

Hunter Army Airfield, Georgia Barracks Revitalization Project Phase I

1998 Lab Data

3d inf Div(m)

Prepared by: Directorate of Public Works Environmental and Natural Resources Division Environmental Branch

Air, Water, and Restoration Section

HUNTER ARMY AIRFIELD BARRACKS REVITALIZATION PROJECT SUMMARY OF GROUNDWATER CONTAMINANTS DETECTED

_	3 Sampling (See S Trichloroethene		Benzene	Toluene	Ethyl-	Xylenes
_	(MCL = 5 ug/L)	Chloride	(5	(1000	benzen	(10,000
Id.		CHIOLIGO	ug/L)	ug/L)	е .	ug/L)
	· · · · ·		-3/ -/	3,	(700.)	
					ug/L)	
A-1	BDL*	6.3 ug/L	BDL	BDL	BDL	BDL
A-2	BDL	7.1 ug/L	BDL	BDL	BDL	BDL
A-3	BDL	5.9 ug/L	BDL	BDL	BDL	BDL
A-4	BDL	BDL	BDL	BDL	BDL	BDL
A-5	BDL	8.8 ug/L	BDL	BDL	BDL	BDL
A-6	130 ug/L	7.3 ug/L	BDL	BDL	BDL	BDL
A-7	BDL	BDL	BDL	BDL	BDL	BDL
B-1	12 ug/L	6.0 ug/L	BDL	BDL	BDL	BDL
B-2**	BDL	7.8 ug/L	45 ug/L	390 ug/L	160	1200
5 4					ug/L	ug/L
B-3	BDL	6.5 ug/L	BDL	BDL	BDL	BDL
B-4	BDL	BDL	BDL	BDL	BDL	BDL
B-5	BDL	7.4 ug/L	BDL	BDL	BDL	BDL
B-6	BDL	7.8 ug/L	BDL	BDL	BDL	BDL
B-7	BDL	BDL	BDL	BDL	BDL	BDL
C-1	13 ug/L	5.8 ug/L	BDL	BDL	BDL	BDL
C-2	BDL	BDL	BDL	BDL	BDL	BDL
C-3	BDL	6.7 ug/L	BDL	BDL	BDL	BDL
C-4	BDL	BDL	BDL	BDL	BDL	BDL
C-4 C-5	BDL	8.1 ug/L	BDL	BDL	BDL	BDL .
C-5 C-6	BDL	7.1 ug/L	BDL	BDL	BDL	BDL
C-8 C-7	BDL	BDL	BDL	BDL	BDL	BDL
D-1	BDL	5.6 ug/L	BDL	BDL	BDL	BDL
D-1 D-2	BDL	6.1 ug/L	BDL	BDL	BDL	BDL
D-2 D-3	BDL	8.2 ug/L	BDL	BDL	BDL	BDL
	BDL	BDL	BDL	BDL	BDL	BDL
D-4		BDL	BDL	BDL	BDL	BDL
D-5	5.9 ug/L	8.9 ug/L	BDL	BDL	BDL	BDL
D-6	BDL	BDL	BDL	BDL	BDL	BDL
D-7	BDL	6.0 ug/L	BDL	BDL	BDL	BDL
E-1	BDL	_	BDL	BDL	BDL	BDL
E-2	BDL	8.2 ug/L	BDL	BDL	BDL	BDL
E-3	BDL	7.0 ug/L	BDL	BDL	BDL	BDL
E-4***	BDL	5.2 ug/L		BDL	BDL	BDL
E-5 ****	160 ug/L	BDL	BDL			
E-6	BDL	7.8 ug/L	BDL	BDL	BDL	BDL
E-7	BDL	BDL	BDL	BDL	BDL	BDL
F-2** duplicate of B-2	BDL	6.7 ug/L	54 ug/L	270 ug/I	170 ug/L	880 ug/
F-3 duplicate	BDL	6.6 ug/L	BDL	BDL	BDL	BDL
F-6 duplicate	BDL	5.5 ug/L	BDL	BDL	BDL	BDL
F-7 duplicate	BDL	BDL	BDL	BDL	BDL	BDL

455

TABLE NOTES: * BDL = Below Detection Limit

Samples B-2 & F-2(duplicate for B-2)contained 3100, & 2900 ug/L of acetone, **

respectively. Sample E-4 had various organic hits; chloromethane was detected at 22 ug/L and ***

bromomethane was detected at 19 ug/L.

**** Sample E-5 had cis-1,2-dichloroethene detected at 6 ug/L.

Note #1: Chloroform was detected in the following samples:

B-1 at 19 ug/L C-1 at 8.7 ug/L

D-1 at 6.4 ug/L

All chloroform concentrations were detected below the respective MCL of 100 ug/L.

Note #2: Methylene Chloride was detected in most of the groundwater samples; however, due to the fact that it was also detected in the method blank for each sample, it's presence is contributed to laboratory contamination.

HUNTER ARMY AIRFIELD BARRACKS REVITALIZATION PROJECT SUMMARY OF GROUNDWATER CONTAMINANTS DETECTED

Boring	Trichloroethene	Trichloroethene Methylene Benzene Toluene Ethyl- Xyle						
Id.	(MCL = 5 ug/L)	Chloride	(5	(1000	benzen	(10,000		
			ug/L)	ug/L)	е	ug/L)		
					(700			
					ug/L)			
TMW-1	BDL*	BDL	BDL	BDL	BDL	BDL		
TMW-2	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-3	24 ug/L	BDL	BDL	BDL	BDL	BDL		
TMW-	24 ug/L	BDL	BDL	BDL	BDL	BDL		
DUP (3)								
TMW-	BDL	BDL	BDL	BDL	BDL	BDL		
4**								
TMW-5	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-6	46 ug/L	BDL	BDL	BDL	BDL	BDL		
TMW-7	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-8	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-9	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-10	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-11	BDL	BDL	BDL	BDL	BDL	BDL		
TMW-12	BDL	BDL	BDL	BDL	BDL	BDL		

Feb 1998 Sampling (See Sampling Location Map)

TABLE NOTES:

* BDL = Below Detection Limit

** Sample TMW-4 contained 120 of acetone.

REPLACE THIS PAGE WITH SCANNED MAP!

TABLE 1

HUNTER ARMY AIRFIELD ENLISTED BARRACKS PROJECT

		EPA 8270	EPA 8260
Sample Number	Sampling Date and Time	SVOCs	VOCs
SB-1	25 Feb 98 1135	U	U
SB-2	25 Feb 98 1145	U	U
SB-3	25 Feb 98 1155	U	U
SB-4	25 Feb 98 1200	U	U
SB-5	25 Feb 98 1215	U	U
SB-6	25 Feb 98 1230	U	13 µg/kg Methylene Chloride
SB-7	25 Feb 98 1245	U	U
SB-DUP Duplicate to SB-4	25 Feb 98 1200	U	U
TMW-1	25 Feb 98 1345	R	U
TMW-2	25 Feb 98 1400	U	<u> </u>
TMW-3	25 Feb 98 1445	U	24 ug/L Trichloroethene 7.0 ug/L Naphthalene
TMW-DUP Duplicate to TMW-3	25 Feb 98 1445	* * * * * * * * * * * * * * * * * * *	24 ug/L Trichloroethene 7.2 ug/L Naphthalene
TRIP BLANK	6-Feb-98	NT	U
METHOD BLANKS		U	U
	inds for, but were not detected above the analytical r use of problems with the surrogates.	reporting limits.	
NT = Sample was not analyzed b			

;

λ

ECOSYS

A HYDROLOGIC OF GEORGIA, INC. LABORATORY

1412 Oakbrook Drive Suite 105 Jorcross, Georgia 30093 Phone (770) 368-0636

Fax (770) 368-0806

CLIENT:

USACE-Savannah District Mark Harvison 100 West Oglethorpe Ave P.O. Box 889 Savannah, GA 31402 P: 912-652-5151 F: 912-652-5311

Client Sample # SB-1 Sampling Date/Time 02/25/1998 11:35

oumphing buttor fillito official	000 11.0					ran gamhu		0132201
Prep/Method					Dilution	Analyst	Da	ite of
Analyte		Result	RL	Units	Factor	Init.	Prep	Analysis

3550/8270 SEMI (GC/MS) SOLID				Batch 0302980013
Phenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
Bis(2-Chloroethyl) Ether	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1990
2-Chlorophenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1996
Dichlorobenzene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1996
Jichlorobenzene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
1,2-Dichlorobenzene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
Bis(2-chloroisopropyl) ether	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1996
2-Methylphenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1990
4-Methylphenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
N-Nitrosodi-n-propylamine	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
Hexachloroethane	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
Nitrobenzene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
Isophorone	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
2-Nitrophenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
2,4-Dimethylphenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1990
Bis(2-chloroethoxy)methane	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
2,4-Dichlorophenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
1,2,4-Trichlorobenzene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
Naphthalene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
4-Chloroaniline	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
Hexachlorobutadiene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
4-Chloro-3-Methylphenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
2-Methylnaphthalene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
Hexachlorocyclopentadiene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
2,4,6-Trichlorophenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
2 4,5-Trichlorophenol	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
loronaphthalene	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1998
	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/199
Dimethyl Phthalate	Below RL	390	ug/Kg	1.0 ML 03/03/1998 03/04/1996

PAGE

1

Ledger Number	N801322
P.O. Number	
Date Received	02/27/1998
Time Received	11:00
Reporting Date	03/05/1998

Lab Sample ID N80132201

·9p/Method	hod			Dilution	ite of		
alyte	Result	RL	Units	Factor	Analys Init.	Prep	Analys
3550/8270 SEMI (GC/MS) SOLID				В	atch 030	2980013	
Acenaphthylene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/19
2,6-Dinitrotoluene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
3-Nitroaniline	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
Acenaphthene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
2,4-Dinitrophenol	Below RL	2000	ug/Kg	1.0	ML	03/03/1998	03/04/1
Nitrophenol	Below RL	2000	ug/Kg	1.0	ML	03/03/1998	03/04/1
Dibenzofuran	Below RL	390	ug/Kg	1.0	ML,	03/03/1998	03/04/1
2,4-Dinitrotoluene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
Diethyl phthalate	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
-Chlorophenyl phenyl ether	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
luorene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
-Nitroaniline	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
,6-Dinitro-2-methylphenol	Below RL	2000	ug/Kg	1.0	ML	03/03/1998	03/04/1
l-Nitrosodiphenylamine	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
-Bromophenyl phenyl ether	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
lexachlorobenzene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
entachlorophenol	Below RL	2000	ug/Kg	1.0	ML.	03/03/1998	03/04/1
henanthrene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	03/04/1
'hracene	Below RL	390	ug/Kg	1.0	ML	03/03/1998	
a-butyl phthalate	Below RL	390	ug/Kg	1.0	ML	03/03/1998	
luoranthene	Below RL	390	ug/Kg	1.0		03/03/1998	
yrene	Below RL	390	ug/Kg	1.0		03/03/1998	
utyl benzyl phthalate	Below RL	390	ug/Kg	1.0		03/03/1998	
3'-Dichlorobenzidine	Below RL	790	ug/Kg	1.0		03/03/1998	
enzo(a)anthracene	Below RL	390	ug/Kg	1.0		03/03/1998	
s(2-ethylhexyl) phthalate	Below RL	390	ug/Kg	1.0		03/03/1998	
hrysene	Below RL	390	ug/Kg	1.0		03/03/1998	
-n-octyl phthalate	Below RL	390	ug/Kg	1.0		03/03/1998	
enzo(b)fluoranthene	Below RL	390	ug/Kg	1.0		03/03/1998	
enzo(k)fluoranthene	Below RL	390	ug/Kg	1.0		03/03/1998	
enzo(a)pyrene	Below RL	390	ug/Kg	1.0		03/03/1998	
deno(1,2,3-cd)pyrene	Below RL	390	ug/Kg	1.0		03/03/1998	
benzo(a,h)anthracene	Below RL	390	ug/Kg	1.0		03/03/1998	
enzo(g,h,i)perylene	Below RL	390	ug/Kg	1.0		03/03/1998	
arbazole	Below RL	390	ug/Kg	1.0		03/03/1998	
Nitrosodimethylamine	Below RL	390	ug/Kg	1.0		03/03/1998	
enzoic acid	Below RL	2000	ug/Kg	1.0		03/03/1998	
enzyl alcohol	Below RL	790	ug/Kg	1.0		03/03/1998	
5030/8260 VOC (GC/MS) SOLID	BBIOWINE	100	uging				03/04/18
chlorodifluoromethane	Balaw Di	40	ualka		itch 0303		00/00/44
loromethane	Below RL	12	ug/Kg ug/Kg	1.0	KD		03/02/19
	Below RL	12	ug/Kg	1.0	KD		03/02/19
	Below RL	2.4	ug/Kg	1.0	KD		03/02/19
omomethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19

1 (

,

Į

Sampling Date/Time 02/25/1998 11:35

Lab Sample ID N80132201

Samping Date/Time 02/25/1998 11	:35			Lab Sample ID N80132201				
alyte	<i>Result</i> RL	Units	Dilution Factor	Analyst Init.	Da Prep	te of Analysis		
						- Teb	Analysic	
5030/8260 VOC (GC/MS) SOLID				E	Batch 0303	980005		
Trichlorofluoromethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,1-Dichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Methylene Chloride	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19	
Carbon Disulfide	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Acrylonitrile	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199	
Trans-1,2-Dichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,1-Dichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199	
2,2-Dichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199	
Cis-1,2-Dichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199	
Chloroform	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199	
Bromochloromethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19:	
1,1,1-Trichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,1-Dichloropropene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Carbon Tetrachloride	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,2-Dichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Benzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Trichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,2-Dichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
vmodichloromethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Jromomethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
4-Methyl-2-Pentanone (MIBK)	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19	
2-Hexanone	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19	
Cis-1,3-Dichloropropene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Toluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Trans-1,3-Dichloropropene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,1,2-Trichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,3-Dichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Tetrachloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Chlorodibromomethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,2-Dibromoethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Chlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Ethylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,1,1,2-Tetrachloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Xylenes (Total)	Below RL	18	ug/Kg	1.0	KD	N/A	03/02/19	
Styrene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Isopropyibenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
Bromoform	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,1,2,2-Tetrachloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
1,2,3-Trichloropropane	Below RL	6.0	ug/Kg	1.0	KĐ	N/A	03/02/19	
N-Propylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19 03/02/19	
Bromobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19: 03/02/19:	
3,5-Trimethylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
-Chlorotoluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19	
4-Chlorotoluene	Below RL	6.0 6.0				N/A		
	Delow KL	0.0	ug/Kg	1.0	ΝU	INWA	03/02/19	

3

Sampling Date/Time 02/25/1998 11:3		L	Lab Sample ID N				
sp/Method	, , , , , , , , , , , , , , , , , , ,			Dilution	Analyst		e of
llyte	Result	RL	Units	Factor	Init.	Prep	Analysis
				_			
5030/8260 VOC (GC/MS) SOLID	0.1	~ ~ ~	un il c		atch 0303		001001400
Tert-Butylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trimethylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
Sec-Butylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
P-Isopropyltoluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,3-Dichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,4-Dichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
N-Butylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dibromo-3-Chloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
Hexachlorobutadiene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
Naphthalene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
1,2,3-Trichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
Trans-1,4-Dichloro-2-Butene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
Acetone	Below RL	120	ug/Kg	1.0	KD	N/A	03/02/199
2-Butanone (MEK)	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
2-Chloroethylvinyl Ether	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
Tetrahydrofuran	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
'hyl Tert-Butyl Ether	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/199
	DAIDA VE	0.0			atch 0304		
M 2540G % TOTAL SOLIDS SOLID	04	0.40	%	в 1.0		03/03/1998	03/04/100
(%)Total-Solids	84	0.10	70	1.0	AG	03/03/1980	03/04/199

Client Sample # SB-2

· · ·

Client Sample # SB-1

Sampling Date/Time 02/25/1998 11:	45		L	.ab Samp	le ID N80	132202	
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Datı Prep	e of Analysis
3550/8270 SEMI (GC/MS) SOLID				E	Batch 0302	980013	
Phenol	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
Bis(2-Chloroethyl) Ether	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
2-Chlorophenol	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
1,3-Dichlorobenzene	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
1,4-Dichlorobenzene	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
1,2-Dichlorobenzene	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
Bis(2-chloroisopropyl) ether	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
2-Methylphenol	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
4-Methylphenol	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
`'-Nitrosodi-n-propylamine	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
xachloroethane	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199
Nitrobenzene	Below RL	370	ug/Kg	1.0	ML (03/03/1998	03/04/199

isophorone

PAGE

370

4

ug/Kg

Below RL

03/03/1998 03/04/199

1.0

ML

rep/Method				Dilution	Analyst	Date	30132202 ate of	
llyte	Result	RL	Units	Factor	Init.	Prep	Analysis	
3550/8270 SEMI (GC/MS) SOLID					atch 0302			
2-Nitrophenol	Below RL	370	ug/Kg	1.0		03/03/1998		
2,4-Dimethylphenol	Below RL	370	ug/Kg	1.0		03/03/1998		
Bis(2-chloroethoxy)methane	Below RL	370	ug/Kg	1.0		03/03/1998		
2,4-Dichlorophenol	Below RL	370	ug/Kg	1.0		03/03/1998		
1,2,4-Trichlorobenzene	Below RL	370	ug/Kg	1.0		03/03/1998		
Naphthalene	Below RL	370	ug/Kg	1.0		03/03/1998		
4-Chloroaniline	Below RL	370	ug/Kg	1.0		03/03/1998		
Hexachlorobutadiene	Below RL	370	ug/Kg	1.0		03/03/1998		
4-Chloro-3-Methylphenol	Below RL	370	ug/Kg	1.0		03/03/1998		
2-Methylnaphthalene	Below RL	370	ug/Kg	1.0		03/03/1998		
Hexachlorocyclopentadiene	Below RL	370	ug/Kg	1.0		03/03/1998	03/04/19	
2,4,6-Trichlorophenol	Below RL	370	ug/Kg	1.0		03/03/1998	03/04/19	
2,4,5-Trichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2-Chloronaphthalene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2-Nitroaniline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Dimethyl Phthalate	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Acenaphthylene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2,6-Dinitrotoluene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
'itroaniline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Jnaphthene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2,4-Dinitrophenol	Below RL	1800	ug/Kg	1.0	ML	03/03/1998	03/04/19	
4-Nitrophenol	Below RL	1800	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Dibenzofuran	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2,4-Dinitrotoluene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Diethyl phthalate	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
4-Chlorophenyl phenyl ether	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Fluorene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
4-Nitroaniline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
4,6-Dinitro-2-methylphenol	Below RL	1800	ug/Kg	1.0	ML	03/03/1998	03/04/19	
N-Nitrosodiphenylamine	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
4-Bromophenyl phenyl ether	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Hexachlorobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Pentachlorophenol	Below RL	1800	ug/Kg	1.0		03/03/1998	03/04/19	
Phenanthrene	Below RL	370	ug/Kg	1.0		03/03/1998		
Anthracene	Below RL	370	ug/Kg	1.0		03/03/1998		
Di-n-butyl phthalate	Below RL	370	ug/Kg	1.0		03/03/1998		
Fluoranthene	Below RL	370	ug/Kg	1.0		03/03/1998		
Pyrene	Below RL	370	ug/Kg	1.0		03/03/1998		
Butyl benzyl phthalate	Below RL	370	ug/Kg	1.0		03/03/1998		
3,3'-Dichlorobenzidine	Below RL	730	ug/Kg	1.0		03/03/1998		
S,S-Dichlorobenzione Benzo(a)anthracene	Below RL	370	ug/Kg	1.0		03/03/1998		
	Below RL Below RL	370	ug/Kg ug/Kg	1.0		03/03/1998		
(2-ethylhexyl) phthalate			alling					
Jarysene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/10	

ł

۰ <u>،</u>

1

-

Sampling Date/Time 02/25/1998 11							132202
rep/Method lyte	Result	RL	Units	Dilution Factor	Analyst Init.	Date Prep	e of Analysis
3550/8270 SEMI (GC/MS) SOLID				8	atch 03029	80013	
Benzo(b)fluoranthene	Below RL	370	ug/Kg	1,0	ML O	3/03/1998	03/04/19
Benzo(k)fluoranthene	Below RL	370	ug/Kg	1.0	ML O	3/03/1998	03/04/19
Benzo(a)pyrene	Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/19
Indeno(1,2,3-cd)pyrene	Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/19
Dibenzo(a,h)anthracene	Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/19
Benzo(g,h,i)perylene	Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/19
Carbazole	Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/19
N-Nitrosodimethylamine	Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/19
Benzoic acid	Below RL	1800	ug/Kg	1.0	ML C	3/03/1998	03/04/19
Benzyl alcohol	Below RL	730	ug/Kg	1.0	ML C	3/03/1998	03/04/19
5030/8260 VOC (GC/MS) SOLID				8	atch 0303	80005	
Dichlorodifluoromethane	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Chloromethane	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Vinyl Chloride	Below RL	2.2	ug/Kg	1.0	KD	N/A	03/02/19
Bromomethane	Below RL	11	ug/Kg	1.0	КD	N/A	03/02/19
Chloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Trichlorofluoromethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
*hylene Chloride	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
.bon Disulfide	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Acrylonitrile Trans-1,2-Dichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
-	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloroethane	Below RL	5.5 5.5	ug/Kg	1.0	KD	N/A	03/02/19
2,2-Dichloropropane		5.5	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,2-Dichloroethene	Below RL Below RL			1.0	KD	N/A	03/02/19
Chloroform		5.5 5.5	ug/Kg va/Ka	1.0	KD	N/A	03/02/19
Bromochloromethane	Below RL		ug/Kg	1.0	KD	N/A	03/02/19
1,1,1-Trichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloropropene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Tetrachloride	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Benzene	Below RL	5.5	ug/Kg				03/02/19
Trichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	
1,2-Dichloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromodichloromethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Dibromomethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
4-Methyl-2-Pentanone (MIBK)	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
2-Hexanone	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,3-Dichloropropene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Toluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Trans-1,3-Dichloropropene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
,2-Trichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
,3-Dichloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Tetrachloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19

HydroLogic, Inc. Ledger N801322

1

(_____

PAGE 6

spillathad	······································			Dilution	Analyst	t Date	a of
ר/Method lyte	Result	RL	Units	Factor	init.	rep	Analysi
							<u></u>
5030/8260 VOC (GC/MS) SOLID				E	Batch 0303	3980005	
Chlorodibromomethane	Below RL	5. 5	ug/Kg	1.0	KD	N/A	03/02/1
,2-Dibromoethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
chlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
thylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
,1,1,2-Tetrachloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
ylenes (Total)	Below RL	17	ug/Kg	1.0	KD	N/A	03/02/
tyrene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
sopropylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
Bromoform	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
,1,2,2-Tetrachloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
,2,3-Trichloropropane	Below RL	5. 5	ug/Kg	1.0	KD	N/A	03/02/
1-Propylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
Bromobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
I,3,5-Trimethylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/
2-Chlorotoluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
4-Chlorotoluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
rert-Butylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,2,4-Trimethylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
Butylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
opropyltoluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,3-Dichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,4-Dichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
N-Butylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,2-Dichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,2-Dibromo-3-Chloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,2,4-Trichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
Hexachlorobutadiene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
Naphthalene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
1,2,3-Trichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
Trans-1,4-Dichloro-2-Butene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
Acetone	Below RL	110	ug/Kg	1.0	KD	N/A .	03/02
Acetone 2-Butanone (MEK)	Below RL Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02
2-Butanone (MEK) 2-Chloroethylvinyl Ether	Below RL	5.5 5.5	ug/Kg	1.0	KD	N/A	03/02
	Below RL Below RL	5.5 5.5	ug/Kg	1.0	KD	N/A	03/02
Tetrahydrofuran Mothul Tort Rutul Ether	Below RL Below RL	5.5 5.5	ug/Ky ug/Kg	1.0	KD	N/A	03/02
Methyl Tert-Butyl Ether			<u>ugring</u>		Batch 0304	•	
SM 2540G % TOTAL SOLIDS SOLID (%)Total-Solids	90	0.10	%	1.0		03/03/1998	03/04

HydroLogic, Inc. Ledger N801322

ĺ

· .

p/Method				Dilution	Analyst	Date	∋ of
-pimetriod	Result	RL	Units	Factor	Init.	Prep	Analysis
3550/8270 SEMI (GC/MS) SOLID				E	atch 0302	980013	
Phenol	Below RL	430	ug/Kg	1.0		03/03/1998	03/04/199
Bis(2-Chloroethyl) Ether	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Chlorophenol	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/199
1,3-Dichlorobenzene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/199
1,4-Dichlorobenzene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/199
1,2-Dichlorobenzene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/199
Bis(2-chloroisopropyl) ether	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Methylphenol	Below RL	430	ug/Kg	1.0		03/03/1998	
4-Methylphenol	Below RL	430	ug/Kg	1.0	ML	03/03/1998	
N-Nitrosodi-n-propylamine	Below RL	430	ug/Kg	1.0	ML	03/03/1998	
Hexachloroethane	Below RL	430	ug/Kg	1.0	ML	03/03/1998	
	Below RL	430	ug/Kg	1.0		03/03/1998	
Nitrobenzene	Below RL	430	ug/Kg	1.0		03/03/1998	
Isophorone		430	ug/Kg ug/Kg	1.0		03/03/1998	
2-Nitrophenol	Below RL Below Bl	430	ug/Kg	1.0	ML	03/03/1998	
2,4-Dimethylphenol	Below RL	430	ug/Kg ug/Kg	1.0	ML	03/03/1998	
Bis(2-chloroethoxy)methane	Below RL			1.0	ML	03/03/1998	
2,4-Dichlorophenol	Below RL	430	ug/Kg	1.0			03/04/199
1,2,4-Trichlorobenzene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	
hthalene	Below RL	430	ug/Kg	1.0		03/03/1998	
nloroaniline	Below RL	430	ug/Kg	1.0	ML		03/04/199
Hexachlorobutadiene	Below RL	430	ug/Kg	1.0	ML		03/04/199
4-Chloro-3-Methylphenol	Below RL	430	ug/Kg	1.0	ML		03/04/199
2-Methylnaphthalene	Below RL	430	ug/Kg		ML	03/03/1998	
Hexachlorocyclopentadiene	Below RL	430	ug/Kg	1.0	ML.		03/04/199
2,4,6-Trichlorophenol	Below RL	430	ug/Kg	1.0			
2,4,5-Trichlorophenol	Below RL	430	ug/Kg	1.0	ML		03/04/199
2-Chloronaphthalene	Below RL	430	ug/Kg	1.0	ML		03/04/199
2-Nitroaniiine	Below RL	430	ug/Kg	1.0	ML		03/04/199
Dimethyl Phthalate	Below RL	430	ug/Kg	1.0	ML		03/04/199
Acenaphthylene	Below RL	430	ug/Kg	1.0	ML		03/04/199
2,6-Dinitrotoluene	Below RL	430	ug/Kg	1.0	ML		03/04/199
3-Nitroaniline	Below RL	430	ug/Kg	1.0	ML		03/04/199
Acenaphthene	Below RL	430	ug/Kg	1.0	ML		03/04/199
2,4-Dinitrophenol	Below RL	2100	ųg/Kg	1.0	ML		03/04/199
4-Nitrophenol	Below RL	2100	ug/Kg	1.0	ML	•	03/04/199
Dibenzofuran	Below RL	430	ug/Kg	1.0	ML		03/04/199
2,4-Dinitrotoluene	Below RL	430	ug/Kg	1.0	ML		03/04/199
Diethyl phthalate	Below RL	430	ug/Kg	1.0	ML		03/04/199
4-Chlorophenyl phenyl ether	Below RL	430	ug/Kg	1.0	MĿ		03/04/199
Fluorene	Below RL	430	ug/Kg	1.0	ML		03/04/199
4-Nitroaniline	Below RL	430	ug/Kg	1.0	ML		03/04/19 9
 Dinitro-2-methylphenol 	Below RL	2100	ug/Kg	1.0	ML		03/04/19 9
-Nitrosodiphenylamine	Below RL	430	ug/Kg	1.0	ML		03/04/19 9
4-Bromophenyl phenyl ether	Below RL	430	ug/Kg	1.0	ML	03/03/1998	3 03/04/199

(

r

ĺ

ep/Method				Dilution	Analyst	Date	e of
	Result	RL	Units	Factor	Init.	Ргер	Analysi
3550/8270 SEMI (GC/MS) SOLID				E	atch 0302	980013	•
Hexachlorobenzene	Below RL	430	ug/Kg	1.0		03/03/1998	
Pentachlorophenol	Below RL	2100	ug/Kg	1.0		03/03/1998	
Phenanthrene	Below RL	430	ug/Kg	1.0		03/03/1998	
Anthracene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Di-n-butyl phthalate	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Fluoranthene	Below RL	430	ug/Kg	1.0		03/03/1998	
Pyrene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Butyl benzyl phthalate	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
3,3'-Dichlorobenzidine	Below RL	860	ug/Kg	1.0	ML	03/03/1998	03/04/19
Benzo(a)anthracene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Bis(2-ethylhexyl) phthalate	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Chrysene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Di-n-octyl phthalate	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Benzo(b)fluoranthene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Benzo(k)fluoranthene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Benzo(a)pyrene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Indeno(1,2,3-cd)pyrene	Below RL	430	ug/Kg	1.0	ML	03/03/1998	03/04/19
Dibenzo(a,h)anthracene	Below RL	430	ug/Kg	1.0		03/03/1998	
rzo(g,h,l)perylene	Below RL	430	ug/Kg	1.0		03/03/1998	
,/bazole	Below RL	430	ug/Kg	1.0		03/03/1998	
N-Nitrosodimethylamine	Below RL	430	ug/Kg	1.0		03/03/1998	
Benzoic acid	Below RL	2100	ug/Kg	1.0		03/03/1998	
Benzyl alcohol	Below RL	860	ug/Kg	1.0		03/03/1998	
-	Delow ICE		ugnitg		Batch 0303		
5030/8260 VOC (GC/MS) SOLID	Delew DI	13	ualKa	1.0	KD	N/A	03/02/19
Dichlorodifluoromethane	Below RL		ug/Kg ug/Kg	1.0	KD	N/A	03/02/19
Chloromethane	Below RL	13	ug/Kg vg/Kg	1.0	KD	N/A	03/02/19
Vinyl Chloride	Below RL	2.6	ug/Kg		KD	N/A	03/02/19
Bromomethane	Below RL	13	ug/Kg	1.0		N/A	03/02/19
Chloroethane	Below RL	6,5	ug/Kg	1.0	KD	N/A	03/02/19
Trichlorofluoromethane	Below RL	6.5	ug/Kg	1.0	KD		03/02/19
1,1-Dichloroethene	Below RL	6.5	ug/Kg	1.0	KD	N/A	
Methylene Chloride	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Disulfide	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Acrytonitrile	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Trans-1,2-Dichloroethene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloroethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
2,2-Dichloropropane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,2-Dichloroethene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Chloroform	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromochloromethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1-Trichloroethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
Dichloropropene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
Jarbon Tetrachloride	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichloroethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19

.

/⊃-ep/Method	hod			Dilution	Analyst	Da	te of
;ilyte	Result	RL	Units	Factor	init.	Prep	Anaiysi
5030/8260 VOC (GC/MS) SOLID				E	atch 0303	980005	
Benzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Trichloroethene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichloropropane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromodichloromethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Dibromomethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
4-Methyl-2-Pentanone (MIBK)	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/19
2-Hexanone	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,3-Dichloropropene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Toluene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Trans-1,3-Dichloropropene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,2-Trichloroethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,3-Dichloropropane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Tetrachloroethene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Chlorodibromomethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dibromoethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Chlorobenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
Ethylbenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1,2-Tetrachloroethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
'enes (Total)	Below RL	19	ug/Kg	1.0	KD	N/A	03/02/19
	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
Isopropylbenzene Bromoform	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,2,2-Tetrachloroethane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
1,2,3-Trichloropropane	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/19
N-Propylbenzene		6.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromobenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
1,3,5-Trimethylbenzene	Below RL		ug/Kg	1.0	KD	N/A	03/02/1
2-Chlorotoluene	Below RL	6. 5		1.0	KD	N/A	03/02/1
4-Chlorotoluene	Below RL	6.5	ug/Kg ug/Kg	1.0	KD	N/A	03/02/1
Tert-Bulylbenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
1,2,4-Trimethylbenzene	Below RL	6. 5	ug/Kg 	1.0	KD	N/A	03/02/1
Sec-Butylbenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
P-isopropyltoluene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
1,3-Dichlorobenzene	Below RL	6.5	ug/Kg		KD	N/A	03/02/1
1,4-Dichlorobenzene	Below RL	6.5	ug/Kg	1.0		N/A	03/02/1
N-Butylbenzene	Below RL	6.5	ug/Kg	1.0	KD		03/02/1
1,2-Dichlorobenzene	Below RL	6.5	ug/Kg	1.0	KD KD	N/A N/A	03/02/1
1,2-Dibromo-3-Chloropropane	Below RL	6.5	ug/Kg	1.0			
1,2,4-Trichlorobenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
Hexachlorobutadiene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
Naphthalene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
`,3-Trichlorobenzene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
ans-1,4-Dichloro-2-Butene	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/1
Acetone	Below RL	130	ug/Kg	1.0	KD	N/A	03/02/1

 \mathbf{x}^{\prime} (2)

(_____

Client Sample # SB-3

(

Sampling Date/Time 02/25/1998 11:55

Lab Sample ID N80132203

/n-ap/Method				Dilution	Analys	E Date	e of
yte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) SOLID				E	atch 0303	3980005	
2-Butanone (MEK)	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/199
2-Chloroethylvinyl Ether	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/199
Tetrahydrofuran	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/199
Methyl Tert-Butyl Ether	Below RL	6.5	ug/Kg	1.0	KD	N/A	03/02/199
SM 2540G % TOTAL SOLIDS SOLID	·····			E	atch 0304	1980001	
(%)Total-Solids	77	0.10	%	1.0	AG	03/03/1998	03/04/199

Client Sample # SB-4

Sampling Date/Time 02/25/1998 12:00 Lab Sample ID N80132204

Prep/Method				Dilution	Analyst	Dat	le of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis

3550/8270 SEMI (GC/MS) SOLID				Ва	tch 030	2980013	
Phenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
Bis(2-Chloroethyl) Ether	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
lorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/1998
Dichlorobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
1,4-Dichlorobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 8
1,2-Dichlorobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/1 99
Bis(2-chloroisopropyl) ether	Below RL	370	ug/Kg	1.0	ML.	03/03/1998	03/04/199
2-Methylphenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
4-Methylphenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
N-Nitrosodi-n-propylamine	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 8
Hexachloroethane	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
Nitrobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
Isophorone	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Nitrophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 8
2,4-Dimethylphenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 8
Bis(2-chloroethoxy)methane	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 {
2,4-Dichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 {
1,2,4-Trichlorobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 {
Naphthalene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
4-Chloroanlline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 8
Hexachlorobutadiene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 {
4-Chloro-3-Methylphenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 (
2-Methylnaphthalene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/1998
Hexachlorocyclopentadiene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
^ 4,6-Trichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 {
5-Trichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199 8
Chloronaphthalene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Nitroanillne	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199

Prep/Method	······································			Dilution	Analyst	Date	e of
lyte	Result	RL	Units	Factor	init.	Prep	Analysi
3550/8270 SEMI (GC/MS) SOLID				E	atch 03029	80013	
Dimethyl Phthalate	Below RL	370	ug/Kg	1.0		3/03/1998	
Acenaphthylene	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/19
2,6-Dinitrotoluene	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/19
3-Nitroaniline	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/19
Acenaphthene	Below RL	370	ug/Kg	1.0	ML O	3/03/1998	03/04/19
2,4-Dinitrophenol	Below RL	1900	ug/Kg	1.0	ML O	3/03/1998	03/04/1
4-Nitrophenol	Below RL	1900	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
Dibenzofuran	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/19
2,4-Dinitrotoluene	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/19
Diethyl phthalate	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
4-Chlorophenyl phenyl ether	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
Fluorene	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
4-Nitroaniline	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
4,6-Dinitro-2-methylphenol	Below RL	1900	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
N-Nitrosodiphenylamine	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
4-Bromophenyl phenyl ether	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
Hexachlorobenzene	Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
Pentachlorophenol	Below RL	1900	ug/Kg	1.0	ML 0	3/03/1998	03/04/1
nanthrene	Below RL	370	ug/Kg	1.0		3/03/1998	03/04/1
Iracene	Below RL	370	ug/Kg	1.0		3/03/1998	
Di-n-butyl phthalate	Below RL	370	ug/Kg	1.0		3/03/1998	
Fluoranthene	Below RL	370	ug/Kg	1.0		3/03/1998	
Pyrene	Below RL	370	ug/Kg	1.0		3/03/1998	
Butyl benzyl phthalate	Below RL	370	ug/Kg	1.0		3/03/1998	
3,3'-Dichlorobenzidine	Below RL	740	ug/Kg	1.0		3/03/1998	
	Below RL	370	ug/Kg	1.0		3/03/1998	
Benzo(a)anthracene	Below RL	370	ug/Kg	1.0		3/03/1998	
Bis(2-ethylhexyl) phthalate	Below RL Below RL	370	ug/Kg	1.0		3/03/1998	
Chrysene	Below RL		+ =	1.0		3/03/1998	
Di-n-octyl phthalate		370	ug/Kg	1.0		3/03/1998	
Benzo(b)fluoranthene	Below RL	370	ug/Kg	1.0		3/03/1998	
Benzo(k)fluoranthene	Below RL	370	ug/Kg	1.0		3/03/1998	
Benzo(a)pyrene	Below RL	370	ug/Kg			3/03/1998	
Indeno(1,2,3-cd)pyrene	Below RL	370	ug/Kg	1.0		3/03/1998	
Dibenzo(a,h)anthracene	Below RL	370	ug/Kg	1.0			
Benzo(g,h,i)perylene	Below RL	370	ug/Kg	1.0		3/03/1998	
Carbazole	Below RL	370	ug/Kg	1.0		3/03/1998	
N-Nitrosodimethylamine	Below RL	370	ug/Kg	1.0		3/03/1998	
Benzoic acid	Below RL	1900	ug/Kg	1.0		3/03/1998	
Benzyl alcohol	Below RL	740	ug/Kg	1.0		3/03/1998	03/04/1
5030/8260 VOC (GC/MS) SOLID					Batch 03039		
Dichlorodifluoromethane	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/1
'oromethane	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/1
.iyl Chloride	Below RL	2.2	ug/Kg	1.0	KD	N/A	03/02/1
Bromomethane	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/

•

ep/Method				Dilution	ate of		
lyte	Result	RL	Units	Factor	Analyst Init.	Prep	Anaiysis
					<u></u>		
5030/8260 VOC (GC/MS) SOLID					Batch 0303		
Chloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02 /199
Trichlorofluoromethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	0 3/02 /199
1,1-Dichloroethene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Methylene Chloride	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Disulfide	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Acrylonitrile	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Trans-1,2-Dichloroethene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
2,2-Dichloropropane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,2-Dichloroethene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Chloroform	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Bromochloromethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1-Trichloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloropropene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Tetrachloride	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Benzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Trichloroethene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Dichloropropane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
nodichloromethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Uibromomethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
4-Methyl-2-Pentanone (MIBK)	Below RL	11	ug/Kg	1. 0	KD	N/A	03/02/1 9
2-Hexanone	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,3-Dichloropropene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Toluene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Trans-1,3-Dichloropropene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,1,2-Trichloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,3-Dichloropropane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Tetrachloroethene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Chlorodibromomethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dibromoethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Chlorobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Ethylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1,2-Tetrachloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Xylenes (Total)	Below RL	17	ug/Kg	1.0	KD	N/A	03/02/19
Styrene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Isopropylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
Bromoform	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,1,2,2-Tetrachloroethane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
1,2,3-Trichloropropane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
N-Propylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
mobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/19
,5-Trimethylbenzene	Below RL Below RL	5.6	ug/Kg ug/Kg	1.0	KD	N/A	03/02/1
,o-Trimetnyloenzene 2-Chlorotoluene	Below RL Below RL	5.6	ug/Kg ug/Kg	1.0	KD	N/A N/A	03/02/19

Sampling Date/Time 02/25/1998 12		Lab Sample ID N801					
Prep/Method				Dilution	Analys	it Dat	e of
lyte	Result	RL	Units	Factor	Init.	Prep	Anaiysis
5030/8260 VOC (GC/MS) SOLID				E	atch 030	3980005	
4-Chlorotoluene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Tert-Butylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trimethylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Sec-Butylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
P-Isopropyltoluene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/1993
1,3-Dichlorobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
1,4-Dichlorobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
N-Butylbenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dichlorobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dibromo-3-Chloropropane	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trichlorobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Hexachlorobutadiene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Naphthalene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
1,2,3-Trichlorobenzene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Trans-1,4-Dichloro-2-Butene	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Acetone	Below RL	110	ug/Kg	1.0	KD	N/A	03/02/199
2-Butanone (MEK)	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
2-Chloroethylvinyl Ether	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
*rahydrofuran	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
Ayl Tert-Butyl Ether	Below RL	5.6	ug/Kg	1.0	KD	N/A	03/02/199
SM 2540G % TOTAL SOLIDS SOLID				B	atch 030	4980001	
(%)Total-Solids	89	0.10	%	1.0	AG	03/03/1998	03/04/199

Client Sample # SB-4

Client Sample # SB-5

Sampling Date/Time 02/25/1998 12:15

			Dilution	Analyst			
Result	RL	Units	Factor	init.	Prep	Analysis	
			R	atch 0302	80013		
Below RL	370	ug/Kg	1.0			03/04/199	
Below RL	370	ug/Kg	1.0	ML C	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML O	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML O	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
Below RL	370	ug/Kg	1.0	ML 0	3/03/1998	03/04/199	
	Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL	Below RL370Below RL370	Below RL370ug/KgBelow RL370ug/Kg	Result RL Units Factor Below RL 370 ug/Kg 1.0 Below RL 370	Result RL Units Factor Init. Below RL 370 ug/Kg 1.0 ML 0 Below RL 370 ug/Kg 1.0 ML	Result RL Units Factor Init. Prep Below RL 370 ug/Kg 1.0 ML 03/03/1998 Below RL 370 ug/Kg 1.0 ML 03/03/1998	

Lab Sample ID N80132205

Sampling Date/Time 02/25/1998 12	•				t Date		
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis
				4 <u></u>			
3550/8270 SEMI (GC/MS) SOLID				E	Batch 0302	2980013	
lsophorone	Below RL	370	u g/Kg	1.0	ML	03/03/1998	03/04/199
2-Nitrophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
2,4-Dimethylphenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
Bis(2-chloroethoxy)methane	Below RL	370	ug/Kg	1.0	ML.	03/03/1998	03/04/199
2,4-Dichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
1,2,4-Trichlorobenzene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
Naphthalene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
4-Chloroaniline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
Hexachlorobutadiene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
4-Chloro-3-Methylphenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19 9
2-Methylnaphthalene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/19 9
Hexachlorocyclopentadiene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
2,4,6-Trichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	03/04/199
2,4,5-Trichlorophenol	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
2-Chloronaphthalene	Below RL	370	ug/Kg	1.0	ML.	03/03/1998	
2-Nitroaniline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
Dimethyl Phthalate	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
Acenaphthylene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
`-Dinitrotoluene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
/itroaniline	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
Acenaphthene	Below RL	370	ug/Kg	1.0	ML	03/03/1998	
2,4-Dinitrophenol	Below RL Below RL	1800	ug/Kg	1.0		03/03/1998	
4-Nitrophenol	Below RL	1800	ug/Kg	1.0		03/03/1998	
Dibenzofuran	Below RL	370	ug/Kg	1.0		03/03/1998	
2,4-Dinitrotoluene	Below RL	370	ug/Kg ug/Kg	1.0		03/03/1998	
2,4-Dinitrotoluene	Below RL	370	ug/Kg ug/Kg	1.0		03/03/1998	
	Below RL	370	ug/Kg ug/Kg	1.0		03/03/1998	1
4-Chlorophenyl phenyl ether Fluorene	Below RL Below RL	370		1.0		03/03/1998	
Fluorene 4-Nitroaniline		370 370	ug/Kg ug/Kg	1.0 1.0		03/03/1998	
	Below RL Bolow Pl		ug/Kg ug/Ka			03/03/1998	!
4,6-Dinitro-2-methylphenol	Below RL Below Bl	1800	ug/Kg ug/Kg	1.0		03/03/1998	1
N-Nitrosodiphenylamine	Below RL	370	ug/Kg ug/Ka	1.0		03/03/1998	
4-Bromophenyl phenyl ether	Below RL	370	ug/Kg ug/Kg	1.0		03/03/1998	,
Hexachlorobenzene	Below RL	370	ug/Kg	1.0			
Pentachlorophenol	Below RL	1800	ug/Kg	1.0		03/03/1998 03/03/1998	
Phenanthrene	Below RL	370	ug/Kg	1.0		•	
Anthracene	Below RL	370	ug/Kg	1.0		03/03/1998	
Di-n-butyl phthalate	Below RL	370	ug/Kg	1.0		03/03/1998	i i
Fluoranthene	Below RL	370	ug/Kg	1.0		03/03/1998	· •
Pyrene	Below RL	370	ug/Kg	1.0		03/03/1998	1
Butyl benzyl phthalate	Below RL	370	ug/Kg	1.0		03/03/1998	1
3,3'-Dichlorobenzidine	Below RL	730	ug/Kg	1.0		03/03/1998	
nzo(a)anthracene	Below RL	370	ug/Kg	1.0		03/03/1998	
			N /			AA 100 14 000	00104140C -
্রাs(2-ethylhexyl) phthalate Chrysene	Below RL Below RL	370 370	ug/Kg ug/Kg	1.0 1.0		03/03/1998 03/03/1998	1

Sampling Date/Time 02/25/1998 12:15

Sampling Date/Time 02/25/1998 12	.10			Dilution	Lab Sample ID N80		
ilyte	Result	RL	Units	Factor	Analyst Init.	Date Prep	e of Analysis
	r a r					•	
3550/8270 SEMI (GC/MS) SOLID				c	Batch 0302	980013	
Di-n-octyl phthalate	Below RL	370	ug/Kg	1.0		03/03/1998	03/04/19
Benzo(b)fluoranthene	Below RL	370	ug/Kg	1.0		03/03/1998	
Benzo(k)fluoranthene	Below RL	370	ug/Kg	1.0		03/03/1998	
Benzo(a)pyrene	Below RL	370	ug/Kg	1.0		03/03/1998	
Indeno(1,2,3-cd)pyrene	Below RL	370	ug/Kg	1.0		03/03/1998	
Dibenzo(a,h)anthracene	Below RL	370	ug/Kg	1.0		03/03/1998	
Benzo(g,h,i)perylene	Below RL	370	ug/Kg	1.0		03/03/1998	
Carbazole	Below RL	370	ug/Kg	1.0		03/03/1998	
N-Nitrosodimethylamine	Below RL	370	ug/Kg	1.0		03/03/1998	
Benzoic acid	Below RL	1800	ug/Kg	1.0		03/03/1998	
Benzyi alcohol	Below RL	730	ug/Kg	1.0		03/03/1998	
5030/8260 VOC (GC/MS) SOLID	Below KL		ugnyg		atch 0303		03/04/13
Dichlorodifluoromethane	Below RL	11	ualka	1.0	KD	N/A	03/02/19
· · · · · · · · · · · · · · · · · · ·		11	ug/Kg ug/Kg	1.0	KD	N/A	03/02/19
Chloromethane	Below RL Below RL		ug/Kg ug/Kg	1.0	KD	N/A N/A	03/02/19
Vinyl Chloride	Below RL Below RL	2.2	ug/Kg	1.0	KD	N/A N/A	03/02/19
Bromomethane		11	ug/Kg				03/02/19
	Below RL	5.5	ug/Kg	1.0	KD	N/A	
Trichlorofluoromethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
'-Dichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
hylene Chloride	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Disulfide	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Acrylonitrile	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Trans-1,2-Dichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
2,2-Dichloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,2-Dichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Chloroform	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromochloromethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1-Trichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloropropene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Tetrachloride	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Benzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Trichloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromodichloromethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Dibromomethane	Below RL	5,5	ug/Kg	1.0	KD	N/A	03/02/19
4-Methyl-2-Pentanone (MIBK)	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
2-Hexanone	Below RL	11	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,3-Dichloropropene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Toluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
ans-1,3-Dichloropropene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Trichloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,3-Dichloropropane	Below RL	5 .5	ug/Kg	1.0	KD	N/A	03/02/19

Prep/Method	ep/Method		· ·	Dilution	Analyst	D *	te of
alyte	Result	RL	Units	Factor	init.	Prep	Analysis
5030/8260 VOC (GC/MS) SOLID				E	Batch 0303	980005	
Tetrachloroethene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Chlorodibromomethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dibromoethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Chlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Ethylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1,2-Tetrachloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Xylenes (Total)	Below RL	17	ug/Kg	1.0	KD	N/A	03/02/19
Styrene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Isopropylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromoform	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,1,2,2-Tetrachloroethane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2,3-Trichloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
N-Propylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Bromobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,3,5-Trimethylbenzene	Below RL	5.5	ug/Kg	1.0	КD	N/A	03/02/19
2-Chlorotoluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
4-Chlorotoluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Tert-Butylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
4-Trimethylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
-Butylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
P-Isopropyltoluene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,3-Dichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,4-Dichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
N-Butylbenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dibromo-3-Chloropropane	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2,4-Trichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Hexachlorobutadiene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Naphthalene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
1,2,3-Trichlorobenzene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Trans-1,4-Dichloro-2-Butene	Below RL	5.5	ug/Kg	1.0	KD	N/A	03/02/19
Acetone	Below RL	110	ug/Kg	1.0	KD	N/A	03/02/19
2-Butanone (MEK)	Below RL	5.5	ug/Kg ug/Kg	1.0	KD	N/A	03/02/19
2-Chloroethylvinyl Ether	Below RL	5.5		1.0	KD	N/A	03/02/19
Tetrahydrofuran	Below RL	5.5 5.5	ug/Kg ug/Kg	1.0	KD	N/A	03/02/19
Methyl Tert-Butyl Ether	Below RL	5.5 5.5	ug/Kg	1.0	KD	N/A	03/02/19
		0.0	uging		atch 0304		
SM 2540G % TOTAL SOLIDS SOLID				E	acch 03041	00001	

· ,

rep/Method				Dilution	t Date	le ID N80132206 Date of		
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis	
3550/8270 SEMI (GC/MS) SOLID				E	atch 030	2980013		
Phenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Bis(2-Chloroethyl) Ether	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2-Chlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
1,3-Dichlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
1,4-Dichlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998		
1,2-Dichlorobenzene	Below RL	410	ug/Kg	1.0	ML.	03/03/1998		
Bis(2-chloroisopropyi) ether	Below RL	410	ug/Kg	1.0	ML	03/03/1998		
2-Methylphenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998		
4-Methylphenol	Below RL	410	ug/Kg	1.0		03/03/1998		
N-Nitrosodi-n-propylamine	Below RL	410	ug/Kg	1.0		03/03/1998		
Hexachloroethane	Below RL	410	ug/Kg	1.0	ML.	03/03/1998	03/04/199	
Nitrobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Isophorone	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2-Nitrophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2,4-Dimethylphenol	Below RL	410	ug/Kg	1.0		03/03/1998	03/04/19	
Bis(2-chloroethoxy)methane	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19	
2,4-Dichlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
1,2,4-Trichlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
ohthalene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
hloroaniline	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Hexachlorobutadiene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
4-Chloro-3-Methylphenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2-Methylnaphthalene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Hexachlorocyclopentadiene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2,4,6-Trichlorophenol	Below RL	410	ug/Kg	1.0	ML.	03/03/1998	03/04/199	
2,4,5-Trichlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2-Chloronaphthalene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2-Nitroaniline	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Dimethyl Phthalate	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Acenaphthylene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2,6-Dinitrotoluene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
3-Nitroaniline	Below RL	410	ug/Kg	1.0	ML	0 3/03/1 998	03/04/199	
Acenaphthene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2,4-Dinitrophenol	Below RL	2100	ug/Kg	1.0	ML	03/03/1998	03/04/199	
4-Nitrophenol	Below RL	2100	ug/Kg	1.0	ML.	03/03/1998	03/04/199	
Dibenzofuran	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
2,4-Dinitrotoluene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Diethyl phthalate	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19	
4-Chlorophenyl phenyl ether	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
Fluorene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199	
4-Nitroaniline	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19	
3-Dinitro-2-methylphenol	Below RL	2100	ug/Kg	1.0	ML	03/03/1998	03/04/19	
Nitrosodiphenylamine	Below RL	410	ug/Kg	1.0		03/03/1998		
4-Bromonhenyl nhenyl ether	Rolow Pi	410	ua/Ka	10		03/03/1998		

· ·

4-Bromophenyl phenyl ether

ĺ

410

ug/Kg

Below RL

ML

1.0

03/03/1998 03/04/19

Client Sample # SB-6										
Sampling Date/Time 02/25/1998 12:30 Lab Sam						ole ID N80132206				
Prep/Method						Dilution Analyst			Date of	
alyte	Result	RL	Units	Factor	init.	Prep	Analysis			
3550/8270 SEMI (GC/MS) SOLID				Ε	Batch 030	2980013				
Hexachlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Pentachlorophenol	Below RL	2100	u g/ Kg	1.0	ML	03/03/1998	03/04/19			
Phenanthrene	Below RL	410	u g/K g	1.0	ML	03/03/1998	03/04/19			
Anthracene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Di-n-butyl phthalate	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Fluoranthene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Pyrene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Butyl benzyl phthalate	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
3,3'-Dichlorobenzidine	Below RL	830	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Benzo(a)anthracene	Below RL	410	u g/K g	1.0	ML	03/03/1998	03/04/19			
Bis(2-ethylhexyl) phthalate	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Chrysene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Di-n-octyl phthalate	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Benzo(b)fluoranthene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Benzo(k)fluoranthene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Benzo(a)pyrene	Below RL	410	u g/K g	1.0	ML	03/03/1998	03/04/19			
Indeno(1,2,3-cd)pyrene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Dibenzo(a,h)anthracene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
`nzo(g,h,i)perylene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
/bazole	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
N-Nitrosodimethylamine	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19			
Benzoic acid	Below RL	2100	ug/Kg	1.0	ML	03/03/1998	03/04/19:			
Benzyl alcohol	Below RL	830	ug/Kg	1.0	ML.	03/03/1998	03/04/19			
5030/8260 VOC (GC/MS) SOLID					atch 0303					
Dichlorodifluoromethane	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/19			
Chloromethane	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/19			
Vinyl Chloride	Below RL	2.5	ug/Kg	1.0	KD	N/A	03/02/19			
Bromomethane	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/19			
Chloroethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	0 3/02/19 5			
Trichlorofluoromethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
1,1-Dichloroethene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
Methylene Chloride	13	13	ug/Kg	1.0	KD	N/A	03/02/19			
Carbon Disulfide	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
Acrylonitrile	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
Trans-1,2-Dichloroethene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
1,1-Dichloroethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
2,2-Dichloropropane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
Cis-1,2-Dichloroethene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
Chloroform	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
Bromochloromethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
1,1,1-Trichloroethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
'-Dichloropropene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
arbon Tetrachloride	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
1,2-Dichloroethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19			
							*			

Client Sample # SB-6	Clie	nt S	amp	le #	SB-6
----------------------	------	------	-----	------	------

Sampling Date	Time	02/25/1998	12:30
---------------	------	------------	-------

	2:30	Lab Sample ID N80132206					
rep/Method		Dilution			Date of		
alyte	Result	RL.	Units	Factor	lnit.	Prep	Analysis
5030/8260 VOC (GC/MS) SOLID				-		000005	
Benzene	Below RL	6.3	ualka	1.0	Batch 0303 KD	980005 N/A	03/02/19 9
Trichloroethene	Below RL	6.3	ug/Kg ug/Kg	1.0	KD	N/A N/A	03/02/199
1,2-Dichloropropane	Below RL	6.3	ug/Kg ug/Kg	1.0	KD	N/A N/A	03/02/198
Bromodichloromethane	Below RL	6.3	ug/Kg ug/Kg	1.0	KD	N/A N/A	03/02/199
Dibromomethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
4-Methyl-2-Pentanone (MIBK)	Below RL	13	ug/Kg	1.0	KD	N/A	03/02/199
2-Hexanone	Below RL	13	ug/Kg	1.0	KD	N/A N/A	03/02/199
Cis-1,3-Dichloropropene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
Toluene	Below RL	6.3	ug/Kg	1.0	KD	N/A N/A	03/02/198
Trans-1,3-Dichloropropene	Below RL	6.3		1.0	KD	N/A	03/02/199
1,1,2-Trichloroethane	Below RL	6.3	ug/Kg	1.0	KD	N/A N/A	
1,3-Dichloropropane	Below RL Below RL	6.3 6.3	ug/Kg				03/02/198
Tetrachloroethene	Below RL		ug/Kg	1.0	KD	N/A	03/02/199
Chlorodibromomethane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199 03/02/199
1,2-Dibromoethane		6.3 6.3	ug/Kg	1.0 1.0	KD KD	N/A N/A	03/02/198
Chlorobenzene	Below RL Below RL		ug/Kg ug/Kg	1.0			03/02/198
Ethylbenzene		6.3	ug/Kg ug/Kg		KD	N/A	
1,1,1,2-Tetrachloroethane	Below RL Below Dl	6.3	ug/Kg	1.0	KD	N/A	03/02/198
	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
'enes (Total)	Below RL	19	ug/Kg	1.0	KD	N/A'	03/02/199
/ene	Below RL Below Di	6.3	ug/Kg	1.0	KD	N/A	03/02/199
lsopropylbenzene Bromoform	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
	Below RL	6.3	ug/Kg	1.0	KD	N/A N/A	03/02/199
1,1,2,2-Tetrachloroethane	Below RL Below RL	6.3 6.3	ug/Kg ug/Kg	1.0	KD		03/02/199 03/02/199
1,2,3-Trichloropropane			ug/Kg	1.0	KD	N/A .	
N-Propylbenzene Bromobenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,3,5-Trimethylbenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
2-Chlorotoluene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
4-Chlorotoluene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
Tert-Butylbenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trimethylbenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
Sec-Butylbenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
P-Isopropyltoluene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,3-Dichlorobenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,4-Dichlorobenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
N-Bulylbenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dichlorobenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dibromo-3-Chloropropane	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trichlorobenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
Hexachlorobutadiene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
Naphthalene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
,3-Trichlorobenzene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
ans-1,4-Dichloro-2-Butene	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/199
Acetone	Below RL	130	ug/Kg	1.0	KD	N/A	03/02/199

Client Sample # SB-6

ı v

Sampling Date/Time 02/25/1998 12:30

Lab Sample ID N80132206

`∗ep/Method	_ (<u>_</u> (<u>_</u>))			Dilution	Analyst	Dat	e of
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) SOLID				E	atch 0303	980005	
2-Butanone (MEK)	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19
2-Chloroethylvinyl Ether	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19
Tetrahydrofuran	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19
Methyl Tert-Butyl Ether	Below RL	6.3	ug/Kg	1.0	KD	N/A	03/02/19
SM 2540G % TOTAL SOLIDS SOLID				E	atch 0304	980001	
(%)Total-Solids	80	0.10	%	1.0	AG	03/03/1998	03/04/199

Client Sample # SB-7

Sampling Date/Time 02/25/1998	12:45	Lab Sample ID N80132207

Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis

3550/8270 SEMI (GC/MS) SOLID				Bat	lch 03	02980013	
Phenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19
Pis(2-Chloroethyl) Ether	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/19
hlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/195
J-Dichlorobenzene, در	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/195
1,4-Dichlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	0 3/04/19 9
1,2-Dichlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
Bis(2-chloroisopropyl) ether	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/195
2-Methylphenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/198
4-Methylphenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
N-Nitrosodi-n-propylamine	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
Hexachloroethane	Below RL	410	ug/Kg	1.0	ML.	03/03/1998	03/04/199
Nitrobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/198
Isophorone	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Nitrophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
2,4-Dimethylphenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
Bis(2-chloroethoxy)methane	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
2,4-Dichlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
1,2,4-Trichlorobenzene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
Naphthalene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
4-Chloroaniline	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
Hexachlorobutadiene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
4-Chloro-3-Methylphenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Methylnaphthalene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
Hexachlorocyclopentadiene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
~ 4,6-Trichlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
,5-Trichlorophenol	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Chloronaphthalene	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199
2-Nitroaniline	Below RL	410	ug/Kg	1.0	ML	03/03/1998	03/04/199

⊇rep/Method				Dilution	Analyst	Date	e of
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis
3550/8270 SEMI (GC/MS) SOLID				E	latch 0302	980013	
Dimethyl Phthalate	Below RL	410	ug/Kg	1.0	ML ()3/03/1998	03/04/199
Acenaphthylene	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/199
2,6-Dinitrotoluene	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/199
3-Nitroaniline	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/19
Acenaphthene	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/19
2,4-Dinitrophenol	Below RL	2100	ug/Kg	1.0	ML (03/03/1998	03/04/19
4-Nitrophenol	Below RL	2100	ug/Kg	1.0	ML (03/03/1998	03/04/19
Dibenzofuran	Below RL	410	ug/Kg	1.0	ML ()3/03/1998	03/04/19
2,4-Dinitrotoluene	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/199
Diethyl phthalate	Below RL	410	ug/Kg	1.0	ML ()3/03/1998	03/04/199
4-Chlorophenyl phenyl ether	Below RL	410	ug/Kg	1,0	ML (03/03/1998	03/04/199
Fluorene	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/19
4-Nitroaniline	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/199
4,6-Dinitro-2-methylphenol	Below RL	2100	ug/Kg	1.0	ML (03/03/1998	03/04/19
N-Nitrosodiphenylamine	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/19
4-Bromophenyl phenyl ether	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/19
Hexachlorobenzene	Below RL	410	ug/Kg	1.0	ML (3/03/1998	03/04/19
Pentachlorophenol	Below RL	2100	ug/Kg	1.0	ML (3/03/1998	03/04/19
enanthrene	Below RL	410	ug/Kg	1.0	ML (03/03/1998	03/04/19
hracene	Below RL	410	ug/Kg	1.0	ML (3/03/1998	03/04/19
Di-n-butyl phthalate	Below RL	410	ug/Kg	1.0		3/03/1998	
Fluoranthene	Below RL	410	ug/Kg	1,0)3/03/1998	
Pyrene	Below RL	410	ug/Kg	1.0		3/03/1998	
Butyl benzyl phthalate	Below RL	410	ug/Kg	1.0)3/03/1998	
3,3'-Dichlorobenzidine	Below RL	820	ug/Kg	1.0)3/03/1998	
Benzo(a)anthracene	Below RL	410	ug/Kg	1.0		3/03/1998	
Bis(2-ethylhexyl) phthalate	Below RL	410	ug/Kg	1.0		3/03/1998	
Chrysene	Below RL	410	ug/Kg	1.0)3/03/1998	
Di-n-octyl phthalate	Below RL	410	ug/Kg	1.0		3/03/1998	
Benzo(b)fluoranthene	Below RL	410	ug/Kg	1.0		3/03/1998	
Benzo(k)fluoranthene	Below RL	410	ug/Kg	1.0		3/03/1998	
Benzo(a)pyrene	Below RL	410	ug/Kg	1.0)3/03/1998	
Indeno(1,2,3-cd)pyrene	Below RL	410	ug/Kg	1.0)3/03/1998	
Dibenzo(a,h)anthracene	Below RL	410	ug/Kg	1.0)3/03/1998	
	Below RL	410	ug/Kg	1.0) 3/03/1 998	
Benzo(g,h,i)perylene			-)3/03/1998	
Carbazole	Below RL Bolow Bl	410 410	ug/Kg ug/Kg	1.0 1.0)3/03/1998	
N-Nitrosodimethylamine	Below RL Bolow Bl		ug/Kg ug/Kg			3/03/1998	
Benzoic acid	Below RL Below RL	2100	ug/Kg	1.0		3/03/1998	
Benzyl alcohol	Below RL	820	ug/Kg	1.0			03/04/19
5030/8260 VOC (GC/MS) SOLID	_				atch 0303		00/00/40
Dichlorodifluoromethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
loromethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/199
. nyl Chloride	Below RL	2.5	ug/Kg	1.0	KD	N/A	03/02/199
Bromomethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/199

HydroLogic, Inc. Ledger N801322

1

3 .

	2:45			L	_ab Samp	le ID N8	0132207
Prep/Method				Dilution	Analyst		te of
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) SOLID					Batch 0303		
Chloroethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/ 199
Trichlorofluoromethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,1-Dichloroethene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Methylene Chloride	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/199
Carbon Disulfide	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Acrylonitrile	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Trans-1,2-Dichloroethene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
1,1-Dichloroethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
2,2-Dichloropropane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Cis-1,2-Dichloroethene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Chloroform	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Bromochloromethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,1,1-Trichloroethane	Below RL	6.2	u g/K g	1.0	KD	N/A	03/02/199
1,1-Dichloropropene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Carbon Tetrachloride	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
1,2-Dichloroethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Benzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Trichloroethene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
^D -Dichloropropane	Below RL	6.2	ug/Kg	1.0	KD	N/A `	03/02/19 9
Jmodichloromethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Dibromomethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/ 199
4-Methyl-2-Pentanone (MIBK)	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/ 199
2-Hexanone	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/199
Cis-1,3-Dichloropropene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Toluene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/19 9
Trans-1,3-Dichloropropene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,1,2-Trichloroethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,3-Dichloropropane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Tetrachloroethene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Chlorodibromomethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dibromoethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Chlorobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Ethylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,1,1,2-Tetrachloroethane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
	Below RL	0.2 19	ug/Kg	1.0	KD	N/A	03/02/199
Xylenes (Total)	Below RL	6.2		1.0	KD	N/A	03/02/199
Styrene			ug/Kg	1.0	KD	N/A	03/02/198
Isopropylbenzene Bromoform	Below RL Below RL	6.2 6.2	ug/Kg ug/Kg	1.0	KD	N/A	03/02/192
Bromoform			ug/Kg			N/A	03/02/192
1,1,2,2-Tetrachloroethane	Below RL	6.2	ug/Kg	1.0	KD		
1,2,3-Trichloropropane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/198
N-Propylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
omobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
,3,5-Trimethylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
2-Chlorotoluene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199

1

Ĺ

Sampling Date/Time 02/25/1998 12:4				Dilution	Analyst		e of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis
						<u> </u>	
5030/8260 VOC (GC/MS) SOLID				E	Batch 0303	980005	
4-Chlorotoluene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Tert-Butylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trimethylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Sec-Butylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
P-Isopropyltoluene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,3-Dichlorobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,4-Dichlorobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
N-Butylbenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dichlorobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,2-Dibromo-3-Chloropropane	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,2,4-Trichlorobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Hexachlorobutadiene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Naphthalene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
1,2,3-Trichlorobenzene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Trans-1,4-Dichloro-2-Butene	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
Acetone	Below RL	120	ug/Kg	1.0	KD	N/A	03/02/199
2-Butanone (MEK)	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
2-Chloroethylvinyl Ether	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
hydrofuran	Below RL	6.2	ug/Kg	1.0	KD	N/A`	03/02/199
ayl Tert-Butyl Ether	Below RL	6.2	ug/Kg	1.0	KD	N/A	03/02/199
SM 2540G % TOTAL SOLIDS SOLID				E	Batch 0304	980001	
(%)Total-Solids	80	0.10	%	1.0	AG ()3/03/1998	03/04/199

Client Sample # SB-7

Client Sample # SB-DUP

Sampling Date/Time 02/25/1998	12:00			Lab Sample ID N80132208				
Prep/Method				Dilution	Analyst	Da	te of	
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis	

3550/8270 SEMI (GC/MS) SOLID				Ва	tch 030	02980013	
Phenol	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
Bis(2-Chloroethyl) Ether	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
2-Chlorophenol	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
1,3-Dichlorobenzene	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
1,4-Dichlorobenzene	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
1,2-Dichlorobenzene	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
Bis(2-chloroisopropyl) ether	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
2-Methylphenol	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
1ethylphenol	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
itrosodi-n-propylamine	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
Hexachloroethane	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199
Nitrobenzene	Below RL	400	ug/Kg	1.0	ML	03/03/1998	03/05/199

p/Method		·····	·	Dilution	Analyst	Dat	e of
yte	Result	RL	Units	Factor	Init.	Prep	Analysis
3550/8270 SEMI (GC/MS) SOLID					Batch 0302	980013	
Isophorone	Below RL	400	ug/Kg	1.0			03/05/199
2-Nitrophenol	Below RL	400	ug/Kg	1.0			03/05/199
2,4-Dimethylphenol	Below RL	400	ug/Kg	1.0			03/05/199
Bis(2-chloroethoxy)methane	Below RL	400	ug/Kg	1.0			03/05/199
2,4-Dichlorophenol	Below RL	400	ug/Kg	1.0			03/05/199
1,2,4-Trichlorobenzene	Below RL	400	ug/Kg	1.0			03/05/199
Naphthalene	Below RL	400	ug/Kg	1.0			03/05/199
4-Chloroanlline	Below RL	400	ug/Kg	1.0			03/05/199
Hexachlorobutadiene	Below RL	400	ug/Kg	1.0			03/05/199
4-Chloro-3-Methylphenoi	Below RL	400	ug/Kg	1.0			03/05/199
2-Methylnaphthatene	Below RL	400	ug/Kg ug/Kg	1.0			03/05/199
Z-methymaphthaene Hexachlorocyclopentadiene	Below RL Below RL	400	ug/Kg ug/Kg	1.0			03/05/199
2,4,6-Trichlorophenol	Below RL	400	ug/Kg ug/Kg	1.0			03/05/199
2,4,5-Trichlorophenol	Below RL	400		1.0			03/05/199
2-Chloronaphthalene	Below RL	400	ug/Kg	1.0			03/05/199
2-Onicronaphinaiene 2-Nitroaniline	Below RL	400	ug/Kg ug/Kg	1.0			03/05/199
			ug/Kg wg/Kg				
Dimethyl Phthalate	Below RL	400	ug/Kg ug/Kg	1.0			03/05/199
Acenaphthylene	Below RL	400	ug/Kg	1.0			03/05/199
Cinitrotoluene	Below RL	400	ug/Kg	1.0			03/05/199
.roaniline	Below RL	400	ug/Kg	1.0			03/05/199
Acenaphthene	Below RL	400	ug/Kg	1.0			03/05/199
2,4-Dinitrophenol	Below RL	2000	ug/Kg	1.0			03/05/199
4-Nitrophenol	Below RL	2000	ug/Kg	1.0			03/05/199
Dibenzofuran	Below RL	400	ug/Kg	1.0			03/05/199
2,4-Dinitrotoluene	Below RL	400	ug/Kg	1.0			03/05/199
Diethyl phthalate	Below RL	400	ug/Kg	1.0			03/05/199
4-Chlorophenyi phenyi ether	Below RL	400	ug/Kg	1.0			03/05/199
Fluorene	Below RL	400	ug/Kg	1.0			03/05/199
4-Nitroaniline	Below RL	400	ug/Kg	1.0			03/05/199
4,6-Dinitro-2-methylphenol	Below RL	2000	ug/Kg	1.0			03/05/199
N-Nitrosodiphenylamine	Below RL	400	ug/Kg	1.0			03/05/199
4-Bromophenyl phenyl ether	Below RL	400	ug/Kg	1.0			03/05/199
Hexachlorobenzene	Below RL	400	ug/Kg	1.0			03/05/199
Pentachlorophenol	Below RL	2000	ug/Kg	1.0			03/05/199
Phenanthrene	Below RL	400	ug/Kg	1.0		3/03/1998	
Anthracene	Below RL	400	ug/Kg	1.0		3/03/1998	
Di-n-butyl phthalate	Below RL	400	ug/Kg	1.0		3/03/1998	
Fluoranthene	Below RL	400	ug/Kg	1.0		3/03/1998	
Pyrene	Below RL	400	ug/Kg	1.0		3/03/1998	
Butyl benzyl phthalate	Below RL	400	ug/Kg	1.0		3/03/1998	
3.3'-Dichlorobenzidine	Below RL	790	ug/Kg	1.0		3/03/1998	
zo(a)anthracene	Below RL	400	ug/Kg	1.0		3/03/1998	
.(2-ethylhexyl) phthalate	Below RL	400	ug/Kg	1.0			03/05/199
Chrysene	Below RL	400	ug/Kg	1.0	ML C	3/03/1998	03/05/199

Client Sample # SB-DUP

•

p/Method				Dilution	Analyst	Date	of
lyte	Result	RL	Units	Factor	init.	Prep	Analysi
3550/8270 SEMI (GC/MS) SOLID					Batch 03029		
Di-n-octyl phthalate	Below RL	400	ug/Kg	1.0		3/03/1998	03/05/19
Benzo(b)fluoranthene	Below RL	400	ug/Kg	1.0		3/03/1998	
Benzo(k)fluoranthene	Below RL	400	ug/Kg	1.0		3/03/1998	03/05/19
Benzo(a)pyrene	Below RL	400	ug/Kg	1.0		3/03/1998	03/05/19
ndeno(1,2,3-cd)pyrene	Below RL	400	ug/Kg	1.0		3/03/1998	
Dibenzo(a,h)anthracene	Below RL	400	ug/Kg	1.0	ML 0	3/03/1998	03/05/19
Benzo(g,h,i)perylene	Below RL	400	ug/Kg	1.0	ML O	3/03/1998	03/05/19
Carbazole	Below RL	400	ug/Kg	1.0	ML O	3/03/1998	03/05/19
N-Nitrosodimethylamine	Below RL	400	ug/Kg	1.0	ML O	3/03/1998	03/05/19
Benzoic acid	Below RL	2000	ug/Kg	1.0	ML 0	3/03/1998	03/05/19
Benzyl alcohol	Below RL	790	ug/Kg	1.0	ML 0	3/03/1998	03/05/19
5030/8260 VOC (GC/MS) SOLID				E	atch 03039	80005	
Dichlorodifluoromethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
Chloromethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
/inyl Chloride	Below RL	2.4	ug/Kg	1.0	KD	N/A	03/02/19
Bromomethane	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
Chloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Frichlorofluoromethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Dichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A'	03/02/19
.nylene Chloride	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Disulfide	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Acrylonitrile	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Frans-1,2-Dichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
I,1-Dichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
2,2-Dichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,2-Dichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Chloroform	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Bromochloromethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1-Trichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
1,1-Dichloropropene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Carbon Tetrachloride	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
I,2-Dichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Benzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Frichloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
,2-Dichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Bromodichloromethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Dibromomethane	Below RL	6.0	ug/Kg	1.0	KÐ	N/A	03/02/19
i-Methyl-2-Pentanone (MIBK)	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
2-Hexanone	Below RL	12	ug/Kg	1.0	KD	N/A	03/02/19
Cis-1,3-Dichloropropene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
oluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
ns-1,3-Dichloropropene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
., 1,2-Trichloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
1,3-Dichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19

Client Sample # SB-DUP Sampling Date/Time_02/25/199

(

(

p/Method				Dilution	Analysi	: Dati	e of
	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) SOLID				E	Batch 0303	980005	
Tetrachloroethene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Chlorodibromomethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
1,2-Dibromoethane	Below RL	6.0	u g/ Kg	1.0	KD	N/A	03/02/1
Chlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Ethylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
1,1,1,2-Tetrachloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/19
Xylenes (Total)	Below RL	18	ug/Kg	1.0	KD	N/A	03/02/1
Styrene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Isopropylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Bromoform	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,1,2,2-Tetrachloroethane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,2,3-Trichloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
N-Propylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Bromobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,3,5-Trimethylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
2-Chiorotoluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
4-Chlorotoluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Tert-Butylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
4-Trimethylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A '	03/02/1
-Butylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
P-Isopropyltoluene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,3-Dichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,4-Dichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
N-Butylbenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,2-Dichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,2-Dibromo-3-Chloropropane	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,2,4-Trichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Hexachlorobutadiene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Naphthalene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
1,2,3-Trichlorobenzene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Trans-1,4-Dichloro-2-Butene	Below RL	6.0	ug/Kg	1.0	KD	N/A	03/02/1
Acetone	Below RL	120	ug/Kg	1.0	KD	N/A	03/02/1
				1.0	KD	N/A	03/02/1
2-Butanone (MEK)	Below RL	6.0	ug/Kg		KD	N/A	03/02/1
2-Chloroethylvinyl Ether	Below RL	6.0	ug/Kg	1.0 1.0	KD	N/A	03/02/1
Tetrahydrofuran	Below RL	6.0	ug/Kg			N/A	03/02/1
Methyl Tert-Butyl Ether	Below RL	6.0	ug/Kg	1.0	KD		00/02/1
SM 2540G % TOTAL SOLIDS SOLID				E	Batch 0304	1900001	

(

•

ר p/Method lyte	Result	RL	Units	Dilution Factor	Anaiyst Init.	Date Prep	e of Analysis
	09 for SVOCs by 8270						
•	ble results should be vi	•		is sample cause		able surroy	410
							
3510/8270 SEMI (GC/MS) LIQUID					Batch 03039		00/05/40/
Phenol	Below RL	11	ug/L	1.0)3/03/1998	
Bis(2-Chloroethyl) Ether	Below RL	11	ug/L	1.0)3/03/1998	
2-Chlorophenol	Below RL	11	ug/L	1.0)3/03/1998	
1,3-Dichlorobenzene	Below RL	11	ug/L	1.0		03/03/1998	
1,4-Dichlorobenzene	Below RL	11	ug/L	1.0)3/03/1998	
1,2-Dichlorobenzene	Below RL	11	ug/L	1.0)3/03/1998	
Bis(2-chloroisopropyl) ether	Below RL	11	ug/L	1.0)3/03/1998	
2-Methylphenol	Below RL	1 1	ug/L	1.0)3/03/1998	
4-Methylphenol	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
N-Nitrosodi-n-propylamine	Below RL	11	ug/L	1.0	ML C	03/03/1998	03/05/199
Hexachloroethane	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
Nitrobenzene	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
Isophorone	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
2-Nitrophenol	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
2,4-Dimethylphenol	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
Bis(2-chloroethoxy)methane	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
2,4-Dichlorophenol	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
4-Trichlorobenzene	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
hthalene	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
4-Chloroaniline	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
Hexachlorobutadiene	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
4-Chloro-3-Methylphenol	Below RL	1 1	ug/L	1.0	ML C)3/03/1998	03/05/199
2-Methylnaphthalene	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
Hexachlorocyclopentadiene	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
2,4,6-Trichlorophenol	Below RL	11	ug/L	1.0		3/03/1998	03/05/199
2,4,5-Trichtorophenol	Below RL	11	ug/L	1.0		3/03/1998	
2-Chloronaphthalene	Below RL	11	ug/L	1.0		3/03/1998	
2-Nitroaniline	Below RL	11	ug/L	1.0		3/03/1998	
Dimethyl Phthalate	Below RL	11	ug/L	1.0		3/03/1998	
Acenaphthylene	Below RL	11	ug/L	1.0)3/03/1998	
2,6-Dinitrotoluene	Below RL	11	ug/L	1.0)3/03/1998	
2.0-Dimitologene 3-Nitroaniline	Below RL	11	-	1.0)3/03/1998	
			ug/L	1.0)3/03/1998	
Acenaphthene	Below RL	11	ug/L)3/03/1998	
2,4-Dinitrophenol	Below RL	53	ug/L	1.0		•	
4-Nitrophenol	Below RL	53	ug/L	1.0)3/03/1998	
Dibenzofuran	Below RL	11	ug/L	1.0)3/03/1998	
2,4-Dinitrotoluene	Below RL	11	ug/L	1.0)3/03/1998	
Diethyl phthalate	Below RL	11	ug/L	1.0)3/03/1998	
4-Chlorophenyl phenyl ether	Below RL	11	ug/L	1.0)3/03/1998	
Fluorene	Below RL	11	ug/L	1.0)3/03/1998	
'itroaniline	Below RL	11	ug/L	1.0)3/03/1998	
J-Dinitro-2-methylphenol	Below RL	53	ug/L	1.0)3/03/1998	
N-Nitrosodiphenylamine	Below RL	11	ug/L	1,0	ML C)3/03/1998	03/05/199

.

N r

(

Client Sample # TMW-1

ਾrep/Method ⊨alyte	Result	RL	Units	Dilution Factor	Analyst Init.	: Dat Prep	e of Analysis
	132209 for SVOCs by 8270			is sample caused	d no detec	table surrog	jate
Tecovenes.	Sample results should be vi	ewea with a	aution.				
3510/8270 SEMI (GC/MS) LIQU	ID			P	atch 0303	980016	
4-Bromophenyl phenyl ether	Below RL	11	ug/L	1.0		03/03/1998	03/05/19
Hexachlorobenzene	Below RL	11	ug/L	1.0		03/03/1998	
Pentachlorophenol	Below RL	53	ug/L	1.0		03/03/1998	
Phenanthrene	Below RL	11	ug/L	1.0		03/03/1998	
Anthracene	Below RL	11	ug/L	1.0		03/03/1998	
Di-n-butyl phthalate	Below RL	11	ug/L	1.0		03/03/1998	
Fluoranthene	Below RL	11	ug/L	1.0		03/03/1998	
Pyrene	Below RL	11	ug/L	1.0		03/03/1998	
Butyl benzyl phthalate	Below RL	11	ug/L	1.0		03/03/1998	
3,3'-Dichlorobenzidine	Below RL	21	ug/L	1.0		03/03/1998	
Benzo(a)anthracene	Below RL	11	ug/L	1.0		03/03/1998	
Bis(2-ethylhexyl) phthalate	Below RL	11	ug/L	1.0		03/03/1998	
Chrysene	Below RL	11	ug/L	1.0		03/03/1998	
Di-n-octyl phthalate	Below RL	1 1	ug/L	1.0		03/03/1998	
Benzo(b)fluoranthene	Below RL	11	ug/L	1.0		03/03/1998	
Benzo(k)fluoranthene	Below RL	11	ug/L	1.0		03/03/1998	
Benzo(a)pyrene	Below RL	11	ug/L	1.0		03/03/1998	
teno(1,2,3-cd)pyrene	Below RL	11	ug/L	1.0		03/03/1998	
Jenzo(a,h)anthracene	Below RL	11	ug/L	1.0		03/03/1998	
Benzo(g,h,i)perylene	Below RL	11	ug/L	1.0		03/03/1998	
Carbazole	Below RL	11	ug/L	1.0		03/03/1998	
N-Nitrosodimethylamine	Below RL	11	ug/L	1.0		03/03/1998	
Benzoic acid	Below RL	53	ug/L	1.0		03/03/1998	
Benzyl alcohol	Below RL Below RL	21	ug/L	1.0		03/03/1998	
Benzidine		84	-	1.0		03/03/1998 03/03/1998	
	Below RL	04	ug/L				03/00/19:
5030/8260 VOC (GC/MS) LIQUII Dichlorodifluoromethane		10			atch 0302		000740
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	02/27/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Methylene Chloride	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
hloroform	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
romochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
I,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19

. . . .

ĺ

Client Sample # TMW-1

Sampling Date/Time 02/25/1	998 13:45			L	ab Sampl	e ID Na	0132209
Trep/Method ₃lyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Analysiε
	N80132209 for SVOCs by 8270:			iis sample caused	d no detecta	ble surre	ogate
recoveri	es. Sample results should be vie	ewed with c	aution.				
5030/8260 VOC (GC/MS) LI							
1,1-Dichloropropene	Below RL	5.0	uall		latch 03029		000740
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2-Dichloroethane		5.0 5.0	ug/L	1.0	KD	N/A	02/27/19
Benzene	Below RL Below RL	5.0 5.0	ug/L	1.0	KD	N/A	02/27/19
Trichloroethene			ug/L	1.0	KD	N/A	02/27/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Dibromomethane	Below RL	5.0	ug/L	1.0		N/A	02/27/19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
2-Hexanone	Below RL	10	ug/L	1.0		N/A	02/27/19
Cis-1,3-Dichloropropene	Below RL	5. 0	ug/L	1.0		N/A	02/27/19
Toluene	Below RL	5.0	ug/L	1.0		N/A	02/27/19 5
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 ^r
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 :
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 :
orobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/ 27/19:
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	02/27/19
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
lsopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0		N/A	02/27/19:
N-Propylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
2-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
P-lsopropyltoluene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L ug/L	1.0		N/A	02/27/19
N-Bulylbenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	02/27/19
1,2-Dichlorobenzene	Below RL Below RL	5.0 5.0	-			N/A	02/27/19
			ug/L	1.0			i
?-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0		N/A	02/27/19
,2,4-Trichlorobenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	02/27/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19

Client Sample # TMW-1

5 I

Client Sample # TMW-1

3 1

Sampling Da	ate/Time	02/25/1998	13:45
-------------	----------	------------	-------

Lab Sample ID	N80132209
---------------	-----------

¹ Prep/Method alyte			Units	Dilution Factor	Analyst Init.	Date of	
	Result	RL				Prep	Analysis
sample Comment:	Sample N80132209 for SVOCs by 8270 recoveries. Sample results should be v): The comple iewed with ca	ex matrix of th aution.	is sample cause	d no detecta	ible surro	gate

5030/8260 VOC (GC/MS) LIQUID		Batch 0302980006					
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27 /199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Acetone	Below RL	100	ug/L	1,0	KD	N/A	02/27/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Acrolein	Below RL	100	ug/L	1.0	КD	N/A	02/27/199
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	02/27/199
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199

Client Sample # TMW-2

Ę

Sampling Date/Time 02/25/1998 14:00

Lab Sample ID N80132210

T-ep/Method				Dilution	Analyst · C		ate of	
liyte	Result	RL	Units	Factor	init.	Prep	Analysis	
3510/8270 SEMI (GC/MS) LIQUID				В	atch 0303	980016		
Phenol	Below RL	13	ug/L	1.0	ML (3/03/1998	03/05/199	
Bis(2-Chloroethyl) Ether	Below RL	13	ug/L	1.0	ML (3/03/1998	03/05/199	
2-Chlorophenol	Below RL	13	ug/L	1.0	ML (3/03/1998	03/05/199	
1,3-Dichlorobenzene	Below RL	13	ug/L	1.0	ML (3/03/1998	03/05/199	
1,4-Dichlorobenzene	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
1,2-Dichlorobenzene	Below RL	13	ug/L	1.0	ML (3/03/1998	03/05/199	
Bis(2-chloroisopropyl) ether	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
2-Methylphenol	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
4-Methylphenol	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
N-Nitrosodi-n-propylamine	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
Hexachloroethane	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
Nitrobenzene	Below RL	13	ug/L	1.0	ML C	3/03/1998	03/05/199	
Isophorone	Below RL	13	ug/L	1.0	ML 0	3/03/1998	03/05/199	
2-Nitrophenol	Below RL	13	ug/L	1.0	ML 0	3/03/1998	03/05/199	
2,4-Dimethylphenol	Below RL	13	ug/L	1.0	ML 0	3/03/1998	03/05/199	
Bis(2-chloroethoxy)methane	Below RL	13	ug/L	1.0	ML 0	3/03/1998	03/05/199	
2.4-Dichlorophenol	Below RL	13	ug/L	1.0	ML 0	3/03/1998	03/05/199	
4-Trichlorobenzene	Below RL	13	ug/L	1.0			03/05/199	
. phthalene	Below RL	13	ug/L	1.0			03/05/199	
4-Chloroaniline	Below RL	13	ug/L	1.0			03/05/199	

rep/Method				Dilution	Analys	Date of	
ılytə	Result	RL	Units	Factor	Init.	Prep	Analy
3510/8270 SEMI (GC/MS) LIQUID				8	atch 030	3980016	
Hexachlorobutadiene	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
4-Chloro-3-Methylphenol	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
2-Methylnaphthalene	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
Hexachlorocyclopentadiene	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
2,4,6-Trichlorophenol	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
2,4,5-Trichlorophenol	Below RL	13	ug/L	1.0	ML.	03/03/1998	03/05/
2-Chloronaphthalene	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
2-Nitroaniline	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/
Dimethyl Phthalate	Below RL	13	ug/L	1.0		03/03/1998	03/05/
Acenaphthylene	Below RL	13	ug/L	1.0		03/03/1998	
2,6-Dinitrotoluene	Below RL	13	ug/L	1.0		03/03/1998	03/05/
3-Nitroaniline	Below RL	13	ug/L	1.0		03/03/1998	
Acenaphthene	Below RL	13	ug/L	1.0		03/03/1998	
2,4-Dinitrophenol	Below RL	63	ug/L	1.0		03/03/1998	
4-Nitrophenol	Below RL	63	ug/L	1.0		03/03/1998	
Dibenzofuran	Below RL	13	ug/L	1.0		03/03/1998	
2,4-Dinitrotoluene	Below RL	13	ug/L	1.0		03/03/1998	
vthyl phthalate	Below RL	13	ug/L	1.0		03/03/1998	
hiorophenyl phenyl ether	Below RL	13	ug/L	1.0		03/03/1998	
luorene	Below RL	13	ug/L	1.0		03/03/1998	
I-Nitroaniline	Below RL	13	ug/L	1.0		03/03/1998	
4,6-Dinitro-2-methylphenol	Below RL	63	ug/L	1.0		03/03/1998	
N-Nitrosodiphenylamine	Below RL	13	ug/L	1.0		03/03/1998	
-Bromophenyl phenyl ether	Below RL	13	ug/L	1.0		03/03/1998	
lexachlorobenzene	Below RL	13	ug/L	1.0		03/03/1998	
Pentachlorophenol	Below RL	63	ug/L	1.0		03/03/1998	
Phenanthrene	Below RL	13	ug/L	1.0		03/03/1998	
Anthracene	Below RL	13	ug/L	1.0		03/03/1998	
Di-n-butyl phthalate	Below RL	13	ug/L	1.0		03/03/1998	
Fluoranthene	Below RL	13	ug/L	1.0		03/03/1998	
^o yrene	Below RL	13	ug/L	1.0		03/03/1998	
Butyl benzyl phthalate	Below RL	13	ug/L	1.0		03/03/1998	
3,3'-Dichlorobenzidine	Below RL	25	ug/L	1.0		03/03/1998	
Benzo(a)anthracene	Below RL	13	ug/L	1.0		03/03/1998	
Bis(2-ethylhexyl) phthalate	Below RL	13	ug/L	1.0		03/03/1998	
Chrysene	Below RL	13	ug/L	1.0		03/03/1998	
Di-n-octyl phthalate	Below RL	13	ug/L	1.0		03/03/1998	
Benzo(b)fluoranthene	Below RL	13	ug/L	1.0		03/03/1998	
Senzo(k)fluoranthene	Below RL	13	=	1.0		03/03/1998	
Benzo(a)pyrene	Below RL Below RL		ug/L	1.0		03/03/1998	
feno(1,2,3-cd)pyrene		13	ug/L.				
	Below RL	13	ug/L	1.0		03/03/1998	
ubenzo(a,h)anthracene	Below RL	13	ug/L	1.0	ML (03/03/1998	03/05/

HydroLogic, Inc. Ledger N801322

• • • •

ີ∽rep/Method				Dilution	Analyst	Date	e of
alyte	Result	RL	Units	Factor	init.	Prep	Analysis
3510/8270 SEMI (GC/MS) LIQUID				E	Batch 0303	980016	
Carbazole	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/19
N-Nitrosodimethylamine	Below RL	13	ug/L	1.0	ML	03/03/1998	03/05/199
Benzoic acid	Below RL	63	ug/L	1.0	ML	03/03/1998	03/05/199
Benzyl alcohol	Below RL	25	ug/L	1.0	ML	03/03/1998	03/05/199
Benzidine	Below RL	100	ug/L	1.0	ML	03/03/1998	03/05/199
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0302	980006	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	02/27/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1-Dichloroethene	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Carbon Disulfide	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	02/27/19
Acrylonitrile		5.0 5.0	ug/∟ ug/L	1.0	KD	N/A	02/27/19
Trans-1,2-Dichloroethene	Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A [°]	02/27/19
Dichloroethane	Below RL		-	1.0	KD	N/A	02/27/19
Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Bromochloromethane	Below RL	5.0	ug/L		KD	N/A	02/27/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0		N/A N/A	02/27/19
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD		
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 02/27/19
Trichloroethene	9.8	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	02/27/19
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
. dorobenzene	Below RL	5.0	u g/L	1.0	KD	N/A	02/27/19
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19

 $\left(\right)$

· •

Ĺ

/~-ep/Method	······			Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				E	Batch 03029	80006	
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	02/27/19
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Bromoform	Below RL	5.0	u g/L	1.0	KD	N/A	02/27/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
P-Isopropyltoluene	Below RL	5.0	u g/L	1.0	KD	N/A	02/27/1
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
'-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
utylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
Acetone	Below RL	100	ug/L	1.0	KD	N/A	02/27/1
2-Butanone (MEK)	Below RL	5.0	u g/L	1.0	KD	N/A	02/27/1
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	02/27/1
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	02/27/1
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19

Client Sample # TMW-2

•

HydroLogic, Inc. Lédger N801322

⊂ ∽p/Method				Dilution	Analyst		
yte	Result	RL	Units	Factor	Init.	Ргер	Analysi
3510/8270 SEMI (GC/MS) LIQUID					Batch 0303		
Phenol	Below RL	11	ug/L	1.0		03/03/1998	
Bis(2-Chloroethyl) Ether	Below RL	11	ug/L	1.0		03/03/1998	
-Chlorophenol	Below RL	11	ug/L	1.0		03/03/1998	
,3-Dichlorobenzene	Below RL	11	ug/L	1.0		03/03/1998	
,4-Dichlorobenzene	Below RL	11	ug/L	1.0		03/03/1998	
,2-Dichlorobenzene	Below RL	11	ug/L	1.0	ML (03/03/1998	03/05/
Bis(2-chloroisopropyl) ether	Below RL	11	ug/L	1.0	ML (03/03/1998	03/05/
-Methylphenol	Below RL	11	ug/L	1.0	ML (03/03/1998	03/05/
-Methylphenol	Below RL	11	ug/L	1.0	ML (03/03/1998	03/05/
1-Nitrosodi-n-propylamine	Below RL	11	ug/L	1.0	ML (03/03/1998	03/05/
lexachloroethane	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
litrobenzene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
sophorone	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2-Nitrophenol	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2,4-Dimethylphenol	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
3is(2-chloroethoxy)methane	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2,4-Dichlorophenol	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
4-Trichlorobenzene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
hthalene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
4-Chloroaniline	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
lexachlorobutadiene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
4-Chloro-3-Methylphenol	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2-Methylnaphthalene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
- Houry independence Hexachlorocyclopentadiene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2,4,6-Trichlorophenol	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2,4,5-Trichlorophenol	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2-Chloronaphthalene	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05/
2-Nitroaniline	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05
Dimethyl Phthalate	Below RL	11	ug/L	1.0	ML	03/03/1998	03/05
Acenaphthylene	Below RL	11	ug/L	· 1.0		03/03/1998	03/05
2,6-Dinitrotoluene	Below RL	11	ug/L	1.0		03/03/1998	03/05
3-Nitroaniline	Below RL	11	ug/L	1.0		03/03/1998	03/05
Acenaphthene	Below RL	11	ug/L	1.0		03/03/1998	03/05
•	Below RL	53	ug/L	1.0		03/03/1998	03/05
2,4-Dinitrophenol	Below RL	53	ug/L	1.0		03/03/1998	
4-Nitrophenol	Below RL	11	ug/L	1.0		03/03/1998	
Dibenzofuran	Below RL	11	ug/L	1.0		03/03/1998	
2,4-Dinitrotoluene	Below RL	11	ug/L	1.0		03/03/1998	
Diethyl phthalate		11 11	ug/L	1.0		03/03/1998	
4-Chlorophenyl phenyl ether	Below RL Below Bl	11	ug/L	1.0		03/03/1998	
Fluorene	Below RL Below Bl	11	ug/L	1.0		03/03/1998	
`itroaniline	Below RL		-	1.0		03/03/1998	
-Dinitro-2-methylphenol	Below RL	53	ug/L	1.0		03/03/1998	

. .

/nep/Method				Dilution	Analyst	Date	∋ of
iyte	Result	RL	Units	Factor	Init.	Prep	Analysis
3510/8270 SEMI (GC/MS) LIQUID				E	atch 0303	980016	
4-Bromophenyl phenyl ether	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
Hexachlorobenzene	Below RL	11	ug/L	1.0	ML C	03/03/1998	03/05/199
Pentachlorophenol	Below RL	53	ug/L	1.0	ML C	03/03/1998	03/05/19
Phenanthrene	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/19
Anthracene	Below RL	11	ug/L	1.0	ML ()3/03/1998	03/05/19
Di-n-butyl phthalate	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/19
Fluoranthene	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
Pyrene	Below RL	11	ug/L	1.0	ML C	03/03/1998	03/05/199
Butyl benzyl phthalate	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
3,3'-Dichlorobenzidine	Below RL	21	ug/L	1.0	ML C)3/03/1998	03/05/199
Benzo(a)anthracene	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
Bis(2-ethylhexyl) phthalate	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
Chrysene	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
Di-n-octyl phthalate	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
Benzo(b)fluoranthene	Below RL	11	ug/L	1.0	ML C)3/03/1998	03/05/199
Benzo(k)fluoranthene	Below RL	11	ug/L	1.0)3/03/1998	
Benzo(a)pyrene	Below RL	11	ug/L	1.0	ML C	3/03/1998	03/05/199
no(1,2,3-cd)pyrene	Below RL	11	ug/L	1.0		3/03/1998	
nzo(a,h)anthracene	Below RL	11	ug/L	1.0		3/03/1998	
Benzo(g,h,i)perylene	Below RL	11	ug/L	1.0		3/03/1998	
Carbazole	Below RL	11	ug/L	1.0		3/03/1998	
N-Nitrosodimethylamine	Below RL	11	ug/L	1.0		3/03/1998	
Benzoic acid	Below RL	53	ug/L	1.0		3/03/1998	
Benzyl alcohol	Below RL	21	ug/L	1.0		3/03/1998	
Benzidine	Below RL	84	ug/L	1.0		3/03/1998	
5030/8260 VOC (GC/MS) LIQUID					atch 0302		
Dichlorodifluoromethane	Below RL	10	uall	1.0	KD	N/A	02/27/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
	Below RL		ug/L.	1.0	KD	N/A	02/27/199
Vinyl Chloride		2.0	ug/L			N/A	02/27/199
Bromomethane	Below RL	10	ug/L	1.0	KD		02/27/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Methylene Chloride	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
oroform	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Jmochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19

ĺ

e e

Client Sample # TMW-3 Sampling Date/Time 02/25/1998 14	:45			L	ab Sampl	e ID N80	132211
Prep/Method	Result	RL	Units	Dilution Factor	Analyst Init.	Dat Prep	e of Analysis
alyte	Result	<u>ارك</u>	Units		11114.	Ltoh	Allalysis
5030/8260 VOC (GC/MS) LIQUID				F	atch 03029	80006	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trichloroethene	24	5.0	ug/L	1.0	KD	N/A	02/27/199
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	0 2/27/19 8
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trans-1,3-Dichloropropene	Below RL	5.0 5.0	-	1.0	KD	N/A	02/27/199
1,1,2-Trichloroethane		5.0	ug/L	1.0	KD	N/A	02/27/19
1,3-Dichloropropane	Below RL		ug/L	1.0	KD	N/A	02/27/199
Tetrachloroethene	Below RL	5.0	ug/L			N/A	02/27/198
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD		02/27/198
?-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A ⁺	
orobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
⊨thylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	02/27/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Isopropyibenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/195
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/199
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 9
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/199
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 9
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 £
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 9
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/199
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/199
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 £
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 £
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
N-Bulyibenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 §
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 5
?-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 §
2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/ 199
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 9

· ·

(

ĺ

.....

Sampling Date/Time 02/25/1998 14	45			L	ab Sampl	e ID N8	0132211
>p/Method				Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis
			- 				
5030/8260 VOC (GC/MS) LIQUID				8	atch 03029	80006	
Naphthalene	7.0	5.0	ug/L	1.0	KD	N/A	02/27/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199 :
Acetone	Below RL	100	ug/L	1.0	KD	N/A	02/27/1990
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1990
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	02/27/199
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	0 2/27/19 9
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199

Client Sample # TMW-3

Sampling Data/Time 02/25/1008 14:45

No.10 N00122214 1 ----

Client Sample # TMW-DUP

Sampling Date/Time	02/25/1998	14:45	
--------------------	------------	-------	--

Sampling Date/Time 02/25/1998 14:	45			Dilution	ab Samp		te of
ilyte	Result	RL	Units	Factor	Analyst Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				ε	atch 0302	980006	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	02/27/199
/inyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	02/27/199
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	0 2/ 27/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
richlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27 /199
Aethylene Chloride	Below RL	10	ug/L	1.0	KD	N/A	0 2/27 /199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/ 199
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27 /199
rans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/2 7/199
,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/2 7/199
2,2-Dichtoropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27 /199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27 /199
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	02/2 7/199
Bromochloromethane	Below RL	5.0	u g/L	1.0	KD	N/A	02/2 7/199
1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/199
Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27 /199
arbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27 /199
,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199

Client Sample # TMW-DUP Sampling Date/Time 02/25/1998	14:45			l	Lab Samp	ie ID NE	0132212
רי rep/Method	· · · · · · · · · · · · · · · · · · ·			Dilution	Analyst		ate of
alyte	Result	RL	Units	Factor	Init	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0302	.980006	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
Trichloroethene	24	5.0	ug/L	1.0	KD	N/A	02/27/19 9
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	02/27/19 9
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	02/2 7/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 9
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 8
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/198
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/198
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/198
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/198
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
enes (Total)	Below RL	5.0 15	ug/L	1.0	KD	N/A	02/27/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Bromoform	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	02/27/198
1,1,2,2-Tetrachloroethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	02/27/198
1,1,2,2-1 etrachoroethane	Below RL Below RL	5.0 5.0	-	1.0	KD	N/A N/A	02/27/199
	Below RL Below RL		ug/L ug/l	1.0	KD	N/A N/A	02/27/198 02/27/198
N-Propylbenzene Bromobenzene		5.0 5.0	ug/L ug/l			N/A N/A	02/27/199 02/27/199
Bromobenzene	Below RL	5.0	ug/L	1.0	KD		
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/195
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Sec-Butylbenzene	Below RL	5.0	ug/L.	1.0	KD	N/A	02/27/199
P-Isopropyltoluene	Below RL	5.0	ug/ L .	1.0	KD	N/A	02/27/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/198
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/1 99
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	02/2 7/199
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/2 7/199
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/2 7/19£
phthalene	7.2	5.0	ug/L	1.0	KD	N/A	0 2/27/19 £
2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	0 2/27/19 £
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/198
							1

HydroLogic, Inc. Ledger N801322

PAGE 39

Sampling Date/Time 02/25/1998 14:	Lab Sample ID N80132212						
Trep/Method	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Analysis
5030/8260 VOC (GC/MS) LIQUID					latch 0302!		
Acetone	Below RL	100	u g/L	1.0	KD	N/A	02/27/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
2-Chloroethylvinyl Ether	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	02/27/19
Acrotein	Below RL	100	ug/L	1.0	KD	N/A	02/27/19
Vethyi Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
odomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Vinyl Acetate	Below RL	50	-	1.0	KD	N/A	
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L		KD		02/27/19
Methyl Tert-Butyl Ether			ug/L	1.0		N/A	02/27/19
	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Client Sample # TRIP BLANK							
Sampling Date/Time 02/06/1998				1	ab Sampl		0130013
oumphing Dater fille 02/00/1000				Dilution	Analyst		te of
Prop/Mothod						13	leor
•	Result	RL	Units	Factor	Init.	Prep	Analysi
Prep/Method Analyte 5030/8260 VOC (GC/MS) LIQUID	Result	RL	Units	Factor	Init.	Prep	Analysi
Analyte 5030/8260 VOC (GC/MS) LIQUID				Factor	Init. atch 03029	Prep 980006	· · · · · · · · · · · · · · · · · · ·
Analyte	Below RL	10	ug/L	Factor B 1.0	Init. atch 03029 KD	Prep 980006 N/A	02/2 7/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane	Below RL Below RL	10 10	ug/L ug/L	Factor 8 1.0 1.0	Init. atch 03029 KD KD	Prep 980006 N/A N/A	02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride	Below RL Below RL Below RL	10 10 2.0	ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0	Init. atch 03029 KD KD KD	Prep 980006 N/A N/A N/A	02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane	Below RL Below RL Below RL Below RL	10 10 2.0 10	ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD	Prep 980006 N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane	Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0	ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane	Below RL Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03022 KD KD KD KD KD KD	Prep 	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene	Below RL Below RL Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane /inyl Chloride Bromomethane Chloroethane Frichlorofluoromethane Intropethane Chloroethane Chloroethane Chloroethane Methylene Chloride	Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
S030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane /inyl Chloride Bromomethane Chloroethane Trichlorofluoromethane I,1-Dichloroethene Methylene Chloride Carbon Disulfide	Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 10 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD	Prep 	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane /inyl Chloride Bromomethane Chloroethane Trichlorofluoromethane I,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile	Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 10 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03028 KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Frichlorofluoromethane I,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Frans-1,2-Dichloroethene	Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 10 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
So30/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane I,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene I,1-Dichloroethane	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03022 KD KD KD KD KD KD KD KD KD KD KD KD	Prep 380006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrite Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrite Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03022 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
Analyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropane	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03022 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrite Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethane 1,1-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethane 1,1-Dichloropropene Carbon Tetrachloride	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19 02/27/19
5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethane 1,1-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethane 1,1-Dichloropropene Carbon Tetrachloride	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03029 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 980006 N/A N/A N/A N/A N/A N/A N/A N/A	02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199
5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Acrylonitrile Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethene 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethane 1,2-Dichloropropene Carbon Tetrachloride 1,2-Dichloroethane	Below RL Below RL	10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Factor B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Init. atch 03022 KD KD KD KD KD KD KD KD KD KD KD KD KD	Prep 80006 N/A N/A N/A N/A N/A N/A N/A N/A	Analysis 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199 02/27/199

ì

· · · ·

 $\left(\right)$

Client Sample # TMW-DUP

Client Sample # TRIP BLANK Sampling Date/Time 02/06/1998 :				L	ab Sampl	e ID Na	30132213
rep/Method alyte	Result	RL	Units	Dilution Factor	Analyst Init.		ate of
	Nout		Units	ractor		Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				-			
Bromodichloromethane	Below RL	5.0	ual		atch 03029		00/07/40/
Dibromomethane	Below RL	5.0 5.0	ug/L ug/L	1.0 1.0	KD KD	N/A	02/27/199
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A N/A	02/27/199
2-Hexanone	Below RL	10	ug/L	1.0	KD		02/27/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/∟ ug/L	1.0	KD	N/A N/A	02/27/198
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD		02/27/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/199
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A N/A	02/27/19 02/27/19
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 02/27/19
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19 02/27/19
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19:
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	02/27/19
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A`	02/27/19
Jmoform	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L ug/L	1.0	KD	N/A	02/27/19
N-Propyibenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
2-Chlorotoluene	Below RL	5.0		1.0	KD		
4-Chlorotoluene	Below RL	5.0	ug/L ug/L	1.0		N/A N/A	02/27/19 02/27/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
Naphthalene	Below RL	5.0	ug/L	1.0		N/A	02/27/19
1,2,3-Trichlorobenzene	Below RL	5.0 5.0	ug/L ug/L	1.0		N/A	02/27/19:
Trans-1,4-Dichloro-2-Butene	Below RL	5.0 5.0	ug/L	1.0		N/A	02/27/19: 02/27/19:
'etone	Below RL	100	ug/L	1.0		N/A	02/27/19
Butanone (MEK)	Below RL	5.0	ug/L	1.0		N/A	02/27/19
2-Chloroethylvinyl Ether	Below RL	5.0 5.0		1.0		N/A	02/27/19
	DAIOM KT	0.0	ug/L	1.0	ΝŪ	13//3	02121119

• 1

⊃rep/Method				Dilution	Analyst	Da	ite of
alyte	Result	RL	Units	Factor	init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				-	02020	20000	
Acrolein	Below RL	100	ug/L	 1.0	latch 03029 KD	N/A	02/27/19
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	02/27/19
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	02/27/19

Certifying Scientist

Organics and Inorganics in Wastewater, Solids, and Wastes

NC-DEHNR 441, SC-DHEC 98013, GA -DNR-806 UT-DOH E-228 (UST), FL-DEP 940134 HRS E87194 (Water) HRS 87368 (Drinking Water), A2LA:0594-01,

EPA ID **EPA Reg Waste** GA-00033 GA-0001011006

US Army Corps of **Engineers Validation**

These result(s) relate only to the item(s) tested.

This report shall not be reproduced, except in full, without the written approval of HydroLogic Inc.

Case Narrative N801322

Date:March 05, 1998Client:USACE Savannah District

{

Analysis	QC Situation	Comments
Semi-Volatile Organics by GC/MS Batch: 0303980016	The LCS/LCSD spike recovery RPDs for 4-Nitrophenol and Pentachlorophenol exceeded the established control limits.	The individual LCS and LCSD recoveries for these compounds were acceptable.
	Sample N80132209 had no detectable levels of surrogate present.	Discussion with the analyst indicated that the sample was a very complex matrix and separation of the organic and aqueous layers was very difficult. Sample results should be used with caution.
Volatile Organics by GC/MS Batch: 0303980005:	Toluene-d8 surrogate recovery for the batch MSD was below the established control limits (The sample that was used for spiking was not from this ledger).	Control for this sample was based on the two acceptable remaining surrogates.
Volatile Organics by GC/MS Batch: 0302980006:	The MS/MSD spike recovery RPD for Benzene exceeded the established control limits.	The individual recoveries were acceptable as was the batch LCS recovery.
Sample N80132212 for SVOCs by GC/MS:	The extraction vessel was broken during the extraction process.	No sample was able to be recovered for analysis.

QA/QC REPORT

Ledger # Analyzed by QA/QC Batch ID MS/MSD Ref ID

ć

N801322 ML 0303980016

Prep Method 3510 Prepared by JJM Analysis Method 8270 Matrix LIQUID

NQ8062066 MB	Value	RL	Units
Phenoi	Below RL		ug/L
Bis(2-Chloroethyl) Ether	Below RL	10.0	ug/L
2-Chlorophenol	Below RL	10.0	ug/L
1,3-Dichlorobenzene	Below RL	10.0	ug/L
1,4-Dichlorobenzene	Below RL	10.0	ug/L
1,2-Dichlorobenzene	Below RL	10.0	ug/L
Bis(2-chloroisopropyl) ether	Below RL	10.0	ug/L
2-Methylphenol	Below RL	10.0	ug/L
4-Methylphenol	Below RL	10.0	ug/L
N-Nitrosodi-n-propylamine	Below RL	10.0	ug/L
Hexachloroethane	Below RL	10.0	ug/L
Nitrobenzene	Below RL	10.0	ug/L,
Isophorone	Below RL		ug/L
2-Nitrophenol	Below RL		
2,4-Dimethylphenol	Below RL	10,0	ug/L
Bis(2-chloroethoxy)methane			ug/L
2,4-Dichlorophenot	Below RL	10.0	ug/L
	Below RL	10,0	ug/L,
1,2,4-Trichlorobenzene	Below RL		ug/L
Naphthalene	Below RL		ug/L
hloroaniline	Below RL		ug/L
achlorobutadiene	Below RL	10.0	ug/L
4-Chloro-3-Methylphenol	Below RL	10.0	ug/L
2-Methylnaphthalene	Below RL	10.0	ug/L
Hexachlorocyclopentadiene	Below RL	10.0	ug/L
2,4,6-Trichlorophenol	Below RL	10.0	ug/L
2,4,5-Trichlorophenol	Below RL		ug/L
2-Chloronaphthalene	Below RL		ug/L
2-Nitroaniline	Below RL		ug/L
Dimethyl Phthalate	Below RL		ug/L
Acenaphthylene	Below RL		ug/L
2,6-Dinitrotoluene	Below RL		ug/L
3-Nitroaniline	Below RL		ug/L ug/L
Acenaphthene	Below RL		-
2,4-Dinitrophenol	Below RL		ug/L
4-Nitrophenol			ug/L
Dibenzofuran	Below RL		ug/L
	Below RL	10.0	•
2,4-Dinitrotoluene	Below RL	10.0	
Diethyl phthalate	Below RL	10.0	
4-Chlorophenyl phenyl ether	Below RL	10.0	
Fluorene	Below RL	10.0	
4-Nitroaniline	Below RL	10.0	
2-Methyl-4,6-Dinitrophenol	Below RL	50.0	ug/L
N-Nitrosodiphenylamine	Below RL	10.0	ug/L
4-Bromophenyl phenyl ether	Below RL	10.0	ug/L
**exachiorobenzene	Below RL		ug/L
.tachlorophenol	Below RL	50.0	
			<u> </u>

JA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N801322 HydroLogic, Inc. Ledger

NQ8062066 MB	Value	RL	Units			···, <u></u>	
Phenanthrene	Below RL	10.0	ug/L	1		·····	
Anthracene	Below RL	10.0	_	4			
Di-n-butyl phthalate	Below RL	10.0	_	-			
oranthene	Below RL	10.0		-{			
ne	Below RL	10.0		4			
	Below RL	10.0		4			
3,3'-Dichlorobenzidine	Below RL	20,0	-	-			
Benzo(a)anthracene	Below RL	10.0		4			
Bis(2-ethylhexyi) phthalate	Below RL	10.0	_	4			
Chrysene	Below RL	10.0	ug/L	4			
Di-n-octyl phthalate	Below RL	10.0	ug/L	4			
Benzo(b)fluoranthene	Below RL	10.0	ug/L	4			
Benzo(k)fluoranthene	Below RL	10.0	ug/L ug/L	4			
Benzo(a)pyrene	Below RL		ug/L ug/L	4			
Indeno(1,2,3-cd)pyrene	Below RL	10.0	1 -	4			
Dibenzo(a,h)anthracene			ug/L	4			
Benzo(g,h,i)perylene	Below RL	10.0	ug/L	4			
Carbazole	Below RL	10.0	ug/L	4			
N-Nitrosodimethylamine	Below RL	10.0	ug/L	1			
Benzoic acid	Below RL	10.0	ug/L	4			
	Below RL	50.0	ug/L	1			
Benzyl alcohol	Below RL	20.0	ug/L	1			
Benzidine	Below RL	80.0	ug/L			_	
NQ8062064 LCS	Value	Spike Value	Units	REC(%)	Control Limits (%)		
Phenol	24.4	100	ug/L	24.4	10-112		
2-Chlorophenol	62.4	100	ug/L	62.4	35-102		
1,4-Dichlorobenzene	32.8	50.0	ug/L	65.6	32-107		
N-Nitrosodi-n-propylamine	36.6	50.0	ug/L	73.2	28-123		
1,2,4-Trichlorobenzene	34.8	50,0	ug/L	69.6	31-108		
hloro-3-Methylphenol	70.3	100	ug/L	70.3	33-113		
naphthene	37.6	50.0	ug/L	75.2	44-104		
4-Nitrophenol	10,3	100	ug/L	10.3	10-132		
2,4-Dinitrotoluene	34.5	50.0	ug/L	69.0	25-105		
Pentachlorophenol	52.9	100	ug/L	52.9	49-101		
Pyrene	34.7		ug/L	69.4	48-105		
			-0.4				
NQ8062065 LCSD	Value	Spike Value	Units	REC (%)	Control Limits (%)	RPD	RPD Limits
Phenol	24.6		ug/L	24.6	10-112	0.816	14
2-Chlorophenol	65.6	100	ug/L	65.6	35-102	5,00	7.:
1,4-Dichlorobenzene	34.1	50.0	ug/L	68.2	32-107	3.89	7.(
N-Nitrosodi-n-propylamine	38.6	50.0	ug/L	77.2	28-123	5.32	8.:
1,2,4-Trichlorobenzene	33.9	50.0	ug/L	67.8	31-108	2.62	6.4
4-Chloro-3-Methylphenol	68.8	100	ug/L	68.8	33-113	2.16	17
	00.0						
Acenaphthene	39.0	50.0	ug/L	78.0	44-104	3.66	12
Acenaphthene 4-Nitrophenol		50.0			1		12
	39.0 16.9	50.0 100	ug/L	16.9	10-132	48.5 *	16
4-Nitrophenol	39.0	50.0 100 50.0	ug/L		1		

(

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N80132209 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	0.000	105	1.00	ug/L	0.000 *	21-100
Phenol-d5	0.000	105	1.00	ug/L	0.000 *	10- 94
Nitrobenzene-d5	0.000	52.6	1.00	ug/L	0,000 *	15-125
2-Fluorobiphenyl	0.000	52,6	1.00	ug/L	0.000 +	26-125
6-Tribromophenol	0.000	105	1.00	ug/L	0.000 *	16-133
henyl-D14	0.000	52.6	1.00	ug/L	0.000 *	22-131
N80132210 SURR	Value	Spike	DL	Units	REC(%)	Limits (%)
2-Fluorophenol	38,0	125	1.00	ug/L	30.4	21-100
Phenol-d5	25.4	125	1.00	ug/L	20.3	10-94
Nitrobenzene-d5	27.4	62.5	1.00	ug/L	43.8	15-125
2-Fluorobiphenyl	29.6	62.5	1.00	ug/L	47.4	26-125
2,4,6-Tribromophenol	62.7	125	1.00	ug/L	50.2	16-133
Terphenyl-D14	26.8	62.5	1,00	ug/L	42.9	22-131
N80132211 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	36,1	105	1.00	ug/L	34.4	21-100
Phenol-d5	23.4	105	1.00	ug/L	22.3	10- 94
Nitrobenzene-d5	39.1	52,6	1.00	ug/L	74.3	15-125
2-Fluorobiphenyl	41.6	52.6	1.00	ug/L	79.1	26-125
2,4,6-Tribromophenol	95.4	105	1.00	ug/L	90.9	16-133
Terphenyl-D14	34.0	52.6	1.00	ug/L	64.6	22-131
NQ8062064 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	39.5	100	1.00	ug/L	39.5	21-100
Phenol-d5	28.3	100	1.00	ug/L	28.3	10- 94
Nitrobenzene-dS	37.5	50.0	1.00	ug/L	75.0	15-125
2-Fluorobiphenyl	40.7	50.0	1.00	ug/L	81.4	26-125
2,4,6-Tribromophenoi	88.3	100	1.00	ug/L	88.3	16-133
Terphenyl-D14	36,8	50.0	1.00	ug/L	73.6	22-131
3062065 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	40.4	100	1.00	ug/L	40.4	21-100
Phenoi-d5	27.6	100	1.00	ug/L	27.6	10- 94
Nitrobenzene-d5	37.3	50.0	1.00	ug/L	74.6	15-125
2-Fluorobiphenyl	41.1	50.0	1.00	ug/L	82.2	26-125
2,4,6-Tribromophenol	91.6	100	1.00	ug/L	91.6	16-133
Terphenyl-D14	39.6	50.0	1.00	ug/L	79.2	22-131
NQ8062066 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	35,8	100	1.00	ug/L	35.8	21-100
Phenol-dS	24.1	100	1.00	ug/L	24.1	10- 94
Nitrobenzene-d5	36.7	50.0	1.00	ug/L	73,4	15-125
2-Fluorobiphenyl	37.3	50,0	1.00	ug/L	74.6	26-125
2,4,6-Tribromophenoi	78.6	100	1.00	ug/L	78.6	16-133
Terphenyl-D14	35,7	50.0	1.00	ug/L	71.4	22-131

 $\frac{1}{\sqrt{2}}$

QA/QC REPORT

SM

SOLID

	the second s
MS/MSD Ref ID	N80133105
QA/QC Batch ID	0302980013
Analyzed by	ML
Ledger #	N801322

Prep Method Prepared by Analysis Method 8270 Matrix

NQ8061063 MB -			
Phenol	Value Value	RL	Units
Bis(2-Chloroethyl) Ether	Below RL	330	ug/Kg
2-Chlorophenol	Below RL	330	ug/Kg
	Below RL	330	ug/Kg
1,3-Dichlorobenzene 1,4-Dichlorobenzene	Below RL	330	ug/Kg
	Below RL	330	ug/Kg
1,2-Dichlorobenzene	Below RL	330	ug/Kg
Bis(2-chloroisopropyl) ether	Below RL	330	ug/Kg
2-Methylphenol	Below RL	330	ug/Kg
4-Methylphenol	Below RL	330	ug/Kg
N-Nitrosodi-n-propylamine	Below RL	330	ug/Kg
Hexachloroethane	Below RL	330	ug/Kg
Nitrobenzene	Below RL	330	ug/Kg
Isophorone	Below RL	330	ug/Kg
2-Nitrophenol	Below RL	330	ug/Kg
2,4-Dimethylphenol	Below RL	330	ug/Kg
Bis(2-chloroethoxy)methane	Below RL	330	ug/Kg
2,4-Dichlorophenol	Below RL	330	ug/Kg
1,2,4-Trichlorobenzene	Below RL	330	ug/Kg
Naphthalene	Below RL	330	ug/Kg ug/Kg
Voroaniline	Below RL		2
Jchlorobutadiene	Below RL	330	ug/Kg
4-Chloro-3-Methylphenol		330	ug/Kg
2-Methylnaphthalene	Below RL	330	ug/Kg
	Below RL		ug/Kg
Hexachlorocyclopentadiene	Below RL	330	ug/Kg
2,4,6-Trichlorophenol	Below RL	330	ug/Kg
2,4,5-Trichlorophenol	Below RL	330	ug/Kg
2-Chloronaphthalene	Below RL	330	ug/Kg
2-Nitroaniline	Below RL	330	ug/Kg
Dimethyl Phthalate	Below RL	330	ug/Kg
Acenaphthylene	Below RL	330	ug/Kg
2,6-Dinitrotoluene	Below RL	330	ug/Kg
3-Nitroaniline	Below RL		ug/Kg
Acenaphthene	Below RL		ug/Kg
2,4-Dinitrophenol	Below RL		ug/Kg
4-Nitrophenol	Below RL		ug/Kg
Dibenzofuran	Below RL		ug/Kg
2,4-Dinitrotoluene	Below RL		ug/Kg
Diethyl phthalate	Below RL		ug/Kg
4-Chlorophenyl phenyl ether	Below RL		ug/Kg
Fluorene	Below RL		ug/Kg ug/Kg
4-Nitroaniline	Below RL		
4,6-Dinitro-2-methylphenol			ug/Kg
N-Nitrosodiphenylamine	Below RL		ug/Kg
4-Bromophenyl phenyl ether	Below RL		ug/Kg
	Below RL		ug/Kg
xachlorobenzene	Below RL		ug/Kg
achlorophenol	Below RL	1650	ug/Kg

uA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

HydroLogic, Inc. Ledger N801322

Batch 0302980013

NQ8061063 MB	Value	RL	Units				
Phenanthrene	Below RL	330	ug/Kg	1			
Anthracene	Below RL	330		4			
Di-n-butyl phthalate	Below RL	330		4			
Philoranthene	Below RL	330					
1e	Below RL	330					
, i benzyl phthalate	Below RL	330		4			
3,3'-Dichlorobenzidine	Below RL						
Benzo(a)anthracene	Below RL	330		4			
Bis(2-ethylhexyl) phthalate	Below RL			-1			
Chrysene		330	1	4			
Di-n-octyl phthalate	Betow RL	330		4			
Benzo(b)fluoranthene	Below RL	330	<u> </u>				
	Below RL	330		1			
Benzo(k)fluoranthene	Below RL		ug/Kg				
Benzo(a)pyrene	Below RL	330	V 0				
ndeno(1,2,3-cd)pyrene	Below RL		ug/Kg]			
Dibenzo(a,h)anthracene	Below RL	330	ug/Kg	<u> </u>			
Benzo(g,h,i)perylene	Below RL	330	ug/Kg]			
Carbazole	Below RL	330	ug/Kg	1			
N-Nitrosodimethylamine	Below RL	330	ug/Kg	T			
Benzoic acid	Below RL	1650	ug/Kg	1			
Benzyl alcohol	Below RL	660	ug/Kg	1			
		Spike	1	d	Control		·····
NQ8061064 MS	Value	Value	Units	REC (%)	Limits (%)		
henol	2090	3330	ug/Kg	62.8	30-89		
-Chlorophenol	2070	3330	ug/Kg	62.2	27-90		
,4-Dichlorobenzene	1030		ug/Kg	61.7	24-89		
N-Nitrosodi-n-propylamine	1120		ug/Kg	67.1	20-104		
,2,4-Trichlorobenzene	1050		ug/Kg	62.9	26-88		
-Chloro-3-Methylphenol	2160	-	ug/Kg	64.9	31-90		
raphthene	1100		ug/Kg	65.9	26-93		
rophenol	1670		ug/Kg	50.2	21-74		
,4-Dinitrotoluene	978		ug/Kg	58.6	28-89		
Pentachlorophenol	2000		ug/Kg	60,1			
Pyrene	1130			1	23-95		
Jiene	1150		ug/Kg	67.7	32-113		
1Q8061065 MSD	Value	Spike	Units	DEC (9.)	Control		RPD
henol	1970	Value 3330	ug/Kg	REC (%)	Limits (%) 30-89	RPD 5.91	Limits
Chlorophenol	2060	3330	ug/Kg	61.9	27-90	0.484	
,4-Dichlorobenzene	992	1670	ug/Kg	59.4	24-89		
-Nitrosodi-n-propylamine	1100					3.76	2
2,4-Trichlorobenzene		1670	ug/Kg	65.9	20-104	1.80	3
-Chloro-3-Methylphenol	1060	1670	ug/Kg	63.5	26-88	0.948	2
	2080	3330	ug/Kg	62.5	31-90	3.77	1
cenaphthene	1090	1670	ug/Kg	65.3	26- 93	0.913	3
-Nitrophenol	1820	3330	ug/Kg	54.7	21- 74	8.60	4
,4-Dinitrotoluene	966	1670	ug/Kg	57.8	28-89	1.23	4
entachlorophenol	2180	3330	ug/Kg	65.5	23- 95	8.61	4
yrene	1220	1670	ug/Kg	73.1	32-113	7.66	3
		Spike			Control		
1Q8061061 LCS	Value	Value	Units	REC(%)	Limits (%)		
henol	2270		ug/Kg	68.2	30- 89		-
Chtorophenol	2250		ug/Kg	67.6	27-90		
4-Dichlorobenzene	1120		ug/Kg	67.1	27-90		
-Nitrosodi-n-propylamine	1120						
,2,4-Trichlorobenzene			ug/Kg	70.7	20-104		
	1140	1670	ug/Kg	68.3	26-88		
Vloro-3-Methylphenol	2280	3330	ug/Kg	68,5	31-90		

uA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N00061061	LCS		Spike			Control		
NQ8061061	LCS	Value	Value	Units	REC(%)	Limits (%)		
Acenaphthene		1130	1670	ug/Kg	67.7	26-93		
4-Nitrophenol		1920	3330	ug/Kg	57.7	21-74		
4-Dinitrotoluene		945	1670	ug/Kg	56.6	28-89		
entachlorophenoi		2020	3330	ug/Kg	60.7	23-95		
ene		971	1670	ug/Kg	58.1	32-113		
NQ8061062	LCSD	· · · · · · · · · · · · · · · · · · ·	Spike			Control		RPD
		Value	Value	Units	REC(%)	Limits (%)	RPD	Limits
henol		2320	3330	ug/Kg	69.7	30- 89	2.18	27.
2-Chlorophenol		2340	3330	ug/Kg	70.3	27-90	3.92	28.
1,4-Dichlorobenzene		1160	1670	ug/Kg	69.5	24- 89	3.51	24.
N-Nitrosodi-n-propyla	amine	1170	1670	ug/Kg	70.1	20-104	0.851	30.
1,2,4-Trichlorobenzei		1190	1670	ug/Kg	71.3	26-88	4.29	25,
4-Chloro-3-Methylphe	enol	2270	3330	ug/Kg	68.2	31-90	0.440	36.
Acenaphthene		1180	1670	ug/Kg	70.7	26- 93	4.33	
4-Nitrophenol		1950	3330	ug/Kg	58.6	21- 74	1,55	40
2,4-Dinitrotoluene		1000	1670	ug/Kg	59.9	28-89	5.66	45
Pentachlorophenol		2070	3330	ug/Kg	62.2	23-95	2.44	41
Pyrene		1000	1670	ug/Kg	59.9	32-113	2,94	32

"A/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

1

HydroLogic, Inc. Ledger N801322 Batch 0302980013

N80132201	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol		2180	3290	1.00	ug/Kg	66.3	25-115
Phenol-d5		2490	3290	1.00	ug/Kg	75.7	22-111
Nitrobenzene-d5		1080	1640	1,00	ug/Kg	65.9	19-105
2-Fluorobiphenyl		1260	1640	1.00	ug/Kg	76.8	28-118
6-Tribromopheno	l	2830	3290	1.00	ug/Kg	86.0	18-128
henyl-D14		1220	1640	1.00	ug/Kg	74.4	37-126
N80132202	SURR	Value	Spike	DĿ	Units	REC(%)	Limits (%)
2-Fluorophenol		2470	3260	1.00	ug/Kg	75.8	25-115
Phenol-d5		2810	3260	1.00	ug/Kg	86.2	22-111
Nitrobenzene-dS		1260	1630	1.00	ug/Kg	77.3	19-105
2-Fluorobiphenyl		1480	1630	1.00	ug/Kg	90.8	28-118
2,4,6-Tribromopheno	л	3200	3260	1.00	ug/Kg	98.2	18-128
Terphenyl-D14		1350	1630	1.00	ug/Kg	82.8	37-126
N80132203	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol		1610	3310	1.00	ug/Kg	48.6	25-115
Phenol-d5		2240	3310	1.00	ug/Kg	67.7	22-111
Nitrobenzene-d5		890	1660	1.00	ug/Kg	53.6	19-105
2-Fluorobiphenyl		1260	1660	1.00	ug/Kg	75.9	28-118
2,4,6-Tribromophenol	,	3160	3310	1.00	ug/Kg	95.5	18-128
Terphenyl-D14		1490	1660	1.00	ug/Kg	89.8	37-126
N80132204	SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
2-Fluorophenol		2350	3330	1.00	ug/Kg	70.6	25-115
Phenol-d5		2720	3330	1.00	ug/Kg	81.7	22-111
Nitrobenzene-d5		1190	1670	1.00	ug/Kg	71.3	19-105
2-Fluorobiphenyl		1450	1670	1.00	ug/Kg	86.8	28-118
2,4,6-Tribromophenol	1	3330	3330	1.00	ug/Kg	100	18-128
Terphenyl-D14		1420	1670	1.00	ug/Kg	85.0	37-126
)132205	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol		2600	3300	1.00	ug/Kg	78.8	25-115
Phenol-d5		3000	3300	1.00	ug/Kg	90.9	22-111
Nitrobenzene-d5		1330	1650	1.00	ug/Kg	80.6	19-105
2-Fluorobiphenyl		1600	1650	1.00	ug/Kg	97.0	28-118
2,4,6-Tribromophenol	1	3380	3300	1.00	ug/Kg	102	18-128
Terphenyl-D14 N80132206	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1590	1650	1.00	ug/Kg	96.4	37-126
	SURR	Value	Spike	DL	Units	REC (%)	Limits (%)
2-Fluorophenol		2570	3280	1.00	ug/Kg	78.4	23-115
Phenol-d5		2910	3280	1.00	ug/Kg	88.7	19-105
Nitrobenzene-d5		1310	1640	1.00	ug/Kg	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28-118
2-Fluorobiphenyl		1520	1640	1.00	ug/Kg	92.7	18-128
2,4,6-Tribromophenoi Terphenyi-D14	1	3280	3280	1.00	ug/Kg ug/Kg	90.2	37-126
	/	1400			Uging		
N80132207	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol		2470	3290	1.00	ug/Kg	75.1	25-115
Phenol-d5		2840	3290	1.00	ug/Kg	86.3	22-111
Nitrobenzene-d5		1270	1640	1.00	ug/Kg	77.4	19-105
2-Fluorobiphenyl		1540	1640	1.00	ug/Kg	93.9	28-118
2,4,6-Tribromophenol		3360	3290	1.00	ug/Kg	102	18-128
Terphenyi-D14		1460	1640	1.00	ug/Kg	89.0	37-126

N80132208 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	2660	3310	1.00	ug/Kg	80.4	25-115
Phenol-d5	3020	3310	1.00	ug/Kg	91.2	22-111
Nitrobenzene-d5	1340	1660	1.00	ug/Kg	80.7	19-105
2-Fluorobiphenyl	1560	1660	1.00	ug/Kg	94.0	28-118
',6-Tribromophenol	3360	3310	1.00	ug/Kg	102	18-128
phenyl-D14	1580	1660	1.00	ug/Kg	95.2	37-126
NQ8061061 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	2390	3330	1.00	ug/Kg	71.8	22-103
Phenol-d5	2590	3330	1.00	ug/Kg	77.8	22-111
Nitrobenzene-d5	1240	1670	1.00	ug/Kg	74.3	19-105
2-Fluorobiphenyl	1230	1670	1.00	ug/Kg	73.7	28-118
2,4,6-Tribromophenol	2410	3330	1.00	ug/Kg	72.4	18-128
Terphenyl-D14	992	1670	1.00	ug/Kg	59.4	37-126
NQ8061062 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	2450	3330	1.00	ug/Kg	73.6	22-103
Phenol-d5	2720	3330	1.00	ug/Kg	81.7	22-111
Nitrobenzene-d5	1300	1670	1.00	ug/Kg	77.8	19-105
2-Fluorobiphenyl	1290	1670	1.00	ug/Kg	77.2	28-118
2,4,6-Tribromophenol	2580	3330	1.00	ug/Kg	77.5	18-128
Terphenyl-D14	1060	1670	1.00	ug/Kg	63.5	37-126
NQ8061063 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenoi	2290	3330	1.00	ug/Kg	68,8	22-103
Phenol-d5	2570	3330	1.00	ug/Kg	77.2	22-111
Nitrobenzene-d5	1090	1670	1.00	ug/Kg	65.3	19-105
2-Fluorobiphenyl	1120	1670	1.00	ug/Kg	67.1	28-118
2,4,6-Tribromophenol	2120	3330	1.00	ug/Kg	63.7	18-128
Terphenyl-D14	1000	1670	1.00	ug/Kg	59.9	37-126
8061064 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
2-Fluorophenol	2110	3330	1.00	ug/Kg	63.4	22-103
Phenol-d5	2330	3330	1.00	ug/Kg	70.0	22-111
Nitrobenzene-d5	1010	1670	1.00	ug/Kg	60.5	19-105
2-Fluorobiphenyl	1110	1670	1.00	ug/Kg	66.5	28-118
2,4,6-Tribromophenol	0170	3330	1.00	ug/Kg	71.2	18-128
Terphenyl-D14	2370					
	1140	1670	1.00	ug/Kg	68.3	37-126
NQ8061065 SURR			1.00 DL	1	68.3 REC(%)	37-126 Limits(%)
NQ8061065 SURR 2-Fluorophenol	1140	1670		ug/Kg	I	
2-Fluorophenol Phenol-dS	1140 Value	1670 Spike	DL	ug/Kg Units	REC(%)	Limits(%)
2-Fluorophenol Phenol-d5 Nitrobenzene-d5	1140 Value 2060	1670 Spike 3330	DL 1.00	ug/Kg Units ug/Kg	REC(%) 61.9	Limits(%) 22-103
2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl	1140 Value 2060 2260	1670 Spike 3330 3330	DL 1.00 1.00	ug/Kg Units ug/Kg ug/Kg	REC (%) 61.9 67.9	Limits(%) 22-103 22-111
2-Fluorophenol Phenol-d5 Nitrobenzene-d5	1140 Value 2060 2260 977	1670 Spike 3330 3330 1670	DL 1.00 1.00	ug/Kg Units ug/Kg ug/Kg ug/Kg	REC (%) 61.9 67.9 58.5	Limits(%) 22-103 22-111 19-105

.

QA/QC REPORT

Ledger # N801322 Analyzed by KD QA/QC Batch ID MS/MSD Ref ID

0303980005 N80133411

Prep Method 5030 Prepared by KD Analysis Method 8260 Matrix SOLID

NQ8062020 MB	Value	RL	Units
Dichlorodifluoromethane	Below RL	10.0	ug/Kg
Chloromethane	Below RL	10.0	ug/Kg
Vinyl Chloride	Below RL	2.00	ug/Kg
Bromomethane	Below RL	10.0	ug/Kg
Chloroethane	Below RL	5.00	ug/Kg
Trichlorofluoromethane	Below RL	5.00	ug/Kg
1,1-Dichloroethene	Below RL	5.00	
Methylene Chloride	Below RL	10.0	
Carbon Disulfide	Below RL	5.00	
Trans-1,2-Dichloroethene	Below RL	5.00	
1,1-Dichloroethane	Below RL	5.00	
2,2-Dichloropropane	Below RL	5.00	
Cis-1,2-Dichloroethene	Below RL	5.00	
Chloroform	Below RL		
Bromochloromethane			
1,1,1-Trichloroethane	Below RL		ug/Kg
	Below RL		
1,1-Dichloropropene	Below RL		,
Carbon Tetrachloride	Below RL		ug/Kg
1,2-Dichloroethane	Below RL		ug/Kg
`zene	Below RL	5.00	ug/Kg
loroethene	Below RL	5.00	ug/Kg
1,2-Dichloropropane	Below RL	5.00	ug/Kg
Bromodichloromethane	Below RL	5.00	ug/Kg
Dibromomethane	Below RL	5.00	ug/Kg
4-Methyl-2-Pentanone (MIBK)	Below RL	10.0	ug/Kg
2-Hexanone	Below RL	10.0	ug/Kg
Cis-1,3-Dichloropropene	Below RL		ug/Kg
Toluene	Below RL		ug/Kg
Trans-1,3-Dichloropropene	Below RL		ug/Kg
1.1.2-Trichloroethane	Below RL		ug/Kg
1,3-Dichloropropane	Below RL		
Tetrachloroethene	Below RL		ug/Kg
Chlorodibromomethane	Below RL		ug/Kg
1.2-Dibromoethane	Below RL		ug/Kg
Chlorobenzene			
Ethylbenzene	Below RL		ug/Kg
	Below RL		ug/Kg
1,1,1,2-Tetrachloroethane	Below RL		ug/Kg
Styrene	Below RL		ug/Kg
Isopropylbenzene	Below RL		ug/Kg
Bromoform	Below RL		ug/Kg
1,1,2,2-Tetrachloroethane	Below RL		ug/Kg
N-Propylbenzene	Below RL		ug/Kg
Bromobenzene	Below RL	5.00	ug/Kg
1,3,5-Trimethylbenzene	Below RL	5.00	ug/Kg
2-Chlorotoluene	Below RL		ug/Kg

QC Conventions ابت

DV : Duplicate

DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N801322 HydroLogic, Inc. Ledger

Batch 0303980005

NQ8062020 MB	Value	RL	Units				
Tert-Butylbenzene	Below RL	5.00	ug/Kg	Τ	······		
1,2,4-Trimethylbenzene	Below RL	5.00		4			
Sec-Butylbenzene	Below RL	5,00		1			
P-Isopropyltoluene	Below RL	5.00		+			
Dichlorobenzene	Below RL	5,00		4			
Dichlorobenzene	Below RL	5.00		1			
N-Butylbenzene	Below RL	5.00	ug/Kg	4			
1,2-Dichlorobenzene	Below RL	5.00	ug/Kg	4			
1,2-Dibromo-3-Chloropropane	Below RL	5.00	ug/Kg	4			
1,2,4-Trichlorobenzene	Below RL	5.00	ug/Kg	4			
Hexachlorobutadiene	Below RL	5.00	ug/Kg	1			
Naphthalene	Below RL	5.00	ug/Kg	4			
1,2,3-Trichlorobenzene	Below RL		ug/Kg	4			
Acetone	Below RL	100	ug/Kg	+			
2-Butanone (MEK)	Below RL		ug/Kg	1			
2-Chloroethylvinyl Ether	Below RL		ug/Kg	1			
1,2,3-Trichloropropane	Below RL		ug/Kg	ł			
Xylenes (Total)	Below RL	15.0	ug/Kg	ł			
Methyl Tert-Butyl Ether	Below RL		ug/Kg	†			
Acrylonitrile	Below RL		ug/Kg	1			
Trans-1,4-Dichloro-2-Butene	Below RL	5.00	ug/Kg	ł			
Tetrahydrofuran	Below RL		ug/Kg	1			
	<u></u>	Spike	-00	<u>l</u>	Control		
NQ8062021 MS	Value	Value	Units	REC(%)	Limits (%)		
1,1-Dichloroethene	54.3		ug/Kg	109			
Benzene	55.8		ug/Kg ug/Kg	112	59-172		
Trichloroethene	42.6		ug/Kg ug/Kg	85.2	<u>66-142</u> 62-137		
Toluene	69.0		ug/Kg	83.2 114	59-139		
Chlorobenzene	50.0		ug/Kg	114			
			Uğıng	100	60-133	··	
3062022 MSD		Spike	•,		Control		RPD
	Value	Value	Units	REC (%)	Limits (%)	RPD	Limits
1, I-Dichloroethene	51.7		ug/Kg	103	59-172	4.91	30.0
Benzene	54.9		ug/Kg	110	66-142	1,63	30.0
Trichloroethene	43.6		ug/Kg	87.2	62-137	2.32	30.0
Toluene	1 (2.2.0)	50.01	ug/Kg	110	59-139	2.49	30.0
	67,3						
Chlorobenzene	67.3 48.4		ug/Kg	96.8	60-133	3.25	30.0
							30.0
NQ8062019 LCS		50.0			60-133 Control		30.0
	48.4	50.0 Spike Value	ug/Kg Units	96.8	60-133 Control Limits (%)		30.0
NQ8062019 LCS 1,1-Dichloroethene	48.4 Value	50.0 Spike Value 50.0	ug/Kg Units ug/Kg	96.8 REC (%)	60-133 Control Limits (%) 59-172		30.0
NQ8062019 LCS	48.4 Value 47.1	50.0 Spike Value 50.0 50.0	Units Ug/Kg ug/Kg ug/Kg	96.8 REC (%) 94.2 102	60-133 Control Limits (%) 59-172 66-142		30.0
NQ8062019 LCS 1,1-Dichloroethene Benzene	48.4 Value 47.1 51.2	50.0 Spike Value 50.0 50.0 50.0	ug/Kg Units ug/Kg	96.8 REC (%) 94.2	60-133 Control Limits (%) 59-172		30.0

und QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N80132201 SURR	V-1	Condition	57	FT . 4 .		
1,2-Dichloroethane-D4	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	49.5	50.0	1.00	ug/Kg	99.0	70-121
4-Bromofluorobenzene	50.5	50.0	1.00	ug/Kg	101	81-117
		50.0	1.00	ug/Kg	101	74-121
N80132202 SURR Dichloroethane-D4	Value	Spike	DL	Units	REC (%)	Limits(%)
uiuene-D8	49.5	50.0	1.00	ug/Kg	99.0	70-121
4-Bromofluorobenzene	50.3	50.0	1.00	ug/Kg	101	81-117
	49,4	50.0	1.00	ug/Kg	98.8	74-121
N80132203 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	53.1	50.0	1.00	ug/Kg	106	70-121
4-Bromofluorobenzene	48.9	50.0	1.00	ug/Kg	97.8	81-117
	43.5	50.0	1.00	ug/Kg	87.0	74-121
N80132204 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
1,2-Dichloroethane-D4	49.8	50.0	1.00	ug/Kg	99.6	70-121
Toluene-D8	49.2	50.0	1.00	ug/Kg	98.4	81-117
4-Bromofluorobenzene	47.6	50.0	1.00	ug/Kg	95,2	74-121
N80132205 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
1,2-Dichloroethane-D4	49.2	50.0	1.00	ug/Kg	98.4	70-121
Toluene-D8	50.5	50.0	1.00	ug/Kg	101	81-117
4-Bromofluorobenzene	45.8	50.0	1.00	ug/Kg	91.6	74-121
N80132206 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	57.5	50.0	1.00	ug/Kg	115	70-121
Toluene-D8	49.6	50.0	1.00	ug/Kg	99.2	81-117
4-Bromofluorobenzene	41.7	50.0	1.00	ug/Kg	83.4	74-121
N80132207 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	51.9	50.0	1.00	ug/Kg	104	70-121
Nuene-D8	50.0	50.0	1.00	ug/Kg	100	· 81-117
romofluorobenzene	46.7	50.0	1.00	ug/Kg	93.4	74-121
N80132208 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	48.7	50.0	1.00	ug/Kg	97.4	70-121
Toluene-D8	49.2	50.0		ug/Kg	98.4	81-117
4-Bromofluorobenzene	49.0	50.0	1.00	ug/Kg	98.0	74-121
NQ8062019 SURR	Value	Spike	DL			
Toluene-D8	49.8	50.0	1.00	Units ug/Kg	REC (%)	Limits (%) 81-117
1,2-Dichloroethane-D4	51.0	50.0	1.00	ug/Kg	102	70-121
4-Bromofluorobenzene	47.5	50.0	1.00	ug/Kg ug/Kg	95.0	74-121
NQ8062020 SURR	Value	Spike				
Toluene-D8	50.6	50.0	1.00	Units ug/Kg	REC (%)	Limits(%) 81-117
1,2-Dichloroethane-D4	47.9	50.0	1.00	ug/Kg ug/Kg	95.8	70-121
4-Bromofluorobenzene	49.5	50.0	1.00	ug/Kg	99.0	74-121
NQ8062021 SURR	1 1					
Toluene-D8	Value	Spike		Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	44.0 58.7	50.0	1.00	ug/Kg	88.0	81-117
4-Bromofluorobenzene	37.0	50.0	1.00	ug/Kg	117 74.0	70-121
	L			ug/Kg	I	74-121
	Value	Spike		Units	REC (%)	Limits(%)
Toluene-D8	44.8	50.0	1.00	ug/Kg	89.6	81-117
1,2-Dichloroethane-D4 4-Bromofluorobenzene	52.7	50.0	1.00	ug/Kg	105	70-121
BIOMORIODDEILZCHC	33.7	50.0	1.00	ug/Kg	67.4 *	74-121

QA/QC REPORT

Ledger # N801322 Analyzed by. KD QA/QC Batch ID MS/MSD Ref ID

0302980006 N80130809

Prep Method 5030 Prepared by KD Analysis Method 8260 Matrix LIQUID

NQ8061024 MB	Value	RL	Units
Dichlorodifluoromethane	Below RL	KL 	
Chloromethane	Below RL		ug/L
Vinyl Chloride	Below RL Below RL		ug/L ug/L
Bromomethane	Below RL		
Chloroethane			ug/L
Trichlorofluoromethane	Below RL		ug/L
1.1-Dichloroethene	Below RL		ug/L
	Below RL		ug/L
Methylene Chloride	Below RL		ug/L
Carbon Disulfide	Below RL		ug/L
Acrylonitrile	Below RL	50.0	ug/L
Trans-1,2-Dichloroethene	Below RL	5.00	ug/L
1,1-Dichloroethane	Below RL	5.00	ug/L
2,2-Dichloropropane	Below RL	5.00	ug/L
Cis-1,2-Dichloroethene	Below RL	5.00	ug/L
Chloroform	Below RL		ug/L
Bromochloromethane	Below RL		ug/L
1,1,1-Trichloroethane	Below RL		ug/L
1,1-Dichloropropene	Below RL		ug/L
Carbon Tetrachloride	Below RL		ug/L
?-Dichtoroethane	Below RL		ug/L
Azene	Below RL		ug/L
Trichloroethene			-
1,2-Dichloropropane	Below RL		ug/L
Bromodichtoromethane	Below RL		ug/L
	Below RL		ug/L
Dibromomethane	Below RL		ug/L
4-Methyl-2-Pentanone (MIBK)	Below RL		ug/L
2-Hexanone	Below RL	10.0	ug/L
Cis-1,3-Dichloropropene	Below RL	5,00	ug/L
Toluene	Below RL	5.00	ug/L
Trans-1,3-Dichloropropene	Below RL	5.00	ug/L
1,1,2-Trichloroethane	Below RL	5.00	ug/L
1,3-Dichloropropane	Below RL	5,00	ug/L
Tetrachloroethene	Below RL		ug/L
Chlorodibromomethane	Below RL		ug/L
1,2-Dibromoethane	Below RL	5.00	_
Chlorobenzene	Below RL	5.00	
Ethylbenzene	Below RL	5.00	
1,1,1,2-Tetrachloroethane	Below RL	5.00	
Xylenes (Total)	Below RL		
Styrene		15.0	
Isopropylbenzene	Below RL	5.00	_
	Below RL	5.00	
Bromoform	Below RL	5.00	
1,1,2,2-Tetrachloroethane	Below RL	5.00	
1,2,3-Trichloropropane	Below RL	5.00	-
N-Propylbenzene	Below RL	5.00	ug/L
omobenzene	Below RL	5.00	ug/L
	······		

JA/QC Conventions

DV : Duplicate

DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

HydroLogic, Inc. Ledger N801322 Batch 0302980006

NQ8961024 MB							
	Value	RL	Units				
1,3,5-Trimethylbenzene	Below RL		ug/L				
2-Chlorotoluene	Below RL	5.00		Ι			
4-Chlorotoluene	Below RL	5.00]			
Tert-Butylbenzene	Below RL	5.00	ug/L	Τ			
4-Trimethylbenzene	Below RL	5.00	ug/L	1			
Butylbenzene	Below RL	5.00	ug/L	7			
P-Isopropyltoluene	Below RL	5.00	ug/L	T			
1,3-Dichlorobenzene	Below RL	5.00	ug/L	1			
1,4-Dichlorobenzene	Below RL	5,00	ug/L	T			
N-Butylbenzene	Below RL	5.00	ug/L	1			
1,2-Dichlorobenzene	Below RL	5.00	ug/L	1			
1,2-Dibromo-3-Chloropropane	Below RL	5.00	ug/L	1			
1,2,4-Trichlorobenzene	Below RL	5.00		1			
Hexachlorobutadiene	Below RL	5.00		1			
Naphthalene	Below RL	5.00		1			
1,2,3-Trichlorobenzene	Below RL	5.00	ug/L	1			
Frans-1,4-Dichloro-2-Butene	Below RL	10.0	ug/L	1			
Acetone	Below RL	100	ug/L	1			
2-Butanone (MEK)	Below RL	10.0	ug/L	4			
-Chloroethylvinyl Ether	Below RL	5.00	ug/L	+			
Methyl Tert-Butyl Ether	Below RL	5.00	ug/L	4			
Acrolein	Below RL	100	ug/L	4			
Methyl methacrylate	Below RL	5.00	ug/L	4			
odomethane	Below RL	5.00	ug/L	4			
Vinyl Acetate	Below RL	10.0	ug/L	4			
Cis-1,4-Dichloro-2-Butene	Below RL	5.00	ug/L ug/L	4			
			ug/L	l			
NQ8061025 MS	Value	Spike	Units	DEC (%)	Control		
,1-Dichloroethene		Value		REC (%)	Limits (%)		
	45.9	50.0	ug/L	91.8	80-119		
hloroethene	50.0		ug/L	100	82-124	·	
oluene	48.6		ug/L	97,2	75-120		
Chlorobenzene	47.8		ug/L	95,6	71-123		
indiobenzene	48.8	50.0	ug/L	97.6	79-119		
NQ8061026 MSD		Spike			Control		RPD
	Value	Value	Units	REC(%)	Limits (%)	RPD	Limits
,1-Dichloroethene	48.1	50,0	ug/L	96.2	80-119	4.68	7.2
enzene	53.7		ug/L	107	82-124	7.14 *	5.8
richloroethene	51,1		ug/L	102	75-120	5.02	7.3
`oluene	49.3		ug/L	98.6	71-123	3.09	7.2
Chlorobenzene	51.1	50,0		102	79-119	4.60	6.2
		Spike			Control		
NQ8061023 LCS	Value	Value	Units	REC (%)	Limits (%)		
, 1-Dichloroethene	46.4		ug/L	92.8	80-119		
enzene	50.9	50.0	ug/L	102	82-124		
richloroethene	48,7	50.0	ug/L	97.4	75-120		
`oluene	46.9	50.0	ug/L	93.8	71-123		
hlorobenzene	48.5		ug/L	97.0	79-119		

A/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

HydroLogic, Inc. Ledger N801322

Batch 0302980006

N80132209 St	JRR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		50.6	50.0	1.00	ug/L	101	88-110
1,2-Dichloroethane-D4		52.2	50.0	1,00	ug/L	104	76-114
4-Bromofluorobenzene		51.9	50.0	1.00	ug/L	104	86-115
	JRR	Value	Spike	DL	Units	REC (%)	Limits(%)
ene-D8		50.9	50.0	1.00	ug/L	102	88-110
-Dichloroethane-D4		51,1	50.0	1.00	ug/L	102	76-114
4-Bromofluorobenzene		50.8	50.0	1.00	ug/L	102	86-115
	JRR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8		50.8	50.0	1.00	ug/L	102	88-110
1,2-Dichloroethane-D4		51.0	50.0	1.00	ug/L	102	76-114
4-Bromofluorobenzene		51,2	50.0	1.00	ug/L	102	86-115
	JRR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8		50.6	50.0	1.00	ug/L	101	88-110
1,2-Dichloroethane-D4	· · · · · · · · · · · · · · · · · · ·	52.1	50.0	1.00	ug/L	104	76-114
4-Bromofluorobenzene		51.0	50.0	1.00	ug/L	102	86-115
.	JRR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		50.8	50.0	1.00	ug/L	102	88-110
1,2-Dichloroethane-D4		52.5	50.0	1.00	ug/L	105	76-114
4-Bromofluorobenzene		52.0	50.0	1.00	ug/L	104	86-115
	RR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8		50.1	50.0	1.00	ug/L	100	96-106
1.2-Dichloroethane-D4	· · · · · · · · · · · · · · · · · · ·	50.5	50.0	1.00	ug/L	101	92-112
4-Bromotluorobenzene		46,3	50.0	1.00	ug/L	92.6	90-105
NQ8061024 SU Toluene-D8	RR	Value	Spike	DL	Units	REC (%)	Limits(%)
		50.5	50.0	1.00	ug/L	101	88-110
^a -Dichloroethane-D4		51.2	50.0	1.00	ug/L	102	· 76-114
omofluorobenzene		49.0	50.0	1.00	ug/L	98.0	86-115
	RR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8		49.8	50.0	1.00	ug/L	99.6	96-106
1,2-Dichloroethane-D4		49.4	50.0	1.00	ug/L	98.8	92-112
4-Bromofluorobenzene		46.6	50.0	1.00	ug/L	93.2	90-105
	RR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		50.0	50.0	1.00	ug/L	100	96-106
1.2-Dichloroethane-D4		50.5	50.0	1.00	ug/L,	101	92-112
4-Bromofluorobenzene		46.8	50.0	1.00	ug/L	93.6	90-105

													(
	Time		Date				Received By:	Time I		Date			 	Relinquished By:
	Time	- 1	Date				Received By:	Time I		Date				Relir.quished By:
	ን <mark>ም</mark> - የ	(1 0): 0	10 42		لح ا	CUM	Received By:		-	"Date				Eelinquished By:
	Time States of the Har	r 1	Date	9	1,00711	N.S	Received By:	02% 20%	50 33	226		M	72/2	Relinquished By:
(5013dd	N												
Mor .														COMMENTS:
And a Rec Lab Temp				新た				LNN	, N	L Yes	Custody Scal:	C.		Lab Use Only
		「「「「「「「」」」)] 	1	1 2 2			読録
					λ	X		4	ÂQ	9	140	725	Ņ	TIM W -
					λ	×	1	4	AB	5	1395	225	\ \ \	TRUU
						\times	X	1	OWN	D	tiza	225	200	SQ'
							X	N	INAS	A	1/245	225		507-1
						X	X	N	NAO	5	1/230	225		3-8-5
						X	X	Ν	NNS	1 1	11215	225)	525
							X	2	14G	5	1200	2/25	Ŧ	22-
						<u>×</u>	X	N	MAC	S -	1/155	7/25	S	SB-
						$\frac{\lambda}{2}$	X	2	ORN	2	1140	7/25	1 >	SB-2
						X	X	2	NR	6	\$//35	2/2	/	SB-
REMARKS	← Preserv.				1	~ HCL	١	Containers	Matrix	Comp/ Grab	Time	Date	Sample ID	Samj
				/	N N N	X 4 /01/0	8			Ř	Date Needed:	ys	🗇 10 Days	to Days
O = Orlando, FL R = Richmond, VA		/		×	N 40							UTS	🗇 48 Hours	24 Hours
			/		_ حر	(N/)		5	Star Star	State Samples Collected	State Sa		ND TIME	TURNAROUND TIME
L = Lumberton, NC M = Morrisville_NC	/		/	1. J. C.	~ ~	\mathcal{O}				2	/ P.O. No:	1-531	12-652	Fax No.: G
K = Frankfort, KY	/	/			200	V.			fr.	¤By: ⊬	-/ Sampled By:	2-2-5	12-652	Phone No.:
			/				1	Š	MSON	NAR	Attn:		CUISON	Atta: / YA
C = Charlotte, NC D = Denver, CO	/ /		\ \	\sim	ATV A	_			,			402	2A 314	580.6
					$\delta'/$	/	L	M	SA	Invoice Address:		Bax 879	7.O.	Report Address:
LAB CODE LD.		TERS	PARAME		REQ		<u>`</u>	2600	0,#	^{с No} .: Д.	Project No.:	0-66	SAS-6	Client:
(912) 757-0811		910) 570-4661		Richmor 804) 358-31	ñ	Lexington, SC (803) 796-8989			Orlando, FL (407) 851-2560			Brighton, CO (303) 659-0497		
	Morrisville, NC		Charlotte, NC		D Lumberton, NC (910) 738-6190		Frankfort KY (502) 223-0251	(502) 2		O Norcross, GA	(770) 3	ñ	Asheville, NC (704) 254-5169	
Page_1_ of _2_				IIC.	uuiu _j	ICFC						ord	ustody Rec	Chain of Custody Record

	الأسار معتمدة معارية المحالية					1							(
		а Тіте	Date				Received By:		Time	Date]	Relinquished By:	[
		I Time	Date			Ø	Received By:		IIme	Date				Relinquished By:	
		<u>, !.718</u>	2) ATTAL	Q ,	ſ	- Mar	Keceived By:	1-	Lime	Date				And the second s	T
		Ţime	Dale		Pinla	SHI:	Received By:		1 08 30	224		<u>[</u>]		Belinguished By:	
	l of N							-							<u> </u>
elpr.														COMMENTS:	
Rec. Lab Temp	Init Lab Temp?	_		1. 1. A.				L'NN		4 Lice	Custody Scal:				
Ľ.		情報を読		ないの地理			語を言葉								
															1
				_						-					<u> </u>
															T
															1
									,						1
									,				-		1
							XX	4	AQ	5	1945	235	9.00	TIMW-	2
-							X X	4	AQ	6	1445	225	GJ	Ton w-	
REMARKS	← Preserv. R						$\overline{7}$	Containers H	Matrix C	Grab Frank	Time	Date	Ð	Sample ID	1
						/ /0/ /	///				Date Needed:		D 10 Days	S Days	T
O = Orlando, FL R = Richmond VA			\ \			E.	44					SID	48 Hours	D 24 Hours	
		/	/				22		H B	State Samples Collected	State Sa		D TIME	TURNAROUND TIME	
				<u> </u>		ير وي				••	/ P.O. No:	2-531	2-652	Fax No.: G//	1
G = Macon,GA K = Frankfort, KY		/			×	5			341	d By:	Sampled By:	2-5/s	2-65	Phone No.: 97	
		/	/			T T		2	11507	Whe	Attn:	Ľ	CVISO,	Atta:	
				<u> </u>	$\langle \langle$	202						1402	S HE	SAU., C	
A = Asnevule, NC B = Burlington, NC					/~/	/		l,	SAMA	Invoice Address:	1-1	88 X 88	PD.	Report Address:	
LAB CODE LD.		ETERS	RAM	ESTED	REQU	•		176	.# 009Z	B	Project No.:	NGG	SAS-E	Client:	
Macon, GA (912) 757-0811		Burlington, NC (910) 570-4661		Richmond, VA (804) 358-3145	~ ~	Lexington, SC (803) 796-8989	(803) 79		Orlando, FL (407) 851-2560	€ E	30	Brighton, CO (303) 659-0497			
	Morrisville, NC (919) 380-9699	ถึ	Charlotte, NC (704) 392-1164		Lumberton, NC (910) 738-6190	ទួច	925] 925]	G Frankfort KY (502) 223-0251		C Norcross, GA (770) 368-0636	(770) 3	្រក	Asheville, NC (704) 254-5169	20	
Page 2 of 2				liac.								ord	stody Rec	Chain of Custody Record	

TABLE 1

HUNTER AAF ENLISTED BARRACKS GROUND-WATER SAMPLES

	HUNTER AAF BARRACKS GROUND		
		EPA 8270	EPA 8260
Sample Number	Sampling Date and Time	SVOCs	VOCs
TMW-4	2 April 1998 1100	U	120 µg/L Acetone
TMW-5	2 April 1998 1250	U	U
TMW-6	2 April 1998 1315	U	46 µg/L Trichloroelhe
TMW-7	2 April 1998 1345	U	U
TMW-8	2 April 1998 1400	U	U
TMW-9	2 April 1998 1430	U	U
TMW-10	2 April 1998 1500	U	U
TMW-11	2 April 1998 1515	U	U
TMW-12	2 April 1998 1545	U	U
METHOD BLANK		NT	U
KEY:			u, uu
SVOCs = Semi-Volatile Organi VOCs = Volatile Organic Comp	c Compounds		

ECOSYS

A HYDROLOGIC OF GEORGIA, INC. LABORATORY

1412 Oakbrook Drive Suite 105 Norcross, Georgia 30093 Phone (770) 368-0636 Fax (770) 368-0806

CLIENT:

USACE-Savannah District Mark Harvision 100 West Oglethorpe Ave P.O. Box 889 Savannah, GA 31402 P: 912-652-5151 F: 912-652-5311 Project Name HUNTER BARRACKS

Client Sample # TMM 4

Client Sample # 1MW-4				
Sampling Date/Time 04/02/1998	11:00	L	ab Sample II	D N8
Prep/Method		Dilution	Analyst	Dat

Prep/Method		_			Dilution	Analyst	Da	te of
Analyte	······································	Result	RL	Units	Factor	init.	Prep	Analysis
			-					
3510/8270	SEMI (GC/MS) LIQUID					Patah 04070	00002	

3510/8270 SEMI (GC/MS) LIQUID				Bat	ch 04(07980003	
Phenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0	ML	04/08/1998	
2-Chlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
1,2-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Bis(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0	ML	04/08/1998	
2-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
4-Methylphenol	Below RL	10	ug/L	1.0	ML.	04/08/1998	
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	
Hexachloroethane	Below RL	10	ug/L	1.0	ML	04/08/1998	
Nitrobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Isophorone	Below RL	10	ug/L	1.0	ML	04/08/1998	
2-Nitrophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
1,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Naphthalene	Below RL	10	ug/L.	1.0	ML	04/08/1998	1
4-Chloroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	
4-Chloro-3-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
2-Methylnaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Hexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,4,6-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
↑ 4,5-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	1
hloronaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	
∠-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dimethyl Phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	1
							1

Ledger Number

P.O. Number

Date Received

Time Received

Reporting Date

N801600

DO 0102

13:58

04/07/1998

04/13/1998

80160001

Client Sample # TMW-4

x

Sampling Date/Time 04/02/1998 11:00

Lab Sample ID N80160001

sp/Method				Dilution	Analyst	Dat	e of
llyte	Result	RL	Units	Factor	Init.	Prep	Analys
3510/8270 SEMI (GC/MS) LIQUID				E	Batch 04079	80003	
Acenaphthylene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/1
,6-Dinitrotoluene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/ [.]
B-Nitroaniline	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/
\cenaphthene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/
2,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML 0	4/08/1998	04/09/
l-Nitrophenol	Below RL	50	ug/L	1.0	ML 0	4/08/1998	04/09/
Dibenzofuran	Below RL	10	ug/L	1.0		4/08/1998	
t,4-Dinitrotoluene	Below RL	10	ug/L	1.0		4/08/1998	
Diethyl phthalate	Below RL	10	ug/L	1.0		4/08/1998	
-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0		4/08/1998	
luorene	Below RL	10	ug/L	1.0		4/08/1998	
-Nitroaniline	Below RL	10	ug/L	1.0		4/08/1998	
,6-Dinitro-2-methylphenol	Below RL	50	ug/L	1.0		4/08/1998	
I-Nitrosodiphenylamine	Below RL	10	ug/L	1.0		4/08/1998	
-Bromophenyl phenyl ether	Below RL	10	ug/L	1.0		4/08/1998	
lexachlorobenzene	Below RL	10	ug/L	1.0		4/08/1998	
entachlorophenol	Below RL	50	ug/L	1.0		4/08/1998	
henanthrene	Below RL	10	ug/L	1.0		4/08/1998	
`hracene	Below RL	10	ug/L	1.0		4/08/1998	
a-butyl phthalate	Below RL	10	ug/L	1.0		4/08/1998	
luoranthene	Below RL	10	ug/L	1.0		4/08/1998	
yrene	Below RL	10	ug/L	1.0		4/08/1998	
utyl benzyl phthalate	Below RL	10	ug/L	1.0		4/08/1998	
,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0		4/08/1998	
enzo(a)anthracene	Below RL	10	ug/L	1.0		4/08/1998	
is(2-ethylhexyl) phthalate	Below RL	10	ug/L	1.0		4/08/1998	
hrysene	Below RL	10	ug/L	1.0		4/08/1998	
i-n-octyl phthalate	Below RL	10	ug/L	1.0		4/08/1998	
enzo(b)fluoranthene	Below RL	10	ug/L	1.0		4/08/1998	
enzo(k)fluoranthene	Below RL	10	ug/L	1.0		4/08/1998	
enzo(a)pyrene	Below RL	10	ug/L	1.0		4/08/1998	
ideno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0		4/08/1998	
ibenzo(a,h)anthracene	Below RL	10	ug/L				
enzo(g,h,i)perylene	Below RL		-	1.0		4/08/1998	
arbazole	Below RL	10	ug/L	1.0		4/08/1998	
-Nitrosodimethylamine		10	ug/L	1.0		4/08/1998	
enzoic acid	Below RL	10	ug/L	1.0		4/08/1998	
enzyi alcohol	Below RL	50	ug/L	1.0		4/08/1998	
enzidine	Below RL	20	ug/L	1.0		4/08/1998	
	Below RL	80	ug/L	1.0		4/08/1998	04/09/
5030/8260 VOC (GC/MS) LIQUID					atch 04139		
ichlorodifluoromethane	Below RL	10	ug/L	1.0		N/A	04/10/
loromethane	Below RL	10	ug/L	1.0			04/10/
Inyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/
romomethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/

2

Client Sample # TMW-4

ι

Sampling Date/Time 04/02/1998 11:00

o/Method	.			Dilution	Analyst		ate of
yte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0413	980011	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ 1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ 1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ 1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Frichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
.nodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
i-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
foluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Frans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Fetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
(ylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	04/10/1
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
,2,3-Trichloropropane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
I-Propylbenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
mobenzene	Below RL	5.0 5.0	-	1.0	KD	N/A	04/10/1
,3,5-Trimethylbenzene	Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A	04/10/1
1 h. I fimethylbenzene							

Client Sample # TMW-4

rep/Method

Sampling D	Date/Time	04/02/1998	11:00
------------	-----------	------------	-------

Lab Sample ID N80160001 Dilution Analyst Date of

spiniourou	_ <i>i</i> ,			Dilution	Analyst	Da	Date of	
alyte	Result	RL	Units	Factor	init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				6	atch 04139	80011		
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1 9	
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/19	
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/19	
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
N-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
Acetone	120	100	ug/L	1.0	KD	N/A	04/10/19	
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
rolein	Below RL	100	ug/L	1.0	KD	N/A	04/10/19	
Jthyl Methacrylate	Below RL	5,0	ug/L	1.0	KD	N/A	04/10/19	
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	04/10/19	
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0		N/A	04/10/19	
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0		N/A	04/10/19	

Project Name HUNTER BARRACKS

Client Sample # TMW-5

Sampling Date/Time 04/02/1998	12:50				Lab Sample	e ID N8	0160002
Prep/Method		· · ·		Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysi

3510/8270 SEMI (GC/MS) LIQUID				Bate	ch 040	07980003	
Phenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Chlorophenol	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
1,3-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
1,4-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
1,2-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Pis(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19

HydroLogic, Inc. Ledger N801600

PAGE

4

Client Sample # TMW-5

1

	Sampling	Date/Time	04/02/1998	12:50
--	----------	-----------	------------	-------

						Dilution Analyst Date of			
lyte	Result	RL	Units	Factor	Init.	Prep	Analys		
2540/2270									
3510/8270 SEMI (GC/MS) LIQUID					atch 04079				
Vitrobenzene	Below RL	10	ug/L	1.0		4/08/1998			
	Below RL	10	ug/L	1.0		4/08/1998			
sophorone 2 Nitrophonol	Below RL	10	ug/L	1.0		4/08/1998			
2-Nitrophenol 2,4-Dimethylphenol	Below RL	10	ug/L	1.0		4/08/1998			
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0		4/08/1998			
2,4-Dichlorophenol	Below RL	10	ug/L	1.0		4/08/1998			
,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0		4/08/1998			
	Below RL	10	ug/L	1.0		4/08/1998			
laphthalene -Chloroaniline	Below RL	10	ug/L	1.0		4/08/1998			
	Below RL	10	ug/L	1.0		4/08/1998			
lexachlorobuladiene	Below RL	10	ug/L	1.0		4/08/1998			
-Chloro-3-Methylphenol	Below RL	10	ug/L	1.0		4/08/1998			
-Methyinaphthalene	Below RL	10	ug/L	1.0		4/08/1998			
lexachlorocyclopentadiene	Below RL	10	ug/L	1.0		4/08/1998			
,4,6-Trichlorophenol	Below RL	10	ug/L	1.0		4/08/1998			
,4,5-Trichlorophenol	Below RL	10	ug/L	1.0		4/08/1998			
-Chloronaphthalene	Below RL	10	ug/L	1.0		4/08/1998	04/09		
-Nitroaniline	Below RL	10	ug/L	1.0		4/08/1998			
nethyl Phthalate	Below RL	10	ug/L	1.0		4/08/1998	04/09		
anaphthylene	Below RL	10	ug/L	1.0		4/08/1998			
,6-Dinitrotoluene	Below RL	10	ug/L	1.0		4/08/1998			
-Nitroaniline	Below RL	10	ug/L	1.0		4/08/1998			
cenaphthene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09		
,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML 0	4/08/1998	04/09		
-Nitrophenol	Below RL	50	ug/L	1.0	ML 0	4/08/1998	04/09		
ibenzofuran	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09		
,4-Dinitrotoluene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09		
iethyl phthalate	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09		
-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0	ML O	4/08/1998	04/09		
luorene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09		
Nitroaniline	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09		
,6-Dinitro-2-methylphenol	Below RL	50	ug/L	1.0	ML 04	4/08/1998	04/09		
-Nitrosodiphenylamine	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09		
Bromophenyl phenyl ether	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
exachlorobenzene	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
entachlorophenol	Below RL	50	ug/L	1.0	ML 04	4/08/1998	04/09/		
henanthrene	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
ntbracene	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
i-n-butyl phthalate	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
luoranthene	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
yrene	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
tyi benzyl phthalate	Below RL	10	ug/L	1.0	ML 04	4/08/1998	04/09/		
,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0	ML 04	4/08/1998	04/09/		
enzo(a)anthracene	Below RL	10	ug/L	1.0		4/08/1998			

5

Client Sample # TMW-5

. '

Sampling Date/Time 04/02/1998	12:50			L	ab Sample	e ID N8(0160002
p/Method				Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis

.

		SEMI (GC/MS) LIQUID						7980003	
	Bis(2-ethylhexyl)	phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Chrysene		Below RL	10	ug/L	1.0	ML	04/08/1998	
	Di-n-octyl phthala	te	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Benzo(b)fluoranth	iene	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Benzo(k)fluoranth	iene	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Benzo(a)pyrene		Below RL	10	ug/L	1.0	ML.	04/08/1998	
	Indeno(1,2,3-cd)p	byrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Dibenzo(a,h)anthi	racene	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Benzo(g,h,i)peryle	ene	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Carbazole		Below RL	10	ug/L	1.0	ML	04/08/1998	
	N-Nitrosodimethy	lamine	Below RL	10	ug/L	1.0	ML	04/08/1998	
	Benzoic acid		Below RL	50	ug/L	1.0	ML	04/08/1998	
	Benzyi alcohol		Below RL	20	ug/L	1.0	ML	04/08/1998	
	Benzidine		Below RL	80	ug/L	1.0	ML.	04/08/1998	04/09/199
	5030/8260	VOC (GC/MS) LIQUID				Ba		13980011	
	Dichlorodifluorom	ethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/199 0
	Chloromethane		Below RL	10	ug/L	1.0	KD	N/A	04/10/199
	Vinyl Chloride		Below RL	2.0	ug/L	1.0	KD	N/A	04/10/199 :
1	nomethane		Below RL	10	ug/L	1.0	KD	N/A	04/10/199
	sroethane		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199 8
	Trichlorofluorome	thane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	1,1-Dichloroether	1e	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199 8
	Methylene Chlorid	de	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Carbon Disulfide		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199 8
	Acrylonitrile		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1998
	Trans-1,2-Dichlor	roethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1990
	1,1-Dichloroethar	ne	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199 8
	2,2-Dichloropropa	ane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Cis-1,2-Dichloroe	ethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Chloroform		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1998
	Bromochlorometh	nane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1998
	1,1,1-Trichloroeth	nane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	1,1-Dichloroprope	ene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1998
	Carbon Tetrachlo	oride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	1,2-Dichloroethar	ne	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Benzene		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1990
	Trichloroethene		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	1,2-Dichloroprop	ane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Bromodichlorome	ethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Dibromomethane)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	4-Methyl-2-Penta	anone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
	lexanone		Below RL	10	ug/L	1.0	KD	N/A	04/10/199
	Jis-1,3-Dichlorop	propene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199:
	Toluene		Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199

HUNTER BARRACKS Project Name

Client Sample # TMW-5

1

,

ï

Sampling Date/Time	04/02/1998	12:50
		12.00

Lab Sample ID N80160002

rp/Method				Dilution	Analyst		ite of
lyte	Result	RL	Units	Factor	init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				8	atch 0413	980011	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/ 10/ [,]
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
(Vienes (Total)	Below RL	15	ug/L	1.0	KD	N/A	04/10
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
`hlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A [*]	04/10
nlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
P-Isopropyltoluene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10
1,3-Dichlorobenzene		5.0	ug/L	1.0	KD	N/A	04/10
1,4-Dichlorobenzene	Below RL Below Bl	5.0	-	1.0	KD	N/A	04/10
N-Butylbenzene	Below RL		ug/L	1.0	KD	N/A	04/10
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,2-Dibromo-3-Chloropropane	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	04/10
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L.	1.0	KD	N/A	04/10
Acetone	Below RL	100	ug/L			N/A	04/10
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD		04/10
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	04/10
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Iodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	04/10
-1,4-Dichtoro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10
.ethyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10

Client Sample # TMW-6

.

Sampling Date/Time	04/02/1998	13:15
--------------------	------------	-------

Lab Sample ID N80160003

/ np/Method				Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis

3510/8270 SEMI (GC/MS) LIQUID					ch 0407		
Phenol	Below RL	10	ug/L	1.0		04/08/1998	
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0		04/08/1998	
2-Chlorophenol	Below RL	10	ug/L	1.0		04/08/1998	
1,3-Dichlorobenzene	Below RL	10	ug/L	1.0		04/08/1998	
1,4-Dichlorobenzene	Below RL	10	ug/L	1.0		04/08/1998	
1,2-Dichlorobenzene	Below RL	10	ug/ i .	1.0		04/08/1998	
Bis(2-chloroisopropyi) ether	Below RL	10	ug/L	1.0		04/08/1998	
2-Methylphenol	Below RL	10	ug/L	1.0		04/08/1998	
4-Methylphenol	Below RL	10	ug/L	1.0		04/08/1998	
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Hexachloroethane	Below RL	10	ug/L	1.0		04/08/1998	
Nitrobenzene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Isophorone	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
2-Nitrophenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
1,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19 §
vhthalene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
nloroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Chloro-3-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Methylnaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Hexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
2,4,6-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,4,5-Trichlorophenoi	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Chloronaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Dimethyl Phthalate	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
Acenaphthylene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,6-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
3-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Acenaphthene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/19
4-Nitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/19
Dibenzofuran	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,4-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Diethyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Fluorene	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
4-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
-Dinitro-2-methylphenol	Below RL	50	ug/L	1.0	ML.	04/08/1998	04/09/19
Nitrosodiphenylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Bromophenyl phenyl ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19

Client Sample # TMW-6

Sampling Date/Time 04/02/1998 13:15

Lab Sample ID N80160003

	15			Lab Sample ID N80160003 Dilution Analyst Date of				
/ `n/Method yte	Result	RL	Units	Dilution Factor	Analyst Dat Init. Prep		e of Analysis	
yle	Nogun		01110					
3510/8270 SEMI (GC/MS) LIQUID				P	atob 040	7980003		
Hexachlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1	
Pentachlorophenol	Below RL	50	ug/L	1.0	ML.	04/08/1998		
Phenanthrene	Below RL	10	ug/L	1.0	ML	04/08/1998		
Anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998		
Di-n-butyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998		
Fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998		
	Below RL	10	ug/L	1.0	ML	04/08/1998		
Pyrene Rutul hannul abthalata	Below RL	10	ug/L	1.0	ML	04/08/1998		
Butyl benzyl phthalate	Below RL	20	ug/L	1.0	ML	04/08/1998		
3,3'-Dichlorobenzidine			•	1.0	ML	04/08/1998		
Benzo(a)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998		
Bis(2-ethylhexyl) phthalate	Below RL	10	ug/L.	1.0	ML	04/08/1998		
Chrysene	Below RL	10	ug/L	1.0	ML.	04/08/1998		
Di-n-octyl phthalate	Below RL	10	ug/L			04/08/1998		
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0	ML ML	04/08/1998		
Benzo(k)fluoranthene	Below RL	10	ug/L	1.0 1.0	ML	04/08/1998		
Benzo(a)pyrene	Below RL	10	ug/L			04/08/1998		
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L.	1.0	ML	04/08/1998		
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998		
to(g,h,i)perylene	Below RL	10	ug/L	1.0	ML ML	04/08/1998		
Jazole	Below RL	10	ug/L	1.0		04/08/1998		
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0	ML	04/08/1998		
Benzoic acid	Below RL	50	ug/L	1.0	ML			
Benzyl alcohol	Below RL	20	ug/L	1.0	ML	04/08/1998		
Benzidine	Below RL	80	ug/L.	1.0	ML		04/09/	
5030/8260 VOC (GC/MS) LIQUID						3980011	04404	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/	
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/	
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
1,1-Dichtoroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
1-Trichloroethane	Below RL	5.0	ug/L.	1.0	KD	N/A	04/10/	
,Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KĎ	N/A	04/10/	

9

Sampling	Date/Time	04/02/1998	13:15

Lab Sample ID N80160003

rep/Method		Dilution	Analyst		ate of		
lyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				E	Batch 04139	980011	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	0 4/ 10/19
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Trichloroethene	46	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/19
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/19
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/1
1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A [·]	04/10/1
anes (Total)	Below RL	15	ug/L	1.0	KD	N/A	04/10/1
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
2-Chlorotoluene		5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
4-Chlorotoluene	Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A	04/10/1
Tert-Bulylbenzene	Below RL	5.0 5.0	-	1.0	KD	N/A	04/10/1
1,2,4-Trimethylbenzene	Below RL		ug/L	1.0	KD	N/A	04/10/1
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,3-Dichlorobenzene	Below RL	5.0	ug/L			N/A	04/10/1
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD		
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
phthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
,2,3-Trichlorobenzene	Below RL	5.0	ug/L.	1.0	KD	N/A	04/10/1
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1

Client Sample # TMW-6

Sampling Date/Time 04/02/1998 13:15

p/Method				Dilution	Analyst	Date of	
iyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	atch 04139	80011	
Acetone	Below RL	100	ug/L	1.0	KD	N/A	04/1 0/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ 199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	04/10/199
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10 /199
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	04/10/199
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/07/ 199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199

Project Name HUNTER BARRACKS

Sampling Date/Time 04/02/1998	13:45			Ĺ	ab Sample	e ID N8	0160004
Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	init.	Prep	Analysis

10/8270 SEMI (GC/MS) LIQUID				Bat	ch 040	07980003	
enol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Chlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,3-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,4-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,2-Dichlorobenzene	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/199
Bis(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/199
2-Methylphenol	Below RL	10	ug/L.	1.0	ML	04/08/1998	04/09/199
4-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/199
Hexachloroethane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Nitrobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Isophorone	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Nitrophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,2,4-Trichlorobenzene	Below RL	10	ug/L.	1.0	ML	04/08/1998	04/09/199
Naphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
4-Chloroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Chloro-3-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
iethylnaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
rrexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4,6-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199

Client Sample # TMW-7

Sampling Date/Time 04/02/1998 13:45

Lab Sample ID N80160004

Sampling Date/Time 04/02/1998 13:	Lab Sample ID N80160004						
p/Method				Dilution	Analys	e of	
lyte	Result	RL	Units	Factor	Init	Prep	Analysis
3510/8270 SEMI (GC/MS) LIQUID				F	Batch 040	7980003	
2,4,5-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Chloronaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	
2-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dimethyl Phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Acenaphthylene	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,6-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	
3-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	
Acenaphthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	
4-Nitrophenoi	Below RL	50	ug/L	1.0	ML	04/08/1998	
Dibenzofuran	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,4-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Diethyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
4-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0	ML	04/08/1998	
Fluorene	Below RL	10	ug/L	1.0	ML	04/08/1998	
4-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	
4,6-Dinitro-2-methylphenol	Below RL	50	ug/L	1.0	ML	04/08/1998	
N-Nitrosodiphenylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	
romophenyl phenyl ether	Below RL	10	ug/L	1.0	ML	04/08/1998	
xachlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Pentachlorophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	
Phenanthrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Di-n-butyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Butyl benzyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
3,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0	ML	04/08/1998	
Benzo(a)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Bis(2-ethylhexyl) phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Chrysene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Di-n-octyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(k)fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(a)pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(g,h,i)perylene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Carbazole	Below RL	10	ug/L	1.0	ML	04/08/1998	
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	
Renzoic acid	Below RL	50	ug/L	1.0	ML	04/08/1998	
nzył alcohol	Below RL	20	ug/L	1.0	ML	04/08/1998	
Lenzidine	Below RL	80	ug/L	1.0	ML	04/08/1998	
						04/00/1990	5-150100

5030/8260 VOC (GC/MS) LIQUID

1

Batch 0413980011

Client Sample # TMW-7

۱.....

Sampling Date/Time 04/02/1998 13:45

Lab Sample ID N80160004

Sampling Date/Time 04/02/1998 13:		Lab Sample ID N80160004						
ep/Method	· · · · · · · · · · · · · · · · · · ·			Dilution	Analyst D		Date of	
alyte	Result	RL	Units	Factor	init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0413	980011		
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/199	
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/19	
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/19	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/19 £	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 £	
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/199	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9	
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 £	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 £	
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 §	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/199	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 §	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 §	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 §	
bon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198	
,∠-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/ 10/198	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198	
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/19	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/19	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/199	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/19	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9	
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9	
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198	
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/199	
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/199	
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/19§	
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/1 0/19§	
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	04/10/199	
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198	
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19	
omoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
1,1,2,2-Tetrachtoroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199	
· · · ·			~		145		0.444.044.05	

1,2,3-Trichloropropane

 $\left(\right)$

5.0

ug/L

1.0

KD

N/A

04/10/199

Below RL

Client Sample # TMW-7

5030/8260 VOC (GC/MS) LIQUID N-Propylbenzene Below RL	RL 5.0	Units	Dilution Factor	Analyst Init.	Da Prep	te of Analysis
5030/8260 VOC (GC/MS) LIQUID		Units	Factor	Init.	Prep	Analysis
	5.0					
	5.0					
	5.0		6	atch 0413	90044	
	0.0	ug/L	1.0	KD	N/A	04/10/199
Bromobenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3,5-Trimethylbenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2-Chlorotoluene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
4-Chlorotoluene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Tert-Butylbenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2,4-Trimethylbenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Sec-Butylbenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
P-Isopropyltoluene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3-Dichlorobenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,4-Dichlorobenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
N-Butylbenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dichlorobenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dibromo-3-Chloropropane Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2,4-Trichlorobenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Hexachlorobutadiene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Naphthalene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1.2,3-Trichlorobenzene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
s-1,4-Dichloro-2-Butene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
one Below RL	100	ug/L	1.0	KD	N/A	04/10/199
2-Butanone (MEK) Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2-Chloroethylvinyl Ether Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acrolein Below RL	100	ug/L	1.0	KD	N/A	04/10/199
Methyl Methacrylate Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
lodomethane Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Vinyl Acetate Below RL	50	ug/L	1.0	KD	N/A	04/10/199
Cis-1,4-Dichloro-2-Butene Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Methyl Tert-Butyl Ether Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199

4

HUNTER BARRACKS Project Name

Sampling Date/Time 04/02/1998 1	4:00			L	ab Samp	le ID N80	160005
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Date Prep	e of Analysis
3510/8270 SEMI (GC/MS) LIQUID				в	atch 0407	980003	
Phenol	Below RL	10	ug/L	1.0		4/08/1998	04/09/199
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0	ML (4/08/1998	04/09/199
hlorophenol	Below RL	10	ug/L	1.0	ML (4/08/1998	04/09/199
Dichlorobenzene	Below RL	10	ug/L	1.0	ML (4/08/1998	04/09/199
,4-Dichlorobenzene	Below RL	10	ug/L	1.0	ML (4/08/1998	04/09/199
1,2-Dichlorobenzene	Below RL	10	ug/L	1.0	ML (4/08/1998	04/09/199

Client Sample # TMW-8

10014000 ~

•

Sampling Date/Time 04/02/1998 14:	00			L	ab Sampl	e ID N80	160005
rep/Method المعالية معالية معالية معالية معالية معال	Result	RL	Units	Dilution Factor	Analyst Init,	Dat Prep	e of Analysis
3510/8270 SEMI (GC/MS) LIQUID				B	atch 04079	80003	
Bis(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
2-Methylphenol	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
4-Methylphenol	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
Hexachloroethane	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
Nitrobenzene	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
Isophorone	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
2-Nitrophenol	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML 0	4/08/1998	04/09/19
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0		4/08/1998	
2,4-Dichlorophenol	Below RL	10	ug/L	1.0		4/08/1998	04/09/19
1.2.4-Trichlorobenzene	Below RL	10	uo/i	1.0		4/08/1998	04/09/19

2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19:
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
1,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19:
Naphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Chloroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Chloro-3-Methylphenol	Below RL	10	ug/L	· 1.0	ML	04/08/1998	04/09/19
2-Methylnaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Hexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
6-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19:
,5-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Chloronaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Dimethyl Phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Acenaphthylene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,6-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
3-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Acenaphthene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/19
4-Nitrophenol	Below RL	50	ug/L	1.0	ML.	04/08/1998	04/09/19
Dibenzofuran	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
2,4-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Diethyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
Fluorene	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19!
4-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
4,6-Dinitro-2-methylphenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/19!
N-Nitrosodiphenylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19:
4-Bromophenyl phenyl ether	Below RL	10	ug/L	1.0	ML	04/08/1998	
Hexachlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Pentachlorophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	
Phenanthrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
thracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
-n-butyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19:

Client Sample # TMW-8

Sampling Date/Time 04/02/1998 14:00

Lab Sample ID N80160005

ap/Method				Dilution	160005 • of		
ilyte	Result	RL	Units	Factor	Analys Init.	rep	a or Analysi
3510/8270 SEMI (GC/MS) LIQUID				F	Batch 0407	980003	
Pyrene	Below RL	10	ug/L	1.0		04/08/1998	04/09/19
Butyl benzyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
3,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0		04/08/1998	
Benzo(a)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Bis(2-ethylhexyl) phthalate	Below RL	10	ug/L	1.0		04/08/1998	
Chrysene	Below RL	10	ug/L	1.0		04/08/1998	
Di-n-octyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(k)fluoranthene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(a)pyrene	Below RL	10	ug/L	1.0		04/08/1998	
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0		04/08/1998	
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(g,h,i)perylene	Below RL	10	ug/L	1.0			
Carbazole	Below RL	10	ug/L	1.0		04/08/1998 04/08/1998	
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0		04/08/1998	
Benzoic acid	Below RL	50	ug/L	1.0			
Benzyl alcohol	Below RL	20	ug/L	1.0		04/08/1998	
Benzidine	Below RL	20 80	-	1.0		04/08/1998 04/08/1998	
130/8260 VOC (GC/MS) LIQUID	Delow AL		ug/L				04/09/19
alorodifluoromethane	Below RL	40			atch 0413		
Chloromethane		10	ug/L	1.0	KD	N/A	04/10/19
Vinyl Chloride	Below RL Below DI	10	ug/L.	1.0	KD	N/A	04/10/19
Bromomethane	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/19
Chloroethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A .	04/10/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L.	1.0	KD	N/A	04/10/19
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD		04/10/19
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD		04/10/19
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Jomodichloromethane	Below RL	5.0	ug/L	1.0	KD		04/10/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19

į

Client Sample # TMW-8

Sampling Date/Time 04/02/1998 14:00

Lab Sample ID N80160005

v/Method				Dilution	ab Samp		te of
yte	Result	RL	Units	Factor	Analyst Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0413	980011	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	04/10/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
lsopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
`-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
opylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Fert-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
^D -Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
I,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
I,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
fexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
laphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
rans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acetone	Below RL	100	ug/L	1.0	KD	N/A	04/10/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
P-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
lein	Below RL	100	ug/L	1.0	KD	N/A	
thyi Methacrylate	Below RL	5.0	ug/L	1.0			04/10/199
odomethane	Below RL				KD	N/A	04/10/199
	Delow KL	5.0	ug/L	1.0	KD	N/A	04/10/19

Sampling	Date/Time	04/02/1998	14:00
----------	-----------	------------	-------

Lab Sample ID N80160005

эр/Method Ilyte	Result	RL	Units	Dilution Factor	Batch 04139800 KD N/A KD N/A KD N/A KD N/A Comparison Exact of the second		te of
		I \ ha				Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID							
	D . () D (
Vinyl Acetate	Below RL	50	ug/L	1.0			04/10/19
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0			04/10/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Project Name HUNTER BARRACKS							
Client Sample # TMW-9							
Sampling Date/Time 04/02/1998 14: Prep/Method	30				-		
Analyte	Result	RL	Units	Dilution Factor	-	Dat Prep	e of Analysi
3510/8270 SEMI (GC/MS) LIQUID				8	atch 0407	980003	
Phenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
2-Chlorophenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
1,3-Dichlorobenzene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
1 4-Dichlorobenzene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Dichlorobenzene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
പം(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
2-Methylphenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
4-Methylphenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Hexachloroethane	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Nitrobenzene	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Isophorone	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
2-Nitrophenol	Below RL	10	ug/L	1.0	ML C	04/08/1998	04/09/19
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML (04/08/1998	04/09/19
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML ()4/08/1998	04/09/19
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML ()4/08/1998	04/09/19
1,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0	ML C)4/08/1998	04/09/19
Naphthalene	Below RL	10	ug/L	1.0	ML (4/08/1998	04/09/19
4-Chloroaniline	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
4-Chloro-3-Methylphenol	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
2-Methylnaphthalene	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
Hexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
2,4,6-Trichlorophenol	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
2,4,5-Trichlorophenol	Below RL	.10	ug/L	1.0	ML C	4/08/1998	04/09/19
2-Chloronaphthalene	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
Nitroaniline	Below RL	10	ug/L	1.0	ML C	4/08/1998	04/09/19
nethyl Phthalate	Below RL	10	ug/L	1.0		4/08/1998	
Acenaphthylene	Below RL	10	ug/L	1.0			04/09/19
2,6-Dinitrotoluene	Below RL	10	ug/L	1.0			04/09/19

Client Sample # TMW-9

Sampling Date/Time 04/02/1998 14:30

Lab Sample ID N80160006

p/Method		·		Dilution	Analys	t Dat	e of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis
						·····	
3510/8270 SEMI (GC/MS) LIQUID				ŗ	Batch 040	7980003	
3-Nitroanillne	Below RL	10	ug/L	1.0	ML	04/08/1998	04/00/100
Acenaphthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
2,4-Dinitrophenol	Below RL	50	ug/L	1.0		04/08/1998	
4-Nitrophenol	Below RL	50	ug/L	1.0		04/08/1998	
Dibenzofuran	Below RL	10	ug/L	1.0		04/08/1998	
2,4-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Diethyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
4-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0		04/08/1998	
Fluorene	Below RL	10	ug/L	1.0		04/08/1998	
4-Nitroaniline	Below RL	10	ug/L	1.0		04/08/1998	
4,6-Dinitro-2-methylphenol	Below RL	50	ug/L.	1.0		04/08/1998	
N-Nitrosodiphenylamine	Below RL	10	ug/L	1.0		04/08/1998	
4-Bromophenyl phenyl ether	Below RL	10	ug/L	1.0		04/08/1998	
Hexachlorobenzene	Below RL	10	ug/L	1.0		04/08/1998	
Pentachlorophenol	Below RL	50	ug/L	1.0		04/08/1998	
Phenanthrene	Below RL	10	ug/L	1.0		04/08/1998	
Anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Di-π-butyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
ranthene	Below RL	10	ug/L	1.0		04/08/1998	
∋ne	Below RL	10	ug/L	1.0		04/08/1998	
Butyl benzyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
3,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0		04/08/1998	
Benzo(a)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Bis(2-ethylhexyl) phthalate	Below RL	10	ug/L	1.0		04/08/1998	
Chrysene	Below RL	10	ug/L	1.0		04/08/1998	
Di-n-octyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(k)fluoranthene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(a)pyrene	Below RL	10	ug/L	1.0		04/08/1998	
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0		04/08/1998	
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(g,h,i)perylene	Below RL	10	ug/L	1.0		04/08/1998	
Carbazole	Below RL	10	ug/L	1.0		04/08/1998	
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0		04/08/1998	
Benzoic acid	Below RL	50	ug/L	1.0		04/08/1998	
Benzyl alcohol	Below RL	20	ug/L	1.0		04/08/1998	
Benzidine	Below RL	80	ug/L	1.0		04/08/1998	
5030/8260 VOC (GC/MS) LIQUID			-3		atch 0413		04/00/100
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	AICH 0413		04/10/199
Chloromethane	Below RL	10	ug/L	1.0	KD		04/10/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD		04/10/199
nomethane	Below RL	10	ug/L	1.0	KD		04/10/199
Juloroethane	Below RL	5.0	ug/L	1.0	KD		04/10/199
Trichlorofluoromethane	Below RL	5.0 5.0	ug/L		KD		
	2010W 1/C	5.0	agre	1.0	ΝU	N/A	04/10/199

Client Sample # TMW-9

p/Method

Sampling Date/Time	04/02/1998	14:30
--------------------	------------	-------

Lab Sample ID N80160006 Dilution Analyst Date of Result RL Units

yte	Result	RL	Units	Factor	Analyst Init.	Da Prep	te of Analysis
						· · · · · · ·	
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0413	980011	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
omomethane	Below RL	5.0	ug/L	1.0	KD	N/A'	04/10/199
athyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3-Dichloropropane	Below RL	5.0		1.0	KD	N/A	
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199 04/10/199
1,2-Dibromoethane	Below RL	5.0	ug/L		KD		
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A N/A	04/10/199
Ethylbenzene	Below RL	5.0	ug/L	1.0 1.0	KD	N/A	04/10/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L ug/l	1.0	KD	N/A	04/10/199
Xylenes (Total)	Below RL	5.0 15	ug/L	1.0	KD	N/A	04/10/199 04/10/199
Styrene	Below RL	5.0	ug/L		KD	N/A	
Isopropylbenzene	Below RL		ug/L	1.0			04/10/199
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,2,2-Tetrachloroethane		5.0	ug/L	1.0	KD	N/A	04/10/199
	Below RL Below DI	5.0 5.0	ug/L	1.0	KD	N/A	04/10/199
1,2,3-Trichloropropane N-Propylbenzene	Below RL Bolow Bl	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromobenzene	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	04/10/199
	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1 3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Norotoluene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/199
. chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199

Client Sample # TMW-9

ı

Sampling Date/Time 04/02/1998 14:30

sp/Method				Dilution	Analyst	Da	ite of
lyte	Result	RL	Units	Factor	init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				r	Batch 04139	90044	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
P-isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Acetone	Below RL	100	u g/L	1.0	KD	N/A	04/10/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	04/10/19
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
methane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
,I Acetate	Below RL	5 0	ug/L	1.0	KD	N/A	04/10/19
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19

Project Name HUNTER BARRACKS

Sampling Date/Time 04/02/1998	15:00			1	_ab Sampl	e ID N8	0160007
Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis

3510/8270 SEMI (GC/MS) LIQUID				Batch 040	07980003
Phenol	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
2-Chlorophenol	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
1,3-Dichlorobenzene	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
1,4-Dichlorobenzene	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
1,2-Dichlorobenzene	Below RL	10	u g/L	1.0 ML	04/08/1998 04/09/199
Bis(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
2-Methylphenol	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
1 Methylphenol	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
itrosodi-n-propylamine	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
nexachloroethane	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199
Nitrobenzene	Below RL	10	ug/L	1.0 ML	04/08/1998 04/09/199

Client Sample # TMW-10

.

Sampling Date/Time 04/02/1998 15:00

Lab Sample ID N80160007

p/Method		· <u>-</u> ··		Dilution	Analys	e of	
lyte	Result	RL	Units	Factor	init.	Prep	Analysi
3510/8270 SEMI (GC/MS) LIQUID				ŧ	Batch 040	7980003	
Isophorone	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2-Nitrophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
1,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
Naphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
4-Chloroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
4-Chloro-3-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
2-Methylnaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
Hexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
2,4,6-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
2,4,5-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
2-Chloronaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
2-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dimethyl Phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
Acenaphthylene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	
roaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
Acenaphthene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1
2,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/1
I-Nitrophenol	Below RL	50	ug/L	1.0		04/08/1998	
Dibenzofuran	Below RL	10	ug/L	1.0		04/08/1998	
2,4-Dinitrotoluene	Below RL	10	ug/L	1.0		04/08/1998	
Diethyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0		04/08/1998	
luorene	Below RL	10	ug/L	1.0		04/08/1998	
I-Nitroaniline	Below RL	10	ug/L	1.0		04/08/1998	
I,6-Dinitro-2-methylphenol	Below RL	50	ug/L	1.0		04/08/1998	
N-Nitrosodiphenylamine	Below RL	10	ug/L	1.0		04/08/1998	
4-Bromophenyl phenyl ether	Below RL	10	ug/L	1.0		04/08/1998	
lexachlorobenzene	Below RL	10	ug/L	1.0		04/08/1998	
Pentachlorophénol	Below RL	50	ug/L	1.0		04/08/1998	
Phenanthrene	Below RL	10	ug/L	1.0		04/08/1998	
Anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Di-n-butyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
luoranthene	Below RL	10	ug/L	1.0		04/08/1998	
yrene	Below RL	10	ug/L	1.0		04/08/1998	
Butyl benzyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
3'-Dichlorobenzidine	Below RL	20	ug/L	1.0		04/08/1998	
zo(a)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
2(2-ethylhexyl) phthalate	Below RL	10		1.0		04/08/1998	
Chrysene			ug/L				
	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/1

o/Method				Dilution	Analys	t Date	of
yte	Result	RL	Units	Factor	init.	Prep	Analysis
3510/8270 SEMI (GC/MS) LIQUID					Batch 040		
Di-n-octyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(k)fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(a)pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0	ML.	04/08/1998	
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(g,h,i)perylene	Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/19
Carbazole	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Benzoic acid	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/19
Benzyl alcohol	Below RL	20	ug/L	1.0	ML	04/08/1998	04/09/1
Benzidine	Below RL	80	ug/L	1.0	ML	04/08/1998	04/09/1
5030/8260 VOC (GC/MS) LIQUID				E	Batch 041	3980011	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
lorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A *	04/10/1
Jichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Acrylonitrite	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1.1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dichloroethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
Benzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
Trichloroethene			-	1.0	KD	N/A	04/10/1
1,2-Dichloropropane	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromodichloromethane	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	04/10/1
Dibromomethane	Below RL	5.0	ug/L			N/A	04/10/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD		
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/

Cis-1,3-Dichloropropene iene ...ans-1,3-Dichloropropene 1,1,2-Trichloroethane 5.0

5.0

5.0

5.0

ug/L

ug/L

ug/L

ug/L

Below RL

Below RL

Below RL

Below RL

1.0

1.0

1.0

1.0

KD

KD

KD

KD

N/A

N/A

N/A

N/A

04/10/199

04/10/199

04/10/199

04/10/199

Client Sample # TMW-10

Sampling Date/Time 04/02/1998 15:00

Lab Sample ID N80160007

_

זאר אין		1.00		Dilution	Analyst		ate of
yte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				ŧ	Batch 0413	980011	
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	04/10/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199 04/10/199
1.2.4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD		
Hexachlorobutadiene	Below RL	5.0	ug/L			N/A	04/10/199
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2,3-Trichlorobenzene	Below RL	5.0 5.0		1.0	KD	N/A	04/10/199
Trans-1,4-Dichloro-2-Butene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/199
Acetone	Below RL	100	ug/L ug/l	1.0	KD	N/A	04/10/199
2-Butanone (MEK)	Below RL		ug/L	1.0	KD	N/A	04/10/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acrolein	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Methyl Methacrylate		100	ug/L	1.0	KD	N/A	04/10/199
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	04/10/199
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
**>thyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10 /199

Client Sample # TMW-11

(

Sampling Date/Time 04/02/1998 15:15

Lab Sample ID	N80160008
---------------	-----------

Result	RL	Units	Factor	init.	Prep	Analysis
			E	atch 040	7980003	
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19
		-	1.0	ML	04/08/1998	04/09/199
		ug/L	1.0	ML	04/08/1998	04/09/199
	10	ug/L	1.0	ML	04/08/1998	04/09/19
	10	ug/L	1.0	ML	04/08/1998	04/09/199
	10	ug/L	1.0	ML	04/08/1998	04/09/199
	10	ug/L	1.0	ML.	04/08/1998	04/09/199
	10	ug/L	1.0	ML	04/08/1998	04/09/199
	10	ug/L	1.0	ML	04/08/1998	04/09/199
	10	ug/L	1.0	ML	04/08/1998	04/09/199
	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML.	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0			
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Below RL	10	ug/L	1.0			
Below RL	10	ug/L	1.0			
Below RL	10	ug/L	1.0			
Below RL	10	ug/L	1.0			
Below RL	10					
Below RL	10					
Below RL	10	-				
Below RL	10					
Below RL	10	-				
Below RL						
Below RL						
Below RL		-				
Below RL						
Below RL						
Below RL		-				
		-				
		-				
		-				
	Below RL Below RL	Below RL 10 Be	Below RL 10 ug/L Below RL 10 ug/L B	Below RL 10 ug/L 1.0 Below RL 10 ug/L 1.0	Below RL 10 ug/L 1.0 ML Below RL 10 ug/L 1.0 ML </td <td>Below RL 10 ug/L 1.0 ML 04/08/1998 Below RL 10 ug/L 1.0 ML 04/08/1998</td>	Below RL 10 ug/L 1.0 ML 04/08/1998 Below RL 10 ug/L 1.0 ML 04/08/1998

HUNTER BARRACKS Project Name

Client Sample # TMW-11

15:15			L	ab Sample	e ID N80	0160008
Result	RL	Units	Dilution Factor	Analyst Init.	Dat Prep	te of Analysis
				Dilution	Dilution Analyst	Dilution Analyst Dat

Analysis

3510/8270 SEMI (GC/MS) LIQUID				B	atch 040	7980003	
Hexachlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Pentachlorophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	
Phenanthrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Anthracene	Below RL	10	ug/L	1.0	ML.	04/08/1998	
Di-n-butyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Butyl benzyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
3,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0	ML	04/08/1998	
Benzo(a)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Bis(2-ethylhexyl) phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Chrysene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Di-n-octyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(k)fluoranthene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzo(a)pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0	ML	04/08/1998	
o(g,h,i)perylene	Below RL	10	ug/L	1.0	ML	04/08/1998	
Jazole	Below RL	10	ug/L	1.0	ML	04/08/1998 04/08/1998	
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	
Benzoic acid	Below RL	50	ug/L	1.0	ML	04/08/1998	
Benzyl alcohol	Below RL	20	ug/L	1.0	ML.	04/08/1998	
Benzidine	Below RL	80	ug/L	1.0	ML		04/05/155
5030/8260 VOC (GC/MS) LIQUID						13980011 N/A	04/10/199
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD KD	N/A	04/10/195
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
Vinyi Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/199
Bromomethane	Below RL	10	ug/L	1.0 1.0	KD	N/A	04/10/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/198
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L ug/L	1.0	KD	N/A	04/10/199
Chloroform	Below RL Below Bl	5.0 5.0	ug/∟ ug/L	1.0	KD	N/A	04/10/198
Cmochloromethane	Below RL Below Bl	5.0	ug/L	1.0		N/A	04/10/199
-Trichloroethane	Below RL Below Bl	5.0 5.0	ug/∟ ug/L	1.0		N/A	04/10/199
., -Dichloropropene	Below RL Bolow Bl	5.0 5.0	ug/L	1.0		N/A	04/10/199
Carbon Tetrachloride	Below RL	5.0	uyic	1.0			

v/Method				Dilution	Analyst		te of
lyte	Result	RL	Units	Factor	init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				F	atch 04139	80011	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	04/10/1
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
Ethylbenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/1
',2-Tetrachloroethane	Below RL	5.0 15	ug/L ug/L	1.0	KD	N/A	04/10/
enes (Total)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/1
Styrene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/
Isopropylbenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	04/10/
Bromoform		5.0 5.0	ug/L	1.0	KD	N/A	04/10/
1,1,2,2-Tetrachloroethane	Below RL			1.0	KD	N/A	04/10/
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
N-Propylbenzene	Below RL	5.0	ug/L				04/10/
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A N/A	04/10/
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD		04/10/
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ [·] 04/10/ [·]
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ 04/10/
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
1,4-Dichlorobenzene	Below RL	5.0	ug/L.	1.0	KD	N/A	04/10/
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
Lexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
hthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
.,z,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/
Trans-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/

Client Sample # TMW-11

Sampling Date/Time 04/02/1998 15	:15			Lab Sample ID N8016			
v/Method			·	Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis
				,	3atch 04139	20044	
5030/8260 VOC (GC/MS) LIQUID	Defense Of	100		1.0	KD	N/A	04/10/199
Acetone	Below RL	100	ug/L				04/10/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	04/10/19
Methyl Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	04/10/19
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19

Project Name HUNTER BARRACKS

Sampling Date/Time 04/02/199	8 15:45		Lab Samp	ple ID N80160009	}
Prep/Method		Dilutior	n Analysi	t Date of	—

Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	lnit.	Prep	Analysis
		·					

10/8270 SEMI (GC/MS) LIQUID				Bat	ch 040	7980003	
r "ienol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Bis(2-Chloroethyl) Ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Chlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,3-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,4-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
1,2-Dichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Bis(2-chloroisopropyl) ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
4-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
N-Nitrosodi-n-propylamine	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Hexachloroethane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/19 9
Nitrobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Isophorone	Below RL	10	ug/L	1.0	ML	0 4/08/1998	04/09/199
2-Nitrophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dimethylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Bis(2-chloroethoxy)methane	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	
1,2,4-Trichlorobenzene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Naphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
4-Chloroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Hexachlorobutadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
hloro-3-Methylphenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
ethylnaphthalene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Hexachlorocyclopentadiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4,6-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199

Client Sample # TMW-12

Sampling Date/Time	04/02/1998	15:45
--------------------	------------	-------

v/Method				Dilution	Analyst		
yte	Result	RL	Units	Factor	Init.	Prep	Analysis
3510/8270 SEMI (GC/MS) LIQUID				E	Batch 0407	980003	
2,4,5-Trichlorophenol	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Chloronaphthaiene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Dimethyl Phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Acenaphthylene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,6-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
3-Nitroanitine	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Acenaphthene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dinitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/199
4-Nitrophenol	Below RL	50	ug/L	1.0	ML	04/08/1998	04/09/199
Dibenzofuran	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
2,4-Dinitrotoluene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Diethyl phthalate	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
4-Chlorophenyl phenyl ether	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
Fluorene	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
4-Nitroaniline	Below RL	10	ug/L	1.0	ML	04/08/1998	04/09/199
4,6-Dinitro-2-methylphenol	Below RL	50	ug/L.	1.0	ML.	04/08/1998	04/09/199
N-Nitrosodiphenylamine	Below RL	10	ug/L	1.0		04/08/1998	04/09/199
omophenyl phenyl ether	Below RL	10	ug/L	1.0		04/08/1998	04/09/199
Achlorobenzene	Below RL	10	ug/L	1.0		04/08/1998	
Pentachlorophenol	Below RL	50	ug/L	1.0		04/08/1998	
Phenanthrene	Below RL	10	ug/L	1.0		04/08/1998	
Anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Di-n-butyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
Fluoranthene	Below RL	10	ug/L.	1.0		04/08/1998	
Pyrene	Below RL	10	ug/L	1.0		04/08/1998	
Butyl benzyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
3,3'-Dichlorobenzidine	Below RL	20	ug/L	1.0		04/08/1998	
	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(a)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Bis(2-ethylhexyl) phthalate	Below RL	10	-	1.0		04/08/1998	
Chrysene			ug/L ug/l	1.0		04/08/1998	
Di-n-octyl phthalate	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(b)fluoranthene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(k)fluoranthene	Below RL	10	ug/L				04/09/199
Benzo(a)pyrene	Below RL	10	ug/L	1.0			04/09/199
Indeno(1,2,3-cd)pyrene	Below RL	10	ug/L	1.0			
Dibenzo(a,h)anthracene	Below RL	10	ug/L	1.0		04/08/1998	
Benzo(g,h,i)perylene	Below RL	10	ug/L	1.0		04/08/1998	
Carbazole	Below RL	10	ug/L	1.0		04/08/1998	
N-Nitrosodimethylamine	Below RL	10	ug/L	1.0		04/08/1998	
Renzoic acid	Below RL	50	ug/L.	1.0		04/08/1998	
yl alcohol	Below RL	20	ug/L	1.0		04/08/1998	
Juzidine	Below RL	80	ug/L	1.0	ML Batch 0413		04/09/199

5030/8260 VOC (GC/MS) LIQUID

Lab Sample ID N80160009

Client Sample # TMW-12

Sampling Date/Time 04/02/		Lab Sample ID N80160009					
o/Method .lyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	te of Analysis
				· · · · · ·			

5030/8260 VOC (GC/MS) LIQUID					Batch 041	3980011	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	04/10/199
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	04/10/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Acrylonitrile	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1-1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10 /199
non Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9
Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/ 199
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Dibromomethane	Below RL	5.0	ug/L	1.0		N/A	04/10/199
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0		N/A	04/10/199
2-Hexanone	Below RL	10	ug/L	1.0		N/A	04/10/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
Toluene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0		N/A	04/10/199
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Tetrachloroethene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
Chlorodibromomethane	Below RL	5.0	ug/L	1.0		N/A	04/10/199
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0		N/A	04/10/199
Chlorobenzene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
Ethylbenzene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	04/10/199
Xylenes (Total)	Below RL	15	ug/L	1.0		N/A	04/10/199
Styrene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
inpropylbenzene	Below RL	5.0	ug/L	1.0		N/A	04/10/199
moform	Below RL	5.0	ug/L	1.0		N/A	04/10/199
1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	04/10/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199

{

Client Sample # TMW-12

Sampling	Date/Time	04/02/1998	15:45
----------	-----------	------------	-------

Sampling Date/Time 04/02/1998 15			ple ID N80160009				
n/Method				Dilution	Analyst		ite of
iyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0413	980011	
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19 9
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/199
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
1 2.3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
3-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
. Jone	Below RL	100	ug/L	1.0	KD	N/A	04/10/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Acrolein	Below RL	100	ug/L	1.0	KD	N/A	04/10/19
Methyi Methacrylate	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
lodomethane	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19
Vinyl Acetate	Below RL	50	ug/L	1.0	KD	N/A	04/10/19
Cis-1,4-Dichloro-2-Butene	Below RL	5.0	ug/L.	1.0	KD	N/A	04/10/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	04/10/19

RL = Reporting Limit INIT. = (*) Analysis performed by another HydroLogic Laboratory, (#) Analysis performed by subcontracted Laboratory

Certifying Scientist

ana

Organics and Inorganics in Wastewater, Solids, and Wastes

NC-DEHNR 441, SC-DHEC 98013, GA -DNR-806 UT-DOH E-228 (UST), FL-DEP 940134 HRS E87194 (Water) HRS 87368 (Drinking Water), A2LA:0594-01,

EPA ID **EPA Reg Waste US Army Corps of**

GA-00033 GA-0001011008 **Engineers** Validation

These result(s) relate only to the item(s) tested.

This report shall not be reproduced, except in full, without the written approval of HydroLogic Inc.

QA/QC REPORT

Ledger # Analyzed by QA/QC Batch ID MS/MSD Ref ID

٤

.

N801600 ML 0407980003 **Prep Method** 3510 Prepared by JJM **Analysis Method 625** Matrix LIQUID

NQ8097010 MB	Value	RL Units
Phenoi	Below RL	10.0 ug/L
Bis(2-Chloroethyl) Ether	Below RL	10.0 ug/L
2-Chlorophenol	Below RL	10.0 ug/L
1,3-Dichlorobenzene	Below RL	10.0 ug/L
1,4-Dichlorobenzene	Below RL	10.0 ug/L
1,2-Dichlorobenzene	Below RL	10.0 ug/L
Bis(2-Chloroisopropyl) Ether	Below RL	10.0 ug/L
N-Nitrosodi-N-Propylamine	Below RL	10.0 ug/L
Hexachloroethane	Below RL	2.00 ug/L
Nitrobenzene	Below RL	10.0 ug/L
Isophorone	Below RL	10.0 ug/L
2-Nitrophenol	Below RL	50.0 ug/L
2,4-Dimethylphenoi	Below RL	10.0 ug/L
Bis(2-Chloroethoxy)Methane	Below RL	10.0 ug/L
2,4-Dichlorophenol	Below RL	10.0 ug/L
1,2,4-Trichlorobenzene	Below RL	10.0 ug/L
Naphthalene	Below RL	10.0 ug/L
Hexachlorobutadiene	Below RL	10.0 ug/L
4-Chloro-3-Methylphenol	Below RL	10.0 ug/L
5-Trichlorophenol	Below RL	10.0 ug/L
aloronaphthalene	Below RL	10.0 ug/L
Dimethyl Phthalate	Below RL	10.0 ug/L
Acenaphthylene	Below RL	10.0 ug/L
2,6-Dinitrotoluene	Below RL	20.0 ug/L
Acenaphthene	Below RL	10.0 ug/L
2,4-Dinitrophenol	Below RL	50.0 ug/L
4-Nitrophenol	Below RL	50.0 ug/L
2,4-Dinitrotoluene	Below RL	20.0 ug/L
Diethyl Phthalate	Below RL	10.0 ug/L
4-Chlorophenyl Phenyl Ether	Below RL	10.0 ug/L
Fluorene	Below RL	10.0 ug/L
4,6-Dinitro-2-Methylphenoi	Below RL	50.0 ug/L
4-Bromophenyl Phenyl Ether	Below RL	10.0 ug/L
Hexachlorobenzene	Below RL	10.0 ug/L
Pentachlorophenol	Below RL	20.0 ug/L
Phenanthrene	Below RL	10.0 ug/L
Anthracene	Below RL	10.0 ug/L
Di-N-Butyl Phthalate	Below RL	10.0 ug/L
Fluoranthene	Below RL	10.0 ug/L
Pyrene	Below RL	10.0 ug/L
Butyl Benzyl Phthalate	Below RL	10.0 ug/L
3,3'-Dichlorobenzidine	Below RL	20.0 ug/L
Benz(A)Anthracene	Below RL	10.0 ug/L
Bis(2-Ethylhexyl) Phthalate	Below RL	10.0 ug/L
`rysene	Below RL	10.0 ug/L
N-Octyl Phthalate	Below RL	10.0 ug/L

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

* *				· .	······································		
NQ8097010 MB	Value	RL	Units				
Benzo(B)Fluoranthene	Below RL	10.0	ug/L			·····	
Benzo(K)Fluoranthene	Below RL	10.0	ug/L	1			
Benzo(A)Pyrene	Below RL	10.0	ug/L	1			
'ano(1,2,3-CD)Pyrene	Below RL	10.0	ug/L	1			
vz(A,H)Anthracene	Below RL	10.0	ug/L	1			
zo(G,H,I)Perylene	Below RL	10.0	ug/L	1			
Benzidine	Below RL	80.0	ug/L	1			
NQ8097008 LCS		Spike			Control		
	Value	Value	Units	REC (%)	Limits (%)		
Phenol	30.9	100	ug/L	30.9	5-112		
2-Chlorophenoi	69.8	100	ug/L	69.8	23-134		
1,4-Dichlorobenzene	31.9	50.0	ug/L	63.8	20-124		
N-Nitrosodi-N-Propylamine	37.7	50.0	ug/L	75.4	0-230		
1,2,4-Trichlorobenzene	35.0	50.0	ug/L	70.0	44-142		
4-Chloro-3-Methylphenol	77.5	100	ug/L	77.5	22-147		
Acenaphthene	42.0	50.0	ug/L	84.0	47-145		
4-Nitrophenol	24.3	100	ug/L	24.3	0-132		
2,4-Dinitrotoluene	50.9	50.0	ug/L	102	39-139		
Pentachlorophenol	90.6	100	ug/L	90.6	14-176		
Pyrene	45.5	50.0	ug/L	91.0	52-115		
NQ8097009 LCSD		Spike			Control		RPD
	Value	Value	Units	REC (%)	Limits (%)	RPD	Limits
Phenol	20.7	100	ug/L	20.7	5-112	39.5 *	20
2-Chlorophenol	62.7	100	ug/L	62.7	23-134	10.7	20
1,4-Dichlorobenzene	31.4	50.0	ug/L	62.8	20-124	1.58	20
N-Nitrosodi-N-Propylamine	35.5	50.0	ug/L	71.0	0-230	6.01	20
1,2,4-Trichlorobenzene	35.0	50.0	ug/L	70.0	44-142	0.0	20
4-Chloro-3-Methylphenol	72.2	100	ug/L	72.2	22-147	7.08	20
Acenaphthene	40.5	50.0	ug/L	81.0	47-145	3.64	20
trophenol	15.6	100	ug/L	15.6	0-132	43.6 *	20
Dinitrotoluene	49.3	50.0	ug/L	98.6	39-139	3,19	20.
Pentachlorophenol	88.7	100	ug/L	88.7	14-176	2.12	20.
Pyrene							

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

HydroLogic, Inc. Ledger N801600 Batch 0407980003

N80160001 S	URR	Value	Spike	DL	Units	REC(%)	Limits(%)
Phenol-dS	······································	31.7	100	1.00	ug/L	31.7	1- 88
Nitrobenzene-d5		23.2	100	1.00	ug/L	23.2	1- 86
2-Fluorobiphenyl		35.8	50.0	1.00	ug/L	71.6	15-129
Tribromophenol		39.6	50.0	1.00	ug/L	79.2	22-122
nenyl-D14	· · · · · · · · · · · · · · · · · · ·	100	100	1.00	ug/L	100	14-134
		47.5	50.0	1.00	ug/L	95.0	14-129
	URR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol		21.0	100	1.00	ug/L	21.0	1-88
Phenol-d5		16.0	100	1.00	ug/L	16.0	1- 86
Nitrobenzene-d5		19.7	50.0	1.00	ug/L	39.4	15-129
2-Fluorobiphenyl		19.9	50.0	1.00	ug/L	39.8	22-122
2,4,6-Tribromophenol		54.5	100	1.00	ug/L	54.5	14-134
Terphenyl-D14		18.9	50.0	1.00	ug/L	37.8	14-129
N80160003 S	URR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol		25.0	100	1.00	ug/L	25.0	1- 88
Phenol-d5		18.3	100	1.00	ug/L	18.3	1- 86
Nitrobenzene-d5		29.9	50.0	1.00	ug/L	59.8	15-129
2-Fluorobiphenyl		32.0	50.0	1.00	ug/L	64.0	22-122
2,4,6-Tribromophenol		81.4	100	1.00	ug/L	81.4	14-134
Terphenyl-D14		38.9	50.0	1.00	ug/L	77.8	14-129
N80160004 S	URR	Value	Spike	DL	Units	REC (%)	Limits(%)
2-Fluorophenol		25.7	100	1.00	ug/L	25.7	1- 88
Phenol-d5		18.2	100	1.00	ug/L,	18.2	1- 86
Nitrobenzene-d5		29.5	50.0	1.00	ug/L	59.0	15-129
2-Fluorobiphenyl		32.0	50.0	1.00	ug/L	64.0	22-122
2,4,6-Tribromophenol		79.4	100	1.00	ug/L	79.4	14-134
Terphenyl-D14		36.6	50.0	1.00	ug/L	73.2	14-129
160005 S	URR	Value	Spike	DL	Units	REC (%)	Limits(%)
2-Fluorophenoi		24.5	100	1.00	ug/L	24.5	1- 88
Phenol-d5		17.0	100	1.00	ug/L	17.0	1- 86
Nitrobenzene-d5		29.6	50.0	1.00	ug/L	59.2	15-129
2-Fluorobiphenyl		32.1	50.0	1.00	ug/L	64.2	22-122
2,4,6-Tribromophenol		79.6	100	1.00	ug/L	79.6	14-134
Ferphenyl-D14		36.1	50,0	1.00	ug/L	72.2	14-129
N80160006 SI	JRR	Value	Spike	DL	Units	REC (%)	Limits(%)
-Fluorophenol		24.1	100	1.00	ug/L	24.1	1- 88
Phenol-d5		16.9	100	1.00	ug/L	16.9	1- 86
Nitrobenzene-d5		31.6	50.0	1.00	ug/L	63.2	15-129
-Fluorobiphenyl		33.3	50.0	1.00	ug/L	66.6	22-122
4,6-Tribromophenol		76.0	100	1.00	ug/L	76.0	14-134
Cerphenyl-D14		39.0	50.0	1.00	ug/L	78.0	14-129
180160007 SI	JRR						
-Fluorophenol	/1/2/	Value	Spike	DL	Units	REC (%)	Limits(%)
henol-d5		27.7	100	1.00	ug/L	27.7	1- 88
	·	19.0	100	1.00	ug/L	19.0	1-86
Vitrobenzene-d5		33.9	50.0	1.00	ug/L	67.8	15-129
-Fluorobiphenyl		35.5	50.0	1.00	ug/L	71.0	22-122
4,6-Tribromophenol		85.2	100	1.00	ug/L	85.2	14-134

1 1

N80160008 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol Phenol-d5	29.9	100	1.00	ug/L	29.9	1- 88
	21.0	100	1.00	ug/L	21.0	1- 86
Nitrobenzene-d5	36.3	50.0	1.00	ug/L	72.6	15-129
2-Fluorobiphenyl	38.2	50,0	1.00	ug/L	76.4	22-122
Tribromophenol	94.5	100	1.00	ug/L	94.5	14-134
enyl-D14	44.9	50.0	1.00	ug/L	89.8	14-129
N80160009 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
2-Fluorophenol	28.5	100	1.00	ug/L	28.5	1-88
Phenol-d5	20.6	100	1.00	ug/L	20.6	1-86
Nitrobenzene-d5	32.7	50.0	00.1	ug/L	65.4	15-129
2-Fluorobiphenyl	34.4	50.0	1.00	ug/L	68.8	22-122
2,4,6-Tribromophenol	86.5	100	1.00	ug/L	86.5	14-134
Terphenyl-D14	37.6	50.0	1.00	ug/L	75.2	14-129
NQ8097008 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	41.0	100	1.00	ug/L	41.0	1- 88
Phenol-D5	29.9	100	1.00	ug/L	29.9	1- 86
Nitrobenzene-D5	36.9	50.0	1.00	ug/L	73.8	15-129
2-Fluorobiphenyl	38.2	50.0	1.00	ug/L	76.4	22-122
2,4,6-Tribromophenol	95.8	100	1.00	ug/L	95.8	14-134
Terphenyl-D14	42.8	50.0	1.00	ug/L	85.6	14-129
NQ8097009 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	29.2	100	1.00	ug/L	29.2	1- 88
Phenol-D5	19.8	100	1.00	ug/L	19.8	1- 86
Nitrobenzene-D5	34.8	50.0	1.00	ug/L	69.6	15-129
2-Fluorobiphenyl	36.3	50.0	1.00	ug/L	72.6	22-122
2,4,6-Tribromophenol	94.8	100	1.00	ug/L	94.8	14-134
Terphenyl-D14	44.1	50.0	1.00	ug/L	88.2	14-129
097010 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
2-Fluorophenol	61.1	100	1.00	ug/L	61.1	1- 88
Phenol-D5	71.1	100	1.00	ug/L	71.1	1- 86
Nitrobenzene-D5	34.0	50.0	1.00	ug/L	68.0	15-129
2-Fluorobiphenyl	37.8	50.0	1.00	ug/L	75.6	22-122
2,4,6-Tribromophenol	95.6	100	1.00	ug/L	95.6	14-134
Ferphenyl-D14	39.1	50.0	1.00	ug/L	78.2	14-129

1

Case Narrative N801600

Date: Client: April 13, 1998 USACE Savannah District

Analysis	QC Situation	Comments
Semi-Volatile Organics by GC/MS Batch: 0407980003	Sufficient sample volume was not available for the preparation of a batch MS and MSD.	Batch control was based on the acceptable LCS and LCSD spike recoveries with the following qualifier: The LCS/LCSD spike recovery RPDs for Phenol and 4-Nitrophenol exceeded the established control limits. Batch control for these compounds was based on the acceptable individual LCS and LCSD spike recoveries.
Volatile Organics by GC/MS Batch: 0413980011	There were positive detections for Methylene Chloride and Naphthalene in the batch Method Blank. These were the likely results of laboratory contamination.	No samples from this project had any detections above the RLs for the noted compounds, therefore, the contamination did not impact the samples and the results were accepted.
	The LCS spike recovery for 1,1,- Dichloroethene exceeded the established control limits.	This compound was 2% above the established control limits and should not have a significant impact on the data quality.
	The LCS surrogate recovery for 4-BFB exceeded the established control limits by 1%.	As noted above, this high recovery should not have a significant impact on the data quality.

QA/QC REPORT

MS/MSD Ref ID	N80160009
QA/QC Batch ID	0413980011
Analyzed by	KD
Ledger #	N801600

,

. . . I

p,

Prep Method 5030 Prepared by KD Analysis Method 8260 Matrix LIQUID

NQ8103041 MB	Value	RL	Units
Dichlorodifluoromethane	Below RL	10.0	ug/L
Chloromethane	Below RL	10.0	ug/L
Vinyl Chloride	Below RL	2.00	ug/L
Bromomethane	Below RL	10.0	ug/L
Chloroethane	Below RL	5.00	ug/L
Trichlorofluoromethane	Below RL	5.00	ug/L
1,1-Dichloroethene	Below RL	5.00	ug/L
Methylene Chloride	8.50	5.00	ug/L
Carbon Disulfide	Below RL	5,00	ug/L
Acrylonitrile	Below RL	50.0	ug/L
Trans-1,2-Dichloroethene	Below RL	5.00	ug/L
1,1-Dichloroethane	Below RL	5.00	ug/L
2,2-Dichloropropane	Below RL	5.00	ug/L ug/L
Cis-1,2-Dichloroethene	Below RL	5.00	-
Chloroform	<u> </u>		ug/L
Bromochloromethane	Below RL	5.00	ug/L
1,1,1-Trichloroethane	Below RL		ug/L
	Below RL		ug/L
1, I-Dichloropropene	Below RL		ug/L
Carbon Tetrachloride	Below RL		ug/L
Dichloroethane	Below RL		ug/L
zene	Below RL	5.00	ug/L
Trichloroethene	Below RL	5.00	ug/L
1,2-Dichloropropane	Below RL	5.00	ug/L
Bromodichloromethane	Below RL		ug/L
Dibromomethane	Below RL		ug/L
4-Methyl-2-Pentanone (MIBK)	Below RL		ug/L
2-Hexanone	Below RL		ug/L
Cis-1,3-Dichloropropene	Below RL	-	ug/L
Toluene	Below RL		ug/L
Trans-1,3-Dichloropropene	Below RL		ug/L
1,1,2-Trichloroethane	Below RL		ug/L ug/L
1,3-Dichloropropane	Below RL		ug/L ug/L
Tetrachloroethene	Below RL		_
Chlorodibromomethane			ug/L
1,2-Dibromoethane	Below RL		ug/L
Chlorobenzene	Below RL	5.00	
	Below RL	5.00	
Ethylbenzene	Below RL	5.00	-
1,1,1,2-Tetrachloroethane	Below RL	5.00	
Xylenes (Total)	Below RL	15.0	-
Styrene	Below RL	5.00	
Isopropylbenzene	Below RL	5.00	ug/L
Bromoform	Below RL	5.00	ug/L
1,1,2,2-Tetrachloroethane	Below RL	5.00	ug/L
1,2,3-Trichloropropane	Below RL	5.00	-
ropylbenzene	Below RL	5.00	
mobenzene	Below RL	5.00	-
		5.00	-b. M

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

HydroLogic, Inc. Ledger N801600

NQ8103041 MB			57 _ 7 •	<u> </u>			
1,3,5-Trimethylbenzene	Value	RL	Units				
2-Chlorotohuene	Below RL	5.00	, *				
4-Chlorotoluene	Below RL	5.00					
T-Butylbenzene	Below RL	5.00	<u> </u>	4			
-Trimethylbenzene	Below RL	5.00		4			
Butylbenzene	Below RL	5.00		4			
P-Isopropyltoluene	Below RL	5.00	l Ý	4			
1,3-Dichlorobenzene	Below RL	5.00		4			
1,4-Dichlorobenzene	Below RL	5.00	0 ==	4			
N-Butylbenzene	Below RL	5.00		_			
1,2-Dichlorobenzene	Below RL	5.00		_			
1,2-Dibromo-3-Chloropropane	Betow RL	5.00		1			
1,2,4-Trichlorobenzene	Below RL	5.00		1			
Hexachlorobutadiene	Below RL	5.00		4			
Naphthalene	Below RL	5.00		4			
1,2,3-Trichlorobenzene	5.60	5,00	Ģ	1			
Frans-1,4-Dichloro-2-Butene	Below RL	5.00	0	4			
Trans-1,4-Dichloro-2-Butene	Below RL	10.0	ug/L	1			
	Below RL	100	ug/L	1			
t-Butanone (MEK)	Below RL	10.0	ug/L	1			
-Chloroethylvinyl Ether	Below RL	5.00	ug/L]			
Aethyl Tert-Butyl Ether	Below RL	5.00	ug/L	7			
Acrolein	Below RL	100	ug/L	7			
Aethyl methacrylate	Below RL	5.00	ug/L	1			
odomethane	Below RL	5.00	ug/L	1			
/inyl Acetate	Below RL	10.0	ug/L	1			
is-1,4-Dichloro-2-Butene	Below RL	5.00	ug/L	1			
NQ8103042 MS	Value	Spike Value	Units	REC (%)	Control Limits (%)		
,1-Dichloroethene	51.6	50.0	ug/L	103			
zene	50.0	50.0	ug/L	100	86-129		
hloroethene	45.1		ug/L	90.2	86-129		
oluene	46.9	50.0	ug/L	90.2	86-129		
hlorobenzene	46.6	50.0	ug/L	93.8	86-129 86-129		
···			<u> </u>	1			
NQ8103043 MSD	Value	Spike	flni+-	000/01	Control		RPD
1-Dichloroethene	48.9	Value	Units	REC (%)	Limits (%)	RPD	Limits
enzene		50.0	ug/L	97.8	80-119	5.37	7.2
richloroethene	48.2	50.0	ug/L	96.4	82-124	3.67	5.8
oluene	43.8		ug/L	87.6	75-120	2.92	7.3
hiorobenzene	45.4		ug/L	90.8	71-123	3.25	7.2
	40,4		ug/L	90.8	79-119	2.61	6.2
Q8103040 LCS	Value	Spike Value	Units	REC(%)	Control Limits (%)		
1-Dichloroethene	60.3	50.0	ug/L	121 *	80-119		
enzene	57.1	50,0	ug/L	114	82-124		
richloroethene	51.4	50.0	ug/L	103	75-120		
oluene	52.0		ug/L	104	71-123		
hlorobenzene	54.01	50.0 1	ug/L	104	/1-123		

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS : Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N80160001 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	51.1	50.0	1.00	ug/L	102	88-110
1,2-Dichloroethane-D4	50.3	50.0	1.00	ug/L	101	76-114
4-Bromotluorobenzene	52.3	50.0	1.00	ug/L	105	86-115
M80160002 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
ne-D8	51.6	50.0	1.00	ug/L	103	88-110
Dichloroethane-D4	49.8	50,0	1.00	ug/L	99.6	76-114
4-Bromofluorobenzene	50.1	50.0	1.00	ug/L	100	86-115
N80160003 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	51.2	50.0	1.00	ug/L	102	88-110
1,2-Dichloroethane-D4	51.3	50.0	1.00	ug/L	103	76-114
4-Bromofluorobenzene	50.9	50.0	1.00	ug/L	102	86-115
N80160004 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Foluene-D8	51.3	50.0	1.00	ug/L	103	88-110
,2-Dichloroethane-D4	50.9	50.0	1.00	ug/L	103	76-114
Bromofluorobenzene	49.6	50.0	1.00	ug/L	99.2	86-115
180160005 SURR	Value	Spike	DL	Units		
°oluene-D8	51.3	50.0	1,00	Units ug/L	REC (%)	Limits(%)
,2-Dichloroethane-D4	50.5	50.0	1.00	ug/L ug/L	103	88-110 76-114
-Bromofluorobenzene	49.7	50.0	1.00	ug/L	99.4	86-115
180160006 SURR	Value	Spike	DL	<u>. </u>		
'oluene-D8	50,7	50.0	1.00	Units ug/L	REC (%)	Limits(%)
,2-Dichloroethane-D4	49.6	50.0	1.00	ug/L	99.2	88-110
-Bromofluorobenzene	49.6	50.0	1.00	ug/L	99.2	76-114 86-115
180160007 SURR	Value	Spike	DL	Units	REC (%)	
'oluene-D8	51.3	50.0	1.00	ug/L	103	Limits(%) 88-110
Dichloroethane-D4	51.9	50.0	1,00	ug/L	105	· 76-114
mofluorobenzene	50.3	50.0	1.00	ug/L	104	86-115
80160008 SURR	Value	 Spike	DL	Units	REC (%)	Limits(%)
oluene-D8	51.3	50,0	1.00	ug/L	103	88-110
2-Dichloroethane-D4	52.2	50.0	1.00	2	105	76-114
Bromofluorobenzene	50.1	50.0	1.00	ug/L	100	86-115
80160009 SURR	Value	Spike	DL	Units	REC (%)	
oluene-D8	51.5	50.0	1.00	ug/L	103	Limits(%) 88-110
2-Dichloroethane-D4	50.4	50.0	1.00	ug/L	103	76-114
Bromofluorobenzene	49.7	50.0	1.00	ug/L ug/L	99.4	86-115
Q8103040 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
oluene-D8	51.4	50.0	1.00	ug/L	103	96-106
2-Dichloroethane-D4	50,1	50,0	1.00	ug/L	100	92-112
Bromofluorobenzene	52.8	50.0	1.00	ug/L	106 *	90-105
Q8103041 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
oluene-D8	51.6	50.0	1.00	ug/L	103	88-110
2-Dichloroethane-D4	51.4	50.0	1.00	ug/L	103	76-114
Bromotluorobenzene	49.2	50.0	1.00	ug/L	98.4	86-115
Q8103042 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
oluene-D8	51.4	50.0	1.00	ug/L	103	86-129
2-Dichloroethane-D4	52,4	50.0	1.00	ug/L	105	86-129
Bromofluorobenzene	50.2	50.0	1.00	ug/L	100	86-129

NQ810'304'3 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluere D8	51.3	50.0	1.00	ug/L	103	96-106
1,2-Dichloroethane-D4	52.0	50.0	1,00	ug/L	104	92-112
4-Bromotluorobenzene	50.1	50.0	1.00	ug/L	100	90-105

.

i ,	A d	NEU	うちろう	، ~		
Relinquished By: Relinquished B Relinquishe	TUMUD-11 TUMUD-17 COMMENTS:	(mw-1) (mw-1)	TMW-7	Sample ID	Report Address: ID IU Solu GA $3/4$ Aun: K/AC $3/4$ Phone No.: $9/2$ -652- Fax No:: $9/2$ -652- Fax No:: $9/2$ -652- TURNAROUND TIME 24 Hours 48 Hours 325 Days 10 Days	stod
	4/2/5/	4/2/	4/2	Date 4/2/	5/1571 5:3/1	Liem Highwa IN 37129 6805
		200		100 Time	Aun: Hay Sampled By: DO. No: State Samples Coll	
Date Date	2 A	a a a	1 and 1	Grab	Alln: Harry W Sampled By: FHS BO. No: Collected State Samples Collected	1491 Twilight Trail Frankfort, KY 40601 (502) 223-0251 FAX (502) 875-8016
L (You Time		P Z Z		h Matrix	G D D	ight Trail 40601 51 51 52-8016
	44	244	-4-4-4	A A A	A alt	(910) 7 FMX (9
Received By: Received By: Received By: Received By:	XX	XXX	< x x >	X X M M	4	HTUKU D 2003 North File Street Lumberton, NC 28358 (910) 738-6190 FAX (910) 671-8837 FAX (910) 671-8837
AN				Y X C	SZ ZO	
						UKULUUUUU, 145 S Bidg. 2848 nth Pine Street Charlotte. NC 28338 190 571-8837 FAX (704) 392-9073 571-8857 FAX (704) 392-9073 Charlotte. NC 28208 Charlotte. NC 28208 190 571-8857 FAX (704) 392-9073 REQU
						1 , 2849 28208 28208 28073 29073
						J. INU- 5. 2848 D 2500 Gateway Centre 12.8208 Monfisville, NC 27560 2.8073 (919) 380-9699 2.9073 FAX (919) 380-9717 EQUESTED PARAMETERS
Date Date Date						D 2500 Gateway Centre Morrisville, NC 27560 (919) 380-9699 FAX (919) 380-9717 D PARAMETE
108/0 113570 113577 11377 11377 11377						
121 STATE 1 11 STATE 1 STATE 1				 ↑		4875 Riverside D Macon, GA 31210 (912) 757-0811 FAX (912) 757-0149
N 801600				Preserv.		4875 Riverside Drive Macon, GA 31210 (912) 757-0811 FAX (912) 757-0149
60Ĉ				REMARKS		
				NRKS		$Page _ _ of _$ $G 695 N Seventh Ave Brighton, CO. 80601 (303) 659-0497 FAX (303) 659-5064 LAB CODE LD. A = Asheville NC$
	$\left \begin{array}{c} \mathbf{C} \end{array} \right $				Charloite, NC Denvér, CA Frankfort, KY Lumberton, NC Morrisville, NC Subcontracted Murfreesboro, TN	- of

TABLE 1

l

Oneral No.		EPA 8260
Sample Number	Sampling Date and Time	VOCs
TRIP BLANK		U
A-7-5-98	26 May 98 1312	U .
B-7-5-98	26 May 98 1355	U
F-7-5-98 DUP	26 May 98 1404	U
E-7-5-98	27 May 98 1100	U
D-7-5-98	27 May 98 1130	U
C-7-5-98	27 May 98 1230	U
A-4-5-98	27 May 98 1247	U
B-4-5-98	27 May 98 1310	U
C-4-5-98	27 May 98 1325	U
D-4-5-98	27 May 98 1405	U
E-4-5-98	27 May 98 1430	U
A-2-5-98	27 May 98 1450	7.1 µg/L Methylene Chloride B
B-2-5-98	27 May 98 1505	7.8 μg/L Methylene Chloride B 45 μg/L Benzene 390 μg/L Toluene
		160 µg/L Ethylbenzene 64 µg/L Isopropylbenzene
······································		98 µg/L n-Propylbenzene 320 µg/L 1,3,5-Trimethylbenzene 1200 µg/L 1,2,4-Trimethylbenzene
		120 µg/L sec-Butylbenzene 380 µg/L p-Isopropyltoluene
		150 μg/L n-Butylbenzene 660 μg/L Naphthalene
		3100 μg/L Acetone 120 μg/L 2-Butanone
		1200 µg/L Xylenes

HUNTER AAF ENLISTED BARRACKS SOLVENT DELINEATION

TABLE 1

(_____

HUNTER AAF ENLISTED BARRACKS SOLVENT DELINEATION

		EPA 8260
Sample Number	Sampling Date and Time	VOCs
F-2-5-98	27 May 98 1540	6.7 µg/L Methylene Chloride B
Duplicate to B-2-5-98		54 µg/L Benzene
······································		270 µg/L Toluene
		170 µg/L Ethylbenzene
		66 µg/L Isopropylbenzene
		100 µg/L n-Propylbenzene
		820 µg/L 1,3,5-Trimethylbenzene
		850 µg/L 1,2,4-Trimethylbenzene
		120 µg/L sec-Butylbenzene
		270 µg/L p-Isopropyltoluene
		140 µg/L n-Butylbenzene
		530 µg/L Naphthalene
		2900 µg/L Acetone
		120 µg/L 2-Butanone
		880 µg/L Xylenes
A-6-5-98	27 May 98 1535	7.3 µg/L Methylene Chloride B
		5.0 µg/L cis-1,2-Dichloroethene
		130 µg/L Trichloroethene
EQ-BLK-1	28 May 98 0745	6.7 µg/L Methylene Chloride B
B-6-5-98	28 May 98 0755	7.8 µg/L Methylene Chloride B
C-6-5-98	28 May 98 0810	7.1 µg/L Methylene Chloride B
D-6-5-98	28 May 98 0835	8.9 µg/L Methylene Chloride B
E-6-5-98	28 May 98 0850	7.8 µg/L Methylene Chloride B
F-6-5-98 DUP	28 May 98 0823;	5.5 µg/L Methylene Chloride B
A-5-5-98	28 May 98 0925	8.8 µg/L Methylene Chloride B
B-5-5-98	28 May 98 0945	7.4 µg/L Methylene Chloride B
C-5-5-98	28 May 98 1015	8.1 µg/L Methylene Chloride B
		· · · · · · · · · · · · · · · · · · ·
D-5-5-98	28 May 98 1025	5.9 µg/L Trichloroethene
E-5-5-98	28 May 98 1045	6.0 µg/L cis-1,2-Dichloroethene
arran alm for a grant and the transmission of transmis		160 µg/L Trichloroethene
C-2-5-98	28 May 98 1100	U
E-2-5-98	28 May 98 1115	8.2 µg/L Methylene Chloride B

TABLE 1

· · · · ·

· · · · · · · · · · · · · · · · · · ·		EPA 8260
Sample Number	Sampling Date and Time	VOCs
		0.4 mm/l. Mathedana Oblasida D
D-2-5-98	28 May 98 1130	6.1 µg/L Methylene Chloride B
E-1-5-98	28 May 98 1245	6.0 µg/L Methylene Chloride B
D 4 5 00	28 May 98 1300	5.6 µg/L Methylene Chloride B
D-1-5-98	20 May 90 1300	6.4 µg/L Chloroform
C-1-5-98	28 May 98 1320	5.8 µg/L Methylene Chloride B
C-1-5-98	20 May 30 1020	8.7 µg/L Chloroform
		13 µg/L Trichloroethene
B-1-5-98	28 May 98 1335	6.0 µg/L Methylene Chloride B
		19 µg/L Chloroform
		12 µg/L Trichloroethene
A-1-5-98	28 May 98 1350	6.3 µg/L Methylene Chloride B
A-3-5-98	28 May 98 1420	5.9 µg/L Methylene Chloride B
B-3-5-98	28 May 98 1430	6.5 µg/L Methylene Chloride B
C-3-5-98	28 May 98 1440	6.7 µg/L Methylene Chloride B
D-3-5-98	28 May 98 1450	8.2 µg/L Methylene Chloride B
F-3-5-98 Dup	28 May 98 1515	6.6 µg/L Methylene Chloride B
E-3-5-98	28 May 98 1535	7.0 µg/L Methylene Chloride B
EQ-BLK-2	28 May 98 1500	9.4 µg/L Methylene Chloride B
	-	
KEY:	1	
VOCs = Volatile Organic Comp		
U = Larget analytes not detected	ed above the analytical reporting limits. Method Blank at a similar level. Indicativ	e of laboratory contamination
B = Analyte also detected in the	Welliou Dialik at a Similar level. Indicativ	o or laboratory containington

HUNTER AAF ENLISTED BARRACKS SOLVENT DELINEATION

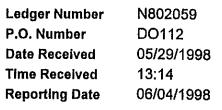
ECOSYS

A HYDROLOGIC OF GEORGIA, INC. LABORATORY

1412 Oakbrook Drive Suite 105 prcross, Georgia 30093 rhone (770) 368-0636 Fax (770) 368-0806

CLIENT:

USACE-Savannah District Mark Harvision 100 West Oglethorpe Ave Savannah, GA 31402 P: 912-652-5151 F: 912-652-5311 HUNTER BARRACKS Project Name


Client Sample # TRIP BLANK

Sampling Date/Time 05/28/1998

;

-					an bampa		0200301
Prep/Method	· · · · · ·			Dilution	Analyst	Dat	te of
Analyte	Result	RL	Units	Factor	init.	Prep	Analysis

5030/8260 VOC (GC/MS) LIQUID				Ba	atch 060	3980008	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
Vinvl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/01/1998
(methane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
L sethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromochloromethane	Below RL	5.0	ug/L	1.0	КD	N/A	06/01/1998
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
2 Xanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
loiuene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	
· •		0.0	~ .	1.0	ΝU	IN//A	06/01/1998

.

Lab	Sampl	le IC	D N80)2059	01

Client Sample # TRIP BLANK

Sampling Date/Time 05/28/1998

Prep/Method				Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				8	atch 06039	80008	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Butylbenzene	Below RL	5.0	ug/L	1.0			06/01/1998
P-isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,3-Dichlorobenzene	Below RL	5.0			KD	N/A	06/01/1998
1,4-Dichlorobenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/01/1998
N-Butylbenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	06/01/1998
1,2-Dichlorobenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	08/01/1998
1,2-Dibromo-3-Chloropropane			ug/L	1.0		N/A	06/01/1998
1,2,4-Trichlorobenzene	Below RL Below Bl	5.0	ug/L	1.0		N/A	06/01/1998
Hexachlorobuladiene	Below RL	5.0	ug/L	1.0		N/A	06/01/1998
Naphthalene	Below RL Below Bl	5.0	ug/L	1.0		N/A	06/01/1998
1,2,3-Trichlorobenzene	Below RL Below Bl	5.0	ug/L	1.0		N/A	06/01/1998
Acetone	Below RL	5.0	ug/L	1.0		N/A	06/01/1998
2-Butanone (MEK)	Below RL	100	ug/L	1.0		N/A	06/01/1998
2-Chloroethylvinyl Ether	Below RL Below Bl	5.0	ug/L	1.0		N/A	06/01/1998
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0		N/A	0 6/01 /1998
• •	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Xylenes (Total) Methyl Tort Rubil Ether	Below RL	15	ug/L	1.0		N/A	06/01/1998
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	0 6/01/ 1998

Client Sample # A-7-5-98

Sampling Date/Time 05/26/1998 13:12

IPrep/Method alyte Result 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Below RL Chloromethane Below RL Vinyl Chloride Below RL Bromomethane Below RL Chloroethane Below RL Trichlorofluoromethane Below RL 1,1-Dichloroethene Below RL Carbon Disulfide Below RL Trans-1,2-Dichloroethene Below RL 1,1-Dichloroethene Below RL 1,1-Dichloroethane Below RL 2,2-Dichloroethene Below RL 1,1-Dichloroethane Below RL 2,2-Dichloroethene Below RL 1,1-Dichloroethane Below RL 2,2-Dichloroethene Below RL 1,1-Dichloroethene Below RL 1,1,2-Dichloroethene Below RL 1,1,1-Trichloroethane Below RL 1,1-Dichloropropene Below RL 1,1-Dichloroethane Below RL 1,1-Dichloropropene Below RL 1,2-Dichloroethane Below RL 1,2-Dichloroethane Below RL 1,2-Dichloroeth	RL 10 10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dilution Factor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Analyst Init. Batch 06039 KD KD KD KD KD KD KD KD	980008 N/A 06 N/A 06 N/A 06 N/A 06 N/A 06 N/A 06 N/A 06	6/01/1 6/01/1 6/01/1 6/01/1 6/01/1 6/01/1 6/01/1
DichlorodifluoromethaneBelow RLChloromethaneBelow RLVinyl ChlorideBelow RLBromomethaneBelow RLChloroethaneBelow RLTrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RL1,1-DichloroetheneBelow RL2,2-DichloroetheneBelow RL2,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLChloroformBelow RLChloroformBelow RL1,1-DichloroethaneBelow RL2,2-DichloroetheneBelow RLChloroformBelow RLChloroformBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RLIzeneBelow RL1,2-DichloropropaneBelow RL1,2-DichloropropaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	KD KD KD KD KD KD KD	N/A 06 N/A 06	6/01/1 6/01/1 6/01/1 6/01/1
DichlorodifluoromethaneBelow RLChloromethaneBelow RLVinyl ChlorideBelow RLBromomethaneBelow RLChloroethaneBelow RLChloroethaneBelow RLTrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL2,2-DichloroetheneBelow RL2,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLChloroformBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloropropaneBelow RLIzeneBelow RLIzeneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL <td>10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.</td> <td>ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L</td> <td>1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td> <td>KD KD KD KD KD KD KD</td> <td>N/A 06 N/A 06</td> <td>6/01/1 6/01/1 6/01/1 6/01/1</td>	10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	KD KD KD KD KD KD KD	N/A 06 N/A 06	6/01/1 6/01/1 6/01/1 6/01/1
ChloromethaneBelow RLVinyl ChlorideBelow RLBromomethaneBelow RLChloroethaneBelow RLTrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloroetheneBelow RL2,2-DichloroetheneBelow RLChloroformBelow RLChloroformBelow RLStromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RLChloroformBelow RLChloroformBelow RLY-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloropropaneBelow RL1,1-DichloropropaneBelow RL1,1-DichloropropaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	10 2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0	KD KD KD KD KD KD	N/A 06	6/01/1 6/01/1 6/01/1 6/01/1
Vinyl ChlorideBelow RLBromomethaneBelow RLChloroethaneBelow RLChloroethaneBelow RLTrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloroetheneBelow RL2,2-DichloropropaneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloropropaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,2-DichloropropaneBelow RL1,1-DichloropropaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RL1,2-DichloropropaneBelow RLIrrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	2.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0 1.0 1.0	KD KD KD KD KD	N/A 06	6/01/1 6/01/1 6/01/1
BromomethaneBelow RLChloroethaneBelow RLTrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroetheneBelow RL2,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-DichloroetheneBelow RLChloroformBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloroethaneBelow RL1,1-DichloropropaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropaneBelow RL1,2-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloroethaneBelow RL'-DichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLDichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0 1.0 1.0	KD KD KD KD	N/A 06 N/A 06 N/A 06 N/A 06 N/A 06	6/01/ [,] 6/01/ [,]
ChloroethaneBelow RLTrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-DichloroetheneBelow RLChloroformBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropeneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RLIrrichloroethaneBelow RL1,2-DichloropropaneBelow RLJ2-DichloropropaneBelow RLDibromomethaneBelow RLBromodichloromethaneBelow RLBromodichloromethaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0 1.0	KD KD KD KD	N/A 06 N/A 06 N/A 06	6/01/
TrichlorofluoromethaneBelow RL1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLBromodichloromethaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0 1.0	KD KD KD	N/A 06 N/A 06	
1,1-DichloroetheneBelow RLMethylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropthaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropthaneBelow RL1,2-DichloropthaneBelow RL1,2-DichloropthaneBelow RL1,2-DichloropthaneBelow RL1,2-DichloropthaneBelow RLDibromomethaneBelow RLBromodichloromethaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L	1.0 1.0 1.0	KD KD	N/A 06	3/04/
Methylene ChlorideBelow RLCarbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloropropaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,2-DichloroethaneBelow RLrichloroethaneBelow RL1,2-DichloropropaneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLBromodichloromethaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L ug/L	1.0 1.0	KD		JI U II
Carbon DisulfideBelow RLTrans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0 5.0 5.0	ug/L ug/L ug/L	1.0		N/A 06	6/01/
Trans-1,2-DichloroetheneBelow RL1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL2-DichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloroethaneBelow RL2-DichloroethaneBelow RL1,2-DichloroethaneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0 5.0	ug/L ug/L		КD		6/01/
1,1-DichloroethaneBelow RL2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RL2,2-DichloroethaneBelow RL1,1-DichloropropeneBelow RL1,1-DichloropropeneBelow RL^-DichloroethaneBelow RLizeneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0 5.0	ug/L	1.0			6/01/
2,2-DichloropropaneBelow RLCis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL^-DichloroethaneBelow RLIzeneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0 5.0 5.0	-		KD		6/01/
Cis-1,2-DichloroetheneBelow RLChloroformBelow RLBromochloromethaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL^-DichloroethaneBelow RL.zeneBelow RLIzeneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0 5.0	-	1.0	KD		6/01/
ChloroformBelow RLBromochloromethaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL^-DichloroethaneBelow RLBelow RLDibromomethaneBelow RL	5.0		1.0	KD		6/01/
ChloroformBelow RLBromochloromethaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL^-DichloroethaneBelow RL_reneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLBromodichloromethaneBelow RLBelow RLBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		6/01/
BromochloromethaneBelow RL1,1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL^-DichloroethaneBelow RLızeneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL		ug/L	1.0	KD		6/01/
1,1-TrichloroethaneBelow RL1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL?-DichloroethaneBelow RLizeneBelow RLIrrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		8/01/
1,1-DichloropropeneBelow RLCarbon TetrachlorideBelow RL?-DichloroethaneBelow RLizeneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		6/01/
Carbon TetrachlorideBelow RL^-DichloroethaneBelow RLizeneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		8/01/
?-DichloroethaneBelow RLizeneBelow RLfrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		6/01/
IzeneBelow RLFrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD	•	6/01/
FrichloroetheneBelow RL1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		6/01/
1,2-DichloropropaneBelow RLBromodichloromethaneBelow RLDibromomethaneBelow RL	5.0	ug/L	1.0	KD		6/01/
Bromodichloromethane Below RL Dibromomethane Below RL	5.0	ug/L	1.0	KD		6/01/
Dibromomethane Below RL	5.0	ug/L	1.0	KD		6/01/
	5.0	ug/L	1.0	KD		B/01/
4-Methyl-2-Pentanone (MIBK) Below RL	10	ug/L	1.0	KD		6/01/
2-Hexanone Below RL	10	ug/L	1.0	KD		6/01/
Cis-1,3-Dichloropropene Below RL	5.0	ug/L	1.0	KD		6/01/
Toluene Below RL	5.0	ug/L	1.0	KD		6/01/
Trans-1,3-Dichloropropene Below RL	5.0	ug/L	1.0			
1,1,2-Trichloroethane Below RL	5.0	ug/L	1.0	KD		8/01/
1,3-Dichloropropane Below RL	5.0 5.0	ug/L	1.0	KD		6/01/ 6/01/
Tetrachloroethene Below RL	5.0	ug/L	1.0	KD		6/01/ 8/01/
Chlorodibromomethane Below RL	5.0	-				
1,2-Dibromoethane Below RL	5.0	ug/L ug/L	1.0	KD		8/01/ 8/01/
Chlorobenzene Below RL	5.0 5.0	-	1.0	KD		6/01/ 8/01/
Ethylbenzene Below RL		ug/L ug/l	1.0	KD		6/01/ 8/04/
1,1,2-Tetrachloroethane Below RL	5.0	ug/L ug/l	1.0	KD		6/01/ 8/04/
Slyrene Below RL	5.0	ug/L	1.0	KD		8/01/ 8/04/
	5.0	ug/L	1.0	KD		B/01/
	5.0	ug/L	1.0	KD		8/01/
	5.0	ug/L	1.0	KD		8/01/
1,1,2,2-Tetrachloroethane Below RL	5.0	ug/L	1.0	KD		3/01/
^o ropylbenzene Below RL	5.0	ug/L	1.0	KD		5/01/
omobenzeneBelow RL1,3,5-TrimethylbenzeneBelow RL	5.0	ug/L ug/L	1.0 1.0			5/01/ [.] 3/01/ [.]

Client Sample # A-7-5-98

ling Date/Time_05/26/1998 12.12 ~

Lab	Sample ID	N80205902

Sampling Date/Time 05/26/1998 13:12					0205902		
// ¬/Method	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	te of Analysis
5030/8260 VOC (GC/MS) LIQUID				E	atch 06039	80008	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1.4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01 /199
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/1 99
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/0 1/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 99
`-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 01/199
.nes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/0 1/199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199

HUNTER BARRACKS Project Name

Client Sample # B-7-5-98

Lab Sample ID N80205903

Sampling Date/Time 05/26/1998 13:55					ab Sampi	e ID N8	0205903
Prep/Method	Result RL			Dilution	Analyst		te of
Analyte		RL	Units	Factor	Init.	Prep	Analysis
					atch 0603	990008	
5030/8260 VOC (GC/MS) LIQUID	Below RL	10	uall	1.0	KD	N/A	0 6/0 1/1998
Dichlorodifluoromethane			ug/L	1.0	· KD	N/A	06/01/1998
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
Vinyl Chloride	Below RL	2.0	ug/L				
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19 98
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 998
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/0 1/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01 /1998
ns-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998

Client Sample # B-7-5-98 Sampling Date/Time 05/26/1998 13:55

Lab Sample ID N80205903

	:55			Lab Sample ID N80205903				
r n/Method te	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Analys	
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980008		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Frichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
1-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/1	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/1	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Foluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
chloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
odibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	08/01/	
I,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
I,1,1,2-Tetrachloroethane	Below RL	5.0 5.0	-	1.0	KD	N/A	06/01/1	
Slyrene			ug/L					
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
· · · ·	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
I,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
Fert-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
I,2,4-Trimethylbenzene	Below RL	5,0	ug/L	1.0	KD	N/A	06/01/1	
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	.06/01/	
p-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
i,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
1 2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
)ibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
.,_,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1	
Hevechlorobutadiene	Delaw DI	E 0		4.0	1/D	N1/A	0010414	

5.0

ug/L

KD

1.0

N/A

06/01/1998

Below RL

Client Sample # B-7-5-98

Sampling Date/Time 05/26/1998 13:55

Lab Sample ID N80205903

//Method				Dilution	Analyst	Da	te of
te	Result	RL	Units	Factor	Init.	Prep	Anaiysis
5030/8260 VOC (GC/MS) LIQUID				E	atch 06039	80008	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/1998
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/01/1998
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998

Project Name HUNTER BARRACKS

Client Sample # F-7-5-98

Sampling Date/Time 05/26/1998	14:04	Lab Sample ID N80205904
• =		•

Prep/Method				Dilution	Dilution Analyst D			
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				E	Batch 06039	80008 .		
rodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1 99	
uoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199	
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/0 1/199	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	08/01/199	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
Trichloroethene	Below RL	5.0 ·	ug/L	1.0	KD	N/A	06/01/199	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
nodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
momethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/199	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/199	

Client Sample # F-7-5-98

Sampling Date/Time 05/2	6/1998	14:04
-------------------------	--------	-------

Sampling Date/Time 05/26/1998 14	Lab Sample ID N80205904						
/Method	Result	RL	Units	Dilution Factor	Analyst Init.	Dai Prep	te of Analysis
<u>/tə</u>	Result		Units	1 40107		Lich	Analysis
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0603	980008	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
lorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
orotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2-Dibromo-3-Chloropropane	Below RL	5,0	ug/L	1.0	KD	N/A	06/01/199
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/01/199
	20070 F 116		-a-				~

Methyl Tert-Butyl Ether

5.0

Below RL

ug/L

1.0

KD

N/A

06/01/1998

Client Sample # E-7-5-98

Sampling Date/Time 05/27/1998 11:00

Lab Sample ID N80205905

P m/Method				Dilution					
te	Result	RL	Units	Factor	init.	Prep	Analysis		
5030/8260 VOC (GC/MS) LIQUID					Batch 0603				
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199		
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199		
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/01/199		
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199		
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Carbon Disulfide	Below RL	5.0	ug/L.	1.0	KD	N/A	06/01/19		
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
ichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
ane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/19		
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/19		
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Chlorobenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/01/19		
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
-	Below RL	5.0		1.0	KD	N/A	06/01/19		
Isopropylbenzene Bromoform			ug/L ug/l	1.0	KD	N/A	06/01/19		
	Below RL Bolow Bl	5.0 5.0	ug/L ug/l	1.0	KD	N/A	06/01/19		
1 1 2,2-Tetrachloroethane	Below RL Below Bl	5.0	ug/L						
opylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19		

Client Sample # E-7-5-98

Sampling Date/Time 05/27/1998 11:00

Lab Sample ID N80205905

/p/Method			** **	Dilution	on Analyst D		te of
yte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	atch 06039	80008	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Tert-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	u g/L	1.0	KD	N/A	06/01/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
∩es (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/01/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19

Project Name HUNTER BARRACKS

Client Sample # D-7-5-98

Sampling Date/Time 05/2	27/1998 11:30
-------------------------	---------------

Lab	Sample	ID	N80205906
-----	--------	----	-----------

Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL Units	Factor	Init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				B	atch 06039	80008	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	08/01/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/01/199
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Methylene Chloride	Below RL	5.0	u g/L	1.0	KD	N/A	06/01/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
ns-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199

Client Sample # D-7-5-98

Sampling Date/Time 05/27/1998 11:30

Lab Sample ID N80205906

p/Method קר				Dilution	Analyst	te of	
yte	Result	RL	Units	Factor	init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID					Batch 0603		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
richloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/1
Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/1
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
oluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
Frans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
1.chloroethene	Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A	06/01/
rodibromomethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/01/
,2-Dibromoethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/01/
Chlorobenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/01/
Ethylbenzene	Below RL	5.0 5.0	-	1.0	KD	N/A	06/01/
,1,1,2-Tetrachloroethane	Below RL		ug/L				06/01/
		5.0	ug/L	1.0	KD	N/A	
Slyrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
I-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
I-Chlorotoluene	Below RL	5.0	ug/L	1.0	. KD	N/A	06/01/
Fert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
P-Isopropyltoluene	Below RL	5,0	ug/L	1.0	KD	N/A	06/01/
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	08/01/
N-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
¹ ² -Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
, 2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1

Client Sample # D-7-5-98

Sampling Date/Time 05/27/1998 11:30

Sampling Date/Time 05/27/1998	11:30			L	ab Sampl	e ID N8	0205906
Prep/Method				Dilution	Analyst		te of
nalyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				E	latch 06039	80008	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Acetone	Below RL	100	ug/L.	1.0	KD	N/A	06/01/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/01/19
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19

HUNTER BARRACKS Project Name

Client Sample # C-7-5-98

Sampling Date/Time 05/27/1998 12:30

Sampling Date/Time 05/27/1998	12:30			l	.ab Sampl	e ID N8	0205907
Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	lnit.	Prep	Anaiysi

5030/8260 VOC (GC/MS) LIQUID				Ba	atch 060	3980008	
^s chlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1 9
, nioromethane	Below RL	10	ug/L	1.0	KD	N/A	06/0 1/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/01/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/ 19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
Benzene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/01/1 9
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
ibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01 /19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/19
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/19

Client Sample # C-7-5-98

(

	:30		hd		ab Samp		
n/Method	Decult		El mite	Dilution	Analyst		te of
ite	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	atch 0603	980008	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2-Dibromoelhane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
			-				

Cutybonzono	DOIDWINE	0.0	ug/L	1.0	ND	1977	00/01/1990
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Isopropyibenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 998
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01 /1998
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 998
`orotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
.orotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 01/1998
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 01/1998
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 01/1998
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19 98
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
N-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2-Dichtorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/1998
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	_ 06/01/1 998
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 998
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/0 1/1998
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998

Client Sample # A-4-5-98

Sampling Date/Time 05/27/1998 12:47

Lab Sample ID N80205908

/http://wethod				Dilution	-		30205908
<u>/te</u>	Result	RL	Units	Factor	Analysi Init.	t Da Prep	ate of Analysis
		· · ·		1.441			
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0603	1980024	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/199/
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/01/199/
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD		06/01/1998
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0		N/A	06/01/1998
1,1-Dichloropropene	Below RL	5.0	ug/L		KD	N/A	06/01/1998
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
lichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
ene	Below RL	5.0	-	1.0	KD	N/A	06/01/1998
Trichloroethene	Below RL	5.0	ug/L ug/L	1.0	KD	N/A	06/01/1998
1,2-Dichloropropane	Below RL	5.0		1.0	KD	N/A	06/01/1998
Bromodichloromethane	Below RL	5.0 5.0	ug/L ug/l	1.0	KD	N/A	06/01/1998
Dibromomethane	Below RL	5.0	ug/L ug/l	1.0	KD	N/A	06/01/1998
4-Methyl-2-Pentanone (MIBK)	Below RL	5.0 10	ug/L	1.0	KD	N/A	06/01/1998
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/1998
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Toluene	Below RL		ug/L	1.0	KD	N/A	06/01/1998
Trans-1,3-Dichloropropene		5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1,2-Trichloroethane	Below RL Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Tetrachloroethene		5.0	ug/L	1.0	KD	N/A	06/01/1998
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	. KD	N/A	06/01/1998
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Elhylbenzene	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	. 06/01/1998
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1 1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
opylbenzene ∽mobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1998

Ì

Client Sample # A-4-5-98

Prep/Method				Dilution	Analyst	Date of	
nalyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				В	atch 06039	80021	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/ 19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,4-Trimelhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
N-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2-Dlbromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
.vylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/01/19
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19

Project Name HUNTER BARRACKS

Client Sample # B-4-5-98

Sampling Date/Time 05/27/1998 13:	10			L	ab Samp	le ID N8	0205909
Prep/Method	Decuit		11	Dilution	Analyst		te of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				E	atch 0603	980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/1 9
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/01/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/01/1 9
Bromomethane	Below RL	10	ug/L	1.0	KD	N/Å	06/01/19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 01/19
1,1-Dichloroethene	Below RL	5.0	ug/iL	1.0	KD	N/A	06/01/19
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1 9
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
⁺ rans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
(,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19

Cilent Sample # B-4-5-98

Sampling Date/Time 05/27/1998 13:10

Lab Sample ID N80205909

n/Method				Dilution	Analyst		ite of
/te	Result	RL	Units	Factor	lnit.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID	-				Batch 0603		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/01/19
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/01/19
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Foluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
chloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
rodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
I,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
3romoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
3romobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	08/01/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
⁴ ² -Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/1
	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/19
Hexachlorobutadiene	Below RL	5.0	ugre -	1.0	NU NU	11/17	00101718

Client Sample # B-4-5-98

Sampling Date/Time 05/27/1998 13:10

Lab Sample ID N80205909

/Method				Dilution	Analyst	Date of	
te	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				B	atch 06039	80021	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/01/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/01/199
Methyl Tert-Butyl Elher	Below RL	5.0	ug/L	1.0	KD	N/A	06/01/199

Project Name HUNTER BARRACKS

Client Sample # C-4-5-98

Sampling Date/Time 05/27/1998 13:25

Lab Sample ID N80205910

	· •											
Prep/Method				Dilution	Analyst		te of					
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis					
5030/8260 VOC (GC/MS) LIQUID				8	latch 06039	980021.						
rodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/199					
UJromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/199					
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/02/199					
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/199					
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
nodichtoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
momethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199					
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/02/199					
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/02/199					
	201011116	10	49/1	1.0	ND	1 307 3	000					

Client Sample # C-4-5-98

Sampling Date/Time 05/27/1998 13:25

Lab Sample ID N80205910

Prep/Method				Dilution	Analyst	Date of	
nalyte	Result	RL	Units	Factor	Init.	Prep	Ana
5030/8260 VOC (GC/MS) LIQUID				В	atch 06039	980021	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	08/0
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/(
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
₄-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
N-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	08/
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Xylenes (Total)	Below RL	3.0 15	ug/L	1.0	KD	N/A	06/
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/

{

Client Sample # D-4-5-98

Sampling Date/Time 05/27/1998 14:05

Lab Sample ID N80205911

n/Method				Dilution	Analyst	Da	ite of
/te	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980021	
ichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/19
hloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/19
inyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/02/19
romomethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/19
hloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
richlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
lethylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
arbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
rans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
is-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
hloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
romochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
arbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
ichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
.∠ene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
richloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
romodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
ibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/02/19
-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/02/19
is-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
oluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
rans-1,3-Dichloropropene	Below RL	5,0	ug/L	1.0	KD	N/A	06/02/19
1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
etrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
hlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
hlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	08/02/19
thylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
tyrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
opropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
romoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
[*] 2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
opylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19
romobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/19

Client Sample # D-4-5-98

Sampling Date/Time 05/27/1998 14:05

Lab Sample ID N80205911

Samping Dater Tille 03/21/1998 14							
Method				Dilution	Analyst		ate of
te	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				B	atch 06039	80021	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
Hexachlorobutadiene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/02/199
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/02/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
🔨 Liles (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/02/199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199

Project Name HUNTER BARRACKS

Client Sample # E-4-5-98

Sampling Date/Time 05/27/1998 14:30

Sampling Date/Time 05/27/1998 14	:30			L	ab Samp	le ID N8	0205912
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Analysis
							Analysis
5030/8260 VOC (GC/MS) LIQUID				8	latch 0603	980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/1998
Chloromethane	22	10	ug/L	1.0	KD	N/A	06/02/1998
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/02/1998
Bromomethane	19	10	ug/L	1.0	KD	N/A	06/02/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Methylene Chloride	5.2	5.0	ug/L	1.0	KD	N/A	06/02/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
s-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Jichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998

Client Sample # E-4-5-98

Sampling Date/Time 05/27/1998 14:30

Lab Sample ID N80205912

h/Method				Lab Sample ID N80205912 Dilution Analyst Date of				
"yte	Result	RL	Units	Factor	Analyst Init.	Da Prep	ate of Analysis	
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980021		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/02/199	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/02/199	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Frans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
chloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Juorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
i,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199	
Ethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/199	
,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/02/199	
Styrene	Below RL	5.0	ug/L	1.0		N/A	06/02/199	
sopropylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/199	
Bromoform	Below RL	5.0	ug/L	1.0		N/A		
,1,2,2-Telrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/02/199	
I-Propylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/199	
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
ert-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
ec-Butylbenzene	Below RL	5.0	ug/L	1.0			06/02/1998	
-Isopropyltoluene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
I-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
Dichlorobenzene	Below RL	5.0	ug/L			N/A	06/02/1998	
Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0		N/A	06/02/1998	
,2,4-Trichlorobenzene	Below RL	5.0 5.0	=	1.0		N/A	06/02/1998	
lexachlorobutadiene	Below RL		ug/L	1.0		N/A	06/02/1998	
		5.0	ug/L	1.0	KD I	N/A	06/02/199	

Client Sample # E-4-5-98

Sampling Date/Time 05/27/1998 14:30

Lab Sample ID N80205912

p/Method				Dilution	Analyst	Date of	
alyte	Result	RL	Units	Factor	Init	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				B	atch 06039	80021	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/02/1990
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1990
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/02/199
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/199

Project Name HUNTER BARRACKS

Client Sample # A-2-5-98

Sampling Date/Time 05/27/1998	14:50 Lab Sample					e ID N8	0205913
Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	lnit.	Prep	Analysis

°030/8260 VOC (GC/MS) LIQUID				Ba	ntch 060	3980021-	
alorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/1998
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/02/1998
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/02/1998
Bromomelhane	Below RL	10	ug/L	1.0	KD	N/A	06/02/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Methylene Chloride	7.1	5.0	ug/L	1.0	KD	N/A	06/02/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	0 6/ 02/1998
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
1 2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
modichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
oromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1998
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/02/1998
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/02/1998

Client Sample # A-2-5-98

Sampling Date/Time 05/27/1998 14:50

Lab Sample ID N80205913

rep/Method	_ ·			Dilution	Analyst		
Analyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID					Batch 0603		
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
foluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Frans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/iL	1.0	KD	N/A	06/02/1
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
sopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A .	06/02/ ⁻
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/1
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
P-Isopropylloluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02/
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/02
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/02
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/02
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0		N/A	06/02
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0		N/A	06/02
Xylenes (Total)	Below RL	15	ug/L	1.0		N/A	06/02
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0		N/A	06/02

Client Sample # B-2-5-98

Sampling Date/Time	05/27/1998	15:05
--------------------	------------	-------

Lab Sample ID N80205914

nalyte 5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dlchloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dlchloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropene ^arbon Tetrachloride	Result Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL Below RL	RL 10 10 2.0 10 5.0 5.0 5.0 5.0 5.0	Units ug/L ug/L ug/L ug/L ug/L	Factor E 1.0 1.0 1.0 1.0	Init. Batch 06039 KD KD KD	Prep 980021 N/A N/A	Analys 06/03/11
Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroptopane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1,1-Dichloroethane	Below RL Below RL Below RL Below RL Below RL Below RL 7.8 Below RL	10 2.0 10 5.0 5.0 5.0	ug/L ug/L ug/L ug/L	1.0 1.0 1.0	KD KD	N/A	
Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroptopane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1,1-Dichloroethane	Below RL Below RL Below RL Below RL Below RL Below RL 7.8 Below RL	10 2.0 10 5.0 5.0 5.0	ug/L ug/L ug/L ug/L	1.0 1.0 1.0	KD KD	N/A	
Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroptopane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloroptopene	Below RL Below RL Below RL Below RL Below RL Below RL 7.8 Below RL	10 2.0 10 5.0 5.0 5.0	ug/L ug/L ug/L ug/L	1.0 1.0	KD		
Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dlchloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL Below RL Below RL Below RL Below RL 7.8 Below RL	2.0 10 5.0 5.0 5.0	ug/L ug/L ug/L	1.0		N/A	A A 10 - ··
Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroptopane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1,1-Dichloroptopene	Below RL Below RL Below RL Below RL 7.8 Below RL	10 5.0 5.0 5.0	ug/L ug/L		KD		06/03/1
Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroptopane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloroptopene	Below RL Below RL Below RL 7.8 Below RL	5.0 5.0 5.0	ug/L	1.0		N/A	06/03/1
Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL Below RL 7.8 Below RL	5.0 5.0	-		KD	N/A	06/03/1
1,1-Dichloroethene Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloroptopane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloroptopene	Below RL 7.8 Below RL	5.0		1.0	KD	N/A	06/03/
Methylene Chloride Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	7.8 Below RL		ug/L	1.0	KD	N/A	06/03/ ⁻
Carbon Disulfide Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL		ug/L	1.0	KD	N/A	06/03/
Trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL		ug/L	1.0	KD	N/A	08/03/
1,1-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene		5.0	ug/L	1.0	KD	N/A	06/03/
2,2-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chloroform Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromochloromethane 1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,1-Trichloroethane 1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
denzene	45	5.0	ug/L	1.0	KD	N/A	06/03
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Toluene	390	50	ug/L	10	KD	N/A	06/03
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,1,2-Trichloroethane	Below RL Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A	06/03
1,3-Dichloropropane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03
Tetrachloroethene	Below RL Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A	06/03
Chlorodibromomethane	Below RL Below RL	5.0 5.0	ug/L	1.0		N/A	06/03
1,2-Dibromoethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03
Chlorobenzene	Below RL Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03
Ethylbenzene	160	5.0 5.0	սց/Ը ug/Լ	1.0	KD	N/A	06/03
1,1,1,2-Tetrachloroethane	Below RL	5.0 5.0	ug/L ug/L	1.0	KD	N/A	06/03
	Below RL Below RL		-	1.0	KD	N/A	06/03
Styrene		5.0	ug/L	1.0	KD	N/A	
lsopropylbenzene Bromoform	64 Below Bl	5.0	ug/L				06/03
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
-Propylbenzene	98	5.0 5.0	ug/L	1.0	KD	N/A	
Bromobenzene 1,3,5-Trimelhylbenzene	Below RL		ug/L	1.0	KD	N/A	06/03 06/03

Client Sample # B-2-5-98

Sampling Date/Time 05/27/1998 15:05

Lab Sample ID N80205914

/Method				Dilution	Analyst	Da	te of
.iyte	Result	RL.	Units	Factor	lnit.	Ргер	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	atch 0603	980021	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trimethylbenzene	1200	50	ug/L	10	KD	N/A	06/03/19
Sec-Butylbenzene	120	5.0	ug/L	1.0	KD	N/A	06/03/19
P-Isopropyitoluene	380	50	ug/L	10	KD	N/A	06/03/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/19
N-Butylbenzene	150	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Naphthalene	660	50	ug/L	10	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	3100	1000	ug/L	10	KD	N/A	06/03/19
2-Butanone (MEK)	120	5.0	ug/L	1.0	KD	N/A	06/03/19
hloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
λyienes (Total)	1200	150	ug/L	10	KD	N/A	06/03/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Project Name HUNTER BARRACKS

Client Sample # F-2-5-98

Sampling Date/Time 05/27/1998 15:40

ition Ai	nalyst	Date e	of
ctor	Init. I	Prep /	Analysis

5030/8260 VOC (GC/MS) LIQUID				Ba	tch 060	3980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Chloromethane	Below RL	10	ug/L	1.0	⁻ KD	N/A	06/03/1998
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1998
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1 998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Methylene Chloride	6.7	5.0	ug/L	1.0	KD	N/A	06/03/1998
Carbon Disulfide	Below RL	5,0	ug/L	1.0	KD	N/A	06/03/1998
s-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
, I-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998

HydroLogic, Inc. Ledger N802059

Client Sample # F-2-5-98

rep/Method	Result	RL	Units	Dilution Factor	Analyst Init.	Date Prep	of Anal
nalyte							
				c	atch 0603	90021	
5030/8260 VOC (GC/MS) LIQUID		<i>r</i> 0		1.0	KD	N/A	06/0
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1-Dichloropropene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/0
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Benzene	54	5.0	ug/L				06/0
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,2-Dichloropropane	Below RL	5.0	ug/L.	1.0	KD	N/A	06/0
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Toluene	270	50	ug/L	10	KD	N/A	06/
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/
etrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
Ethylbenzene	170	5.0	ug/L	1.0		N/A	06/
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06
Styrene	Below RL	5.0	ug/L	1.0		N/A	06,
Isopropylbenzene	66	5.0	ug/L	1.0	KD	N/A	06
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06
N-Propylbenzene	100	5.0	ug/L	1.0	KD	N/A	06.
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06
1,3,5-Trimethylbenzene	820	50	ug/L	10	KD	N/A	06
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	. KD	N/A	06
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06
1,2,4-Trimethylbenzene	850	50	ug/L	10		N/A -	06
•	120	5.0	ug/L	1.0		N/A	06
Sec-Butylbenzene P-Isopropyltoluene	270	50	ug/L	10		N/A	06
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	08
-	Below RL	5.0	ug/L	1.0		N/A	06
1,4-Dichlorobenzene	140	5.0	ug/L	1.0		N/A	06
N-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06
1,2-Dichlorobenzene		5.0	ug/L	1.0		N/A	06
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	Below RL Below RL	5.0 5.0	ug/L	1.0		N/A	06

Client Sample # F-2-5-98

p/Method				Dilution	Analyst	Date of	
alyte	Result	RL	Units	Factor	Init.	Ргер	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 06039	80021	
Naphthalene	530	50	ug/L	10	KD	N/A	06/03/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	2900	1000	ug/L	10	KD	N/A	06/03/19
2-Butanone (MEK)	120	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Xylenes (Total)	880	150	ug/L	10	KD	N/A	06/03/19
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Project Name HUNTER BARRACKS

Client Sample # A-6-5-98

15:35			L	.ab Sample	e ID N8(0205916
			Dilution	Analyst	Da	te of
Result	RL	Units	Factor	init.	Prep	Analysis
				Dilution	Dilution Analyst	Dilution Analyst Da

5030/8260 VOC (GC/MS) LIQUID				Ba	tch 060	3980021	
shlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/19
Bromomethane	Below RL	10	ug/L	1.0	КD	N/A	06/03/19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Methylene Chloride	7.3	5.0	ug/L	1.0	KD	N/A	06/03/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD.	N/A	06/03/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Cis-1,2-Dichloroethene	5.0	5.0	ug/L	1.0	KD	N/A	06/03/19
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	0 6/ 03/19
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/19
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/19
Trichloroethene	130	5.0	ug/L	1.0	KD	N/A	06/0 3/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/19
Iromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
2-Hexanone	Below RL	10	ug/L	1.0	КD	N/A	06/03/19

Client Sample # A-6-5-98

5:35			Lab Sample ID N80205916			
Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	te of Analysis
				Dilution Result RL Units Factor	Dilution Analyst Result RL Units Factor init.	Dilution Analyst Da

5030/8260 VOC (GC/MS) LIQUID					atch 0603		
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
orotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
P-Isopropylloluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/1998
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Xylenes (Total)	Below RL	15	ug/L.	1.0	KD	N/A	06/03/1998
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998

Client Sample # EQ-BLK-1

.

Sampling Date/Time	e 05/28/1998	07:45
--------------------	--------------	-------

Prep/Method				Dllution	Analyst	D	ate of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analy
5030/8260 VOC (GC/MS) LIQU	ID			E	atch 06039	80021	
Dichtorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	08/03/
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Methylene Chloride	6.7	5.0	ug/L	1.0	KD	N/A	06/03/
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,3-Dichloropropane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/
Tetrachloroethene	Below RL	5.0	-	1.0	KD	N/A	06/03/
Chlorodibromomethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/
1,2-Dibromoethane		5.0 5.0	ug/L			N/A	06/03/
Chlorobenzene	Below RL		ug/L	1.0	KD		06/03/
	Below RL	5.0	ug/L	1.0	KD	N/A	
Ethylbenzene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
lsopropylbenzene Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/

Lab Sample ID N80205917

HydroLogic, Inc. Ledger N802059

Client Sample # EQ-BLK-1

Sampling Date/Time 05/28/1998 07:45

Lab Sample ID N80205917

/Method				Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init,	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				n		20004	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	atch 06039 KD	80021 N/A	00/00/400
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199/
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD .	N/A	06/03/1998
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
Naphthalene	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
Acetone	Below RL	100	ug/L	1.0		N/A	06/03/1998
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
2 Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
-Trichloropropane	Below RL	5.0	ug/L	1.0		N/A	06/03/1998
Agrees (Total)	Below RL	15	ug/L	1.0		N/A	06/03/1998
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0		N/A	06/03/1998

Project Name HUNTER BARRACKS

Client Sample # 8-6-5-98

Sampling Date/Time 05/28/1998 07:55

Sampling Date/Time 05/28/1998 07:	55		L	ab Sampl	e ID N8	0205918	
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Analysis
5030/8260 VOC (GC/MS) LIQUID				Batch 0603980021			
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1998
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Methylene Chloride	7.8	5.0	ug/L	1.0	KD	N/A	06/03/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
ns-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
, i-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998

Client Sample # B-6-5-98

Samp	ling	Date/Time	05/28/1998	07:55
/ =				

Lab Sample ID N80205918

Method	Beer !!			Dilution	Analyst		ate of
ryte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				E	Batch 06039	980021	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
enzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
richloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
romodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
ibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
is-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
oluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
rans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Nichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
shloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
hlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
hlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
thylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
lyrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
opropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
romoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
romobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	
-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD		06/03/1
-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
ert-Butylbenzene	Below RL	5.0	-		KD	N/A	06/03/1
,2,4-Trimethylbenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/1
ec-Butylbenzene	Below RL		ug/L	1.0	KD	N/A	06/03/1
-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
,3-Dichlorobenzene		5.0	ug/L	1.0	KD	N/A	06/03/1
,4-Dichlorobenzene	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	06/03/1
J-Butylbenzene	Below RL	5.0.	ug/L	1.0	KD	N/A	06/03/1
•	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
)ichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1

Client Sample # B-6-5-98

.

Sampling Date/Time 05/28/1998 07	:55			L	ab Samp	ole ID N8	30205918
Prep/Method	Result	RL	Units	Dilution Factor	Analysi Init,	Da Prep	ate of Analysi
Analyte	Result						Anarys
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	3980021	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Bulanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Elher	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2,3-Trichloropropane	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/1
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/1
Methyl Tert-Bulyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1

Project Name HUNTER BARRACKS

Client Sample # C-6-5-98

Sampling Date/Time 05/28/1998	08:10			L	ab Sampl	e ID N8	0205919
Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	lnit.	Prep	Analys

5030/8260 VOC (GC/MS) LIQUID				Ba	itch 060	3980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Methylene Chloride	7.1	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/ 1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/Å	06/03/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/iL	1.0	KD	N/A	06/03/
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/

Client Sample # C-6-5-98 Sampling Date/Time 05/28/1998 0

(_____

Prep/Method	······			Dilution	Analyst	Da	Date of		
nalyte	Result	RL	Units	Factor	Init.	Prep	Analys		
5030/8260 VOC (GC/MS) LIQUID				E	atch 0603	80021			
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
1,3-Dichloropropane	Below RL	5,0	ug/L	1.0	KD	N/A	06/03/19		
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/19		
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/19		
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/19		
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
	Below RL	5.0		1.0	KD	N/A	06/03/1		
Tert-Butylbenzene			ug/L						
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
P-Isopropyltoluene	Below RL	5,0	ug/L	1.0	KD	N/A	06/03/1		
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
N-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1		
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	. KD	N/A	06/03/1		
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/1		
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A .	06/ 03/1		
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/1		
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/1		
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/ 03/1		
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/1		

(

Client Sample # D-6-5-98

Sampling Date/Time 05	5/28/1998 08:35
-----------------------	-----------------

Lab Sample ID N80205920

o/Method				Dilution	Analyst	Da	te of
lyte	Result	RL	Units	Factor	Init.	Ргер	Analysi
5030/8260 VOC (GC/MS) LIQUID					Batch 0603		
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	08/03/1
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloroelhane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Methylene Chloride	8.9	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/ 1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Cribon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
udnzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	· KD	N/A	06/03/
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/03/
Styrene	Below RL	5.0	ug/L	1.0		N/A	06/03/
Isopropylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/
Bromoform	Below RL	5.0	ug/L	1.0		N/A	06/03/
,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/03/
,z,z-renzenioroemans	Below RL	5.0	ug/L	1.0		N/A	06/03/
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/
PIOLIODEHTELIE	Delow KL	0.0	uy/L	1.0	NU	11/1	00000

Client Sample # D-6-5-98

Sampling Date/Time	05/28/1998	08:35
--------------------	------------	-------

Lab Sample ID N80205920

p/Method .lyte				Dilution	Analyst	Date of	
	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				F	Batch 06039	80024	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Tert-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Janes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Project Name HUNTER BARRACKS

Client Sample # E-6-5-98

Sampling Date/Time 05/28/1998 08:50

Sampling Date/Time 05/28/1998 08:50		L	ie ID N8	80205921			
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ate of Analysis
5030/8260 VOC (GC/MS) LIQUID				8	atch 0603	980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1998
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1998
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Methylene Chloride	7.8	5.0	ug/L	1.0	KD	N/A	06/03/1998
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
ns-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	КD	N/A	06/03/1998

Client Sample # E-6-5-98

(

Sampling Date/Time	05/28/1998	08:50
--------------------	------------	-------

Lab Sample ID N80205921

rep/Method				Dilution	Da	Date of		
nalyte	Result	RL.	Units	Factor	Init.	Prep	Analysi	
			2 (2 m					
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0603	980021		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A N/A	06/03/19	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1,2-Trichloroethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A		
* 3-Dichloropropane	Below RL	5.0	-				06/03/19	
3-Dichloroptopane			ug/L	1.0	KD	N/A.	06/03/19	
Chlorodibromomethane	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/19	
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/19	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Slyrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Bromobenzene	Below RL	5.0	ug/L	. 1.0	KD	N/A	06/03/19	
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
2-Chlorotoluene	Below RL	5. 0	ug/L	1.0	KD	N/A	06/03/19	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/03/19	
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A *	06/03/19	
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
N-Bulylbenzene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/19	
2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
.,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	КD	N/A	06/03/19	
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	

Client Sample # E-6-5-98

Sampling Date/Time 05/28/1998 08:50

Lab Sample ID N80205921

ep/Method		RL	Units	Dllution	Analyst Init.	Date of	
nalyte	Result			Factor		Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 06039	80021	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Acetone	Below RL	100	ug/L	1.0	КD	N/A	06/03/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Project Name HUNTER BARRACKS

Client Sample # F-6-5-98

Sampling Date/Time 05/28/1998	08:23			L	ab Sampl	e ID N8	0205922
Prep/Method				Dilution	Analyst	Da	te of
Analyte	Result	RL	Units	Factor	init.	Prep	Analysis

1030/8260 VOC (GC/MS) LIQUID				Ba	atch 060	3980021	
chlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/ 03/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/0 3/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/ 03/199
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	0 6/ 03/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1-Dichloroethene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/199
Methylene Chloride	5.5	5.0	ug/L	1.0	KD	N/A	06/03/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trans-1,2-Dichtoroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A /	06/03/199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	0 6/0 3/199
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0 3/199
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
omodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/199

.

Client Sample # F-6-5-98

Sampling	Date/Time	05/28/1998	08:23
oampinig	Batorrinito	00/20/1000	00.20

Lab Sample ID N80205922

ep/Method		· · · · · · · · · · · · · · · · · · ·		Dilution	Analyst	Da	ite of
ialyte	Result	RL.	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0603	980021	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Toluene	Below RL	5,0	ug/L	1.0	KD	N/A	06/03/19
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Slyrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
¹ 3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
+-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
P-Isopropylloluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Ether	Below RL Below RL	5.0 5.0		1.0	KD	N/A	06/03/19
1,2,3-Trichloropropane	Below RL Below RL		ug/L.				
Xylenes (Total)	Below RL Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Methyl Tert-Butyl Ether		15	ug/L	1.0	KD	N/A	06/03/19
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

1

.

Client Sample # A-5-5-98

Sampling Date/Time 05/28/1998 09 rep/Method	:25			Dilution	ab Samp Analyst		e of
Jalyte	Result	RL	Units	Factor	Init.	Prep	e or Analy
5030/8260 VOC (GC/MS) LIQUID				8	atch 0603	80021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Methylene Chloride	8.8	5.0	ug/L	1.0	KD	N/A	06/03
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	08/03
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Bromochloromethane	Below RL	5.0	ug/∟ ug/L	1.0	KD	N/A	06/03
1,1,1-Trichloroethane	Below RL	5.0 5.0	-	1.0	KD	N/A N/A	06/03
1,1-Dichloropropene	Below RL	5.0 5.0	ug/L.				
 ∩arbon Tetrachloride 			ug/L ug/l	1.0	KD	N/A	06/03
	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	06/03
Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
denzene	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A ·	06/03
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	Ń/A	06/03
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03

?rep/Method				Dilution	Analyst		ite of
Analyte	Result	RL	Units	Factor	Init.	Ргер	Analysi
5030/8260 VOC (GC/MS) LIQUID				E	atch 0603	980021	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/19
P-Isopropyitoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
?-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/Å	06/03/19
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

HUNTER BARRACKS Project Name

Client Sample # B-5-5-98

Sampling Date/Time 05/28/1998 09:					Lab Sample ID N8020592				
Prep/Method				Dilution	Analyst	Da	ate of		
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysi		
•									
				-		~~~~~			
5030/8260 VOC (GC/MS) LIQUID					Batch 0603				
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1 9		
Chloromethane	Below RL	10	ug/L	1.0 ⁻	KD	N/A	06/03/19		
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/ 03/19		
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19		
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1 9		
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/19		
Methylene Chloride	7.4	5.0	ug/L	1.0	KD	N/A	06/03/19		
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
rans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19		
		0.0	- 3				00/00		

HydroLogic, Inc. Ledger N802059

Client Sample # B-5-5-98

ł

Sampling Date/Time 05/28/1998 09:45

Lab Sample ID N80205924

rep/Method				Dilution	Analyst		te of
nalyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0603	80021	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Carbon Telrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19 06/03/19
Toluene	Below RL	5.0	ug/L	1.0	KD		
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L			N/A	08/03/19
* 3-Dichloropropane	Below RL	5.0	-	1.0	KD	N/A	08/03/19
trachloroethene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/19
Chlorodibromomethane	Below RL Below RL		ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromoethane		5.0	ug/L	1.0	KD	N/A	06/03/19
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/19
Elhylbenzene	Below RL Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1,2-Tetrachloroethane		5.0	ug/L	1.0	KD	N/A	06/03/19
Slyrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Propylbenzene Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	. KD	N/A	06/03/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/ 03/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1 9
2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
.,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Client Sample # B-5-5-98

(_____

Sampling Date/Time	a) 05/28/1998	09:45
--------------------	---------------	-------

Lab Sample ID N80205924

ep/Method				Dilution	Analyst	Dî	ate of
.ialyte	Result	RL.	Units	Factor	Init.	Ргер	Analysis
5030/8260 VOC (GC/MS) LIQUID				8			
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/1998
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1998
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	КD	N/A	06/03/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199

Project Name HUNTER BARRACKS

Client Sample # C-5-5-98

Sampling Date/Time 05/28/1998	10:15			Lab Sample ID N80205925				
Prep/Method				Dilution	Analyst	Da	te of	
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysis	

1030/8260 VOC (GC/MS) LIQUID				Ba	itch 060	3980021	
shlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/199
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Methylene Chloride	8. 1	5.0	ug/L	1.0	KD	N/A	06/03/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0 3/199
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1 2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
omodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Jibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/199

Client Sample # C-5-5-98

Sampling Date/Time 05/28/1998 10:15

ep/Method				Dilution	Da ⁱ D 140	ite of	
Analyte	Result	RL	Units	Factor	Analyst init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980021	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromoethane	Below RL	5.0	ug/L.	1.0	KD	N/A	06/03/199
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
٦,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Shlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
P-Isopropylloluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	· 5.0	ug/L	1.0	KD	N/A	06/03/199
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichloropropane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/19
Xylenes (Total)	Below RL	5.0 15	ug/L	1.0	KD	N/A	06/03/19
Adates Test Dut 2 mil		15	~9· ~	1.0		1 11/3	50,00,191

Lab Sample ID N80205925

Methyl Tert-Butyl Ether

(

5.0

ug/L

1.0

KD

N/A

06/03/1998

Below RL

Client Sample # D-5-5-98

(

Sampling Date/Time 05/28/1998 10:25

Lab Sample ID N80205926

p/Method	······································			Dilution	Analyst		te of
L ^A nalyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/199
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/199
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/199
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	КD	N/A	06/ 03/199
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1 99
bon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trichloroethene	5.9	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,3-Dichloropropane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/199
Tetrachloroethene	Below RL	5.0 5.0	-	1.0	KD	N/A	06/03/199
Chlorodibromomethane			ug/L				
	Below RL	5.0	ug/L	1.0	. KD	N/A	06/03/199
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	08/03/199
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
^{la} romoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199

Client Sample # D-5-5-98

Client Sample # D-5-5-98							
· · ·	:25			L	.ab Samp	le ID N8	0205926
Prep/Method				Dilution	Analyst	Da	te of
nalyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				c	atch 0603	000024	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD		
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
1,2,4-Trimethylbenzene	Below RL	5.0	-		KD	N/A	06/03/1
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
P-Isopropyltoluene			ug/L	1.0	KD	N/A	06/03/1
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichtorobenzene	Below RL	5.0	ug/L	1.0	КD	N/A	06/03/1
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1.2.4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
		0.0	-3	1.0		11// 1	00/00/11

5.0

5.0

5.0

100

5.0

5.0

5.0

15

5.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

KD

KD

KD

KD

KD

KD

KD

KD

KD

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Lab Sample ID N80205927

06/03/11

06/03/1!

06/03/11

06/03/11

06/03/11

06/03/1!

06/03/1!

06/03/11

06/03/1

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Project Name HUNTER BARRACKS

Client Sample # E-5-5-98

Hexachlorobutadiene

1,2,3-Trichlorobenzene

2-Chloroethylvinyl Ether

2,3-Trichloropropane

Methyl Tert-Butyl Ether

2-Butanone (MEK)

≺ylenes (Total)

Naphthalene

Acetone

Sampling Date/Time 05/28/1998 10:45

Prep/Method				Dilution	Analyst	Date of	
Analyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980021	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
/inyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
frichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
rans-1,2-Dichloroethene	Below RL	5.0	ug/L 🗸	1.0	KD	N/A	06/03/1
1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Cis-1,2-Dichtoroethene	6.0	5.0	ug/L	1.0	KD	N/A	06/03/ ⁻
	••••		~				

Client Sample # E-5-5-98

Sampling Date/Time 05/28/1998 10:45

Lab Sample ID N80205927

ep/Method	Lab Sample ID N8020592							
ialyte	Result	RL.	Units	Dilution Factor			ate of	
	·	بط ۲ i		I AULOF	Init.	Prep	Analysi	
5030/8260 VOC (GC/MS) LIQUID								
Chloroform	Deleus Di	- -	., 18		atch 0603			
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1,1-Trichloroethane	Below RL Below DI	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Carbon Tetrachloride	Below RL Bolow DI	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2-Dichloroethane	Below RL Below DI	5.0	ug/L	1.0	KD	N/A	06/03/19	
Benzene	Below RL Bolow Bl	5.0	ug/L	1.0	KD	N/A	06/03/19	
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2-Dichloropropane	160 Bolow Ol	5.0	ug/L	1.0	KD	N/A	06/03/19	
Bromodichloromethane	Below RL Below Bl	5.0	ug/L	1.0	KD	N/A	06/03/19	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
4-Methyl-2-Pentanone (MIBK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
Cis-1,3-Dichloropropene Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
⁴ 3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
.rachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A [.]	06/03/19	
chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1.1.1.2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
P-Isopropyitoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A		
Hexachlorobutadiene				1.0	NO	IN//N	06/03/199	

Client Sample # E-5-5-98

Sampling Date/Time 05/28/1998 10:	mpling Date/Time 05/28/1998 10:45						0205927	
o/Method				Dilution	Analyst	Date of		
,lyte	Result	RL	Units	Factor	init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				Batch 0603980021				
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
l de la constante de la consta	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,2,3-Trichlorobenzene Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/199	
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/199	
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199	

Project Name HUNTER BARRACKS

Client Sample # C-2-5-98

Sampling Date/Time 05/28/1998	11:00		Lab Sample II	D N80205928
Pren/Method		Dilution	Analyst	Date of

Result	RL	Units	Factor	lnit.	Prep	Analysis
			B			
Below RL	10	ug/L	1.0			06/03/199
Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Below RL	2.0	ug/L	1.0	KD	N/A	0 6/0 3/199
Below RL	10	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Below RL.	5.0	ug/L	1.0	KD	N/A	06/ 03/19
	5.0	ug/L	1.0	KD	N/A	06/ 03/19
	5.0	ug/L	1.0	KD	N/A	06/ 03/19
Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	5.0	ug/L 🎾	1.0	KD	N/A	06/03/19
	5.0	ug/L	1.0	KD	N/A	06/03/19
	10	ug/L	1.0	KD	N/A	06/03/19
Below RL	10	ug/L	1.0	KD	N/A	06/03/19
	Below RL Below RL	Below RL 10 Below RL 2.0 Below RL 10 Below RL 5.0 Below RL 5.0	Below RL 10 ug/L Below RL 2.0 ug/L Below RL 10 ug/L Below RL 5.0 ug/L </td <td>Below RL 10 ug/L 1.0 Below RL 10 ug/L 1.0 Below RL 2.0 ug/L 1.0 Below RL 10 ug/L 1.0 Below RL 5.0 ug/L 1.0 <</td> <td>Below RL 10 ug/L 1.0 KD Below RL 10 ug/L 1.0 KD Below RL 2.0 ug/L 1.0 KD Below RL 10 ug/L 1.0 KD Below RL 5.0 ug/L</td> <td>Below RL 10 ug/L 1.0 KD N/A Below RL 2.0 ug/L 1.0 KD N/A Below RL 10 ug/L 1.0 KD N/A Below RL 5.0 ug/L 1.0</td>	Below RL 10 ug/L 1.0 Below RL 10 ug/L 1.0 Below RL 2.0 ug/L 1.0 Below RL 10 ug/L 1.0 Below RL 5.0 ug/L 1.0 <	Below RL 10 ug/L 1.0 KD Below RL 10 ug/L 1.0 KD Below RL 2.0 ug/L 1.0 KD Below RL 10 ug/L 1.0 KD Below RL 5.0 ug/L	Below RL 10 ug/L 1.0 KD N/A Below RL 2.0 ug/L 1.0 KD N/A Below RL 10 ug/L 1.0 KD N/A Below RL 5.0 ug/L 1.0

Client Sample # C-2-5-98

rep/Method				Dilution	n Analyst D		Date of	
ialyte	Result	RL	Units	Factor	lnit.	Prep	Ana	
5030/8260 VOC (GC/MS) LIQUID				Ę	Batch 06039	80012		
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0	
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Sec-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/	
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KĎ	N/A	06	
1.4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06	
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06	
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06	
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06	
	Below RL	5.0 15	ug/L	1.0	KD	N/A	06	
Xylenes (Total) Methyl Tert-Butyl Ether	Below RL Below RL	5.0	ug/L	1.0	KD	N/A	00	

•

,

Client Sample # E-2-5-98

ੇrep/Method				Dilution	Analyst		ite of
halyte	Result	RL	Units	Factor	lnit.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				٥	atch 06039	00042	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Vinyl Chloride	Below RL	2.0	ug/L ug/L	1.0	KD	N/A	06/04/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trichlorofluoromethane	Below RL	5.0 5.0	-	1.0	KD	N/A	06/04/1
			ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloroethene	Below RL	5.0	ug/L				
Methylene Chloride	8.2	5.0	ug/L	1.0	KD	N/A	06/04/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
enzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,2,2-Tetrachioroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
I-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromobenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/04/1
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/

Client Sample # E-2-5-98

Sampling Date/Time 05/28/1998 11:				Dilution	Analyst	t Dr	Date of	
/ ⊂rep/Method alyte	Result	RL	Units	Factor	Init	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				8	atch 0603	3980012		
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19§	
Tert-Bulylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19§	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1.2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1.2.3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/19	
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
ر 3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/Ą	06/04/19	
Jenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/19	
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	

.

HUNTER BARRACKS **Project Name**

Client Sample # D-2-5-98

Sampling Date/Time 05/28/1998 11:30				L	Lab Sample ID N80205930			
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init	Da Prep	te of Analysi	
	,							
5030/8260 VOC (GC/MS) LIQUID				8	Batch 0603	980012		
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/19	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A'	06/03/1{	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/11	
Methylene Chloride	6.1	5.0	ug/L	1.0	KD	N/A	06/03/11	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19	
•	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1	
,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1	
2,2-Dichloropropane		5.0 5.0	ug/L	1.0	KD	N/A	06/03/1	
Cis-1,2-Dichloroethene	Below RL	5.0	uyr					

Client Sample # D-2-5-98

	Sampling Date/Time 05/28/1998 11:	:30			L	Lab Sample ID N80205930		
Ĉ	Prep/Method	Result	RL	Units	Dilution	Analyst		te of
		Result		Units	Factor	Init.	Prep	Analysi
	5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980012	
	Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
	2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
	Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
	Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

ug/L

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

· 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

KD

N/A

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

06/03/19

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

Below RL

1	

- 1

1
- N.

Chlo	orobenzene

E١	hy	/lt)e	nz	ene
				-	

1,1,1,2-7	etrachloroethane
Styrene	

Styrene
Isopropylbenzene
Bromoform

1,1,2,2-Tetrachloroethane
N-Propylbenzene
Bromobenzene
1,3,5-Trimethylbenzene
2-Chlorotoluene
4-Chlorotoluene

Tert-Butylbenzene

Hexachlorobutadiene

1,1,2-Trichloroethane

1,3-Dichloropropane

intrachloroethene

1,2-Dibromoethane

.lorodibromomethane

1,2,4-Trimethylbenzene	;
Sec-Butylbenzene	
P-Isopropyltoluene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	

	N-Butylbenzene
	1,2-Dichlorobenzene
	2-Dibromo-3-Chloropropane
ς.	. 2,4-Trichlorobenzene

HydroLogic, Inc. Ledger N802059

Client Sample # D-2-5-98

Sampling Date/Time 05/28/1998 1		L	ab Sampl	e ID N8	0205930		
rep/Method				Dilution	Analyst		ate of
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis
5030/8260 VOC (GC/MS) LIQUID				Ę	Batch 06039	80012	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Acetone	· Below RL	100	ug/L	1.0	KD	N/A	06/03/199
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/199
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/199
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Project Name HUNTER BARRACKS

Client Sample # E-1-5-98

Sampling Date/Time 05/28/1998 12:45

Lab Sample ID N80205931

Prep/Method			Dilution	Analyst	Date of		
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysi
					atch 0603	980042	
5030/8260 VOC (GC/MS) LIQUID	Delaw Di	10	ug/L	۔ 1.0	KD	N/A	06/03/19
hlorodifluoromethane	Below RL Below RL	10	ug/L	1.0	KD	N/A	06/03/19
		2.0	ug/L ug/L	1.0	KD	N/A	06/03/19
√inyl Chloride	Below RL		-	1.0	KD	N/A	06/03/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Chloroethane	Below RL	5.0	ug/L ug/L	1.0	KD	N/A	06/03/19
Trichlorofluoromethane	Below RL	5.0	•	1.0	KD	N/A	06/03/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Methylene Chloride	6.0 De (aux D)	5.0	ug/L	1.0	KD	N/A	06/03/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloropropene	Below RL	5.0	ug/L		KD	N/A	06/03/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichloroethane	Below RL.	5.0	ug/L	1.0	KD	N/A	06/03/1
Benzene	Below RL	5.0	ug/L	1.0		N/A N/A	06/03/1
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A N/A	06/03/1
1,2-Dichloropropane	Below RL	5.0 .	ug/L	1.0	KD		06/03/1
omodichloromethane	Below RL	5.0	ug/L >	1.0	KD	N/A	
oromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/1

(_____

Sampling Date/Time 05/28/1998 12:45

Lab Sample ID N80205931

rep/Method				Dilution	Analyst		ate of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analy
5030/8260 VOC (GC/MS) LIQUID				e	atch 0603	980012	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/ ⁻
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/ [.]
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
P-isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,2,3-Trichloropropane	Below RL	15	ug/L	1.0	KD	N/A	06/03
Xylenes (Total)				1.0	KD	N/A	06/03
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	<u></u>		

ţ

,

Client Sample # D-1-5-98

əp/Method				Dilution	Analyst	Da	ite of
alyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				8	atch 0603	80012	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Methylene Chloride	5.6	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Cis-1.2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Chloroform	6.4	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A-	06/03/1
Jenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromodichloromethane	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/03/*
Dibromomethane		5.0 10	-	1.0	KD	N/A	06/03/
4-Methyl-2-Pentanone (MIBK)	Below RL		ug/L	1.0	KD	N/A	06/03/
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Toluene	Below RL	5.0	ug/L			N/A	06/03/
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD		06/03/
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Styrene	Below RĹ	5.0	ug/L	1.0	KD	N/A	06/03/
Isopropyibenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/03
1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/03/
-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03

Client Sample # D-1-5-98

□rep/Method		·		Dilution	Analyst	Da	te of
nalyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980012	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
ylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

HUNTER BARRACKS Project Name

Client Sample # C-1-5-98

Sampling Date/Time 05/28/1998 13:	L	.ab Sampl	le ID N8	0205933			
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ate of Analysi
			<u></u>	<u>,</u>	<u> </u>		
5030/8260 VOC (GC/MS) LIQUID				F	Batch 0603	980012	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/03/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/03/ 19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/ 19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1 9
Methylene Chloride	5.8	5.0	ug/L	1.0	KD	N/A	06/03/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
rans-1,2-Dichloroethene	Below RL	5.0	ug/L 🗸	1.0	KD	N/A	06/03/19
.,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
			-				

N802059 HydroLogic, Inc. Ledger

Client Sample # C-1-5-98

Sampling Date/Time 05/28/1998 13:20

Lab Sample	ID	N80205933
------------	----	-----------

	:20				Lab Samp		
Prep/Method	D	-	11-14-	Dilution	Analyst		te of
nalyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID					Batch 0603		
Chloroform	8.7	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trichloroethene	13	5.0	ug/L	1.0	KD	N/A	06/03/1
1,2-Dichtoropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/03/1
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
retrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Chlorodibromomethane	Below RL	5.0	ug/L	1.0		N/A	06/03/1
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0		N/A	06/03/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/1
Ethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/03/1
Styrene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
Isopropylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
Bromoform	Below RL	5.0	ug/L	1.0		N/A	06/03/1
	Below RL	5.0	ug/L	1.0		N/A	06/03/1
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/03/1
N-Propylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
Bromobenzene		5.0	ug/L	1.0		N/A	06/03/1
1,3,5-Trimethylbenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	06/03/1
2-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
4-Chiorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/03/1
Tert-Butylbenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	06/03/1
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A.	06/03/1
Sec-Butylbenzene	Below RL	5.0	-	1.0		N/A	06/03/
P-Isopropyltoluene	Below RL Below BL	5.0 5.0	ug/L ug/L	1.0		N/A	06/03/
1,3-Dichlorobenzene	Below RL' Below Bl	5.0 5.0	ug/L	1.0		N/A	06/03/
1,4-Dichlorobenzene	Below RL		=	1.0		N/A	06/03/
N-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L 🖌			N/A	06/03/
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/03/
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	, ND	1974	001031

Client Sample # C-1-5-98

(_____

Sampling	Date/Time	05/28/1998	13:20

rep/Method	ep/Method			Dilution	Analyst	Analyst Date of	
alyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				Batch 0603980012			
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/03/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/03/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/03/19

Project Name HUNTER BARRACKS

Client Sample # 8-1-5-98

Sampling Date/Time 05/28/1998 13:35

Lab Sample ID	N80205934

Prep/Method				Dilution	Dilution Analyst Date of			
Analyte	Result	RL	Units	Factor	Init.	Prep	Analys	
5030/8260 VOC (GC/MS) LIQUID					Batch 06039			
chlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19	
nloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19	
Vinył Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/19	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Methylene Chloride	6.0	5.0	ug/L	1.0	KD	N/A	06/04/19	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Chloroform	19	5.0	ug/L	1.0	KD	N/A	06/04/1	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Benzene	Below RĹ	5.0	ug/L	1.0	KD	N/A	06/04/1	
Trichloroethene	12	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
ibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/1	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/1	

Client Sample # B-1-5-98

'ep/Method				Dilution	Analyst		te of
ialyte	Result	RL	Units	Factor	init.	Prep	Analy
5030/8260 VOC (GC/MS) LIQUID					atch 0603		
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Chlorodibromomethane	Below RL	5.0	ug/L .	1.0	KD	N/A	06/04
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1,1,2-Tetrachloroethane	Below RL	5. 0	ug/L	1.0	KD	N/A	06/04
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1.2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	КD	N/A	06/0
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	КD	N/A	06/0
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/0
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
2-Chloroethylvinyl Ether	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/0
	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/0
1,2,3-Trichloropropane	Below RL	15	ug/L	1.0	KD	N/A	06/0
Xylenes (Total) Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/0

٠

,

Client Sample # A-1-5-98

Sampling Date/Time 05/28/1998 13:50

Lab	Sample	ID	N80205935
-----	--------	----	-----------

Sampling Date/Tin	ne volzøl1998 13:	;50			Lab Sample ID N80205935			
ep/Method alyte		Result	RL	Units	Dilution Factor	Analyst Init.		ate of
aiyte				Units	Factor	IIIL	Prep	Analysis
5030/8260 VO	C (GC/MS) LIQUID				E	Batch 0603	980012	
Dichlorodifluorometha		Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Chloromethane		Below RL	.10	ug/L	1.0	KD	N/A	06/04/19
Vinyl Chloride		Below RL	2.0	ug/L	1.0	KD	N/A	06/04/19
Bromomethane		Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Chloroethane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trichlorofluoromethar	ne	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1-Dichloroethene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Methylene Chloride		6.3	5.0	ug/L	1.0	KD	N/A	06/04/19
Carbon Disulfide		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trans-1,2-Dichloroeth	nene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1.1-Dichloroethane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2,2-Dichloropropane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Cis-1,2-Dichloroether	ne	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Chloroform		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Bromochloromethane)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1,1-Trichloroethane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1-Dichloropropene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Carbon Tetrachloride		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2-Dichloroethane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
,enzene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trichloroethene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dichloropropane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Bromodichlorometha	ne	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Dibromomethane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
4-Methyl-2-Pentanon	e (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
2-Hexanone		Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Cis-1,3-Dichloroprop	ene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Toluene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trans-1,3-Dichloropr	onene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1,2-Trichloroethane	•	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,3-Dichloropropane		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Tetrachloroethene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Chlorodibromometha	ino '	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dibromoethane	1110	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Chlorobenzene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Elhylbenzene		Below RL	5.0	ug/L	1.0	KD	N/A .	06/04/19
•	ihana	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1,1,2-Tetrachloroel		Below RE	5.0	ug/L	1.0	KD	N/A	06/04/19
Slyrene		Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
isopropylbenzene Bromoform			5.0	ug/L ug/L	1.0		N/A	06/04/19
Bromoform	4h a m a	Below RL Below Bl		+	1.0		N/A	06/04/19
1,1,2,2-Tetrachloroe	inane	Below RL	5.0	ug/L	1.0		N/A	06/04/1
I-Propylbenzene		Below RL	5.0	ug/L 1			N/A	06/04/1
Bromobenzene		Below RL	5.0	ug/L	1.0		N/A	06/04/1
1,3,5-Trimethylbenze	ene	Below RL	5.0	ug/L	1.0	KD	ANKI -	00/04/13

í

Client Sample # A-1-5-98

Sampling Date/Time 05/28/1998 13:50

Lab Sample	D N80205935
------------	-------------

`∕ep/Method				Dilution	Analyst	D	ate of
alyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				8	Batch 0603	980012	
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
.3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A∙	06/04/19
Jenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19

Project Name HUNTER BARRACKS

Client Sample # A-3-5-98

Sampling Date/Time 05/28/1998 14:2	20			L	ab Sampl	e ID N8	0205936
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	te of Analysis
5030/8260 VOC (GC/MS) LIQUID				B	atch 06039	80012	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Methylene Chloride	5.9	5.0	ug/L	1.0	KD	N/A	06/04/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
`ans-1,2-Dichloroethene	Below RL	5.0	ug/L >	1.0	KD	N/A	06/04/19
/1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19

HUNTER BARRACKS Project Name

Client Sample # A-3-5-98

	Sampling	Date/Time	05/28/1998	14:2
--	----------	-----------	------------	------

Sampling Date/Time 05/28/1998 14:20					l	Lab Sampl	eID N8	0205936
ep/Method		Result	RL	Units	Dilution Factor	Analyst Init.		te of Analysis
5030/8260	VOC (GC/MS) LIQUID							
Chloroform		Below Pl	5.0		10	Batch 06039	80012	

				Ba	atch 060	3980012	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19:
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	КD	N/A	06/04/19:
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Benzene	Below RL	5.0	ug/L	1.0	КD	N/A	06/04/19
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	КD	N/A	06/04/19
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KĐ	N/A	06/04/19
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Irachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
alorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Elhylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
4-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
		0.0	29.2	1.0	1.0	1973	00/04/18

1

Client Sample # A-3-5-98

Sampling Date/Time 05/28/1998 14:20

Prep/Method	_			Dilution	Analyst	Date of	
alyte	Result	RL	Units	Factor	init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				8	atch 06039	80012	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/19
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/19
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19

Project Name HUNTER BARRACKS

Client Sample # B-3-5-98

Sampling Date/Time 05/28/1998 14:30					.ab Samp	ie ID N80205937		
Prep/Method				Dilution	ate of			
Analyte	Result	RL	Units	Factor	Analyst Init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				E	atch 0603	980012		
chlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19 [,]	
Joloromethane	Below RL	10	ug/L	1.0	КD	N/A	06/04/19	
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/19	
Bromomethane	Below RL	10	ug/L	1.0	КD	N/A	06/04/19	
Chloroethane	Below RL	5.0	ug/L	1.0	КD	N/A	06/04/19	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Methylene Chloride	6.5	5.0	ug/L	1.0	KD	N/A	06/04/19	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2-Dichloroethane	Below RL,	5.0	ug/L	1.0	KD	N/A	06/04/19	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2-Dichloroprogane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Sromodichloromethane	Below RL	5.0	ug/L 🗸	1.0	KD	N/A	06/04/19	
ibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/19	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/19	
			-				1	

Client Sample # B-3-5-98

Prep/Method				Dilution	ab Samp		te of
alyte	Result	RL	Units	Factor	lnit.	Prep	Analy
5030/8260 VOC (GC/MS) LIQUID				E	Batch 0603	980012	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Bromoform	Below RL	5,0	ug/L	1.0	KD	N/A	06/04
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
N-Propylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Bromobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
2-Chlorotoluene	Below RL	5.0	-9 ug/L	1.0	KD	N/A.	06/04
;hlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
ert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1.2.4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
P-Isopropylloluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1.2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1.2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1.2.4-Trichlorobenzene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/04
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Naphthalene	Below RL	5.0 5.0	ug/L	1.0	KD	N/A	06/04
I,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Acetone	Below RL	5.0 100	ug/L	1.0	KD	N/A	
2-Butanone (MEK)	Below RL Below RL	5.0	-	1.0	KD	N/A	06/04
2-Chloroethylvinyl Ether	Below RL Below RL		ug/L				06/04
		5.0	ug/L	1.0	KD	N/A ·	06/04
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A ···	06/04
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/0

•

ø

(------

 \langle

Prep/Method	n and an			Dilution Analyst Date of				
nalyte	Result	RL	Units	Factor	init.	Prep	Analys	
				_				
5030/8260 VOC (GC/MS) LIQUID					atch 06039		0010114	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1	
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1	
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/1	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1	
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1.1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Methylene Chloride	6.7	5.0	ug/L	1.0	KD	N/A	06/04/1	
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/ [,]	
enzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/ ⁻	
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/	
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/	
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0		N/A	06/04/	
Chlorobenzene	Below RL	5.0	ug/L	1.0		N/A [·]	06/04/	
Ethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04	
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/04	
Styrene	Below RL	5.0	ug/L	1.0		N/A	06/04	
Isopropylbenzene		5.0	ug/L	1.0		N/A	06/04	
Bromoform	Below RL	5.0	ug/L	1.0		N/A	06/04	
1,1,2,2-Tetrachloroethane	Below RL		ug/L	1.0		N/A	06/04	
1-Propylbenzene	Below RL	5.0	-	1.0		N/A	06/04	
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04	
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0	, _N U	1977	00/0	

Client Sample # C-3-5-98

(-----

Prep/Method				Dilution	Analyst	٦a	ate of	
alyte	Result	RL	Units	Factor	Init.	Prep	Analysis	
5030/8260 VOC (GC/MS) LIQUID				8	atch 0603	980012		
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
4-Chiorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
P-Isopropyltoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/19	
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
?,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
ienes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/19	
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	

Project Name HUNTER BARRACKS

Client Sample # D-3-5-98

Sampling Date/Time 05/28/1998 14:50

Prep/Method				Dilution	Analyst	Date of	
Analyte	Result	RL	Units	Factor	Init.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID				E	atch 0604	980019	
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Chloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/19
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/19
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trichlorofluoromethane	Below RL.	5.0	ug/L	1.0	KD	N/A	06/04/19
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Methylene Chloride	8.2	5.0	ug/L	1.0	KD	N/A	06/04/19
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L 🎾	1.0	KD	N/A	06/04/19
1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19

Lab Sample ID N80205939

Client Sampie # D-3-5-98

(----

Sampling Date/Time	05/28/1998	14:
--------------------	------------	-----

Sampling Date/Time 05/28/1998 14	:50			Dilution	Lab Sample ID N			
alyte	Result	RL	Units	Factor	Analyst Init.	Da Prep	ate of Analysis	
5030/8260 VOC (GC/MS) LIQUID				8	atch 06049	80019		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Trichloroelhene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/199	
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/199	
Cis-1,3-Dichtoropropene	Below RL	5.0	ug/L	1.0	KD	N/A		
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199 06/04/199	
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A		
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	
trachloroethene	Below RL	5.0	ug/L	1.0	KD		06/04/199	
orodibromomethane	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Chlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Ethylbenzene	Below RL	5.0	ug/L			N/A	06/04/199	
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Styrené	Below RL	5.0	-	1.0		N/A	06/04/199	
lsopropylbenzene	Below RL	5.0 5.0	ug/L	1.0		N/A	06/04/199	
Bromoform	Below RL	5.0 5.0	ug/L	1.0		N/A	06/04/199	
1,1,2,2-Tetrachloroethane	Below RL		ug/L	1.0		N/A	06/04/199	
N-Propylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
2-Chlorotoluene		5.0	ug/L	1.0		N/A	06/04/199	
4-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/1 99	
•	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
P-lsopropyltoluene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
1.3-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/1 99	
N-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/ 199	
1,2-Dichlorobenżene	Below RL	5.0	ug/L	1.0		N/A	06/04/1 99	
2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
,,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/199	
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/199	

Client Sample # D-3-5-98

1-----

Sampling Date/Time 05/28/1998 14:		L	ab Sampl	le ID N8	0205939			
Prep/Method				Dilution	Analyst	Da	Date of	
nalyte	Result	RL	Units	Factor	Init.	Prep	Analysi	
5030/8260 VOC (GC/MS) LIQUID				8	Batch 0604	980019		
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/19	
2-Bulanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/19	
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19	

Lab Sample ID N80205940

Project Name HUNTER BARRACKS

Client Sample # F-3-5-98

Sampling Date/Time 05/28/1998 15:15

Prep/Method				Dilution	Analyst		ate of
Analyte	Result	RL	Units	Factor	Init.	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID				E	atch 0604	980019	
chlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
nloromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/1
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Methylene Chloride	6.6	5.0	ug/L	1.0	KD	N/A	06/04/1
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A`	06/04/1
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
)ibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/

Client Sample # F-3-5-98

Sampling Date/Time 05/28/1998 15: Trep/Method				Dilution	Analyst		te of
alyte	Result	RL	Units	Factor	Init.	Prep	Analy
5030/8260 VOC (GC/MS) LIQUID					atch 06049		
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD.	N/A	06/04
1,3-Dichloropropane	Below RL	5.0	u g/L	1.0	KD	N/A	06/0
Tetrachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Chlorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Chlorobenzene	Below RL	5.0	u g/L	1.0	KD	N/A	06/0
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1,2,2-Telrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
N-Propylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/(
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	06/0
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/
Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/
Shlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/
P-isopropyltoluene	Below RL	5.0	ug/L	1.0		N/A	06/
1.3-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/
1,4-Dichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/
N-Butylbenzene	Below RL	5.0	ug/L	1.0	N KD	N/A	06/
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0) KD	N/A	06/
1,2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0		N/A	06/
1,2,4-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0		N/A	06
Naphthalene	Below RL	5.0	ug/L	1.0) KD	N/A	06
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06
	Below RL	100	ug/L	1.0	D KD	N/A	06
Acetone	Below RL	5.0	ug/L	1.0	D KD	N/A	06
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	0 KD	N/A ·	06
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.	0 KD	N/A	06
1,2,3-Trichloropropane	Below RĽ	15	ug/L	1.	0 KD	N/A	06
Xylenes (Total) Methyl Tert-Butyl Ether	Below RL	5.0	-	1.	0 KD	N/A	06

•

،

Client Sample # E-3-5-98

.

Sampling Date/Time 05/28/1998 15:35

Lab Sample II	D N80205941
---------------	-------------

Prep/Method nalyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Anal
	Neaun	116		1 40101			
5030/8260 VOC (GC/MS) LIQUID					Batch 0604	000040	
. ,	Polow DI	10	1107	1.0	KD	N/A	06/04
Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04
Chloromethane	Below RL	.10	ug/L				06/0
Vinyl Chloride	Below RL	2.0	ug/L	1.0	KD	N/A	
Bromomethane	Below RL	10	ug/L	1.0	KD	N/A	06/0 06/0
Chloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Methylene Chloride	7.0	5.0	ug/L	1.0	KD	N/A	06/0
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Trans-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
1,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
2,2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Cis-1,2-Dichloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/0
Bromochloromethane	Below RL	5.0	ug/L	1.0		N/A	06/0
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0		N/A	06/0
1,1-Dichtoropropene	Below RL	5.0	ug/L	1.0		N/A	06/(
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0		N/A	06/(
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0		N/A	06/
Inzene	Below RL	5.0	ug/L	1.0		N/A	06/
richloroethene	Below RL	5.0	ug/L	1.0		N/A	06/
1,2-Dichloropropane	Below RL	5.0	ug/L	1.0		N/A	06/
Bromodichloromethane	Below RL	5.0	ug/L	1.0		N/A	06/
Dibromomethane	Below RL	5.0	ug/L	1.0		N/A	06/
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0		N/A	06/
2-Hexanone	Below RL	10	ug/L	1.0		N/A	06/
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	. 1.0		N/A	06/
Toluene	Below RL	5.0	ug/L	1.0		N/A	06/
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0		N/A	06/
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0		N/A	06/
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0		N/A	06/
Tetrachloroethene	Below RL	5.0	ug/L	1.0		N/A	06/
Chlorodibromomethane	Below RL	5. 0	ug/L	1.0		N/A	06/
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0		N/A	06/
Chlorobenzene	Below RL	5.0	ug/L	1.0		N/A	06/
Ethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/
Styrene	Below RL	5.0	ug/L	1.0		N/A	06
Isopropylbenzene	Below RL	5.0	ug/L	1.0		N/A	06
Bromoform	Below RL	5.0	ug/L	1.0		N/A	06
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06
l-Propylbenzene	Below RL	5.0	ug/L	1.0) KD	N/A	06
aromobenzene	Below RL	5.0	ug/L	1.0	D KD	N/A	06
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.(D KD	N/A	06

J. # E 2 5 00

.....

Ś

Trep/Method				Dilution	Analyst		te of
alyte	Result	RL	Units	Factor	lnit.	Prep	Analysi
5030/8260 VOC (GC/MS) LIQUID					Batch 06049		
2-Chlorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
4-Chiorotoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Tert-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
P-Isopropyitoluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,3-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1.4-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
N-Butylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2-Dichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1.2-Dibromo-3-Chloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1.2.4-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/1
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
2-Chloroethylvinyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
2,3-Trichloropropane	Below RL	5.0	ug/L	1.0		N/A	06/04/
vienes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/

HUNTER BARRACKS Project Name

Client-Sample # EQ-BLK-2

Lab Sample ID N80205942	Lab	Sample	ID	N80205942
-------------------------	-----	--------	----	-----------

Sampling Date/Time 05/28/1998 15:	00			Li	ab Sampl	e ID N8	0205942
Prep/Method Analyte	Result	RL	Units	Dilution Factor	Analyst Init.	Da Prep	ite of Analy
5030/8260 VOC (GC/MS) LIQUID				В	atch 0604	980019	
5030/8260 VOC (GC/MS) LIQUID Dichlorodifluoromethane	Below RL	10	ug/L	1.0	KD	N/A	06/04/
· • •	Below RL	10	ug/L	1.0	KD	N/A	06/04/
Chloromethane	Below RL	2.0	ug/L	1.0	KD	N/A	06/04/
Vinyl Chloride	Below RL	10	ug/L	1.0	KD	N/A	06/04/
Bromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Chloroethane	Below RL.	5.0	ug/L	1.0	KD	N/A	06/04
Trichlorofluoromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
1,1-Dichloroethene	9.4	5.0	ug/L	1.0	KD	N/A	06 /04
Methylene Chloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Carbon Disulfide	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
Trans-1,2-Dichloroethene		5.0	ug/L	1.0	KD	N/A	06/04
.,1-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04
2,2-Dichloropropane	Below RL		ug/L	1.0	KD	N/A	06/04
Cis-1,2-Dichloroethene	Below RL	5.0	սցու	110			

HydroLogic, Inc. Ledger N802059

Client Sample # EQ-BLK-2

[-----

'Prep/Method				Dilution	Analyst		te of
alyte	Result	RL	Units	Factor	Init	Prep	Analys
5030/8260 VOC (GC/MS) LIQUID					atch 06049		
Chloroform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromochloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,1-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Carbon Tetrachloride	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2-Dichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Benzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trichtoroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1.2-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Bromodichloromethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Dibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
4-Methyl-2-Pentanone (MIBK)	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
2-Hexanone	Below RL	10	ug/L	1.0	KD	N/A	06/04/1
Cis-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Toluene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Trans-1,3-Dichloropropene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,2-Trichloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,3-Dichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
trachloroethene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
alorodibromomethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,2-Dibromoethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
Chlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/*
Ethylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/1
1,1,1,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
Styrene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
Isopropylbenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
Bromoform	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/
1,1,2,2-Tetrachloroethane	Below RL	5.0	ug/L	1.0		N/A	06/04/
N-Propylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/
Bromobenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/
1,3,5-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/
2-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/04/
4-Chlorotoluene	Below RL	5.0	ug/L	1.0		N/A	06/04/
Tert-Butylbenzene		5.0	ug/L	1.0		N/A	06/04/
1,2,4-Trimethylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/
Sec-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04/
P-Isopropyitoluene	Below RL	5.0 5.0	ug/L	1.0		N/A	06/04/
1,3-Dichlorobenzene	Below RĽ		ug/L	1.0		N/A	06/04
1,4-Dichlorobenzene	Below RL	5.0	_	1.0		N/A	06/04
N-Butylbenzene	Below RL	5.0	ug/L	1.0		N/A	06/04
1,2-Dichlorobenzene	Below RL	5.0		1.(N/A	06/04
.2-Dibromo-3-Chloropropane	Below RL	5.0		1.0		N/A	06/04
1,2,4-Trichlorobenzene	Below RL	5.0		1.0		N/A	06/04
Hexachlorobutadiene	Below RL	5.0	ug/L	1.0			

HUNTER BARRACKS **Project Name**

Client Sample # EQ-BLK-2

Lab Sample ID	N80205942
---------------	-----------

Certifying Scientist

.

Sampling Date/Time 05/28/1998 15	15:00			L	e ID N8	N80205942			
rep/Method	p/Method					Dilution	Analyst	Date of	
alyte	Result	RL	Units	Factor	Init.	Prep	Analysi		
5030/8260 VOC (GC/MS) LIQUID					Batch 06049	980019			
Naphthalene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19		
1,2,3-Trichlorobenzene	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19		
Acetone	Below RL	100	ug/L	1.0	KD	N/A	06/04/19		
2-Butanone (MEK)	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19		
2-Chloroethylvinyl Elher	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19		
1,2,3-Trichloropropane	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19		
Xylenes (Total)	Below RL	15	ug/L	1.0	KD	N/A	06/04/19		
Methyl Tert-Butyl Ether	Below RL	5.0	ug/L	1.0	KD	N/A	06/04/19		

28/1

RL = Reporting Limit INIT. = (*) Analysis performed by another HydroLogic Laboratory, (#) Analysis performed by subcontracted Laboratory.

Organics and Inorganics in Wastewater, Solids, and Wastes

NC-DEHNR 441, SC-DHEC 98013, GA -DNR-806 UT-DOH E-228 (UST), FL-DEP 940134 HRS E87194 (Water) HRS 87368 (Drinking Water), A2LA:0594-01,

US Army Corps of EPA ID EPA Reg Waste GA-0001011006 **Engineers** Validation GA-00033 These result(s) relate only to the item(s) tested. This report shall not be reproduced, except in full, without the written approval of HydroLogic Inc.

N802059 HydroLogic, Inc. Ledger

Case Narrative N802059

Date: June 08, 1998

.

Client: USACE Sava	annah District	
Analysis	QC Situation	Comments
Volatile Organics By GC/MS Batch: 0603980008	The batch Method Blank had a detection for Methylene Chloride at $5.5\mu g/L$ and Naphthalene at $7.9\mu g/L$.	Samples from this batch with positive results for Methylene Chloride and/or Naphthalene consistent with those of the Method Blank were likely induced by laboratory contamination and should be considered as suspect.
	Several samples from this batch had 1,2- Dichloroethane-d4 surrogate recoveries slightly below the established control limits.	The newly generated control limits for this method are very narrow (92-112). The samples that appear to have low recoveries, in each case, were very close to acceptable. These values should not have any impact on the data quality.
Volatile Organics By GC/MS Batch: 0603980021	LCS, MS, and MSD spike recoveries for 1,1-Dichlorothene were below the established control limits.	No QC samples were greater than 3% below the control limits of 80-119. These recoveries, while slightly low, should not have any impact on the data quality.
	Several samples had slightly low 1,2- Dichloroethane-d4 surrogate recoveries as well as high 4-Bromofluorobenzene surrogate recoveries.	As noted for batch 0603980008, new control limits were recently generated which are very narrow. A review of each of the samples with out of control recoveries did not indicate any recovery that was significantly outside of the control limits which would cause estimated sample results.
Volatile Organics By GC/MS Batch: 0603980012	The batch MS and MSD spike recoveries for 1,1-Dichloroethene were slightly below the established control limits.	Batch control was based on the acceptable LCS spike recovery for this compound.
	Several samples had recoveries for 1,2- Dichloroethane-d4 and 4- Bromofluorobenzene surrogate recoveries that were slightly outside of the established control limits.	Please see the explanation listed above for this occurrence. No sample results should be impacted.
Volatile Organics By GC/MS Batch: 0604980019	The batch Method Blank had a detection for Methylene Chloride at 6.9μ g/L.	Samples from this batch with positive results for Methylene Chloride consistent with those of the Method Blank were likely induced by laboratory contamination and should be considered as suspect.
	The batch MSD and LCSD spike recoveries for Trichloroethene were slightly below the established control limits.	Batch control was based on the acceptable MS spike recovery for this compound.
	Several samples had recoveries for 1,2- Dichloroethane-d4 surrogate recoveries that were slightly outside of the established control limits.	Please see the explanation listed above for this occurrence. No sample results should be impacted.

QA/QC REPORT

Ledger # N802059 Analyzed by KD QA/QC Batch ID 0603980008 MS/MSD Ref ID N80202907

MB

NO8154028

Prep Method 5030 Prepared by KD Analysis Method 8260 Matrix LIQUID

NQ8154028 MB	Value	RL	Units	
Dichlorodifluoromethane	Below RL	10.0	ug/L	
Chloromethane	Below RL	10.0	ug/L	
Vinyl Chloride	Below RL	2.00	ug/L	
Bromomethane	Below RL	10.0	ug/L	
Chloroethane	Below RL	5.00	ug/L	
Trichlorofluoromethane	Below RL	5.00	ug/L	
1,1-Dichloroethene	Below RL	5.00	ug/L	
Methylene Chloride	5.50	5.00	ug/L	
Carbon Disulfide	Below RL	5.00	ug/L	
Trans-1,2-Dichloroethene	Below RL	5.00	ug/L	
1,1-Dichloroethane	Below RL	5.00	ug/L	
2,2-Dichloropropane	Below RL	5.00	ug/L	
Cis-1,2-Dichloroethene	Below RL	5.00	ug/L	
Chloroform	Below RL	5.00	ug/L	
Bromochloromethane	Below RL	5.00	ug/L	
1,1,1-Trichloroethane	Below RL	5.00	ug/L	
1,1-Dichloropropene	Below RL	5.00	ug/L	
Carbon Tetrachloride	Below RL	5.00	ug/L	
1,2-Dichloroethane	Below RL	5.00	ug/L	
nzene	Below RL	5.00	ug/L	
richloroethene	Below RL	5.00	ug/L	
1,2-Dichloropropane	Below RL	5.00	ug/L	
Bromodichloromethane	Below RL	5.00	ug/L	
Dibromomethane	Below RL	5.00	ug/L	
4-Methyl-2-Pentanone (MIBK)	Below RL	10.0	ug/L	
2-Hexanone	Below RL	10,0	ug/L	
Cis-1,3-Dichloropropene	Below RL	5.00	ug/L	
Toluene	Below RL	5.00	ug/L	
Trans-1,3-Dichloropropene	Below RL	5.00	ug/L	
1,1,2-Trichloroethane	Below RL	5.00	ug/L	
1,3-Dichloropropane	Below RL	5.00	ug/L	
Tetrachloroethene	Below RL	5.00	ug/L	
Chlorodibromomethane	Below RL	5.00	ug/L	
1,2-Dibromoethane	Below RL	5.00	ug/L	
Chlorobenzene	Below RL	5.00	ug/L	
Ethylbenzene	Below RL	5.00	ug/L	
1,1,1,2-Tetrachloroethane	Below RL		ug/L	
Xylenes (Total)	Below RL		ug/L	
Styrene	Below RL	5.00	ug/L	
Isopropylbenzene	Below RL	5.00	ug/L	
Bromoform	Below RL	5.00	ug/L	
1,1,2,2-Tetrachloroethane	Below RL		ug/L	
1,2,3-Trichloropropane	Below RL	5.00	ug/L	
N-Propylbenzene	Below RL	5.00	ug/L	
omobenzene	Below RL	5.00	ug/L	
3,5-Trimethylbenzene	Below RL	5.00	ug/L	

QA/QC Conventions

DV : Duplicate

DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS: Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N802059 HydroLogic, Inc. Ledger

NQ8154028 MB			·· · · ·				
···E·····	Value	RL	Units	1	<u> </u>		
2-Chlorotoluene	Below RL		ug/L	4			
4-Chlorotoluene	Below RL		ug/L	ł			
Tert-Butylbenzene	Below RL		ug/L	ł			
2,4-Trimethylbenzene	Below RL		ug/L	ł			
cc-Butylbenzene	Below RL		ug/L	ł			
P-Isopropyltoluene	Below RL		ug/L	4			
1,3-Dichlorobenzene	Below RL		ug/L	4			
1,4-Dichlorobenzene	Below RL		ug/L	4			
N-Butylbenzene	Below RL		ug/L	1			
1,2-Dichlorobenzene	Below RL		ug/L	1			
1,2-Dibromo-3-Chloropropane	Below RL		ug/L	1			
1,2,4-Trichlorobenzene	Below RL		ug/L	l			ę
Hexachlorobutadiene	Below RL		ug/L	1			
Naphthalene	7.90		ug/L	Ţ			
1,2,3-Trichlorobenzene	Below RL		ug/L	1			
Acetone	Below RL		-	1			
2-Butanone (MEK)	Below RL		-	1			
2-Chloroethylvinyl Ether	Below RL		-	1			
Methyl Tert-Butyl Ether	Below RL	5,00	ug/L	<u> </u>			
NQ8154029 MS	Value	Spike Value	Units	REC (%)	Control Limits (%)		
	45.8			91.6	80-119		
1,1-Dichloroethene	45.8	50.0		83.8	82-124	1	
Benzene	43.2		1	83.8	75-120	1	
Trichloroethene	43.2			87.4	71-123	1	
Toluene				87.4	71-123	1	
Chlorobenzene	43.6		ug/L	01.6		<u>(</u>	100
NO8154030 MSD	•	Spike			Control	חתי	RPE
	Value	Value	Units	REC (%)	Limits (%)		Limit
,1-Dichloroethene	48.1			96.2	80-119		
enzene	78.1			93.0	82-124	6.07 *	┥────
Trichloroethene	45.6			91.2	75-120		-
Toluene	45.7			91.4	71-123	4.47	<u> </u>
Chlorobenzene	46.3	50.0	ug/L	92.6	79-119	6.01	
NQ8154027 LCS		Spike			Control		
	Value	Value	Units	REC (%)	Limits (%)		
1,1-Dichloroethene	47.3	1		94.6	80-119	4	
Benzene	46.3		·····	92.6	82-124	-	
Trichloroethene	42.6	2	ug/L	85.2	75-120		
Toluene	44.4			88.8	71-123	1	
Chlorobenzene	45.6	50.0	ug/L	91.2	79-119	1	

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS: Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

.

HydroLogic, Inc. Ledger N802059

, N80205901 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	49.8	50.0	1.00	ug/L	99.6	96-106
1,2-Dichloroethane-D4	44.3	50.0	1.00	ug/L	88.6 *	92-112
4-Bromofluorobenzene	48.3	50.0	1.00	ug/L	96.6	90-105
0205902 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Juene-D8	49.7	50.0	1.00	ug/L	99.4	96-106
1,2-Dichloroethane-D4	43.4	50.0	1.00	ug/L	86.8 *	92-112
4-Bromofluorobenzene	48.5	50.0	1.00	ug/L	97.0	90-105
N80205903 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.3	50.0	1.00	ug/L	98.6	96-106
1,2-Dichloroethane-D4	43.6	50.0	1.00	ug/L	87.2 *	92-112
4-Bromofluorobenzene	48.7	50.0	1.00	ug/L	97.4	90-105
N80205904 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.6	50.0	1.00	ug/L	99.2	96-106
1,2-Dichloroethane-D4	43.6	50.0	1.00	ug/L	87.2 *	92-112
4-Bromotluorobenzene	48.6	50.0	1.00	ug/L	97.2	90-105
N80205905 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.7	50.0	1.00	ug/L	99.4	96-106
1,2-Dichloroethane-D4	43.2	50.0	1.00	ug/L	86.4 *	92-112
4-Bromofluorobenzene	48.2	50.0	1.00	ug/L	96.4	90-105
N80205906 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	49.6	50.0	1.00	ug/L	99.2	96-106
1,2-Dichloroethane-D4	44.3	50.0	1.00	ug/L	88.6 *	92-112
4-Bromofluorobenzene	47.8	50.0	1.00	ug/L	95.6	90-105
N80205907 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	50.4	50.0	1.00	ug/L	101	96-106
2-Dichloroethane-D4	45.4	50.0	1.00	ug/L	90.8 *	92-112
+-Bromofluorobenzene	47.3	50.0	1.00	ug/L	94.6	90-105
NQ8154027 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	51.2	50.0	1.00	ug/L	102	96-106
1,2-Dichloroethane-D4	47.3	50.0	1.00	ug/L	94.6	92-112
4-Bromofluorobenzene	50.6	50.0	1.00	ug/L	101	90-105
NQ8154028 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.9	50.0	1.00	ug/L	102	96-106
1,2-Dichloroethane-D4	47.6	50.0	1.00	ug/L	95.2	92-112
4-Bromofluorobenzene	49.4	50.0	1.00	ug/L	98.8	90-105
NQ8154029 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.9	50.0	1.00	ug/L	102	96-106
1,2-Dichloroethane-D4	45.2	50.0	1.00	ug/L	90.4 *	92-112
4-Bromofluorobenzene	50.9	50.0	1.00	ug/L	102	90-105
NQ8154030 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.8	50.0	1.00	ug/L	102	96-106
1,2-Dichloroethane-D4	47.0	50.0	1.00	ug/L	94.0	92-112
4-Bromofluorobenzene	51.2	50.0	1.00	ug/L	102	90-105

QA/QC REPORT

Ledger # N802059 Analyzed by KD QA/QC Batch ID 0603980021 MS/MSD Ref ID N80205911

Prep Method 5030 Prepared by KD Analysis Method 8260 Matrix LIQUID

NQ8154071 MB	Value	RL	Units	
Dichlorodifluoromethane	Below RL	10.0	ug/L	
Chloromethane	Below RL	10.0	ug/L	
Vinyl Chloride	Below RL	2.00	ug/L	
Bromomethane	Below RL	10.0	ug/L	
Chioroethane	Below RL	5.00	ug/L	
Trichlorofluoromethane	Below RL	5.00	ug/L	
1,1-Dichloroethene	Below RL	5.00	ug/L	
Methylene Chloride	Below RL	5.00	ug/L	
Carbon Disulfide	Below RL	5.00	ug/L	
Trans-1,2-Dichloroethene	Below RL	5.00	ug/L	ĺ
1,1-Dichloroethane	Below RL	5.00	ug/L	ĺ
2.2-Dichloropropane	Below RL	5.00	ug/L	
Cis-1,2-Dichloroethene	Below RL	5.00	ug/L	
Chloroform	Below RL	5.00	ug/L	
Bromochloromethane	Below RL	5.00	ug/L	
1,1,1-Trichloroethane	Below RL	5.00	ug/L	
1,1-Dichloropropene	Below RL	5.00	ug/L	
Carbon Tetrachloride	Below RL	5.00	ug/L	
-Dichloroethane	Below RL	5.00	ug/L	
zene	Below RL	5.00	ug/L	
1 richloroethene	Below RL	5.00	ug/L	
1,2-Dichloropropane	Below RL	5.00	ug/L	
Bromodichloromethane	Below RL	5.00		
Dibromomethane	Below RL	5.00	ug/L	·
4-Methyl-2-Pentanone (MIBK)	Below RL	10.0		
2-Hexanone	Below RL	10.0		
Cis-1,3-Dichloropropene	Below RL	5.00	ug/L	•
Toluene	Below RL	5.00	ug/L	
Trans-1,3-Dichloropropene	Below RL	5.00	ug/L	
1,1,2-Trichloroethane	Below RL	5.00	ug/L	•
1,3-Dichloropropane	Below RL	5.00	-	
Tetrachloroethene	Below RL	5.00		•
Chlorodibromomethane	Below RL	5.00		ł
1.2-Dibromoethane	Below RL		ug/L	
Chlorobenzene	Below RL		ug/L	
Ethylbenzene	Below RL		ug/L	
1,1,1,2-Tetrachloroethane	Below RL		ug/L	
Xylenes (Total)	Below RL		ug/L	
Styrene	Below RL		ug/L	
Isopropylbenzene	Below RL	5.00		
Bromoform	Below RL	5.00		
1,1,2,2-Tetrachloroethane	Below RL	5.00		ł
1,2,3-Trichloropropane	Below RL	5.00	-	ł
N-Propylbenzene	Below RL	5.00		ł
omobenzene	Below RL	5.00	ug/L	l
.,3,5-Trimethylbenzene	Below RL	5.00	ug/L	ł
	1 DEIOW KL	5.00	1.25.12	1

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS: Matrix Spike MSD: Matrix Spike Duplicate

LCS: Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

N802059 HydroLogic, Inc. Ledger

Batch 0603980021

							<u></u>
NQ8154071 MB	Value	RL	Units				
2-Chlorotoluene	Below RL		ug/L				
4-Chlorotoluene	Below RL			Í			
Tert-Butylbenzene	Below RL		-	1			
1,4-Trimethylbenzene	Below RL		-	1			
c-Burylbenzene	Below RL			1			
P-Isopropyltoluene	Below RL		-	(.			
1,3-Dichlorobenzene	Below RL			1			
1,4-Dichlorobenzene	Below RL		-	1			
N-Butylbenzene	Below RL		ug/L	1			
1,2-Dichlorobenzene	Below RL		ug/L	1			
1,2-Dibromo-3-Chloropropane	Below RL		ug/L	1			
1,2,4-Trichlorobenzene	Below RL		ug/L	1			
Hexachlorobutadiene	Below RL		ug/L	1			
Naphthalene	Below RL		ug/L	1			
1,2,3-Trichlorobenzene	Below RL			i			
Acetone	Below RL		-	1			
2-Butanone (MEK)	Below RL			1			
2-Chloroethylvinyl Ether	Below RL	5.00	ug/L	1			
Methyl Tert-Butyl Ether	Below RL	5.00	ug/L	1			
		Spike		h	Control		
NQ8154072 MS	Value	Value	Units	REC (%)	Limits (%)		
1,1-Dichloroethene	39.0	50.0	ug/L	78.0*	80-119		
Benzene	48.6	1	ug/L	97.2	82-124	1	
Trichloroethene	41.2	50.0	ug/L	82.4	75-120	1	
Toluene	40.5	50.0	ug/L	81.0	71-123	1	
Chlorobenzene	44.4			88.8	79-119	1	
NOD .		Spike	·	<u> </u>	Control		RPD
NQ8154073 MSD	Value	Value	Units	REC (%)	Limits (%)	RPD	Limit
1-Dichloroethene	38.9	50.0	ug/L	77.8*	80-119	0.257	Τ
;nzene	49.0	50.0	ug/L	98.0	82-124	0.820	
Trichloroethene	41.0	50.0	ug/L	82.0	75-120	0.487	
Toluene	40.8	50.0	ug/L	81.6	71-123	0.738	
Chlorobenzene	44.0	50.0	ug/L	88.0	79-119	0.9050	
TOO		Spike			Control		
NQ8154070 LCS	Value	Value	Units	REC (%)	Limits (%)	1.1000	
1,1-Dichloroethene	38.9	50.0		77.8*	80-119		
					82-124	1	
Benzene	48.3	1		96.6			
Benzene Trichloroethene	48.3 40.6	50.0	ug/L	81.2	75-120		
	48.3	50.0 50.0					

 $\left\{ \right.$

N80205908	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		50.4	50.0	i.00	ug/L	101	96-106
1,2-Dichloroethane-D4	4	45.7	50.0	1.00	ug/L	91.4 *	92-112
4-Bromofluorobenzene	c	46.9	50.0	1.00	ug/L	93.8	90-105
`'80205909	SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
uene-D8	<u> </u>	50.8	50.0	1.00	ug/L	102	96-106
1.2-Dichloroethane-D4	4	45.6	50.0	1.00	ug/L	91.2 *	92-112
4-Bromofluorobenzene	¢	46.1	50.0	1.00	ug/L	92.2	90-105
N80205910	SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8		50.7	50.0	1.00	ug/L	101	96-106
1,2-Dichtoroethane-D4	4	48.1	50.0	1.00	ug/L	96.2	92-112
4-Bromofluorobenzene	S	47.1	50.0	1.00	ug/L	94.2	90-105
N80205911	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		50.3	50,0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4		46.4	50.0	1.00	ug/L	92.8	92-112
4-Bromofluorobenzene	ð	46.8	50.0	1.00	ug/L	93.6	90-105
N80205912	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		49.6	50.0	1.00	ug/L	99,2	96-106
1.2-Dichloroethane-D4		41.9	50.0	1.00	ug/L	83.8 *	92-112
4-Bromofluorobenzena	· · · · · · · · · · · · · · · · · · ·	47.9	50.0	1.00	ug/L	95.8	90-105
N80205913	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	······	52.3	50.0	1.00	ug/L	105	96-106
1,2-Dichloroethane-D4		48.3	50.0	1.00	ug/L	96.6	92-112
4-Bromofluorobenzene		53,9	50.0	1.00	ug/L	108 *	90-105
N80205914	SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8		50.2	50.0	1.00	ug/L	100	96-106
-Dichloroethane-D4	· · · · · · · · · · · · · · · · · · ·	46.1	50.0	1.00	ug/L	92.2	· 92-112
romofluorobenzen	<u>;</u>	50.5	50.0	1.00	ug/L	101	90-105
N80205915	SURR	Value	Spike		Units	REC(%)	Limits(%)
Toluene-D8		50.3	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4		45.8	50.0	1.00		91.6 *	92-112
4-Bromofluorobenzene		50.0	50.0	1.00	ug/L	100	90-105
N80205916	SURR	Value	Spike		Units	REC(%)	Limits(%)
Toluene-D8		51.5	50.0	1.00	ug/L	103	96-106
1,2-Dichloroethane-D4	·	44.6	50.0	1.00	ug/L	89.2 *	92-112
4-Bromofluorobenzene	3	52.3	50.0	1.00	ug/L	105	90-105
N80205917	SURR	Value	Spike		Units	REC (%)	Limits(%)
Toluene-D8		51.5	50.0	1.00	ug/L	103	96-106
1.2-Dichloroethane-D4		45.7	50.0	1.00	ug/L	91.4 *	92-112
4-Bromofluorobenzene	•	53.0	50.0	1.00	ug/L	106 *	90-105
· · · · · · · · · · · · · · · · · · ·	SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
N80205918			50.0	1.00	ug/L	102	96-106
Toluene-D8		51.0		• ••• •		006-	92-112
Toluene-D8 1,2-Dichloroethane-D4	4	45.3	50.0	1.00	ug/L		
Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene	4 e		50.0 50.0	1.00 1.00	ug/L	107 *	90-105
Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene N80205919	4	45.3 53.6 Value	50.0 50.0 Spike	1.00 DL	ug/L Units	107 * REC(%)	90-105 Limits(%)
Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene	4 ¢ SURR	45.3 53.6	50.0 50.0	1.00	ug/L	107 *	90-105

(

N80205920 SURR						
Toluene-D8	Value	Spike	DL	Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	51.4	50.0	1.00	ug/L	103	96-106
4-Bromofluorobenzene	47.3	50.0	1.00	ug/L	94.6	92-112
	53.8	50.0	1.00	ug/L	108 *	90-105
90205921 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	51.7	50.0	1.00	ug/L	103	96-106
4-Bromofluorobenzene	48.7	50.0	1.00	ug/L	97.4	92-112
	54.5	50.0	1.00	ug/L	109 *	90-105
N80205922 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
1,2-Dichloroethane-D4	50.8	50.0	1.00	ug/L	102	96-106
4-Bromofluorobenzene	49.3	50.0	1.00	ug/L	98.6	92-112
	54.6	50.0	1.00	ug/L	109 *	90-105
N80205923 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
i,2-Dichloroethane-D4	51.2	50.0	1.00	ug/L	102	96-106
4-Bromofluorobenzene	49.5	50.0	1.00	ug/L	99.0	92-112
	54.2	50.0	1.00	ug/L	108 *	90-105
N80205924 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
1,2-Dichloroethane-D4	52.0	50.0	1.00	ug/L	104	96-106
4-Bromofluorobenzene	54.4	50.0	1.00	ug/L	109	92-112
	53.5	50.0	1.00	ug/L	107 *	90-105
N80205925 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
1,2-Dichloroethane-D4	50.9	50.0	1.00	ug/L	102	96-106
4-Bromofluorobenzene	51.4	50.0	1.00	ug/L	103	92-112
	54.6	50.0	1.00	ug/L	109 *	90-105
N80205926 SURR	Value	Spike		Units	REC (%)	Limits(%)
, 1010CHC-179	51.4	50.0	1.00	ug/L	103	04.404
			1.00	-6.0	103	96-106
?-Dichloroethane-D4	50.9	50.0	1.00	ug/L	103	96-106 • 92-112
?-Dichloroethane-D4 Bromofluorobenzene			1.00			
Providence	50.9 54.5 Value	50.0	1.00 1.00	ug/L	102	· 92-112
P-Dichloroethane-D4 -Bromofluorobenzene N80205927 SURR Toluene-D8	50.9 54.5 Value 51.4	50.0 50.0 Spike 50.0	1.00 1.00 DL	ug/L ug/L	102 109 *	· 92-112 90-105
Provide the second seco	50.9 54.5 Value 51.4 49.3	50.0 50.0 Spike 50.0 50.0	1.00 1.00 DL 1.00 1.00	ug/L ug/L Units ug/L ug/L	102 109 * REC(%)	92-112 90-105 Limits(%)
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene	50.9 54.5 Value 51.4	50.0 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00	ug/L ug/L Units ug/L	102 109 * REC (%) 103	92-112 90-105 Limits(%) 96-106
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR	50.9 54.5 Value 51.4 49.3 53.7 Value	50.0 50.0 Spike 50.0 50.0 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00	ug/L ug/L Units ug/L ug/L	102 109 * REC (%) 103 98.6	92-112 90-105 Limits(%) 96-106 92-112
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6	50.0 50.0 Spike 50.0 50.0 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101	92-112 90-105 Limits(%) 96-106 92-112 90-105
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3	50.0 50.0 Spike 50.0 50.0 50.0 Spike 50.0 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6	• 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%)
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6	50.0 50.0 Spike 50.0 50.0 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00	ug/L ug/L Units ug/L ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value	50.0 50.0 Spike 50.0 50.0 50.0 50.0 50.0 50.0 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 1.00 1.00 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L Units	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%)
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106
2-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1,2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 DL 1.00 0 0 0 0 0 0 0 0 0 0 0 0	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L ug/L Units	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 I.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 I.2-Dichloroethane-D4	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 0 DL 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L Units ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9 47.5	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Solo	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L Units ug/L ug/L ug/L ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0 REC (%)	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%)
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 / SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L ug/L Units ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0 REC (%) 102	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9 47.5 47.3 Value	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0 REC (%) 102 95.0 94.6	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR Toluene-D8	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9 47.5 47.3 Value 50.9	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0 REC (%) 102 95.0 94.6	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105
?-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9 47.3 Value 50.9 47.3 Value 50.9 47.3 Value	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike Spic Spike Spic Spike Spic Spic Spic Spike Spic	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0 REC (%) 102 95.0 94.6 REC (%)	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%)
2-Dichloroethane-D4 Bromofluorobenzene N80205927 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154070 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154071 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154072 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR Toluene-D8 1.2-Dichloroethane-D4 4-Bromofluorobenzene NQ8154073 SURR Toluene-D8	50.9 54.5 Value 51.4 49.3 53.7 Value 50.6 46.3 47.0 Value 49.8 46.0 49.0 Value 50.9 47.5 47.3 Value 50.9	50.0 50.0 Spike 50.0 50.0 Spike 50.0 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike 50.0 Spike	1.00 1.00 DL 1.00 1.00 1.00 DL 1.00 1.00 1.00 1.00 DL 1.00	ug/L ug/L Units ug/L ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L Units ug/L	102 109 * REC (%) 103 98.6 107 * REC (%) 101 92.6 94.0 REC (%) 99.6 92.0 98.0 REC (%) 102 95.0 94.6 REC (%) 102	92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106 92-112 90-105 Limits(%) 96-106

ĺ

QA/QC REPORT

💷 Ledger # N802059 Analyzed by KD QA/QC Batch ID 0603980012 MS/MSD Ref ID N80208518

Prep Method 5030 Prepared by KD Analysis Method 8260 LIQUID Matrix

NQ8154036 MB	Value	RL	Units
Dichlorodifluoromethane	Below RL	10.0	ug/L
Chloromethane	Below RL	10.0	ug/L
Vinyl Chloride	Below RL	2.00	ug/L
Bromomethane	Below RL	10.0	ug/L
Chloroethane	Below RL	5.00	ug/L
Trichlorofluoromethane	Below RL	5.00	ug/L
1,1-Dichloroethene	Below RL	5.00	ug/L
Methylene Chloride	Below RL	5.00	ug/L
Carbon Disulfide	Below RL	5.00	ug/L
Trans-1,2-Dichloroethene	Below RL	5.00	ug/L
1,1-Dichloroethane	Below RL	5.00	ug/L
2,2-Dichloropropane	Below RL	5.00	ug/L
Cis-1,2-Dichloroethene	Below RL	5.00	ug/L
Chloroform	Below RL	5,00	ug/L
Bromochloromethane	Below RL	5.00	ug/L
1,1,1-Trichloroethane	Below RL	5.00	ug/L
1,1-Dichloropropene	. Below RL	5.00	ug/L
Carbon Tetrachloride	Below RL	5.00	ug/L
?-Dichloroethane	Below RL	5.00	ug/L
nzene	Below RL	5.00	ug/L
frichloroethene	Below RL	5.00	ug/L
1,2-Dichloropropane	Below RL	5.00	ug/L
Bromodichloromethane	Below RL	5.00	ug/L
Dibromomethane	Below RL	5.00	ug/L
4-Methyl-2-Pentanone (MIBK)	Below RL	10.0	ug/L
2-Hexanone	Below RL	10.0	ug/L
Cis-1, 3-Dichloropropene	Below RL	5.00	ug/L
Toluene	Below RL	5.00	ug/L
Trans-1,3-Dichloropropene	Below RL	5.00	
1,1.2-Trichloroethane	Below RL	5.00	ug/L
1,3-Dichloropropane	Below RL	5.00	ug/L
Tetrachioroethene	Below RL	5.00	ug/L
Chlorodibromomethane	Below RL	5.00	ug/L
1,2-Dibromoethane	Below RL	5.00	ug/L
Chlorobenzene	Below RL	5.00	
Ethylbenzene	Below RL	5.00	ug/L
1,1,1,2-Tetrachloroethane	Below RL	5.00	
Xylenes (Total)	Below RL	15.0	ug/L
Styrene	Below RL	5.00	ug/L
Isopropyibenzene	Below RL	5.00	ug/L
Bromoform	Below RL	5.00	ug/L
1,1,2,2-Tetrachloroethane	Below RL	5.00	ug/L
1,2,3-Trichloropropane	Below RL	5.00	ug/L
N-Propylbenzene	Below RL	5.00	
omobenzene	Below RL	5.00	ug/L
1,3,5-Trimethylbenzene	Below RL	5.00) ug/L

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS: Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS: Post-Digestion Spike

MB : Method Blank

N802059 HydroLogic, Inc. Ledger

NQ8,154036 MB	Value		Units			in ta the second se	
2-Chlorotoluene	Value Below RL	RL 5.00	ug/L	<u> </u>			. <u> </u>
4-Chlorotoluene	Below RL		ug/L	f			
Tert-Butylbenzene	Below RL		ug/L	t			
',4-Trimethylbenzene	Below RL		ug/L	1			
J-Butylbenzene	Below RL		ug/L	1			
P-Isopropyltoluene	Below RL		ug/L	1			
1,3-Dichlorobenzene	Below RL		ug/L	1			
1.4-Dichlorobenzene	Below RL		ug/L	1			
N-Butylbenzene	Below RL		ug/L	1			
1,2-Dichlorobenzene	Below RL		ug/L	ſ			
1.2-Dibromo-3-Chloropropane	Below RL		ug/L	1			
1,2-Diotomo 5 chiloroproprio 1,2,4-Trichlorobenzene	Below RL		ug/L	1			
Hexachlorobutadiene	Below RL		ug/L	1			
Naphthalene	Below RL		ug/L	1			
1,2,3-Trichlorobenzene	Below RL		ug/L	1			
Acetone	Below RL		ug/L	(
2-Butanone (MEK)	Below RL		ug/L	1			
2-Chloroethylvinyl Ether	Below RL		ug/L	t			
Methyl Tert-Butyl Ether	Below RL		ug/L	1			
	<u></u>	Spike		<u> </u>	Control		
NQ8154037 MS	Value	Value	Units	REC (%)	Limits (%)		
1,1-Dichloroethene	38.9		ug/L	77.8*	80-119		
Benzene	45.9	50.0	ug/L	91.8	82-124		
Trichloroethene	39.3	50.0	ug/L	78.6	75-120		
Toluene	38.3	50.0	ug/L	76.6	71-123		
Chlorobenzene	41.2	50.0	ug/L	82.4	79-119		
		Spike			Control		RPD
NQ8154038 MSD	Value	Value	Units	REC (%)	Limits (%)	RPD	Limits
-Dichloroethene	38.9	50.0	ug/L	77.8	80-119	0.0	7.
Izene	46.4	50.0	ug/L	92.8	82-124	1.08	5.
frichloroethene	40.0	50.0	ug/L	80.0	75-120	1.77	7.
Toluene	39.0	50.0	ug/L	78.0	71-123	1.81	7.
Chlorobenzene	41.8	50.0	ug/L	83.6	79-119	1.45	6
		Spike		·····	Control		
NQ8154035 LCS	Value	Value	Units	REC (%)	Limits (%)		
1,1-Dichloroethene	Varue						_
	41.0	50.0		82.0	80-119		
Benzene		50.0 50.0		99.6	82-124		
Benzene Trichloroethene	41.0		ug/L	99.6 84.2	82-124 75-120		
	41.0	50.0	ug/L ug/L	99.6	82-124		

QA/QC Conventions

(=----

DV : Duplicate DR : Duplicate Referance

MS : Matrix Spike MSD : Matrix Spike Duplicate

LCS: Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

HydroLogic, Inc. Ledger N802059

- -

N80205928 SURR	Value	Spike		Units		Limits(%)
Foluene-D8	51.8	50.0	1,00	ug/L	104	96-106
,2-Dichloroethane-D4	50.9	50.0	1.00	ug/L	102	92-112 90-105
-Bromotluorobenzene	54.2	50.0	1.00	ug/L	108 *	90-103
0205929 SURR	Value	Spike		Units		Limits(%)
Juene-D8	50.4	50.0	1.00	ug/L	101	96-106
,2-Dichloroethane-D4	46.3	50.0	1.00	ug/L	92.6	92-112
4-Bromofluorobenzene	47.7	50.0	1.00	ug/L	95.4	90-105
N80205930 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.0	50.0	1.00	ug/L	100	96-106
1,2-Dichloroethane-D4	44.1	50.0	1.00	ug/L	88.2 *	92-112
4-Bromofluorobenzene	48.8	50.0	1.00	ug/L	97.6	90-105
N80205931 SURR	Value	Spike	DL	Units		Limits(%)
Toluene-D8	50.2	50.0	1.00	ug/L	100	96-106
1,2-Dichloroethane-D4	43.2	50.0	1.00	ug/L	86.4 *	92-112
4-Bromofluorobenzene	48.0	50.0	1.00	ug/L	96.0	90-105
N80205932 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.0	50.0	1.00	ug/L	100	96-106
1,2-Dichloroethane-D4	43.8	50.0	1.00	ug/L	87.6 *	92-112
4-Bromofluorobenzene	47.9	50.0	1.00	ug/L	95.8	90-105
N80205933 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.1	50.0	1.00	ug/L	100	96-106
1.2-Dichloroethane-D4	45.5	50.0	1.00	ug/L	91.0 *	92-112
4-Bromofluorobenzene	47.9	50.0	1.00	ug/L	95.8	90-105
N80205934 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	50.7		1.00		101	96-106
,-Dichloroethane-D4	45.3	50.0	1.00	ug/L	90.6 *	· 92-112
+-Bromofluorobenzene	48.0	50.0	1.00	ug/L	96.0	90-105
N80205935 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.5		1.00		101	96-106
1,2-Dichloroethane-D4	45.5		1.00		91.0 *	92-112
4-Bromofluorobenzene	47.5	50.0	1.00	ug/L	95.0	
N80205936 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.5	50.0	1.00	-	101	96-106
1,2-Dichloroethane-D4	45.4		1.00		90.8 *	92-112
4-Bromofluorobenzene	47.2	2 50.0	1.00	ug/L	94.4	90-105
N80205937 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.2		1.00		100	96-106
1,2-Dichloroethane-D4	44.9		1.00		89.8 *	92-112
4-Bromofluorobenzene	47.6	5 50.0	1.00	ug/L	95.2	90-105
N80205938 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.0				98.0	96-106
1,2-Dichloroethane-D4	45.8				91.6 *	92-112
4-Bromofluorobenzene	46.7	7 50.0	1.00) ug/L	93.4	90-105
NQ8154035 SURR	Value	Spike		Units	REC(%)	Limits (%)
Toluene-D8	50.0				100	96-106
1,2-Dichloroethane-D4	43.1	1 50.0			86.2 *	92-112
Bromofluorobenzene	44.8	8 50.0	1.00	0 ug/L	89.6 *	90-105

NQ8154036 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Toluene-D8	49.4	50.0	1.00	ug/L	98.8	96-106
1,2-Dichloroethane-D4	46.4	50.0	1.00	ug/L	92.8	92-112
4-Bromotluorobenzene	48.1	50.0	1.00	ug/L	96.2	90-105
8154037 SURR	Value	Spike	DL	Units	REC(%)	Limits(%)
Juene-D8	50.3	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4	44.8	50.0	1.00	ug/L	89.6 *	92-112
4-Bromofluorobenzene	46.2	50.0	1.00	ug/L	92.4	90-105
NQ8154038 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.5	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4	44.0	50.0	1.00	ug/L	88.0 *	92-112
4-Bromofluorobenzene	45.7	50.0	1.00	ug/L	91.4	90-105

QA/QC REPORT

Ledger # N802059 Analyzed by KD 0604980019 QA/QC Batch ID MS/MSD Ref ID N80207204

Prep Method 5030 Prepared by KD Analysis Method 8260 LIQUID Matrix

NQ8155080 MB	Value	RL	Units
Dichlorodifluoromethane	Below RL	and the second	ug/L
Chloromethane	Below RL		ug/L
Vinyl Chloride	Below RL		ug/L
Bromomethane	Below RL	10.0	
Chloroethane	Below RL		ug/L
Trichlorofluoromethane	Below RL		ug/L
1,1-Dichloroethene	Below RL	5.00	- ·
Methylene Chloride	6.90	5.00	-
Carbon Disulfide	Below RL		ug/L
Trans-1,2-Dichloroethene	Below RL		ug/L
1,1-Dichloroethane	Below RL		ug/L
2,2-Dichloropropane	Below RL		ug/L
Cis-1,2-Dichloroethene	Below RL		ug/L
Chloroform	Below RL		ug/L
Bromochloromethane	Below RL		ug/L
1,1,1-Trichloroethane	Below RL		ug/L
1,1-Dichloropropene	. Below RL		ug/L
Carbon Tetrachloride	Below RL		ug/L
2-Dichloroethane	Below RL		ug/L
nzene	Below RL		ug/L
Trichloroethene	Below RL		ug/L
1,2-Dichloropropane	Below RL		ug/L
Bromodichloromethane	Below RL	1.000	-
Dibromomethane	Below RL		
4-Methyl-2-Pentanone (MIBK)	Below RL		1 2
2-Hexanone	Below RL		ug/L
Cis-1,3-Dichloropropene	Below RL		ug/L
Toluene	Below RL		ug/L
Trans-1,3-Dichloropropene	Below RL	5.00	
1,1,2-Trichloroethane	Below RL	5.00	
1,3-Dichloropropane	Below RL		ug/L
Tetrachloroeihene	Below RL	5.00	ug/L
Chlorodibromomethane	Below RL	5.00	
1,2-Dibromoethane	Below RL		ug/L
Chlorobenzene	Below RL		ug/L
Ethylbenzene	Below RL		ug/L
1,1,1,2-Tetrachloroethane	Below RL	5.00	-
Xylenes (Total)	Below RL	15.0	-
Styrene	Below RL	5.00	
Isopropylbenzene	Below RL		
Bromoform	Below RL		
1,1,2,2-Tetrachloroethane	Below RL		
1,2,3-Trichloropropane	Below RL		ug/L
N-Propylbenzene	Below RL		
omobenzene	Below RL]	
1,3,5-Trimethylbenzene	Below RL	5.00	ug/L

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance MS : Matrix Spike MSD : Matrix Spike Duplicate LCS: Lab Control Spike MB : Method Blank LCSD: Lab Control Spike Duplicate PDS : Post-Digestion Spike

ſ							
NQ8155080 MB	Value	RL	Units				
2-Chlorotoluene	Below RL		ug/L			· · · · · · · · · · · · · · · · · · ·	<u></u>
4-Chlorotoluene	Below RL		ug/L	i			
Tert-Butylbenzene	Below RL		ug/L	i			
,4-Trimethylbenzene	Below RL		ug/L	i			
-Butylbenzene	Below RL		ug/L	i			
P-Isopropyltoluene	Below RL		ug/L	l			
1,3-Dichlorobenzene	Below RL	5.00		i			
1,4-Dichlorobenzene	Betow RL	5.00		I			
N-Butylbenzene	Below RL	5.00	ug/L	I			
1,2-Dichlorobenzene	Below RL	5.00	ug/L	l			
1,2-Dibromo-3-Chloropropane	Below RL	5.00	ug/L	l			
1,2,4-Trichlorobenzene	Below RL	5.00	ug/L	l			
Hexachlorobutadiene	Below RL	5.00	ug/L	l			
Naphthalene	Below RL	5.00	ug/L	İ			
1,2,3-Trichlorobenzene	Below RL	5.00	ug/L	i			
Acetone	Below RL	100	ug/L	Í			
2-Butanone (MEK)	Below RL		ug/L	İ			
2-Chloroethylvinyl Ether	Below RL	5.00	ug/L				
Methyl Tert-Butyl Ether	Below RL	5.00	ug/L	İ			
		Spike	······································		Control		
NQ8155081 MS	Value	Value	Units	REC (%)	Limits (%)		
1,1-Dichloroethene	44.2	50.0	ug/L	88.4	80-119		
Benzene	42.2		ug/L	84.4	82-124		
Trichloroethene	37.8		ug/L	75.6	75-120		
Toluene	43.4		ug/L	86.8	71-123		
Chlorobenzene	41.5	50.0	ug/L	83.0	79-119		
		Spike			Control		RPD
NQ8155082 MSD	Value	Value	Units	REC(%)	Limits (%)	RPD	Limits
1-Dichloroethene	42.9	50.0	ug/L	85.8	80-119	2.99	7.2
nzene						0.713	5.8
Trichloroethene	41.9		ug/L	83.8	82-124		
		50.0	ug/L ug/L	73.8*	75-120	2.41	7.3
Toluene	41.9	50.0 50.0		73.8* 83.6	75-120 71-123	2.41 3.76	7.3
Toluene Chlorobenzene	41.9	50.0 50.0 50.0	ug/L	73.8*	75-120	2.41	7.3
Chlorobenzene	41.9 36.9 41.8	50.0 50.0 50.0 50.0	ug/L ug/L	73.8* 83.6	75-120 71-123	2.41 3.76	7.3
	41.9 36.9 41.8	50.0 50.0 50.0	ug/L ug/L	73.8* 83.6	75-120 71-123 79-119 Control Limits (%)	2.41 3.76	7.:
Chlorobenzene	41.9 36.9 41.8 40.9 Value 41.3	50.0 50.0 50.0 50.0 50.0 Spike Value 50.0	ug/L ug/L ug/L Units ug/L	73.8 * 83.6 81.8 REC (%) 82.6	75-120 71-123 79-119 Control Limits (%) 80-119	2.41 3.76	7.
Chlorobenzene NQ8155079 LCS	41.9 36.9 41.8 40.9 Value 41.3 41.7	50.0 50.0 50.0 50.0 Spike Value 50.0 50.0	ug/L ug/L ug/L Units ug/L ug/L	73.8 * 83.6 81.8 REC (%) 82.6 83.4	75-120 71-123 79-119 Control Limits (%) 80-119 82-124	2.41 3.76	7.:
Chlorobenzene NQ8155079 LCS 1,1-Dichloroethene	41.9 36.9 41.8 40.9 Value 41.3 41.7 37.0	50.0 50.0 50.0 50.0 Spike Value 50.0 50.0 50.0	ug/L ug/L Units Units ug/L ug/L ug/L	73.8 * 83.6 81.8 REC (%) 82.6 83.4 74.0 *	75-120 71-123 79-119 Control Limits (%) 80-119 82-124 75-120	2.41 3.76	7.:
Chlorobenzene NQ8155079 LCS 1,1-Dichloroethene Benzene	41.9 36.9 41.8 40.9 Value 41.3 41.7	50.0 50.0 50.0 50.0 Spike Value 50.0 50.0 50.0 50.0	ug/L ug/L ug/L Units ug/L ug/L	73.8 * 83.6 81.8 REC (%) 82.6 83.4	75-120 71-123 79-119 Control Limits (%) 80-119 82-124	2.41 3.76	7.:

QA/QC Conventions

DV : Duplicate DR : Duplicate Referance

MB : Method Blank

N802059 HydroLogic, Inc. Ledger

N80205939 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.3	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4	45.1	50.0	1.00	ug/L	90.2 *	92-112
4-Bromotluorobenzene	47.6	50.0	1.00	ug/L	95.2	90-105
80205940 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
oluene-D8	50.3	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4	45.0	50.0	1.00	ug/L	90.0 *	92-112
4-Bromofluorobenzene	47.4	50.0	1.00	ug/L	94.8	90-105
N80205941 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.5	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4	44.1	50.0	1.00	ug/L	88.2 *	92-112
4-Bromofluorobenzene	47.7	50.0	1.00	ug/L	95.4	90-105
N80205942 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	50.6	50.0	1.00	ug/L	101	96-106
1,2-Dichloroethane-D4	45.2	50.0	1.00	ug/L	90.4 *	92-112
4-Bromofluorobenzene	47.6	50.0	1.00	ug/L	95.2	90-105
NQ8155079 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.8	50.0	1.00	ug/L	99.6	96-106
1.2-Dichloroethane-D4	45.9	50.0	1.00	ug/L	91.8 *	92-112
4-Bromofluorobenzene	49.9	50.0	1.00	ug/L	99.8	90-105
NQ8155080 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.6	50.0	1.00	ug/L	99.2	96-106
1,2-Dichloroethane-D4	45.8	50.0	1.00	ug/L	91.6 *	92-112
4-Bromofluorobenzene	49.7	50.0	1.00	ug/L	99.4	90-105
NQ8155081 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.4	50.0	1.00	ug/L	98.8	96-106
?-Dichloroethane-D4	44.8	50.0	1.00	ug/L	89.6 *	92-112
+-Bromofluorobenzene	51.0	50.0	1.00	ug/L	102	90-105
NQ8155082 SURR	Value	Spike	DL	Units	REC (%)	Limits(%)
Toluene-D8	49.7	50.0	1.00	ug/L	99.4	96-106
1.2-Dichloroethane-D4	46.3	50.0	1.00	ug/L	92.6	92-112
4-Bromotluorobenzene	50.8	50.0	1.00	ug/L	102	90-105

.

ĺ

		<u> </u>	1	<u> </u>			6.	-2	R	M	6	<u>5</u>	4	3	N	Ê									-	<u> </u>			າຍ
[Relinquis'	Refineptished By:	Relinquished By:	Relinquished By: M. J.	COMMENTS: 3 to	Lab Use Only 1 7 11 11 10 10 10	86-5-6-7	B-4-5- 78	A-4-5-98	6-7-5-98	0-7-5-98	86-5-2-3	F-7-5-98	B-7-5-98	5	TRIP BLANK	Sample ID	🗇 5 Days 🗍 10 Days	C) 24 Hours □ 48 Hours	TURNAROUND TIME	Fax No.: 912 - 652 -	12	MIN: MARX HARVISON	SAVAMULAN , GA	Report Address: P. C. Box	Client: USACE	<u>.</u>	(704) 254-5169	Chain of Custody Record
			\bigcirc	17.				5/27/28	1		5/27/98	5/27/98	5/26/98	5/26/98	5/26/98	:	Date		IL2	r	.5311	5151	Sion	37402	x 589		(303) 659-0497		rd
			1		day		1325	1310	1247	1230	1130	1100	1404		1312		Time	Date Needed:		State Samp	P.O. No:	Sampled By:	Attn:		Inveice Address	Project No.:		O Norcross, GA (770) 368-0636	
	Dale	Date	Date 7	Dule Ar	t		Gens	2:30	6048	SPAG	GRAD	GRAD	Garo	Gens	Gens	•	Comp/ Grab			State Samples Collected		Ι.			ddress: DO			-0636	•
-		-			なくろ		Awers	Anners	Anteris	Anters	Awlews	Aquerts	Anutous	Awews	Acres	Acrious	Matrix			HIDRAD PE		Anioon			Ĺ	Hurrie 1	(407) 851-2560		
_	Time	Time 1		1374 1	hour				N	2	Ν	Z		N	N	ы	Containers			SIA						PARCACKS			-
	Received By:	Received By:	Received By:	Received By:	ind		N	N	2	2	2	\sim	N	2	2	W						<u>,</u>	<u>t</u>	<u>.</u>			@C		TUT
	y:	'y:	iy:	iv: A				 	 									/ /	<u> </u>	<u> </u>	<i>-</i>	Jo'					U Lexington, SC (803) 796-8989		שאטרחמור
				for	•													/				,, 					39 C	(910) J	UUI
																		/	<u> </u>							REQUI	@C	(910) 738-6190	ר <u>י</u> ו
																										UESTED PARAMETERS	(804) 358-3145		NC.
	Date	Date	Date	B1/29				-										/								PARA	45. ₹	(704) 392-1164	
	-	-	ی ۱	29/98			 											/								METI	С 16) В	1164	
	Ti-	Ţ,	Tu	13/1	\ .													/							<u> </u>	ERS	U Burlington, NC (910) 570-4661	:	
	Time Mark	Time Time	Time Martin	Tyre and	À												← Preserv.	/										(919) 380-9699	-
				Use Oal	202												serv.										େପ	(919) 380-9699	
					5 020 S												REMARKS	S =	אי וו	0 Z	я I Хг	- K (ម ព ព		р В		(912) 757-0811	O O	Page_
					9			F									RKS	Subcontracted	Richmond, VA	Norcross, GA Orlando, FL	Morrisville, NC	Frankfort, KY	Lexington, SC Macon.GA	Denver, CO		LAB CODE J.D. Asheville, NC	=> 		<u>e_/</u>
																		racted	id, VA	s, GA	ile, NC	r KY	iA ^M , SC	040	, NC	NC NC			- of

	i.	:						2	<u>–</u>	<u>a</u>	Ŧ	đ	5	1	Ū,	12	<u> </u>							, <u> </u>						
(/ .\	Relimptished By:	Relinquished By:	Relinquished By	3+07	NTS:		- 5 - 28	(-6-5-98	B-6-5-98	- Ea - Bix - 1	A-6-5-98	F-Z-5-98	8-2-5-48	1-2-5-48	E-4-5-98	86-5-4-0	Sample ID	🛛 5 Days 🗍 10 Days	C 24 Hours C 48 Hours	TURNAROUND TIME	Fax No.: 9/2-652-	Phone No.: 912-652-	MIN: MARX HARVISON	SANAMICH, GA	Report Address: P. C. Box	Client: USACE	Q D	(704) 254-5169	Chain of Custody Record
					day			5/23/93/0	5/23/98	5/28/78	5/23/78	5/27/98	5/27/28	5/27/98	86/475	5/17/2	86/2015	Date		S		5311	15/		3402	. 589		Brighton, CO (303) 659-0497		d
					,			0835	0810	0755	0745	1535	1540	1505	1450	<i>)430</i>	1405	Time	Date Needed:		State Sam	P.O. No:	Sampled By:	Attn:		Invoice Address:	Project No.:		O Norcruss, GA (770) 368-0636	
	Date	Date	Dule	Date /24/24	turn			(Seno)	640	6018	GAG	GRAD	61240	600	GRAB	GRAB	Geno	Comp/ Grab			State Samples Collected		Ι.			1.		(407	7055. GA	•
		-	-	_	ONOU		D S	Haravs	Anianz	Aastars	Anters	Awlers	Aqueous	Anters	Javens	Aaravs	Auras	Matrix			SEARCIA		Amipon			9.0,	HUNTER	Orlando, FL (407) 851-2560		
	Time	Time 1		J/C/	our					1	N			N		N	N	Containers			51A					F	heens			
	Received By:	Received By:	Received By:	Received By:	Å				N	2	2	2	N	N	\sim	$\overline{\mathbf{N}}$	Ν						1	1	1	<u>.</u>		 @C		YUH
(X	y:	y: V	y:				1757 AL														-f.	/ole/					U Lexington, SC (803) 796-8989		SUL
			, ,	HA						 									/			<u> </u>		<	<u> </u>		I I	SC 89	(910) 738-61	UKULUGIU
				M															/			<u> </u>			<u> </u>		REQUE	 ⊛⊂	ĭ∑ S	L,
																										<u> </u>	UESTED PARAMETERS	(804) 358-3145		NC.
	Date	Date	Date	Hells																					<u> </u>		PARA	45 XA	Charlotte, NC (704) 392-1164	
	-		-					14 A.																			METH	(910) (016)	164 1 1 1	
	Time	Time	Time	3/Fine			を見た	4 2020231																			IRS	(910) 570-4661	:	
		c C	C AND	in the Let	•			100010-012										← Preserv.		<u> </u>	<u> </u>		<u> </u>					. Ĉ	(919) 380-9699	
				US OPIC	8			the second										ŗ										30	Morrisville, NC (919) 380-9699	
	3				2021			Section 21 Sector										REMARKS	0 	H	0 2			G = =	11	ດ ຫຼື	11	(912) 757-0811	}	Page.
					964			Strates										ìKS	Supcontracted	Richmond, VA	Norcross, GA Orlando, FL	Morrisville, NC	Frankfort, KY	Lexington, SC Macon,GA	Denver, CO	Burlington, NC	Asheville, NC			1e 2
						~	Leb Temp	Sundartens	\$										acted	d, VA	, GA	le NC		A SC	ö		NC NC			9 .

_	2
_	4
	Ę
C.,	
\geq	
	Ę
	ľ
5	
	B
Ċ,	ľ
G	
5	ī
	-
	_
	2
	ļ
5	E
	1
	1
	Į
	÷
	- 31

	Time Assessment of the second	T T	Date					Received By:	Time R		Date			Relinquished By:	
	Une Hanne Ou	AC 13/2	174S		H.M.	A		Received By:	$\frac{1}{1}$		Stag he 1		Q J.	Relinquished By: Market	
× 1 1 ×	NV80 -			2 				d	}	(avou	turn	i	chan	3 6 7	
しょう														COMMENTS:	
										e S	ja k	SELEN REAL			1
《注意》:"你们的你的。""你们的你们的		建設 林電影		<u>第一次</u>	時間部	1.2.4		影響が	1000	建成公司		語言語の		なたが、「ない」というないで、ないです。	<u>s</u>
41								Z		Anicons	600	11.50	185/88/5	5.98	Ċ,
.				 				2		Anicins	GAB	111.5	5/28/98	5-2-5-98	29
								2	2	Aartas	Gens	1100	5/18/25	(-2-5-98	81
								2	N	Anters	here	1045	5/18/5	-5-5-98	4
								2	N	Antons	Gens		86/81/5	1-5-5-98	$\frac{2}{3}$
			<u> </u>					Ζ	N	Aquers	61240	1015	5/28/98	(-5-5-98	5
					 	1		N	N	Anters	600	0945	5/23/98	B-5-5-98	24
								2		Aaras	GRAB	0925	5/28/8 0925	1-5-5-98	12
								2		Aquiaus	GRAB	2280	5/28/08/23	F-6-5-98	2
				<u></u>				N	2	Abreas	GRAB	0280	5/28/98	E-6-5-98	
REMARKS	← Preserv.							HKI	Containers	Matrix	Comp/ Grab	Time	Date	Sample ID	
S = Subcontracted		/ /	/			/	/	/ /				Date Needed:		🛛 5 Days 🗍 10 Days	
11		/			<u> </u>	<u> </u>							•	🗇 24 Hours 🗍 48 Hours	
N = Norcross, GA O = Orlando, FL							<u> </u>		SIA	HIMAS P	State Samples Collected	State San		TURNAROUND TIME	
	/						<i>-</i> б.					P.O. No:	5311	Fax No.: 9/2 - 652	
	/	/			<u> </u>		/ofe/			Anipor		Sampled By:	5151	Phone No .: 912-652- :	
E = Lexington, SC G = Macon, GA							-0	<u>*</u>				Attn:	02	MIN: MARK HARVISON	
11 1	/ /												37402	SWAMMAN, GA	1
	/ /	/ /		/ /	/	/	/		LL A		Invoice Address:]	Invoice	box 889	Report Address: P. C. box	1
A = Asheville. NC		ESTED PARAMETERS	ARAM	TED I	REQUES	R			BREACKS	WATER		Project No.:		Client: USACE	1
[J] Macon, GA (912) 757-0811	•	Burlington, NC (910) 570-4661	ΥA ΥΑ	Richmond, VA (804) 358-3145	(20 20 20 20	C	Lexington, SC (803) 796-8989	(803)	чг	Orlando, FL (407) 851-2560	30	-08	Brighton, CO (303) 659-0497	ୁ ତୁପ	
'n	Morrisville, 19) 380-9699	Å N	Charlotte, NC (704) 392-1164	ລຸດ	berton, NC 8-6190	Lumberton,(910) 738-6190		сіоп КҮ 3-0251	Frankfort KY (502) 223-0251		Norcross, GA (770) 368-0636	(770) 368-0636		704 Asheville, NC (704) 254-5169	
Page <u>3</u> of <u>-</u>				.	5, IN	GIL		HYUKULUGIU	I				d.	Chain of Custody Record	0

HARRA HARRA

Relinquished By:

Date

Time

Received By:

Date

Time Time Time

Date

Date

Time Time

Received By: Received By:

	Relinquisly Date	Relinquished By: Date 1	້ ມາເຊ	Relinquished By nachad State		3 to 7 day furn	COMMENTS:				15/5/5/5/5/5/5/5/604A	12-3-5- 18 5/23/8 12-3-6 100 man	38 (-3-5-98 5/28/1440 Gens An	Ļ	- 98 5/8/8 1420 GENS 1	A-1-5-98 5/24/98 1350 GRAD 1	- 98 5/28/98 1335 600 1	C-1-5-98 5/28/98 1320 6AB	D-1-5-98 528/88 1300 GAB	<u> </u>	Sample ID Date Time Comp/ Ma	D 5 Days D 10 Days Date Needed:	C 24 Hours C 48 Hours	State Samples Collected	P.O. No:	2	Allan: Marvison Allan:	SAVAMANAH, GA 31402	Report Address: P. C. Box 589 Invoice Address DO.	Client: USACE Project No.: HUTER	 Brighton, CO G03) 659-0497 (407) 851-2560 	J Norcross, C 770) 368-0636	rd
	Time Received By:	Time Received By:	Time Received By:	13/4 Received by:	7	around				伝統に設める	ins 7 2	N		1	N		Antons Z Z		Ankays 2 Z	Atmans 2 2	Matrix Containers HC			GEORGIA / /		~ / 0/ ~ /			112 /	e Breaks	-2560 (803) 796-8989	502) 223-0251	
مور میں میں میں اور اور اور اور اور اور اور اور اور اور	Date	Date	Date	214 112					Antipera Trum																					REQUESTED PARAMETERS	C LJ Richmond, VA (804) 358-3145	J Lumberton, 910) 738-6190	
	Tine Tractice	Time Standard	Time A gate and	116-13/47	Time / AT ability Only	81		第二部では、「「「「「「」」」」													← Preserv.									METERS	(910) 570-4661 (91	(919) 380-9699	
/					のためになった。このでは、「ないないない」となった。	LCOTO	0710			なまた。 とうない たいない たいかい		10/									REMARKS	S = Subcontracted	11	N = Norcross, GA O = Orlando, FL	L = Lumoenton, IVC M = Morrisville, NC	1	E = Lexington, SC G = Macon.GA	11 11	11	A = Asheville, NC	U Macon, GA (912) 757-0811		Page of

KWWWWWWWWW

		,									 				4 H	4					-								• ~
	Relinanislas	Relinquished By-	Relinquished By:	Relinquished By:	с С			A CONTRACT A CONTRACT OF A CONTRACT OF				•			-Eq-bix- 2	<i>E-3-5-98</i>	Sample ID	🛛 5 Days	D 24 Hours	TURNAROUND TIME	Fax No.: 9/	Phone No.: 9/2 -	Aun: MARX	3	Report Address:	Client:		(704) A	Chain of Custody Record
				min /	t			ADI THE MENTAL YORK AND			 				5/2			10 Days	C 48 Hours	IME	912-652-531	2-652-515	HARVISON	SARAMAN GA SIMOZ	P.O. Box 889	DZACE	(303) 63	Asheville, NC (704) 254-5169	dy Record
) d						 				5/28/98 1	5/25/88 1.	Date	Date		<u> </u>				51402	+	<u> </u>	 Brighton, CO (303) 659-0497 	20	÷
	1			1.	<u>ک</u> ۔						 				1500 6	1535 1	Time	Date Needed;		tale Sampie	P.O. No:	Sampled By:	Attn:		Invoice Address:	Project No.:		Norcross, GA (770) 368-0636	
		Date	Dule '	150 mg	turs										GRAS 1		Comp/ Grab			State Samples Collected		"Aninor			iness: D.O.	Hurter	(407) 0	536 836	
				[1] / [ime					 		 			,	Parens	howers	Matrix (GEORGIA		2			<u>را ،</u>	ER BAR	Orlando, I ² L (407) 851-2560		
	Thus Po	Time Re	Time Re		andres										N	N	Containers									PARPACKS		Frankfort KY (502) 223-0251	Ξ
	Provident Re-	Received By:	Received By:	Received By:	4	-									N	₽.	HCI	/ /			_						(80) (80)	lort KY -0251	UK
Ć	****									-	 							/		~	×€	61			-		Lexington, SC (803) 796-8989		UKULUUIL,
				A														/						<u> </u>		REQ) Ñ	(910) 738-6	
				Ľ																<u> </u>						EQUES	€ 2004	Lumberton, NC (910) 738-6190	, IN
																		/								STED	Richmond, VA (804) 358-3145		5
		Date	Date	954 E														/								ARAN	``≶	(704) 392-1164	
		-	_ `	No.																				<u> </u>		UESTED PARAMETERS	(910) 57	64 NC	
		Time	Time	3 T ^{ume}		-																			<u> </u>	S	Burlington, NC (910) 570-4661	• •	
					2		n h										← Preserv.				<u> </u>							Morrisville, NC (919) 380-9699	
					28/1					-	 		:													L	(912) N	ville NC	
Ć					24												REMARKS	ں ا	1 11	0 Z 0 Z		1 11	ດ ຫ = = 	11 1		A = A	Macon, GA (912) 757-0811		Page_
					5	7											S	Subcontaction	Richmond, VA	Orlando, FL	Morrisville, NC	Frankfort, KY	Lexington, SC Macon,GA	Denver, CO	Burlington, NC	LAB CODE LD Asheville, NC			v
																			2 ≸	` A	NC	ξŶ	SC	- (δ N N	ñ L			5-76

APPENDIX III MEDIA TARGET CONCENTRATIONS AND STANDARD EXPOSURE ASSUMPTIONS

j

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
83329	Acenaphthene	2
67641	Acetone	4
75058	Acetonitrile	0.2
98862	Acetophenone	4
107028	Acrolein	0.7
79061	Acrylamide	0.0001 (a)
107131	Acrylonitrile	0.0006 (a)
116063	Aldicarb	0.007
309002	Aldrin	0.00002 (a)
7664417	Ammonia	30
62533	Aniline	0.006 (a)
7440360	Antimony	0.006 (a)
140578	Aramite	0.001 (a)
7440382	Arsenic	0.05
1332214	Asbestos (fibers longer than 10 µm)	7 million/liter
7440393	Barium	2
56553	Benz(a)anthracene	0.0001
71432	Benzene	0.005
92875	Benzidine	0.0000002 (a)
50328	Benzo(a)pyrene	0.0002
205992	Benzo(b)fluoranthene	0.0002
100447	Benzyl chloride	0.0002 (a)
7440417	Beryllium	0.004
111444	Bis(2-chloroethyl) ether	0.00003 (a)
75252	Bromoform	see Trihalomethanes
85687	Butyl benzyl phthalate	0.1
7440439	Cadmium	0.005
63252	Carbaryl	0.7

Table 1. Groundwater Criteria

·

۰.

Page 67

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
1563662	Carbofuran	0.04
75150	Carbon disulfide	4
56235	Carbon tetrachloride	0.005
57749	Chlordane	0.002
126998	Chloro-1,3-butadiene, 2-	0.7
106478	Chloroaniline, p-	0.1
108907	Chlorobenzene	0.1
510156	Chlorobenzilate	0.7
124481	Chlorodibromomethane	see Trihalomethanes
67663	Chloroform	see Trihalomethanes
95578	Chlorophenol, 2-	0.04
107051	Chloropropene, 3-	0.002
2921882	Chlorpyrifos	0.02
7440473	Chromium	0.1
218019	Chrysene	0.0002 (a)
7440508	Соррег	1.3
57125	Cyanide	0.2
72548	DDD	0.0001
72559	DDE	0.0001
50293	DDT	0.0001
75990	Dalapon	0.2
117840	Di-n-octyl phthalate	0.7
2303164	Diallate	0.0006 (a)
333415	Diazinon	0.0006
53703	Dibenz(a,h)anthracene	0.0003
96128	Dibromochloropropan e	0.0002
84742	Dibutyl phthalate	4
1918009	Dicamba	0.2
541731	Dichlorobenzene, m-	0.6
95501	Dichlorobenzene, o-	0.6
106467	Dichlorobenzene, p-	0.075
91941	Dichlorobenzidine, 3,3'-	0.00008 (2)

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
75274	Dichlorobromomethan e	see Trihalomethanes
75718	Dichlorodifluoromethane	1
75343	Dichloroethane, 1,1-	4
107062	Dichloroethane, 1.2-	0.005
75354	Dichloroethylene, 1,1-	0.007
156605	Dichloroethylene, trans-1.2-	0.1
108601	Dichloroisopropyl ether	0.3
120832	Dichlorophenol, 2,4-	0.02
94757	Dichlorophenoxyacetic acid, 2,4-	0.07
78875	Dichloropropane, 1,2-	0.005
542756	Dichloropropene, 1,3-	0.002
60571	Dieldrin	0.00002 (a)
84662	Diethyl phthalate	5
123911	Diethylene dioxide, 1.4-	0.07 (a)
117817	Diethylhexyl phthalate	0.006
60515	Dimethoate	0.007
119904	Dimethoxybenzidine, 3.3'-	0.003 (a)
131113	Dimethyl phthalate	400
57976	Dimethylbenz(a)anthracene, 7.12.	0.000001 (a)
119937	Dimethylbenzidine, 3.3'-	0.000004 (a)
105679	Dimethylphenol, 2.4-	0.7
99650	Diniuobenzene, m-	0.001 (2)
51285	Dinitrophenol, 2,4-	0.07
121142	Dinitrotoluene, 2.4-	0.00005 (a)
88857	Dinoseb	0.007
122394	Diphenylamine	0.2
122667	Diphenylhydrazine, 1.2-	0.00004 (a)
2764729	Diquat (di-cationic form)	0.02
85007	Diquat dibromide	0.02
298044	Disulfoton	0.0003
115297	Endosulfan (mixed isomers)	0.002
145733	Endothall	0.1

,

ĺ

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
72208	Endrin	0.002
106898	Epichlorohydrin	0.04
110805	Ethoxyethanol, 2-	10
60297	Ethyl ether	7
97632	Ethyl methacrylate	3
62500	Ethyl methanesulfonate	0.000001 (a)
100414	Ethylbenzene	0.7
106934	Ethylene dibromide	0.00005
52857	Famphur	0.001
22224926	Fenamiphos	0.002
206440	Fluoranthene	1
86737	Fluorene	1
16984488	Fluoride	4
944229	Fonofos	0.01
50000	Formaldehyde	1
64186	Formic acid	70
76448	Heptachlor	0.0004
1024573	Heptachlor epoxide	0.0002
118741	Hexachlorobenzene	0.001
87683	Hexachlorobutadiene	0.001 (a)
319846	Hexachlorocyclohexane (alpha)	0.000006 (a)
319857	Hexachlorocyclohexane (beta)	0.00002 (a)
77474	Hexachlorocyclopentadiene	0.05
67721	Hexachloroethane	0.001 (a)
70304	Hexachlorophene	0.01
193395	Indeno(1,2,3-cd)pyrene	0.0004
78831	Isobutyl alcohol	10
78591	Isophorone	0.1
143500	Kepone	0.000002 (a)
7439921	Lead	0.015
58899		0.0002
121755		0.2

Page 70

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
7439976	Mercury (inorganic)	0.002
126987	Methacrylonitrile	0.004 (a)
67561	Methanol	20 (a)
16752775	Methomyl	0.2
72435	Methoxychlor	0.04
74839	Methyl bromide	0.01
74873	Methyl chloride	0.003
78933	Methyl ethyl ketone	2
80626	Methyl methacrylate	3
298000	Methyl parathion	0.002
74953	Methylene bromide	0.4
75092	Methylene chloride	0.005
108101	Methylisobutylketone	2
924163	N-Nitrosodi-n-butylamine	0.000006 (a)
621647	N-Nitrosodi-n-propylamine	0.000005 (a)
55185	N-Nitrosodiethylamine	0.0000002 (a)
62759	N-Nitrosodimethylamine	0.0000007 (a)
10595956	N-Nitrosomethylethylamine	0.000002 (a)
100754	N-Nitrosopiperidine	0.000008 (a)
930552	N-Nitrosopyrrolidine	0.00002 (a)
91203	Naphthalene	0.02
91598	Naphthylamine, 2-	0.00004 (a)
7440020	Nickel	0.1
98953	Nitrobenzene	0.02
100027	Nitrophenol, p-	0.06
1336363	PCBs	0.0005
1910425	Paraqual	0.03
56382	Parathion	0.2
608935	Pentachlorobenzene	0.03
82688	Pentachloronitrobenzene	0.0001
87865	Pentachlorophenol	0.001
108952	Phenol	4

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
298022	Phorate	0.007
7723140	Phosphorus, elemental	0.0001
23950585	Pronamide	0.05
129000	Pyrene	3
110861	Pyridine	0.04
94597	Safrole	0.0001 (a)
7782492	Selenium	0.05
7440224	Silver	0.1
93721	Silvex	Ó.05
100425	Styrene	0.1
1746016	TCDD, 2.3.7.8- [Dioxin]	3 x 10 ⁻⁸ (a)(b)
13071799	Terbufos	0.0009
95943	Tetrachlorobenzene, 1,2,4,5-	0.01
630206	Tetrachloroethane, 1,1,1,2-	0.07
79345	Tetrachioroethane, 1,1,2,2-	0.0002 (a)
127184	Tetrachloroethylene	0.005
58902	Tetrachlorophenoi, 2,3,4,6-	1
3689245	Tetraethyldithiopyrophosphate	0.02
7440280	Thallium	0.002 (a)
108883	Toluene	1
95534	Toluidine, 0-	0.0001 (a)
106490	Toluidine, p-	0.0002 (a)
8001352	Тохарнеле	0.003 ·
76131	Trichloro-1,2,2-trifluoroethane, 1,1,2-	1000
120821	Trichlorobenzene, 1,2,4-	0.07
71556	Trichloroethane, 1,1,1-	0.2
79005	Trichloroethane, 1,1,2-	0.005
79016	Trichloroethylene	0.005
75694	Trichlorofluoromethane	2
95954	Trichlorophenol, 2,4,5-	4
88062	Trichlorophenol, 2,4,6-	0.03
93765	Trichlorophenoxyacetic acid, 2.4.5-	0.07

.

CAS Number	Regulated Substance/Analyte	Concentration (mg/L)
96184	Trichloropropane, 1,2,3-	0.04
	Trihalomethanes, total	0.1
99354	Trinitrobenzene, 1,3.5-	0.002 (a)
126727	Tris(2,3-dibromopropyl)phosphate	0.00003 (a)
7440622	Vanadium	0.2
75014	Vinyl chloride	0.002
1330207	Xylenes (total)	10
7440666	Zinc	2

(a) The health-based drinking water criterion for this substance/analyte is lower than the lowest currently achievable and available detection limit. According to Rule 391-3-19.-07(4)(e), the detection limit or background will be the Type 1 groundwater concentration criterion for this substance/analyte.

(b) For the purposes of Rule 391-3-19-.07, all polychlorinated dibenzodioxins and dibenzofurans are collectively considered as one substance, expressed as an equivalent concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), based on the Toxicity Equivalency Factor approach described in "Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans," U.S. Environmental Protection Agency, March 1989. Where concentrations only of homologous groups are known (isomer-specific data are not available), the Director must be consulted to determine an appropriate method for determining 2,3,7,8-TCDD equivalents.