riot control agent), and MK-2 fragmentation hand grenades were reported on this site. Table 4-6 lists the specific munitions that potentially were used at Anti-Aircraft Range 90-mm - 2 based on the HRR f
Site Type:	Firing Range

	POC
POC Name:	Algeanna Stevenson
POC Phone Number:	(912) 315-4226

SITE OWNERSHIP AND LOCATIONS

Site 100% Owned by DoD:	Yes
If not 100% Owned by DoD, who has ownership Control:	

If not 100% Owned by DoD, who has ownership Control:	
lf not 100% Owned by DoD, who has	
ownership Control:	
Other Description:	
Is site located on property that is leased to another entity:	No
If leased, to whom is the property leased:	
Other Description:	
Is site located on property that was leased in the past but is not now?	No
Is site on property that was previously	
withdrawn land?	No
Location City:	Hinesville
Location County:	Bryan, Evans, Liberty, Long, and Tattnall counties
Location State:	GA
UTM Datum:	NAD83 (1983 North American Datum)
UTM Zone:	18
X Coordinate:	
Y Coordinate:	
	SITE ATTRIBUTES
Site Status:	Closed
On Range:	Yes
Site Size (Acres):	77
Acres known or identified to contain military munitions.:	0
Acres suspected to contain military munitions:	

Acres not suspected to contain military munitions:	_0
Soil Type:	Sand-Silt/Sand-Clay
Topography:	Flat
Vegetation:	Barren or low grass
Drinking Water Aquifer:	
EPA Designated Sole Source Aquifer:	No
Groundwater Depth (feet):	
Munitions Constituent Contamination:	No
Munitions Constituent Media 1:	Soil
Munitions Constituent Media 2:	
Munitions Constituent Media 3:	
Munitions Density:	Unknown
Range Classification:	Training
Range Classification "Other" Description: Land Use Access	anti-aircraft and tank training and occurred on a total of six separate/collocated ranges from 1941 through 1964. The MRS is positioned in the downrange portion of these ranges and does not overlap impact/target areas or firing points.
Controls 1:	Fences
Land Use Access Controls 2:	Guards
Land Use Access Controls 3:	Locked gates
Access "Other' Description:	
Land Use Restrictions 1:	
Land Use Restrictions 2:	

Land Use Restrictions 3:		
Restrictions "Other" Description:		
Public Accessibility:	No Public Access	
Historic Use 1:	Other	
Start Year: End Year:	1941	
Historic Use 2:	Artillery	
Start Year: End Year:		1941 4964
Historic Use 3:	Artillery	
Start Year: End Year:		1941 1964
Historic Use 4:	Artillery	
Start Year: End Year:		1957 1964
Current Use 1:	Other	
Start Year: End Year:	unknown present	
Current Use 2:		
Start Year: End Year:		
Current Use 3:		
Start Year: End Year:		
Current Use 4:		
Start Year: End Year:		
Current Use "Other" Description:	Ammunition Supply Point	

RACER Cost Estimating Data - MEC

FTSW-002-R-01

Note that some of the information included here may appear redundant to what was provided in AEDB-R. Some of the choices in the drop down lists, however, may be different than the AEDB-R choices.

Installation Name:	Fort Stewart		
AEDB-R Site ID:	FTSW-002-R-01		
Site Name:	Anti-Aircraft Rane 90-mm - 2		
Range/Site Acreage:	77 acres		
Characterization Area (if different than total acreage):			
Topography:	Flat		
Vegetation:	Barren or Low Grass		
Range Type 1:	Artillery (200 anomalies/acre)		
Range Type 2:	Mortar (250 anomalies/acre)		
Range Type 3:	Multiple/Combined Use (400 anomalies/acre)		
Range Type 4:			
Ordnance Type 1:	Large Caliber (37mm and larger) (CTT11)		
Ordnance Type 2:	Demolition Materials (TNT, Dynamite, Black Powder, Detonators, Blasting Caps, Fuses, Cratering Charges, Bangalore Torpedoes etc.) (CTT04)		
Ordnance Type 3:	Hand Grenades, Live (CTT05)		
Ordnance Type 4:			
Ordnance Type 5:			
Anomalies/acre:	unknown		
Percent scrap:	unknown		
Comment:	90-mm anti-aircraft high explosive (HE), and 40-mm anti-aircraft HE were used at this site. The EOD has responded to several emergency calls in the area. All of the responses were in the same area. The ordnance and explosives (OE) encountered included C-4 plastic explosives (secondary explosives), M-222 and GM Dragon Missiles (guided missiles), M-7 grenades (a riot control agent), and MK-2 fragmentation hand grenades. The dates and exact number of occurrences of the EOD calls are not known. No information and no reports from installation personnel regarding UXO investigation being performed on the site were obtained during the site visit.		

Cost Estimating Data - MC

Small Arms Ranges (expended only)			
Likelihood of Lead Contamination Requiring Remediation:	Possible		
Sampling Area (Acres):	77 acres		
Contaminated Area (square feet):	N/A		
Depth of Contamination (feet):	<u>N/A</u>		
	Multi-Use Ranges (Contain MEC)		
Likelihood of MC Contamination (Soil):	Unlikely (Confirmation Sampling)		
Likelihood of MC Contamination (Groundwater):			
Sampling Area (Acres):	5 composite surface soil samples across 10 percent of the total site acreage ~77 acre		
Contaminated Area (square feet):	N/A		
Depth of Contamination (feet)	Ν/Α		
Notes:	One composite surface soil sample was collected and was analyzed for aluminum, copper, zinc (USEPA Method 6010B), lead, antimony (USEPA Method 6020), and explosives (USEPA Method 8330) from the Anti-Aircraft Range 90mm – 2. The analytical data were summarized in Table 4-5, and the sample location is shown on Map 4-2. The results of the soil sampling analysis at the Anti-Aircraft Range 90 mm – 2 indicate that, with the exception of zinc, all metals analyzed were below FTSW established background levels. No explosive compounds were detected above laboratory detection or method reporting limits.		

Army Environmental Database-Restoration (AEDB-R) Data

Version 11/10/2006

The information below was initially collected during the Phase 3 Inventory as ARID data. Since that time, a Historical Records Review (HRR) and Site Inspection (SI) have been completed at the site. As a result of the HRR and SI findings, some responses have been updated from those initially indicated. Note that several items have drop down lists. Select the cell and the drop down list will appear.

Installation Name: Fort Stewart, Georgia

GENERAL			
AEDBR Site ID:	FTSW-008-R-01		
Site Description:	Hero Road Trench Area		
NPL Status:	No		
Site Narrative:	The Hero Road Trench Area is a 10-acre parcel located within the cantonment area that was identified in January 2003 when a former DPW staff member reported to the DPW Environmental Office that materials (i.e., mustard gas) had been buried in the DPW Family Housing Maintenance parking lot located on Hero Road (FTSW0091).		
Site Type:	Chemical Disposal		

	POC
POC Name:	Algeanna Stevenson
POC Phone Number:	(912) 315-4226

SITE OWNERSHIP AND LOCATIONS			
Site 100% Owned by DoD:	Yes		
lf not 100% Owned by DoD, who has ownership Control:			
lf not 100% Owned by DoD, who has ownership Control:			
lf not 100% Owned by DoD, who has ownership Control:			
Other Description:			

Is site located on property that is leased to another entity:	_No
If leased, to whom is the property leased:	
Other Description:	
Is site located on property that was leased in the past but is not now?	No
lo cito en proporty that	
Is site on property that was previously withdrawn land?	<u>No</u>
Location City:	Hinesville
Location County:	Bryan, Evans, Liberty, Long, and Tattnall counties
Location State:	GA
UTM Datum:	NAD83 (1983 North American Datum)
UTM Zone:	18
X Coordinate:	
Y Coordinate:	
Y Coordinate:	
	SITE ATTRIBUTES
Y Coordinate:	SITE ATTRIBUTES
Site Status:	Closed
Site Status: On Range:	<u>Closed</u> Yes
Site Status: On Range: Site Size (Acres): Acres known or identified to contain military munitions.: Acres suspected to	Closed Yes 10
Site Status: On Range: Site Size (Acres): Acres known or identified to contain military munitions.:	Closed Yes 10
Site Status: On Range: Site Size (Acres): Acres known or identified to contain military munitions.: Acres suspected to contain military	Closed Yes 10 0
Site Status: On Range: Site Size (Acres): Acres known or identified to contain military munitions.: Acres suspected to contain military munitions: Acres not suspected to contain military	Closed Yes 10 0 10
Site Status: On Range: Site Size (Acres): Acres known or identified to contain military munitions.: Acres suspected to contain military munitions: Acres not suspected to contain military munitions:	Closed Yes 10 0 10 10 0 10

Drinking Water Aquifer	:
EPA Designated Sole Source Aquifer:	No
Groundwater Depth (feet):	
Munitions Constituent Contamination:	Νο
Munitions Constituent Media 1:	Soil
Munitions Constituent Media 2:	
Munitions Constituent Media 3:	
Munitions Density:	Unknown
Range Classification:	Other
Range Classification "Other" Description:	In 1941 and 1951, CWM training and supplies existed at FTSW and, thus, it is likely that any potential items buried at the Hero Road Trench Area are related to this training.
Land Use Access Controls 1:	Fences
Land Use Access Controls 2:	Locked gates
Land Use Access Controls 3:	
Access "Other' Description:	
Land Use Restrictions 1:	
Land Use Restrictions 2:	
۷.	
Land Use Restrictions	
Land Use Restrictions	
Land Use Restrictions 3: Restrictions "Other"	No Public Access
Land Use Restrictions 3: Restrictions "Other" Description:	No Public Access Other
Land Use Restrictions 3: Restrictions "Other" Description: Public Accessibility:	

End Year:	1951
Historic Use 2:	
Start Year:	
End Year:	
Historic Use 3:	
Start Year:	
End Year:	
Historic Use 4:	
Start Year:	
End Year:	
Current Use 1:	Other
Start Year:	unknown
End Year:	present
Current Use 2:	
Start Year:	
End Year:	
Current Use 3:	
Start Year:	
End Year:	
Current Use 4:	
Start Year:	
End Year:	
Current Use "Other" Description:	Family Housing Maintenance parking lot

RACER Cost Estimating Data - MEC

FTSW-008-R-01

Note that some of the information included here may appear redundant to what was provided in AEDB-R. Some of the choices in the drop down lists, however, may be different than the AEDB-R choices.

Installation Name:	Fort Stewart
AEDB-R Site ID:	FTSW-008-R-01
Site Name:	Hero Road Trench Area
Range/Site Acreage:	10 acres
Characterization Area (if different than total acreage):	
Topography:	Flat
Vegetation:	Shrubs with Some Trees
Range Type 1:	Burial Pits (0 anomalies/acre)
Range Type 2:	
Range Type 3:	
Range Type 4:	
Ordnance Type 1:	Other (Toxic Chemical Munitions, Sea Mines, Torpedoes, CADS, etc.) (CTT17)
Ordnance Type 2:	
Ordnance Type 3:	
Ordnance Type 4:	
Ordnance Type 5:	
Anomalies/acre:	unknown
Percent scrap:	unknown
Comment:	1941 and 1951, CWM training and supplies existed at FTSW and, thus, it is likely that any potential items buried at the Hero Road Trench Area are related to this training. A geophysical study was conducted on September 5th and 19th, 2003, to investigate approximately 4 acres off of Hero Road around the Family Housing Maintenance parking lot. The area was densely wooded with the exception of the 0.4-acre parking lot. Many anomalies were noted, but it was unknown if they were a result of natural voids (possibly

due to root vaults) or buried materials

Cost Estimating Data - MC

Small Arms Ranges (expended only)			
Likelihood of Lead Contamination Requiring Remediation:	Unlikely (Confirmation Sampling)		
Sampling Area (Acres):	10		
Contaminated Area (square feet):	<u>N/A</u>		
Depth of Contamination (feet):	<u>N/A</u>		
	Multi-Use Ranges (Contain MEC)		
Likelihood of MC Contamination (Soil):	Possible		
Likelihood of MC Contamination (Groundwater):			
Sampling Area (Acres):	5 composite surface soil samples across 10 percent of the total site acreage ${\sim}10~{\rm acre}$		
Contaminated Area (square feet):	N/A		
Depth of Contamination (feet)	<u>N/A</u>		
Notes:	 One composite surface soil sample was collected from the Hero Road Trench Area and analyzed for aluminum, copper, and zinc (USEPA Method 6010B); lead and antimony (USEPA Method 6020); and explosives (USEPA Method 8330). The following are the results of the soil sampling analysis at the Hero Road Trench Area: Lead: The sample did not exceed the residential PRG for lead. The sample exceeded the FTSW established background level for lead and the Region 4 ecological screening value for lead in surface soil. Other metals: The sample did not exceed the residential PRGs, the FTSW established background levels, or the Region 4 ecological screening values for aluminum, antimony, copper, or zinc. Explosives: No explosives were detected above laboratory reporting or method detection limits. 		

Appendix F: Munitions Response Site Prioritization Protocol

DEPARTMENT OF THE ARMY US ARMY INSTALLATION MANAGEMENT COMMAND US ARMY GARRISON, FORT STEWART / HUNTER ARMY AIRFIELD DIRECTORATE OF PUBLIC WORKS 1587 FRANK COCHRAN DRIVE FORT STEWART, GEORGIA 31314

REPLY TO ATTENTION OF

Directorate of Public Works

CERTIFIED MAIL

Georgia Environmental Protection Division Hazardous Waste Management Branch Attention: Mr. Ghazi Floyd Towers East, Suite 1154 2 Martin Luther King, Jr. Drive S.E. Atlanta, GA 30334

Dear Mr. Ghazi:

As a lead agency and in accordance with the 32 Code of Federal Regulations 179.5 requirements, Fort Stewart is providing this notification that a Military Munitions Response Program (MMRP) Confirmatory Sampling (CS) event, which is intended to meet the requirements of a MMRP Site Inspection (SI) under CERCLA was completed in May 2007. MMRP sites (Anti-Aircraft Range -1; Anti-Aircraft Range 90mm-2; Anti-Tank Range 90mm; Hand Grenade Course; Small Arms Range-1; Small Arms Range-3; and Hero Road Trench Site) established during the SI process were initially evaluated and scored by applying the Munitions Response Site Prioritization Protocol (MRSPP). The MRSPP evaluation criteria included assessing types of munitions which may be potentially present, assessing land uses, determining ease of access to sites, and quantifying the number of people with access to sites.

The draft MRRP scores were provided for your review in the Draft CS Report. You may elect to simply review and provide input on the initial scores within the Draft CS Report. MMRP scores will be considered final in the Final CS Report. In accordance with the 32 CFR Part 179 requirements and prior to finalizing these scores, we are soliciting stakeholder interest in participation in the scoring process. If you, or any applicable stakeholder, are interested in participating in the scoring process, a meeting can be setup. If no such requests are received within 30-days of this letter, then the MRSPP scores, as presented in the Final CS Report, will be considered final.

Should you have any questions regarding the application of MRSPP, please contact Ms. Algeana Stevenson at (912) 315-4226 or Ms. Tressa Rutland, Directorate of Public Works, Environmental Branch, at (912) 767-2010.

Sincerely,

Thomas C. f. Michael W. Biering, P.E., CFM

Michael W. Biering, P.E.,CFN Director, Public Works

Enclosures

STATE OF GEORGIA COUNTY OF <u>LIBERTY</u>

Personally appeared before me, the undersigned Notary Public

<u>Mark Griffin</u>

who after being duly sworn state under oath that he is the

Publisher

of the <u>Coastal Courier</u> newspaper, a newspaper of 'general circulation in the city of <u>Hinesville</u>, Georgia, and who further states under oath that the advertisement attached hereto and made a part of this affidavit appeared in the <u>Coastal Courier</u> on <u>1</u>, <u>3001</u>

Sworn to and subscribed before me,

this Det. 22 day of 2007 Comm. Exp. Dec. 4, 200.

Errors - The liability of the publisher on account of errors in or omissions from any advertisement will in no way exceed the amount of the charge for the space occupied by the item in error; and then only for the first incorrect insertion.

MRSPP Public Notice The Department of Defense (DoD) has conducted live-fire training and testing of weapon systems at active and former military installation throughout the United States to ensure force readiness and defend our nation. The Army and Fort Stewart are in the process of completing a site inspection of former munitions-related activities on Fort Stewart. Through direction provided by Congress, the DoD has developed the Munitions Site Response Prioritization Protocol (MRSPP) which assigns priorities to defense sites containing unexploded ordnance, discarded military munitions or munitions constituents. The MRSPP evaluation criteria includes assessing types of munitions that may be potentially present, assessing land uses, present, determining ease of access to sites, and quantifying the number of people with access to sites.

information collected will be used to apply the MRSPP at three former anti-aircraft ranges; a former hand grenade course; two former small arms ranges; and a former Fort Stewart landfill. The information will be made available for public review at Stewart the Fort Environmental Prevention and Compliance Branch, DPW, Building 1137, in accordance with the 32 CFR Part 179 requirements November 5, 2007.

If you have or would like additional information about these Munitions Response Sites or other potential Munitions Response Sites associated with Fort Stewart, please contact: (Randy Powell-Jones, 1550 Frank Cochran Drive, Fort Stewart, GA 31314-4927, (912) 315-5109, or Randy.Powell-Jones@stewart.army.mil) 26798 (Oct.21)

<u>ب</u>

(LZI)

Site Prioritization Summary Table Fort Stewart, Georgia				
Site Name	EHE Module Rating	CHE Module Rating	HHE Module Rating	Overall Priority Rating
Anti-Aircraft Range 90-mm - 2	4	No Known or Suspected CWM Hazard	No Known or Suspected MC Hazard	4
Small Arms Range 3	No Known or Suspected Explosive Hazard	No Known or Suspected CWM Hazard	No Known or Suspected MC Hazard	No Known or Suspected Hazard
Hero Road Trench Area	8	6	No Known or Suspected MC Hazard	6

Chemical Warfare Materiel Hazard Evaluation (CHE) Explosives Hazard Evaluation (EHE) Feasibility Study (FS) Health Hazard Evaluation (HHE) Munitions Constituents (MC) Munitions and Explosives of Concern (MEC) No Further Action (NFA) Remedial Investigation (RI) Site Investigation (SI)

The EHE & CHE Rating is determined by selecting the appropriate EHE Module Score range using the sum of the nine data element site scores:

EHE & CHE Module Score	EHE & CHE Rating
92 to 100	EHE Rating A (Highest)
82 to 91	EHE Rating B
71 to 81	EHE Rating C
60 to 70	EHE Rating D
48 to 59	EHE Rating E
38 to 47	EHE Rating F
0 to 37	EHE Rating G (Lowest)

Alternative Module Ratings Evaluation Pending No Longer Required

No Known or Suspected Explosive Hazard or No Known or suspected CWM Hazard

The HEE is determined by the selection of the appropriate HEE Module Rating (A through G) using the HHE three letter combination levels:

Combination	Rating
ннннн	А
ННМ	В
HHL	С
HMM	C
HML	D
MMM	Ъ
HLL	Е
MML	Е
MLL	F
LLL	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
	No Known or Suspected MC Hazard

The MRS Priorit	v is based on	the highest Haza	rd Evaluation Module:

Explosives Hazard Evaluation Module Rating	Priority	Chemical Warfare Materiel Hazard Evaluation Module Rating	Priority	Health Hazard Evaluation Module Rating	Priority
A (Lowest)	2	A (Lowest)	1	A (Lowest)	2
В	3	В	2	В	3
С	4	С	3	С	4
D	5	D	4	D	5
E	6	E	5	E	6
F	7	F	6	F	7
G (Lowest)	8	G (Lowest)	7	G (Lowest)	8
Evaluation Pending		Evaluation PendingNo Longer Required		ł	
No Longer Required		No Longer Required Evaluation Pending			
No Known or Suspected Hazard	d Explosive	veNo Known or Suspected CWM HazardNo Known or Suspecte Hazard		cted MC	

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Anti-Aircraft Range 90-mm 2 (FTSW-002-R-01)

Component: US Army

Installation/Property Name: Ft. Stewart

Location (City, County, State): Ft. Stewart, Liberty County, GA

Site Name/Project Name (Project No.): Ft. Stewart MRSPP SI (2118093)

Date Information Entered/Updated: July 24, 2007

Point of Contact (Name/Phone): Shelly Kolb, Malcolm Pirnie, Inc./ (410) 230-9958

Project Phase (check only one):

D PA	∗ SI	🗆 RI	□ FS	🗖 RD
RA-C		🗖 RA-O	□ RC	LTM

Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
✤ Surface soil	□ Surface Water (ecological receptor)
Sediment (ecological receptor)	□ Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type: <u>These uses included anti-aircraft and tank training and occurred on a total of six separate/collocated ranges from 1941</u> through 1964. The known munitions associated with this MRS include 40-mm and 90-mm anti-aircraft projectiles. No MEC or munitions debris was observed in the field.

Description of Pathways for Human and Ecological Receptors: <u>The pathways for all human and ecological receptors are</u> potentially complete as there is potential for these receptors to encounter MEC on the surface. Potentially complete pathways for installation personnel, contractors, and biota for MEC in the subsurface may exist as these receptors have the potential to conduct intrusive activities. The pathway for MEC in the subsurface is incomplete for all other receptors. Biota have potentially complete pathways for subsurface soil, shallow ground water, and surface soil.

Description of Receptors (Human and Ecological): <u>The current human receptors of potential MEC or MC on Anti-Aircraft</u> <u>Range 90-mm - 2 include authorized installation personnel, contractors, visitors.</u> <u>Based the fact that the site is</u> <u>particularly developed and fenced, the ecological diversity is low.</u>

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	<u>30</u>
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	<u>25</u>
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	<u>5</u>
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	<u>3</u>
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	<u>30</u>

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

Site was chosen as sensitive, because according to information obtained during the Phase 3 site visit and HRR, 90-mm anti-tank HE, 40-mm anti-aircraft HE, and small arms were used at the site. Numerous EOD calls involving C-4 plastic explosives (secondary explosives), M-222 Dragon high explosive anti-tank guided missile, M-7 grenades (riot control

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification

Description

Score

agent), and MK-2 fragmentation hand grenades were reported on this site. (CS Report, Section 4.2.1)

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms former range, practice munitions, small arms range, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	<u>10</u>
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	• The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category.	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	 The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range. 	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>10</u>

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

Former range was chosen, because the area is comprised of the following overlapping range fans: the buffer area (near the firing point) of an Anti-Tank Range 90-mm (total acreage approximately 16,128, operational in 1941); the buffer area (near the firing point) of an Anti-Aircraft Range 40-mm (total acreage approximately 25,288, operational in 1941); and a portion of a Small Arms Range (total acreage approximately 1,241, operational in 1941). (CS Report, Section 4.2.1)

Table 3 EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms confirmed, surface, subsurface, small arms ammunition, physical evidence, and historical evidence are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	<u>25</u>
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	<u>5</u>
Subsurface, physical constraint	• There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	• The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.)	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	<u>25</u>

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

Confirmed subsurface was chosen, because numerous EOD calls involving C-4 plastic explosives (secondary explosives), M-222 Dragon high explosive anti-tank guided missile, M-7 grenades (riot control agent), and MK-2 fragmentation hand grenades were reported on this site. (CS Report, Section 4.2.1)

Table 4 EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	Score	
No barrier	• There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible).	10	
Barrier to MRS access is incomplete	 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	8	
Barrier to MRS access is complete but not monitored	• There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS.	5	
Barrier to MRS access is complete and monitored	• There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS.	<u>0</u>	
EASE OF ACCESS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>0</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ease of Access</i> classification in the space provided. The majority of ETSW is currently not fenced. Therefore, people can potentially access ETSW through many of the			

The majority of FTSW is currently not fenced. Therefore, people can potentially access FTSW through many of the boundaries that are not fenced. This MRS is protected by fences and guards it is currently the Ammunition Supply Point.

Table 5 EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	Score	
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	5	
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3	
DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year.	<u>0</u>	
STATUS OF PROPERTY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>0</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the Status of Property classification in the space provided. This FTSW property is owned by the DoD.			

Table 6

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the <u>highest</u> population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	Score	
> 500 persons per square mile	 There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located. 	5	
100–500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	<u>3</u>	
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1	
POPULATION DENSITY	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>3</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Population Density</i> classification in the space provided.			
According to the 2000 U.S. Cen 4.2.4.3.7)	sus, there are 118.7 persons per square mile in Liberty County, GA. (CS Rep	ort. Section	
EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number of inhabited structures.

Note: The term *inhabited structures* is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	<u>5</u>
16 to 25 inhabited structures	There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	4
11 to 15 inhabited structures	There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	• There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both.	0
POPULATION NEAR HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>5</u>

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the types of activities that occur and/or structures that are present within two miles of the MRS and circle the scores that correspond with all the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score	
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	<u>5</u>	
Parks and recreational areas	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses. 	4	
Agricultural, forestry	• Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	3	
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	2	
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	1	
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>5</u>	

DIRECTIONS: Document any MRS-specific data used in selecting the Types of Activities/Structures classifications in the space provided.

Military offices and an ammunition supply shed are in close proximity to the MRS. (CS Report, Section 4.2.4.3.1)

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the types of resources present and circle the score that corresponds with the ecological and/or cultural resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification Description		Score	
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5	
Ecological resources present	There are ecological resources present on the MRS.	3	
Cultural resources present	There are cultural resources present on the MRS.	3	
No ecological or cultural resources present	 There are no ecological resources or cultural resources present on the MRS. 	<u>0</u>	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 5).	<u>0</u>	
DIRECTIONS: Document any MRS-specific data used in selecting the <i>Ecological and/or Cultural Resources</i> classification in the space provided.			
The MRS is heavily developed and contains no ecological resources. There are no known cultural resources. (CS			

Report, Section 4.2.4.4.3)

Table 10 Determining

DIRECTIONS:

- 1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.
- 2. Add the Score boxes for each of the three factors and record this number in the Value boxes to the right.
- 3. Add the three **Value** boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the EHE Module Total below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

g the EHE Module Rating				
	Source	Score	Value	
Explosive Hazard Factor Data Elements				
Munitions Type	Table 1	30	40	
Source of Hazard	Table 2	10	10	
Accessibility Factor Data Elemer	nts			
Location of Munitions	Table 3	25		
Ease of Access	Table 4	0	25	
Status of Property	Table 5	0		
Receptor Factor Data Elements		_		
Population Density	Table 6	3		
Population Near Hazard	Table 7	5	13	
Types of Activities/Structures	Table 8	5	13	
Ecological and/or Cultural Resources	Table 9	0		
EHE	MODULI	E TOTAL	78	
EHE Module Total	EHE	Module R	ating	
92 to 100		А		
82 to 91		В		
<u>71 to 81</u>		<u>C</u>		
60 to 70		D		
48 to 59		Е		
38 to 47		F		
less than 38		G		
	Eva	aluation Pen	ding	
	No	Longer Requ	uired	
Alternative Module Ratings				
Alternative Module Ratings	No Kr	own or Sus plosive Haz		

Table 11 CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.
 Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	 The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO. 	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11.	12
CAIS (chemical agent identification sets)	CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS.	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	<u>0</u>
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	0
DIRECTIONS: Document any provided.		<u>0</u> ns in the s

Table 12 CHE Module: Sources of CWM Data Element Table

DIRECTIONS: Below are 11 sources of CWM hazards and their descriptions. Review these classifications and circle the scores that correspond with <u>all</u> the sources of CWM hazards known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, CAIS/DMM, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Live-fire involving CWM	 The MRS is a former military range that supported live-fire of explosively configured CWM and the CWM/UXO are known or suspected of being present on the surface or in the subsurface. The MRS is a former military range that supported live-fire with conventional munitions, and CWM/DMM are on the surface or in the subsurface commingled with conventional munitions that are UXO. 	10
Damaged CWM/DMM surface or subsurface	 There are damaged CWM/DMM on the surface or in the subsurface at the MRS. 	10
Undamaged CWM/DMM surface	• There are undamaged CWM/DMM on the surface at the MRS.	10
CAIS/DMM surface	There are CAIS/DMM on the surface.	10
Undamaged CWM/DMM, subsurface	 There are undamaged CWM/DMM in the subsurface at the MRS. 	5
CAIS/DMM subsurface	There are CAIS/DMM in the subsurface at the MRS.	5
Former CA or CWM Production Facilities	 The MRS is a facility that formerly engaged in production of CA or CWM, and CWM/DMM is suspected of being present on the surface or in the subsurface. 	3
Former Research, Development, Testing, and Evaluation (RDT&E) facility using CWM	 The MRS is at a facility that formerly was involved in non-live- fire RDT&E activities (including static testing) involving CWM, and there are CWM/DMM suspected of being present on the surface or in the subsurface. 	3
Former Training Facility using CWM or CAIS	 The MRS is a location that formerly was involved in training activities involving CWM and/or CAIS (e.g., training in recognition of CWM, decontamination training) and CWM/DMM or CAIS/DMM are suspected of being present on the surface or in the subsurface. 	2
Former Storage or Transfer points of CWM	 The MRS is a former storage facility or transfer point (e.g., intermodal transfer) for CWM. 	1
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	<u>0</u>
SOURCES OF CWM	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>0</u>

DIRECTIONS: Document any MRS-specific data used in selecting the **Sources of CWM** classifications in the space provided.

There is no historical or current evidence of CWM existing on this MRS.

Table 13 CHE Module: Location of CWM Data Element Table

DIRECTIONS: Below are seven classifications of CWM locations and their descriptions. Review these locations and circle the scores that correspond with <u>all</u> the locations where CWM are known or suspected of being found at the MRS.

Note: The terms *confirmed, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are CWM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report, that an incident or accident that involved CWM, regardless of configuration, occurred) indicates there are CWM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. 	15
Suspected (physical evidence)	• There is physical evidence, other than the documented presence of CWM, indicating that CWM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that CWM may be present at the MRS.	5
Subsurface, physical constraint	• There is physical or historical evidence indicating that CWM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the CWM.	2
Evidence of no CWM	• Following investigation of the MRS, there is physical evidence that there is no CWM present or there is historical evidence indicating that no CWM are present.	<u>0</u>
	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	<u>0</u>

Table 14-19 CHE Module

Because there is no historical or current evidence of CWM existing on this MRS, Tables 14-19 have been omitted according to Active-Army Guidance.

Table 20 **Determining the CHE Module Rating**

Determinir	ig the CHE Module Rating			
		Source	Score	Value
	CWM Hazard Factor Data Elemen	ts	-	
1.4	CWM Configuration	Table 11	0	0
ord the he Score	Sources of CWM	Table 12	0	0
	Accessibility Factor Data Elemen	ts		
r each of cord this	Location of CWM	Table 13	0	
kes to the	Ease of Access	Table 14	-	-
	Status of Property	Table 15	-	
tes and e CHE	Receptor Factor Data Elements	<u>L</u>	_	
V.	Population Density	Table 16	-	
nge for	Population Near Hazard	Table 17	-	
below.	Types of Activities/Structures	Table 18	-	-
Rating range	Ecological and/or Cultural Resources	Table 19	-	
range value in g box	Resources	Table 19 MODULI		-
range value in	Resources			- ating
range value in box ne table.	Resources CHE		E TOTAL	- ating
range value in g box	Resources CHE CHE Module Total		E TOTAL Module R	- ating
range value in box ne table. ay be rating is nodule	Resources CHE CHE Module Total 92 to 100		E TOTAL Module R A	- ating
range value in box ne table. ay be rating is nodule mation is ata	Resources CHE CHE Module Total 92 to 100 82 to 91		E TOTAL Module R A B	- ating
range value in box ne table. ay be rating is nodule mation is ata MRS was is no	Resources CHE CHE Module Total 92 to 100 82 to 91 71 to 81		E TOTAL Module R A B C	- ating
range value in box ne table. ay be rating is nodule mation is ata MRS was	Resources CHE CHE Module Total 92 to 100 82 to 91 71 to 81 60 to 70		E TOTAL Module R A B C D	- ating
range value in box ne table. ay be rating is nodule mation is ata MRS was is no	Resources CHE CHE Module Total 92 to 100 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 91		E TOTAL Module R A B C D E	- ating
range value in box ne table. ay be rating is nodule mation is ata MRS was is no	Resources CHE CHE Module Total 92 to 100 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47		E TOTAL Module R A B C D E F	
range value in box ne table. ay be rating is nodule mation is ata MRS was is no	Resources CHE CHE Module Total 92 to 100 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47	Eva	E TOTAL Module R A B C D E F G	ding
range value in box ne table. ay be rating is nodule mation is ata MRS was is no	Resources CHE CHE Module Total 92 to 100 92 to 100 82 to 91 71 to 81 60 to 70 48 to 59 38 to 47 less than 38 91	EVA	E TOTAL Module R A B C D E F G uluation Peno	ding

DIRECTIONS:

- 1. From Tables 11-19, reco data element scores in th boxes to the right.
- 2. Add the Score boxes for the three factors and reco number in the Value boxe right.
- 3. Add the three Value boxe record this number in the Module Total box below
- 4. Circle the appropriate ran the CHE Module Total b
- 5. Circle the CHE Module F that corresponds to the ra selected and record this the CHE Module Rating found at the bottom of the

Note:

An alternative module rating ma assigned when a module letter r inappropriate. An alternative mo rating is used when more inform needed to score one or more da elements, contamination at an M previously addressed, or there is reason to suspect contamination present at an MRS.

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
No groundwater samples collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	$CHE - \Sigma$ [Maximum Concentration of (
100 > CHF > 2	M (Medium)			
2 > CHF	L (Low)	[Comparison Value for Cont	aminantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	e from above in the box to the right		
DIRECTIONS: Circle th	Migratory Pathw he value that corresponds most closely t	vay Factor to the groundwater migratory pathway at the	MRS.	
Classification	Des	cription	Value	
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expose	that contamination in the groundwater is present at, sure.	Н	
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М	
Confined		nant migration from the source via the groundwater the presence of geological structures or physical	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value s	hest value from above in the box to the = H).		
DIRECTIONS: Circle the	Receptor Faceptor Fac	actor the groundwater receptors at the MRS.		
Classification		cription	Value	
Identified	There is a threatened water supply well downgra source of drinking water or source of water for or (equivalent to Class I or IIA aquifer).	adient of the source and the groundwater is a current ther beneficial uses such as irrigation/agriculture	Н	
Potential	or IIB aquifer).	irrigation, or agriculture (equivalent to Class I, IIA,	М	
Limited	There is no potentially threatened water supply or groundwater is not considered a potential source (equivalent to Class IIIA or IIIB aquifer, or where	e of drinking water and is of limited beneficial use	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).		

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS:Record the maximum concentrations of all contaminants in the MRS's groundwater and their
comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can
be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the
maximum concentration by the comparison value. Determine the CHF by adding the contaminant
ratios together, including any additional groundwater contaminants recorded on Table 27. Based on
the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or
suspected MC hazard present in the groundwater, select the box at the bottom of the table.RatiosContaminantMaximum Concentration (µg/L)Comparison Value (µg/L)Ratios

No Known or Suspected Groundwater MC Hazar	ď
--	---

Х

Table 22 HHE Module: Surface Water – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.			
Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
	No surface water sam	ples collected.	
CHF Scale	CHF Value	Sum The Ratios	
CHF > 100	H (High)	- Maximum Concentration of C	ontaminantl
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Concentratio of Concentration of Concentration of Concentration of Con$	
2 > CHF		[Comparison Value for Conta	iminantj
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right	
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS.			
Classification	Description		Value
Evident	Analytical data or observable evidence indicates t moving toward, or has moved to a point of exposu	hat contamination in the surface water is present at, ure.	Н
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		Μ
Confined	Information indicates a low potential for contamina a potential point of exposure (possibly due to the controls).	ant migration from the source via the surface water to presence of geological structures or physical	L

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highes</u> right (maximum value = H		
DIRECTIONS: Circle t			
Classification	Descri	ption	Value
Identified	Identified receptors have access to surface water to	which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface wat move.	er to which contamination has moved or can	М
Limited	Little or no potential for receptors to have access to so or can move.	surface water to which contamination has moved	L
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highes</u> the right (maximum value		
	No Known or Suspected Surfa	ce Water (Human Endpoint) MC Hazard	х

Table 23 HHE Module: Sediment – Human Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's sediment and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.						
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios			
	No sediment sampl	es collected.				
CHF Scale	CHF Value	Sum The Ratios				
CHF > 100	H (High)	Maximum Concentration of C	ontaminant1			
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{i}$				
Final Fort Stewart N	MRSPP – Anti-Aircraft Range 90mm 2	[Comparison Value for Conta	aminant]			

Final Fort Stewart MRSPP – Anti-Aırcraft Range 90mm 2

[Comparison value for Contaminant]

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg)			
2 > CHF	L (Low)			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle th	<u>Migratory Pathw</u> he value that corresponds most closely to	ay Factor the sediment migratory pathway at the MRS	6.	
Classification	Des	cription	Value	
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	ure.	Н	
Potential		ly beyond the source (i.e., tens of feet), could move ot sufficient to make a determination of Evident or	М	
Confined		ant migration from the source via the sediment to a resence of geological structures or physical controls).	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
DIRECTIONS: Circle th	Receptor Fa			
Classification	Des	cription	Value	
Identified	Identified receptors have access to sediment to v	hich contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to sediment	t to which contamination has moved or can move.	М	
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum val			
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard	х	

Table 24 HHE Module: Surface Water – Ecological Endpoint Data Element Table Contaminant Hazard Factor (CHF) DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC							
		surface water, select the box at the bottom o					
Contaminant	Maximum Concentration (μ g/L)	Comparison Value (µg/L)	Ratios				
	No surface water san	nples collected.					
CHF Scale	CHF Value	Sum the Ratios					
CHF > 100	H (High)	— Maximum Concentration of C	ontominantl				
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Comparison Value for Contents$					
2 > CHF	L (Low)	[Comparison Value for Conta	iminantj				
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right					
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	vay Factor o the surface water migratory pathway at the	MRS.				
Classification	Des	cription	Value				
Evident	Analytical data or observable evidence indicates moving toward, or has moved to a point of expos	that contamination in the surface water is present at, sure.	Н				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.						
Confined	Information indicates a low potential for contamin to a potential point of exposure (possibly due to controls).	nant migration from the source via the surface water the presence of geological structures or physical	L				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value =	hest value from above in the box to the = H).					
DIRECTIONS: Circle th	Receptor F ne value that corresponds most closely to	actor o the surface water receptors at the MRS.					
Classification Description							
Identified	Identified receptors have access to surface wate	r to which contamination has moved or can move.	Н				
Potential	Potential for receptors to have access to surface move.	water to which contamination has moved or can	М				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.						
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single hig</u> right (maximum value =	hest value from above in the box to the = H).					
	No Known or Suspected Surfa	ce Water (Ecological Endpoint) MC Hazard	Х				

Table 25 HHE Module: Sediment – Ecological Endpoint Data Element Table						
values Table 2 concer togethe the CH	(from Appendix B of the Primer) in the f 27. Calculate and record the ratios for a htration by the comparison value . De er, including any additional sediment cor F Scale to determine and record the Ch	rd Factor (CHF) ontaminants in the MRS's sediment and their of table below. Additional contaminants can be reach contaminant by dividing the maximum termine the CHF by adding the contaminant ra- ntaminants recorded on Table 27. Based on the HF Value. If there is no known or suspected Ment, select the box at the bottom of the table.	ecorded on atios ne CHF, use			
Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios			
	No sediment sam	ples collected.				
CHF Scale	CHF Value	Sum the Ratios				
CHF > 100	H (High)	CHF = $\sum_{n=1}^{\infty}$ [Maximum Concentration of Co	ontaminantl			
100 > CHF > 2 2 > CHF	M (Medium) L (Low)	CHF =[Comparison Value for Conta	minantl			
CONTAMINANT			ininantj			
HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> from above in the box to the right (maximum value = H).					
DIRECTIONS: Circle t	Migratory Path he value that corresponds most closely	way Factor to the sediment migratory pathway at the MRS	S.			
Classification	De	scription	Value			
Evident	Analytical data or observable evidence indicate moving toward, or has moved to a point of expo	s that contamination in the sediment is present at, sure.	Н			
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.					
Confined		inant migration from the source via the sediment to a presence of geological structures or physical controls).	L			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	hest value from above in the box to the = H).				
	Receptor	·				
DIRECTIONS: Circle t	he value that corresponds most closely					
Classification	Classification Description Val					
Identified	Identified receptors have access to sediment to which contamination has moved or can move.					
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.					
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.					
RECEPTOR FACTOR						
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard X						

I

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS:	Record the maximum concentrations of all contaminants in the MRS's surface soil and their
	comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be
	recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum
	concentration by the comparison value. Determine the CHF by adding the contaminant ratios
	together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF,
	use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC
	hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
	Sampling conducted, no	contaminants found.	
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)		ontominantl
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{i}$	<u> </u>
2 > CHF	L (Low)	[Comparison Value for Conta	aminant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H)		

Migratory Pathway Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the MRS.

Classification	Description	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.	Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.	М
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).	

Receptor Factor

DIRECTIONS: Circle the value that corresponds most closely to the surface soil receptors at the MRS.

Classification	Description			
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.	Н		
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.	М		
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.	L		
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
	No Known or Suspected Surface Soil MC Hazard	х		

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)					
Sediment/Human Endpoint (Table 23)					
Surface Water/Ecological Endpoint (Table 24)					
Sediment/Ecological Endpoint (Table 25)					
Surface Soil (Table 26)					

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE Ratings (for reference only)						
Combination	Rating					
ННН	А					
ННМ	В					
HHL	0					
НММ	С					
HML	-					
MMM	D					
HLL	_					
MML	E					
MLL	F					
LLL	G					
	Evaluation Pending					
Alternative Module Ratings	No Longer Required					
	<u>No Known or</u> Suspected MC <u>Hazard</u>					

HHE MODULE RATING

Table 29 MRS Priority

- **DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the **MRS Priority or Alternative MRS Rating** at the bottom of the table.
- **Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	C	3	В	3
C	<u>4</u>	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation Pending		Evaluation Pending	
No Longer	No Longer Required		No Longer Required		r Required
No Known or Suspected Explosive Hazard <u>No Known or Suspected CWM</u> <u>Hazard</u>			No Known or Sus	pected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING					4

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Small Arms Range 3 (FTSW-007-R-01)

Component: US Army

Installation/Property Name: Ft. Stewart

Location (City, County, State): Ft. Stewart, Liberty County, GA

Site Name/Project Name (Project No.): Ft. Stewart MRSPP SI (2118093)

Date Information Entered/Updated: July 24, 2007

Point of Contact (Name/Phone): Shelly Kolb, Malcolm Pirnie, Inc. / (410) 230-9958

Project Phase (check only one):

D PA	⊮ SI	🗆 RI	□ FS	🗆 RD
RA-C		RA-O	□ RC	

Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
★ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type: The overlapping historical munitions use is a small arms range used in 1964. According to documents reviewed for the HRR, munitions used on the small arms range are believed to have been .50-cal or less; however, the exact caliber is unknown. No MEC or munitions debris was found.

Description of Pathways for Human and Ecological Receptors: <u>Potentially complete pathways exist for authorized</u> <u>installation personnel, authorized contractors, and biota for MEC in the subsurface as these receptors have the potential</u> to conduct intrusive activities. Potentially complete MC pathways for biota include game/fish/prey, surface soil, <u>subsurface soil, and shallow groundwater</u>.

Description of Receptors (Human and Ecological): <u>The current human receptors of the Small Arms Range 3 are</u> authorized installation personnel, contractors, and trespassers. There are a variety of species at this site.

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	<u>0</u>
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	<u>0</u>

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification

Description

Score

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

According to information from the Phase 3 range inventory, only small arms were used at this MRS. According to documents reviewed for the HRR, munitions used on the small arms range were .50-cal or less; however, the exact caliber is unknown. (CS Report, Section 4.7.1)

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	<u>0</u>
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>0</u>

provided.

No explosive hazard is expected at this site.

Table 3 EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	• There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	<u>0</u>
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	<u>0</u>
DIRECTIONS: Document any M space provided. No explosive hazard is expected	RS-specific data used in selecting the <i>Location of Munitions</i> classifications at this site.	in the

Table 4-9 EHE Module

Because only small arms were used at this site and no explosive hazard is expected, Tables 4-9 have been omitted according to Active-Army Guidance. (CS Report, Section 4.7.1)

Table 10 Determining the EHE Module Rating

DIRECTIONS:

- 1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
Explosive Hazard Factor Data Ele	ements	-	
Munitions Type	Table 1	0	0
Source of Hazard	Table 2	0	0
Accessibility Factor Data Elemer	nts		
Location of Munitions	Table 3	0	
Ease of Access	Table 4	-	-
Status of Property	Table 5	-	
Receptor Factor Data Elements			
Population Density	Table 6	-	
Population Near Hazard	Table 7	-	
Types of Activities/Structures	Table 8	-	-
Ecological and/or Cultural Resources	Table 9	-	
EHE	MODULI	E TOTAL	-
EHE Module Total	EHE	Module R	ating
92 to 100		А	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47		F	
less than 38		G	
	Eva	aluation Pen	ding
Alternative Module Ratings	No	Longer Requ	uired
		nown or Sus plosive Haz	
EHE MODULE RATING	<u>No Kn</u>	own or Sus plosive Haz	pected

Table 11 CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.
 Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	• The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11.	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	<u>0</u>
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	<u>0</u>
DIRECTIONS: Document an provided.	y MRS-specific data used in selecting the CWM Configuration classificatio	ns in the spa
provided.	of munitions used on this MRS. (CS Report , Section 4.7.1)	ns in the s

Table 12 CHE Module: Sources of CWM Data Element Table

DIRECTIONS: Below are 11 sources of CWM hazards and their descriptions. Review these classifications and circle the scores that correspond with <u>all</u> the sources of CWM hazards known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, CAIS/DMM, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Live-fire involving CWM	 The MRS is a former military range that supported live-fire of explosively configured CWM and the CWM/UXO are known or suspected of being present on the surface or in the subsurface. The MRS is a former military range that supported live-fire with conventional munitions, and CWM/DMM are on the surface or in the subsurface commingled with conventional munitions that are UXO. 	10
Damaged CWM/DMM surface or subsurface	 There are damaged CWM/DMM on the surface or in the subsurface at the MRS. 	10
Undamaged CWM/DMM surface	• There are undamaged CWM/DMM on the surface at the MRS.	10
CAIS/DMM surface	There are CAIS/DMM on the surface.	10
Undamaged CWM/DMM, subsurface	 There are undamaged CWM/DMM in the subsurface at the MRS. 	5
CAIS/DMM subsurface	There are CAIS/DMM in the subsurface at the MRS.	5
Former CA or CWM Production Facilities	 The MRS is a facility that formerly engaged in production of CA or CWM, and CWM/DMM is suspected of being present on the surface or in the subsurface. 	3
Former Research, Development, Testing, and Evaluation (RDT&E) facility using CWM	 The MRS is at a facility that formerly was involved in non-live- fire RDT&E activities (including static testing) involving CWM, and there are CWM/DMM suspected of being present on the surface or in the subsurface. 	3
Former Training Facility using CWM or CAIS	 The MRS is a location that formerly was involved in training activities involving CWM and/or CAIS (e.g., training in recognition of CWM, decontamination training) and CWM/DMM or CAIS/DMM are suspected of being present on the surface or in the subsurface. 	2
Former Storage or Transfer points of CWM	 The MRS is a former storage facility or transfer point (e.g., intermodal transfer) for CWM. 	1
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	<u>0</u>
SOURCES OF CWM	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>0</u>

DIRECTIONS: Document any MRS-specific data used in selecting the **Sources of CWM** classifications in the space provided.

There is no historical or current evidence of CWM existing on this MRS.

Table 13 CHE Module: Location of CWM Data Element Table

DIRECTIONS: Below are seven classifications of CWM locations and their descriptions. Review these locations and circle the scores that correspond with <u>all</u> the locations where CWM are known or suspected of being found at the MRS.

Note: The terms *confirmed, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

	Description	Score
Confirmed surface	 Physical evidence indicates that there are CWM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report, that an incident or accident that involved CWM, regardless of configuration, occurred) indicates there are CWM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. 	15
Suspected (physical evidence)	There is physical evidence, other than the documented presence of CWM, indicating that CWM may be present at the MRS.	10
Suspected (historical evidence)	There is historical evidence indicating that CWM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that CWM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the CWM. 	2
Evidence of no CWM	• Following investigation of the MRS, there is physical evidence that there is no CWM present or there is historical evidence indicating that no CWM are present.	<u>0</u>
	DIRECTIONS: Record the single highest score from above in the	<u>0</u>

Tables 14-19

CHE Module: Sources of CWM Data Element Table

Because there is no historical or current evidence of CWM existing on this MRS, Tables 14-19 have been omitted according to Active-Army Guidance.

Table 20 Determining the CHE Module Rating

CWM Hazard Factor Data Elements

Score

Source

Value

CWM Hazard Factor Data Eleme	ents		
CWM Configuration	Table 11	0	0
Sources of CWM	Table 12	0	0
Accessibility Factor Data Eleme	ents	-	
Location of CWM	Table 13	0	
Ease of Access	Table 14	-	-
Status of Property	Table 15	-	
Receptor Factor Data Elements			
Population Density	Table 16	-	
Population Near Hazard	Table 17	-	
Types of Activities/Structures	Table 18	-	-
Ecological and/or Cultural Resources	Table 19	-	
CHE MODULE TOTAL			-
CHE Module Total	CHE	Module R	ating
92 to 100		А	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47		F	
less than 38		G	
	Evaluation Pending		
No Known or S		No Longer Required	
		n or Susne	cted CWM
	NO KNOW	Hazard	
	CWM ConfigurationSources of CWMAccessibility Factor Data ElementLocation of CWMEase of AccessStatus of PropertyReceptor Factor Data ElementsPopulation DensityPopulation Near HazardTypes of Activities/StructuresEcological and/or Cultural ResourcesCHEModule Total92 to 10082 to 9171 to 8160 to 7048 to 5938 to 47less than 38	Sources of CWMTable 12Accessibility Factor Data ElementsLocation of CWMTable 13Ease of AccessTable 14Status of PropertyTable 15Receptor Factor Data ElementsPopulation DensityTable 16Population Near HazardTable 17Types of Activities/StructuresTable 18Ecological and/or Cultural ResourcesTable 19CHE MODULICHE Module TotalCHE92 to 10082 to 9171 to 8160 to 7048 to 5938 to 47less than 38EvaEva	CWM ConfigurationTable 110Sources of CWMTable 120Accessibility Factor Data ElementsLocation of CWMTable 130Ease of AccessTable 14-Status of PropertyTable 15-Receptor Factor Data Elements-Population DensityTable 16-Population Near HazardTable 17-Types of Activities/StructuresTable 18-Ecological and/or Cultural ResourcesTable 19-CHE MODULE TOTALCHE Module R-92 to 100A-82 to 91B-71 to 81C-60 to 70D-48 to 59E-38 to 47F-less than 38GEvaluation Pene-

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional groundwater contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
No groundwater samples collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	CHF = $\sum_{i=1}^{i}$ [Maximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	CHF =[Comparison Value for Conta	minontl	
2 > CHF	L (Low)		minanij	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right		
		the groundwater migratory pathway at the N		
Classification	Description		Value	
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.		Н	
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М	
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =			
DIRECTIONS: Circle th	Receptor F			
Classification	Des	cription	Value	
Identified	There is a threatened water supply well downgra source of drinking water or source of water for ot (equivalent to Class I or IIA aquifer).	dient of the source and the groundwater is a current ner beneficial uses such as irrigation/agriculture	Н	
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).		М	
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).		L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high right (maximum value =	n <u>est value</u> from above in the box to the : H).		
	No Kno	wn or Suspected Groundwater MC Hazard	Х	

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios	
No surface water samples collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	Maximum Concentration of C	ontominantl	
100 > CHF > 2	M (Medium)	$CHF = \sum_{n=1}^{n} [Maximum Concentration of Concentrati$	ontaminantj	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle t	Migratory Pathw the value that corresponds most closely to	vay Factor o the surface water migratory pathway at the	MRS.	
Classification	Desc	cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contamina a potential point of exposure (possibly due to the controls).	ant migration from the source via the surface water to presence of geological structures or physical	L	
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single high right (maximum value =			
DIRECTIONS: Circle t	Receptor Faceptor Fac	actor o the surface water receptors at the MRS.		
Classification		cription	Value	
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М	
Limited	Little or no potential for receptors to have access or can move.	to surface water to which contamination has moved	L	
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum value)			
	No Known or Suspected Su	rface Water (Human Endpoint) MC Hazard	Х	

HHE Module: Sediment – Human Endpoint Data Element Tal
--

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios			
No sediment samples collected.						
CHF Scale	CHF Value	Sum The Ratios				
CHF > 100	H (High)	$CHF = \sum [Maximum Concentration of Co$	ontaminantl			
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{(Comparison Value for Conta$	minontl			
2 > CHF	L (Low)		iminanij			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right				
<u>Migratory Pathway Factor</u> DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.						
Classification	Description		Value			
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.		Н			
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М			
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single high</u> right (maximum value =					
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.						
Classification	Dese	cription	Value			
Identified	Identified receptors have access to sediment to v	which contamination has moved or can move.	Н			
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.		М			
Limited	Little or no potential for receptors to have access can move.	to sediment to which contamination has moved or	L			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single high</u> the right (maximum val					
No Known or Suspected Sediment (Human Endpoint) MC Hazard						

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L)	Comparison Value (µg/L)	Ratios			
No surface water samples collected.						
CHF Scale	CHF Value	Sum the Ratios				
CHF > 100	H (High)	CHE_T [Maximum Concentration of C	ontaminantl			
100 > CHF > 2	M (Medium)	$CHF = \sum_{\text{[Maximum Concentration of C]}} [Comparison Value for Conta$				
2 > CHF						
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right				
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water migratory pathway at the MRS.						
Classification		cription	Value			
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.		Н			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).					
MIGRATORY	DIRECTIONS: Record the single highest value from above in the box to the					
PATHWAY FACTOR	right (maximum value =	= H).				
Receptor Factor DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.						
Classification	Dese	cription	Value			
Identified	Identified receptors have access to surface water	r to which contamination has moved or can move.	н			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.		М			
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.					
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).					
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard						

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios		
No sediment samples collected.					
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	- Maximum Concentration of Co	ontaminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Co$			
2 > CHF	L (Low)	[Comparison Value for Conta	minantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Valu</u> (maximum value = H).				
<u>Migratory Pathway Factor</u> DIRECTIONS: Circle the value that corresponds most closely to the sediment migratory pathway at the MRS.					
Classification	· · · · · · · · · · · · · · · · · · ·	scription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М		
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		L		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hig right (maximum value	<u>ahest value</u> from above in the box to the = H).			
<u>Receptor Factor</u> DIRECTIONS: Circle the value that corresponds most closely to the sediment receptors at the MRS.					
Classification	De	scription	Value		
Identified	Identified receptors have access to sediment to	which contamination has moved or can move.	Н		
Potential	Potential for receptors to have access to sedime	ent to which contamination has moved or can move.	М		
Limited	Little or no potential for receptors to have acces can move.	s to sediment to which contamination has moved or	L		
RECEPTOR FACTOR	DIRECTIONS: Record the single hig right (maximum value	<u>ghest value</u> from above in the box to the = H).			
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard					
Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
	Samples collected, no	contaminants found.	
CHF Scale	CHF Value	Sum the Ratios	
CHF > 100	H (High)	Maximum Concentration of C	antominant]
100 > CHF > 2	M (Medium)	$CHF = \sum $ [Maximum Concentration of Co	ontaminantj
2 > CHF	L (Low)	[Comparison Value for Conta	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Val (maximum value = H		
		to the surface soil migratory pathway at the N	
Classification		escription es that contamination in the surface soil is present at.	Value
Evident	moving toward, or has moved to a point of exp		Н
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		М
Confined		ninant migration from the source via the surface soil to he presence of geological structures or physical	L
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single hi right (maximum value	ghest value from above in the box to the e = H).	
DIRECTIONS: Circle th	Receptor he value that corresponds most closely	Factor to the surface soil receptors at the MRS.	
Classification		escription	Value
Identified	Identified receptors have access to surface so	il to which contamination has moved or can move.	Н
Potential		ce soil to which contamination has moved or can move.	М
Limited	Little or no potential for receptors to have acce can move.	ess to surface soil to which contamination has moved or	L
RECEPTOR FACTOR	DIRECTIONS: Record the single hi right (maximum value	i ghest value from above in the box to the e = H).	
	No k	Known or Suspected Surface Soil MC Hazard	x

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

	_			_	_	 -
Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)						
Surface Water/Human Endpoint (Table 22)						
Sediment/Human Endpoint (Table 23)						
Surface Water/Ecological Endpoint (Table 24)						
Sediment/Ecological Endpoint (Table 25)						
Surface Soil (Table 26)						
						<u>No Known or</u>

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Hazard
HHE Ratings (for referer	ice only)
Combination	Rating
ННН	А
ННМ	В
HHL	0
HMM	С
HML	2
MMM	D
HLL	_
MML	E
MLL	F
LLL	G
	Evaluation Pending
Alternative Module Ratings	No Longer Required
	<u>No Known or</u> <u>Suspected MC</u> Hazard

HHE MODULE RATING

Suspected MC

Table 29 MRS Priority

- **DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the **MRS Priority or Alternative MRS Rating** at the bottom of the table.
- **Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Evaluation Pending Evaluation Pending		Evaluation Pending		
No Longer	Required	No Longer Required		nger Required No Longer Required	
No Known or Suspected Explosive No Known or Suspected CWM Hazard Hazard		No Known or Sus	pected MC Hazard		
MRS PRIORITY or ALTERNATIVE MRS RATING			No Known or Su	ispected Hazard	

Table A MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the **MRS Summary**, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munitions Response Site Name: Small Arms Range 3 (FTSW-007-R-01)

Component: US Army

Installation/Property Name: Ft. Stewart

Location (City, County, State): Ft. Stewart, Liberty County, GA

Site Name/Project Name (Project No.): Ft. Stewart MRSPP SI (2118093)

Date Information Entered/Updated: July 24, 2007

Point of Contact (Name/Phone): Shelly Kolb, Malcolm Pirnie, Inc. / (410) 230-9958

Project Phase (check only one):

D PA	⊮ SI	🗆 RI	□ FS	🗆 RD
🗆 RA-C		RA-O	□ RC	

Media Evaluated (check all that apply):

Groundwater	Sediment (human receptor)
★ Surface soil	Surface Water (ecological receptor)
Sediment (ecological receptor)	Surface Water (human receptor)

MRS Summary:

MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type: The overlapping historical munitions use is a small arms range used in 1964. According to documents reviewed for the HRR, munitions used on the small arms range are believed to have been .50-cal or less; however, the exact caliber is unknown. No MEC or munitions debris was found.

Description of Pathways for Human and Ecological Receptors: <u>Potentially complete pathways exist for authorized</u> <u>installation personnel, authorized contractors, and biota for MEC in the subsurface as these receptors have the potential</u> to conduct intrusive activities. Potentially complete MC pathways for biota include game/fish/prey, surface soil, <u>subsurface soil, and shallow groundwater</u>.

Description of Receptors (Human and Ecological): <u>The current human receptors of the Small Arms Range 3 are</u> authorized installation personnel, contractors, and trespassers. There are a variety of species at this site.

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	10
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	10
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	• UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	2
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	<u>0</u>
MUNITIONS TYPE	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	<u>0</u>

Table 1 EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with <u>all</u> the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification

Description

Score

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

According to information from the Phase 3 range inventory, only small arms were used at this MRS. According to documents reviewed for the HRR, munitions used on the small arms range were .50-cal or less; however, the exact caliber is unknown. (CS Report, Section 4.7.1)

Table 2 EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with <u>all</u> the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.	6
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5
Former burial pit or other disposal area	 The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment. 	5
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4
Former firing points	 The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range. 	4
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2
Former small arms range	 The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	<u>0</u>
SOURCE OF HAZARD	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>0</u>

provided.

No explosive hazard is expected at this site.

Table 3 EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with <u>all</u> the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	• There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	• There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM.	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	<u>0</u>
LOCATION OF MUNITIONS	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 25).	<u>0</u>
DIRECTIONS: Document any M space provided. No explosive hazard is expected	RS-specific data used in selecting the <i>Location of Munitions</i> classifications at this site.	in the

Table 4-9 EHE Module

Because only small arms were used at this site and no explosive hazard is expected, Tables 4-9 have been omitted according to Active-Army Guidance. (CS Report, Section 4.7.1)

Table 10 Determining the EHE Module Rating

DIRECTIONS:

- 1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the EHE Module Rating that corresponds to the range selected and record this value in the EHE Module Rating box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value		
Explosive Hazard Factor Data Ele	ements	-			
Munitions Type	Table 1	0	0		
Source of Hazard	Table 2	0	0		
Accessibility Factor Data Elements					
Location of Munitions	Table 3	0			
Ease of Access	Table 4	-	-		
Status of Property	Table 5	-			
Receptor Factor Data Elements					
Population Density	Table 6	-			
Population Near Hazard	Table 7	-			
Types of Activities/Structures	Table 8	-	-		
Ecological and/or Cultural Resources	Table 9	-			
EHE MODULE TOTAL					
EHE Module Total	EHE	Module R	ating		
92 to 100		А			
82 to 91		В			
71 to 81		С			
60 to 70		D			
48 to 59		E			
38 to 47		F			
less than 38		G			
	Eva	aluation Pen	ding		
Alternative Module Ratings	No	Longer Requ	uired		
		nown or Sus plosive Haz			
EHE MODULE RATING	<u>No Kn</u>	own or Sus plosive Haz	pected		

Table 11 CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with <u>all</u> the CWM configurations known or suspected to be present at the MRS.
 Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	• The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged.	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Nonexplosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11.	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	• Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS.	<u>0</u>
CWM CONFIGURATION	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 30).	<u>0</u>
DIRECTIONS: Document an provided.	y MRS-specific data used in selecting the CWM Configuration classificatio	ns in the spa
provided.	of munitions used on this MRS. (CS Report , Section 4.7.1)	ns in the s

Table 12 CHE Module: Sources of CWM Data Element Table

DIRECTIONS: Below are 11 sources of CWM hazards and their descriptions. Review these classifications and circle the scores that correspond with <u>all</u> the sources of CWM hazards known or suspected to be present at the MRS.

Note: The terms *CWM/UXO, CWM/DMM, CAIS/DMM, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Live-fire involving CWM	 The MRS is a former military range that supported live-fire of explosively configured CWM and the CWM/UXO are known or suspected of being present on the surface or in the subsurface. The MRS is a former military range that supported live-fire with conventional munitions, and CWM/DMM are on the surface or in the subsurface commingled with conventional munitions that are UXO. 	10
Damaged CWM/DMM surface or subsurface	 There are damaged CWM/DMM on the surface or in the subsurface at the MRS. 	10
Undamaged CWM/DMM surface	• There are undamaged CWM/DMM on the surface at the MRS.	10
CAIS/DMM surface	There are CAIS/DMM on the surface.	10
Undamaged CWM/DMM, subsurface	 There are undamaged CWM/DMM in the subsurface at the MRS. 	5
CAIS/DMM subsurface	There are CAIS/DMM in the subsurface at the MRS.	5
Former CA or CWM Production Facilities	 The MRS is a facility that formerly engaged in production of CA or CWM, and CWM/DMM is suspected of being present on the surface or in the subsurface. 	3
Former Research, Development, Testing, and Evaluation (RDT&E) facility using CWM	 The MRS is at a facility that formerly was involved in non-live- fire RDT&E activities (including static testing) involving CWM, and there are CWM/DMM suspected of being present on the surface or in the subsurface. 	3
Former Training Facility using CWM or CAIS	 The MRS is a location that formerly was involved in training activities involving CWM and/or CAIS (e.g., training in recognition of CWM, decontamination training) and CWM/DMM or CAIS/DMM are suspected of being present on the surface or in the subsurface. 	2
Former Storage or Transfer points of CWM	 The MRS is a former storage facility or transfer point (e.g., intermodal transfer) for CWM. 	1
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	<u>0</u>
SOURCES OF CWM	DIRECTIONS: Record <u>the single highest score</u> from above in the box to the right (maximum score = 10).	<u>0</u>

DIRECTIONS: Document any MRS-specific data used in selecting the **Sources of CWM** classifications in the space provided.

There is no historical or current evidence of CWM existing on this MRS.

Table 13 CHE Module: Location of CWM Data Element Table

DIRECTIONS: Below are seven classifications of CWM locations and their descriptions. Review these locations and circle the scores that correspond with <u>all</u> the locations where CWM are known or suspected of being found at the MRS.

Note: The terms *confirmed, surface, subsurface, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

	Description	Score				
Confirmed surface	 Physical evidence indicates that there are CWM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report, that an incident or accident that involved CWM, regardless of configuration, occurred) indicates there are CWM on the surface of the MRS. 	25				
Confirmed subsurface, active	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause CWM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose CWM. 	20				
Confirmed subsurface, stable	 Physical evidence indicates the presence of CWM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. Historical evidence indicates that CWM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause CWM to be exposed. 	15				
Suspected (physical evidence)	There is physical evidence, other than the documented presence of CWM, indicating that CWM may be present at the MRS.	10				
Suspected (historical evidence)	There is historical evidence indicating that CWM may be present at the MRS.	5				
Subsurface, physical constraint	 There is physical or historical evidence indicating that CWM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the CWM. 	2				
Evidence of no CWM	• Following investigation of the MRS, there is physical evidence that there is no CWM present or there is historical evidence indicating that no CWM are present.	<u>0</u>				
LOCATION OF CWM DIRECTIONS: Record the single highest score box to the right (maximum score = 25). 0						

Tables 14-19

CHE Module: Sources of CWM Data Element Table

Because there is no historical or current evidence of CWM existing on this MRS, Tables 14-19 have been omitted according to Active-Army Guidance.

Table 20 Determining the CHE Module Rating

CWM Hazard Factor Data Elements

Score

Source

Value

CWM Hazard Factor Data Elements				
CWM Configuration	Table 11	0	0	
Sources of CWM	Table 12	0		
Accessibility Factor Data Eleme	ents	-		
Location of CWM	Table 13	0		
Ease of Access	Table 14	-	-	
Status of Property		-		
Receptor Factor Data Elements				
Population Density	Table 16	-		
Population Near Hazard	Table 17	-		
Types of Activities/Structures	Table 18	-	-	
Ecological and/or Cultural Resources	Table 19	-		
СНЕ		E TOTAL	-	
CHE Module Total CHE Module Rat			ating	
92 to 100		А		
82 to 91		В		
71 to 81	С			
60 to 70	D			
48 to 59	E			
38 to 47	F			
less than 38	G			
	Evaluation Pending			
Alternative Module Ratings	No Longer Required		uired	
	No Known or Suspected CWM Hazard			
	NO KNOW			
	CWM ConfigurationSources of CWMAccessibility Factor Data ElementLocation of CWMEase of AccessStatus of PropertyReceptor Factor Data ElementsPopulation DensityPopulation Near HazardTypes of Activities/StructuresEcological and/or Cultural ResourcesCHEModule Total92 to 10082 to 9171 to 8160 to 7048 to 5938 to 47less than 38	Sources of CWMTable 12Accessibility Factor Data ElementsLocation of CWMTable 13Ease of AccessTable 14Status of PropertyTable 15Receptor Factor Data ElementsPopulation DensityTable 16Population Near HazardTable 17Types of Activities/StructuresTable 18Ecological and/or Cultural ResourcesTable 19CHE MODULICHE Module TotalCHE92 to 10082 to 9171 to 8160 to 7048 to 5938 to 47less than 38EvaEva	CWM ConfigurationTable 110Sources of CWMTable 120Accessibility Factor Data ElementsLocation of CWMTable 130Ease of AccessTable 14-Status of PropertyTable 15-Receptor Factor Data Elements-Population DensityTable 16-Population Near HazardTable 17-Types of Activities/StructuresTable 18-Ecological and/or Cultural ResourcesTable 19-CHE MODULE TOTALCHE Module R-92 to 100A-82 to 91B-71 to 81C-60 to 70D-48 to 59E-38 to 47F-less than 38GEvaluation Pene-	

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional groundwater contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Contaminant	Maximum Concentration (µg/L) Comparison Value (µg/L)			
No groundwater samples collected.				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)	CHF = $\sum_{i=1}^{i}$ [Maximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	CHF =[Comparison Value for Conta	minontl	
2 > CHF	L (Low)		minanij	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right		
		the groundwater migratory pathway at the N	MRS. Value	
Classification	Description			
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
DIRECTIONS: Circle th	Receptor F			
Classification Description				
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).			
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).			
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
No Known or Suspected Groundwater MC Hazard				

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L) Comparison Value (μg/L)				
No surface water samples collected.					
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)	Maximum Concentration of C	ontominantl		
100 > CHF > 2	M (Medium)	$CHF = \sum_{n=1}^{\infty} [Maximum Concentration of Concentrati$	ontaminantj		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right			
DIRECTIONS: Circle t	Migratory Pathw the value that corresponds most closely to	vay Factor o the surface water migratory pathway at the	MRS.		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
<u>Receptor Factor</u> DIRECTIONS: Circle the value that corresponds most closely to the surface water receptors at the MRS.					
Classification		cription	Value		
Identified	Identified receptors have access to surface water	to which contamination has moved or can move.	Н		
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
No Known or Suspected Surface Water (Human Endpoint) MC Hazard					

HHE Module: Sediment – Human Endpoint Data Element Tal
--

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg)				
No sediment samples collected.					
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)	$CHF = \sum [Maximum Concentration of Co$	ontaminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum_{i=1}^{n} \frac{1}{(Comparison Value for Conta$	minont		
2 > CHF	L (Low)		iminanij		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> maximum value = H).	from above in the box to the right			
DIRECTIONS: Circle th	Migratory Pathwne value that corresponds most closely to	p <mark>ay Factor</mark> the sediment migratory pathway at the MR	S.		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle th	Receptor Fa				
Classification	Dese	cription	Value		
Identified	Identified receptors have access to sediment to which contamination has moved or can move.				
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
No Known or Suspected Sediment (Human Endpoint) MC Hazard					

HHE Module: Surface Water – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L) Comparison Value (μg/L)				
No surface water samples collected.					
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	CHE_T [Maximum Concentration of C	ontaminantl		
100 > CHF > 2	M (Medium)	$CHF = \sum_{\text{[Maximum Concentration of C]}} [Comparison Value for Conta$			
2 > CHF					
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Value</u> (maximum value = H).	from above in the box to the right			
DIRECTIONS: Circle th	Migratory Pathw he value that corresponds most closely to	v ay Factor the surface water migratory pathway at the	MRS.		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY					
PATHWAY FACTOR	right (maximum value =	= H).			
DIRECTIONS: Circle the	Receptor Fa	actor o the surface water receptors at the MRS.			
Classification	Dese	cription	Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTORDIRECTIONS: Record the single highest value right (maximum value = H).from above in the box to the right (maximum value = H).					
No Known or Suspected Surface Water (Ecological Endpoint) MC Hazard					

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison values** (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the **ratios** for each contaminant by dividing the **maximum concentration** by the **comparison value**. Determine the **CHF** by adding the contaminant **ratios** together, including any additional sediment contaminants recorded on Table 27. Based on the **CHF**, use the **CHF Scale** to determine and record the **CHF Value**. If there is no known or suspected MC hazard with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg)			
No sediment samples collected.				
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	- Maximum Concentration of Co	ontaminantl	
100 > CHF > 2	M (Medium)	$CHF = \sum [Maximum Concentration of Co$		
2 > CHF	L (Low)	[Comparison Value for Conta	minantj	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record <u>the CHF Valu</u> (maximum value = H).			
DIRECTIONS: Circle t	Migratory Path he value that corresponds most closely	way Factor to the sediment migratory pathway at the MRS	3.	
Classification	Description			
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
DIRECTIONS: Circle the	Receptor he value that corresponds most closely			
Classification	De	scription	Value	
Identified	Identified receptors have access to sediment to	which contamination has moved or can move.	Н	
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard				

Table 26 HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg) Comparison Value (mg/kg)			
Samples collected, no contaminants found.				
CHF Scale	CHF Value	Sum the Ratios		
CHF > 100	H (High)	Maximum Concentration of C	antominant]	
100 > CHF > 2	M (Medium)	$CHF = \sum $ [Maximum Concentration of Co	ontaminantj	
2 > CHF	L (Low)	[Comparison Value for Conta	minant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Val (maximum value = H			
Migratory Pathway Factor DIRECTIONS: Circle the value that corresponds most closely to the surface soil migratory pathway at the M				
Classification		escription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
DIRECTIONS: Circle th	Receptor he value that corresponds most closely	Factor to the surface soil receptors at the MRS.		
Classification		escription	Value	
Identified	Identified receptors have access to surface soil to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have acce can move.	ess to surface soil to which contamination has moved or	L	
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).			
No Known or Suspected Surface Soil MC Hazard				

HHE Module: Supplemental Contaminant Hazard Factor Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Only use this table if there are more than five contaminants in any given medium present at the MRS. This is a supplemental table designed to hold information about contaminants that do not fit in the previous tables. Indicate the media in which these contaminants are present. Then record all contaminants, their maximum concentrations and their comparison values (from Appendix B of the Primer) in the table below. Calculate and record the ratio for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF for each medium on the appropriate media-specific tables.

Note: Do not add ratios from different media.

Media	Contaminant	Maximum Concentration	Comparison Value	Ratio

Table 28 Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

	_			_	_	 -
Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value		Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)						
Surface Water/Human Endpoint (Table 22)						
Sediment/Human Endpoint (Table 23)						
Surface Water/Ecological Endpoint (Table 24)						
Sediment/Ecological Endpoint (Table 25)						
Surface Soil (Table 26)						
						<u>No Known or</u>

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Hazard	
HHE Ratings (for reference only)		
Combination	Rating	
ННН	А	
ННМ	В	
HHL		
HMM	C	
HML	- D	
MMM		
HLL	_	
MML	E	
MLL	F	
LLL	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
	<u>No Known or</u> <u>Suspected MC</u> Hazard	

HHE MODULE RATING

Suspected MC

Table 29 MRS Priority

- **DIRECTIONS:** In the chart below, circle the letter **rating** for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical **priority** for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the **MRS Priority or Alternative MRS Rating** at the bottom of the table.
- **Note:** An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		Α	1		
Α	2	В	2	Α	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	E	5	D	5
E	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation	Pending	Evaluation	n Pending
No Longer Required		No Longer Required		No Longe	r Required
No Known or Suspected Explosive No Known or Suspected CWM Hazard Hazard		No Known or Sus	pected MC Hazard		
MRS PRIORITY or ALTERNATIVE MRS RATING			No Known or Su	ispected Hazard	

Appendix G: Ordnance Technical Data Sheets

Ordnance Technical Data Sheet MK II Hand Grenade

MK II Grenade, Hand Anti-personnel Grenade N/A obsolete Flaked TNT* <u>+</u> 56.70 g (2 oz) 589.68 g (1.3 lbs)
57.00 mm (2.244in) 114.00 mm (4.88in) 10.00 m (10.44 yds)
152.20 m (500 feet) M204 A2 or A2 Fuze

Usage: Fragmentation (frag), antipersonnel, delay-detonating hand grenade.

Description: The Mk II grenade is painted olive drab, with a yellow band around the top of the fuze well. Slang name is "Pineapple" because of its shape and external serrations.

Reference: ORDATA Online, Army Field Manual FM 3-23.30

***TNT** also known as 2,4,6 Trinitrotoluene. It has a color of yellow to yellowish brown, depending on purity. A main-charge explosive used as a filler for high-explosive shells, bombs, depth charges, large coastal mines, rockets, and as a demolition charge. Employed as a booster in pressed granular form. When flaked, may be used in small-caliber shells and projectiles, and in fragmentation hand grenades.

Ordnance Technical Data Sheet U.S. SIGNAL, ILLUM, GROUND, CLUSTERS, M125A1, M158, M159; PARACHUTES, M126A1, M127A1, M195 & M207

Nomenclature:	Signal, Illum, Ground, Clusters, M125A1, M158, M159;
	Parachutes, M126A1, M127A1, M195 & M207
Ordnance Family:	Pyrotechnics and Flares
DODIC:	Not Provided
Filler:	Black Powder
Filler weight:	Not Provided
Item Weight:	Not Available
Diameter:	42.00 mm (1.65 in)
Length:	258.00 mm (10.16 in)
Maximum Range:	Not Provided
Fuze:	Friction

Usage: These hand held rocket propelled signal grenades eliminated the need for a rifle or grenade launcher for signaling purposes. These signals contained their own launching mechanism and were designed to reach a minimum height of 200 metres. This group of ground signals includes the single star parachute flares, five star clusters, smoke parachutes, colored smoke streamers and the white parachute flare.

Description: These signals were shipped in gray waterproof metal containers. They have black markings which identify their type and in addition they have letters embossed in the container ends to help identify at night. It measures about 27cm long and 4.5cm in diameter. The signal is composed of three parts: Rocket Barrel (Launcher Tube): The rocket barrel made of drawn aluminum contains the complete launching and signaling devices.

Reference: ORDATA Online.

Ordnance Technical Data Sheet U.S. SIMULATOR, EXPLOSIVE BOOBYTRAP, FLASH, M117; ILLUM, M118; WHISTLING, M119

Nomenclature:	Simulator, Explosive Booby trap, Flash, M117; Illum, M118;
	Whistling, M119
Ordnance Family:	Miscellaneous Explosive Devices
DODIC:	Not Provided
Filler:	Pyrotechnic Composition*
Filler weight:	2.55 g (1.4 dr)
Item Weight:	63.50 g (2.24 oz)
Diameter:	25.00 mm (.98 in)
Length:	99.00 mm (3.9 in)
Maximum Range:	Not Provided
Fuze:	Friction

Usage: They simulate a booby trap. They will either illuminate, whistle or produce a flash.

Description: It has a white paper body with black markings. Externally these simulators are identical.

Reference: ORDATA Online.

* SIMULATORS AND DECOYS. This class of pyrotechnics are intended to produce smoke, flame and sounds which approximate that produced by actual weapons used in military operations in a ground or surface environment. These items can simulate explosives, booby traps, artillery flash, artillery impact, hand grenades, artillery air burst and other similar events.

Ordnance Technical Data Sheet U.S. ROCKET, 35-MM, SUBCALIBER, PRACTICE, M73

Nomenclature:	U.S. Rocket, 35-MM, Sub-caliber, Practice, M73
Ordnance Family:	Rocket
DODIC:	Not Provided
Filler:	Propellant, Rocket, Double-Base
Filler weight:	10.00 g (.3527 oz)
Item weight:	145.00 g (5.115 oz)
Diameter:	35.00 mm (1.3878 in)
Length:	225.00 mm (8.858 in)
Maximum Range:	220 m (240.6 yds)
Fuze:	Impact-inertia fuze

Usage: This is a sub-caliber practice rocket incorporating an integral, impact-inertia fuze. It is used for training and simulates the rocket for the light antitank weapon (LAW) system. The rocket is fired from a practice M190 launcher (a modified M72A1 LAW launcher). The figure shows the appearance and dimensions of the M73 practice rocket and M190 launcher.

Description: The spotting head and fins are painted black; the remainder of the rocket is olive drab. A blue band appears on the forward end of the rocket motor. On later production rockets, the spotting head is painted blue and the fins are painted brown. The rocket motor section is olive drab with white markings. A metallic foil covered tape is attached around the forward end of the rocket motor for weight adjustment.

Reference: ORDATA Online.

Ordnance Technical Data Sheet Grenade, Hand Smoke M18

GRENADE, HAND: SMOKE (RED), M18

Nomenclature:	Grenade Hand Smoke M18
Ordnance Family:	Pyrotechnic
DODIC:	G945
Filler:	Smoke Mixture*
Filler weight:	<u>+</u> 326.03 g (11.5 oz)
Item weight:	536 g (19 oz)
Diameter:	64.00 mm (2.42 in)
Length:	146 mm (5.75in)
Maximum Range:	N/A
Fuze:	Percussion

Usage: The M18 is a hand-thrown, smoke grenade which emits red or yellow, or violet smoke for 50 to 90 seconds. The M18 may also emit green smoke. These grenades use a pyrotechnic, delay-igniting fuze which provides an approximate 2-second delay.

Description: The M18 grenade may be olive drab with a light green band around the lower body and nomenclature and smoke color stenciled in light green, or light green with stenciled the color of the smoke. The top of the grenade is painted the color of the smoke.

Reference: ORDATA Online

* SMOKE SCREENING. This class of pyrotechnics are generally considered to be nontoxic. The material used in these devices may be HC (a mixture of hexachlorethane, zinc oxide and aluminum), WP (white phosphorous), PWP (plasticized white phosphorous), SGF2 oil (smoke generated fog oil) and RP (red phosphorous). Many of these substances will ignite if exposed to water or to air. The firefighting efforts must take into account the special nature of these materials which react to water and to air. They can become toxic if used in large amounts in confined spaces.

Ordnance Technical Data Sheet U.S. PROJECTILE, 90-MM, AP, SHOT, M77

Nomenclature:	U.S. Projectile, 90 mm, AP, Shot, M77
Ordnance Family:	Projectile
DODIC:	Not Provided
Filler:	None
Filler weight:	Not Provided
Item Weight:	Not Available
Propellant:	Single Base or Double Base Propellant*
Diameter:	90.00 mm (3.54 in)
Length:	Not Provided
Maximum Range:	Not Provided
Fuze:	None

Usage: As the 90-mm Gun M1 can be used either against aircraft or tanks, the ammunition is adapted to both targets. The Shot M77 is provided for antitank use

Description: Black painted solid projectile with brass rotation band and copper cartridge case.

Reference: ORDATA Online.

* **Single Base Propellant:** Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitrocompounds, metallic salts, metals, carbohydrates and dyes.

Double Base Propellant: Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

Ordnance Technical Data Sheet U.S. PROJECTILE, 90-MM, GUN, HE, M71

Ordnance Family: DODIC: Filler: Filler weight: Item Weight:	U.S. Projectile, 90 mm, Gun, HE, M71 Projectile Not Provided Composition B* 975.24 g (2.15 lbs) Not Provided
Propellant:	Double Based Propellant** 90.00 mm (3.54 in)
Length: Maximum Range:	225.00 mm (8.86 in) Not Provided ET, MT, MTSQ, PD, and PDSD

Usage: Projectiles in this general type category produce their intended effect by blast and/or fragmentation

Description: . HE projectiles are issued either with a nose fuze in place, or with a removable lifting plug or closing plug which is replaced with a nose fuze before firing. Fuze types include ET, MT, MTSQ, PD, and PDSD. These projectiles do not have base fuzes.

Reference: ORDATA Online.

* **Composition B.** Composition B (comp B) is a (59/40/1) mixture of RDX, TNT, and beeswax. Its color may vary from dirty white, light yellow to brownish yellow. Composition B is an authorized filling for Army-Navy (AN) standard aircraft bombs, mines, torpedoes, antitank artillery shells (76- and 105-millimeter), demolition charges, and in rockets.

**** Double Base Propellant:** Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

Ordnance Technical Data Sheet .30 Caliber Ammunition

Nomenclature:	U.S. Cartridge .30 Caliber General
Ordnance Family:	Small Arms
DODIC:	Not Provided
Propellant:	Single or Double Base Powder*
Filler:	Mission dependent
Filler weight:	Not Provided
Item Weight:	Various
Diameter:	7.62 mm (.30 in)
Length:	Various
Maximum Range:	Not Provided
Fuze:	Percussion

Usage: Standard Small Arms Ammunition WWII through Korean War.

Description: Normally brass cartridge case with copper encapsulated lead bullet. Bullet tip maybe painted to indicate usage.

Reference: Army Field Manuel FM-9-13, Ammunition Handbook 4 November 1986.

*Single Base Propellant: Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitrocompounds, metallic salts, metals, carbohydrates and dyes.

* **Double Base Propellants** contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

Ordnance Technical Data Sheet 7.62 MM Small Arms

CARTRIDGE, 7.62MM, LINKED

4 BALL M59 or M80/1 TRACER M62

Nomenclature:	7.62 mm, Small Arms Ammunition
Ordnance Family:	Small Arms
DODIC:	A138
Propellant:	Single or Double Base Powder*
Filler:	Lead and Copper cladding
Filler weight:	Not Provided
Item weight:	376.5 g (13.2 oz)
Diameter:	7.62 mm (.3085 in)
Length:	71.12 mm (2.80 in)
Maximum Range:	Not Provided

Usage: This cartridge is intended for use against personnel and unarmored targets.

Description: Full Metal Jacketed bullet and brass cartridge case, center fired NATO standard small arms.

Reference: ORDATA Online, MIDAS, Army Technical Manuel TM 9-1306-200

*Single Base Propellant: Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitrocompounds, metallic salts, metals, carbohydrates and dyes.

Double Base Propellant: Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may
be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

•

Ordnance Technical Data Sheet 7.62 MM Blank Cartridge

7.62 MM Blank Cartridge
Small Arms
1305-A112
Single or Double Base Powder*
None
None
15.23 g (235 gr)
7.62 mm (.308 in)
66.54mm (2.62 in)
N/A

Usage: This cartridge is used in rifles and machineguns equipped with blank firing attachments to simulate firing in training exercises and for saluting purposes.

Description: The cartridge is identified by its double tapered neck and the absence of a bullet.

Reference: Army Technical Manuel TM 43-0001-27

*Single Base Propellant: Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitrocompounds, metallic salts, metals, carbohydrates and dyes.

Double Base Propellant: Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may

be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

•

Ordnance Technical Data Sheet 5.56 MM Blank M200

CARTRIDGE, 5.56 MM, BLANK, M200

Nomenclature:	CTG 5.56 mm, Blank M200
Ordnance Family:	Small Arms
DODIC:	A075
Propellant:	Single or Double Base Powder *
Filler:	None
Filler weight:	None
Item weight:	Not provided
Diameter:	5.56 mm (.223 in)
Length:	48.3 mm (1.90 in)
Maximum Range:	Not Provided

Usage: Training, ceremonial, grenade projection. The blank round is used during training when simulated live fire is desired. An M15A2 blank-firing attachment must be used to fire this ammunition.

Description: The 5.56-mm blank M200 (M2 link, A075) blank cartridge has no projectile. The case mouth is closed with a seven-petal rosette crimp and has a violet tip. The original M200 blank cartridge had a white tip. Field use of this cartridge resulted in residue buildup, which caused malfunctions. Only the violet-tipped M200 cartridge should be used.

Reference: ORDATA Online, TM 9-1306-200

*Single Base Propellant: Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitro-compounds, metallic salts, metals, carbohydrates and dyes.

Double Base Propellant: Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

.

Ordnance Technical Data Sheet M855 5.56mm NATO Cartridge

Nomenclature:	CTG5.56 MM
Ordnance Family:	Small Arms Ammunition
DODIC:	A075
Propellant:	Single or Double Base Powder*
Filler:	M855 5.56mm NATO Cartridge
Filler weight:	Various
Item weight:	7.095 g (109.5 gr)
Diameter:	5.56 mm (.2189 in)
Length:	58.42 mm (2.3 in)
Maximum Range:	Not Provided

Usage: This is the NATO standard round. It is effective against personnel and light materials, not vehicles.

Description: The 5.56-mm ball M855 (A059) cartridge has a gilding, metaljacketed, lead alloy core bullet with a steel penetrator. The primer and case are waterproof. It is identified by a green tip, has a projectile weight of 62 grains, and is 2.3 cm long. This is the NATO standard round. It is effective against personnel and light materials, not vehicles.

Reference: ORDATA Online, Army Technical Manuel TM 9-1306-200

*Single Base Propellant: Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those

used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitrocompounds, metallic salts, metals, carbohydrates and dyes.

Double Base Propellant: Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

Ordnance Technical Data Sheet U.S. Cartridge, .30 Caliber, Blank, M1909

CARTRIDGE, CAL .30 BLANK, M1909

Nomenclature:	.30 Caliber, Blank, M1909 Linked M19
Ordnance Family:	Small Arms
DODIC:	A225
Filler:	Single or Double Base Powder*
Filler weight:	Not Provided
Item Weight:	14.13 g (218 gr)
Diameter:	7.62 mm (.30 in)
Length:	63.25 mm (2.49 in)
Maximum Range:	Not Provided
Fuze:	Percussion fired

Usage: Training exercises, ceremonial occasions.

Description: Unpainted brass case 2.49 inches long with crimped closure.

Reference: ORDATA Online, Midas.

***Single Base Propellant:** Single base propellants contain nitro cellulose as their chief ingredient. Single-base compositions are used as low-pressure propellants, such as those used in small arms ammunition. They may contain a stabilizer, inorganic nitrates, nitro compounds, metallic salts, metals, carbohydrates and dyes.

Double Base Propellant: Double base propellants contain nitrocellulose and a liquid organic nitrate, such as nitroglycerine. As with single base, stabilizers and additives may

be present. Double base propellants are used in cannon, small arms, mortars, rockets, and jet propulsion units.

•

Ordnance Technical Data Sheet U.S. GRENADE, PRACTICE, MK II(2)

Usage: This grenade consists of a fragmentation body with a filing hole in the base, an Igniting Fuze M206, a small charge of black powder, and a cork plug in the filling hole. Extra fuzes, charges, and plugs are supplied separately, so that the grenade body can be reused.

Powder train time-delay

Description: The body is light blue.

Reference: ORDATA Online.

Fuze:

Appendix H: Technical Project Planning Meeting Minutes

MEETING MINUTES

- Purpose: Fort Stewart Military Munitions Response Program Site Inspection Technical Project Planning Meeting 8:00 am – 3:30 pm
- Location: Hunter Army Airfield, GA

Date: 12 September 2006

Attendees	Organization
Timothy Rodeffer	Army Environmental Center (AEC)
Alan Freed	AEC Remedial Manager
Kim Gross	US Army Corps of Engineers, Baltimore District
	Project Manager
Shelly Kolb	Malcolm Pirnie, Inc.
Afton Hess	Malcolm Pirnie, Inc.
Algeana Stevenson	Fort Stewart (FTSW) Department of Public Works
	(DPW) Environmental
Randy Powell-Jones	Fort Stewart DPW Restoration
Benoit Causse	Georgia Environmental Protection Division (EPD)

Shelly Kolb opened the meeting with a brief overview of the meeting goals and introductions were made around the table. Before the presentation, a discussion on various related topics occurred.

- Algeana provided the inorganic background data for 16 solid waste management units across FTSW, which will be used to screen soil samples collected during the Military Munitions Response Program (MMRP) Site Inspection (SI) field work. Benoit Causse was not working for GAEPD when the report was finalized and therefore will be reviewing the report for his information.
- In order to meet the requirements of FTSW's Resource Conservation and Recovery Act (RCRA) permit, Fort Stewart will need to submit an extension letter containing the scheduled dates for the MMRP SI field work to GAEPD.
- The Munitions Response Sites (MRS or MR site) will be "Areas of Concern (AOC)" in the RCRA program, not "Solid Waste Management Units (SWMU)". A letter reporting the discovery of the AOCs will be submitted to GAEPD to be in compliance with FTSW's RCRA permit. AEC will provide the information and FTSW will send the letter. The letter will be sent after the SI report is finalized and will include all MR sites in the Historical Records Review (HRR)

including MR sites where a no further action (NFA) is recommended prior to the SI field work (including Small Arms Range 2). Descriptions of MR sites with a NFA recommendation will include a brief explanation of why the NFA recommendation was made.

• Benoit Causse GAEPD indicated that he will be providing updated appropriate regulatory screening criteria.

The TPP presentation continued with a summary of the HRR results for each MRS. During this summary Benoit Causse GAEPD presented two comments on the Stakeholder Draft HRR. The comments were as follows:

- Comment: Section 5 does not contain a conceptual site model (CSM) or munitions constituent (MC) pathway analysis figure for Small Arms Range 2.
- Response: The HRR research revealed that Small Arms Range 2 did not overlap the cantonment area and therefore is not eligible for the MMRP. This information is presented in Section 4.6.3 of the HRR report. Text will be added to the introduction text of Section 5 indicating that the MRS is no longer MMRP eligible and therefore a CSM will not be created.
- Comment: Figure 5-3 MEC Pathway Analysis Figure depicts an incomplete pathway for receptors to MEC on the surface. Since there has been EOD reports in this area this pathway should be potentially complete.
- Response: This change will be made and reflected in the Final HRR.

The following MMRP SI field activities and outcomes were discussed and agreed upon during the TPP meeting:

MRS	Munitio	ons of Explosive Concern (MI	cern (MEC) SI Activities	
MIXO	Activity	Purpose	Notes	
Anti-Aircraft Range -1	Limited magnetometer assisted visual survey during sampling activities.	Support MEC NFA or further investigation under the RCRA program (equivalent to remedial investigation (RI)). NFA if no MEC is encountered on the surface. RI if MEC is encountered on the surface.	Site is well maintained/mowed so MEC or munitions debris on the surface is not expected.	
Anti-Aircraft Range 90mm - 2	None	Further investigation under the RCRA program (equivalent to RI) is recommended for the MRS.	Recommendation is based on historical evidence of multiple overlapping range fans and multiple EOD responses.	

MRS	Munitions of Explosive Concern (MEC) SI Activities		
WII\S	Activity Purpose		Notes
Anti-Tank Range 90mm	Document historical use in Installation Master Plan	NFA is recommended for the MRS.	Recommendation based on current/future use as a RCRA permitted landfill.
Hand Grenade Course	Limited magnetometer assisted visual survey during sampling activities ¹ .	Further investigation under the RCRA program (equivalent to RI) is recommended for the MRS.	Recommendation based on historical evidence of multiple overlapping range fans and multiple EOD responses.
Hero Road Trench	Conduct a visual survey of unfenced portions of MRS to ensure no MEC or MEC debris remains on the surface.	Further investigation under the RCRA program (equivalent to RI) is recommended for the MRS.	Recommendation based on historical evidence and results of current investigation.
Small Arms Range - 1	N/A	small arms only	No MEC is associated with small arms use.
Small Arms Range - 3	N/A	small arms only	No MEC is associated with small arms use.
1 MEC field activities for the former Hand Grenade Course were updated after the TPP meeting minutes were finalized due to a previously unrecognized error. Discussions during the TPP meeting included visual survey activities during sampling activities.			

MRS	Munitions Constituents (MC) SI Activities			
MIKO	Activity	Purpose	Notes	
Anti- Aircraft Range -1	Collect 4 composite surface soil samples at random locations or biased locations if MEC is encountered. Analyze sample for explosives and metals using EPA	To support CTC and Prioritization Protocol and to support MC NFA or further investigation under the RCRA program (equivalent to RI). The data will be screened using a background data and residential PRGs.	MRS is overlapped by a buffer area of the range fan, near the firing point. Potential munitions that were used are 37mm, 40mm, 90mm anti- aircraft guns. No EOD responses have been reported.	
	Methods 8330 and 6010B/6020.		The land is currently a Parade Field Associated with the NCO Academy; the field is maintained.	
Anti- Aircraft Range 90mm - 2	Collect 1 composite surface soil sample. Analyze sample for explosives and metals using EPA Methods 8330 and 6010B/6020.	To support CTC and Prioritization Protocol and to support MC NFA or further investigation under the RCRA program (equivalent to RI). The data will be screened using a background data and residential PRGs.	The potential munitions used are 40mm, 90mm Anti-Aircraft Projectiles. Tank range munitions are unknown. Several EOD responses have been reported involving C-4 plastic explosives, M-222, GM Dragon Missiles, M-7, MK-2 fragmentation hand grenade. The current and future land use is an Ammunition Supply Point.	

MRS	Munitions Constituents (MC) SI Activities			
	Activity	Purpose	Notes	
Anti-Tank Range 90mm	None	NFA is recommended for the MRS. Historic use should be documented in the Master Plan.	The potential munitions use: 90mm, 40mm, 37mm, and various small arms. One EOD response involving an M-7 grenades and an MK-2 fragmentation grenade. MRS is currently an active RCRA permitted landfill. Recommendation based on current/future use.	
Hand Grenade Course	Collect 1 biased composite surface soil sample at one of the EOD response locations. Analyze sample for explosives and metals using EPA Methods 8330 and 6010B/6021.	To support CTC and Prioritization Protocol. Further investigation under the RCRA program (equivalent to RI) is recommended for the MRS. The data will be compared to background data and residential PRGs	The potential munitions uses are hand grenades (type unknown), 90mm, 40mm, 37mm, and various small arms. One EOD response reported involving M-7 grenades and an MK-2 fragmentation grenade. The land is currently undeveloped. Recommendation is based on historical evidence of multiple overlapping range fans and multiple EOD responses.	
Hero Road Trench	Collect 1 composite surface soil sample. Analyze sample for explosives and metals using EPA Methods 8330 and 6010B/6021.	To support CTC and Prioritization Protocol. Further investigation under the RCRA program (equivalent to RI) is recommended for the MRS. The data will be compared to background data and residential PRGs.	The potential Munitions Use are 5% solution of mustard gas, 5% solution of Lewisite, 50% solution of chloropicrin, pure agent phosgene. No EOD responses reported. MRS is currently fenced and undeveloped and is located adjacent to the Family Housing Maintenance Parking Lot. Recommendation is based on historical evidence and results of current investigation.	
Small Arms Range - 1	Collect 4 composite surface soil samples in the undeveloped portions (~41 acres) of the site. Analyze sample for lead by EPA Method 6020.	To support CTC and Prioritization Protocol and to support MC NFA or further investigation under the RCRA program (equivalent to RI). The data will be screened using background data and residential PRG.	The site is overlapped by the firing point but the firing point is a paved heliport pad. The potential munitions used are various small arms. No EOD responses reported. The current land use is Evans's Airfield/Heliport.	

MRS	Munitions Constituents (MC) SI Activities			
_	Activity	Purpose	Notes	
Small Arms Range - 3	Collect 2 sediment, 2 surface water and 3 composite surface soil samples. Soil samples: 1 in northern and 2 in the southern portions. Sediment samples: 1 on each of the man- made damns of the pond. Analyze samples for lead by EPA method	To support CTC and Prioritization Protocol and to support MC NFA or RI determination. The data will be screened using a background study and residential PRG for lead.	Potential munitions used are various small arms. No EOD responses reported. The current land use is undeveloped and Hallbrook Pond Recreational Area.	
*MC field activities updated after MRS tour.				

After the presentation the team broke for lunch and traveled to Fort Stewart where a tour of each MRS was conducted. The following are notations from the specific sites.

Site Tour

Small Arms Range 1/Evans Airfield/Helliport

- This area is diagonal to SWMU 29
- The north portion grass-covered and mowed
- The south portion is mostly paved with grass covered areas and shrubs
- Samples should be taken in grass-covered areas.

Small Arms Range 3/Hollbrook Pond

- Site contains a manmade pond that was built in 1966
 - o About 20 acres
 - Average of 6 feet in depth
 - Alligators live are present in pond
- Earthen dam is along boundary
- Benoit Causse GAEPD requests that two sediment and two surface water samples be added to the field activities for the site since pond was build after historic use.
- Sediment and surface water and sediment samples should be collected along each side man made of the dam. This is in addition to the three soil samples discussed during the presentation (this was added to the table above).
- The pond is stocked with bass, and catfish

Hero Road Trench Area

- Building 7808 and a housing area are located near the MRS
- Entire MRS does not appear to be fenced.
- Visual survey of MRS should be used to also determine bounds of trench and fill landfill if possible.

Anti-Aircraft Range 2

MRS includes a combination of mowed grass and wooded areas

Anti-Tank Range

 This MRS was not included in the tour since it is a RCRA permitted landfill Benoit Causse GAEPD did not need to see it.

Anti-Aircraft Range - 1

• This area is completely mowed and maintained and samples should be widely disbursed across the MRS.

Meeting Generated Action Items

- Benoit Causse GAEPD will provide acceptable updated regulatory screening criteria for screening for various sampling media via email.
- Algeana will obtain actual GIS layer of fence for Hero Road Trench Area.
- The Final HRR will be distributed early based on comment received from Benoit Causse GAEPD.

Purpose: Fort Stewart Military Munitions Response Program (MMRP) Site Inspection Technical Project Planning Meeting II 2:00 pm – 4:30 pm

Location: Fort Stewart, GA

Date: 31 July 2007

Attendees	Organization
Timothy Rodeffer	Army Environmental Command (AEC)
Alan Freed	AEC Environmental Restoration Manager
Kim Gross	US Army Corps of Engineers, Baltimore District
	Project Manager
Shelly Kolb	Malcolm Pirnie, Inc.
David Smith	Malcolm Pirnie, Inc.
Algeana Stevenson	Fort Stewart (FTSW) Department of Public Works (DPW) Environmental
Tressa Rutland	Fort Stewart (FTSW) Department of Public Works (DPW) Environmental
Randy Powell-Jones	Fort Stewart DPW Restoration
A. Mohammad Ghazi	Georgia Environmental Protection Division (EPD)

Shelly Kolb opened the meeting with a brief overview of the meeting goals and introductions were made around the table. During the presentation, a discussion on various related topics occurred.

- Algeana Stevenson asked if the Munitions Response Site Prioritization Protocol (MRSPP) Notification requirement was covered by the RCRA permit notification requirement. Tim Rodeffer explained that the requirement is not fulfilled by the RCRA permit because the MRSPP notification requirement is a separate unrelated requirement.
- Fort Stewart is in the process of updating RCRA Permit (review period ended day of meeting). Based on the findings, conclusions, and recommendations of the CS Report the Installation would like to remove all of the MMRP sites from the Permit application and resubmit based on final recommendations at a later date. Their desire to do this is based on several factors:
 - Three of the seven Munitions Response Sites (MRSs) were found to be ineligible for the MMRP due to ongoing training activities. As such no action will be taken as part of the MMRP.
 - The response schedule for the MMRP is no compatible with the expected RCRA response schedule, which would require the

installation to write multiple letter requests for schedule extensions several times a year.

• Mohammad Ghazi GAEPD stated that he has not had an opportunity to review the document and is unsure how much time he'll need.

The following MMRP CS Recommendations were discussed and agreed upon during the TPP meeting:

MRS	CS	Basis for Recommendation		
WIKS	Recommendation	MEC	MC	
Anti-Aircraft Range - 1	Not eligible for MMRP	Based on the evidence of recent munitions related training (after September 2002) observed during the field activities this MRS is not eligible for the MMRP.		
Anti-Aircraft Range 90- mm - 2	RFI/CMS	As agreed upon during the TPP meeting, this MRS is recommended for further investigation (RFI/CMS) based on historical evidence of multiple overlapping range fans and multiple explosive ordnance disposal calls.		
Anti-Tank Range 90- mm	Not eligible for MMRP	As agreed upon during continued monitoring u landfill permit is recom	nder the current RCRA	
Hand Grenade Course	Not eligible for MMRP	Based on information obtained from the Range Control Range Officer, the Hand Grenade Course is located within the footprint of an operational small arms range impact area and as such this MRS is not eligible under the MMRP.		
Small Arms Range - 1	Not eligible for MMRP	Based on the evidence of recent munitions related training (after September 2002) observed during the field activities this MRS is not eligible for the MMRP.		
Small Arms Range - 3	NFA	Recommend NFA based on historical evidence that only small arms were used on site.Recommend NFA based on analytical results of soil samples not exceeding the FTSW background values for inorganic compounds. Additionally, the analytical results of sediment and surface water samples did not exceed selected screening criteria.		
Hero Road Trench Area	RFI/CMS	As agreed upon during the TPP meeting, this MRS is recommended for further investigation (RFI/CMS) based on information presented in the HRR regarding alleged burials of Chemical Agent Identification Sets Detonation, M1.		

- The following site specific discussions/clarifications regarding the recommendations were discussed during the meeting:
 - Anti-Aircraft Range 90-mm 2: given the use of the parcel [Ammunition Supply Point (ASP) supporting operational training] is a candidate for reverting back to Operational training area. This would render the area not eligible for the MMRP. AEC has seen other ASPs designated as both operational and non-operational. The installation would like for AEC to provide examples to use to support the conversation with range control.
 - Hero Road Trench Area: During the CS field activities the current boundary of the MRS was discussed. The boundary was based on the footprint of the GPR survey that was completed on the MRS. It does not include the entire fenced portion of the area. Additionally, what appeared to be trenches were observed in the southern unfenced area. Based on these changes to the boundary, to include the entire fenced portion and potentially the southern portion. Before the boundary is altered, Malcolm Pirnie will review the GPR survey, and attempt to get additional information regarding the unfenced area from installation personnel (related to the landfill or recent excavations).
 - The "no further action" recommendation made for sites that are not eligible for the MMRP should be changed to state the sites are not eligible for the MMRP.
 - The format for the MRSPP has changed (simplified) slightly. The updated MRSPP tables will be forwarded to Mohammad Ghazi GAEPD for his review.

Meeting Generated Action Items

- Installation will notify the stakeholders of MRSPP as required. This
 includes a public announcement in a local newspaper and a letter to the
 GAEPD.
- Malcolm Pirnie will send an electronic copy of the updated MRSPP to GAEPD to expedite the review process.
- GAEPD will review and provide comments on CS Report and MRSPP.
- Tim Rodeffer will research other Installations regarding the categorization of ASP's as operational land or non operational land.
- Algeana Stevenson will contact Jim Pearson of the Range control office to inquire about the possible transformation of the ASP at the Anti-Aircraft Range 90-mm – 2 to operational land.
- Regarding the potential revisions of the boundary of the Hero Road Trench Site Algeana Stevenson will visit the site to see the areas that appeared to be trenches in the unfenced portion of the MRS to determine if they are related to storm water runoff.