

U.S. Army Corps of Engineers

FINAL CORRECTIVE ACTION PLAN - PART A EPD FACILITY ID: 9025090 PHASE 1 SITE INVESTIGATION AT PUMPHOUSE #6

at

HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

under

Contract No. DACA21-93-D-0049 Delivery Order No. 22

April 1997

Submitted to: U.S. Army Corps of Engineers Savannah, Georgia

Presented by: Metcalf & Eddy, Inc. Atlanta, Georgia

Georgia Department of Natural Resources

Environmental Protection Division

Underground Storage Tank Management Program 4244 International Parkway, Suite 104, Atlanta, Georgia 30354 Lonice C. Barrett, Commissioner Harold Reheis, Director (404) 362-2698

CORRECTIVE ACTION PLAN PART A

Facility Name: <u>Hunter Army Airfield</u>	
Street Address:Strachan Extension, Building 8070	
City: <u>Savannah</u> County <u>Chatham</u>	Facility ID: <u>9025090</u>
Submitted by UST Owner/Operator:	Prepared by:
Name: <u>Mr. John Spears (AFZP-DEV)</u>	Name: <u>David Humphris</u> , P.G.
Company: <u>3rd Infantry Div. (M)</u>	Company: <u>Metcalf & Eddy</u> , Inc.
Address: Building 1139	Address: 1201 Peachtree Street, NE
	400 Colony Square, Suite 1101
City: <u>Ft. Stewart</u> State: <u>GA</u>	City: <u>Atlanta</u> State: <u>GA</u>
Zip Code: 31314-5000	Zip Code: 30361

Zip Code: <u>31314-5000</u>

I. PLAN CERTIFICATION:

A. **UST Owner/Operator**

> I hereby certify that the information contained in this plan and in all the attachments is true, accurate, and complete, and the plan satisfies all criteria and requirements of Rule 391-3-15-.09 of the Georgia Rules for Underground Storage Tank Management.

Name: John Spears, Chief Environmental

Signature:

Date:

B. Professional Engineer or Professional Geologist

> I hereby certify that I have directed the field work and preparation of this plan, in accordance with State Rules and Regulations. As a registered geologist and/or engineer, I certify that I am a qualified groundwater professional, as defined by the Georgia State Board of Professional Geologists. All of the information and laboratory data in this plan and in all of the attachments are true, accurate, complete, and in accordance with applicable State Rules and Regulations.

Name: David M. Wilderman, PG Signature: Date: 4.30.9"

GUST-CAPA, FOR

Please complete the following form, check all of the boxes below that apply, and attach supporting documentation (such as narrative, figures, tables, maps, boring/well logs, etc.) where specified and applicable. Supporting documentation should be three-hole punched and prepared in conformity with the attached guidance document "Underground Storage Tank (UST) Release: Corrective Action Plan - Part A (CAP-A Content, " GUST-7A.)

II. INITIAL RESPONSE REPORT:

A. Initial Abatement:

- No Action Required
- Further Release or Migration of Contaminants Prevented
- Fire and Safety Hazards from Vapors and/or Free Product Monitored and Mitigated
- □ Other (specify) _

B. Free Product Removal:

- No Free Product Identified as Originating from Release
- Free Product (Non-Aqueous Phase Hydrocarbons) Removed by:
 - □ Manual Bailing
 - Passive Skimming
 - □ Automated Skimming.
 - Automated Total Fluids Pumping, with Treatment System and Approved Wastewater Discharge

Other (specify)

C. Tank History - See Supporting Documentation, Section II.C.

Site Map Attached Identifying Former and/or Existing USTs - See Figure 2

□ Not Applicable

GUST-CAPA.FOR

2.

D. Initial Site Characterization:

Site Map: include the following items on an attached site map. See Supporting Documentation, Section II.D

• Tank Pit Area	•	Piping Trenches	•	Dispensers	
 Sewer Lines (if present) 	٠	Water Lines	٠	North Arrow	

- Sample Locations (with sample numbers and depths)
- Tanks with ID#s, corresponding to Notification Form 7530-1 •
- Scale <u>1</u> in = <u>200</u> ft
- 1. Regulated Substance Released - See Supporting Documentation, Section II.D.1.

Gasoline	Diesel	□ Kerosene		Waste Oil
Other JP-4	2 0 U			
Source of Contaminatio	n - See Supporting D	Ocumentation, Section I	I.D.2	
Number of USTs: in u	se <u>0;</u> closed/rem	oved <u>10 in place</u>	-	

Existing UST System(s):	piping	Tank	□ other
Former UST System(s):	□ piping	Tank	□ other

Impacted Environmental Media - See Supporting Documentation, Section II.D.3. 3.

- Groundwater
 - Free product
 - Dissolved (BTEX and/or PAH) contamination exceeding:
 - In-stream water quality standards
 - Drinking Water Maximum Contaminant Levels (MCLs)

Soil Exceeding:

- Laboratory Detection Limits, but TPH is vertically delineated to Below Detection Limits (BDL) above the groundwater table or a groundwater sample from the worst-case location has BTEX and/or PAHs below applicable Drinking and/or In-stream water quality standards.
- Thresholds listed in Table A, Rule 391-3-15-.09
- Thresholds listed in Table B, Rule 391-3-15-.09
- Alternate Threshold Levels (ATLs) (Reference GUST-CAPA Appendix I)

GUST-CAPA.FOR

- D. Initial Site Characterization (continued):
 - Drinking Water Supply Impacted
 - □ Surface Water Impacted
 - Attach Laboratory Analytical Data: the following items must be included See Appendix D
 - Laboratory Method
 Date of Sampling
 - Date of Analysis
 Detection Limits
 - Signed Chain of Custody
 Quality Control Data
 - 4. Local Water Resources See Supporting Documentation, Section II.D.4.
 - Drinking Water Supplies Located In:

High or average groundwater pollution susceptibility area*:

- Public water systems within 2.0 miles
- □ Non-public water systems within 0.5 mile

Low groundwater pollution susceptibility area*:

- Public water systems within 1.0 mile
- □ Non-public water systems within 0.25 mile

* As defined by the Groundwater Pollution Susceptibility Map of Georgia.

- Surface Water Bodies: Distance (nearest) approx. <u>610</u> feet (regardless of hydraulic gradient)
- Attach Documentation of Water Supply Survey and Field Reconnaissance
- 5. Other Hydrogeologic Data (specify values) See Supporting Documentation, Section II.D.5.
 - Depth to Groundwater (shallowest) _____5.84 ft (MW8)
 - Groundwater Flow Direction <u>south</u>
 - Hydraulic Gradient 0.007
- 6. Corrective Action Completed Or In-Progress
 - □ USTs/Source Removed (after confirmed release)
 - Excavation and Treatment/Disposal of Contaminated Backfill Material & Native Soils
 Attach manifests of proper soil disposal
 - □ Other (specify) _

GUST-CAPA.FOR

November 1995

- D. Initial Site Characterization (continued):
 - 7. Conclusions and Recommendations See Supporting Documentation, Section II.D.7.
 - □ No Further Action Required, including the preparation or implementation of a Site Investigation Plan

OR

- Prepare Corrective Action Plan Part B, with a schedule for SIP implementation and submittal of CAP-Part B
- 8. Site Ranking See Supporting Documentation, Section II.D.8 and Appendix F.

Environmental Sensitivity Score: <u>900</u> (see Appendix II)

- III. SITE INVESTIGATION PLAN: See Supporting Documentation, Section III
- A. Horizontal and Vertical Extent of Contaminants In:
 - Soil
 - Groundwater
 - □ Free product
 - Dissolved phase
 - □ Surface Water
- B. Vadose Zone and Aquifer Characteristics:
 - Vertical Soil Permeability (Optional)
 - □ Infiltration Rate (Optional)
 - Saturated Horizontal Hydraulic Conductivity
 - □ Total Organic Carbon (Optional)
 - Dissolved Iron (Optional)
 - Effective Porosity
 - Seepage Velocity
 - Grain-size Distribution (Optional)
 - Total Petroleum Hydrocarbons (Optional)
 - Pilot Test(s) (Optional)
 - □ Other (specify) _

GUST-CAPA.FOR

IV. PUBLIC NOTICE:

- Certified Letters to Adjacent and Potentially Affected Property Owners and Local Officials
- □ Legal Notice in Newspaper, as pre-approved by EPD
- Other EPD Approved Method (specify): See Supporting Documentation, Section IV.

V. CLAIM FOR REIMBURSEMENT: (For GUST Trust Fund sites only) N/A

- GUST Trust Fund Application (GUST-36), must be attached if applicable
- Cost Proposal
 - Non-Reimbursable Costs

OR

□ Reimbursable Costs

□ Invoices and Proofs-of-Payment, per GUST-91

- □ Total Projected Costs to implement the Site Investigation Report (SIR) and prepare data for the Site Investigation Review Meeting, per GUST-91
- Payment Schedule for Reimbursement

GUST-CAPA.FOR

November 1995

SUPPORTING DOCUMENTATION FINAL CORRECTIVE ACTION PLAN - PART A EPD FACILITY ID: 9025090 PUMPHOUSE #6 - BUILDING 8070 HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

CONTRACT NO. DACA 21-93-D-0049 DELIVERY ORDER NO. 0022

TABLE OF CONTENTS

Page

List of Tables		ii
List of Figures		ii
List of Appendices .		ii
List of Acronyms		ii
List of References .		V
INTRODUCTION .	· · · · · · · · · · · · · · · · · · ·	1
Section II.C.	Tank History	1
Section II.D.	Initial Site Characterization	
Section II.D.1.	Regulated Substance Released	3
Section II.D.2.	Source of Contamination	3
Section II.D.3.	Impacted Environmental Media	3 4
Section II.D.4.	Local Water Resources Drinking Water Supplies Surface Water Bodies	5
Section II.D.5.	Other Hydrogeologic Data	5
Section II.D.7.	Conclusions and Recommendations	6
Section II.D.8.	Site Ranking	7

i

Section III	Site Investigation Plan7Soil Investigation8Groundwater Monitoring Well Installation9
Section IV	Public Notice

LIST OF TABLES

- 1 Pumphouse #6 Summary of Constituents Detected in Groundwater
- 2 Pumphouse #6 Summary of Constituents Detected in Soil
- 3 Pumphouse #6 Summary of Constituents Detected in Surface Water
- 4 Pumphouse #6 Summary of Constituents Detected in Sediment
- 5 Water Supply Wells Within A 2-Mile Radius of Pumphouse #6
- 6 Pumphouse #6 Area Monitoring Well Summary
- 7 Proposed SIP Implementation Schedule

LIST OF FIGURES

- 1 Site Location and Surface Water Bodies Located Within a 1-Mile Radius
- 2 Pumphouse #6 Sampling Locations and Utilities
- 3 Pumphouse #6 Petroleum Hydrocarbons Detected in Groundwater Samples
- 4 Pumphouse #6 Petroleum Hydrocarbons Detected in Soil Samples
- 5 Pumphouse #6 Petroleum Hydrocarbons Detected in Surface Water and Sediment Samples
- 6 Pumphouse #6 Potentiometric Surface
- 7 Pumphouse #6 Proposed Sampling Locations

LIST OF APPENDICES

- A Passive Soil Gas Survey
- B Monitoring Well Schematics
- C Monitoring Well Development Sheets and Photographs
- D Analytical Data
- E Geologic Logs
- F Environmental Sensitivity Score

LIST OF ACRONYMS

TL's	Alternate Threshold Levels
VGAS	Aviation gasoline
s	below land surface
	Benzene, Toluene, Ethylbenzene, Xylenes
	Corrective Action Plan
	Department of Natural Resources
RO	Diesel Range Organics
PD	Environmental Protection Division (State of Georgia,
	Department of Natural Resources)
RO	Gasoline Range Organics
UST	Georgia Underground Storage Tank
AAF	Hunter Army Airfield
P	Hydropunch
VQS	Instream Water Quality Standards
CL	Maximum Contaminant Level
&E	Metcalf & Eddy, Inc.
g/kg	milligrams per kilogram
TBE	Methyl Tert-Butyl Ether
W	Monitoring Well
VA	Organic Vapor Analyzer
ΑH	Polynuclear Aromatic Hydrocarbons
AV	Savannah District
4 2	Site Investigation
Р	Site Investigation Plan
SI	Site Investigation
DC	Top of Casing
PH	Total Petroleum Hydrocarbons
g/L	micrograms per liter
ST	Underground Storage Tank
SACE	United States Army Corps of Engineers
	VGAS S TEX AP NR RO PD RO UST AAF P VQS CL &E g/kg TBE W VA AH AV P SI DC PH g/L ST

LIST OF REFERENCES

Anderson-Columbia, Inc., June 27, 1995, Field Report, submitted to the Georgia EPD in January 1996.

Burroughs Quadrangle, Georgia, 7.5 Minute Series Topographic Map, 1988.

Clarke, John S., Hacke, Charles M. and Peck, Michael F., 1990, <u>Geology and Ground</u> <u>Water Resources of the Coastal Area of Georgia</u>, Department of Natural Resources, Bulletin 113, 106p.

Georgia Department of Natural Resources, Environmental Protection Division, October 23, 1995, <u>Rules and Regulations for Water Quality Control</u>, Chapter 391-3-6.

Georgia Department of Natural Resources, Environmental Protection Division, February 1995, <u>Underground Storage Tank Management</u>, Chapter 391-3-15.

Georgia Department of Natural Resources, Environmental Protection Division, November 1995, <u>Guidance Document - Underground Storage Tank Release:</u> Corrective Action Plan (CAP) Part A, GUST - CAPA.GUI

Garden City Quadrangle, Georgia, 7.5 Minute Series Topographic Map, 1980.

Isle of Hope Quadrangle, Georgia, 7.5 Minute Series Topographic Map, 1988.

Metcalf & Eddy, Inc., 1996 Final Corrective Action Plan - Part B, DAACG Facility Area.

Metcalf & Eddy, Inc., 1996, Final Work Plan for Phase I and Phase II Site Investigation at Pumphouses #1, #2, and #6.

Savannah Quadrangle, Georgia 7.5 Minute Series Topographic Map, 1978.

U.S. Army Corps of Engineers, Savannah District, March 11, 1996, <u>Scope of Work, Phase I and Phase II Site Investigations at Pump Houses #1, #2, and #6, Hunter Army Airfield, Georgia</u>.

The State of Georgia, 1995, Georgia Underground Storage Tank Act, Section 12-b.

p:\019457

CORRECTIVE ACTION PLAN - PART A SUPPORTING DOCUMENTATION

PUMPHOUSE #6 - BUILDING 8070 EPD FACILITY I.D. #9025090 HUNTER ARMY AIRFIELD SAVANNAH, GEORGIA

INTRODUCTION

Under Contract DACA 21-93-D-0049 Delivery Order No. 22, with the United States Army Corps of Engineers (USACE) Savannah District (SAV), Metcalf & Eddy, Inc. (M&E) performed a Phase I Site Investigation (SI) at Pumphouses #1 (Building 8060), #2 (Building 8065), and #6 (Building 8070) at Hunter Army Airfield (HAAF) in Savannah, Georgia (Figure 1).

Metcalf & Eddy, Inc. has prepared this Corrective Action Plan (CAP) Part A following guidelines provided by the State of Georgia, Department of Natural Resources (DNR), Environmental Protection Division (EPD). The appropriate Georgia underground storage tank form (GUST-CAPA.FOR, November 1995) was completed for Pumphouse #6 as directed in the EPD Guidance Document, GUST-CAPA.GUI, November 1995. Information provided in the following sections of this Supporting Documentation is presented in sequence with the CAP-Part A form. Pertinent information necessary to support the CAP-Part A form is contained herein.

II.C. Tank History

Pumphouse #6 was a JP-4 fuel island that was used from about 1953 until the 1970s. The pumphouse has been inactive from the 1970s to present. Ten underground storage tanks (USTs) (50,000 gallon) remain in place, two are partially under the pumphouse structure (Figure 2). Tank removal activities are awaiting funding and removal design.

II.D. Initial Site Characterization

A methodical approach was utilized for the field investigation to increase the effectiveness of the sampling program. A thorough review of available historical information was conducted prior to any field activities. Initial field work consisted of collecting soil vapor samples from 167 locations placed on a 70 foot by 70 foot grid over the Pumphouse #6 area. Passive soil vapor modules (GORE-SORBER®) manufactured by W. L. Gore and Associates, Inc. (Gore) were used to collect soil vapor samples for laboratory analysis. The soil vapor survey was initiated by installing the Gore-Sorber module in a 4-foot-deep, 5/8-inch-diameter soil boring that was advanced using an impact hammer. After a 3 week exposure time, the modules were retrieved and analyzed using a Gore-developed method of thermal desorption, gas chromatography, and mass selective detection. Portions of the Gore report and a petroleum hydrocarbon color contour map are presented in **Appendix A**. Parameters analyzed included BTEX (the sum of benzene, toluene, ethyl benzene, and xylene), undecane (C11), tridecane (C13), pentadecane (C15), PAHs and petroleum hydrocarbons. The soil vapor survey indicated that three small areas along the East-West Taxiway were potentially impacted.

Three groundwater monitoring wells were installed to assess both soil and groundwater quality in potentially impacted areas of the site and to define groundwater flow direction and gradient. Six soil samples were collected from 3 soil borings in addition to the 6 soil samples collected from the 3 well borings installed in the Pumphouse #6 area. Two soil samples were collected from different depths at each monitoring well/soil boring location to assess soil quality. Two sediment and surface water samples were also collected from a nearby drainage canal. The results of the field effort are discussed in the following sections.

Facility plans received after completing the CAP-Part A fieldwork indicate that an additional fueling pit (6-E) associated with Pumphouse #6 is located beyond the original study area toward the east (Figure 2). No subsurface investigation was conducted in proximity to fueling pit 6-E. Additional investigation including soil and groundwater sampling will be performed in this area during the CAP-Part B phase of this project.

II.D.1. Regulated Substance Released

There have been no reported releases at this site. Quality matching, a process in which GORE-SORBER[®] chromatograms are compared to chromatograms of standards for selected fuel types in GORE's fluids library, indicated a release of a heavy fuel (JP-4/kerosene based) may have occurred.

II.D.2 Source of Contamination

The GORE data suggests that fueling pits and piping rather than the pumphouse tank area are the sources of contamination based on the soil vapor results. Three monitoring wells and three soil borings were drilled in suspected contaminated areas (Figure 2) to confirm the presence of contamination.

II.D.3. Impacted Environmental Media

Groundwater

Groundwater samples were collected from three monitoring wells (MW07, MW08, and MW09) and analyzed for BTEX/Methyl Tert-Butyl Ether (MTBE) (Method 8020) and PAH (Method 8310) analyses. The analytical data, presented in **Table 1**, indicated that although BTEX components were identified, none exceeded any EPD In-Stream Water Quality Standards (IWQS). PAHs were identified, but none are regulated by the EPD. EPD-regulated PAHs including benzo(a)pyrene, benzo(b,k)fluoranthene, chrysene, benzo(a)anthracene, indeno(1,2,3-cd) pyrene, and dibenzo(a,h)anthracene were not identified although the detection limits for these compounds exceeded the EPD criteria due to matrix interferences. **Figure 3** shows petroleum hydrocarbons detected in groundwater. Monitoring well schematics are presented in **Appendix B** and the development sheets and photographs are presented in **Appendix D**.

Soils

Two soil samples were collected from each of the three monitoring wells and three soil boring locations. The 12 soil samples were analyzed for BTEX/MTBE (Method 8020), PAHs (Method 8100), gasoline range organics (GRO) - Modified Method 8015, and diesel range organics (DRO) - Modified Method 8100. The soil analytical data is presented in Table 2 and Appendix D. Geologic logs are provided in Appendix E. Analytical data indicated that the soil samples were below EPD screening criteria for BTEX. However, the benzene detection limit was higher than the EPD screening criteria of 0.12 mg/kg at location SB16 due to sample dilution required to avoid interferences. Alternate Threshold Limits (ATLs) were calculated for benzene at this location using the detection limit as the sample value. The calculated ATL was also below the detection limit at this location. Figure 4 shows petroleum hydrocarbons detected in soil.

PAHs were not detected in any sample except SB16 (8 - 10 ft). However, the PAHs detected are not regulated by the EPD.

Surface Water and Sediments

Two surface water samples (SWE01 and SWE02) were collected from the drainage ditch south of the site and analyzed for BTEX/MTBE and PAHs (**Table 3**). Analytical results indicate minimal impact by BTEX components (only one xylene detection) and no IWQS exceedances. PAHs were not detected in either surface water sample. However, the detection limits for the EPD regulated PAHs were exceeded because of sample dilution, much like the groundwater samples. Figure 5 shows petroleum hydrocarbons detected in surface water. The laboratory data and chain-of-custodies are presented in **Appendix D**.

Two sediment samples, SWE01 and SWE02, were collected and analyzed for the same parameters as the soil. The analytical data (Table 4) indicated no impact by BTEX or PAH compounds (Figure 5).

II.D.4 Local Water Resources

Drinking Water Supplies

No potable water supply wells were identified within a 1/2 mile radius of the site. Nine water supply wells were identified within a 2-mile radius of the site. The wells within the 2-mile radius for public water supply are screened at a minimum depth of 90 feet bls (**Table 5**), and they are not hydraulically connected to the surficial aquifer due to several interbedded clay layers at depth. The closest of these public wells (Hunter 2) is located approximately 3200 feet north-northeast (upgradient) of the site. Clarke et al, 1990, documents two confining units, Miocene unit A (15-90 feet thick) and Miocene unit B (10-50 feet thick), separating the surficial aquifer from the deeper aquifers. Miocene unit A is typically encountered within 60 feet of the surface in the Savannah area. The Miocene unit B is located directly below Miocene unit A. Thus, the water supply wells are not considered as potential receptors during this investigation.

Surface Water Bodies

The nearest surface water body is the drainage ditch approximately 610 feet south of the pumphouse. The open ditch, about 10 feet deep, is part of the stormwater drainage system on the base. The ditch contains water for the majority of the year and drains toward the east. Figure 1 shows surface water bodies within a 1-mile radius of the site.

II.D.5. Other Hydrogeologic Data

Water level measurements were collected at Pumphouse #6 on December 9, 1996. Groundwater in the study area is under water table conditions and is encountered between 5.84 to 7.36 feet bls, averaging 6.81 feet bls. The groundwater elevations (**Table 6**) were used to construct a potentiometric surface map (**Figure 6**). From **Figure 6**, it appears that groundwater flow is generally to the south or southeast with an approximate gradient of 0.007.

II.D.7. Conclusions and Recommendations

The 10 USTs remain in place but removals are being planned. The Phase I field work identified three small areas of potential contamination using a soil vapor survey. Three soil borings and three monitoring wells were installed in these areas to assess soil and groundwater quality in and around the potentially contaminated areas. A survey of potential receptors identified potable wells and a surface water body in proximity to the investigation area. Potable well records indicated that they were cased to a significant distance below ground surface and are separated from the shallow aquifer by two confining units. The potable wells are therefore not considered potential receptors of shallow aquifer contamination. One surface water body was located approximately 610 feet south of Pumphouse #6 which is most likely hydraulically connected to the shallow aquifer. The two surface water and sediment samples collected from this drainage feature show no signs of petroleum impact. No other potential receptors were identified during the investigation.

The GUST Rule, 391-3-15-.09, provides soil threshold levels for a number of petroleum compounds depending on groundwater susceptibility and location to potential receptors. Since the receptor survey indicated that the surface water body is greater than 500 feet from Pumphouse #6, the less stringent soil threshold levels listed in Table B of the GUST Rule were used to evaluate soil contamination at Pumphouse #6. Concentrations of volatile and semivolatile hydrocarbons in soil did not exceed threshold limits. However, the method detection limit for samples at SB16 exceeded the regulatory limit for benzene due to sample dilutions required by the analytical method. The two soil samples at SB16 also exceeded ATLs when the detection limit was used as the sample concentration value.

Concentrations of organic contaminants in groundwater and surface water samples collected from the Pumphouse #6 area did not exceed State IWQS levels. Sediment samples indicated no impact by petroleum hydrocarbons. M&E recommends that additional soil borings and monitoring wells be installed to define the vertical and horizontal extent of possible contamination in the Pumphouse #6 area. An additional fuel pit east of the investigation area was discovered after the CAP-A activities were completed. This fuel pit should be investigated to assess both soil and groundwater quality. A Site Investigation Plan (SIP) is provided in Section III of this CAP-Part A Supporting Documentation which outlines additional proposed activities. The objectives of the expanded investigation will be to: (1) fully define the horizontal extent of subsurface hydrocarbon contamination, (2) define the vertical extent of contamination hydraulically downgradient of source areas, (3) evaluate the potential existence of preferred subsurface migration pathways, (4) determine shallow aquifer hydraulic characteristics, and (5) evaluate possible remedial responses. Information obtained from these additional investigative activities will be summarized in a CAP-Part B as specified in Georgia Rule 391-3-15 and submitted to the Georgia DNR EPD for review.

II.D.8. Site Ranking

The Pumphouse #6 site has an Environmental Sensitivity Score of 900. The calculation of this score is provided in Appendix F.

III. Site Investigation Plan

The primary purpose for continued site investigation is to define the horizontal and vertical extent of possible petroleum contamination in the vicinity of Pumphouse #6 and the fuel pit identified after completing the first phase of the investigation. The following SIP outlines proposed sampling locations, investigative methodologies, and sample location rationale. A figure illustrating proposed sampling locations is also provided in the SIP. A proposed schedule for SIP implementation is provided in Table 7.

Soil Investigation

Additional subsurface investigation is required at Pumphouse #6 to define the extent of hydrocarbon compounds in soil, specifically around SB16 and the eastmost fuel pit (pit 6-E). Additional monitoring wells will also be required to define the horizontal extent of contamination in groundwater. Soil samples will be collected from both soil boring and groundwater monitoring well locations. Figure 7 provides an illustration of all proposed soil and groundwater sampling points.

A total of nine soil borings are proposed at the Pumphouse #6 site. Two soil samples will be collected from each boring. The samples will be collected from the intervals exhibiting the highest OVA readings above the water table provided adequate vertical delineation (at least 2 feet between sampling intervals) is achieved. Soil samples can be collected from the saturated zone over the range of water table fluctuation (i.e. "smear zone") at the discretion of the geologist to accomplish vertical delineation of contamination. The soil boring installation and sampling procedures are outlined in the Work Plan prepared by Metcalf & Eddy (1996) for Pumphouses #1, #2, and #6.

Each soil sample will be analyzed using EPA methods 8020, 8100, Modified 8100 DRO, and Modified 8015 GRO analysis. Analytical results will be evaluated along with existing data to determine if the horizontal and vertical extent of petroleum contamination has been defined. These analytical results will also be used to evaluate potential soil treatment alternatives.

Aquifer characteristic parameters will be obtained from direct measurements performed on four Shelby tube samples collected at Pumphouse #6. The Shelby tubes will be analyzed for permeability, falling head permeability, specific gravity, particle size, and moisture content. Saturated hydraulic conductivity, effective porosity, and seepage velocity will be determined after reviewing direct measurement results and literature values. These aquifer coefficients will be used in developing the objectives of corrective action.

Groundwater Monitoring Well Installation

A total of two shallow wells and one deep well will be installed downgradient of the Pumphouse/fuel pit area and at the eastmost fuel pit (pit 6-E) to define the horizontal and vertical extent of soluble hydrocarbons in groundwater. Proposed well locations are provided on Figure 7. The deep well will be installed between Pumphouse #6 and the drainage ditch located toward the south (nearest receptor). The deep well may be installed at an alternate location, downgradient of Fuel Pit 6-E, if soil sample headspace analysis using the OVA indicates elevated levels of hydrocarbon vapors exist near this fuel pit. A shallow well will then be installed at the original location for the deep well (near Pumphouse #6) if the alternate location is selected. The shallow groundwater monitoring wells will be constructed using similar methodologies employed during the CAP-Part A investigation. Each shallow well will be installed into the upper 15 feet of the unconfined aquifer. Each deep well will be installed with an approximate ten foot vertical separation in screen intervals with respect to shallow monitoring wells. A five foot section of machine slotted PVC screen will be installed at the base of each deep well. The bentonite seal will be hydrated with foundation water since it will be below the static water table. The bentonite will be allowed to hydrate for one hour before grouting with a tremie pipe.

Two soil samples will be collected from each monitoring well location. The samples will be collected from the intervals exhibiting the highest OVA readings above the water table provided adequate vertical delineation (at least 2 feet between sampling intervals) is achieved. Soil samples can be collected from the saturated zone over the range of water table fluctuation (i.e. "smear zone") at the discretion of the geologist to accomplish vertical delineation of contamination. The soil boring installation and sampling procedures are outlined in the Work Plan prepared by Metcalf & Eddy (1996) for Pumphouses #1, #2, and #6. Each soil sample will be analyzed for BTEX/MTBE, PAH, GRO, and DRO. Analytical results will be used to define the extent of potential contamination in soil.

Each monitoring well will be developed following procedures outlined in the Work Plan

prepared by Metcalf & Eddy (1996) for the Pumphouses #1, #2, and #6 Site Investigation. Groundwater samples will be collected from all newly installed monitoring wells following the development and stabilization periods. Each sample will be analyzed for soluble hydrocarbons using EPA methods 8020 and 8100. Analytical results of these samples will be plotted on site maps along with previous groundwater sample results to evaluate the vertical and horizontal extent of contamination. Groundwater analytical results will also be used to evaluate appropriate remedial alternatives for contaminated groundwater.

IV. Public Notice

The site is located within the boundaries of HAAF, with the closest property boundary being 0.67 mile away. Since no private property is contiguous to the study area, public notification is not required.

p:\019457\PUMPHOUSE6

TABLE 1

CONSTITUENTS DETECTED IN GROUNDWATER HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6

SITE: SAMPLE ID: SAMPLE DATE: UNITS: CONSTITUENT (METHOD)	GA EPD INSTREAM WQS ¹ ug/L		MW07 HT4-MW07 12/9/96 ug/L		MW08 HT4-MW08 12/9/96 ug/L	MW08 HT4-A 12/9/9 ug/L DUPL	MW08 HT4-MW51 12/9/96 ug/L DUPLICATE	MW09 HT4-MW09 12/10/96 ug/L	
VOLATILES (8020) ²									
Benzene	71.28		1.3	v		1.1		3.6J	
Ethylbenzene	28,718		7.7		46	64		47	
Toluene	200,000		5.2	v	5	ې ۷		5	
Xylene (total)	10,000 3		8.4		530	710		330	
POLYNUCLEAR AROMATICS (8310)						s			
Fluoranthene	370		4.9 J	v		v		< 2.6	
Fluorene	14,000		2.2 J	v	٢	v		0.76 J	
Naphthalene	1		1.8		20	20		66	
Phenanthrene + Anthracene ⁴	-/110000		11 J	v	0.4			1.5 J	
Pyrene	11,000		2.4 J	v	-	۲- ۷		< 26	
1-Methylnaphthalene			1.9		12	12		26	
2-Methylnaphthalene	12 -	v	+		29	30		53	

J=Result is Estimated <= Less than detection limit (1) - GA EPD INSTREAM WQS - GA DNR EPD, Water Quality Control, Instream Water Quality Standards, Chapter 391-3-6-.03, section 5 (d)(ii) & (iii), 10/23/95.

(-) - WQS not listed
(2) - Volatiles analysis includes MTBE
(3) - The MCL is given since no WQS exists
(4) - PAH compounds co-elute and can not be individually confirmed.

TABLE 2

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE #6

CONSTITUENTS DETECTED IN SOIL BORINGS

SITE ID: SAMPLE ID: SAMPLE DATE: DEPTH (ft): UNITS: CONSTITUENTS (METHOD)	SOIL THRESHOLD LEVELS ¹ mg/kg	MW07 WB0701 11/20/96 11 mg/Kg	MW07 WB5601 11/20/96 11 mg/kg	MW07 WB0702 11/20/95 16 mg/kg	MW08 WB0801 11/20/96 10 mg/kg	MW/08 WB0802 11/20/95 15 mg/kg	MW09 WB0301 11/20/96 10 mg/kg		MW09 WB0902 11/20/96 15 mg/kg
VOLATILES (8020) ² Benzene Ethylbenzene Toluene Xylene (total)	0.12 140 500 700	 0.0061 0.0061 0.0061 0.0061 	 0.0061 0.0061 0.0061 0.0061 0.0061 	 < 0.0064 < 0.0064 < 0.0064 < 0.0064 < 0.0064 	0.00610.00610.00610.0170.02	 0.0064 0.0064 0.0064 0.0055 	 0.0061 0.022 0.0069 0.17 	v v v	0.0061 0.0061 0.0061 0.012
POLYNUCLEAR AROMATICS (8100) 1-Methylnaphthalene 2-Methylnaphthalene	.	s 0.4 6.0	4.0 ×4.0 ×	< 0.4< 0.4	< 0.4< 0.4	< 0.4< 0.4	< 0.4< 0.4	vv	0.4
PETROLEUM HYDROCARBONS (8015M) GRO DRO	a T	< 0.3 5.7	< 0.3 5.2	< 0.32 < 4.2	0.34.7	 	1.5 J 8.5	v	0.3

J = Result is Estimated. < = Less than detection limit
 (1) - Soil Threshold Levels-GA DNR EPD, Chapter 391-3-15-.09, UST Management, Table B, for an Average of Higher Groundwater Pollution Susceptibility Area based on a distance of > 500 feet to a surface water body.
 (-) Level not listed.
 (2) - Volatiles analysis includes MTBE

ш
5
5
-
-
z
0
õ
N
ш
_
m
Z
P

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6 CONSTITUENTS DETECTED IN SOIL BORINGS

SITE ID: SAMPLE ID: SAMPLE DATE: DEPTH (ft): UNITS:	solL THRESHOLD LEVELS ¹ mg/kg	SB16 SB1601 11/20/96 6 mg/kg	SB16 SB5301 11/20/96 6 mg/kg	SB16 SB1602 11/20/96 10 mg/kg	SB17 SB1701 11/20/96 6 mg/kg	SB17 SB1702 11/20/96 8 mg/kg	SB18 SB1801 11/20/96 3 mg/kg	SB18 SB1802 11/20/96 7 mg/kg
CONSTITUENTS (METHOD)				× 3¥				
VOLATILES (8020) ² Benzene	0.12	< 057 *	. 057.	*	0.005			
Ethylbenzene	140	2.1	1.4	- 68 7	0.0054	0.056	< 0.0056	< 0.0058
Toluene	500	< 0.57	< 0.57	8.6	< 0.0054	0.0077	0.0086	< 0.0058
Aylene (total)	200	3.1	1.1	76	< 0.0054	0.04	0.019	< 0.0058
POLYNUCLEAR AROMATICS (8100) 1-Methylnaphthalene		< 30 ×	0E ×	12 J	< 0.36	< 0.38	< 0.38	0.38
2-Methylnaphthalene	•	90 v	< 30	16 J	< 0.36	< 0.38	< 0.38	< 0.38
PETROLEUM HYDROCARBONS (8015M) GRO	,	95 J	80 J	1700 J	< 0.28	н С	6 0 28	2
DRO	,	4800 J	4300 J	2500 J	6.9	18	24	v v 8.0 8.0
J = Result is Estimated	, limit							

* = Detection limit exceeds soil threshold level due to dilutions.
 (1) - Soil Threshold Levels-GA DNR EPD, Chapter 391-3-15-.09, UST Management, Table B, for an Average of Higher Groundwater Pollution Susceptibility Area based on a distance of > 500 feet to a surface water body.
 (-) Level not listed.
 (2) - Volatiles analysis includes MTBE

TABLE 3

CONSTITUENTS DETECTED IN SURFACE WATER HUNTER ARMY AIRFIELD **CAP-A PUMPHOUSE # 6**

SITE: Sample ID: Sample Date: Units:	GA EPD INSTREAM WQS ¹ ug/L	SWE01 HT4-SW01 12/10/96 ug/L	SWE02 HT4-SW02 12/10/96 ug/L
CONSTITUENT (METHOD)			
VOLATILES (8020) ² Xylene	10,000 ³	۲ ۲	1.1 ک
POLYNUCLEAR AROMATICS (8310)		ND	QN

ND - Constituents Not Detected above the detection limits, see Appendix D, Analytical Data.
 (1) - GA EPD INSTREAM WQS - GA DNR EPD, Water Quality Control, Instream Water Quality Standards, Chapter 391-3-6-.03, section 5 (d)(ii) & (iii), 10/23/95.
 (-) WQS not listed

(2) - Volatiles analysis includes MTBE(3) - The MCL is given since no WQS exists

TABLE 4

CONSTITUENTS DETECTED IN SEDIMENTS HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6

SITE ID:		SWE01	SWE02
SAMPLE ID:	SOIL	HT4-SE01	HT4-SE02
SAMPLE DATE:	THRESHOLD	12/10/96	12/10/96
DEPTH (ft):	LEVELS ¹	0	0
UNITS:	mg/kg	mg/kg	mg/kg
CONSTITUENTS (METHOD)	2		
VOLATILES (8020) ²		DN	Q
POLYNUCLEAR AROMATICS (8100)		QN	Q
PETROLEUM HYDROCARBONS (8015M) GRO DRO	1.1	ON ON	88

ND = Constituents not detected above detection limit, see Appendix H, Analytical Data. (1) - Soil Threshold Levels-GA DNR EPD, Chapter 391-3-15-.09, UST Management, Table B, for an Average of Higher Groundwater Pollution Susceptibility Area based on a distance of > 500 feet to a surface water body. (-) Level not listed. (2) - Volatiles analysis includes MTBE

TABLE 5WATER SUPPLY WELLS WITHIN A 2-MILE RADIUS OF PUMPHOUSE #6

Well I.D.	Quad.	Owner	Total Depth	Casing Depth	Use
290	36Q	U.S. Army, Hunter 4	300	90	Institutional
112	36Q	SCL RR, Shops	508	275	Commercial
285	36Q	U.S. Army, Hunter 1	504	259	Public
286	36Q	U.S. Army, Hunter 2	555	260	Public
036	36P	City of Savannah 36	414	252	Public
287	36Q	U.S. Army, Hunter 3	370	324	Public
078	37P	Rivers End Subdiv. 01	440	200	Public
079	37P	Rivers End Subdiv. 02	400	227	Public
006	37P	City of Savannah 13	1000	270	Public

Quad: Georgia Grid System. The full well name as in Bulletin 113 is 37Q034.

Sources: Hunter AAF in AT&E, 1993. GA Geologic Survey, Bulletin 113, 1990. U.S.G.S. Well Listing, 1996. City of Savannah Well Listing, 1996.

38.4
37.7
39.1

TABLE 6PUMPHOUSE #6 AREA MONITORING WELL SUMMARY

Task No.	Task Description	Estimated Start Date	Estimated Completion Date	Calendar Days After NTP
1	USACE Approval of Final CAP Part A	March 6, 1997	April 28, 1997	0
2	Mobilize for Phase II	April 28, 1997	May 2, 1997	5
3	Complete Phase II SI	May 5, 1997	May 28, 1997	30
4	Prepare Draft CAP Part B	May 29, 1997	July 28, 1997	90
5	Review Draft CAP Part B	July 29, 1997	Aug. 28, 1997	120
6	Prepare Final CAP Part B	Aug. 29, 1997	Sept. 12, 1997	134
7	Submit Final CAP Part B	Sept. 15, 1997	Sept. 15, 1997	137

TABLE 7 PROPOSED SIP IMPLEMENTATION SCHEDULE

N 1945ZHAENCNCHHAERIR DGN DAIFD: 04-02-97

	x	
	LEGEND:	9
	O SWE02	SURFACE WATER/ SEDIMENT LOCATION
	O MW07	MONITORING WELL LOCATION
	⊗ SB16	SOIL BORING LOCATION
	· · · · · · · · · · · · · · · · · · ·	DITCH
	>	FLOW DIRECTION
	[]	PRESENT UST LOCATION
	-xx	FENCE
	Ö	FIRE HYDRANT
	\bowtie	FUEL VALVE
		DROP INLET
		ELECTRIC MANHOLE/JUNCTION BOX
FIGURE 2	Ĩ	U.S. ARMY ENGINEER DISTRICT, SAVANNAH CORPS OF ENGINEERS SAVANNAH, GEORGIA
	PUMPHO	USE #6
S	AMPLING I	
	AND UT	
HUNTER A	RMY AIRFIELD	SAVANNAH, GEORGIA
METCALF & E	DDY	

N

BY: M.A. FRANK 6 20 04-DATED: CHHAF 008-DGN 5

BY: M.A. FRANK DATED: 04-02-97 p:/proj/ 19457HAF/C/CHHAFØØ6.DGN 90.

LEGEND:

	o SWE02	SURFACE WATER/ SEDIMENT LOCATION			
	SURFACE WATER TOTAL BTEX TOTAL PAHS	SEDIMENT TOTAL BTEX TOTAL PAHS			
BDL - BELOW DETECTION LIMIT					
J - ESTIMATED					
SURFACE WATER UNITS IN ug/L					
SEDIMENT UNITS IN mg/kg					
	[]	PRESENT UST LOCATION			
->	<x< td=""><td>FENCE</td></x<>	FENCE			
	Ö	FIRE HYDRANT			
47	\bowtie	FUEL VALVE			
		DROP INLET			
	MB	ELECTRIC MANHOLE/JUNCTION BOX			
	date sample	D: 12-10-96			
FIGURE 5		U.S. ARMY ENGINEER DISTRICT, SAVANNAH CORPS OF ENGINEERS SAVANNAH, GEORGIA			
PUMPHOUSE #6					
PETROLEUM HYDROCARBONS DETECTED					
IN SURFACE WATER AND SEDIMENT SAMPLES					
HUNTER ARMY	AIRFIELD	SAVANNAH, GEORGIA			
METCALF & EDDY		·			

DATED: 04-09-97 BY: M.A. FRANK Proj 19457HAF/C/CHHAFØ20.DGN ä
APPENDIX A

PASSIVE SOIL VAPOR SURVEY

DESCRIPTION OF PASSIVE SOIL VAPOR MODULES AND MODULE INSTALLATION AND RETRIEVAL PROCESSES

Each soil vapor module consists of four separate GORE-SORBER[®] Passive Sorbent Collection Devices (sorbers). A sorber is 40 millimeters (mm) long, with a 3 mm inside diameter (ID), and contains 40 milligrams (mg) of granular adsorbent material. Two Tenax-TA[®] resin and two carbonaceous resin sorbers are sheathed in the bottom of a 4-foot length of vapor-permeable insertion and retrieval cord. Both the retrieval cord and sorbent container are constructed solely of inert, hydrophobic, microporous GORE-TEX[®] expanded polytetrafluoroethylene.

The hydrophobic nature of the material means that liquid water will be excluded yet they do not retard vapor transfer, thus allowing VOC and SVOC vapors to freely penetrate the module and collect on the adsorbent material. This ability to protect the sorbent media from contact with ground and soil pore water without retarding soil vapor adsorption facilitates the use of the modules in saturated and very low permeability, poorly drained soils.

Installation of the modules was performed by utilizing a slam bar and an electric rotary hammer-drill to create a 5/8-inch-diameter pilot hole for the deployment of the modules to an average depth of 4 feet below grade. Modules were inserted into the completed boreholes using a stainless steel insertion rod after the pilot hole was completed. The top of each cord was fastened to a cork, which was tamped flush with the ground surface to assist in retrieval of the module, and to seal the annulus of the boring.

The modules were left in place for the recommended 3-week screening period. Module retrieval required field personnel to remove the cork, grasp the retrieval cord and manually pull the module from each location. Corks were separated from the module and discarded. The exposed modules were resealed in their respective designated shipping vials and placed immediately on ice in coolers, along with trip blanks and water temperature control blanks (provided by GORE). Coolers were returned along with the chain-of-custody (COC) form to GORE's laboratory in Elkton, Maryland via overnight carrier. Sorber analysis consists of thermal desorption, gas chromatography, and mass selective detection. The results of the Screening Survey are summarized in a brief report which includes the chain of custody, laboratory analytical data summary tables, and color contour maps. Excerpts from Gore's report and the petroleum hydrocarbons contour map are provided in this Appendix.

p:\019457\pumphouse 6

W. L. GORE & ASSOCIATES, INC.

101 LEWISVILLE ROAD • P.O. BOX 1100 • ELKTON, MARYLAND 21922-1100 PHONE: 410/392-3300 FAX: 410/996-3325 • TELEX 467637 GORE FB ELKT ENVIRONMENTAL PRODUCTS GROUP

Page 1 of 7

GORE-SORBERSM Screening Survey **Final Report**

Pumphouses 1, 2 & 6, Hunter Army Airfield Savannah, GA

November 19, 1996

Prepared For: Metcalf & Eddy, Inc. 1201 Peachtree Street, NE 400 Colony Square, Suite 1101 Atlanta, GA 30361

W.L. Gore & Associates, Inc. Written/Submitted by

Jay W. Hodny, M.S. Associate

I:\PROJECTS\METEDDY\HUNT_AAF.GA\961113R.DOC

W.L. Gore & Associates, Inc. Reviewed/Approved by

Mark J. Wrigley, P.G.

Associate

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

FORM 11R.3 Rev 10/25/96

ASIA · AUSTRALIA · EUROPE · NORTH AMERICA GORE-TEX and GORE-SORBER are trademarks of W. L. Gore & Associates, Inc. GORE-SORBER Screening Survey is a registered service mark of W. L. Gore & Associates, Inc.

Page 2 of 7

GORE-SORBERsm Screening Survey Final Report

REPORT DATE: November 19, 1996

AUTHOR: JWH

SITE INFORMATION

Site Reference: Pumphouses 1, 2, & 6, Hunter Army Airfield, Savannah, GACustomer Purchase Order Number:155834Customer Project Number:Job #019457-4102Gore Production Order Number:069711Gore Site Code: TP

FIELD PROCEDURES

Modules shipped: 684
Modules Installed: 651
Modules Lost in Field: 6
Unused Modules Returned: 4
Exposure Time: 21, 22 [days]

#Modules Retrieved: 645 **#Trip Blanks Returned:** 29

Field work performed by: Metcalf & Eddy

Coolers/Modules Received by: CJF (Gore), October 16,17, & 18, 1996 @ 12:00pm Chain of Custody Form attached: $\sqrt{}$

Chain of Custody discrepancies: Page 1 of the COCs for Coolers #8 and #9 appeared to have been switched (i.e., Cooler #8 and #9 COCs are mismatched to the Installation/Retrieval logs for these two coolers).

Comments: Temperature of the water control blanks for seven coolers, exceeded the generally accepted criteria for preservation of environmental samples, 4.0±2.0 °C.

Page 3 of 7

GORE-SORBERsm Screening Survey Final Report

FIELD PROCEDURES SUMMARY

	-	-	_	T	-	_				-
Water Control Blank Tenp °C	6.8	5.7	6.1	3.7	7.3	7.0	10.1	7.0	8.5	2.9
Installation Refrieval Dates Dates	10/17/96	10/17/96	10/16,17/96	10/16,17/96	10/16/96	10/16/96	10/15.16/96	10/15/96	10/15/96	10/16/97
Installation Dates	9/25/96	9/25/96	9/25/96	9/25/96	9/24/96	9/24/96	9/24/96	9/23/96	9/23/96	9/24,25/96
# Returned Unused	0	0	0	4	0	0	0	0	0	0
#Lost	1	3	0	1	0	0	0	0	1	0
# Retrieved	64	62	65	60	69	65	65	65	65	65
# Trip Blanks	3	3	3	3	0	3	3	3	4	4
# Installed	65	65	65	61	69	65	65	65	66	65
# Modules Shipped	68	68	68	68	69	68	68	69	69	69
Cooler #	-	5	3	4	5	9	7	8	6	10

FORM 11R.3 Rev 10/25/96

Page 4 of 7

GORE-SORBERsm Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990. The Laboratory is audited regularly by a quality system design, development and auditing company.

Instrumentation consists of Hewlett-Packard 5890 gas chromatographs and 5971 mass selective detectors, as well as Perkin-Elmer ATD 400 automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Screening Method Quality Assurance:

Before each run sequence, two instrument blanks, a sorber containing $5\mu g$ BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in our methods before samples can be analyzed. A sorber containing BFB is also analyzed after every 30 samples and/or trip blanks, as is a method blank. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 20µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by the presence of the target ion and at least two secondary ions, retention time versus reference standard, and the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Quality Assurance Level: 2 (ANA-4/GS3)

Instrument ID: #2,3 Chemist: JW/WW Data Subdirectory: 069711 Compounds/mixtures requested: Expanded VOCs and SVOCs Target List (A4) Deviations from Standard Method: For analytical run 069711E, MtBE, Octane, and Pentadecane 50 µg standard dropped due to non-linearity.

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 7).

Page 5 of 7

GORE-SORBERsm Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: Four (4) B-size color contour maps **LIST OF MAPS ENCLOSED:**

- Benzene, Toluene, Ethylbenzene, m,p,o-Xylenes (BTEX)
- Undecane, Tridecane, & Pentadecane (C11, C13, & C15)
- Combined PAHs (PAHs)
- Petroleum Hydrocarbons (Petro. Hydro.)

Compound	Method Detection	Low Map (gray)	Highest Detect	Upper Map
Name	Limit [µg]	Limit [µg]	Level [µg]	(purple) Limit [µg]
BTEX	0.02	0.02	719.64	719.64
C11, C13, & C15	0.02	0.02	36.75	36.75
PAHs	0.03	0.03	17.94	17.94
Petro. Hydro.	*	1.07	1,755.96	1,755.96
4 NT (1 1 1)		10		

* - No method detection limit is available.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore, as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

Comments:

- At the request of Metcalf & Eddy, the minimum (gray) contour level, for each mapped analyte or group of analytes, was set at the method detection limit. No method detection limit exists for the Petroleum Hydrocarbons data; therefore, the gray level was set at the average blank level for these data. The maximum contour level was set at the maximum value observed. The maximum blank levels and average blank levels reported were posted on each map along the color scale bar.
- Stacked total ion chromatograms (TIC's) are included in Appendix A. The last three digits
 of each module number are incorporated into the TIC identification (e.g.: TP<u>370</u>TC.D
 represents module #127<u>370</u>).
- Elevated levels of several target analytes were reported in trip blank #127386.
- During the analysis of module #126998, the masses of hydrocarbons eluting from the instrumentation caused an instrument detector overload (under maximum dilution conditions). Therefore, values reported in the data table are indicated with a ">" sign. This indicates that the microgram levels were at least this high. Quantification of these compounds is integrated up to a point of confidence in the chromatograms. For mapping

Page 6 of 7

GORE-SORBERsm Screening Survey Final Report

purposes, those values reported with a ">" sign were set equal to that value. For example, with module #126998, toluene was reported as >377.34 μ g. Thus, this level was set at 377.34 μ g for mapping purposes.

Modules exhibiting unresolved peak envelopes (UPEs) were tentatively identified by matching the UPE to fluids in Gore's fluids library. Metcalf & Eddy, Inc. were interested in tentative matches indicating fluids in the range of aviation fuel products. A similar tentative fluids match was performed on this dataset, using the same chemist judgment criteria as that reported in the GORE-SORBER Screening Survey Final Report, Stormwater Drainage System, Hunter Army Airfield, Savannah, GA, dated February 12, 1996. The results are summarized in Appendix A, Tentative Fluid Matching Results.

GORE-SORBER is a registered trademark of W. L. Gore & Associates, Inc.

Page 7 of 7

GORE-SORBERsm Screening Survey Final Report

KEY TO DATA TABLE

Pumphouses 1, 2 & 6, Hunter Army Airfield, Savannah, GA

µgmicrograms (per sorber), reported for compounds using external standards.MDLmethod detection limitANALYTESBTEXcombined masses of benzene, toluene, ethylbenzene and total xylenes (Gasoline Range Aromatics)C11,C13&C15combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)MTBEmethyl t-butyl ether112DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethene2DCEcis.1,2-dichloroethene2DCEcis.1,2-dichloroethene11TCA1,1,1-trichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCBENZchlorobenzeneEBENZethylbenzenemgXYLm.p.ryleneoXYLo.xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneUNDECundecaneUNDECundecaneNAPHaphthalenePENTADECpentadccaneS AAHaphthalene	UNITS	
external standards. method detection limitANALYTESBTEXcombined masses of benzene, toluene, ethylbenzene and total xylenes (Gasoline Range Aromatics)C11,C13&C15combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)MTBEmethyl t-butyl ethert12DCEtrans-1,2-dichloroethane11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroethaneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneOCToctanePCEtetrachlorideCTEchlorobenzeneEIBNZchlorobenzeneCBENZchlorobenzeneCHA1,3-5-trimethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecaneMAPH2-methyl naphthalenePENTADECpentadecane	Це	micrograms (per sorber), reported for compounds using
ANALYTES BTEX combined masses of benzene, toluene, ethylbenzene and total xylenes (Gasoline Range Aromatics) C11,C13&C15 combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes) MTBE methyl t-butyl ether t12DCE trans-1,2-dichloroethene c12DCE cis-1,2-dichloroethene c12DCE cis-1,2-dichloroethene CHC13 chloroform 111TCA 1,1,1-trichloroethane 12DCA 1,2-dichloroethane 12DCA 1,2-dichloroethane BENZ benzene CC14 carbon tetrachloride TCE trichloroethene TOL toluene OCT octane PCE tetrachloroethene CIBENZ chlorobenzene EBENZ tholuene OXYL o-xylene 135TMB 1,3,5-trimethylbenzene 124TMB 1,2,4-4 & 1,3,5-trimethylbenzene 124TMB 1,2,4-4 & 1,3,5-trimethylbenzene 124TMB 1,2,4-4 & 1,3,5-trimethylbenzene 124TMB 1,2,4-4 & 1,3,5-trimethylbenzene IVMDEC undecane <td>10</td> <td></td>	10	
BTEXcombined masses of benzene, toluene, ethylbenzene and total xylenes (Gasoline Range Aromatics)C11,C13&C15combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)MTBEmethyl t-butyl ethert12DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroethaneCHC13chloroform111TCA1,1-trichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneUNDECundecaneNAPHnaphthaleneTRIDECtridecaneZMENAPH2-methyl naphthalenePENTADECpentadecane	MDL	method detection limit
BTEXcombined masses of benzene, toluene, ethylbenzene and total xylenes (Gasoline Range Aromatics)C11,C13&C15combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)MTBEmethyl t-butyl ethert12DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroethaneCHC13chloroform111TCA1,1-trichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneUNDECundecaneNAPHnaphthaleneTRIDECtridecaneZMENAPH2-methyl naphthalenePENTADECpentadecane		
(Gasoline Range Aromatics)C11,C13&C15combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)MTBEmethyl t-butyl ether112DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroetheneCHC13chloroform111TCA1,1.1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEIBENZethylbenzenemyXYLm-, p-xyleneoXYLo-xylene135TMB1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneUNDECundecaneMTE1,4-dichlorobenzeneUNDECundecaneMTE1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneMTE1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneMAAPH2-methyl naphthalenePENTADECpentadecaneMAAPH2-methyl naphthalenePENTADECpentadecane		
C11,C13&C15combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) (Diesel Range Alkanes)MTBEmethyl t-butyl ethert12DCEtrans-1,2-dichloroethenet1DCA1,1-dichloroethanec12DCEcis-1,2-dichloroetheneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLo-xylene0XYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecaneMeNAPH2-methyl naphthalenePENTADECpentadecane	BTEX	
(Diesel Range Alkanes)MTBEmethyl t-butyl ethert12DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroetheneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEBENZethylbenzeneYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneITMBs1,2,4-timethylbenzene14DCB1,4-dichlorobenzeneIMBs1,2,4-timethylbenzeneIMDCundecaneNAPHnaphthaleneTRIDECtridecanePENTADECpentadecane		
MTBEmethyl t-butyl ethert12DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethenec12DCEcis-1,2-dichloroetheneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCBENZchlorobenzeneCBENZtetrachloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	C11,C13&C15	and the second
t12DCEtrans-1,2-dichloroethene11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroethaneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzeneMXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
11DCA1,1-dichloroethanec12DCEcis-1,2-dichloroethaneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroethanePCItolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
c12DCEcis-1,2-dichloroetheneCHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
CHC13chloroform111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	127 02545-00 - 127290 AM	
111TCA1,1,1-trichloroethane12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xylene0XYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
12DCA1,2-dichloroethaneBENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
BENZbenzeneCC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
CC14carbon tetrachlorideTCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	12DCA	1,2-dichloroethane
TCEtrichloroetheneTOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	BENZ	
TOLtolueneOCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	CC14	
OCToctanePCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4-& 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	TCE	trichloroethene
PCEtetrachloroetheneCIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	TOL	toluene
CIBENZchlorobenzeneEtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzene17MBs1,2,4-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	OCT	octane
EtBENZethylbenzenempXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4- & 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	PCE	
mpXYLm-, p-xyleneoXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4- & 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	CIBENZ	chlorobenzene
oXYLo-xylene135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4- & 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	EtBENZ	
135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzeneTMBs1,2,4- & 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	mpXYL	
124TMB1,2,4-trimethylbenzeneTMBs1,2,4- & 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	oXYL	
TMBs1,2,4- & 1,3,5-trimethylbenzene14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	135TMB	
14DCB1,4-dichlorobenzeneUNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	124TMB	
UNDECundecaneNAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	TMBs	1,2,4- & 1,3,5-trimethylbenzene
NAPHnaphthaleneTRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane	14DCB	1,4-dichlorobenzene
TRIDECtridecane2MeNAPH2-methyl naphthalenePENTADECpentadecane		
2MeNAPH2-methyl naphthalenePENTADECpentadecane	NAPH	
PENTADEC pentadecane		
5 PAHs naphthalene, 2-methynaphthalene, acenaphthene, acenaphthylene, and fluorene		
	5 PAHs	naphthalene, 2-methynaphthalene, acenaphthene, acenaphthylene, and fluorene

BLANKS

TBn method blankn unexposed trip blanks, which traveled with the exposed modules method blank, retained at Gore

APPENDIX B

MONITORING WELL SCHEMATICS

APPENDIX C

MONITORING WELL DEVELOPMENT SHEETS

AND PHOTOGRAPHS

MONITORING WELL DEVELOPMENT

DATE:

WELL I.D. NO .:

LOGGED BY:

MW07 11/25/96 D. Humphus METHOD OF DEVELOPMENT: (2 V DC while fing)

STATIC WATER LEVEL: 7.0' TD c 7.15' bg-sTD = 16.5 $8.85' \times 6.9 = 61.1(5' \text{ vil})$

			PA	RAMETER	5	PUMPING	VOLUME	рното	
SAMPLE NO.	TIME (113	TEMP (°F)	рН	COND'Y (umhos)	TURBIDITY (NTU)	RATE (gpm)	PUMPED (gal)	TAKEN	OBSERVATIONS
١	1119	80.2	5.21	95.3		1-1.2	2,5		Surjap 0, 2.5
г	1124	78.5	5.88	89.7			5		Surge 5, 7.5
3	1/32	77.5	6.13	98.7			10		Surge 0, 2.5 Surge 05, 7.5 Surge P10
4	(138	77.0	6.27	97.4			15	2 E	Surge @ 15
5	1144	77.3	6.30	89.0			20		Surge@ 20
6	1149	76.9	6.30	84.7			25		Surge@ 20 Clearing - Sl. grow
7	1154	76.5	6.28	77.3			30		
8	1158	76.0	6.28	79.8			35		clearing
9	1202	75.6	6.30	75.4			40		
10	1210	74.9	6.31	74.4			50	-	
- 11	1214	74.6	6.30	73.9			66		clear
12	1218	74.3	6.32	74.9	. 4	1	60		
13	1.2.26	73.8	6.37	73.7			70	Y	dear
					1	3			
							5 - E	2	
			2						
							1		
				а Ц то					
		-							
				T			5		
			: I:	L Transfer					
				1					
							-		
	-		e.					1. 	
						North Contraction of the second se		5	
				ar ann					

TOTAL DEVELOPMENT TIME:

1:13 70 Gal

TOTAL VOLUME PURGED:

COMMENTS

MONITORING WELL DEVELOPMENT

METHOD OF DEVELOPMENT: 12 V DC Whate Purp

WELL I.D. NO .:	
-----------------	--

DATE:

LOGGED BY:

1	1208	н т. к. 19
	11/25/96	3 N.
	D. Hunghal	
	2 . 1. Con 1	

STATIC WATER LEVEL: <u>5.6'70G</u> 5.7'6gs TD=13.0 7.3'x(1.9 = 50.4 gal = 5vol

			PA	RAMETER	S	PUMPING	VOLUME	рното	
SAMPLE NO.	TIME 1254	TEMP (°F)	pН	COND'Y (umhos)	TURBIDITY (NTU)	RATE (gpm)	PUMPED (gal)	TAKEN	OBSERVATIONS
1	1255	73.5	6.43	42.2	1	1-1.2	2.5	-	Surge P 0, 2.5,
2	1259	73.6	5.98	36.6			5		Surge @ 10 Surge @ 10 Surge @ 15 Surge @ 20, clearing
- 3 -	1308	73.6	5.85	37,2	A 4	1. A.	10		Sunge @ 10
4			1000 C	37.8	1		15		Surge @ 15
5	1318	73.5	5.82	34.9)		20	1	Surge@ 20 , clearing
6	1327	73.4	5.77	29.2			30		dear, wsediment
.7 .				27.2			40		dear, no sediment Topwister clear
8				25.3	1 1 2 2		450		
9				23.7	94 - S.		50		"
10	1344	73.3	5.63	22.9			55	Y	Clear - nosediment
11			15 N (<u> </u>	
12				-					
13									
			lee Minai						
				5					
	1								
								17	
					DI.	2			
		1						2	
				-		3			
				1					
		+							
				Name and			1		
				•	1	1	. I.	1	
TOTAL DEVELO	PMENT TIN	/E:		valm					
TOTAL VOLUM	e purged:		55	64			£5		, isa
COMMENTS _	ά.	C	ear.		-				
-									
									PG OF

MONITORING WELL DEVELOPMENT

WELL I.D. NO .: MW 09

LOGGED BY:

DATE:

11/25 196 phric

METHOD OF DEVELOPMENT: 12V DC Whale Pump

STATIC WATER LEVEL: 6.3' TOC - 6.9' bgsTD= 15.0 8.1' x 6.9 = 55.9 60 = 5 vol

			PA	RAMETER	S	PUMPING	VOLUME	рното	
SAMPLE NO.	TIME 1436	TEMP (°F)	рĤ	COND'Y (umhos)	TURBIDITY (NTU)	RATE (gpm)	PUMPED (gal)	TAKEN	OBSERVATIONS
í	1441	79.5	5.60	104.4		1-1.2	2.5		Surge @ 0, 2.5. Surge @ 5, 7.5 Surge @ 10 Surge @ 15 clearing Surge @ 20, dearing clearing
2				106.1			5.0		Surge @ 5, 7.5
3		1		104.6			10		Surge @10
4	1459	79.1	5.77	106.8			15		Surge @ 15 clearing
5	1504	79.0	5.76	106.0	5		20		Surge@ 20, dearing
6				105.7			25		clearing
7	1514	79.1	5.76	103.4			30		clear clear
8	1533	77.3	5.79	97.2			40		clear
9	1539	79.0	5.83	95.9	8		50		clear
10	1546	78.9	5.75	94.5		12	60	Y	clear
//								1	
12									
13									
							. 2		
							1		
				in and a second s					· · · · · · · · · · · · · · · · · · ·
							-		
								-	
	5								
		-					-		
а г.									

TOTAL DEVELOPMENT TIME:

1:10

60 Gal.

TOTAL VOLUME PURGED:

COMMENTS ____

PG. _____ OF____

MONITORING WELL DEVELOPMENT PHOTOS

APPENDIX D

ANALYTICAL DATA

* The analytical data presented in this appendix is obtained from the Subcontractor Analytical Laboratory in a direct download from the laboratory LIMS System. The analytical data is loaded into M&E's analytical Database, printed in a specified format, validated and checked for accuracy against the hard copy report submitted by the Subcontractor Lab. M&E maintains the Original Analytical Report as part of the Project Files. A copy of the Original Analytical Report is available on request.

CONSTITUENT (Units in un/l)	SITE Sample ID	MW07 HT4-MW07	MW08 HT4-MW08	MW08 HTA MW51	60WM	
2		12/09/96 Primary	12/09/96 Primary	12/09/96 Duplicate	12/10/96 Primary	
MTBE		<10	<50	<50	<50	
Benzene 1.3		1.3	<1.1	<1.1	3.6 J	
Ethylbenzene		7.7	46	64	47	
Toluene	5.2	5.2	4 5	<5	√ 5	
Xylene (total)		8.4	530	710	330	
		1		1	1	
Acenaphthene		ŕ	<2	<2	<5	
Acenaphthylene		₽ ₽	<2	<2	<5	
Benzo(a)pyrene		<0.2	<0.4	<0.4	2	
Benzo(b,k)fluoranthene	<0.2	<0.2	<0.4	<0.4	Ÿ	
Benzo(ghi)perylene		<0.5	7	۲ ۲	<2.6	
Chrysene + Benzo(a)anthracene		<0.2	<0.4	<0.4	ź	
Fluoranthene			۲	v	<2.6	
Fiuorene		2.2 J	<1	.	0.76 J	
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	anthr	<0.5	۲	<1	<2.6	
Naphthalene 1.8		1.8	20	20	66	
Phenanthrene + Anthracene		11 J	<0.4	<0.4	1.5 J	
Pyrene	2.4 J	2.4 J	1 2	Ÿ	<2.6	
1-Methylnaphthalene	1. 1.	1.9	12	12	26	
2-Methylnaphthalene		2	29	30	53	
Values represent total concentrations unless noted		< =Not detected at indicate	indicated reporting limit	=Not analyzed		
EDA Mathada: 8030 8100 & MTDE						

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSES # 6 IY ANALYTICAL RESULTS FOR GROUNDW/

Page: 1A of 1A

Page: 1A of 1C

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6 PRIMARY ANALYTICAL RESULTS FOR SOILS

	SITE	MW07	MW07	MW07	MW08	MW08	60MM
	SAMPLE ID	WB0701	WB5601	WB0702	WB0801	WB0802	WB0901
CONSTITUENT (Units in mg/kg)	DATE	11/20/96	11/20/96	11/20/96	11/20/96	11/20/96	11/20/96
	DEPTH (ft)	11.00	11.00	16.00	10.00	15.00	10.00
	RESULT TYPE	Primary	Duplicate	Primary	Primary	Primary	Primary
MTBE		< 0.061	< 0.061	< 0.064	< 0.061	<0.064	< 0.061
Benzene		<0.0061	<0.0061	< 0.0064	< 0.0061	< 0.0064	< 0.0061
Ethylbenzene		< 0.0061	< 0.0061	< 0.0064	< 0.0061	< 0.0064	0.022
Toluene		<0.0061	<0.0061	< 0.0064	0.017	<0.0064	0.0069
Xylene (total)			< 0.0061	< 0.0064	0.020	0.025	0.17
					-	1	1
		< 0.40	<0.40	<0.42	< 0.40	<0.40	< 0.40
Acenaphthylene		< 0.40	<0.40	<0.42	< 0.40	<0.40	<0.40
Benzo(a) pyrene		< 0.40	< 0.40	< 0.42	< 0.40	<0.40	< 0.40
Benzo(b,k)fluoranthene		< 0.40	<0.40	<0.42	<0.40	<0.40	<0.40
Benzo(ghi)perylene		< 0.40	< 0.40	< 0.42	< 0.40	< 0.40	<0.40
Chrysene + Benzo(a)anthracene		<0.40	<0.40	<0.42	<0.40	<0.40	<0.40
Fluoranthene		< 0.40	< 0.40	< 0.42	< 0.40	< 0.40	< 0.40
Fluorene		<0.40	<0.40	<0.42	< 0.40	<0.40	<0.40
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	nthr	< 0.40	< 0.40	<0.42	< 0.40	<0.40	< 0.40
Naphthalene		<0.40	<0.40	<0.42	<0.40	<0.40	<0.40
Phenanthrene + Anthracene		< 0.40	< 0.40	<0.42	< 0.40	<0.40	< 0.40
Pyrene		< 0.40	<0.40	<0.42	< 0.40	<0.40	<0.40
1-Methylnaphthalene		< 0.40	< 0.40	<0.42	< 0.40	< 0.40	< 0.40
2-Methylnaphthalene		<0.40	<0.40	<0.42	<0.40	<0.40	<0.40
		·	ſ	1	1	1	1
GRO		<0.3	<0.3	< 0.32	<0.3	<0.3	1.5 J
DRO		5.7	5.2	<4.2	4.7	<4	8.5
Values represent total concentrations unless noted	nless noted <=Not detected at		indicated reporting limit	= Not analyzed			
		J		II T IS ESTIMATED		BEQUIT IS BELECTED	
EFA MEI HUDS: 8020, 8100, 8015M, 8100M.	JUM. FOR HCL BUUULSLS	Z	J = 1	J = RESULI IS ESTIMATED.	B	NEVECIED.	

Page: 1B of 1C

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6 PRIMARY ANALYTICAL RESULTS FOR SOILS

	SITE	60MM	SB16	SB16	SB16	SB17	SB17	
	SAMPLE ID	WB0902	SB1601	SB5301	SB1602	SB1701	SB1702	
CONSTITUENT (Units in mg/kg)	DATE	11/20/96	11/20/96	11/20/96	11/20/96	11/20/96	11/20/96	
	DEPTH (ft)	15.00	6.00	6.00	10.00	6.00	8.00	
	RESULT TYPE	Primary	Primary	Duplicate	Primary	Primary	Primary	
MTBE		< 0.061	<5.7	<5.7	<61	< 0.054	< 0.058	
Benzene < 0.0061		< 0.0061	<0.57	<0.57	<6.1	< 0.0054	< 0.0058	
Ethylbenzene		< 0.0061	2.1	1.4	39	< 0.0054	0.056	
Toluene	<0.0061	< 0.0061	<0.57	<0.57	8.6	< 0.0054	0.0077	
		0.012	3.1	1.1	76	< 0.0054	0.040	
	1				1	1	1	
		< 0.40	<30	<30	<8.1	<0.36	< 0.38	
Acenaphthylene		<0.40	<30	<30	<8.1	< 0.36	< 0.38	
Benzo(a)pyrene		< 0.40	< 30	<30	<8.1	< 0.36	< 0.38	
Benzo(b,k)fluoranthene		<0.40	<30	<30	<8.1	< 0.36	<0.38	
Benzo(ghi)perylene		< 0.40	< 30	<30	<8.1	<0.36	< 0.38	
Chrysene + Benzo(a)anthracene < 0.40		< 0.40	<30	<30	<8.1	<0.36	<0.38	
Fluoranthene		< 0.40	< 30	< 30	<8.1	<0.36	< 0.38	
Fluorene		< 0.40	<30	<30	<8.1	<0.36	<0.38	
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	,h)anthr	< 0.40	< 30	< 30	<8.1	< 0.36	< 0.38	
Naphthalene		<0.40	<30	<30	<8.1	<0.36	<0.38	
Phenanthrene + Anthracene		< 0.40	< 30	< 30	<8.1	< 0.36	< 0.38	
Pyrene:		<0.40	<30	<30	<8.1	< 0.36	<0.38	
1-Methylnaphthalene		< 0.40	< 30	<30	12 J	< 0.36	< 0.38	
2-Methylnaphthalene	<0.4	<0.40	<30	<30	16 J	<0.36	<0.38	
			I	ł	I	I		
GRO	<0.3	<0.3	95 J	80 J	1700 J	<0.28	1.6	
DRO		4.7	4800 J	4300 J	2500 J	6.9	18	
Values represent total concentrations unless noted	V	=Not detected at indicated	indicated reporting limit= N	= Not analyzed				
EPA METHODS:8020,8100,8015M,8100M.	I,8100M. For RCL 8000LSLS	SLS	J = RESULT	RESULT IS ESTIMATED.	R = RESULT IS REJECTED	REJECTED.		

CONSTITUENT Units in mg/kg) DATE CONSTITUENT Units in mg/kg) DATE DEPTH (ft) DEPTH (ft) RESULT TYPE RESULT TYPE MTBE RESULT TYPE Benzene Ethylbenzene Ethylbenzene Toluene Xylene (total) Xylene		SB18				
TITUENT (Units in mg/kg) DATE DEPTH I RESULT RESULT enzene e e (total)	SB1801	1 SB1802				
DEPTIH RESULT I enzene e e (total)	11/20/96	96 11/20/96	6			
le enzene e (total)	ft) 3.00	7.00				
le enzene e t(total)	TYPE Primary	/ Primary				
	<0.05	56 <0.058			2.	
	< 0.0056	56 <0.0058	58			
	<0.00	056 < 0.0058	58			
	0.0086	s <0.0058	58			
	0.019	< 0.0058	58			
	1	1				
Acenaphthene	< 0.38	< 0.38				
Acenaphthylene	<0.38	< 0.38				
Benzo(a)pyrene		< 0.38				1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
Benzo(b,k)fluoranthene	<0.38	: <0.38				
Benzo(ghi)perylene	< 0.38	< 0.38				
Chrysene + Benzo(a)anthracene	<0.3	8 <0.38				
Fluoranthene		< < 0.38				3 - 2
Fluorene	<0.3	8 <0.38				
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr		< 0.38				
Naphthalene	<0.38	: <0.38				
Phenanthrene + Anthracene	< 0.38	<0.38				
Pyrene	<0.38	< 0.38				
1-Methylnaphthalene	< 0.38	< 0.38				
2-Methylnaphthalene < 0.3	<0.38	8 <0.38				
	1	1				
GRO	< 0.28	< < 0.3				
DRO	24	<3.8				
of total o	< = Not detected at	Not detected at indicated reporting limit	mit = Not analvzed			
				9		
EPA METHODS:8020,8100,8015M,8100M. For RCL	For RCL 8000LSLS		= RESULT IS ESTIMATED	= 8	RESULT IS REJECTED.	

Page: 1C of 1C

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6 Y ANALYTICAL RESULTS FOR SO Page: 1A of 1A

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSES # 6 PRIMARY ANALYTICAL RESULTS FOR SURFACE WATER

	SITE	SWE01	SWE02
CONSTITUENT (Units in ug/l)	SAMPLE ID	HT4-SW01	HT4-SW02
	DATE	12/10/96	12/10/96
	RESULT TYPE	Primary	Primary
MTBE	м. 18	<10	<10
Benzene		ŕ	
Ethylbenzene		۲ ۲	-1
Toluene	⊽	5	<1
Xylene (total)		<2	1.1 J
Acenaphthene		1	
Acenaphthylene	$\overline{\mathbf{v}}$	<1	▲1
Benzo(a)pyrene		<0.2	<0.2
Benzo(b,k)fluoranthene		<0.2	<0.2
Benzo(ghi)perylene		<0.5	<0.5
Chrysene + Benzo(a)anthracene		<0.2	<0.2
Fluoranthene		< 0.5	<0.5
Fluorene		<0.5	<0.5
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	ithr	<0.5	<0.5
Naphthalene		1	▲1
Phenanthrene + Anthracene		<0.2	<0.2
Pyrene		< 0.5	<0.5
1-Methylnaphthalene		۲ ۲	^
2-Methylnaphthalene		7	
Values represent total concentrations unless noted	iless noted <= Not detected at		ndicated reporting limit = Not analyzed
EPA Methods: 8020, 8100 & MTBE	RCL 8000MSLS		J = Result is Estimated R = Result is Rejected

	SITE	SWED1	SWE02			
	SAMPLE IU	H14-SE01	H14-SE02			
CONSTITUENT (Units in mg/kg)	DATE	12/10/96	12/10/96			
	DEPTH (ft)	00:00	0.00			
	RESULT TYPE	Primary	Primary			
MTBE		<0.076	<0.072			
Benzene		<0.0076	<0.0072			
Ethylbenzene		< 0.0076	<0.0072			
Toluene		< 0.0076	<0.0072			
Xylene (total)	Ē.S	< 0.0076	<0.0072	1		•
		1				
Acenaphthene		< 0.50	<0.48			
Acenaphthylene		<0.50	<0.48			
Benzo(a)pyrene		< 0.50	< 0.48			
Benzo(b,k)fluoranthene		<0.50	<0.48			
Benzo(ghi)perylene		< 0.50	< 0.48			
Chrysene + Benzo(a)anthracene		<0.50	<0.48			
Fluoranthene	1	< 0.50	< 0.48			
Fluorene		<0.50	<0.48			
Indeno(1,2,3-cd)pyrene + Dibenzo(a,h)anthr	nthr	< 0.50	<0.48			
Naphthalene		<0.50	<0.48			
Phenanthrene + Anthracene		< 0.50	<0.48			
Pyrene		<0.50	<0.48			
1-Methylnaphthalene		< 0.50	< 0.48	2. 18		
2-Methylnaphthalene		<0.50	<0.48			
		1	1			
GRO	<0.28	< 0.28	<0.26			
DRO		<15	<14			
Values represent total concentrations unless noted		< = Not detected at indicated reporting limit	reporting limit = Not analyzed	1 1	-	
EPA METHODS:8020,8100,8015M,8100M.	DOM. For RCL 8000LSLS	SLS	J = RESULT IS ESTIMATED.	R = Result is rejected	JECTED.	
			,	2	(
						3

•

Page: 1A of 1A

HUNTER ARMY AIRFIELD CAP-A PUMPHOUSE # 6 3Y ANALYTICAL RESULTS FOR SEDIME

					I						ANAL	ANAI YTICAL DARAMETE	DARAM	1	Ē	1111
	Į,		CHAIN	N - OF - CUSTOD)_	RECORD	ßD			> 0	s >	Σu	L		i – a	
Metcalf 8					4 		ĕ,			0 V V	. 0 0	- F 4	1 8 10 - 1 9 1		. I \	< 0
PROJECT NAME:		Hunt	Hunter 4	TASK ORDER NO.	R NO.							o د	- 0 - 0			
PROJECT NO:	-	9457	- 014 f 24810	SAMPLE EVENT:	ENT: Well	Il Sa	Pling					Ğ			0	
LABORATORY ID:	RY ID: 565	5		PROGRAM TYPE:	YPE:		0.					탱	ш N N Ш	-		
SAMPLER(S) NAME:		G. Ru	G. Rowell	SAMPLER(S	SAMPLER(S) SIGNATURE:	A.I	Rowell	h		1		CVAA GFAA				
DATE	MILTARY	MATRIX (SW)	SAMPLEID	SITE	RES CODE	DEPTH NC (FT) CC	ND. OF PHI CONTS PHI	STANRDARD FI PRESERV. ((Y/N)*	FILTERED (U) LAB (FIELD	Method No.	0158			. 5		
01-21		3	Teny Bhuk					-								
	0805	Ś	HT4-muiop	MW 09	1044	$\overline{)}$	2	N	N		X					
_	0830	M	HT4- MW 10	40 XOI (mm	1029	\backslash	Ç	2	N		X					
	0850	3	HTH- WW U	mw liper	1099		b	N	N		X	1				
\wedge	0310	R	HTY-MWIF	li uni	PPOI	\backslash	С	N	N		Х	1.1				
6-61	1730	З	HT4-mw51	80mm	PDOL	$\overline{)}$	С	N	N		X					
12-10	1030	צי	HT4-5W01	Swol	PP01		2	N,	N		X	-		- 14		
		4	2			\backslash	10	đ			1			- p		
		<u>6</u> .		4								1.				
				i.										-		
1	44		2					-								
		2			0							-	4	8		
Relinquished by: (Signature)	2.4	Curk	B	te/Time: Received by: 1.2-10-91, 119,101 (70.01)	d by: SLO	180	2 La	Date/Time:		010		8.	Cooler	Cooler Temperature:	rature:	2/
Remarks:	>			non and	· han	₹. }	\mathbb{N}				ь <u>с</u> 1 1					
					Send R	Send Results to:	at.					(H)	STANDARD PRESERVATION (T): (H) HCI/VOC,	c, C,	ALION	Ë
			AIRBILL CO.	2	Christi 1201 Atlant	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 Atlanta. Georgia 30361	er c/o ME St., N.E., 4 30361	TCALF &	EDDY, INC y Square,	Suite 1	10	200	HNOg/METALS H ₂ SQ/ OTHER	ETALS	10000	
						355500 13					-					(

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY. UPON COMPLETION; FAX TO THE DESIGNATED M&E REPRESENTATIVE LISTED BELOW SAME DAY AS SHIPMENT

	A -
ETCALF & EDDY Representative <u>C. Hettinger</u>	- FAX # (404) 872-3161
UBCONTRACTOR SAU. LAZZS	_ PROJECT # _ Homter 4
AMPLE CUSTODIAN (Cample () S-8+7 K	TODAY'S DATE 12/10 AL
ATE/TIME SAMPLES RECEIVED 2/10/46 6:10	_
IRBILL NUMBER	NO. OF COOLERS
OOLER OPENED: DATE TIME	
HAIN OF CUSTODY SEAL INTACT? YES NO	
HAIN OF CUSTODY PROVIDED? YES NO	
AMPLE LABELS PRESENT? YES YO	
OTTLE LABELS CORRESPOND W/COC? YES NO	
YPE OF COLLANT USED	
OOLANT CONDITION: MELTED PARTIAL	LY MELTED/FROZEN
FROZEN	
OOLER NUMBER # Cocher # M TEMP IN	ISIDE COOLER
#	
#	
#	
#	
ECORD TEMPERATURE BLANK (1) (2) (2)	(3)
ONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTACT	A start and a start and a start
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AN	
	NIN NIN
LIST SAMPLE ID'S IN EACH SHIPMENT: HTW-MUMP, HT	H-MUSICI, HTH-MUSICI,
HTH-MUDIO, HTH-MUDOL, HTH-SUDOL	

	ALTIICAL PAKAME IEN CIHO		≪ - v		Ъ S S S S S S S S S S S S S S S S S S S	CVAA GFAA														Cooler Temperature:	STANDARD PRESERVATION (Y):		(N) HNUG/METALS (S) H2SQ/ (O) OTHER	STORED/SHIPPED IN ICE (3/N
	H	>0 >0				- 000000 - 14	0158	\sim	7	$\overline{}$	X	-				_					-	-	e 1101	
	L						.oN bodîeM							-			البشيري			\bigcirc	Ĩ	1	NC. e, Suite	
						1 1 ² *1	FILTERED (L) LAB (F)FELD	N	2	2	X									atertime:			& EDDY, I lony Squar	-3161
Г		-		Oling	2	d	STANRDARD PRESERV (Y/N)*	X	N	Z	R		-		٠		27 - 1 14	-		Date/Time:		2	Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101	Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161
	RECORD		•	Sang		Rew	NO. OF CONTS.	6	6	lev	.6		, 					<u></u>		8t B		; to:	tinger c/o	010, FAX
	CHA -			well	0 4	RE: Å	DEPTH (FT.)	\backslash	/	\backslash	\backslash	\backslash	\backslash	/	\backslash		\sum	/	$\sum_{i=1}^{n}$	287		Send Results to:	istine Het 01 Peacht	Atlanta, Georgia 30301 (404) 881-8010, FAX (
-1			NO.		rpe:	SIGNATU	RES CODE	PPOL	PPol	PPOI	PPol	2	9 = 0 9 1		••	R				IN SLI	-	Sen	13 G	44 4
	IN - OF - CUSTODY	5	TASK ORDER NO.	SAMPLE EVENT:	PROGRAM TYPE:	SAMPLER(S) SIGNATURE:	Щ	MWOS	mwole	mwoz	MWOB			20 11						Date/Time: 13-10-92-118100000				
	CHAIN	5	Hunter 4	019457 4102	ž	Rowell	FIELD	HT4-MWOS	HTY- minoh	HT4-MWO7	HT4- MW08	Tend Black				о 19 19 19 19 19 19 19 19 19 19 19 19 19					msp.		AIRBILL CO.	TRACKING NO:
			Hun	2194	272	6. R	MATRIX (SW)	m	S.	S	M				Тн. н н				100 100 100		m/Sm			80
	J		NAME:		ë		TIME MILITARY	1615	1630	0121	1730				ł.			- 1 - 12 A		2 3	۱ *			
		Metcalf & Eddy	PROJECT NAME:	PROJECT NO:	LABORATORY ID:	SAMPLER(S) NAME:	DATE	12-9	_		\wedge				-				a 1	Relinquished by: (Signature)	Remarks:			
		Met	PRO.	PROJ	LABC	SAM	õ	13		*										(Sig	Ren			

SLOB TOON SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY.

ETCALF & EDDY Representative Hettinger	FAX # (404) 872-3161
UBCONTRACTOR	PROJECT # Hunter 4
AMPLE CUSTODIAN Q. Comple QUA) SLC-87284	TODAY'S DATE 12/10/96
ATE/TIME SAMPLES RECEIVED KONOLI LON	
	NO. OF COOLERS
DOLER OPENED: DATE 12/10/20 TIME	IN SHIPMENT
	 * * * *
AMPLE LABELS PRESENT? YES YES NO	
OTTLE LABELS CORRESPOND W/COC? YES NO	
PE OF COLLANT USED	/
DOLANT CONDITION: MELTED PAR	TIALLY MELTED/FROZEN
FRO	ZEN
DOLER NUMBER # COOKY #1 TEM	IP INSIDE COOLER
#	
#	
#	
#	
CORD TEMPERATURE BLANK (1) $\underline{\mathcal{M}}(\mathcal{Q}) =$	(3)
ONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INT.	ACT7)
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPE	
IF BROKEN OR LEAKING LIST SAMPLE ID# S AND BOTTLE THE	SAFECTED

	 N L ≫ 	- 0 1	Hg S S S S	CVAA GFAA														Cooler Temperature:	STANDADD DESEDVATION (V)	CH) HCI/VOC,	(N) HNO3/METALS (S) H ₂ SQJ (O) OTHER ETOREN /SUIDDED IN 102 ² /2 ³ N
>000	w	1			0708	\times	\times	\times	\times	X	×	X	X	×,	\succ	\times	\succ	110			uite 110
	•				FLTERED (U) LAB (D) FLELD Method No.	X	2	2	X	2	2	N	2	5	X	2	N	qe lo	-		Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 Atlanta, Georgia 30351
		а.		el .	STANNDARD FI	۲ م	X	~	\checkmark	>	У	7	٢	٢	٢	7	٢	Date/Time:	4	ा २ २	Christine Hettinger c/o METCALF & EDI 1201 Peachtree St., N.E., 400 Colony So Atlanta, Georgia 30361
RD		pling	, . ,	Rewe	NO. OF PL	R	3	ŝ	9	m	m	3	3	ŝ	9 Xck	m	n	U) NP))	ö	ger c/o M e St., N.E., a 30361
RECORD		& Jam		X.	DEPTH C	\setminus	\backslash	\backslash	$\overline{)}$	\backslash	\int	\backslash	\backslash		Ĭ			1003	-	Send Results to:	Christine Hettinger c/o I 1201 Peachtree St., N.E Atlanta, Georgia 30361
- 100	NO.	TT: Well	PE:	SIGNATURE	RES CODE	Brol	BRol	PPOL	PPOI	PPOI	1079	PDOL	PPOL	ppol	PPOL	PPOI	PDOL	on Sick	4	Send	Christ 1201 Atlan
IN - OF - CUSTODY	TASK ORDER NO	SAMPLE EVENT:	PROGRAM TYPE:	SAMPLER(S) SIGNATURE:	STE	1001	Nucol	1 omm	MWOF	NWOZ	mwoy	NWOY	NWOS	Muwole	Found	MWOS	MW08	12-10-96/16/0 0000000			
CHAIN	Per 4	4102		Rowell	SAMPLEID	HT4-TB01	HT4- EBOI	HT4-MWOI	HT4-MWO2	HT4-MW03	HT4-MWOY	HT4- MW 50	HT4- MWOS	HT4-MWOG	HT4-WW07	HT4-mw08	HTY-MW SI	E	Q		AIRBILL CO.
	Hunte	7012 578105	575	C. X	MATRIX (SW)	З	S	لى	3	З	3	S	S	3	S	З	س	d. Rowerle	USm/		
L'a) NAME:	TIME	Shhi	1445	1445	1510	1525	1600	1600	1615	1630	0141	1730	0621	I by:	* ms		
Metcalf & Eddy	PROJECT NAME:	PROJECT NO:	LABORATORY ID:	SAMPLER(S) NAME:	DATE	12-9	-							_			\geq	Relinquished by: (Signature)	Remarks:		

		콤
6		Ż
	2	leta
		Z

CHAIN - UF - CUSIOUY - KELOKU

5 2 0

പറയ

A W SF

500

>000

~ 00 ΞW

N L A H M Z

·..

H & I \ O K O

-0-0-0

C

ß

Hg CVAA

TASK ORDER NO.	SAMPLE EVENT:	PROGRAM TYPE:	
PROJECT NAME: Hunter 4	PROJECT NO: DI 8457 410 2	Laboratory ID: کے ا	20 0 4

Olue 0000 ę 2g 7 . weel

01	AMPLER	SAMPLER(S) NAME: G. KUNUEU	Z. X	well	SAMPLER(S) SIGNATURE:	SIGNATURE	Z	rowelk	Sek			GFAA	2		
	DATE	TIME	MATRIX (SW)	FIELD SAMPLEID	STE D	RES CODE	DEPTH (FT.) (NO. OF S	STANRDARD I PRESERV. (Y/N)*	FILTERED (L) LAB (F)FELD Method No.	oeoj	м ¹⁸ П 2			7
			З	Temp Blank	-		\backslash		ŕ		ン				
	12-10	2080	, <i>C</i> 1	1474- Miwo 9	Mw09	Iodd	\backslash	б	\succ	2	×	-	-		
	-	0830	3	174- MW10	MWIO	1044		в	Х	1	×			2	
		0850	M	11 mm - 77 H	mwil	1099		w	\mathbf{r}	X	×	-	1	-	
		0160	ß	21 mm - 1-1 H.	ZININ	1049	\backslash	ŋ	λ	N	\times		т. П	2	_
		1030	3	HT4-Swol	50001	1089		Э	Х	N	X	-			
	-	0011	3	HT4-5W10	5610	1098	\backslash	ы	Υ	Z	×			15	
	-	1115	3	HT4-5w09	5005	PPol		M	γ	N	R		i.	1	•
*		1315		HT4-5wor	Juch	8901	\backslash	σ	×	×	×	12			-
	-	1350	З	HT4-Swog	J.W08	PP01	\backslash	ω	λ	X	\succ	1			
		1415	3	HT4-5w07	Swoz	PPOI		ю	>	2	\times	- 1	_	a)	7
	\rightarrow	2821	J.	HT4-SWS-	5006	PDOI		Ś	Х	5	\times				
10,000	Relinquished by: (Signature)	ed by:	H 000	5. 7. 5.	0	S. S.	21280		Date/Time:	Time:	0/1		Cool	Cooler Temperature:	irature:
9	11	ġ.	1991		12-10-10/10/01-01	11/11/11	X			2 31,1		5		=	

STORED/SHIPPED IN ICECON

STANDARD PRESERVATION (Y):

(H) HCI/VOC, (N) HNO3/METALS (S) H2SQ/ (0) OTHER

Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161

TRACKING NO:

(

AIRBILL CO.

Krb

Vus

×

Remarks:

Send Results to:

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

S687284

METCALF & EDDY Representative Hetting	er FAX # (404) 872-3161
SUBCONTRACTOR SAU. LAZS	PROJECT # Hunter 4
SAMPLE CUSTODIAN Q. Cample (F). Sto-	87284 TODAY'S DATE 12/10/96
DATE/TIME SAMPLES RECEIVED 21096 6:10	2
AIRBILL NUMBER	NO. OF COOLERS
COOLER OPENED: DATE 2/10/9 Co TIME _ (0:10
CHAIN OF CUSTODY SEAL INTACT? YES	NO
CHAIN OF CUSTODY PROVIDED? YES	NO
SAMPLE LABELS PRESENT? YES	NO
BOTTLE LABELS CORRESPOND W/COC? YES	NO
YPE OF COLLANT USED LUCH ICE	
COOLANT CONDITION: MELTED	FROZEN
COOLER NUMBER # COOLER NUMBER #	TEMP INSIDE COOLER
#	-
#	
#	-
#	
ECORD TEMPERATURE BLANK (1)	(2) (3)
ONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKIN	
	LE TYPES AFFECTED

HTH-SWOS, HTH-SWOT, HTH-SWOS, HTH-TBOL, HTH-EBOL, HTH-MWOL, HTH-MWOL HTH-MWO3, HTH-MWOH, HTH-MWOO, HTH-MWOS, HTH-MWOL, HTH-MWOT, HTH-MWOTMS, HTH-MWOTMSD, HTH-MWO8, HTH-MWOI.

	U,	3
A	F	100
1	N.	4篇
2	•	18
a second		ž

CHAIN - OF - CUSTODY - RECORD

ובתטו אבי חטבט

F

L U 00

ΣW

3

3

5 2 0

Y L L L

≪ _ S

QU

. ..

•

O LU S

5

た。日下三×キハアる正

d

土

L S 0

CVAA

C

1 Ama

GFAA

TASK ORDER NO

TASK ORDER NO.	SAMPLE EVENT:	PROGRAM TYPE:	SAMPLER(S) SIGNATURE
PROJECT NAME: Hunter IL	PROJECT NO: 019457-4102	LABORATORY ID: SLS	SAMPLER(S) NAME: Daniel Howard

-52

200-00

000

× ×

×

×

×

X

×

X

 \times

×

	TME	(122)V	FIELD	SITE	RES		NO. OF	STANRDARD FILTERED	FILTERED	ON P	100-		21	
	MILTARY	(MS)	SAMPLEID	9	CODE	(FI)		(NA)	(c) FIELD	Method	10			
	11/20/96 0845	Ŋ	WB0701	LOMM	Ppol	1=6	2	N]		$\overline{\mathbf{x}}$			
	2480	Ŋ	WB5601	LOMM	PDI	116	2	N	1		X			-
	0 855	N	W80702	LOMW	PP01	1416	Ч	N	1		× ×		-	
	0101	n	WB0801	&OMW	ppol	01/2	7	N	Y	12	× ×			
1	8101	N	W80802	MWOS	1099	1315	Ц	N	١		× ×		1	
1	1418	N	WB 09 0 1	MWOG	PPOI	8/2	2	\sim	}		×	$\overline{\mathbf{v}}$		
1	1430 S	Y	WB0902	POWM	Pp01	1375	2	N]		× ×	<u> </u>	-	
	1546	Ń	W81001	MW10	1099	\$ 10	Ч	N	1		× ×			
1	1554		W81002	M W 10	PP01	13/5	2	M	1		× ×		-	
	1	1	TEMP	Blank	1		I	(١			2		-
				2 4 1	S						5		2 20	
			10 1 1		•	\backslash)		Ч п •		
Relinquishe	:Ag pá	4	Date/Time:	me: Received by:	by:	(A)-		Date/Time:	Time:		:			Cooler Ten
(Signature)	Hand	K J	211 prome	12.0/96/1751-0.62	nplet	150 81	SC S	100	ple S	5:51	_	8 4 0 11	1	9.0
14	Remarks: X WS/WS/	15/ M	C.S.	Mr3	1	212	613	1613380	1126/96		06.30	L		
1					cl							S	ANDA	STANDARD PRESE

9

emperature:

X

×

×

×

×

×

×

×

+

STANDARD PRESERVATION (Y):

HCI/VOC, HNO3/METALS H₂SQ4/ OTHER

EZOO

MAE

Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101 Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161

Send Results to:

STORED/SHIPPED IN ICE OVN

AIRBILL CO. Hand Deliverelby TRACKING NO:

*

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

METCALF & EDDY Representative <u>C. Hettinger</u>	FAX # (404) 872-3161
SUBCONTRACTOR	PROJECT # Hunter 4
SAMPLE CUSTODIAN Q. Campbell (A) SLD - 810855	TODAY'S DATE _11/20/96
DATE/TIME SAMPLES RECEIVED 11/20/96 5:51	
AIRBILL NUMBER	
COOLER OPENED: DATE 112094 TIME 5:51	<u> </u>
CHAIN OF CUSTODY SEAL INTACT? YES NO	
CHAIN OF CUSTODY PROVIDED? YES NO	
SAMPLE LABELS PRESENT? YES V	
SOTTLE LABELS CORRESPOND W/COC? YES NO	1995 - C.S.
TYPE OF COLLANT USED LUCH TOC	
COOLANT CONDITION: MELTED PART	TALLY MELTED/FROZEN
FROZ	EN
COOLER NUMBER # COOKER A TEMP	
# Cookr B	1.4
#	
#	
#	
ECORD TEMPERATURE BLANK (1)	1.4 ^{.C} (3)
ONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, INTA	((TT2)
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES	
	<u>e te que presente en compositore de la compos</u>

ARAMETERS/METHO	ш ес со	- U - - U -		-	30-00 200-02	× ×	××		XX	XX		XX	XX	XX	XX	XX	XX	Cooler Temperature:		STANDARD PRESERVATION (Y):	(N) HNG/METALS (S) H ₂ SQ/ (D) OTHER		(
ANAL	2 v	t pa	-a	<u>4</u> ±	00-00	X	\times	×	×	×	×	\times	\times	×	\times	×	\times		0932	<u>}</u>	6		
>	o y v	-m	×7.	Et-all	Nethod No.	$ \times$	\times	×	\times	$ \times$	X	\times	\times	×	×	\prec	\times		26/06		uite 11		
	S _m				FILTERED (L) LAB (F) FIELD	1	l	l	.l	l	ł	1	1	1	1)	Alme:			Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101	3161	
		- -		Housel	STANRDARD PRESERV. (YN)*	N	N	N	N	N	Ž	N	N	N	N	2.	5	Date/Time:	7613380		o METCALF LE., 400 Col	Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161	
ORD		e e		-0 H	NO. OF CONTS.	Z	ζ	2	Ц	3	2	2	2	ん	Ч	2	3	S S	and a second		nger c/ e St., N	10, FAX	
RECORD				Den	DEPTH (FT)	6/2	76	46	\$10	46	<u>46</u>	68	1/2	55	46	68	H 6	(b)	MR	A B	ine Hettir Peachtre	a, Georg 881-80	
- YOOTSU	2. 	NO.		SIGNATURE	RES CODE	lodd	1049	PPOI	104	PD2	PPOI	ppol	ppol	Ppol	PPOI	PPOI	PPOL	200		Send	D	Atlant (404)	\bigcirc
CHAIN - OF - CUST		TASK ORDER NO		SAMPLER(S) SIGNATURE	BE	5815	5815	5816	5816	5816	5817	5817	SB 18	5818	5819	5819	5820	1750 Die	MS/MAD		of Delivered by Mt		
CHA	È	Hunter IL		1	C FIELD	581501	581502	581601	581602	585301	581701	581702	581801	581802	58190]	581902	58 2001	driel Howard 11/20/961	Ran		AIRBILL CO. Hand Delivered	TRACKING NO:	
	-	F a	5	Danie	MATRIX (SW)	η	N	N;	\mathcal{N}	\sim	\mathcal{N}	\mathcal{N}	\mathcal{N}	5	\mathcal{M}	У	5	+00,7	Samole				
	& Eddy	NAME:	-UI Ad	ij	TIME	0815	0825	0855	0060	0855	1000	1005	1025	1035	1350	1355	1420		ULSC.	1			\bigcirc
Š	etcalf	PROJECT NAME: PPO JECT NO:		MPLER	DATE	11/20/96		_							v		>	Relinquished by: (Signature)	Remarks:				
	Z	HA G		S S		Ξ	1						_				 *	Re (Si	&	1			

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

METCALF & EDDY Representative	inger FAX# (404) 872-3161
SUBCONTRACTORSAV. LAZS S	PROJECT # Hunter 4
SAMPLE CUSTODIANO. Compleed(B) 510-	-86855 TODAY'S DATE 11/20/94
	5:50
	NO. OF COOLERS
COOLER OPENED: DATE 11/20196 TIME	5:50 IN SHIPMENT
CHAIN OF CUSTODY SEAL INTACT? YES	
CHAIN OF CUSTODY PROVIDED? YES	
BOTTLE LABELS CORRESPOND W/COC? YES	
TYPE OF COLLANT USED 11 CE	PARTIALLY MELTED/FROZEN
COOLANT CONDITION: MELTED	FROZEN
Cooker A	TEMP INSIDE COOLER O.L.
COOLER NUMBER # COOLEY B	1.4°C
#	
#	
#	
#	
RECORD TEMPERATURE BLANK (1)	(2) 1.14 (3)
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LE	
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BO	OTTLE TYPES AFFECTED
	01-50 01 58V 00 585301
LIST SAMPLE ID'S IN EACH SHIPMENT: SBISOL	1,581502,581601,581602,585301, 2,581901,581902,582001,582002
567101, 567102, 562201, 5P	

∝ 0	H	Vð			0188 215198		XX	\times		\times		XX							Ś			Ø	
<u> </u>	0 ~	0			10018	X	Z		R			\mathbf{x}	\checkmark					iture:	CTANDADD DDECEDVATION (V).			STORED/SHIPPED IN ICENN	
Um					1 a		G.				2	Y						Cooler Temperature:	CEDVI		FALS	HIPPE	(
шν⊢	- u	- 0 1	ы v	80														oler To	DDE	HCI/VOC,	HNO3/METALS H2SQ4/ OTHEP	RED/S	
шĸю	- U	- 0 1	ы v				5		_			-						ິ	ID A DI	HCL HCL	HNO3/M HSQ4/	STO	
⊎⊢∢	νL	<u>C</u>	۶. ۲	CVAA GFAA				-		-						j.	1		CTA	E	ହିଡିଡି	2	
ن 0 <					0018	X	X		X			X	X		_			1	· 1		101		
000	8	÷	- 3 -		0208	X	\times		\times			1 1	7-	1				Q			Suite 1		
٠		×	-		D B B D.	$\overline{\mathbf{N}}$			\mathbf{N}			1			е. С			(e:1			Y, INC tuare, S	~	
					FILTERED (L) LAB (F)FIELD	3	N	8	4	2		7	7	-				ate/Time: /C/9.LG	-		& EDC ony Sc	-3161	
		Ju's	-	J	STANDARD PRESERV (Y/N)*	N	N	2	N	2		R	Z	4	-			Pate/Time:			Christine Hettinger c/o METCALF & EDDY, INC. 1201 Peachtree St., N.E., 400 Colony Square, Suite 1101	Atlanta, Georgia 30361 (404) 881-8010, FAX (404) 872-3161	
	*	J.		Rowa	NO. OF CONTS	2	R	3	ц	6	8	9	Ъ			1.1	9.6	101)	ö	iger c/o e St., N.I	a 3036 0, FAX	
		1 S		6.	DEPTH (FT)	\setminus	\setminus	\backslash	\backslash			\int	\langle	\backslash			\backslash	81-87128		Send Results to:	tine Hettin Peachtre	ta, Georgi) 881-801	
	0.	r: We		GNATURE	RES	1099	1000	1049	PPOL	PP01		PPOI	PPOI				en e S	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1	Send	Christ 1201	Atlan (404)	(
	TASK ORDER NO	SAMPLE EVENT:	PROGRAM TYPE:	SAMPLER(S) SIGNATURE	STE	5601	SE 10	SW10	swo9			Swod	5602	-	т С. Н т т т т			Date/Time: Received by: 12-10-96 [1810], [21]					5 2
	ter 9.	2012		nucl	FIELD	HT4-5601	HT4-5E10	HTY-SWID	HT4-5609	HT4-5009	Temp Black	HT4-Swod	HT4-5603	•		ar o g R a h			0		AIRBILL CO.	TRACKING NO:	
	Hunter	019457	575	G. Rem	MATRIX (SW)	5	S	3	5	3	M	ŝ	5				3	Ferrell	WS/WSD				
N				-	TIME NIUTARY	1030	0011	1,00	SIII	5111		1315	1315					T					(
Metcalf & Eddy	PROJECT NAME:	PROJECT NO:	LABORATORY ID:	SAMPLER(S) NAME:	DATE	1 01-01							\rightarrow			<u>(</u>		Relinquished by: (Signature)	Remarks: X				
Ĩž	PRO	PRO	LAB	SAN	0	2						- *						(Si	Rei				

SAMPLE RECEIPT CONFIRMATION SUMMARY REPORT

TO BE COMPLETED BY SUBCONTRACTOR SAMPLE CUSTODIAN FOR EACH SHIPMENT RECEIVED FROM METCALF & EDDY.

	a na shi na sa sa sa waa 🗰 🖉 A ta Turka 🕬
METCALF & EDDY Representative Hettinger	FAX # (404) 872-3161
SUBCONTRACTOR SAU. LAZS	PROJECT # Hunter 4
SAMPLE CUSTODIAN CI. Can ple(V(C) Sto-87284	TODAY'S DATE 10/10/00
DATE/TIME SAMPLES RECEIVED 12/10/00 6:10	
AIRBILL NUMBER	NO. OF COOLERS
COOLER OPENED: DATE VOID ALP TIME LOUD	
CHAIN OF CUSTODY SEAL INTACT? YES NO	
CHAIN OF CUSTODY PROVIDED? YES NO	* _ =
SAMPLE LABELS PRESENT? YES VO	
BOTTLE LABELS CORRESPOND W/COC? YES	
TYPE OF COLLANT USED _U C+ ICE	
COOLANT CONDITION: MELTED PARTIALL	Y MELTED/FROZEN
FROZEN	:
COOLER NUMBER # COOLEY #3 TEMP INSI	IDE COOLER
#	
#	
#	د. (- استعماد المعربين المعالم المعربين (المعالم المعربين) ()
#	
RECORD TEMPERATURE BLANK (1) _2.3 (2)	(3)
CONDITION OF BOTTLES IN SHIPMENT: (BROKEN, LEAKING, (NTACT?)	
IF BROKEN OR LEAKING LIST SAMPLE ID#'S AND BOTTLE TYPES AFF	ECTED
LIST SAMPLE ID'S IN EACH SHIPMENT: HTH-SEOI, HTH-SEO	HTH-SWID, HTH-DROG,
ITIN OULM, FIN-OULN, FIT-OUDAIND,	

APPENDIX E GEOLOGIC LOGS

DRILI	ING LO		JAV.	INSTALL	H	AAF			SHEET OF SHEET			
1 PROJECT				10. SIZE AND TYPE OF BIT 41/4" T.D. HSA								
1 1 1 10 10 10 10 10 10 10 10 10 10 10 1		and the second se	5 1, 2, +6	11. DATUM FOR ELEVATION SHOWN (TBM & MSL)								
2. LOCATION			SAV. GA.	12. MANUFACTURER'S DESIGNATION OF DRILL CME 75								
3. DRILLING	× _	PSI	the second se	13. TOT			and the second design of the s	D	UNDISTURBED			
4. HOLE NO. and file nu	(As show mbes)	n on drawi	SB16	13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 4 2								
S. NAME OF	DRILLER	K. ;	Durham		ATION GF			0' B6	the second se			
6. DIRECTIO			DEG. FROM VERT.									
7. THICKNES	S OF OVE	RBURDE	N 10.0'		VATION TO	-	Y COD BODIN	e.				
8. DEPTH DP	ILLED IN	TO ROCK		19. SIGN	ATURE OF	INSPECT	J. Row					
9. TOTAL DE	PTH OF	HOLE	10.0'			T .	D. Kow					
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	ALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling ti weathering	REMAR me, water ng, etc., i 9	KS loss, depth of l significant)			
0	b	e • • •	Jand, bron, 104RS13, fin	e	HAND		Blows		OVA, pom			
	_ =		5-10% s: 1t, moist	(Jm)	AUGER	T	0845		HS-0 B2-0			
	2 =	1. 1. 1. 1	Sand, pink, 104R713, Pine silt, moist	15%	HAND	2	where the		HS-2			
	, =	* • • • • •	A second s	<u> </u>	AUGER	ð	0850		BZ-O			
2 - F - F	9-=		Same, pale brown, 104R6. V.f. ine, 5.1090 silt, mois	/3, +.	80	3	3-7-6-6	3" 3 poor				
	6 -		As Above	(Sm)	, e		0855	Lab	BZ·O			
	, =		// > > > > > > > > > > > > > > > > > >		Auber	< 2°	-4 9 - 1 .					
	8-		As Above 45% silt, som		80	4	9-10-10-11	목.	HJ-)100 BZ-0			
	10-	<u>, • . ^ ,</u>	EOB @ 10.0'BES	(52)			0900	Lab	1			
	-											
1							6					
	_						а. А					
				<								
	_											
				58 C								
	-						*					
							18					
-1 ¹												
							2. A					
	_											
	_											
	_											
									149			
	-			3								
8	_			l.								
							1					
				8								
				Sector Sector				· · · · ·				
0			es for lithologic definition and/o	ar chomi	ral analy	sis were	collected f	rom 3 t	o 5 teet			

DRILLING LOG	JAV.	INSTALL	ATION	HAAF	20 - 1953 1	SHEET OF SHEET				
PROJECT			AND TYP							
Pump Houses	ion)	11. DATUM FOR ELEVATION SHOWN (TBM or MSL) MJSL								
	SAV. GA.	12. MANUFACTURER'S DESIGNATION OF DRILL CME 75								
PSI		13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN								
HOLE NO. (As shown on drawin, and file number)	SB17					Ø				
NAME OF DRILLER K. T	Durham		AL NUMBE			BGS				
DIRECTION OF HOLE		16. DATI	HOLE		ARTED	COMPLETED				
XVERTICAL DINCLINED.	DEG. FROM VERT.		ATION TO	- turk	1-20-96 LE 39.3'	11-20-96				
THICKNESS OF OVERBURDEN	10.0'				Y FOR BORING					
DEPTH DRILLED INTO ROCK		19. SIGN	ATURE OF	INSPECT	J. Rowell	0				
TOTAL DEPTH OF HOLE	10.0'		% CORE	BOX OR		MARKS				
EVATION DEPTH LEGEND					(Drilling time,)	neter loss, depth of tc., if significant)				
	concrete	-) -)	1997 - 19	-	Blows	OVA, ppm				
	Love	5	90° a							
	End bronish velow, 1	oyR 6/8,			4-6-8-10	HS- 62				
1 <u>3</u> 000	Dine, 5-10% silt, dry.	(su)	45	I	0955	B2-0				
4	Sand, v. pale brown 10 v.f. ine, <500 s. 14, moist.	yR8/2			-	HS- 180				
	v.fine, <5% silt, moist.	(SP)	85	2	10-10-10-10 1000 Las					
6	So of II I with a work				6-8-8-8					
	Sand, It. bronish gray, v.f.ne, 5% silt. saturate	1.(1)	80	3	1005 La	H5-71000				
					100 1 (4	D = 020				
	As Above. No lab so veta: reof.	0.00	80	4	6-8-8-8					
10		(57)		-17 -2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1010	B2-0				
	EOB @ 10.0'BG	S .		oo "2"".	о . Р.					
			_	2	× n					
			_		-					
E				-	- 8	-				
	• 3 H	5	2		料 た。 5. 11					
			2							
	и х									

		DI	VISION	INSTALL	ATION	11.1		No. 51	EET 1			
DRILL	ING LC		SAV.			IAAF		OF	I SHEETS			
PROJECT	Punf	House.	5 1, 2, +6	10. SIZE AND TYPE OF BIT 4/4" I.D. HJA 11. DATUM FOR ELEVATION SHOWN (IBM or MSL)								
OCATION		the second s	and a second	MJL 12. MANUFACTURER'S DESIGNATION OF DRILL								
DRILLING	AGENCY	PSI	¥	13. TOT	the second s	ME 7.			DISTURBED			
NOLE NO.	(As shown bed)	n on drawi	ing title JB18		AL NO. OF				Ø			
NAME OF	DRILLER	K. ;	Durham		ATION GF		and the second se	O'BGJ				
		.E		16. DATI	HOLE		1-20-96	against the second s	LO - 96			
· · ·			and the second	17. ELEVATION TOP OF HOLE 38.8								
HICKNES		and the second		CONTRACTOR OF THE OWNER.	AL CORE P	INSPECT	Y FOR BORING	4				
TOTAL DE			7.3'		ATONE OF		D. Rowt	ell				
EVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERI (Description)	ALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling tim methoring	REMARKS 6, water los 6, etc., if ai	ss, depth of gnificant)			
8	<u>b</u>	с 6 Ф	1.3' concrete cove				Blows	9	OVA, ppm			
	-	00	A second s	0.			1					
7	2 -		5-1090 s: 17, dry	(sm)	75	Т	5-4-5-4	Lab	н5 - 26 В 2 - 0			
	4	· · ·	Sand, yellow: sh bronn, V.fine 5-10% silt, du			2	5-5-4-6		HS-12			
	Í =	· · · ·	V.fine 5-10% silt, du	4. (sm)	75	đ	1030	a "	Bz-0			
	6 -		Same, pale brown, 104R 6 Fine, 55% sill, saturate	13, V.	75	3	6-22-27-28	J spoon Lab	нs- 94 BZ- 0			
	8 <u>=</u>	<u></u>	EOB@ 7.3' BGS				1055	Lab				
εī	Ē	6.2		т та — 					(1			
	Ξ		ала — Э			< 1 × 1 ⁻¹	8-1 () I					
	-							2 (2				
	-	6 C		ι.		-						
	-											
	-											
- 1	-											
				-								
-												
	-			1								
	1111											
							5					
	_											
								P				
 Spl	it-spoor	n sample	es for lithologic definition and/c	or chemic	al analy:	sis were	collected fro	om 3 to 5	feet			
-pi	opeer	·	ace (BGS) and every 5 feet or	2011 a			ten tembere e	thonico	mate al			

				Liniamore	A 501 0 11		Hole No	And the second sec				
DRIL	LING LO		IVISION . Sav	INSTALL	ATION	HAA	F	SHEET / OF , SHEETS				
PROJECT	\circ	1	101	10. SIZE	AND TYP	E OF BIT	61/11 10 H	5A				
LOCATIO			e 1, 2, 6 ation	11. DATUM FOR ELEVATION SHOWN (TBM or MSL) MSL								
	SAV			12. MANUFACTURER'S DESIGNATION OF DRILL								
. DRILLING		PSI		CME 75 13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 5 UNDISTURBED								
ANDLE NO.	(As show mbsc)	n on draw	MW07					-				
NAME OF					AL NUMBE			Galata				
DIRECTIC		<u> </u>	oble			1 87 4	ARTED /	(12/9/96) Completed				
VERTI	CAL	INCLINED	DEG. FROM VERT.	16. DAT			+1/20/96	11/20/96				
THICKNES	S OF OVE	ERBURDE	N /8.0'				LE 38.17 TOC					
DEPTH D	RILLED IN	TO ROCK	<u></u>	-	ATURE OF	Contractor and the second	Y FOR BORING					
TOTAL DI	EPTH OF	HOLE	/ 18.0'	\mathcal{D} .	Hump	T	· · · · ·					
LEVATION		LEGEND	CLASSIFICATION OF MATERIA (Description)	LS		BOX OR SAMPLE NO.	REM (Drilling time, we weathering, etc.	ARKS ster lose, depth of , if significant)				
0	<u>ь</u>	V/ eV/	SAND: Five-mad: 26 P 1011	0612	•	f	BLOWS	9 (D)(A) 1975				
· *	=	·	SAND: five-med; Pale Br 104. Sitty 5-10%, dry, well sorted	tr,	100	1		OVALPPM BZ-0 45-0				
-	2-		glanconite (as/sn)			Hand auger					
	-		· as above, v. loose - first	m, day	63	2	3-9-12-17	BZ- 0 HS-0				
	4	÷	white loyrebli	(sw)	00	- ×		13-0				
		• • • •	: as above, U. loose- firm, I sorted, tr. mich + glancont	vell te			9-5-8-11	B2- 0				
	17		-Yell Br WYES/ & 1 mast	(sw)	75	3		HS- 0				
	ь —	• • • •	Cuttings as above	<u>(3</u> ,27)		1		4				
1.4			carrige brace			Auger	P	inwell Install				
	8					19.		ab stach				
	-		: Grav INR 6/11 1.10+ firm			- V	-3%5000n 19-14-11-16 \$ wef	+6				
- ²	10-		: Gray 10/R6/11 wet, firm clean sand - tr.glanconito sortep		29	4	19-14-11-16 I	source HS - 2				
	/* –			(sw)	. 1		-					
	12		Cuttings-runny Sands		0	Ţ						
	=	1.1			-	Auger	i i					
	14 =					Ĵ	2"50004					
-	14	·	as above: v. looso-v.firm. well sorted, surty 5%. tr.	yet.			4-11-20-22 L	ab BZ-0 HS-62				
	, 3		well sorted, suity 5%. tr. (rleansond)		-50	5	а. ж	HS-62				
	/6	$\dot{\cdot}$	f	SW	•	1.11 T. 1.1						
1	=	$\left \left \left$	Cattings as above	8	-	-						
	18		F									
	=		E.O.B. @ 18.0'	655								
	TOC											
25	-				8							
	7							i				
	_											
	Ξ											
-	=			. 1								
	_		and the second sec		l							
			es for lithologic definition and/or									
			ace (BGS) and every 5 feet or l	thologic	change			vise noted).				
G FORM	1836	PREVIOU	SEDITIONS ARE OBSOLETE.	1	ROJECT			HOLE NO.				

BBU			IVISION		INSTALL	ATION	11.11	Holo Na	SHEET	7			
PROJECT	LING LO		SAV.				HAA		OF J	SHEETS			
PROJECT	PUM	volucia	1,2,6		10. SIZE	IN FOR EL	E OF BIT	6144 1D HS	A L)				
LOCATION	N (Coordin	AV. GI	ation)		MSL								
	The second se	and the second se			12. MANUFACTURER'S DESIGNATION OF DRILL								
HOLE NO.	(As show	PS_			13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN								
and file nu	mbez)		MW08	1 	14. TOTAL NUMBER CORE BOXES								
NAME OF	DRILLER	M. (Gribble			ATION GI		and the second	12/9/96)				
DIRECTIO	and serves water pore	.Е		-	16. DAT	EHOLE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ARTED	COMPLETE	196			
VERTI		INCLINED	DEG. PR	OM VERT.	17 FLF	ATION TO		LE 37.60 TOC	11/20/	70			
THICKNES	S OF OVE	RBURDE	N 14.0'					Y FOR BORING					
DEPTH DR						ATURE OF		and the second se		6			
TOTAL DE	EPTH OF	HOLE	' 14.0'	<u></u>	. هـ	Hum			ADVC				
LEVATION		LEGEND	CLASSIFICATION OI (Descripti		LS		SAMPLE NO.	(Drilling time, we weathering, etc.	ARKS iter loss, de , if signific	pth of ant)			
a	b	V/ el/	SAND: Que-med Pale	Br IOVRLI	s to	•	1	BLOWS	0 NA	ppm			
			SAND: five-med; Pale White 8/1. silty 5%. Sorted. dry.	fr. glancon	ite.well	(00)	Hand Auger	BZ	-0			
	2-	,	sorter. Ary. : as a boug white.	v. 605e-+	frm			4-10-11-16		-0			
						42	2			- 0,5			
	4		i as above, v.1	1005-firm	• <u>,</u>		121.0	4-5-6-11	Bz	- 0			
	, 1	<u>د د. : : -</u>	-wet-derker gray di	re to we the	ues (sw)	75	3	4-5-6-11 1 Juli wetsa at install	alle HS	-0			
	۵ <u>–</u> –		Cattings wix o	fabore			Anger	t at install	Υ.				
	8 <u>–</u>	÷ ; ; ; ; ;				-	L.	L	1 -				
(Po.6	-		: as a bone : Pale v. coss firm, wellson tr. glanconite, wet.	Br IOYR 4	3159	50		8-2-3-12	Jab BZ	-0			
2			tr.glanconite, wet.	-	(54)	5.	4	و	or HS	- 28			
6	10-	·····	Cattings as above	5			1						
	12 -				°	-	Auger						
-				1			ł						
15	14-		: 95 above Pale U. 6050 ; 10050 , wet, 51/2 5%	Br to Gy, well sort	6/1 el.	67	5	10-6-4-8	, ab BZ	- 0 - 42			
	-				(54)			-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1~			
-	16		Auger to 14.0'	bgs. (=	E.O.B)								
	_				Q 1 4	-							
	18-												
	<u> </u>		-			8		le l					
1	~ I	5.				2	÷,						
	w												
	Ξ												
	二												
										÷0			
	-												

 $\left(\begin{array}{c} \end{array}\right)$

MAR 71

DRILLING	, LOG		VISION SA	V.	54 1	INSTALL		4A1=		OF	EET / , SHE	ETS		
PROJECT	0					10. SIZE	AND TYPE	OF BIT	6/14" ID	HSA	/ 0//0			
LOCATION (Co		-	ise 1, 2, 1	2		TI. DATUM FOR ELEVATION SHOWN (TEM or MSL)								
LOCATION (Co		AV 6		5		12. MANUFACTURER'S DESIGNATION OF DRILL								
DRILLING AGE	NCY	PS1				CME 75								
HOLE NO. (As and file number)	eho wn		ng title	4009		- 13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 5 UNDISTURBED								
NAME OF DRIL	LER	~	///_				AL NUMBE			7.1				
DIRECTION OF		6r16	ble						TER 31.7	COMPL	9/96) ET/ED			
VERTICAL				DEG. FR	OM VERT.	16. DAT			20/96	1	0/96			
THICKNESS OF	OVER	BURDE	N 16.0'		******				LE 38.97 TO	с		_		
DEPTH DRILLE	ED INT	O ROCK	ø			0000000 110000 000	AL CORE F		Y FOR BORING	2				
TOTAL DEPTH	OF H	DLE	16.0'			17.7	Hump	hs						
LEVATION DEF		EGEND	CLASS	FICATION OI (Descripti	MATERIA	LS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	Rt (Deilling time, weathering,	MARKS water los	e, depth enificant)	of		
0	<u>ь ү</u>	11 e 11/	Convete/A	phalt 16"					BLOWS		NA, pp	7		
	4	17.7	CGnevetelAs SAND: fire - M	48, L+6,17.0	WR LA SIA	1 stral	-	- 1	HondAugor	-	BZ- HS-			
2			as above,		d d	ry (sw)			2-8-9-6		132-	-		
			dk 6y 10/RAI th.glau : ns a so loose	, v. loose - lu	ose, wells	ortel	100	2			H5-	0000		
4	-		: AS a 50	ve, sitts	- 20%,	v. 608-		-	2-3-3-9		132-1			
	E		black 104122 SI HAY	11, moist, or	gonics, w	ell sorted	075-	3			HS-2			
6.	-		C. Hin	gs as a l		(we yring)	-14 L	1	—	,		~		
*			Carrie	73 03 43	ч. <u>с</u>		-	Auger	JIM Well 1 Install - 3'spoon 8-9-11-8 initial wetsample	ef .				
8.	-Ē	·:/	Large Roc	+ / or somics	w/ dk	< 13 r.		<u>-y</u>	- 3' 57004 8-9-11-8	Lab	Bz -	0		
	=		sond loyk	313., wet.	10050- 400	n. (7)	50	4	wetsample		BZ - HS - 2	200		
10-	'	· · · ·	Large Roc sound 104R	and and and	one	$\underline{\langle \cdot \rangle}$	11	1						
141	=		C 117/				_	here						
12.	_							I During						
	E	• • •		/	10 111			Ý	- 3" spoon 5-8-12-18	106	0-			
14.	Ξ.		Sand as 9	bove, 64 10	alanconil	e e	21	5	5-8-12-18	1 toch	BZ- Hs-L	0		
	= .		JOYTER, S	כייו המצירוי		(sw)	~ .			6.01	HS-4	100		
11	=		Asabone			0		Augar	`*					
16-	Ξ		E.(D.B. (2)	6.0' 69	s			-		8 V			
20				- (J.									
18.														
-	=													
20.	-						_			2 *				
	-											l		
	=													
	-					э								
8	-									ः ह				
	1									11				

APPENDIX F

ENVIRONMENTAL SENSITIVITY SCORE

1

Pumphouse #6

SITE RANKING FORM

1. Soil C	ontamination					
а.	Total PAHs - Maximum Concentrat	ion		b.	Total BTEX - Maximum Concentration	
	■ > 10 mg/kg	=	50		> 150 mg/kg =	50
	□ 1 - 10 mg/kg	=	25		50 - 149.9 mg/kg =	40
	□ 0.66 - 0.99 mg/kg	g=	10		10 - 49.9 mg/kg =	25
	□ <0.660	=	0		0.5 - 9.9 mg/kg =	10
			22. 12		0.005499 mg/kg =	1
	Denti de Crean dente	- <i>(</i> 1 -1	n e ^{#1}		< 0.005 mg/kg =	0
c.	Depth to Groundwate Below Land Surfa		14 15	я 15 б ж		
9 X	< 10' bls	=	10			
	□ 10' - 25' bls	=	5		a n Tari Mara da	2 2 2
	□ 25' - 50' bls	=	2			
	\Box > 50' bls	=	1			
2. Grou	ndwater Contamination					×
а.	Free Product (Nonaque liquid hydrocarbo		nase	b.	Dissolved Benzene - Maximum Concent	ration
	□ > 6"	=	2,000		> 10,000 µg/L =	250
	□ 1/8" = 6"	=	1,500		1,000 - 10,000 µg/L=	100
	□ Sheen - 1/8"	=	250		$100 - 1,000 \ \mu g/L =$	50
	No free product	=	0		$5 - 100 \ \mu g/L =$	10
					$<5 \ \mu g/L =$ (3.6 ug/L at MW9)	0

If (1.a.) + 1.b.) + (2.a.) + 2.b) is <1, and the CAP is complete, then no further action is required. Go to summary.

GUST-CAPA.FOR

November 1995

Pumphouse #6

A. Public *			-	B. Non-public			12
Category	Number Identified	Score	Total	Category	Number Identified	Score	Total
Impacted	_0_X	100 =	_0	Impacted	_ <u>0</u> _X	100 =	_0_
< 500'	<u>0 x 0.5 x</u>	50 =	_0_	< 100'	<u>0</u> x 0.5 x	26 =	_0_
500' - 1/4 mi.	<u>0</u> x 0.5 x	20 =	_0	100' - 500'	<u>0</u> x 0.5 x	10 =	_0
1/4 mi - 1 mi	<u>0</u> x 0.5 x	10=	_0_	500' - 1/4 mi	0 x 0.5 x	6 =	_0_
1 mi - 2 mi	0 x 0.5 x	6 =	0	1/4 - 1/2 mi	0 x 0.5 x	4 =	0
3 mi	N/A	0 =	0	> 1/2 mi	N/A	0 =	_0_
		A. Subtotal	0			B. Subtotal	0

3. Distance from Contaminant Plume to Point of Withdrawal for Water Supply

Note: If site is in lower susceptibility area, do not use the shaded area.

4. Distance from Contaminant Plume to Surface-Waters or Utility Trenches Below the Water Table

1

 \Box Impacted = 100

 \Box < 500' = 12

500' - 1,000' = 6

- □ > 1,000 =
- 5. Susceptibility Area Multiplier

If site is located in a Low Ground Water Pollution Susceptibility Area, and no points of withdrawal for water supply lie within 500' and no surface water bodies or submerged utility trenches lie within 500' of the source: = 0.5

All other sites =

SUMMARY

[(1.a. + 1.b.) X (1.c.) + (2.a. + 2.b.) X (3.a. + 3)]	3.b. + 4.] X [(5.)] =	.900
		Environmental Sensitivity Score
$[(50 + 40) \times 10 + (0 + 0) \times (0 + 0 + 6)] \times 1$	- 20 - 10	

 $[(50 + 40) \times 10 + (0 + 0) \times (0 + 0 + 6)] \times 1$ $[90 \times 10 + (0 \times 6)] \times 1$ $[900] \times 10 = 1$ 900

p:\019457\PH6

GUST-CAPA.FOR