

Imagine the result





3d Inf Div (Mech)

# **U.S. Army Environmental** Command

## And

Fort Stewart Directorate of Public Works Under Contract Number W91ZLK-05-D-0015 D.O. 0003

# Site Investigation Work Plan

HAA-17, Installation-Wide Groundwater including TCE Groundwater Contamination Hunter Army Airfield, Savannah, Georgia

June 1, 2009

### **DOCUMENT 16**

C. Scott Bostian, PE Senior Engineer

Charles A. Bertz, PE Senior Project Manager

### Site Investigation Work Plan

HAA-17, Installation-Wide Groundwater including TCE Groundwater Contamination

Prepared for: U.S. Army Environmental Command

Prepared by: ARCADIS 801 Corporate Center Drive Suite 300 Raleigh North Carolina 27607 Tel 919.854.1282 Fax 919.854.5448

Our Ref.: GP08HAFS.H17A

Date: June 1, 2009

(

(

## **Table of Contents**

| Ac | ronyms  |           |                       |                                               | iv  |
|----|---------|-----------|-----------------------|-----------------------------------------------|-----|
| 1. | Introdu | iction    |                       |                                               | 1-1 |
| 2. | Regula  | tory St   | atus                  |                                               | 2-1 |
| 3. | Site De | escriptio | on and S              | Setting                                       | 3-1 |
|    | 3.1     | Site De   | escription            |                                               | 3-1 |
|    | 3.2     | Physic    | al Setting            | of the Airfield                               | 3-1 |
|    | 3.3     | Regior    | al Geolog             | yy/Hydrogeology                               | 3-1 |
| 4. | Previo  | us inve   | stigatior             | IS                                            | 4-1 |
|    | 4.1     | USTs 2    | 25 and 26             |                                               | 4-1 |
|    |         | 4.1.1     | USTs 2                | 5 and 26 CAP – Part B Investigation (1999)    | 4-1 |
|    |         | 4.1.2     | Suppler               | nental CAP – Part B Investigation (2000-2001) | 4-2 |
|    |         | 4.1.3     | Suppler               | nental CAP – Part B Investigation (2002)      | 4-2 |
|    |         | 4.1.4     | 2003 Ve               | ertical Profile Investigation                 | 4-3 |
|    | 4.2     | Purge     | Facility In           | vestigation                                   | 4-3 |
|    | 4.3     | Buildin   | ig 1290 In            | vestigation (2007-2008)                       | 4-4 |
| 5. | Currer  | t HAA-    | 17 Conc               | eptual Site Model                             | 5-1 |
|    | 5.1     | Hunter    | <sup>r</sup> Army Air | field Depositional Model                      | 5-1 |
|    | 5.2     | HAA-1     | 7 Local G             | eology/Hydrogeology                           | 5-2 |
|    | 5.3     | Extent    | of Impact             | S                                             | 5-3 |
|    |         | 5.3.1     | Ground                | water Impacts                                 | 5-3 |
|    |         | 5.3.2     | Soil Imp              | pacts                                         | 5-5 |
|    |         |           | 5.3.2.1               | USTs 25 and 26 Area Soil Impacts              | 5-5 |
|    |         |           | 5.3.2.2               | Purge Facility Soil Impacts                   | 5-5 |
|    |         |           | 5.3.2.3               | Building 1290 Soil Impacts                    | 5-5 |
|    | 5.4     | Data G    | aps                   |                                               | 5-6 |
| 6. | Propo   | sed Inv   | estigatio             | n                                             | 6-1 |
|    | 6.1     | Phase     | I Source              | Area Investigation                            | 6-2 |

## **Table of Contents**

| 8. | Referen | ices  |                                                    | 8-1 |
|----|---------|-------|----------------------------------------------------|-----|
| 7. | Closing | Summ  | nary                                               | 7-1 |
|    | 6.2     | Phase | Il Delineation Investigation                       | 6-5 |
|    |         | 6.1.9 | Vapor Intrusion – Indoor Air Pathway               | 6-5 |
|    |         | 6.1.8 | Sampling of New and Existing Monitor Wells         | 6-5 |
|    |         | 6.1.7 | Groundwater Monitor Wells                          | 6-4 |
|    |         | 6.1.6 | Temporary Borings                                  | 6-3 |
|    |         | 6.1.5 | Membrane Interface Probe                           | 6-3 |
|    |         | 6.1.4 | Baseline Sampling of Monitor Wells                 | 6-2 |
|    |         | 6.1.3 | Slug Testing                                       | 6-2 |
|    |         | 6.1.2 | Groundwater/Surface Water Flow near Drainage Canal | 6-2 |
|    |         | 6.1.1 | Water-Level Measurements                           | 6-2 |

#### Tables

| Table 4-1 | Well Construction Summary                                                 |
|-----------|---------------------------------------------------------------------------|
| Table 4-2 | Summany of Groundwater Analyses, USTs 25 and 26 CAP-Part B Investigations |
| Table 4-3 | Summary of Groundwater Analyses, Purge Facility Investigation             |
| Table 4-4 | Summary of Soil Analyses, Purge Facility Investigation                    |
| Table 4-5 | Vertical Profile, MIP, and DPT Sample Summary                             |
| Table 4-6 | Summary of Groundwater Analyses, Building 1290 Investigation              |
| Table 4-7 | Summary of Soil Analyses, Building 1290 Investigation                     |
| Table 5-1 | Groundwater Elevation Summary, 2006 - 2007                                |
| Table 6-1 | Recommended Biogeochemical Analytical Parameters                          |

### Figures

| Figure 3-1 | HAA-17 Location Map      |
|------------|--------------------------|
| Figure 3-2 | HAA-17 Site and Vicinity |

### **Table of Contents**

| Figure 3-3  | Site Layout and Monitor-Well Locations                                                                           |
|-------------|------------------------------------------------------------------------------------------------------------------|
| Figure 4-1  | Historical Vertical Profile Sampling Locations                                                                   |
| Figure 4-2  | Soil Sampling Locations and Regulated Substances in Soil Above<br>HSRA Notification Concentrations (2006 – 2008) |
| Figure 4-3  | Composite Maximum TCE Observed in Groundwater (1999-2008)                                                        |
| Figure 5-1  | Topographic Profile, HAA-15 to HAA-17                                                                            |
| Figure 5-2  | Geologic Cross Section A-A' along Topographic Strike at HAA-17                                                   |
| Figure 5-3a | Potentiometric Surface for Shallow Groundwater, Building 1290<br>Wells (July 2007)                               |
| Figure 5-3b | Potentiometric Surface for Deep Groundwater, Building 1290 Wells (July 2007)                                     |
| Figure 5-4a | Potentiometric Surface for Shallow Groundwater, Purge Facility and USTs 25 and 26 Wells (2006)                   |
| Figure 5-4b | Potentiometric Surface for Deep Groundwater, Purge Facility and USTs 25 and 26 Wells (2006)                      |
| Figure 6-1  | Proposed Boring Locations                                                                                        |
| Figure 7-1  | Proposed Schedule                                                                                                |

### Appendices

Appendix A Geophysical Investigation Report (Reference: UST 25 & 26 CAP-Part B Addendum #1 (Facility ID #9-025008) June 2001)

# Site Investigation Work Plan, HAA-17

(

**IAcronyms** 

#### Acronyms

| BTEX    | Benzene, Toluene, Ethylbenzene, and Xylenes            |
|---------|--------------------------------------------------------|
| CAP     | Corrective Action Plan                                 |
| CSR     | Compliance Status Report                               |
| DO      | Dissolved Oxygen                                       |
| DOT     | U. S. Department of Transportation                     |
| DPT     | Direct Push Technology                                 |
| ft bgs  | feet below ground surface                              |
| ft/min  | feet per minute                                        |
| GA EPD  | Georgia Environmental Protection Division              |
| HAAF    | Hunter Army Airfield                                   |
| HSRA    | Hazardous Site Response Act                            |
| IDW     | Investigation Derived Waste                            |
| MIP     | Membrane Interface Probe                               |
| mg/L    | milligrams per Liter                                   |
| μg/L    | micrograms per Liter                                   |
| NTU     | Nephelometric Turbidity Unit                           |
| ORP     | Oxidation Reduction Potential                          |
| PAH     | Polyaromatic Hydrocarbon                               |
| PID     | Photo Ionization Detector                              |
| QAPP    | Quality Assurance Project Plan                         |
| RCRA    | Resource Conservation Recovery Act                     |
| SAIC    | Science Applications International Corporation         |
| SESD    | Science and Ecosystem Support Division                 |
| SI      | Site Investigation                                     |
| SVOC    | Semivolatile Organic Compound                          |
| TPH DRO | Total Petroleum Hydrocarbons – Diesel Range Organics   |
| TPH GRO | Total Petroleum Hydrocarbons – Gasoline Range Organics |
| USAEC   | United States Army Environmental Command               |
| USEPA   | U. S. Environmental Protection Agency                  |
| UST     | Underground Storage Tank                               |
| USTMP   | Underground Storage Tank Management Program            |
| VOC     | Volatile Organic Compound                              |
|         |                                                        |

Introduction

#### 1. Introduction

The U.S. Army Environmental Command (USAEC) has retained ARCADIS on behalf of Hunter Army Airfield (HAAF) to investigate and remediate impacted soil and groundwater associated with HAA-17. A Hazardous Sites Response Act (HSRA) Release Notification/Reporting Form was submitted to the Georgia Environmental Protection Division (GA EPD) on April 27, 2009. A Compliance Status Report (CSR) will be generated based on the historical data sets and data generated in this investigation. Upon approval of the CSR, a Corrective Action Plan (CAP) will be developed.

Dissolved trichloroethene (TCE) and its chlorinated hydrocarbon degradation products were detected in groundwater near underground storage tanks (USTs) 25 and 26 during groundwater investigations for petroleum contamination. The source and full extent of TCE in groundwater at HAA-17 are unknown. HAAF has delineated the extent of petroleum impacted groundwater in accordance with the requirements of GA EPD UST Management Program (USTMP) (Facility ID #9-025008), GA EPD USTMP stated that no further action is required for the release in a letter dated August 19, 2008. Therefore, petroleum constituents associated with USTs 25 and 26 will not be addressed in this investigation. Based on historical data, the primary non-petroleum constituent in groundwater in the area of USTs 25 and 26 is TCE. Previous investigations have not fully delineated the source(s) or extent of the TCE impacted groundwater. Other non-petroleum constituents detected in groundwater during investigations in related areas are barium and chromium, which were detected during the Purge Facility investigation, and 1,1-DCE and vinvl chloride, which were detected during the Building 1290 investigation. The only detections in soil above HSRA Notification Concentrations were carbon disulfide, which was detected in soil at two locations during the Purge Facility Investigation.

This work plan describes further investigation to delineate the potential source(s) and the extent of TCE and other compounds. The first phase of the proposed investigation will entail utilizing vertical profiling with membrane interface probe (MiP) technology in the suspected TCE source area. Direct push technology (DPT) installed temporary borings will be installed for MIP confirmation sampling and for determining plume limits. Additional wells will then be installed for plume monitoring and evaluation of metals.

**Regulatory Status** 

#### 2. Regulatory Status

The investigation and remediation of petroleum impacts at USTs 25 and 26 were regulated under the GA EPD USTMP (Facility ID #9-025008). The referenced release was granted a no further action required status by GA EPD USTMP in a letter dated August 19, 2008. The non-petroleum compounds detected in soil and/or groundwater have been reported to GA EPD in the HSRA Release Notification Reporting Form. The first goal at HAA-17 is to complete a CSR that meets all GA EPD requirements for compounds above regulatory thresholds. Investigations of groundwater quality have previously been performed. The results of these previous investigations and this investigation will be utilized to prepare the CSR.

Site Description and Setting

#### 3. Site Description and Setting

#### 3.1 Site Description

HAAF is an active military installation located in Savannah, Georgia, encompassing areas of industrial, commercial, and temporary residential property occupied by a variety of administrative, maintenance, and barracks facilities as well as an active air field (Figure 3-1). HAA-17 is located in the northeastern portion of HAAF. A site map depicting the HAA-17 area is included as Figure 3-2, and the existing monitor well network is shown on Figure 3-3.

#### 3.2 Physical Setting of the Airfield

The HAAF is located on a southwest-northeast trending ridge of about 20 feet to 40 feet elevation above sea level and is surrounded on all sides by lower topography of about 10 to 15 feet elevation. The first runways were probably constructed on the highest part of the ridge when first built in 1928. These first runways were probably constructed at the highest part of the ridge to allow for surface water drainage away from the runways.

#### 3.3 Regional Geology/Hydrogeology

HAAF is located on the lower coastal plain physiographic province, which is typified by very low relief that slopes toward the Atlantic Ocean. The geology is composed of a seaward thickening sequence of unconsolidated sediments. Previous regional investigations suggest that there has been minor structural deformation in the Savannah, Georgia, area during deposition of the sediments starting in the early Cretaceous Period. The sediments form a thickening wedge into the Atlantic Ocean deposited from sediment erosion of the Blue Ridge Mountains. The total thickness of the sediments in the Savannah, Georgia, area is over 2,000 feet.

The most important water supply aquifer in the lower coastal plain of Georgia and Florida is the Floridan Aquifer. The Floridan Aquifer is a regionally extensive aquifer that is approximately 800 feet thick at Savannah. The top of the Floridan Aquifer at HAAF is approximately 200 feet below ground surface (ft bgs). It is composed primarily of Oligocene age and Eocene age porous limestones. The Floridan Aquifer is the principal water supply aquifer throughout coastal Georgia and most of Florida.

# Site Investigation Work Plan, HAA-17

Site Description and Setting

This investigation focuses on groundwater quality in the uppermost aquifer system only. The uppermost aquifer system at and surrounding Savannah, Georgia, is underlain by two continuous clay units, which are effective confining units that preclude downward groundwater migration of shallow groundwater to the deeper Floridan water supply aquifer. These two clay units are named the Coosawhatchie Formation and Berryville Clay member of the Hawthorne Group. Lithologic samples and fossils suggest that these two units were deposited during the Middle Miocene Period in a low energy open marine environment over a wide area. The open ocean depositional environment resulted in the widespread and continuous nature of these clay units. A deep test well in Savannah (GGS-3139) shows that the clay units extend from approximately 45 ft bgs to 167 ft bgs near HAAF. Due to the thick confining unit that separates the uppermost aquifer system from the underlying Floridan Aquifer, there is minimal potential for shallow groundwater to impact deeper groundwater quality in the underlying Floridan Aquifer.

After deposition of the Hawthorne Clays, there was no preserved deposition of sediments at the study area until the late Pleistocene Period. The sediments overlying the Hawthorne Group clays to land surface are composed of a sequence of near shore to shoreface (barrier island) sediments that prograde over the Hawthorne Group marine clays. Published investigations have identified nine sets of overlapping relict beach ridges of Pleistocene age to Holocene age on the lower coastal plain that prograde towards the Atlantic Ocean. Each barrier sequence forms a ridge (also termed terrace) that is progressively lower and closer to the modern barrier island. The ancient beaches formed during higher sea levels and are parallel to the modern beach. Each barrier system is at a consistent elevation above sea level with about 20 feet relief above surrounding land. HAAF is located on a relict beach ridge named the Pamlico Terrace from about 20 feet msl to 40 feet msl. This abandoned beach ridge was formed during the late Pleistocene (>10,000 years) age. The Pamlico Terrace sediments are about 50 feet thick at HAAF.



CITY:(KNOXVILLE) DIV/GROUP:(ENV) DB:(B.ALTOM) LD:(B.ALTOM) PIC:(M.FENNER) PM:(C.BERTZ) TM:(S.BOSTIANH.ENGLISH) PROJECT: GP08HAFS.F17A.DBCSM PATH: G:(GIS(GP08HAFS)H17A/2009 SI WORKPLANIF3-1 HAA77\_WP\_r99.mxd SAVED: 200MAP2009

ĺ





Previous Investigations

#### 4. Previous Investigations

#### 4.1 USTs 25 and 26

The former USTs 25 and 26 site is located in the 2nd BN 3d Aviation Brigade Motor Pool (previously the 260th Quartermaster Motor Pool) on Tubb Road. The location of the former USTs is shown on Figure 3-2. UST 25 was a 30,000-gallon tank used for storing diesel fuel, and UST 26 was a 6,000 gallon tank used for storing gasoline. The station was operational from October 1989 until July 1998, when the tanks and piping were abandoned in place. The tanks and piping were later excavated in April 2006.

Following the in-place tank closure performed in 1998, a CAP-Part A investigation was performed and petroleum contamination was found in soil and groundwater (Earth Tech, 1999). The chlorinated solvent impacts in groundwater were subsequently discovered during the CAP-Part B investigation. Between 1999 and 2007, multiple investigations were conducted to delineate petroleum impacts around former USTs 25 and 26 and the TCE plume. Since the petroleum impacts at USTs 25 and 26 were addressed under the GA EPD USTMP and received a no further action required status in a letter dated August 19, 2008, results of investigations conducted solely for delineation of petroleum impacts are not discussed in the following sections. The construction information for wells installed as part of the UST investigation is summarized in Table 4-1. A historical summary of groundwater analytical data collected for the USTs 25 & 26 investigations is included in Table 4-2.

#### 4.1.1 USTs 25 and 26 CAP – Part B Investigation (1999)

Based on the findings of the in-place tank closure and CAP-Part A, a CAP-Part B Site Investigation (SI) was conducted by Science Applications International Corporation (SAIC) to determine the nature and extent of petroleum contamination. During the CAP-Part B SI activities in May 1999, TCE was tentatively identified in groundwater. Between September and October 1999, additional vertical profile borings/monitor wells were installed and existing wells were sampled to confirm the presence of TCE in groundwater. The analytical results confirmed the presence of TCE (as well as 1,2dichloroethene and 1,1- and 1,2-dichloroethane ) in groundwater. Vertical borings and/or wells AF-01 through AF-39 were installed during the 1999 CAP-Part B investigation (Figures 3-3 and 4-1). The results of the 1999 CAP-Part B SI were presented in the Corrective Action Plan-Part B for USTs 25 and 26 submitted to the GA EPD USTMP in February 2000 (SAIC 2000). The source and extent of the TCE contamination was not determined during the CAP-Part B investigation. A historical

**Previous Investigations** 

summary of groundwater analytical data collected for the USTs 25 and 26 CAP-Part B investigations is provided in Table 4-2.

4.1.2 Supplemental CAP - Part B Investigation (2000-2001)

In January 2000, the first deep monitor wells (AF-40, AF-41, and AF-42) were installed as part of the USTs 25 and 26 Monitoring Only Program to monitor the chlorinated solvents plume. The deep wells were screened between 28.5 and 33 ft bgs, corresponding to the highest TCE concentrations observed in nearby vertical profile borings. Monitor well locations are shown on Figure 3-3.

In April 2000 and October/November 2000, Argonne National Laboratory conducted a geophysical survey in the wooded area southeast (i.e., east of the intersection of the drainage ditches and swales depicted on Figure 3-3) of the former USTs 25 and 26 site to better characterize the subsurface geology controlling the migration and entrapment of TCE. A copy of the geophysical report from the CAP Part B Addendum #1 Report (SAIC 2001) is included as Appendix A.

In November and December 2000, ten vertical-profile borings (AF-43 through AF-52) were installed at the site to further delineate the vertical extent of TCE contamination in groundwater (Figure 4-1). Groundwater samples were collected at 5-foot intervals from the water table to 50 ft bgs. In February 2001, ten monitor wells (AF-53 through AF-62) were installed at the site based on the review of the November/December 2000 vertical-profile data (Figure 3-3). The results of the investigations conducted between February 2000 and March 2001 were presented in the Corrective Action Plan–Part B Addendum #1 for USTs 25 and 26 submitted to the GA EPD USTMP in June 2001. A historical summary of groundwater analytical data collected for the former USTs 25 and 26 CAP-Part B Investigations is provided in Table 4-2.

#### 4.1.3 Supplemental CAP – Part B Investigation (2002)

In July 2002, five vertical-profile borings (AF-63 through AF-67) were installed to further delineate the horizontal and vertical extent of TCE contamination in groundwater. Groundwater samples were collected at 5-foot intervals from the water table to 45 ft bgs. In October 2002, five monitor wells (AF-68 through AF-72) were installed at the site based on the July 2002 vertical-profile data. In December 2002, USACE installed five vertical-profile borings (B159-1 through B159-5) to the west of the site to assess the potential for the purge facility to be related to the TCE contamination. The results

**Previous Investigations** 

showed that TCE was not present along Tubb Street to the west of the former USTs 25 and 26.

The results of the investigations conducted between July 2002 and December 2002 were presented in the Corrective Action Plan–Part B Addendum #2 for USTs 25 and 26 (SAIC 2003). A historical summary of groundwater analytical data collected for the USTs 25 and 26 CAP-Part B investigations is provided in Table 4-2.

4.1.4 2003 Vertical Profile Investigation

In October 2003, six vertical-profile borings (AF-73 through AF-78) were installed to further delineate the horizontal and vertical extent of volatile organic compound (VOC) contamination in groundwater. Groundwater samples were collected every 5 feet from the water table to a depth of approximately 50 ft bgs. Installation of deep wells and additional delineation was proposed around borings AF-73 and AF-74. The results of the 2003 vertical profile investigation were presented in the Data Summary Report for the 2003 Vertical-Profile Investigation (SAIC, 2004). A historical summary of groundwater analytical data collected for the USTs 25 and 26 CAP-Part B Investigations is provided in Table 4-2.

4.2 Purge Facility Investigation

The Purge Facility is located east of the UST 25/26 area as shown on Figure 3-2. Between May and July 2006, surface soil, subsurface soil, and groundwater samples were collected at the Purge Facility to determine if contamination was present at the facility. One deep monitor well (MW-1) and four shallow wells (MW-2 through MW-5) were installed as shown on Figure 3-3. Soil samples were collected from three locations (SS-01 through SS-03) along a surface drainage pathway feature and from the five monitor well borings (Figure 4-2). All samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), and Resource Conservation and Recovery Act (RCRA) metals.

Low levels of VOCs, SVOCs, and RCRA metals were detected in soil and groundwater but were not attributed to a systematic or significant release at the Purge Facility and the Site Investigation Report for the Purge Facility (SAIC 2007) stated that further delineation was not warranted. Both TCE and total chromium were detected in the deep surficial groundwater (MW-1) but were not attributed to operations at the Purge Facility. The TCE in MW-1 was attributed to an unknown upgradient source and the chromium was attributed to turbid groundwater samples. Barium was detected in

#### Site Investigation Work Plan, HAA-17

Previous Investigations

samples from all five monitor wells. The results of the investigation were presented in the Site Investigation Report for the Purge Facility (SAIC, 2007). A summary of groundwater and soil analytical data collected during the investigation of the Purge Facility is provided in Tables 4-3 and 4-4, respectively.

#### 4.3 Building 1290 Investigation (2007-2008)

Between May 2007 and January 2008, Building 1290 was investigated as a potential source of the TCE detected in groundwater at the UST 25/26 area and the Purge Facility. Investigation activities included monitor well installation, membrane interface probe (MIP) data collection, and groundwater and soil sampling using direct-push technology (DPT). Locations of monitor wells and DPT sampling locations are shown on Figures 3-3 and 4-1, respectively.

Twenty-one wells installed in May 2007 (MW-1S/D through MW-13S/D) and 2 existing wells (MW-15S and MW-16S) were sampled in July 2007 to support the selection of MIP screening locations. Between October 2007 and January 2008, 40 MIP locations were installed during two mobilizations. Initial locations were around Building 1290 and north and northwest of former USTs 25 and 26. Subsequent MIP locations were south to southeast of previous locations. Confirmation soil and groundwater samples were collected at 20 locations using DPT (Table 4-5). Most of the VOCs detected in confirmation groundwater samples were constituents characteristic of chlorinated solvents. The remaining constituents detected in groundwater are associated with petroleum contamination. Fourteen VOCs were detected in confirmation subsurface soil samples collected at MIP locations.

The results of the investigation of Building 1290 were presented in the Data Summary Report for the TCE Plume at Building 1290 (SAIC, 2008). A summary of groundwater and soil analytical data collected during the investigation of Building 1290 is provided in Tables 4-6 and 4-7, respectively. TCE concentrations in groundwater from 1999 to 2008 are presented in Figure 4-3.

#### Table 4-1 Well Construction Summary HAA-17 Hunter Army Airfield - Savannah, Ga

(

(

-

| Well Number        | Date                 |              | Screened Interval                 | Shallow/ | Type of                | Coordin   | ates              | Elevation                     |                                 |  |  |
|--------------------|----------------------|--------------|-----------------------------------|----------|------------------------|-----------|-------------------|-------------------------------|---------------------------------|--|--|
|                    | Installed            | (ft BGS)     | (ft BGS)                          | Deep     | Completion             | Northing  | Easting           | Ground Surface (ft above MSL) | Top of Casing<br>(ft above MSL) |  |  |
|                    |                      |              | 99 through 2002                   | ŝ        | %-in. PVC              | 734225.9  | 979645.8          | 23.28                         | 23.02                           |  |  |
| AF-01              | 5/4/1999             | 12.7         | 2.5 - 12.5                        | S        | 34-in. PVC             | 734103.1  | 979556.8          | 23.20                         | 21.94                           |  |  |
| AF-02*             | 5/5/1999             | 12.2         | 2,0 - 12.0                        |          |                        | 734073.7  | 979520.8          | 22.30                         | 22.27                           |  |  |
| AF-03ª             | 5/5/1999             | 12.2         | 2.0 - 12.0                        | S<br>S   | ¾-in. PVC<br>¾-in. PVC | 734170.3  | 979520.8          | 22.30                         | 22.24                           |  |  |
| AF-04<br>AF-05     | 5/5/1999<br>5/5/1999 | 12.2<br>12.2 | 2.0 - 12.0                        | S        | %-in. PVC              | 734170.3  | 979582,8          | 22.46                         | 22.24                           |  |  |
| AF-06              | 5/5/1999             | 12.2         | 2.0 - 12.0                        | S        | temporary              | 734083.6  | 979514.9          | 22.70                         |                                 |  |  |
| AF-07              | 5/4/1999             | 12.7         | 2.5 - 12.5                        | S        | 34-in. PVC             | 734145.2  | 979553.5          | 23.13                         | с                               |  |  |
| AF-08              | 5/4/1999             | 12.7         | 2.5 - 12.5                        | S        | %-in. PVC              | 734249.3  | 979597.6          | 23.30                         | 23.10                           |  |  |
| AF-09              | 5/4/1999             | 12.2         | 2.0 - 12.0                        | S        | ¾-in. PVC              | 734211.3  | 979549.8          | 23.11                         | 22.93                           |  |  |
| AF-10              | 5/4/1999             | 12.7         | 2.5 - 12.5                        | S        | temporary              | 734145.0  | 979465.7          | 23.23                         | —                               |  |  |
| AF-11 <sup>a</sup> | 5/5/1999             | 11.2         | 1.0 - 11.0                        | S        | %-in. PVC              | 734167.5  | 979635,8          | 22.03                         | 21.89                           |  |  |
| AF-12R             | 2006*                | 13.5         | 3.5-13.5                          | S        | %-in. PVC              | -         | -                 |                               | 22.56                           |  |  |
| AF-13              | 5/7/1999             | 12.7         | 2.5 . 12.5                        | S        | ¼-in. PVC              | 734243.8  | 979567.5          | 23,01                         | 22.79                           |  |  |
| AF-14              | 5/7/1999             | 11.5         | 1.4 - 11.4                        | S        | ¾-in. PVC              | 734284.6  | 979617.1          | 23.33                         | 23.04                           |  |  |
| AF-15              | 5/7/1999             | 11.6         | 1.5 - 11.5                        | S        | ¾-in. PVC              | 734253.8  | 979641.2          | 23.30                         | 23.28                           |  |  |
| AF-16              | 5/7/1999             | 12.0         | 1.6 - 11.6                        | S        | 34-in. PVC             | 734223.1  | 979682.2          | 22.06                         | 22.17                           |  |  |
| AF-17              | 5/8/1999             | 12.2         | 2.0 - 12.0                        | S        | %-in. PVC              | 734023.6  | 979539.9          | 18.64                         | 18.93                           |  |  |
| AF-18 <sup>a</sup> | 5/8/1999             | 11.5         | 1.3 - 11.3                        | S        | %-in. PVC              | 734051.2  | 979518.0          | 19.06                         | 20.13                           |  |  |
| AF-19 <sup>a</sup> | 5/8/1999             | 11.5         | 1.4 - 11.4                        | S        | 34-in. PVC             | 734038.7  | 979490.1          | 19.52                         | 19.68                           |  |  |
| AF-20              | 5/8/1999             | 13.2         | 3.0 - 13.0                        | S        | 34-in. PVC             | 734086,2  | 979494.3          | 23,03                         | 22.84                           |  |  |
| AF-23              | 5/8/1999             | 13.2         | 3.0 - 13.0                        | S        | %-in. PVC              | 734097.6  | 979456.3          | 23.43                         | 23.25                           |  |  |
| AF-24              | 5/8/1999             | 12.2         | 2.0 - 12.0                        | S        | ¼-in. PVC              | 734199.1  | 979473.2          | 23,10                         | 22.85                           |  |  |
| AF-25 <sup>ª</sup> | 5/11/1999            | 10.5         | 0.1 - 10.1                        | S        | <u>%-in, PVC</u>       | 734020.3  | 979470.5          | 14.75                         | 15.03                           |  |  |
| AF-26 <sup>ª</sup> | 5/11/1999            | 12.2         | 2.0 - 12.0                        | S        | 34-in, PVC             | 733986.7  | 979544.0          | 16.90                         | 17.65                           |  |  |
| AF-27 <sup>a</sup> | 5/11/1999            | 11.5         | 1.0 - 11.0                        | S        | ¼-in. PVC              | 734005.7  | 979516.5          | 16.40                         | 16.50                           |  |  |
| AF-28°             | 5/11/1999            | 12.2         | 2.0 - 12.0                        | S        | ¾-in, PVC              | 734078.7  | 979600.9          | 16.80                         | 17.11                           |  |  |
| AF-29              | 5/11/1999            | 12.2         | 2.0 - 12.0                        | S        | 34-in. PVC             | 734007.4  | 979587.2          | 18.90                         | 19.06                           |  |  |
| AF-33 <sup>a</sup> | 9/25/1999            | 12.0         | 2.3 - 11.8                        | S        | %-în. PVC              | 734123.3  | 979659.9          | 17,60                         | 18.07                           |  |  |
| AF-34              | 9/25/1999            | 11.0         | 1.4 - 10.9                        | S        | 34-in. PVC             | 734007.3  | 979725.8          | 17.60                         | 17.85                           |  |  |
| AF-35              | 9/25/1999            | 11.0         | 1.2 - 10.7                        | S        | ¼-in. PVC              | 734025.2  | 979654.0          | 17.30                         | 17.63                           |  |  |
| AF-36ª             | 9/25/1999            | 11.0         | 1.4 - 10.9                        | S        | ¾-in. PVC              | 733954.7  | 979592.5          | 17.40                         | 17.52                           |  |  |
| AF-37ª             | 9/25/1999            | 15.0         | 4.4 - 14.3                        | S        | ¾-in. PVC              | 733952.5  | 979506.7          | 19.80                         | 20.06                           |  |  |
| AF-38"             | 9/25/1999            | 14.5         | 4.1 - 14.0                        | S        | ¾-in. PVC              | 733990.4  | 979405.8          | 20.00                         | 20.14                           |  |  |
| AF-39 <sup>a</sup> | 9/25/1999            | 15.0         | 4.4 - 14.3                        | S        | %-in. PVC              | 734050.5  | 979442,7          | 21.70                         | 22.12                           |  |  |
| AF-40              | 1/15/2000            | 33,5         | 28.5 - 33.0                       | D        | 2-in. PVC              | 734141.9  | 979553.1          | 23.05                         | 22.78                           |  |  |
| AF-41              | 1/15/2000            | 33.5         | 28.5 - 33.0                       | D        | 2-in, PVC              | 734087    | 979512.4          | . 22.70                       | 22.33                           |  |  |
| AF-42              | 1/15/2000            | 33.5         | 28.5 - 33.0                       | D        | 2-in. PVC              | 734000.8  | 979521.2          | 16.40                         | 19.03                           |  |  |
| AF-53              | 2/4/2001             | 31.0         | 20,0 - 30,0                       | D        | 2-in, PVC              | 734303.9  | 979627            | 23.31                         | 22.93                           |  |  |
| AF-54              | 2/4/2001             | 43.5         | 32.4 - 42.4                       | D        | 2-in. PVC              | 734233    | 979549.9          |                               | 22.43                           |  |  |
| AF-55              | 2/4/2001             | 34.5         | 24.0 - 34.0                       | D        | 2-in. PVC              | 734156.9  | 979457.5          | 23.14                         | 22.76                           |  |  |
| AF-56              | 2/4/2001             | 31.0         | 19.9 - 29.9                       | D        | 2-in. PVC              | 734329.8  | 979653.2          | 23.27                         | 22.99                           |  |  |
| AF-57              | 2/3/2001             | 65.0         | 57.8 - 62.8                       | D        | 2-in. PVC              | 733996.5  | 979367.3          | 19,90                         | 22.21                           |  |  |
| AF-58              | 2/5/2001             | 13.0         | 2.7 - 12.7                        | S        | 2-in. PVC              | 733926.8  | 979430.7          | 19.70                         | 22.32                           |  |  |
| AF-59              | 2/4/2001             | 14.9         | 2.3 - 12.3                        | s        | 2-in. PVC              | 734201.6  | 979649.7          | 22,69                         | 22.33                           |  |  |
| AF-60              | 2/5/2001             | 31.0         | 20.0 - 30.0                       | <u> </u> | 2-in. PVC              | 734225.2  | 979434.6          |                               | 23.77                           |  |  |
| AF-61              | 2/5/2001             | 31.0         | 20.0 - 30.0                       | D        | 2-in, PVC              | 734331.1  | 979603.5          |                               | 23.47                           |  |  |
| AF-62              | 2/5/2001             | 14.0         | 3.0 - 13.0                        | D D      | 2-in. PVC<br>2-in. PVC | 734234    | 979686.7 979386.5 |                               | 24.26                           |  |  |
| AF-68              | 10/18/2002           | 45.0         | <u>34.5 - 39.5</u><br>40.2 - 45.2 |          | 2-in. PVC              | 734234.3  | 979388.5          |                               | 23.83                           |  |  |
| AF-69<br>AF-70     | 10/17/2002           | 50.0<br>21.0 | 15.0 - 20.0                       |          | 2-in. PVC<br>2-in. PVC | 734357.7  | 979673.9          |                               | 23.03                           |  |  |
| AF-70<br>AF-71     | 10/17/2002           |              | 15.3 - 20.3                       |          | 2-in. PVC              | 734418.8  | 979801.5          |                               | 23.06                           |  |  |
| AF-71<br>AF-72     | 10/16/2002           |              | 2.5 - 12.5                        | s        | 2-in. PVC              | 734017.7  | 979773.2          |                               | 17.72                           |  |  |
| Purge Facility     |                      |              | L.0 " [4,0                        |          | 1 2 11.1 10            |           |                   |                               |                                 |  |  |
| AT-MW-1            | 5/11/2006            | 46           | 40.30-45.30                       | D        | 2-in. PVC              | 734082.46 | 978196.3          | —                             | 31.61                           |  |  |
| AT-MW-2            | 5/10/2006            | 12.5         | 2,30-12.30                        | l s      | 2-in. PVC              | 734072.89 | 978194.26         |                               | 31.86                           |  |  |
| AT-MW-3            | 5/10/2006            | 12.5         | 2.20-12.20                        | S        | 2-in. PVC              | 734120.33 | 978147.94         |                               | 32.09                           |  |  |
| AT-MW-4            | 5/10/2006            | 12.5         | 2,30-12.30                        | S        | 2-in, PVC              | 734064.29 | 978272.61         |                               | 32.79                           |  |  |
| AT-MW-5            | 5/11/2006            | 12.5         | 2,30-12.30                        | S        | 2-in. PVC              | 734063.42 | 978127.61         |                               | 33.03                           |  |  |

#### Table 4-1 Well Construction Summary HAA-17 Hunter Army Airfield - Savannah, Ga

| Well Number    | Date<br>Installed | Boring Depth<br>(ft BGS) | Screened Interval<br>(ft BGS) | Shallow/<br>Deep | Type of<br>Completion | Coordir            | ates      | Elevation                        |                                 |  |  |
|----------------|-------------------|--------------------------|-------------------------------|------------------|-----------------------|--------------------|-----------|----------------------------------|---------------------------------|--|--|
|                | Installed         | (11803)                  | (it 600)                      | Беер             | Completion            | Northing           | Easting   | Ground Surface (ft<br>above MSL) | Top of Casing<br>(ft above MSL) |  |  |
| Building 1290  | Investigation     | - 2007                   |                               |                  |                       |                    |           |                                  |                                 |  |  |
| MW-01D         | 5/2007*           | -                        | 19.95 - 29.95                 | D                | 1-in. PVC             | 735508.85          | 977102.38 | 36.6                             | 36,40                           |  |  |
| MW-01S         | 5/2007*           |                          | 5.72 - 15.72                  | S                | 1-in. PVC             | 735513.98          | 977100.64 | 36.7                             | 36.43                           |  |  |
| MW-02D         | 5/2007*           | -                        | 19.90 - 29.90                 | D                | 1-in. PVC             | 735420.23          | 977197.88 | 36.3                             | 36,05                           |  |  |
| MW-02S         | 5/2007*           |                          | 4.3 - 14.3                    | s                | 1-in. PVC             | 735423.99          | 977200.2  | 36.3                             | 36.05                           |  |  |
| MW-03D         | 5/2007*           | —                        | 19.59 - 29.58                 | D                | 1-in. PVC             | 735289.03          | 977078.47 | 36.5                             | b                               |  |  |
| MW-03S         | 5/2007*           |                          | 6.70 - 11.70                  | s                | 1-in. PVC             | 735288.83          | 977069.78 | 36.6                             | b                               |  |  |
| MW-04D         | 5/2007*           | -                        | 19.91 - 29.91                 | D                | 1-in. PVC             | 735425.92          | 977010.12 | 36.5                             | 36.25                           |  |  |
| MW-04S         | 5/2007*           |                          | 5.66 - 15.66                  | S                | 1-in. PVC             | 735420.53          | 977010.17 | 36.5                             | 36.23                           |  |  |
| MW-05D         | 5/2007*           |                          | 20.0 - 30.0                   | D                | 1-in. PVC             | 735980.3           | 977154.14 | 36.4                             | 36.16                           |  |  |
| MW-05S         | 5/2007*           |                          | 5.80 - 15.80                  | S                | 1-in. PVC             | 735978.23          | 977150.92 | 36.4                             | 36.14                           |  |  |
| MW-06S         | 5/2007*           |                          | 4,0 - 9,0                     | S                | 1-in, PVC             | 736237.28          | 977477.86 | 36,3                             | 36.03                           |  |  |
| MW-07D         | 5/2007*           | -                        | 24.6 - 34.6                   | Ď                | 1-in. PVC             | 734742.41          | 975723.2  | 37.2                             | 36.93                           |  |  |
| MW-07S         | 5/2007*           |                          | 7.89 - 17.89                  | S                | 1-in. PVC             | 734738.23          | 975725.28 | 37.3                             | 36.92                           |  |  |
| MW-08D         | 5/2007*           | - 1                      | 14.50 - 24.50                 | D                | 1-in. PVC             | 735083.08          | 977800.64 | 37.0                             | 36.72                           |  |  |
| MW-08S         | 5/2007*           |                          | 5.40 - 15.40                  | S                | 1-in, PVC             | 735078.48          | 977799.65 | 36,9                             | 36.53                           |  |  |
| MW-09D         | 5/2007*           |                          | 20,39 - 30.39                 | Ď                | 1-in. PVC             | 734986.65          | 978528.67 | 37.7                             | 37.35                           |  |  |
| MW-09S         | 5/2007*           |                          | 5.55 - 15.55                  | S                | 1-in, PVC             | 734989.07          | 978523.22 | 37,8                             | 37.39                           |  |  |
| MW-12D         | 5/2007*           | -                        | 24.3 - 34.3                   | D                | 1-in. PVC             | 735583.27          | 976441.49 | 37.5                             | 37.27                           |  |  |
| MW-12S         | 5/2007*           |                          | 7.6 - 17.6                    | S                | 1-in. PVC             | 735576.76          | 976442.09 | 37.5                             | 37.29                           |  |  |
| MW-13D         | 5/2007*           |                          | 20,01 - 30.01                 | D                | 1-in. PVC             | 734833.43          | 977242.99 | 37.1                             | 36.81                           |  |  |
| MW-13S         | 5/2007*           |                          | 5,59 - 15,59                  | S                | 1-in. PVC             | 734827.57          | 977244.61 | 36.9                             | 36.63                           |  |  |
| UST 23 & 24 In | vestigation -     | 1996                     |                               |                  |                       |                    |           |                                  |                                 |  |  |
| MW-15          | MW-15 8/1996*     |                          | 2.0 - 12.0                    | S                | -                     | 734550.89 978703.9 |           | 31.4                             | 31.30                           |  |  |
| MW-16          | 8/1996*           | -                        | 2.0 - 12.0                    | S                |                       | 734429.82          | 978718.65 | 30.4                             | 30,33                           |  |  |

Notes:

(

Ć

Elevations for AF wells based on NGVD 88

Elevations for AT wells based on NGVD 1929

Northing/Easting for AF wells based on NAD 88 BGS Below ground surface MSL = mean sea level

- = no data/unknown

a = The top of casing was resurveyed in February 2001
 b = Unable to open well cap; therefore, elevation reported to rim of protective cover for well (i.e., well protective casing).
 c = Top of casing may have changed during 2006 excavation activities
 \* = The exact well installation date could not be found in historical documents

i

|                                     | Location ID  | AF-01          | AF-01          | AF-02          | AF-02          | AF-03          | AF-03          | AF-04                                   | AF-04              | AF-05          | AF-05 DUP                   | AF-05                   | AF-07                                 | AF-07          | A (* 00                 | AT 00                   | 1 AF 00                               | 45.00                   |
|-------------------------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------------------------|--------------------|----------------|-----------------------------|-------------------------|---------------------------------------|----------------|-------------------------|-------------------------|---------------------------------------|-------------------------|
|                                     | Sample ID    | AF0122(092699) | AF0142(092800) | AF0222(092699) | AF0242(092800) | AF0322(092699) | AF0342(092800) | AF0422(092699)                          | AF0442(092800)     | AF0522(092699) | AF-05 DOP<br>AF0524(092699) | AF-05<br>AF0542(092800) | AF-07<br>AF0722(092699)               | AF0742(092800) | AF-08<br>AF0822(092699) | AF-08<br>AF0842(092800) | AF-09<br>AF0922(092699)               | AF-09<br>AF0942(092800) |
|                                     | Sample Date  | 9/26/1999      | 9/28/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999                               | 9/28/2000          | 9/26/1999      | 9/26/1999                   | 9/28/2000               | 9/26/1999                             | 9/28/2000      | 9/26/1999               | 9/28/2000               | 9/26/1999                             | 9/28/2000               |
|                                     | Sample Type  | MW                                      | MW                 | MW             | MW                          | MW                      | MW                                    | MW             | MW                      | MW                      | MW                                    | MW                      |
|                                     | Start Depth  | 2,5            | 2,5            | 2              | 2              | 2              | 2              | 2                                       | 2                  | 2              | 2                           | 2                       | 2.5                                   | 2.5            | 2.5                     | 2.5                     | 2                                     | 2                       |
|                                     | End Depth    | 12.5           | 12.5           | 12             | 12             | 12             | 12             | 12                                      | 12                 | 12             | 12                          | 12                      | 12.5                                  | 12.5           | 12.5                    | 12.5                    | 12                                    | 12                      |
| Chemical Name                       | Unit         |                |                | i              |                |                |                |                                         |                    |                |                             |                         |                                       |                |                         | 11.0                    | · · · · · · · · · · · · · · · · · · · | ·                       |
| 1,1,1-Trichloroethane               | µg/L         | <2             | <1             | < 2            | <1             | <2             | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| 1,1,2,2-Tetrachloroethane           | μg/L,        | <2             | <1             | < 2            | <1             | < 2            | <1             | <2                                      | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| 1,1,2-Trichloroethane               | µg/L         | <2             | <1             | < 2            | <1             | <2             | <1             | <2                                      | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| 1,1-Dichloroethane                  | µg/L         | <2             | <1             | < 2            | <1             | <2             | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| 1,1-Dichloroethene                  | µg/L         | <2             | <1             | <2             | <1             | <2             | <1             | <2                                      | <1                 | <2             | <2                          | < 1                     | < 10                                  | < 100          | < 2                     | <1                      | < 2                                   | <1                      |
| 1,2-Dibromoethane                   | µg/L         |                |                |                |                |                |                |                                         |                    |                |                             |                         |                                       |                |                         | 1                       |                                       |                         |
| 1,2-Dichloroethane                  | µg/L         | <2             | <1             | <2             | <1             | < 2            | <1             | <2                                      | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | < 2                                   | <1                      |
| 1,2-Dichloroethene                  | μg/L         | < 2            | < 2            | <2             | < 2            | < 2            | < 2            | <2                                      | < 2                | < 2            | < 2                         | <2                      | < 10                                  | < 200          | < 2                     | <2                      | 3.9                                   | 3.4                     |
| 1,2-Dichloropropane                 | µg/L         | < 2            | < 1            | < 2            | < 1            | < 2            | <1             | <2                                      | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | < 2                                   | < 1                     |
| 2-Butanone                          | µg/L         | < 5 R          | < 5            | < 5 R          | < 5            | < 5            | < 5            | < 5                                     | < 5                | < 5            | < 5                         | < 5                     | < 25                                  | < 500          | < 5                     | < 5                     | < 5 R                                 | < 5                     |
| 2-Hexanone                          | µg/L         | < 5            | < 5            | < 5 J          | < 5            | < 5            | < 5            | < 5                                     | < 5                | < 5            | < 5                         | < 5                     | 40.2                                  | < 500          | < 5                     | < 5                     | < 5                                   | < 5                     |
| 4-Methyl-2-pentanone                | μg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                     | < 5                | < 5            | < 5                         | < 5                     | < 25                                  | < 500          | < 5                     | < 5                     | < 5                                   | < 5                     |
| Acetone                             | µg/L         | < 5            | 6.7            | 11.1 J         | 8              | 5 JBU          | 18             | 8.9 BU                                  | 9.1                | 10.6 BU        | 10.8 BU                     | 11.7                    | 25 JBU                                | < 500          | 5 JBU                   | 6.8                     | < 5 R                                 | 7.4                     |
| Benzene                             | µg/L         | <2             | <1             | 8.4            | 0.82 J         | 2.2            | <1             | <2                                      | <1                 | 11.8           | 14.1                        | 4.7                     | 9130                                  | 9920           | < 2                     | 0.2 J                   | 11.8                                  | 7                       |
| Benzene, 1-methylethyl              | µg/L         |                |                |                |                |                |                |                                         |                    |                |                             |                         |                                       |                |                         |                         |                                       |                         |
| Bromochloromethane                  | µg/L         |                |                |                |                |                |                |                                         |                    |                |                             |                         |                                       |                |                         |                         |                                       |                         |
| Bromodichloromethane                | µg/L         | < 5            | <1             | < 5            | <1             | < 5            | <1             | < 5                                     | < 1                | < 5            | < 5                         | <1                      | < 25                                  | < 100          | < 5                     | <1                      | < 5                                   | < 1                     |
| Bromoform                           | µg/L         | <2             | <1             | < 2            | <1             | < 2            | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| Bromomethane                        | μg/L         | <2             | <1             | <2             | < 1            | < 2            | <1             | < 2                                     | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | <2                      | <1                      | <2                                    | <1                      |
| Carbon disulfide                    | µg/L         | < 5            | < 5            | 5 JBU          | < 5            | <5J            | < 5            | < 5 J                                   | < 5                | < 5            | < 5 J                       | < 5                     | < 25 J                                | < 500          | <u>1.1 J</u>            | < 5                     | < 5                                   | < 5                     |
| Carbon tetrachloride                | µg/L         | <2             | <1             | <2             | < 1            | < 2            | <1             | < 2                                     | <1                 | <2             | <2                          | < 1                     | < 10                                  | < 100          | < 2                     | < 1                     | < 2                                   | <1                      |
| Dichlorodifluoromethane             | µg/L         |                |                |                |                |                |                |                                         |                    |                |                             |                         |                                       |                |                         |                         |                                       |                         |
| Chlorobenzene                       | µg/L_        | <2             | <1             | <2             | <1             | < 2            | <1             | <2                                      | <1                 | <2             | < 2                         | < 1                     | < 10                                  | < 100          | < 2                     | <1                      | < 2                                   | <1                      |
| Chloroethane                        | µg/L         | <2             | <1             | < 2            | <1             | < 2            | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | < 2                     | <1                      | < 2                                   | <1                      |
| Chloroform                          | µg/L         | <2             | <1             | <2             | <1             | < 2            | <1             | <2                                      | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | < 1                     | <2                                    | <1                      |
| Chloromethane                       | µg/L_        | < 2            | <1             | < 2            | <1             | < 2            | <1             | < 2                                     | <1                 | < 2            | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | < 2                                   | <1                      |
| cis-1,2-Dichloroethene              | µg/L         |                |                |                | · · · · ·      |                |                |                                         |                    |                |                             |                         |                                       |                |                         |                         |                                       | <u> </u>                |
| cis-1,3-Dichloropropene             | µg/L         | <2             | <1             | < 2            | <1             | < 2            | <1             | < 2                                     | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| Dibromochloromethane                | µg/l_        | <2             | <1             | < 2            | < 1            | < 2            | <1             | < 2                                     | <1                 | <2             | < 2                         | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    | <1                      |
| Dibromomethane                      | µg/L         |                |                |                | 1 JBU          | 1.6 J          | <br>  (DI)     |                                         | 1                  | 0.5            | 9.0                         | A.7                     | 402                                   | 645            |                         | 4 1011                  | 1                                     | 40.7                    |
| Ethylbenzene<br>Methylene chloride  | µg/L,        | < 2<br>1.2 J   | <1             | < 2<br>0.54 J  | <5             | 1.6 J<br>< 2   | 1 JBU<br>< 5   | <2                                      | <u>&lt;1</u><br><5 | 9.5            | 8.6<br><2                   | 4.7                     | 493<br>13.1 BU                        | 645<br>< 500   | <2                      | 1 JBU<br>< 5            | 27.7<br>3.9 BU                        | 16.7                    |
| Naphthalene                         | μg/L         | 1.2 J          |                | V.84 J         | ~ 5            | ~2             | <u> </u>       | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <u> </u>           | ~~             | ×2                          | 5                       | 1 13.1 DU                             | < 500          | ~ 2                     | <u> </u>                | 3.9 BU                                | < 5                     |
|                                     | µg/L         |                |                |                |                | ·              |                | -                                       |                    |                |                             |                         |                                       |                |                         |                         |                                       |                         |
| n-Butyibenzene                      | ug/L         |                |                |                |                |                |                | <u> </u>                                |                    |                |                             |                         |                                       |                |                         |                         |                                       |                         |
| n-Propylbenzene<br>sec-Butylbenzene | μg/L<br>μg/L | ł              |                |                |                |                | l              |                                         |                    |                |                             |                         | · · · · · · · · · · · · · · · · · · · | · · · ·        | <u> </u>                |                         |                                       | ╂─────┤                 |
|                                     |              | < 2            | <1             | < 2            | <1             | < 2            | <1             | < 2                                     | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | < 2                     | <1                      | <2                                    |                         |
| Styrene<br>Tetrachloroethene        | ug/L<br>ug/L | <2             | <1             | <2             | <1             | < 2            | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | <2                      | <1                      | <2                                    | <1                      |
| Toluene                             | μg/L         | <2             | <1             | 0.65 J         | <1             | <2             | <              | <2                                      | <1                 | 3              | 3,2                         | 0.82 J                  | 24.8                                  | 39.2           | <2                      | <1                      | <2                                    | 0.36 J                  |
| Trichloroethene                     | µg/L         | <2             | <1             | <2             | <1             | <2             | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | <2                      | <1                      | <2                                    | <u> </u>                |
| Vinvl chloride                      | μg/L         | <2             | <1             | <2             | <1             | <2             | <1             | <2                                      | <1                 | <2             | <2                          | <1                      | < 10                                  | < 100          | <2                      | <1                      | <2                                    | <1                      |
| Xvienes (total)                     | μg/L         | < 6            | <3             | <6             | < 3            | 0.96 J         | 3 JB           | <6                                      | < 3                | 46.5           | 43.1                        | 20.9                    | 246                                   | 300 JBU        | <                       | <3                      | 1.4 J                                 | <3                      |
| Tryiones (total)                    | hâu hâu      | L `V           | <u> </u>       |                | ~ 3            | 0.000          |                | 1                                       | <u> </u>           | 1 4010         | 40.1                        | 20.9                    | 240                                   | 1 300 300      | 1 ~0                    | 1 3                     | 1.40                                  | <u> </u>                |

 Xytenes (total)
 µg/L

 Notes:
 MW = monitor well groundwater sample

 VP = vertical profile groundwater sample
 Blank cell = no data/constituent not analyzed for

 Bolded values indicate detections
 Indicate detections

Boliced values indicate detections J = Estimated value R = Result rejected during data validation<math>B = Analyte detected in associated blank U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

, ŝ

# Table 4-2 Summary of Groundwater Analyses, UST 25 and 26 CAP- Part B Investigations HAA-17 Hunter Army Airfield-Savannah, GA

| ··· · · ·                                                      | Location ID    | AF-11                                 | AF-11                   | AF-12          | AF-12          | AF-13          | AF-13          | AF-14                   | AF-14          | AF-15                   | AF-15 DUP                   | AF-15                   | AF-16                   | AF-16                   | AF-17                   | AF-18                   | AF-18                   | Ar: 40                  |
|----------------------------------------------------------------|----------------|---------------------------------------|-------------------------|----------------|----------------|----------------|----------------|-------------------------|----------------|-------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                                | Sample ID      | AF1122(092699)                        | AF-11<br>AF1142(092800) | AF1222(092699) | AF1242(092800) | AF1322(092699) | AF1342(092800) | AF-14<br>AF1422(092699) | AF1442(092800) | AF-15<br>AF1524(092699) | AF-15 DOP<br>AF1522(092699) | AF-15<br>AF1542(092800) | AF-10<br>AF1622(092699) | AF-10<br>AF1642(092800) | AF-17<br>AF1722(092699) | AF-18<br>AF1822(092699) | AF-18<br>AF1842(092800) | AF-19<br>AF1922(092699) |
|                                                                | Sample Date    | 9/26/1999                             | 9/28/2000               | 9/26/1999      | 9/28/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999               | 9/28/2000      | 9/26/1999               | 9/26/1999                   | 9/28/2000               | 9/26/1999               | 9/28/2000               | 9/26/1999               | 9/26/1999               | 9/28/2000               | 9/26/1999               |
|                                                                | Sample Type    | MW                                    | MW                      | MW             | MW             | MW             | MW             | MW                      | MW             | MW                      | MW                          | MW                      | MW                      | MW                      | MW                      | MW                      | MW                      | MW                      |
|                                                                | Start Depth    | 1                                     | 1                       | 2.5            | 2,5            | 2,5            | 2,5            | 1.4                     | 1.4            | 1.5                     | 1.5                         | 1.5                     | 1.5                     | 1.5                     | 2.5                     | 1.5                     | 1.5                     | 1,5                     |
|                                                                | End Depth      | 11                                    | 11                      | 12.5           | 12,5           | 12.5           | 12,5           | 11.4                    | 11.4           | 11.5                    | 11.5                        | 11.5                    | 11.5                    | 11.5                    | 12.5                    | 11.5                    | 11.5                    | 11.5                    |
| Chemical Name                                                  | Unit           |                                       |                         |                |                |                | [              |                         |                |                         |                             | - ·                     |                         |                         |                         | 1                       |                         |                         |
| 1,1,1-Trichloroethane                                          | µg/L           | <2                                    | <1                      | < 4            | <1             | <2             | <1             | < 2                     | <1             | <2                      | <2                          | <1                      | <2                      | < 1                     | < 2                     | <2                      | <1                      | <2                      |
| 1,1,2,2-Tetrachloroethane                                      | µg/L           | < 2                                   | <1                      | < 4            | <1             | < 2            | < 1            | < 2                     | <1             | <2                      | <2                          | <1                      | <2                      | < 1                     | < 2                     | <2                      | <1                      | <2                      |
| 1,1,2-Trichloroethane                                          | µg/L           | < 2                                   | <1                      | < 4            | <1             | < 2            | <1             | < 2                     | <1             | <2                      | < 2                         | <1                      | < 2                     | <1                      | < 2                     | <2                      | <1                      | < 2                     |
| 1,1-Dichloroethane                                             | µg/L           | < 2                                   | <1                      | <4             | <1             | < 2            | <1             | < 2                     | <1             | < 2                     | < 2                         | <1                      | < 2                     | < 1                     | < 2                     | <2                      | <1                      | <2                      |
| 1,1-Dichtoroethene                                             | μg/L           | < 2                                   | <1                      | <4             | <1             | < 2            | <1             | <2                      | <sup></sup> <1 | < 2                     | < 2                         | <1                      | < 2                     | <1                      | < 2                     | < 2                     | <1                      | < 2                     |
| 1,2-Dibromoethane                                              | µg/L           |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| 1,2-Dichloroethane                                             | µg/L           | < 2                                   | <1                      | < 4            | <1             | < 2            | <1             | < 2                     | <1             | < 2                     | < 2                         | <1                      | < 2                     | <1                      | < 2                     | < 2                     | <1                      | < 2                     |
| 1,2-Dichloroethene                                             | µg/L           | < 2                                   | < 2                     | <4             | < 2            | 1.5 J          | 1.2 J          | <2                      | < 2            | < 2                     | <2                          | < 2                     | <2                      | < 2                     | 19.9                    | 13.2                    | 5.6                     | 8.3                     |
| 1,2-Dichloropropane                                            | μg/L           | < 2                                   | <1                      | < 4            | <1             | <2             | <1             | < 2                     | <1             | < 2                     | < 2                         | <1                      | < 2                     | <1                      | < 2                     | < 2                     | <1                      | <2                      |
| 2-Butanone                                                     | µg/L           | < 5 R                                 | < 5                     | < 10 R         | < 5            | < 5            | < 5            | < 5                     | < 5            | < 5 R                   | < 5 R                       | < 5                     | < 5                     | < 5                     | < 5                     | < 5 R                   | < 5                     | < 5 R                   |
| 2-Hexanone                                                     | µg/L           | < 5                                   | < 5                     | < 10 J         | < 5            | < 5            | < 5            | < 5                     | < 5            | < 5                     | < 5                         | < 5                     | < 5                     | < 5                     | < 5                     | < 5                     | < 5                     | < 5                     |
| 4-Methyl-2-pentanone                                           | μg/L           | < 5                                   | < 5                     | < 10           | < 5            | < 5            | < 5            | < 5                     | < 5            | < 5                     | < 5                         | < 5                     | < 5                     | < 5                     | < 5                     | < 5                     | < 5                     | < 5                     |
| Acetone                                                        | µg/L           | < 5                                   | < 5                     | < 10 R         | 8.2            | 5 JBU          | 7.2            | 7.8 BU                  | 8.3            | < 5 R                   | < 5 R                       | 8.2                     | 5.2 BU                  | 6.5                     | 5 JBU                   | < 5 R                   | 11.2                    | < 5 R                   |
| Benzene                                                        | µg/L           | <2                                    | <1                      | 23.4           | 33.2           | < 2            | <1             | < 2                     | <1             | < 2                     | 1 J                         | 0.19 J                  | < 2                     | <1                      | 14                      | 10.3                    | 5.8                     | 3,5                     |
| Benzene, 1-methylethyl                                         | µg/L           | · · · · · · · · · · · · · · · · · · · |                         |                |                |                |                |                         |                |                         | -                           |                         |                         |                         |                         |                         |                         |                         |
| Bromochloromethane                                             | µg/L           |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| Bromodichloromethane                                           | µg/L           | < 5                                   | <1                      | < 10           | <1             | < 5            | <1             | < 5                     | <1             | < 5                     | < 5                         | <1                      | < 5                     | <1                      | < 5                     | < 5                     | <1                      | < 5                     |
| Bromoform                                                      | hð\r           | <2                                    | <1                      | < 4            | <1             | <2             | <1             | <2                      | <1             | < 2                     | < 2                         | <1                      | < 2                     | <1                      | < 2                     | <2                      | <1                      | <2                      |
| Bromomethane                                                   | µg/L           | <2                                    | <1                      | < 4            | <1             | <2             | <1             | <2                      | <1             | <2                      | < 2                         | <1                      | < 2                     | <1                      | < 2                     | <2                      | <1                      | < 2                     |
| Carbon disulfide                                               | µg/L           | < 5                                   | < 5                     | < 10           | < 5            | < 5            | < 5            | 2 J                     | < 5            | < 5                     | < 5                         | < 5                     | < 5 J                   | < 5                     | < 5 J                   | < 5                     | < 5                     | < 5                     |
| Carbon tetrachloride                                           | μg/L           | < 2                                   | <1                      | < 4            | <1             | <2             | <1             | < 2                     | <1             | < 2                     | < 2                         | <1                      | < 2                     | < 1                     | < 2                     | < 2                     | <1                      | <2                      |
| Dichlorodifluoromethane                                        | μg/L           | < 2                                   | <1                      | < 4            | <1             | < 2            | <1             | < 2                     | <1             | <2                      | <2                          | <1                      | < 2                     | <1                      | < 2                     | <2                      | <1                      | <2                      |
| Chlorobenzene<br>Chloroethane                                  | μg/L<br>μg/L   | <2                                    | <1                      | <4             | <1             | <2             | <1             | <2                      | <1             | <2                      | <2                          | <1                      | <2                      | <1                      | <2                      | <2                      | <1                      | <2                      |
| Chloroform                                                     | µg/L           | <2                                    | <1                      | < 4            | <1             | <2             | <1             | <2                      | <1             | <2                      | <2                          | <1                      | <2                      | <1                      | <2                      | <2                      | <1                      | <2                      |
| Chloromethane                                                  | μg/L.          | <2                                    | <1                      | <4             | <1             | <2             | <1             | <2                      | <1             | <2                      | <2                          | <1                      | <2                      | <1                      | <2                      | <2                      | <1                      | <2                      |
| cis-1.2-Dichloroethene                                         | μ <u>g/L</u>   |                                       |                         |                | 1              | 12             |                | ~~                      |                |                         |                             |                         | -2                      |                         | ~ 2                     |                         | ~ 1                     | ~4                      |
| cis-1,3-Dichloropropene                                        | μg/L           | < 2                                   | < 1                     | < 4            | <1             | < 2            | <1             | < 2                     | <1             | < 2                     | <2                          | <1                      | <2                      | <1                      | < 2                     | < 2                     | <1                      | <2                      |
| Dibromochloromethane                                           | μg/L           | <2                                    | <1                      | < 4            | <1             | < 2            | <1             | <2                      | <1             | < 2                     | <2                          | <1                      | < 2                     | <1                      | <2                      | <2                      | <1                      | <2                      |
| Dibromomethane                                                 | μg/L           |                                       |                         |                |                |                |                |                         |                |                         |                             |                         | 2                       | ·····                   |                         |                         |                         |                         |
| Ethylbenzene                                                   | µg/L           | < 2                                   | 1 JBU                   | 54.8           | 94.1           | <2             | 0.17 J         | < 2                     | 0.064 J        | <2                      | < 2                         | <1                      | <2                      | <1                      | <2                      | <2                      | 0.11 J                  | <2                      |
| Methylene chloride                                             | µg/L           | < 2                                   | < 5                     | 2 J            | < 5            | <2             | < 5            | <2                      | < 5            | 2 JBU                   | 2.9 JBU                     | < 5                     | <2                      | < 5                     | < 2                     | 4.2 BU                  | < 5                     | 2.3 BU                  |
| Naphthalene                                                    | µg/L           |                                       |                         |                |                |                |                | 1                       | 1              |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| n-Butylbenzene                                                 | μg/L           | 1                                     |                         |                | 1              |                |                | 1                       |                |                         |                             |                         |                         |                         | 1                       |                         | 1                       |                         |
| n-Propylbenzene                                                | μg/L           | ļ                                     |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         | 1                       |                         |
| sec-Butylbenzene                                               | μg/L           |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| Styrene                                                        | µg/L           | <2                                    | < 1                     | < 4            | < 1            | < 2            | < 1            | < 2                     | <1             | < 2                     | < 2                         | < 1                     | < 2                     | <1                      | < 2                     | <2                      | <1                      | < 2                     |
| Tetrachloroethene                                              | μg/L           | < 2                                   | < 1                     | < 4            | <1             | < 2            | < 1            | < 2                     | < 1            | < 2                     | < 2                         | <1                      | < 2                     | <1                      | < 2                     | <2                      | <1                      | <2                      |
| Toluene                                                        | μg/L           | <2                                    | <1                      | < 4            | 0.29 J         | <2             | <1             | <2                      | <1             | < 2                     | <2                          | <1                      | <2                      | <1                      | < 2                     | <2                      | 0.7 J                   | < 2                     |
| Trichloroethene                                                | µg/L           | <2                                    | <1                      | < 4            | <1             | < 2            | <1             | < 2                     | <1             | < 2                     | <2                          | <1                      | < 2                     | <1                      | 112                     | 1.6 J                   | 1.4                     | 2.6                     |
| Vinyl chloride                                                 | µg/L           | < 2                                   | < 1                     | < 4            | <1             | < 2            | < 1            | < 2                     | <1             | < 2                     | < 2                         | <1                      | < 2                     | < 1                     | < 2                     | < 2                     | <1                      | < 2                     |
| Xylenes (total)                                                | µg/L           | < 6                                   | < 3                     | 8.5 J          | 3.2            | < 6            | 1.2 J          | < 6                     | < 3            | < 6                     | < 6                         | < 3                     | < 6                     | < 3                     | < 6                     | < 6                     | < 3                     | <6                      |
| Notes:                                                         |                |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| MW = monitor well groundwa                                     |                |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| VP = vertical profile groundw                                  |                |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| Blank cell = no data/constitue<br>Bolded values indicate detec | •              |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| J = Estimated values                                           | 4015           |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| R = Result rejected during da                                  | ata validation |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |
| B = Analyte detected in asso                                   |                |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         | · .                     |                         |                         |                         |                         |
| U = Non-detect based on dat                                    |                |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         | :                       |                         |                         |                         |                         |
|                                                                |                |                                       |                         |                |                |                |                |                         |                |                         |                             |                         |                         |                         |                         |                         |                         |                         |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

2 of 22

| · · · · · · · · · · · · · · · · · · ·                            | Location ID          | AF-19               | AF-20                  | AF-20 DUP                | AF-20          | AF-23            | AF-23          | AF-24          | AF-24          | AF-25          | AF-25          | AF-26          | AF-26          | AF-27          | AF-27          | AF-28                  | AF-28          | AF-29          |
|------------------------------------------------------------------|----------------------|---------------------|------------------------|--------------------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------|----------------|----------------|
|                                                                  | Sample ID            | AF1942(092800)      | AF2022(092699)         | AF2024(092699)           | AF2042(092700) | AF2322(092699)   | AF2342(092700) | AF2422(092699) | AF2442(092800) | AF2522(092699) | AF2542(092800) | AF2622(092699) | AF2642(092800) | AF2722(092699) | AF2742(092800) | AF2822(092699)         | AF2842(092800) | AF2922(092699) |
|                                                                  | Sample Date          | 9/28/2000           | 9/26/1999              | 9/26/1999                | 9/27/2000      | 9/26/1999        | 9/27/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999      | 9/28/2000      | 9/26/1999              | 9/28/2000      | 9/26/1999      |
|                                                                  | Sample Type          | MW                  | MW                     | MW                       | MW             | MW               | MW             | MW             | MW             | MW             | MŴ             | MW             | MW             | MW             | MW             | MW                     | MW             | MW             |
|                                                                  | Start Depth          | 1.5                 | 3                      | 3                        | 3              | 3                | 3              | 2              | 2              | 0.5            | 0.5            | 2              | 2              | 1              | 1              | 2                      | 2              | 2              |
| Chemical Name                                                    | End Depth<br>Unit    | 11.5                | 13                     | 13                       | 13             | 13               | 13             | 12             | 12             | 10.5           | 10,5           | 12             | 12             | 11             | 11             | 12                     | 12             | 12             |
| 1.1.1-Trichloroethane                                            | Uq/L                 | <1                  | < 2                    | < 2                      | <1             | < 2              | <1             | < 2            | <1             | < 2            |                |                |                |                |                | ·                      |                |                |
| 1,1,2,2-Tetrachloroethane                                        | µg/L                 | <1                  | <2                     | <2                       | <1             | <2               | <1             | <2             | <1             | <2<br><2       | <1<br><1       | < 4<br>< 4     | <1             | < 20           | <1             | <2                     | <1             | < 2            |
| 1,1,2-Trichloroethane                                            | μg/L                 | <1                  | <2                     | <2                       | <1             | <2               | <1             | <2             | <1             | <2             | <1             | <4             | <1             | < 20           | <1             | <2                     | < 1            | <2             |
| 1.1-Dichloroethane                                               | μg/L                 | <1                  | <2                     | <2                       | <1             | <2               | <1             | <2             | <1             | <2             | <1             | <4             | <1             | < 20<br>< 20   | <1<br><1       | <2                     | <1             | <2             |
| 1.1-Dichloroethene                                               | µg/L                 | <1                  | <2                     | <2                       | <1             | < 2              | <1             | <2             | <1             | 0.66 J         | <1             | <4             | <1             | < 20           | <1             | <u>&lt;2</u><br>0.67 J | <1             | <2             |
| 1.2-Dibromoethane                                                | μg/L                 |                     |                        |                          |                | <u>`</u> f       |                | - 4            |                | 0.00 0         | <u> </u>       | 14             |                | ~ 20           |                | 0.07 J                 |                | <2             |
| 1,2-Dichloroethane                                               | µg/L                 | <1                  | < 2                    | <2                       | < 1            | <2               | <1             | < 2            | <1             | <2             | <1             | < 4            | <1             | < 20           | <1             | <2                     | <1             | < 2            |
| 1.2-Dichloroethene                                               | µg/L                 | 0.36 J              | 1.7 J                  | 2.2                      | 2.3            | 5.3              | 8.5            | <2             | <2             | 40.2           | 34             | 27.9           | 21.8           | 49.3           | 30.7           | 41.9                   | 42,6           | 9.5            |
| 1,2-Dichloropropane                                              | μg/L                 | <1                  | <2                     | < 2                      | <1             | <2               | <1             | < 2            | <1             | < 2            | <1             | < 4            | <1             | < 20           | <1             | <2                     | <1             | <2             |
| 2-Butanone                                                       | μg/L                 | < 5                 | <5R                    | < 5                      | < 5            | 5,9 J            | < 5            | < 5            | < 5            | < 5            | < 5            | < 10 R         | < 5            | < 50 R         | < 5            | <5                     | < 5            | <5R            |
| 2-Hexanone                                                       | μg/L                 | < 5                 | < 5                    | < 5                      | < 5            | < 5              | < 5            | < 5            | < 5            | < 5            | < 5            | < 10           | < 5            | < 50           | < 5            | <5                     | < 5            | < 5            |
| 4-Methyl-2-pentanone                                             | µg/L                 | < 5                 | < 5                    | < 5                      | < 5            | < 5              | < 5            | < 5            | < 5            | < 5            | < 5            | < 10           | < 5            | < 50           | < 5            | <5                     | <5             | < 5            |
| Acetone                                                          | μg/L                 | 7.4                 | < 5 R                  | 7.4 BU                   | 7.7            | < 5              | 6.6            | 5 JBU          | < 5            | 5 JBU          | 5 JU           | < 10           | < 5            | < 50           | < 5            | 5 JBU                  | < 5            | < 5            |
| Benzene                                                          | µg/L                 | 0.24 J              | 2.1                    | 1.6 J                    | 0.55 J         | 1.1 J            | 1.6            | <2             | <1             | 4.8            | 1.6            | 16.6           | 11.2           | 5.1 J          | 1.9            | 3.9                    | 8,6            | 53.6           |
| Benzene, 1-methylethyl                                           | µg/L                 |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| Bromochloromethane                                               | μg/L                 |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| Bromodichloromethane                                             | µg/L                 | <1                  | < 5                    | < 5                      | <1             | < 5              | <1             | < 5            | <1             | < 5            | <1             | < 10           | <1             | < 50           | <1             | < 5                    | <1             | < 5            |
| Bromoform                                                        | μg/L                 | <1                  | < 2                    | < 2                      | < 1            | < 2              | <1             | < 2            | <1             | < 2            | < 1            | <4             | <1             | < 20           | < 1            | <2                     | < 1            | < 2            |
| Bromomethane                                                     | µg/L                 | <1                  | < 2                    | <2                       | <1             | < 2              | <1             | <2             | <1             | < 2            | < 1            | < 4            | <1             | < 20           | <1             | <2                     | <1             | < 2            |
| Carbon disulfide                                                 | µg/L                 | < 5                 | < 5                    | <5J                      | < 5            | < 5              | < 5            | < 5 J          | < 5            | < 5            | < 5            | < 10           | < 5            | < 50           | < 5            | < 5 J                  | < 5            | < 5            |
| Carbon tetrachloride                                             | µg/L,                | <1                  | < 2                    | < 2                      | <1             | < 2              | <1             | <2             | <1             | < 2            | <1             | < 4            | < 1            | < 20           | <1             | <2                     | < 1            | < 2            |
| Dichlorodifluoromethane                                          | µg/L                 |                     |                        | 1                        |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| Chlorobenzene                                                    | µg/L                 | <1<br><1            | <2                     | <2                       | <1<br><1       | <2               | <1             | <2             | <1             | < 2            | < 1            | < 4            | <1             | < 20           | <1             | < 2                    | <1             | <2             |
| Chloroethane<br>Chloroform                                       | µg/L                 | <1                  | <2                     | <2<br><2                 | <1             | < <u>2</u><br><2 | <1             | <2             | <1             | <2             | <1             | <4             | <1             | < 20           | <1             | <2                     | < 1            | < 2            |
| Chloromethane                                                    | μg/L                 | <1                  | <2                     | <2                       | <1             | <2               | <1<br><1       | <2             | <1             | <2             | <1             | < 4            | <1             | < 20           | <1             | < 2                    | < 1            | < 2            |
| cis-1,2-Dichloroethene                                           | μg/L<br>μg/L         |                     | ~2                     | ~~                       | <u> </u>       |                  | <u> </u>       | ~2             | <1             | < 2            | < 1            | < 4            | < 1            | < 20           | <1             | <2                     | <1             | < 2            |
| cis-1,3-Dichloropropene                                          | µg/L                 | <1                  | <2                     | < 2                      | <1             | < 2              | <1             | <2             | <1             | < 2            | <1             | < 4            | <1             | < 20           |                |                        |                |                |
| Dibromochloromethane                                             | µg/L                 | <1                  | <2                     | <2                       | <1             | <2               | <1             | <2             | <1             | <2             | <1             | <4             | <1             | < 20           | <1             | <2                     | <1             | < 2            |
| Dibromomethane                                                   | μg/L                 |                     | - 4                    |                          |                |                  |                | ~2             |                | ~~             |                | 14             |                | × 20           | <1             | <2                     | < 1            | < 2            |
| Ethylbenzene                                                     | μg/L                 | <1                  | <2                     | <2                       | 1 JBU          | <2               | 1 JBU          | < 2            | <1             | 0.59 J         | <1             | < 4            | <1             | < 20           | <1             | <2                     | <1             | <2             |
| Methylene chloride                                               | μg/L                 | < 5                 | 4.5 BU                 | <2                       | < 5            | <2               | < 5            | <2             | < 5            | <2             | < 5            | 1.5 J          | < 5            | 12.8 J         | < 5            | <2                     | < 5            | 1.2 J          |
| Naphthalene                                                      | µg/L                 |                     |                        |                          |                |                  |                |                |                |                |                |                |                | 12.0 0         |                |                        |                | 1,4 0          |
| n-Butylbenzene                                                   | μg/L.                |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                | <u> </u>       |                        |                |                |
| n-Propylbenzene                                                  | µg/L                 |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                | <b></b>        |                        | <b> </b>       | 1              |
| sec-Butylbenzene                                                 | μg/L                 |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                | 1              |                        |                | t              |
| Styrene                                                          | µg/L                 | <1                  | < 2                    | < 2                      | < 1            | < 2              | <1             | < 2            | <1             | < 2            | <1             | < 4            | < 1            | < 20           | <1             | <2                     | < 1            | <2             |
| Tetrachloroethene                                                | µg/L                 | <1                  | <2                     | <2                       | <1             | < 2              | <1             | < 2            | <1             | < 2            | < 1            | < 4            | < 1            | < 20           | <1             | <2                     | <1             | <2             |
| Toluene                                                          | μg/L                 | 0.99 J              | <2                     | · <2                     | <1             | < 2              | <1             | < 2            | <1             | < 2            | < 1            | < 4            | 1.9            | < 20           | <1             | <2                     | 1.2            | < 2            |
| Trichloroethene                                                  | µg/L                 | <1                  | <2                     | < 2                      | <1             | 1.6 J            | 0.33 J         | < 2            | <1             | 243            | 197            | 116            | 102 J          | 596            | 179            | 60.9                   | 56.8           | 11             |
| Vinyl chloride                                                   | μg/L                 | <1                  | <2                     | <2                       | <1             | < 2              | <1             | < 2            | <1             | 0.6 J          | < 1            | < 4            | <1             | < 20           | <1             | < 2                    | < 1            | 1.8 J          |
| Xylenes (total)                                                  | µg/L                 | < 3                 | < 6                    | < 6                      | 3 JBU          | < 6              | < 3            | < 6            | < 3            | < 6            | < 3            | < 12           | < 3            | < 60           | < 3            | <6                     | < 3            | < 6            |
| Notes:                                                           | r complo             |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| MW = monitor well groundwate<br>VP = vertical profile groundwate |                      |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| Blank cell = no data/constituent                                 |                      |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| Bolded values indicate detectio                                  |                      |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| J = Estimated value                                              |                      |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| R = Result rejected during data                                  | validation           |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| B = Analyte detected in associa                                  |                      |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| U = Non-detect based on data                                     |                      |                     |                        |                          |                |                  |                |                |                |                |                |                |                |                |                |                        |                |                |
| Samples collected solely for inv                                 | vestigation of petro | deum prior to CAP P | art B Investigations a | are not included in this | table          |                  |                |                |                | 1              |                |                |                | :              |                |                        |                |                |

(

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

3 of 22

.

# Table 4-2 Summary of Groundwater Analyses, UST 25 and 26 CAP- Part B Investigations HAA-17 Hunter Army Airfield-Savannah, GA

|                                 | Location ID          | AF-29                | AF-30                   | AF-30                   | AF-30          | AF-30          | AF-30          | AF-30          | AF-30          | AF-30                   | AF-30           | AF-31          | AF-31          | AF-31          | AF-31          | AF-31          | AF-31          |                         |
|---------------------------------|----------------------|----------------------|-------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|-------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------------|
|                                 | Sample ID            | AF2942(092800)       | AF3024(092699)          | AF3012(092699)          | AF3022(092699) | AF3032(092699) | AF3042(092699) | AF3052(092699) | AF3062(092699) | AF3072(092699)          | AF3082(092699)  | AF3112(092599) | AF3122(092599) | AF3132(092599) | AF3142(092599) | AF3152(092599) | AF3162(092599) | AF-31<br>AF3172(092599) |
|                                 | Sample Date          | 9/28/2000            | 9/26/1999               | 9/26/1999               | 9/26/1999      | 9/26/1999      | 9/26/1999      | 9/26/1999      | 9/26/1999      | 9/26/1999               | 9/26/1999       | 9/25/1999      | 9/25/1999      | 9/25/1999      | 9/25/1999      | 9/25/1999      | 9/25/1999      | 9/25/1999               |
|                                 | Sample Type          | MW                   | VP                      | VP                      | VP             | VP             | VP             | VP             | VP             | VP                      | VP              | VP             | VP             | VP             | VP             | VP             | VP             | VP                      |
|                                 | Start Depth          | 2                    | 10                      | 11                      | 16             | 21             | 26             | 31             | 36             | 41                      | 46              | 6              | 11             | 16             | 21             | 26             | 31             | 36                      |
|                                 | End Depth            | 12                   | 20                      | 15                      | 20             | 25             | 30             | 35             | 40             | 45                      | - 50            | 10             | 15             | 20             | 25             | 30             | 35             | 40                      |
| Chemical Name                   | Unit                 |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                | 1              | ·····                   |
| 1,1,1-Trichloroethane           | µg/L                 | <1                   | < 2                     | < 2                     | < 2            | < 2            | < 2            | <2             | <2             | <2                      | < 2             | < 10           | <2             | <2             | < 2            | < 2            | < 2            | <2                      |
| 1,1,2,2-Tetrachloroethane       | µg/L                 | <1                   | < 2                     | <2                      | < 2            | < 2            | < 2            | <2             | < 2            | <2                      | <2              | < 10           | < 2            | <2             | < 2            | <2             | < 2            | <2                      |
| 1,1,2-Trichloroethane           | μg/L                 | <1                   | < 2                     | < 2                     | < 2            | < 2            | < 2            | < 2            | <2             | <2                      | <2              | < 10           | <2             | < 2            | < 2            | < 2            | < 2            | <2                      |
| 1,1-Dichloroethane              | μg/L                 | <1                   | < 2                     | < 2                     | < 2            | < 2            | <2             | < 2            | < 2            | <2                      | <2              | < 10           | < 2            | < 2            | < 2            | < 2            | <2             | <2                      |
| 1,1-Dichloroethene              | µg/L                 | <1                   | < 2                     | <2                      | < 2            | 0.74 J         | 2.2            | 0.62 J         | <2             | < 2                     | < 2             | < 10           | < 2            | <2             | < 2            | <2             | < 2            | < 2                     |
| 1,2-Dibromoethane               | µg/L                 |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| 1,2-Dichloroethane              | ի հեն                | <1                   | < 2                     | <2                      | < 2            | <2             | < 2            | < 2            | <2             | <2                      | <2              | < 10           | < 2            | < 2            | < 2            | <2             | < 2            | < 2                     |
| 1,2-Dichloroethene              | µg/L                 | 2.4                  | 11.9                    | 3.3                     | 24             | 33             | 90.3           | 24.3           | 11.3           | 8.7                     | <2              | 17.9           | 10.7           | < 2            | 16.4           | < 2            | <2             | <2                      |
| 1,2-Dichloropropane             | µg/1.                | <1                   | <2                      | <2                      | < 2            | < 2            | <2             | <2             | <2             | <2                      | <2              | < 10           | < 2            | < 2            | <2             | <2             | <2             | <2                      |
| 2-Butanone                      | µg/L                 | < 5                  | < 5 R                   | < 5                     | < 5            | < 5 R          | < 5            | < 5 R          | < 5 R          | < 5 R                   | < 5 R           | < 25 R         | <5R            | < 5 R          | <5R            | <5R            | 1.9 J          |                         |
| 2-Hexanone                      | µg/L                 | < 5                  | < 5                     | 14.2                    | 15.5           | < 5 J          | < 5            | < 5            | < 5            | < 5                     | < 5             | < 25           | < 5            | < 5            | < 5            | < 5            | <5             | <u>1.3 J</u><br>< 5     |
| 4-Methyl-2-pentanone            | µg/L                 | < 5                  | < 5                     | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 5             | < 25           | < 5            | < 5            | < 5            | < 5            | < 5            |                         |
| Acetone                         | µg/L,                | 12.4U                | 9.8 J                   | 8.4 BU                  | 10.8 BU        | < 5 R          | 5 JBU          | < 5 R          | < 5            | < 5 R                   | < 5 R           | < 25 R         | < 5            | <5 R           | <5R            | <5             | < 5            | < 5                     |
| Benzene                         | µg/L                 | 351                  | 3060                    | 7670 J                  | 2290           | 37.9           | 16.2           | 11             | 6.4            | 5.5                     | 6.8             | 11.1           | L 66.0         | <2             | <2             | <2             | < 5            | < 5                     |
| Benzene, 1-methylethyl          | µg/L                 |                      |                         |                         |                |                |                |                |                |                         |                 |                | 0.000          | 12             | ~2             | ~2             | ~2             | <u>\</u>                |
| Bromochloromethane              | µg/L                 |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                | ·····          |                | ł                       |
| Bromodichloromethane            | µg/L                 | <1                   | < 5                     | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 5             | < 25           | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     |
| Bromoform                       | µg/L                 | <1                   | < 2                     | <2                      | < 2            | < 2            | < 2            | < 2            | <2             | <2                      | <2              | < 10           | <2             | <2             | <2             | <2             | <2             |                         |
| Bromomethane                    | µg/L                 | <1                   | <2                      | <2                      | < 2            | < 2            | <2             | <2             | < 2            | <2                      | <2              | < 10           | < 2            | <2             | <2             | <2             | <2             | <2                      |
| Carbon disulfide                | µg/L                 | < 5                  | < 5                     | < 5                     | < 5 J          | 5 JBU          | 1.1 J          | < 5            | < 5            | < 5                     | 1.3 J           | < 25           | < 5            | <5             | < 5            | <5             |                | <2                      |
| Carbon tetrachloride            | µg/L                 | <1                   | < 2                     | < 2                     | < 2            | < 2            | < 2            | < 2            | <2             | <2                      | <2              | < 10           | <2             | <2             | <2             | <2             | < 5            | < 5                     |
| Dichlorodifluoromethane         | µg/L                 |                      |                         |                         |                |                |                |                |                | ······                  | <sup>*</sup>    |                | ~ ~ ~          | - 2            |                | ~2             | < 2            | <2                      |
| Chlorobenzene                   | µg/L                 | <1                   | < 2                     | < 2                     | < 2            | < 2            | < 2            | < 2            | < 2            | <2                      | <2              | < 10           | < 2            | < 2            |                |                |                | /                       |
| Chloroethane                    | µg/L                 | <1                   | < 2                     | <2                      | <2             | < 2            | <2             | <2             | <2             | <2                      | <2              | < 10           | <2             | <2             | <2             | <2             | < 2            | <2                      |
| Chloroform                      | µg/L                 | <1                   | < 2                     | <2                      | <2             | < 2            | <2             | <2             | <2             | <2                      | <2              | < 10           | <2             | <2             | <2             | <2             | <2             | <2                      |
| Chloromethane                   | μg/L                 | <1                   | <2                      | <2                      | <2             | <2             | < 2            | <2             | < 2            | <2                      | <2              | < 10           | <2             | 0.68 J         | < 2            | < 2            | <2             | <2                      |
| cis-1,2-Dichloroethene          | μg/L                 |                      |                         |                         |                |                |                | '2             | -2             | ~ ~                     |                 | <u> </u>       | . 54           | 0,68 1         | < 2            | 0.73 J         | < 2            | <2                      |
| cis-1,3-Dichloropropene         | μg/L                 | <1                   | <2                      | <2                      | < 2            | < 2            | < 2            | <2             | < 2            | <2                      | <2              | < 10           | 10             |                |                |                |                | <u> </u>                |
| Dibromochloromethane            | μg/L                 | <1                   | <2                      | <2                      | <2             | <2             | <2             | <2             | <2             | <2                      | <2              |                | <2             | < 2            | < 2            | < 2            | < 2            | < 2                     |
| Dibromomethane                  | μg/L                 |                      |                         | 12                      |                |                |                | ~ 4            | ~ ~ ~          | ~ ~ ~                   | <u> </u>        | < 10           | < 2            | < 2            | < 2            | <2             | < 2            | <2                      |
| Ethylbenzene                    | <u>μg/L</u>          | 54.1                 | 251                     | 500 J                   | 168            | 2.7            | 1.3 J          | 0.53 J         | 0.67 J         | 5.5                     | 1.8 J           | < 10           |                |                |                |                |                |                         |
| Methylene chloride              | μ <u>μ</u> μμα/L     | < 5                  | 4.4 B                   | 2.2                     | 2 JBU          | 0.95 J         | < 2            | 4 BU           | 3.4 BU         | 2 JBU                   | 2.9 BU          | 14.4 BU        | < 2            | <2             | <2             | < 2            | < 2            | <2                      |
| Naphthalene                     | μg/L                 | ····                 |                         |                         | 2000           | 0.000          |                | 400            | 3,4 00         | 2,000                   | 2.9 DU          | 14.4 BU        | 2.4 BU         | 2.3 BU         | 3              | 2 JBU          | 2 BU           | 2.6 BU                  |
| n-Butyibenzene                  | μg/L                 |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                | L                       |
| n-Propylbanzene                 | μg/L                 | 1                    |                         | · · ·                   |                |                |                |                |                |                         |                 | · · · ·        |                |                |                |                |                | ļ                       |
| sec-Butylbenzene                | μg/L                 | 1                    |                         | 1                       |                |                |                | <b></b>        |                |                         |                 |                |                |                |                |                |                | <b></b>                 |
| Styrene                         | μg/L                 | <1                   | < 2                     | 0.52 J                  | <2             | < 2            | < 2            | < 2            | < 2            | < 2                     | <2              | < 10           |                |                |                |                |                |                         |
| Tetrachloroethene               | μg/L                 |                      | <2                      | <2                      | <2             | <2             | <2             | <2             | <2             |                         |                 |                | < 2            | < 2            | < 2            | < 2            | <2             | <2                      |
| Toluene                         | μg/L                 | 2.8                  | 8.8                     | 19                      | 5.5            | 0.55 J         | <2             | <2             | <2             | <u>&lt; 2</u><br>0.78 J | < 2<br>0.5 J    | < 10           | <2             | < 2            | < 2            | < 2            | <2             | <2                      |
| Trichloroethene                 | µg/L                 | 2.6                  | 9.9                     | 1.7 J                   | 21.3           | 75.9           | 262            | 116            | 66.5           | 66.2                    | 0.5 J<br>0.91 J | < 10           | < 2            | < 2            | < 2            | < 2            | < 2            | <2                      |
| Vinyl chloride                  | µց/Ն                 | 0.77 J               | 1.2 J                   | <2                      | 0.88 J         | <2             | <2             | <2             | <2             | < 2                     |                 | 168            | 110            | 2.6            | 43.7           | 1.3 J          | <u>1</u> J     | 0.76 J                  |
| Xylenes (total)                 | μg/L                 | 5.1                  | 18.3                    | 72.7                    | 9.6            | 1.8 J          | <6             | 0.51 J         | 0.67 J         | 9.3                     | < 2<br>2,9 J    | < 10           | < 2            | < 2            | < 2            | < 2            | <2             | <2                      |
| Notes:                          | 1 194                | 1 241                | 1                       |                         | 1 2.0          | 1 1.00         |                | 0.010          | 0.07.0         | 3.3                     | ∠,3 J           | < 30           | < 6            | < 6            | < 6            | < 6            | < 6            | <6                      |
| MW = monitor well groundwat     | er sample            |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| VP = vertical profile groundwa  |                      |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| Blank cell = no data/constitue  |                      |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| Bolded values indicate detect   |                      |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| J = Estimated value             | 10110                |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| R = Result rejected during da   | ta validation        |                      |                         |                         |                |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| B = Analyte detected in assoc   |                      |                      |                         |                         |                |                |                |                |                |                         |                 |                |                | :              |                |                |                |                         |
| U = Non-detect based on data    |                      |                      |                         |                         |                |                |                |                |                |                         |                 |                |                | 1              |                |                |                |                         |
|                                 |                      |                      | ent D laure d'a stille  |                         | table          |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |
| Samples collected solely for it | nvestigation of petr | Dieum prior to CAP P | art is investigations a | are not included in thi | s ladie        |                |                |                |                |                         |                 |                |                |                |                |                |                |                         |

.

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                           | Location ID | AF-31          | AF-31          | AF-32                                 | AF-32          | AF-32          | AF-32          | AF-32                   | AF-32                   | 45.00                       | 15.00                                   | 101 0.0         |                 |                |                                       | <u>.</u>       |                    |                |
|---------------------------|-------------|----------------|----------------|---------------------------------------|----------------|----------------|----------------|-------------------------|-------------------------|-----------------------------|-----------------------------------------|-----------------|-----------------|----------------|---------------------------------------|----------------|--------------------|----------------|
|                           | Sample ID   | AF3182(092599) | AF3192(092599) | AF3212(092599)                        | AF3224(092599) | AF3222(092599) | AF3232(092599) | AF-32<br>AF3242(092599) | AF-32<br>AF3252(092599) | AF-32                       | AF-32                                   | AF-32           | AF-33           | AF-33          | AF-34                                 | AF-34          | AF-35              | AF-35          |
|                           | Sample Date | 9/25/1999      | 9/25/1999      | 9/25/1999                             | 9/25/1999      | 9/25/1999      | 9/25/1999      | 9/25/1999               | 9/25/1999               | AF3262(092599)<br>9/25/1999 | AF3272(092599)<br>9/25/1999             | AF3282(092599)  | AF3312(092599)  | AF3342(092800) | AF3412(092599)                        | AF3442(092800) | AF3512(092599)     | AF3542(092800) |
|                           | Sample Type | VP             | VP             | VP                                    | VP             | VP             | VP             | VP                      | VP                      | VP                          | 9/23/1999<br>VP                         | 9/25/1999<br>VP | 9/25/1999<br>MW | 9/28/2000      | 9/25/1999                             | 9/28/2000      | 9/25/1999          | 9/28/2000      |
|                           | Start Depth | 41             | 46             | 11                                    | 15             | 16             | 21             | 26                      | 31                      | 36                          | 41                                      | 46              | 2.3             | <u>MW</u>      | MW                                    | MW             | MW                 | MW             |
|                           | End Depth   | 45             | 50             | 15                                    | 25             | 20             | 25             | 30                      | 35                      | 40                          | 41                                      | 50              | 2.3             | 11.8           | 1.4                                   | 1.4            | 1.2                | 1.2            |
| Chemical Name             | Unit        |                |                |                                       |                |                |                |                         |                         |                             | 40                                      | 50              | 11.0            | 11.0           | 10'à                                  | 10.9           | 10.7               | 10.7           |
| 1,1,1-Trichloroethane     | μg/L        | < 2            | <2             | <2                                    | <2             | < 2            | < 2            | < 2                     | <2                      | <2                          | <2                                      | < 2             | <2              | <1             | <2                                    | <1             | < 2                | <1             |
| 1,1,2,2-Tetrachloroethane | μg/L        | <2             | < 2            | <2                                    | <2             | < 2            | <2             | < 2                     | <2                      | <2                          | <2                                      | <2              | < 2             | <1             | <2                                    | <1             | <2                 | <1             |
| 1,1,2-Trichloroethane     | μg/L        | <2             | < 2            | < 2                                   | <2             | < 2            | < 2            | <2                      | <2                      | <2                          | <2                                      | <2              | <2              | <1             | <2                                    | <1             | <2                 | <1             |
| 1,1-Dichloroethane        | µg/L        | <2             | <2             | <2                                    | < 2            | < 2            | <2             | < 2                     | < 2                     | <2                          | <2                                      | < 2             | <2              | <1             | 3.4                                   | 2.8            | <2                 | <1             |
| 1,1-Dichloroelhene        | μg/L        | <2             | <2             | <2                                    | <2             | < 2            | < 2            | <2                      | <2                      | <2                          | <2                                      | <2              | <2              | <1             | 4.8                                   | 3.9            | <2                 | <1             |
| 1,2-Dibromoethane         | μg/L        |                |                | 1                                     |                |                |                |                         |                         |                             |                                         |                 |                 |                | 4.0                                   | 3.5            | ~ 6                | <u> </u>       |
| 1,2-Dichloroethane        | μg/L.       | <2             | < 2            | < 2                                   | <2             | < 2            | < 2            | <2                      | < 2                     | <2                          | <2                                      | < 2             | <2              | < 1            | <2                                    | <1             | <2                 | < 1            |
| 1.2-Dichloroethene        | µg/L        | <2             | < 2            | 6.4                                   | <2             | <2             | <2             | <2                      | < 2                     | <2                          | <2                                      | < 2             | 6.4             | 8.1            | 10.8                                  | 13             | 8.8                | 9.6            |
| 1.2-Dichloropropane       | μg/L        | <2             | < 2            | <2                                    | <2             | <2             | <2             | <2                      | <2                      | <2                          | <2                                      | < 2             | <2              | <1             | < 2                                   | <1             | <u>8.6</u><br>< 2  | 9.6<br>< 1     |
| 2-Butanone                | μg/L        | <5R            | < 5 R          | < 5 R                                 | < 5 R          | 0.93 J         | <5R            | < 5 R                   | < 5 R                   | <5R                         | <5R                                     | <5R             | <5R             | < 5            | < 5 R                                 | <5             | < <u>2</u><br><5 R | < 1            |
| 2-Нехаполе                | μg/L        | < 5            | < 5            | < 5                                   | < 5            | < 5            | < 5            | < 5                     | <5                      | < 5                         | <5                                      | <5              | <5              | <5             | <5                                    | <5             | <5                 | < 5            |
| 4-Methyl-2-pentanone      | µg/L        | < 5            | < 5            | < 5                                   | < 5            | < 5            | < 5            | < 5                     | <5                      | < 5                         | <5                                      | < 5             | < 5             | <5             | <5                                    | < 5            | <5                 |                |
| Acetone                   | μg/L        | < 5            | < 5 R          | < 5 R                                 | < 5 R          | < 5            | <5R            | <5 R                    | < 5 R                   | < 5 R                       | < 5                                     | <5R             | <5R             | < 5            | <5R                                   | 50             | < 5                | < 5<br>5 JU    |
| Benzene                   | µg/L        | <2             | <2             | 2.1                                   | < 2            | <2             | <2             | <2                      | < 2                     | <2                          | <2                                      | <2              | <2              | <1             | <2                                    | <1             | 2,1                | 0.38 J         |
| Benzene, 1-methylethyl    | µg/L        |                |                |                                       |                |                |                |                         | <b>_</b>                |                             |                                         |                 | -12             | ~ 1            |                                       |                | 2.1                | 0.30 J         |
| Bromochloromethane        | μg/L        |                |                |                                       |                | -              |                |                         |                         |                             | † · · · · · · · · · · · · · · · · · · · | · · · ·         |                 | ·              |                                       |                |                    |                |
| Bromodichloromethane      | µg/L        | < 5            | < 5            | < 5                                   | < 5            | < 5            | < 5            | < 5                     | < 5                     | < 5                         | < 5                                     | < 5             | < 5             | <1             | < 5                                   | <1             | < 5                | <1             |
| Bromoform                 | μg/L        | <2             | < 2            | < 2                                   | < 2            | <2             | <2             | < 2                     | <2                      | <2                          | <2                                      | <2              | <2              | <1             | <2                                    | <1             | <2                 | <1             |
| Bromomethane              | μg/L        | <2             | < 2            | < 2                                   | <2             | <2             | < 2            | <2                      | <2                      | < 2                         | <2                                      | <2              | <2              | <1             | <2                                    | <1             | <2                 | <1             |
| Carbon disulfide          | μg/L        | < 5            | < 5            | < 5                                   | < 5            | < 5            | < 5            | < 5                     | < 5                     | 0.56 J                      | < 5                                     | < 5             | < 5             | < 5            | < 5                                   | < 5            | <5                 | < 5            |
| Carbon tetrachloride      | μg/L        | <2             | < 2            | < 2                                   | <2             | < 2            | < 2            | <2                      | < 2                     | <2                          | <2                                      | <2              | <2              | <1             | < 2                                   | <1             | <2                 | <1             |
| Dichlorodifluoromethane   | μg/L        |                |                | · · · · · · · · · · · · · · · · · · · |                |                |                |                         |                         |                             | <u>_</u>                                | <u> </u>        |                 |                | ~~~~~                                 |                | ~~.                | <u> </u>       |
| Chlorobenzene             | µg/L        | <2             | <2             | <2                                    | < 2            | <2             | < 2            | < 2                     | <2                      | <2                          | <2                                      | <2              | <2              | < 1            | < 2                                   | <1             | < 2                | <1             |
| Chloroethane              | μg/L        | <2             | < 2            | < 2                                   | <2             | < 2            | < 2            | <2                      | <2                      | <2                          | <2                                      | <2              | < 2             | <1             | <2                                    | <1             | <2                 | <1             |
| Chloroform                | μg/L        | <2             | < 2            | <2                                    | <2             | < 2            | < 2            | < 2                     | <2                      | <2                          | <2                                      | <2              | < 2             | <1             | <2                                    | <1             | <2                 | <1             |
| Chloromethane             | µg/L        | <2             | < 2            | <2                                    | 0.92 J         | <2             | < 2            | < 2                     | <2                      | <2                          | <2                                      | <2              | <2              | < 1            | <2                                    | <1             | <2                 | <1             |
| cis-1,2-Dichloroethene    | μg/L        |                |                |                                       |                |                |                |                         |                         |                             |                                         | -               |                 |                |                                       |                | 72                 | <u>``</u>      |
| cis-1,3-Dichloropropene   | µg/L_       | <2             | <2             | < 2                                   | <2             | < 2            | < 2            | <2                      | <2                      | < 2                         | <2                                      | <2              | < 2             | <1             | < 2                                   | <1             | < 2                | <1             |
| Dibromochloromethane      | μg/L        | <2             | <2             | <2                                    | <2             | <2             | < 2            | <2                      | <2                      | < 2                         | <2                                      | <2              | <2              | <1             | <2                                    | <1             | <2                 | <1             |
| Dibromomethane            | µg/L        | 1              |                |                                       |                |                |                |                         |                         |                             |                                         |                 |                 |                | ·····                                 |                | - 4                |                |
| Ethylbenzene              | µg/L        | < 2            | < 2            | < 2                                   | < 2            | <2             | <2             | <2                      | < 2                     | <2                          | < 2                                     | <2              | <2              | <1             | < 2                                   | <1             | <2                 | < 1            |
| Methylene chloride        | μg/L        | 2 JBU          | 2.9 BU         | 3.4 BU                                | 2.3 BU         | 2.1 BU         | 2.9            | 2,8 BU                  | 2.6 BU                  | 5.4 BU                      | 2.7 BU                                  | 3 BU            | 2.1             | < 5            | 3.6                                   | < 5            | 2.4 BU             | < 5            |
| Naphthalene               | µg/L        |                |                |                                       |                |                |                |                         |                         | l                           |                                         |                 | < 10            | · · · · ·      | < 10                                  | Ť              | < 10               | ·····          |
| n-Butylbenzene            | μg/L        |                |                |                                       |                |                |                |                         |                         |                             |                                         |                 |                 |                | i                                     | 1              |                    |                |
| n-Propylbenzene           | μg/L        |                |                |                                       |                |                |                |                         |                         |                             |                                         |                 |                 |                |                                       |                |                    |                |
| sec-Butylbenzene          | μg/L        |                |                |                                       |                |                |                |                         |                         |                             | 1                                       |                 |                 |                |                                       | 1              |                    |                |
| Styrene                   | µg/L        | < 2            | < 2            | < 2                                   | <2             | <2             | < 2            | < 2                     | <2                      | < 2                         | < 2                                     | <2              | < 2             | <1             | < 2                                   | <1             | <2                 | < 1            |
| Tetrachloroethene         | µg/L        | < 2            | < 2            | < 2                                   | <2             | < 2            | < 2            | < 2                     | <2                      | < 2                         | <2                                      | < 2             | <2              | <1             | <2                                    | <1             | <2                 | <1             |
| Toluene                   | µg/L        | <2             | < 2            | < 2                                   | <2             | 0.52 J         | < 2            | < 2                     | <2                      | <2                          | < 2                                     | < 2             | < 2             | <1             | <2                                    | 0.47 J         | <2                 | <1             |
| Trichloroethene           | μg/L        | < 2            | 0.56 J         | 26.3                                  | 0.7 J          | <2             | < 2            | < 2                     | < 2                     | < 2                         | <2                                      | <2              | 45.8            | 34.4           | 95.5                                  | 105 J          | 23                 | 27.6           |
| Vinyi chloride            | μg/L        | <2             | < 2            | <2                                    | <2             | < 2            | < 2            | < 2                     | < 2                     | <2                          | <2                                      | <2              | <2              | <1             | <2                                    | <1             | <2                 | <1             |
| Xylenes (total)           | µg/L        | < 6            | < 6            | < 6                                   | < 6            | < 6            | < 6            | < 6                     | <6                      | < 6                         | < 6                                     | < 6             | < 6             | < 3            | <6                                    | <3             | <6                 | < 3            |
| Notes:                    |             |                |                |                                       |                | -              | •              |                         |                         |                             | • • • • • • • • • •                     |                 |                 | . •            | · · · · · · · · · · · · · · · · · · · | · · · · ·      |                    | <u> </u>       |

Notes: MW = monitor well groundwater sample VP = vertical profile groundwater sample Blank cell = no data/constituent not analyzed for Bolded values indicate detections J = Estimated value R = Result rejected during data validation B = Analyte detected In associated blank II = Non-detect based on data validation

U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AF-40<br>AF40G2(01230<br>1/23/2007<br>MW<br>28.5 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/23/2007<br>MW<br>28.5                          |
| Stat Dyth         1.4         1.4         1.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4         4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.5                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 1.1.7Entimetering         pgL $e_2$ $e_1$ $e_2$ $e_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.05                                             |
| 12.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| Zaltanoni         jpd.         < 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.4                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 5                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 5                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| Barnolithormethane         ppL         <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| Carbon letrachloride $ygL$ <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 5                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| $i_1$ $i_2$ $i_1$ $i_2$ $i_1$ $i_2$ $i_1$ $i_2$ $i_1$ <t< th=""><th>&lt;1</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| Dibronochloromethane $\mu g \Lambda$ $< 2$ $< 1$ $< 2$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$ $< 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| Dibronmethane $\mu g L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                               |
| Differentiation $\mugL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1                                               |
| Methylene chloride $\mugA$ 2.6       <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( <u> </u>                                       |
| Metrypene chloride $\mug/L$ $2.6$ $< 5$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$ $2.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                               |
| Naphthalene $\mugA$ <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| $\frac{\mu_0 \Lambda}{h_1} = \frac{\mu_0 \Lambda}{h_2} = \frac{\mu_0 \Lambda}{h_1} = \frac{\mu_0 \Lambda}{h_1} = \frac{\mu_0 \Lambda}{h_2} = \frac{\mu_0 \Lambda}{h_1} = \frac{\mu_0 \Lambda}{h_1} = \frac{\mu_0 \Lambda}{h_2} = \frac{\mu_0 \Lambda}{h_1} = \frac{\mu_0 \Lambda}{h_1$ | ·                                                |
| Styrene $pgL$ <2 <1 <2 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | í                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                                               |
| 1000ene pg/L <2 0.78 J 0.69 J 1.4 J 1.9 2 1.4 <2 0.6 J <1 <1 <1 <1 <1 J 1.9 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.447 J                                          |
| Trichtoroethene µgA 38 10.3 346 301 226 6.8 <1 <2 53.3 353 42.9 108 J 255 J 379 49.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201                                              |
| Vinyl chloride         µgA.         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1                                               |
| $xy = 10^{-1}$ (total) $y = 10^{-1}$ (total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.378 J                                          |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| MW = monitor well groundwater sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| VP = vertical profile groundwater sample<br>Blank cell = no data/constituent not analyzed for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| Blank cell = no data/constituent not analyzed for<br>Bolded values indicate detections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| Bolded values indicate detections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| r = csuintaced value<br>R = Result rejected during data validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| B = Analyte detected in associated blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| U = Non-detect based on data validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included to this table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                                  | Location ID            | AF-41                                   | AF-41                                 | AF-41                   | AF-41                   | AF-41          | AF-41     | AF-41                 | AF-41          | AF-42    | AF-42          | AF-42          | AF-42    | AF-42          | AE 49                   |                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|----------------------------------|------------------------|-----------------------------------------|---------------------------------------|-------------------------|-------------------------|----------------|-----------|-----------------------|----------------|----------|----------------|----------------|----------|----------------|-------------------------|------------------------------|-----------------------------------------|
|                                  | Sample ID              | AF4112(020200)                          | AF4132(062300)                        | AF4142(092800)          | AF4152(010701)          | AF4162(060801) |           | AF41F2(072506)        | AF41G2(012307) |          | AF4232(062300) | AF4242(092800) |          | AF4262(060801) | AF-42<br>AF4272(011902) | AF-43                        | AF-43                                   |
|                                  | Sample Date            | 2/2/2000                                | 6/23/2000                             | 9/28/2000               | 1/7/2001                | 6/8/2001       | 1/19/2002 | 7/25/2006             | 1/23/2007      | 2/2/2000 | 6/23/2000      | 9/28/2000      | 1/7/2001 | 6/8/2001       | 1/19/2002               | AF4312(113000)<br>11/30/2000 | AF4322(113000)<br>11/30/2000            |
|                                  | Sample Type            | MW                                      | MW                                    | MW                      | MW                      | MW             | MW        | MW                    | MW             | MW       | MW             | MW             | MW       | MW             | MW                      | VP                           | VP                                      |
|                                  | Start Depth            | 28,5                                    | 28.5                                  | 28.5                    | 28.5                    | 28,5           | 28.5      | 28.5                  | 28,5           | 28,5     | 28.5           | 28.5           | 28.5     | 28.5           | 28.5                    | 4                            | 9                                       |
|                                  | End Depth              | 33                                      | 33                                    | 33                      | 33                      | 33             | 33        | 33                    | 33             | 33       | 33             | 33             | 33       | 33             | 33                      | 9                            | 14                                      |
| Chemical Name                    | Unit                   |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         | <u> </u>                     |                                         |
| 1,1,1-Trichloroethane            | µg/L                   | <1                                      | <1                                    | <1                      | < 1                     | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | <1                                      |
| 1,1,2,2-Tetrachloroethane        | μg/L                   | <1                                      | <1                                    | < 1                     | <1                      | < 1            | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | <1                                      |
| 1,1,2-Trichloroethane            | µg/L                   | <1                                      | <1                                    | < 1                     | <1                      | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | <1                                      |
| 1.1-Dichloroethane               | μg/L                   | <1                                      | <1                                    | < 1                     | <1                      | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | <1                                      |
| 1,1-Dichloroethene               | µg/L                   | 0,94 J                                  | 3                                     | <1                      | 0.82 J                  | 0.81 J         | 2.3       | 1.32                  | 1.2            | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | <1                                      |
| 1,2-Dibromoethane                | μg/L                   |                                         |                                       |                         |                         |                |           | <1                    | <1             |          | · · · · ·      |                | ·····    |                |                         |                              |                                         |
| 1,2-Dichloroethane               | µg/L                   | <1                                      | <1                                    | < 1                     | < 1                     | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | < 0            | <1                      | <1                           | <1                                      |
| 1,2-Dichloroethene               | µg/l.                  | 35.6                                    | 110                                   | 1.7 J                   | 32.7                    | 39.5           | 76.4      | 81                    | 61.3           | < 2      | < 2            | < 2            | <2       | <2             | <2                      | <2                           | 0.46 J                                  |
| 1.2-Dichloropropane              | μg/L                   | <1                                      | <1                                    | <1                      | <1                      | < 1            | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | 0.46 J<br>< 1                           |
| 2-Butanone                       | µg/L                   | <5                                      | < 5                                   | < 5                     | < 5 J                   | < 5            | < 5       | < 5                   | < 5            | < 5      | < 5            | < 5            | <5J      | < 5            | <5                      | < 5                          | 1.2 J                                   |
| 2-Hexanone                       | µg/L                   | <5                                      | < 5                                   | < 5                     | < 5                     | < 5            | < 5       | <5                    | < 5            | < 5      | < 5            | < 5            | <5       | < 5            | < 5                     | < 5                          |                                         |
| 4-Methyl-2-pentanone             | µg/L                   | < 5                                     | < 5                                   | < 5                     | < 5                     | < 5            | < 5       | < 5                   | < 5            | < 5      | < 5            | < 5            | < 5      | < 5            | <5                      | < 5                          | < 5                                     |
| Acetone                          | µg/L                   | 5 JBU                                   | < 5                                   | 5.2U                    | 5 JBU                   | < 5            | < 5       | < 5                   | < 5            | 5 JBU    | <5             | 5 JU           | 5 JBU    | < 5            | 2.6 J                   | < <u>5</u><br>11             |                                         |
| Benzene                          | µg/L                   | 0.2 J                                   | <1                                    | <1                      | <1                      | 0.15 J         | <1        | 1.31                  | <1             | <1       | <1             | <1             | <1       | <1J            |                         |                              | 3.6 J                                   |
| Benzene, 1-methylethyl           | µg/L                   |                                         | 1                                     |                         | 1                       | 1              | 1         | 1                     |                |          | ·····          | - 1            | <u> </u> |                | < 1                     | < 1                          | < 1                                     |
| Bromochloromethane               | µg/L                   | 1                                       |                                       |                         |                         |                |           | <1                    | <1             |          |                |                |          |                |                         | <u> </u>                     |                                         |
| Bromodichloromethane             | µg/L                   | <1                                      | <1                                    | <1                      | < 1                     | <1             | <1        | <1                    | <1             | < 1      | <1             | < 1            | <1       | <1             | <1                      |                              |                                         |
| Bromoform                        | µg/L                   | <1                                      | <1                                    | <1                      | < 1                     | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | · · ·                   | <1                           | <1                                      |
| Bromomelhane                     | µg/L                   | <1                                      | <1                                    | <1                      | <1                      | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | < 1                          | <1                                      |
| Carbon disulfide                 | µg/L                   | < 5                                     | < 5                                   | < 5                     | < 5                     | < 5            | < 5       | < 5                   | < 5            | < 5      | < 5            | < 5            | <5       |                | < 1                     | < 1                          | <1                                      |
| Carbon tetrachloride             | µg/L                   | <1                                      | <1                                    | <1                      | < 1                     | <1             | <1        | <1                    | <1 <1          | <1       | <1             | <1             | <1       | < 5            | < 5                     | < 5                          | < 5                                     |
| Dichlorodifluoromethane          | μg/L                   | 1 · · · · · · · · · · · · · · · · · · · |                                       | ·····                   | · · · · ·               |                | · · · · · |                       | <u> </u>       |          |                | <u> </u>       | <u> </u> | < 1            | <1                      | < 1                          | < 1                                     |
| Chlorobenzene                    | µg/L                   | <1                                      | <1                                    | <1                      | <1                      | <1J            | <1        | <1                    | < 1            | <1       | <1             |                |          |                |                         |                              |                                         |
| Chloroethane                     | μg/L                   | <1                                      | <1                                    | <1                      | <1                      | <1             | <1        | <1                    | <1             | <1       | <1             | <1             | <1       | <1J            | <1                      | <1                           | <1                                      |
| Chloroform                       | μg/L                   | <1                                      | <1                                    | <1                      | <1                      | <1             | <1        | <1                    | <1             | <1       | <1             |                | <1       | <1             | <1                      | <1                           | <1                                      |
| Chloromethane                    | μ <u>g/L</u>           | <1                                      | <1                                    | <1                      | <1                      | <1             | <1        | <1                    | <1             | <1       |                | <1             | <1       | <1             | < 1                     | < 1                          | <1                                      |
| cis-1.2-Dichloroethene           | μg/L                   |                                         |                                       |                         |                         | ~ 1            |           |                       |                | <u></u>  | <1             | <1             | < 1      | <1             | <1                      | <1                           | <1                                      |
| cis-1,3-Dichloropropane          | μg/L                   | <1                                      | <1                                    | <1                      | < 1                     | <1             | <1        | <1                    | <1             | < 1      |                |                |          |                |                         |                              |                                         |
| Dibromochloromethane             | μg/L                   | <1                                      | <1                                    | <1                      | <1                      | <1             | <1        |                       | <1             | <1       | <1             | <1             | <1       | <1             | < 1                     | < 1                          | <1                                      |
| Dibromomethane                   | μg/L                   |                                         |                                       |                         |                         | ~1             |           |                       | <u> </u>       | \$1      | <1             | <1             | <1       | <1             | < 1                     | <1                           | < 1                                     |
| Ethylbenzene                     | μ <u>μ</u> μμμ         | <1                                      | <1                                    | <1                      | <1                      | <1J            | <1        | 2.14                  | < 1            | <1       |                |                |          | '              |                         |                              |                                         |
| Methylene chloride               | μg/L<br>μg/L           | <5                                      | < 5                                   | < 5                     | < 5                     | 16.7 B         | 1 JU      | <5                    | < 5            |          | <1             | <1             | <1       | <1J            | < 1                     | < 1                          | <1                                      |
| Naphthalene                      | μg/L                   |                                         | <u>``</u>                             |                         | ~~~~                    | 10.7 0         | 130       | <u> </u>              | <u></u>        | < 5      | < 5            | < 5            | < 5      | 16.6 B         | 1 JU                    | < 5                          | < 5                                     |
| n-Butylbenzene                   | μ <u>μ</u> γλ.<br>μg/L |                                         |                                       |                         |                         |                |           |                       | · · · · ·      |          |                |                |          |                |                         |                              |                                         |
| n-Propylbenzene                  | μα/L                   |                                         | <u> </u>                              |                         | ·                       |                |           |                       |                |          |                |                |          | 1              |                         |                              |                                         |
| sec-Butyibenzene                 | μg/L                   |                                         | · · · · · · · · · · · · · · · · · · · |                         | · · · · · · · · · · · · |                |           |                       |                |          |                |                | ļ        |                |                         |                              |                                         |
| Styrene                          | μg/L                   | <1                                      | <1                                    | <1                      |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| Tetrachloroethene                |                        | <1                                      | <1                                    |                         | <1                      | <1 J           | <1        | <1                    | <1             | <1       | <1             | < 1            | <1       | <1J            | <1                      | <1                           | <1                                      |
| Toluene                          | μg/L<br>μg/L           | <1                                      | <1                                    | <1<br><1                | <1<br><1                | <1<br><1J      | <1        | <1                    | <1             | <1       | <1             | < 1            | <1       | <1             | < 1                     | <1                           | <1                                      |
| Trichloroethene                  | μg/L                   | 158                                     | 636                                   | 1.2                     |                         |                | 1 JBU     | 2.67                  | < 1            | 0.3 J    | 0.81 J         | <1             | <1       | <1J            | 1 JBU                   | <1                           | <1                                      |
| Vinvi chloride                   | μg/L<br>μg/L           | 158                                     | <u>636</u><br><1                      |                         | 176                     | 195 J          | 405       | 252                   | 168            | <1       | <1             | <1             | < 1      | 0.36 J         | <1                      | <1                           | 1.2                                     |
| Xylenes (total)                  | μg/L                   | <1                                      | <1                                    | <1                      | <1 <3                   | <1             | <1        | <u>&lt; 1</u><br>9.56 | <1             | <1       | <1             | <1             | <1       | <1             | <1                      | <1                           | <1                                      |
| Notes:                           | իցու                   | <u>```</u>                              | <u> </u>                              | < 3                     | 53                      | < 3 J          | < 3       | 1 9.56                | < 1            | < 3      | < 3            | < 3            | < 3      | <3J            | < 3                     | < 3                          | < 3                                     |
| MW = monitor weil groundwate     | ac campla              |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          | 1              |                         |                              |                                         |
| VP = vertical profile groundwar  |                        |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| Blank cell = no data/constituer  |                        |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| Bolded values indicate detection |                        |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| J = Estimated value              | VIIJ                   |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| R = Result rejected during dat   | a validation           |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| B = Analyte detected in associ   |                        |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |
| U = Non-detect based on data     |                        |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          | :              |                         |                              |                                         |
|                                  |                        |                                         |                                       |                         |                         |                |           |                       |                |          |                |                |          | ļ              |                         |                              |                                         |
| Samples collected solely for in  | westigation of petro   | leum prior to CAP P                     | art B Investigations a                | re not included in this | s table                 |                |           |                       |                |          |                |                |          |                |                         |                              |                                         |

(

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

# Table 4-2 Summary of Groundwater Analyses, UST 25 and 26 CAP- Part B Investigations HAA-17 Hunter Army Airfield-Savannah, GA

.

|                           | Location ID | AF-43           | AF-43          | AF-43          | AF-43          | AF-43                                 | AF-43                                 | AF-43          |                             | 45.44                   |                             |                    |                    |                   | · · · · · · · · · · · · · · · · · · · |           |                      |                |
|---------------------------|-------------|-----------------|----------------|----------------|----------------|---------------------------------------|---------------------------------------|----------------|-----------------------------|-------------------------|-----------------------------|--------------------|--------------------|-------------------|---------------------------------------|-----------|----------------------|----------------|
|                           | Sample 1D   | AF4332(113000)  | AF4342(113000) | AF4352(113000) | AF4362(113000) | AF4372(113000)                        | AF4382(113000)                        | AF4392(113000) | AF-43 DUP<br>AF4394(113000) | AF-44<br>AF4412(120100) | AF-44                       | AF-44              | AF-44              | AF-44             | AF-44                                 | AF-44     | AF-44                | AF-44          |
|                           | Sample Date | 11/30/2000      | 11/30/2000     | 11/30/2000     | 11/30/2000     | 11/30/2000                            | 11/30/2000                            | 11/30/2000     | 11/30/2000                  | 12/1/2000               | AF4422(120100)<br>12/1/2000 | AF4432(120100)     | AF4442(120100)     | AF4452(120100)    |                                       |           | AF4482(120100)       | AF4492(120100) |
|                           | Sample Type | VP              | VP             | VP             | VP             | VP                                    | VP                                    | VP             | VP                          | VP                      | 12/1/2000<br>VP             | 12/1/2000          | 12/1/2000          | 12/1/2000         | 12/1/2000                             | 12/1/2000 | 12/1/2000            | 12/1/2000      |
|                           | Start Depth | 14              | 19             | 24             | 29             | 34                                    | 39                                    | 44             | 44                          | 4                       | VF                          | VP<br>14           | VP                 | VP                | VP                                    | VP        | VP                   | VP             |
|                           | End Depth   | 19              | 24             | 29             | 34             | 39                                    | 44                                    | 49             | 49                          | 9                       | 14                          | 14                 | <u>19</u><br>24    | 24                | 29                                    | 34        | 39                   | 44             |
| Chemical Name             | Unit        | · · · · · · · · |                |                |                |                                       |                                       |                |                             |                         | 14                          | 19                 | 24                 | 29                | 34                                    | 39        | 44                   | 49             |
| 1,1,1-Trichloroethane     | µg/L        | <1              | <1             | <1             | <1             | < 1                                   | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 |                   |                                       |           |                      |                |
| 1,1,2,2-Tetrachloroethane | μg/L        | < 1             | <1             | < 1            | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <u> </u>  | <1                   | < 1            |
| 1.1.2-Trichloroethane     | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 |                   | <1                                    | <1        | <1                   | < 1            |
| 1,1-Dichloroethane        | μg/L        | <1              | <1             | <1             | 1.3            | 0.9 J                                 | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | < 1                  | < 1            |
| 1,1-Dichloroethene        | µg/L        | 0.51 J          | 2.3            | 5.4            | 12.8           | 7.2                                   | 0,1 J                                 | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | < 1                  | < 1            |
| 1,2-Dibromoethane         | µg/L        |                 |                |                |                |                                       |                                       | •              |                             |                         |                             |                    | <u> </u>           | <u> </u>          | <1                                    | 3.2       | 0.84 J               | <1             |
| 1.2-Dichloroethane        | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | < 1                         |                    |                    |                   |                                       |           |                      |                |
| 1,2-Dichloroethene        | μg/ί,       | 5.3             | 20.2           | 103            | 116            | 68.2                                  | 9.8                                   | 5.4            | 3.2                         | 7                       | 2.8                         | <2                 | <1                 | <u>&lt;1</u><br>7 | <1                                    | <1        | <1                   | <1             |
| 1,2-Dichloropropane       | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | 5.6                |                   | 1.1 J                                 | 104       | 38.6                 | 9.2            |
| 2-Butanone                | µg/t,       | < 5             | < 5            | < 5            | < 5            | < 5                                   | <5                                    | < 5            | < 5                         | <5                      | < 5                         | <u>&lt;1</u><br><5 | <1                 | < 1               | <1                                    | < 1       | < 1                  | <1             |
| 2-Hexanone                | µg/L        | < 5             | < 5            | < 5            | < 5            | <5                                    | <5                                    | < 5            | < 5                         | < 5                     | < 5                         | < 5                | < 5                | < 5               | < 5                                   | < 5       | 2.4 J                | 1.4 J          |
| 4-Methyl-2-pentanone      | μα/ί.       | < 5             | < 5            | < 5            | < 5            | < 5                                   | <5                                    | <5             | < 5                         | <5                      | < 5                         | < 5                | < 5                | < 5               | < 5                                   | < 5       | < 5                  | 2.2 J          |
| Acetone                   | µg/L        | 1.6 J           | 1.8 J          | 2 J            | 1.8 J          | 2.9 J                                 | 2 J                                   | < 5            | 2.5 J                       | <5                      | < 5                         | < 5                | < 5                | < 5               | < 5                                   | < 5       | < 5                  | < 5            |
| Benzene                   | µg/L        | <1              | 0.68 J         | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | < 1                | < 5                | < 5               | < 5                                   | 1.8 J     | 4.3 J                | 4.5 J          |
| Benzene, 1-methylethyl    | µq/L        |                 |                |                | · · · · ·      |                                       |                                       |                |                             |                         |                             | <u> </u>           | <1                 | <1                | <1                                    | 0.16 J    | 0.31 J               | <1             |
| Bromochloromethane        | µg/L        |                 |                |                |                |                                       |                                       |                |                             |                         |                             |                    |                    |                   |                                       |           |                      | ·              |
| Bromodichloromethane      | μg/L        | < 1             | <1             | <1             | < 1            | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 |                    |                   |                                       |           |                      |                |
| Bromoform                 | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <u>&lt;1</u><br><1 | <1                | <1                                    | <1        | <1                   | <1             |
| Bromomethane              | μg/L        | < 1             | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | < 1                  | < 1            |
| Carbon disulfide          | µg/L        | < 5             | < 5            | < 5            | < 5            | < 5                                   | < 5                                   | < 5            | < 5                         | <5                      | < 5                         | < 5                | < 5                | <1                | <1                                    | <1        | <1                   | < 1            |
| Carbon tetrachloride      | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | < 5               | < 5                                   | < 5       | < 5                  | < 5            |
| Dichlorodifluoromethane   | µg/L        |                 |                |                | · · · · _ · ·  | · · · · · · · · · · · · · · · · · · · |                                       |                |                             |                         | <u> </u>                    |                    | <u> </u>           | <u> </u>          | <1                                    | <1        | <1                   | < 1            |
| Chlorobenzene             | μg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | < 1                     | < 1                         | <1                 | <1                 | <1                |                                       |           |                      |                |
| Chloroethane              | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | <1                   | <1             |
| Chloroform                | μg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | < <u>&lt;1</u><br><1                  | <1        | <1                   | < 1            |
| Chloromethane             | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | < 1       | < 1                  | <1             |
| cis-1,2-Dichloroethene    | µg/L        | i               |                |                |                |                                       |                                       |                |                             |                         |                             |                    | <u>``</u>          | <u> </u>          | <u> </u>                              | <1        | <1                   | <1             |
| cis-1,3-Dichloropropene   | μց/Լ        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | < 1               | <1                                    | < 1       |                      |                |
| Dibromochloromethane      | µg/L        | < 1             | <1             | <1             | < 1            | < 1                                   | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | <1                   | <1             |
| Dibromomethane            | µg/L        | 1               |                |                |                |                                       | · · · · · · · · · · · · · · · · · · · | ·              | •                           |                         |                             | ~ .                |                    |                   | <u> </u>                              | <u> </u>  | < 1                  | <1             |
| Ethylbenzene              | μg/L        | <1              | < 1            | <1             | <1             | <1                                    | <1                                    | 0.062 J        | 0.06 J                      | <1                      | 0.072 J                     | <1                 | <1                 | <1                | <1                                    | <1        | 0.11 J               | ·              |
| Methylene chloride        | μg/L        | < 5             | < 5            | < 5            | < 5            | < 5                                   | <5                                    | < 5            | < 5                         | < 5                     | < 5                         | < 5                | < 5                | < 5               | <5                                    | < 5       | <u>0.11 J</u><br>< 5 | <1<br><5       |
| Naphthalene               | µg/L        |                 |                |                |                |                                       |                                       |                |                             |                         |                             |                    | <u> </u>           |                   | ~~~~                                  | <u>``</u> | 50                   | 50             |
| n-Butylbenzene            | µg/L        |                 |                |                |                |                                       |                                       |                |                             |                         |                             | i ·i               |                    |                   | <u> </u>                              |           | ļ                    | <u> </u>       |
| n-Propylbenzene           | µg/L        |                 |                |                |                |                                       |                                       |                |                             |                         |                             |                    |                    |                   |                                       |           |                      | <u> </u>       |
| sec-Butylbenzene          | µg/L        |                 |                |                |                |                                       |                                       |                |                             |                         |                             |                    |                    |                   |                                       |           |                      | ·              |
| Styrene                   | µg/L        | < 1             | <1             | <1             | < 1            | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | < 1                | < 1                | < 1               | <1                                    | <1        | < 1                  | < 1            |
| Tetrachloroethene         | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | <1                   |                |
| Toluene                   | µg/L        | <1              | <1             | 0.27 J         | < 1            | <1                                    | <1                                    | 0.45 J         | 0.5 J                       | <1                      | 0.29 J                      | <1                 | 0.31 J             | 0.3 J             | 0.38 J                                | <1        | 0.48 J               | <1             |
| Trichloroethene           | μg/L        | 304             | 2600           | 2140           | 2030           | 883                                   | 213 J                                 | 71.2           | 40.4                        | 14.3                    | 80.1                        | 13                 | 54.9               | 33.5              | 0.83 J                                | 790       | 346                  | < 1<br>60.8    |
| Vinyl chloride            | µg/L        | <1              | <1             | <1             | <1             | <1                                    | <1                                    | <1             | <1                          | <1                      | <1                          | <1                 | <1                 | <1                | <1                                    | <1        | <u> </u>             |                |
| Xylenes (total)           | µg/L        | < 3             | < 3            | < 3            | < 3            | < 3                                   | < 3                                   | 0.32 J         | < 3                         | < 3                     | 0.46 J                      | < 3                | < 3                | < 3               | < 3                                   | < 3       | < 3                  | <1             |
| Notes:                    |             |                 |                |                |                |                                       |                                       |                |                             |                         |                             |                    |                    | ••                | L                                     | L `J      | L \3                 | . <u>``</u>    |

MW = monitor well groundwater sample

MW = monitor well groundwater sample VP = vertical profile groundwater sample Blank cell = no data/constituent not analyzed for Bolded values indicate detections J = Estimated value R = Result rejected during data validation B = Analyte detected in associated blank

.

U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                           | Location ID | AF-45          | AF-45          | AF-45          | AF-45          | AF-45          | AF-45 DUP      | AF-45          | AF-45     | AF-45                                 | AF-45          | ······································ | 15 10                                 |                |                | <u>.</u>       |                |            |
|---------------------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|---------------------------------------|----------------|----------------------------------------|---------------------------------------|----------------|----------------|----------------|----------------|------------|
|                           | Sample ID   | AF4512(120100) | AF4522(120100) | AF4532(120100) | AF4542(120100) | AF4552(120100) | AF4554(120100) | AF4562(120100) |           |                                       | AF4592(120200) | AF-46                                  | AF-46                                 | AF-46          | AF-46          | AF-46          | AF-46          | AF-46      |
|                           | Sample Date | 12/1/2000      | 12/1/2000      | 12/1/2000      | 12/1/2000      | 12/1/2000      | 12/1/2000      | 12/1/2000      | 12/2/2000 | 12/2/2000                             | 12/2/2000      | AF4612(120200)                         | _AF4622(120200)                       | AF4632(120200) | AF4642(120200) | AF4652(120200) | AF4662(120200) |            |
|                           | Sample Type | VP             | VP        | VP                                    | VP             | 12/2/2000<br>VP                        | 12/2/2000                             | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000  |
|                           | Start Depth | 4              | 9              | 14             | 19             | 24             | 24             | 29             | 34        | 39                                    | 44             | 6                                      | <u>VP</u>                             | VP             | VP             | VP             | VP             | VP         |
|                           | End Depth   | 9              | 14             | 19             | 24             | 29             | 29             | 34             | 39        | 44                                    | 49             | 10                                     | 15                                    | 16<br>20       | 21             | 26             | 31             | 36         |
| Chemical Name             | Unit        |                |                |                |                |                |                |                |           | · · · · · · · · · · · · · · · · · · · |                |                                        | 15                                    | 20             | 25             | 30             | 35             | 40         |
| 1,1,1-Trichloroethane     | µg/L        | <1             | <1             | <1             | < 1            | <1             | <1             | < 1            | <2        | <1                                    | <1             | <1                                     | <1                                    | < 1            | <1             | <1             |                | <u> </u>   |
| 1,1,2,2-Tetrachloroethane | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| 1,1,2-Trichtoroethane     | µg/L        | <1             | <1             | <1             | <1             | <1             | < 1            | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| 1,1-Dichloroethane        | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             |                | <1             | <1         |
| 1,1-Dichloroethene        | μg/L        | <1             | 0.17 J         | <1             | 0.63 J         | 3.8            | 4,4            | 4.7            | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | < 1        |
| 1,2-Dibromoethane         | μg/L        |                |                |                |                |                |                |                | 1         |                                       | · · · · ·      |                                        |                                       | <u> </u>       |                | <u> </u>       | <1             | <1         |
| 1,2-Dichloroethane        | μg/L        | <1             | <1             | < 1            | <1             | <1             | <1             | <1             | < 2       | <1                                    | <1             | <1                                     | < 1                                   | < 1            | < 1            | <1             |                |            |
| 1,2-Dichloroethene        | μg/L        | 10.3           | 7.6            | 1.5 J          | 67.5           | 279            | 270            | 206            | 15.2      | 5.9                                   | <2             | 0.73 J                                 | 1.4 J                                 | <2             | 1.4 J          |                | <1             | <1         |
| 1,2-Dichloropropane       | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | < 2       | <1                                    | <1             | <1                                     | <1                                    | <1             | <u> </u>       | 2.3            | 0.46 J         | <2         |
| 2-Butanone                | μg/L        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 10      | < 5                                   | < 5            | < 5                                    | < 5                                   | < 5            | <1             | <1             | <1             | <1         |
| 2-Hexanone                | μg/L        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 10      | < 5                                   | < 5            | < 5                                    | < 5                                   | < 5            | <5             |                | < 5            | < 5        |
| 4-Methyl-2-pentanone      | µg/L        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 10      | < 5                                   | < 5            | < 5                                    | < 5                                   | < 5            | < 5            | < 5            | < 5            | < 5        |
| Acetone                   | µg/L        | 5 JBU          | < 10      | < 5                                   | < 5            | < 5                                    | < 5                                   | < 5            | < 5            |                | < 5            | < 5        |
| Benzene                   | µg/L        | 1.8            | 4.2            | 0.99 J         | 0.33 J         | 0.24 J         | 0.25 J         | 0.19 J         | <2        | <1                                    | <1             | 0.22 J                                 | 0.65 J                                | 0.3 J          | 0.63 J         | < 5<br>0.16 J  | < 5            | < 5        |
| Benzene, 1-methylethyl    | µg/L        |                |                |                |                |                |                |                |           |                                       |                |                                        | 0.000                                 | 0.3 5          | 0.035          | V.16 J         | <1             | <1         |
| Bromochloromethane        | μg/L        |                |                |                |                |                |                |                |           |                                       |                |                                        | · · · · ·                             |                |                |                |                | II         |
| Bromodichloromethane      | µg/L        | <1             | <1             | <1             | <1             | <1             | <1             | < 1            | <2        | < 1                                   | <1             | <1                                     | < 1                                   | <1             | <1             | <1             |                | <u> </u>   |
| Bromoform                 | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Bromomethane              | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Carbon disulfide          | μg/L        | 0.41 J         | 0.59 J         | < 5            | < 5            | < 5            | < 5            | < 5            | < 10      | < 5                                   | < 5            | < 5                                    | 0.84 J                                | < 5            | < 5            | < 5            | <1             | <1         |
| Carbon tetrachloride      | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | < 2       | <1                                    | <1             | <1                                     | <1                                    | <1 <1          | <1             | <1             | < 5            | < 5        |
| Dichlorodifluoromethane   | μg/L        |                | 1              |                |                |                |                |                |           |                                       |                |                                        | · · · · · · · · · · · · · · · · · · · | <u> </u>       |                |                |                | < 1        |
| Chlorobenzene             | µg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | < 1                                   | <1             | < 1            | <1             | <1             |            |
| Chloroethane              | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Chloroform                | µg/L        | <1             | <1             | < 1            | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Chloromethane             | µg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| cis-1,2-Dichloroethene    | µg/L        |                |                |                |                |                |                |                |           |                                       |                | · · · · · · · · · · · · · · · · · · ·  |                                       |                |                | `'             | `'             |            |
| cis-1,3-Dichloropropene   | µg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | < 2       | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Dibromochloromethane      | μg/L        | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             |            |
| Dibromomethane            | μg/L        |                |                |                |                |                |                |                |           |                                       |                |                                        |                                       |                |                |                | <u> </u>       |            |
| Ethylbenzene              | μg/L        | <1             | <1             | < 1            | <1             | <1             | <1             | < 1            | <2        | < 1                                   | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Methylene chloride        | µg/L        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 10      | < 5                                   | < 5            | < 5                                    | < 5                                   | < 5            | < 5            | <5             | <5             | < 5        |
| Naphthalene               | μg/L        | ļ              |                |                |                |                |                |                |           | · · · · ·                             |                |                                        |                                       |                |                |                |                | <u> </u>   |
| n-Butylbenzene            | μg/L        | L              |                |                |                |                |                |                |           |                                       |                |                                        |                                       |                |                |                |                | <u> </u>   |
| n-Propylbenzene           | μg/λ.       |                |                |                |                |                |                |                |           |                                       |                |                                        |                                       |                |                | · · · · ·      |                | t1         |
| sec-Butylbenzene          | µg/L        |                |                | L              |                |                |                |                |           |                                       |                |                                        |                                       |                |                |                |                | <u> </u> ] |
| Styrene                   | µg/L        | <1             | <1             | <1             | <1             | <1             | <1             | < 1            | <2        | <1                                    | <1             | <1                                     | < 1                                   | <1             | <1             | <1             | <1             | <1         |
| Tetrachloroethene         | µg/L        | <1             | <1             | <1             | <1             | <1             | <1             | < 1            | < 2       | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Toluene                   | µg/L        | 0.39 J         | <1             | <1             | <1             | <1             | <1             | <1             | 0.66 J    | 1 JBU                                 | 1 JBU          | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Trichloroethene           | µg/L        | 1.9            | 47.2           | 18.3           | 428            | 1510           | 1320           | 1490           | 181       | 48,4                                  | 0.59 J         | <1                                     | 3.9                                   | 2.6            | 4.6            | 1,2            | <1             | <1         |
| Vinyl chloride            | μg/L        | <1             | <1             | <1             | <1             | 0.27 J         | 0.37 J         | 0.24 J         | <2        | <1                                    | <1             | <1                                     | <1                                    | <1             | <1             | <1             | <1             | <1         |
| Xylenes (total)           | μg/L        | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            | <6        | < 3                                   | < 3            | < 3                                    | < 3                                   | < 3            | < 3            | < 3            | < 3            | < 3        |
| Notes:                    |             |                |                |                |                |                |                |                |           |                                       |                |                                        |                                       |                |                | ·              |                |            |

.(

Notes: MW = monitor well groundwater sample VP = vertical profile groundwater sample Blank cell = no data/constituent not analyzed for Bolded values indicate detections J = Estimated value R = Result rejected during data validation B = Analyte detected in associated blank II = Non-detect based on data validation

U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

9 of 22

.

.

|                                                                   | Location ID  | AF-46 DUP      | AF-46          | AF-46          | AF-47          | AF-47          | AF-47          | AF-47                                 | AF-47          | T                                             |                             | · · · · · · · · · · · · · · · · · · · |                     |                |                    |                                       |                |                |
|-------------------------------------------------------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------------------------|----------------|-----------------------------------------------|-----------------------------|---------------------------------------|---------------------|----------------|--------------------|---------------------------------------|----------------|----------------|
|                                                                   | Sample ID    | AF4674(120200) | AF4682(120200) | AF4692(120200) | AF4722(120200) | AF4732(120200) | AF4742(120200) | AF4752(120200)                        | AF4762(120300) | AF-47                                         | AF-47                       | AF-47                                 | AF-48               | AF-48          | AF-48              | AF-48 DUP                             | AF-48          | AF-48          |
|                                                                   | Sample Date  | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000                             | 12/3/2000      | AF4772(120300)<br>12/3/2000                   | AF4782(120300)<br>12/3/2000 | AF4792(120300)                        | AF4812(120400)      | AF4822(120400) | AF4832(120400)     | AF4844(120400)                        | AF4842(120400) | AF4852(120400) |
|                                                                   | Sample Type  | VP                                    | VP             | VP                                            | 12/3/2000<br>VP             | 12/3/2000<br>VP                       | 12/4/2000           | 12/4/2000      | 12/4/2000          | 12/4/2000                             | 12/4/2000      | 12/4/2000      |
|                                                                   | Start Depth  | 36             | 41             | 46             | 11             | 16             | 21             | 26                                    | 31             | 36                                            | 41                          | 46                                    | VP5                 | VP             | VP                 | VP                                    | VP             | VP             |
|                                                                   | End Depth    | 40             | 45             | 50             | 15             | 20             | 25             | 30                                    | 35             | 40                                            | 45                          | 50                                    | 10                  | 10             | 15                 | 15                                    | 20             | 25             |
| Chemical Name                                                     | Unit         |                |                |                |                |                |                |                                       |                | · · · · · · · · · · · · · · · · · · ·         |                             |                                       | IV                  | 15             | 20                 | 20                                    | 25             | 30             |
| 1,1,1-Trichloroelhane                                             | µg/L         | < 1            | <1             | < 1            | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             |                    | · · · · · · · · · · · · · · · · · · · |                |                |
| 1,1,2,2-Tetrachloroethane                                         | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  |                | <1                 | <1                                    | < 1            | < 1            |
| 1,1,2-Trichloroethane                                             | μg/L         | < 1            | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             | <1                 | < 1                                   | <1             | <1             |
| 1,1-Dichloroethane                                                | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             | <1                 | <1                                    | <1             | <1             |
| 1,1-Dichloroethene                                                | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    |                     |                | <1                 | < 1                                   | <1             | < 1            |
| 1,2-Dibromoethane                                                 | μg/L         |                |                | 1              | 1              |                |                |                                       |                | · · · · · · · · · · · · · · · · · · ·         |                             |                                       | <1                  | < 1            | <1                 | < 1                                   | <1             | < 1            |
| 1,2-Dichloroelhane                                                | μg/L         | <1             | <1             | <1             | <1             | 0.51 J         | <1             | <1                                    | <1             | < 1                                           | <1                          | <1                                    |                     |                |                    |                                       |                |                |
| 1,2-Dichloroethene                                                | µg/L         | < 2            | < 2            | < 2            | 0.84 J         | <2             | <2             | < 2                                   | <2             | < 2                                           | <2                          | <2                                    | <u>&lt;1</u><br>6.7 | <1             | <1                 | <1                                    | < 1            | < 1            |
| 1,2-Dichloropropane                                               | μg/L         | < 1            | <1             | <1             | 0.3 J          | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    |                     | 9.6            | < 2                | < 2                                   | < 2            | < 2            |
| 2-Butanone                                                        | µg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                   | < 5            | < 5                                           | <5                          | < 5                                   | <1                  | <1             | <1                 | <1                                    | <1             | <1             |
| 2-Hexanone                                                        | μg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                   | <5             | < 5                                           | < 5                         | < 5                                   | < 5                 | < 5            | < 5                | < 5                                   | < 5            | < 5            |
| 4-Melhyl-2-pentanone                                              | μg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                   | < 5            | <5                                            | < 5                         |                                       | < 5                 | < 5            | < 5                | < 5                                   | < 5            | < 5            |
| Acetone                                                           | μg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                   | <5             | < 5                                           | 5 JBU                       | < 5<br>5 JBU                          | < 5                 | < 5            | < 5                | <5                                    | < 5            | < 5            |
| Benzene                                                           | μg/L         | <1             | <1             | <1             | 1.2            | 0.21 J         | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | 2.4 J               | < 5            | < 5                | < 5                                   | < 5            | < 5            |
| Benzene, 1-methylethyl                                            | μg/L         |                |                |                | 1              |                |                | · · · · · · · · · · · · · · · · · · · | 1              | <u>                                      </u> |                             | <u> </u>                              | 0.88 J              | 0.63 J         | <1                 | <1                                    | <1             | < 1            |
| Bromochloromethane                                                | μg/L         |                |                |                |                |                |                | 1                                     | 1              | 1                                             |                             |                                       |                     | <u> </u>       |                    |                                       |                | l              |
| Bromodichloromethane                                              | μg/L         | <1             | <1             | <1             | <1             | < 1            | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    |                     |                |                    |                                       |                |                |
| Bromoform                                                         | µg/L         | < 1            | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1<br><1            | <1             | <1                 | <1                                    | <1             | <1             |
| Bromomethane                                                      | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    |                     | <1             | <1                 | <1                                    | < 1            | < 1            |
| Carbon disulfide                                                  | μg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                   | < 5            | < 5                                           | < 5                         | < 5                                   | <u>&lt;1</u><br><5  | <1             | <1                 | <1                                    | <1             | < 1            |
| Carbon tetrachloride                                              | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | < 5            | < 5                | < 5                                   | < 5            | < 5            |
| Dichlorodifluoromethane                                           | μg/l.        |                |                |                |                |                |                |                                       | · · · · · ·    |                                               |                             |                                       | ·····               | <1             | <1                 | <1                                    | <1             | < 1            |
| Chlorobenzene                                                     | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | < 1                         | <1                                    | <1                  |                |                    |                                       |                | ·              |
| Chloroethane                                                      | րց/Լ         | < 1            | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          |                                       | <1                  | <1             | <1                 | <1                                    | <1             | < 1            |
| Chloroform                                                        | μg/L         | <1             | < 1            | <1             | <1             | <1             | < 1            | <1                                    | <1             | <1                                            | <1                          | <1                                    | ~~~                 | <1             | <1                 | <1                                    | < 1            | <1             |
| Chloromethane                                                     | μց/Լ         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             | <1                 | <1                                    | < 1            | < 1            |
| cis-1,2-Dichloroethene                                            | } μg/L       |                |                |                | 1              |                |                |                                       |                |                                               |                             |                                       | <u> </u>            | <1             | < 1                | <1                                    | < 1            | < 1            |
| cis-1,3-Dichloropropene                                           | μg/L,        | <1             | <1             | <1             | <1             | <1             | <1             | < 1                                   | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             |                    |                                       |                | i              |
| Dibromochloromethane                                              | μg/L         | <1             | < 1            | < 1            | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             | <1                 | <1                                    | <1             | < 1            |
| Dibromomethane                                                    | μg/L.        |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     | 51             | <1                 | <1                                    | <1             | < 1            |
| Ethylbenzene                                                      | μg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | 1.6                 | 0.14 J         |                    |                                       |                |                |
| Methylene chloride                                                | µg/L         | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                   | < 5            | < 5                                           | < 5                         | < 5                                   | < 5                 | <5             | <u>&lt;1</u><br><5 | <1                                    | < 1            | < 1            |
| Naphthalene                                                       | µg/L         |                | <u> </u>       |                |                |                |                |                                       |                |                                               | ·                           |                                       | ~ 0                 | ~ 5            | <u>~</u> >         | < 5                                   | < 5            | < 5            |
| n-Butylbenzene                                                    | µg/L         |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| n-Propylbenzene                                                   | µg/L         | ļ              | ļ              |                |                |                |                |                                       |                |                                               |                             |                                       | <u> </u>            | ł              |                    |                                       |                |                |
| sec-Butylbenzene                                                  | µg/L         |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| Styrene                                                           | <u>μg/L</u>  | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             | <1                 | <1                                    |                |                |
| Tetrachloroethene                                                 | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | <1                          | <1                                    | <1                  | <1             |                    | <1                                    | <1             | < 1            |
| Toluene                                                           | µg/L         | <1             | <1             | <1             | <1             | <1             | <1             | <1                                    | <1             | <1                                            | 1.1 BU                      | 1 JBU                                 | 8.9                 | 1.6 BU         | 1.4 BU             | 1 BU                                  | <1<br>1 BU     | < 1            |
| Trichloroethene                                                   | μg/L         | <1             | 0.61 J         | <1             | 3              | 0.27 J         | <1             | < 1                                   | <1             | <1                                            | <1                          | <1                                    | 5.9                 | 155            | <1                 | <1                                    |                | <u>1 BU</u>    |
| Vinyi chloride                                                    | μg/L         | <1             | <1             | <1             | <1             | < 1            | <1             | <1                                    | <1             | <1                                            | < 1                         | <1                                    | <1                  | <1             | <1                 |                                       | <1             | < 1            |
| Xylenes (total)                                                   | μg/L         | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            | < 3                                   | < 3            | < 3                                           | < 3                         | < 3                                   | 7.3                 | 0.42 J         |                    | <3                                    | <3             | <1             |
| Notes:                                                            |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                | 0.40 1             |                                       | <u></u>        | < 3            |
| MW = monitor well groundwate                                      |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| VP = vertical profile groundwa<br>Blank cell = no data/constituer |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| Biank cell = no data/constituer<br>Bolded values indicate detecti |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| J = Estimated value                                               | una          |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| R = Result rejected during dat                                    | a validation |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| B = Analyte detected in assoc                                     |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
| U = Non-detect based on data                                      |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |
|                                                                   |              |                |                |                |                |                |                |                                       |                |                                               |                             |                                       |                     |                |                    |                                       |                |                |

( · ·

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                                              | Location ID              | AF-48           | 1 15 40                 | AF-48     | AF-48                   | AF-49               | AF-49          | AF-49           | AF-49                                   | AF-49                   | AF-49          | AF-49                   | AF-49                                  | AF-49 DUP                             | AF-49          | AF-50          | AF-50                   | AF-50                   |
|----------------------------------------------|--------------------------|-----------------|-------------------------|-----------|-------------------------|---------------------|----------------|-----------------|-----------------------------------------|-------------------------|----------------|-------------------------|----------------------------------------|---------------------------------------|----------------|----------------|-------------------------|-------------------------|
|                                              |                          | AF-48           | AF-48<br>AF4872(120400) |           | AF-48<br>AF4892(120400) | AF4912(120300)      | AF4922(120300) | AF4932(120300)  | AF4942(120300)                          | AF-49<br>AF4952(120300) | AF4962(120300) | AF-49<br>AF4972(120300) | AF4982(120300)                         | AF4984(120300)                        | AF4992(120300) | AF5012(120200) | AF5022(120200)          | AF-50<br>AF5032(120200) |
|                                              | Sample ID<br>Sample Date | 12/4/2000       | 12/4/2000               | 12/4/2000 | 12/4/2000               | 12/3/2000           | 12/3/2000      | 12/3/2000       | 12/3/2000                               | 12/3/2000               | 12/3/2000      | 12/3/2000               | 12/3/2000                              | 12/3/2000                             | 12/3/2000      | 12/2/2000      | 12/2/2000               | 12/2/2000               |
|                                              | Sample Type              | 12/4/2000<br>VP | VP                      | VP        | 12/4/2000<br>VP         | VP                  | VP             | 12/3/2000<br>VP | VP                                      | VP                      | VP             | VP                      | VP                                     | VP                                    | VP             | VP             | VP                      | VP                      |
|                                              | Start Depth              | 30              | 35                      | 40        | 45                      | 6                   | 11             | 16              | 21                                      | 26                      | 31             | 36                      | 41                                     | 41                                    | 46             | 4              | 9                       | 14                      |
| · · · · · · · · · · · · · · · · · · ·        | End Depth                | 35              | 40                      | 40        | 50                      | 10                  | 15             | 20              | 26                                      | 30                      | 35             | 40                      | 45                                     | 45                                    | 50             | 9              | 14                      | 19                      |
| Chemical Name                                | Unit                     | 05              |                         |           |                         | 10                  | 10             | 20              | 20                                      |                         |                |                         |                                        |                                       |                |                |                         |                         |
| 1,1,1-Trichloroethane                        | ug/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | < 1            | <1             | <1                      | <1                      |
| 1.1.2.2-Tetrachloroethane                    | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| 1.1.2-Trichloroethane                        | μg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| 1.1-Dichloroethane                           | μg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| 1,1-Dichloroethene                           | μg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| 1,2-Dibromoethane                            | µց/ւ<br>µg/Լ             |                 | ···· ···                |           |                         |                     | · · ·          |                 |                                         | · · · · ·               |                |                         | · · · · · · ·                          | · · · · · · · · · · · · · · · · · · · |                |                | · · · · · · · · · · · · |                         |
| 1,2-Dichloroethane                           | րցու<br>µg/Լ             | < 1             | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | < 1            | <1             | <1                      | <1                      |
| 1,2-Dichloroethene                           | μg/L<br>μg/L             | <2              | <2                      | <2        | <2                      | 1.4 J               | 1.9 J          | <2              | <2                                      | <2                      | <2             | <2                      | <2                                     | < 2                                   | < 2            | 4              | 4.4                     | 0.21 J                  |
| 1,2-Dichloropropane                          |                          | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
|                                              | μg/L                     | < 5             | < 5                     | <5        | < 5                     | 2.4 J               | < 5            | <5              | <5                                      | < 5                     | < 5            | < 5                     | <5                                     | < 5                                   | < 5            | < 5            | <5                      | <5                      |
| 2-Butanone                                   | µg/L                     | < 5             | < 5                     | <5        | <5                      | <5                  | < 5            | < 5             | < 5                                     | < 5                     | <5             | <5                      | <5                                     | < 5                                   | < 5            | < 5            | < 5                     | <5                      |
| 2-Hexanone                                   | µg/L                     | < 5             | < 5                     | < 5       | <5                      | <5                  | <5             | < 5             | < 5                                     | < 5                     | < 5            | < 5                     | < 5                                    | < 5                                   | < 5            | <5             | <5                      | <5                      |
| 4-Methyl-2-pentanone                         | µg/L                     | <5              | < 5                     | <5        | < 5                     | 9.8 BU              | 5 JBU          | 5 JBU           | <5                                      | 5 JBU                   | 5 JBU          | 5 JBU                   | 2,                                     | 5 JBU                                 | 2.6 J          | 1.8 J          | 2 J                     | <5                      |
| Acetone<br>Benzene                           | μg/L<br>μg/L             | <               | <1                      | <1        | <1                      | <u>9,6 BU</u><br><1 | 0.21 J         | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | 9.5            | 0.86 J                  | <1                      |
|                                              | μg/L<br>μg/L             | 1               | <u> </u>                |           |                         |                     | 0.410          |                 |                                         | ~ 1                     |                |                         |                                        |                                       |                |                | 0.00 0                  |                         |
| Benzene, 1-methylethyl<br>Bromochloromethane | µցու<br>µց/L             | <u> </u>        |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| Bromodichloromethane                         |                          | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Bromoform                                    | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | 1 <1                    | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
|                                              | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Bromornethane<br>Carbon disulfide            | µg/L                     | <5              | <5                      | < 5       | < 5                     | 0.63 J              | 0.98 J         | 0.66 J          | < 5                                     | < 5                     | < 5            | < 5                     | < 5                                    | < 5                                   | < 5            | < 5            | < 5                     | < 5                     |
|                                              | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Carbon tetrachloride                         | µg/L                     | <u> </u>        | <u> ` </u>              |           |                         | <u> </u>            |                |                 |                                         |                         |                | <u>`</u>                | ·····                                  |                                       |                |                | ~1                      |                         |
| Dichlorodifluoromethane                      | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | < 1            | <1             | <1                      | <1                      |
| Chlorobenzene                                | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Chloroethane<br>Chloroform                   | μg/L                     | <1              | <1                      | <1        | <1                      |                     | <1             | <1              | <                                       | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      |                         |
|                                              | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | 0.38 J                  | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Chloromethane                                | µg/L/                    | <u> `'</u>      |                         |           | <u> </u>                |                     |                |                 | ~ 1                                     |                         | <u>``</u>      | 0.000                   |                                        | ·····                                 |                |                |                         |                         |
| cis-1,2-Dichloroethene                       | µg/L                     | <1              | < 1                     | < 1       | <1                      | <1                  | <1             | <1              | <1                                      | < 1                     | <1             | <1                      | <1                                     | <1                                    | < 1            | <1             | <1                      | <1                      |
| cls-1,3-Dichloropropene                      | µg/L.                    | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Dibromochloromethane                         | µg/L                     | <u> </u>        |                         |           | <u> </u>                |                     |                |                 |                                         |                         | + · · ·        |                         |                                        | ···· · · · · · ·                      | ~ .            |                |                         |                         |
| Dibromomethane<br>Ethylbenzene               | <u>μg/L</u>              | <1              | <1                      | < 1       | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | <1                      |
| Methylene chloride                           | μg/L<br>μg/L             | <5              | < 5                     | < 5       | < 5                     | < 5                 | <5             | <5              | <5                                      | < 5                     | <5             | < 5                     | < 5                                    | < 5                                   | < 5            | <5             | < 5                     | <5                      |
| Naphthalene                                  | µg/L                     |                 | ~ 3                     | ~ 5       |                         | ~~                  | ~~             |                 |                                         |                         | •••            | · · · · ·               |                                        |                                       |                |                |                         |                         |
|                                              | μg/L                     |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| n-Butylbenzene                               | μg/L                     |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                | · · · ·                 |                         |
| n-Propylbenzene                              | µց/L                     |                 |                         |           | ·   · · ·               |                     |                |                 |                                         | 1                       |                |                         |                                        |                                       |                |                |                         |                         |
| sec-Butylbenzene                             |                          | <1              | < 1                     | <1        | <1                      | <1                  | <1             | <1              | < 1                                     | <1                      | < 1            | <1                      | <1                                     | < 1                                   | <1             | <1             | < 1                     | < 1                     |
| Styrene<br>Tetrachloroethene                 | µg/L                     | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | 1 <1                    | 0.58 J                                 | <1                                    | 0.69 J         | <1             | <1                      | <1                      |
| Toluene                                      | μg/L<br>μg/L             | 1 BU            | 1.1 BU                  | 1 JBU     | 1 JBU                   | 1 JBU               | 1 JBU          | 1 JBU           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 JBU                   | 1 JBU          | 1 JBU                   | 3.9                                    | 1 JBU                                 | 3.7            | 1 JBU          | 1 JBU                   | 1 JBU                   |
| Trichloroethene                              | µg/L                     | <1              | <1                      | <1        | <1                      | 0.48 J              | 0.78 J         | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | 6,5            | 13,4                    | <1                      |
|                                              |                          | <1              | <1                      | <1        | <1                      | <1                  | <1             | <1              | <1                                      | <1                      | <1             | <1                      | <1                                     | <1                                    | <1             | <1             | <1                      | 1 <1                    |
| Vinyl chloride<br>Xylenes (total)            | μg/L                     | <3              | < 3                     | < 3       | < 3                     | < 3                 | < 3            | < 3             | <3                                      | < 3                     | < 3            | < 3                     | < 3                                    | <3                                    | < 3            | < 3            | < 3                     | < 3                     |
| Notes:                                       | μg/L                     | <u> </u>        | <u> </u>                | 1 .0      |                         | <u> </u>            | 1 10           | <u>، ۲۷</u>     | 1                                       |                         | <u> </u>       | <u> </u>                | ······································ |                                       |                |                |                         |                         |
| MW = monitor well groundwat                  | er samole                |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        | :                                     |                |                |                         |                         |
| VP = vertical profile groundwa               |                          |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        | :                                     |                |                |                         |                         |
| Blank cell = no data/constitue               |                          |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| Bolded values indicate detect                |                          |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| J = Estimated value                          |                          |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| R = Result rejected during da                | ta validation            |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| B = Analyte detected in assoc                |                          |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
| U = Non-detect based on data                 |                          |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |
|                                              | =====•••                 |                 |                         |           |                         |                     |                |                 |                                         |                         |                |                         |                                        |                                       |                |                |                         |                         |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                           | Location ID                                   | AF-50          | AF-50          | AF-50 DUP                   | AF 50                   | 45.50                   | 45.00                   | AF-50          | 45.54                       | 45.54                       | 45.54                       | 45.54                       | 45 54                       | 1 1 1 1                     | 45.54                       | 42.51                       | 1 15 61                     |                             |
|---------------------------|-----------------------------------------------|----------------|----------------|-----------------------------|-------------------------|-------------------------|-------------------------|----------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                           | Sample ID                                     | AF5042(120300) | AF5052(120300) | AF-50 DOP<br>AF5054(120300) | AF-50<br>AF5062(120300) | AF-50<br>AF5072(120300) | AF-50<br>AF5082(120300) | AF5092(120300) | AF-51                       | AF-52                       |
|                           | Sample Date                                   | 12/3/2000      | 12/3/2000      | 12/3/2000                   | 12/3/2000               | 12/3/2000               | 12/3/2000               | 12/3/2000      | AF5112(120300)<br>12/3/2000 | AF5122(120300)<br>12/3/2000 | AF5132(120300)<br>12/3/2000 | AF5142(120300)<br>12/3/2000 | AF5152(120400)<br>12/4/2000 | AF5162(120400)<br>12/4/2000 | AF5172(120400)<br>12/4/2000 | AF5182(120400)<br>12/4/2000 | AF5192(120400)<br>12/4/2000 | AF5212(120200)<br>12/2/2000 |
|                           | Sample Type                                   | VP             | VP             | VP                          | VP                      | 12/3/2000<br>VP         | 12/3/2000<br>VP         | VP             | VP                          | 12/3/2000<br>VP             | VP                          | VP                          | 12/4/2000<br>VP             | 12/4/2000                   | 12/4/2000<br>VP             | 12/4/2000<br>VP             | 12/4/2000<br>VP             | VP                          |
|                           | Start Depth                                   | 19             | 24             | 24                          | 29                      | 34                      | 39                      | 44             | 5                           | 10                          | 15                          | 20                          | 25                          | 30                          | 35                          | 40                          | 45                          | 4                           |
|                           | End Depth                                     | 24             | 29             | 29                          | 34                      | 34                      | 44                      | 49             | 10                          | 15                          | 20                          | 25                          | 30                          | 35                          | 40                          | 40                          | 50                          | 9                           |
| Chemical Name             | Unit                                          |                |                | 20                          |                         |                         |                         |                |                             | 1                           |                             | 20                          | 00                          |                             |                             | 40                          |                             |                             |
| 1.1.1-Trichloroethane     | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          |
| 1,1,2,2-Tetrachloroethane | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| 1,1,2-Trichloroethane     | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | 1 21                        | <1                          |
| 1.1-Dichloroelhane        | μ <u>μ</u> γ/L                                | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | 10.3                        | 2.1                         | 0.76 J                      | <1                          | <1                          | <1                          | <1                          | <1                          |
| 1.1-Dichlorgethene        | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | 0.64 J                      | 22.5                        | 1.9                         | 2.3                         | <1                          | <1                          | <1                          |                             | <1                          |
| 1,2-Dibromoethane         | μg/L                                          | 1              |                |                             |                         |                         |                         |                | <u>`</u>                    | 0.040                       |                             | 1.0                         | 2,0                         |                             |                             |                             |                             |                             |
| 1.2-Dichloroethane        | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          |
| 1.2-Dichloroethene        | μ <u>μ</u> μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ | < 2            | < 2            | <2                          | <2                      | <2                      | <2                      | <2             | 3.4                         | 5.1                         | 65.4                        | 4                           | 11.9                        | 0.51 J                      | < 2                         | 0.97 J                      | <2                          | <2                          |
| 1,2-Dichloropropane       | µg/L                                          | <1             | <1             | <1 <1                       | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| 2-Butanone                | μg/L                                          | 1.6 J          | < 5            | < 5                         | < 5                     | < 5                     | < 5                     | < 5            | <5                          | <5                          | <5                          | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | 1.2 J                       |
| 2-Hexanone                | μg/L                                          | < 5            | < 5            | <5                          | < 5                     | < 5                     | < 5                     | < 5            | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | <5                          | < 5                         |
| 4-Methyl-2-pentanone      | μ <u>α/L</u>                                  | < 5            | < 5            | < 5                         | <5                      | < 5                     | < 5                     | < 5            | <5                          | < 5                         | <5                          | < 5                         | < 5                         | < 5                         | < 5                         | <5                          | < 5                         | <5                          |
| Acetone                   | μg/L                                          | 5 JBU          | 5 JBU          | 5 JBU                       | 5 JBU                   | 5 JBU                   | 5 JBU                   | 5 JBU          | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | <5                          | <5                          | 8.5                         |
| Benzene                   | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | 1.3                         | 0.86 J                      | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | 0.18 J                      |
| Benzene, 1-methylethyl    | μg/1.                                         |                |                |                             |                         |                         | 1                       |                |                             |                             |                             | -                           | ·                           |                             |                             | [····                       |                             |                             |
| Bromochloromethane        | µg/L                                          |                |                |                             |                         |                         |                         |                |                             | 1                           |                             |                             |                             |                             |                             |                             |                             |                             |
| Bromodichloromethane      | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Bromoform                 | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Bromomethane              | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Carbon disulfide          | µg/L                                          | < 5            | < 5            | < 5                         | < 5                     | < 5                     | < 5                     | < 5            | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         |
| Carbon tetrachloride      | µg/L                                          | <1             | < 1            | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Dichlorodifluoromethane   | µg/L                                          |                |                |                             |                         |                         |                         |                | 1                           |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| Chlorobanzene             | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Chloroethane              | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Chloroform                | μg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          |
| Chloromethane             | μg/L                                          | <1             | <1             | <1                          | < 1                     | < 1                     | <1                      | <1             | <1                          | <1                          | < 1                         | < 1                         | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          |
| cis-1,2-Dichloroethene    | µg/L                                          | T              |                |                             |                         |                         |                         |                |                             | 1                           |                             |                             | [                           |                             |                             | 1                           |                             |                             |
| cis-1,3-Dichloropropene   | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          |
| Dibromochloromethane      | μg/L                                          | <1             | <1             | <1                          | <1                      | < 1                     | <1                      | <1             | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | < 1                         | <1                          | < 1                         | < 1                         |
| Dibromomethane            | μg/L                                          |                |                |                             |                         |                         | 1                       |                | [                           | 1                           |                             |                             |                             |                             |                             |                             |                             |                             |
| Ethylbenzene              | µg/L                                          | <1             | <1             | <1                          | <1                      | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | 0.16 J                      | <1                          | < 1                         | <1                          |
| Methylene chloride        | μg/L                                          | < 5            | < 5            | < 5                         | < 5                     | < 5                     | < 5                     | < 5            | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         |
| Naphthalene               | μg/L                                          |                |                |                             |                         |                         |                         |                |                             |                             |                             |                             |                             | 1                           |                             |                             |                             |                             |
| n-Butyibenzene            | μg/L                                          |                |                |                             |                         |                         |                         |                |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| n-Propylbenzene           | µg/L                                          |                |                |                             |                         |                         |                         |                |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| sec-Butylbenzene          | μg/L                                          |                |                |                             |                         |                         |                         |                |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| Styrene                   | µg/L                                          | <1             | <1             | <1                          | < 1                     | <1                      | <1                      | <1             | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | < 1                         | <1                          | < 1                         | < 1                         |
| Tetrachloroethene         | µg/L                                          | <1             | < 1            | <1                          | <1                      | < 1                     | <1                      | <1             | < 1                         | < 1                         | < 1                         | < 1                         | <1                          | < 1                         | < 1                         | <1                          | <1                          | <1                          |
| Toluene                   | µg/L                                          | 1 JBU          | 1 JBU          | 1 JBU                       | 1 JBU                   | 1 JBU                   | 1 JBU                   | 1 JBU          | 0.27 J                      | <1                          | < 1                         | < 1                         | 1 JBU                       | 1 JBU                       | <u>2.1</u> BU               | 1.3 BU                      | 1 JBU                       | 1 JBU                       |
| Trichloroethene           | µg/L                                          | <1             | <1             | <1                          | < 1                     | <1                      | <1                      | <1             | 25.6                        | 37.3                        | 604                         | 10.9                        | 90.3                        | 0.38 J                      | < 1                         | 2.4                         | < 1                         | < 1                         |
| Vinyl chloride            | µg/L                                          | <1             | <1             | < 1                         | < 1                     | <1                      | <1                      | <1             | <1                          | <1                          | 0.6 J                       | <1                          | <1                          | <1                          | < 1                         | <1                          | < 1                         | < 1                         |
| Xylenes (total)           | µg/L                                          | < 3            | < 3            | < 3                         | < 3                     | < 3                     | < 3                     | < 3            | < 3                         | <3                          | < 3                         | < 3                         | < 3                         | < 3                         | 0.45 J                      | < 3                         | < 3                         | < 3                         |
| Notes:                    |                                               |                |                |                             |                         |                         |                         |                |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |

Notes: MW = monitor well groundwater sample VP = vertical profile groundwater sample Blank cell = no data/constituent not analyzed for Bolded values Indicate detections

J = Estimated value

R = Result rejected during data validation B = Analyte detected in associated blank

U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

~

# Table 4-2 Summary of Groundwater Analyses, UST 25 and 26 CAP- Part B Investigations HAA-17 Hunter Army Airfield-Savannah, GA

|                                   | Location ID            | AF-52          | AF-52                                    | AF-52          | AF-52          | AF-52             | AF-52          | AF-52          | AF-52          | AF-52 DUP      | AF-53          | AF-54          | AF-54 DUP      | 45.55                   | 15.50           |                | T              |                                       |
|-----------------------------------|------------------------|----------------|------------------------------------------|----------------|----------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------------|-----------------|----------------|----------------|---------------------------------------|
|                                   | Sample ID              | AF5222(120200) | AF5232(120200)                           | AF5242(120200) | AF5252(120200) | AF5262(120200)    | AF5272(120200) | AF5282(120200) | AF5292(120200) | AF5294(120200) | AF5312(031001) | AF5412(031001) | AF5414(031001) | AF-55<br>AF5512(031001) | AF-56           | AF-57          | AF-57 DUP      | AF-58                                 |
|                                   | Sample Date            | 12/2/2000      | 12/2/2000                                | 12/2/2000      | 12/2/2000      | 12/2/2000         | 12/2/2000      | 12/2/2000      | 12/2/2000      | 12/2/2000      | 3/10/2001      | 3/10/2001      | 3/10/2001      | 3/10/2001               | AF5612(031001)  | AF5712(030901) | AF5714(030901) |                                       |
|                                   | Sample Type            | VP             | VP                                       | VP             | VP             | VP                | VP             | VP             | VP             | VP             | MW             | MW             | MW             | MW                      | 3/10/2001<br>MW | 3/9/2001<br>MW | 3/9/2001       | 3/9/2001                              |
|                                   | Start Depth            | 9              | 14                                       | 19             | 24             | 29                | 34             | 39             | 44             | 44             | 20             | 32.4           | 32.4           | 24                      | 19.9            | 57,8           | MW<br>57,8     | MW                                    |
|                                   | End Depth              | 14             | 19                                       | 24             | 29             | 34                | 39             | 44             | 49             | 49             | 30             | 42.4           | 42.4           | 34                      | 29.9            | 62.8           | 62.8           | 2.7                                   |
| Chemical Name                     | Unit                   |                |                                          |                |                |                   |                |                |                |                |                |                |                |                         | 20,0            | 02.0           | 04.0           | 12.1                                  |
| 1,1,1-Trichloroethane             | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | < 1            | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| 1,1,2,2-Tetrachloroethane         | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | < 1            | < 1            | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| 1,1,2-Trichloroethane             | µg/L                   | < 1            | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | <5              | <1             | <1             | <1                                    |
| 1,1-Dichloroethane                | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | <1             |                                       |
| 1.1-Dichloroethene                | µg/L                   | <1             | < 20                                     | 16.3 J         | 15 J           | 0.61 J            | < 10           | < 10           | < 1            | < 1            | 4.6            | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| 1,2-Dibromoethane                 | μg/L                   |                |                                          |                |                |                   |                |                |                |                |                |                |                |                         |                 |                |                | · · · · · · · · · · · · · · · · · · · |
| 1.2-Dichloroethane                | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | < 1            | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| 1,2-Dichloroethene                | µg/L                   | <2             | 34.5 J                                   | 378            | 174            | 6                 | 65.2           | 42.7           | 0.31 J         | 0.32 J         | 88.8           | 53.2           | 57.8           | 154                     | 7.9 J           | <2             | <2             | 8                                     |
| 1,2-Dichloropropane               | µg/L                   | < 1            | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | < 1            | <1             | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| 2-Butanone                        | µg/L                   | < 5            | < 100                                    | < 250          | < 125          | < 5               | < 50           | < 50           | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 25            | < 5            | < 5            | 2.8 J                                 |
| 2-Hexanone                        | μց/Լ                   | < 5            | < 100                                    | < 250          | < 125          | < 5               | < 50           | < 50           | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 25            | < 5            | < 5            | < 5                                   |
| 4-Methyl-2-pentanone              | µg/L                   | < 5            | < 100                                    | < 250          | < 125          | < 5               | < 50           | < 50           | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 25            | < 5            | < 5            | < 5                                   |
| Acetone                           | µg/L                   | 1.8 J          | < 100                                    | < 250          | < 125          | < 5               | < 50           | < 50           | < 5            | < 5            | 97.3           | 613 J          | 554 J          | 3100 J                  | 25 JU           | 220            | 200            | 1360 J                                |
| Benzene                           | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | 0.22 J         | <1             | <1             | 0.35 J                  | < 5             | <1             | <1             | 0,16 J                                |
| Benzene, 1-methylethyl            | μg/L                   |                |                                          |                |                |                   |                |                |                |                |                |                |                |                         |                 |                |                | 0.100                                 |
| Bromochloromethane                | .µg/L                  |                |                                          |                |                |                   |                |                |                |                |                |                |                |                         | <u> </u>        |                | · · · · ·      |                                       |
| Bromodichloromethane              | μg/L                   | < 1            | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | < 1            | <1                                    |
| Bromoform                         | μg/L                   | <1             | < 20                                     | < 50           | < 25           | < 1               | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| Bromomethane                      | µg/L                   | <1             | < 20                                     | < 50           | < 25           | < 1               | < 10           | < 10           | <1             | <1             | < 1            | <1             | <1             | < 1                     | < 5             | <1             | <1             | <1                                    |
| Carbon disulfide                  | µg/L                   | < 5            | < 100                                    | < 250          | < 125          | < 5               | < 50           | < 50           | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 25            | < 5            | < 5            | < 5                                   |
| Carbon tetrachloride              | µg/L                   | <1             | < 20                                     | < 50           | < 25           | < 1               | < 10           | < 10           | <1             | <1             | < 1            | <1             | < 1            | <1                      | < 5             | <1             | <1             | <1                                    |
| Dichlorodifluoromethane           | µg/L                   |                |                                          |                |                |                   |                |                |                |                |                |                |                |                         |                 |                |                | · · · · · · · · · · · · · · · · · · · |
| Chlorobenzene                     | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | < 1            | <1             | < 1            | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| Chloroethane                      | μg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| Chloroform                        | µg/L                   | <1             | < 20                                     | < 50           | < 25           | < 1               | < 10           | < 10           | <1             | < 1            | <1             | 2.5            | 2.3            | 0.21 J                  | < 5             | 4.7            | 4.7            | 1.1                                   |
| Chloromethane                     | µg/L                   | <1             | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1 ;                    | < 5             | < 1            | <1             | <1                                    |
| cis-1,2-Dichloroethene            | µg/L                   |                |                                          |                |                |                   |                |                |                |                |                |                |                |                         |                 |                |                |                                       |
| cis-1,3-Dichloropropene           | µg/L                   | < 1            | < 20                                     | < 50           | < 25           | <1                | < 10           | < 10           | <1             | <1             | <1             | <1             | <1             | <1 :                    | < 5             | <1             | <1             | <1                                    |
| Dibromochloromethane              | μg/L                   | < 1            | < 20                                     | < 50           | < 25           | < 1               | < 10           | < 10           | < 1            | <1             | <1             | <1             | <1             | <1                      | < 5             | < 1            | <1             | <1                                    |
| Dibromomethane<br>Ethylbenzene    | μg/L                   | <1             | < 20                                     | < 50           | < 05           |                   |                |                |                |                |                |                |                |                         |                 |                |                |                                       |
|                                   | μg/L<br>μα/L           | <1             | < 100                                    | < 50<br>< 250  | < 25           | <1                | < 10           | < 10           | <1             | < 1            | <1             | <1             | <1             | <1                      | < 5             | <1             | <1             | <1                                    |
| Methylene chloride<br>Naphthalene | μα/L<br>μα/L           | <u>``</u>      |                                          | ~ 250          | < 125          | < 5               | < 50           | < 50           | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                     | < 25            | < 5            | < 5            | < 5                                   |
| n-Butylbenzene                    | μ <u>α</u> /ι.<br>μg/L |                | <u> </u>                                 | 1              | · · · ·        |                   |                | l              |                | · · · · ·      |                |                |                |                         |                 |                |                |                                       |
| n-Propylbenzene                   | , <b>e</b>             |                |                                          |                |                |                   |                | ļ              |                |                |                |                |                |                         |                 |                |                |                                       |
| 14                                | µg/L<br>µg/L           |                |                                          |                | ·              |                   | ·              | <u> </u>       |                |                |                |                |                |                         |                 |                |                |                                       |
| sec-Butylbenzene                  |                        | <1             | < 20                                     | < 50           | < 25           |                   |                |                |                |                |                |                |                |                         |                 |                |                |                                       |
| Tetrachtoroethene                 | μg/L                   | <1             | < 20                                     | < 50           |                | <1                | < 10           | < 10           | <1             | < 1            | <1             | <1             | <1             | <1                      | < 5             | < 1            | <1             | <1                                    |
| Toluene                           | μg/L<br>μg/L           |                | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | < 50<br>50 JBU | < 25<br>< 25   | <1<br>1 JBU       | < 10<br>< 10   | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | < 1            | <1                                    |
| Trichloroethene                   | րց/լ                   | 0.33 J         | 1780                                     | 7730           | 2120           | 1 JBU<br>34.1     |                | < 10           | 1 JBU          | 1 JBU          | 0.27 J         | <1             | <1             | <1                      | < 5             | <1             | <1             | 0.62 J                                |
| Vinvl chloride                    | μιν                    | <1             | < 20                                     | < 50           | < 25           | <u>34.1</u><br><1 | 631            | 516            | 2.8            | 2.9            | 2410 J         | 352            | 394            | 1020                    | 303             | 0.72 J         | 0.17 J         | 13                                    |
| Xvlenes (total)                   | μg/L<br>μα/L           | <3             | < 60                                     | < 150          | < 25           | <1                | < 10<br>< 30   | < 10           | <1             | <1             | <1             | <1             | <1             | <1                      | < 5             | <1             | < 1            | < 1                                   |
| America (lutal)                   | անչու                  | <u>``</u>      | 1 500                                    | N 100          | <u> </u>       | <u> </u>          | < 3U           | < 30           | < 3            | < 3            | < 3            | < 3            | < 3            | < 3                     | < 15            | < 3            | < 3            | 0.25 J                                |

(

(

West indicate the second secon

J = Estimated value

R = Result rejected during data validation B = Analyte detected in associated blank

U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

13 of 22

i

Table 4-2 Summary of Groundwater Analyses, UST 25 and 26 CAP- Part B Investigations HAA-17 Hunter Army Airfield-Savannah, GA

|                                   | Location ID    | AF-59          | AF-60                                 | AF-60 DUP          | AF-61              | 45.00                   |                         | 1 15 00                 |                             |                             |                 |                |                |                 |                |                |                |                    |
|-----------------------------------|----------------|----------------|---------------------------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-----------------------------|-----------------------------|-----------------|----------------|----------------|-----------------|----------------|----------------|----------------|--------------------|
|                                   | Sample ID      | AF5912(031001) | AF-00<br>AF6012(031001)               | AF6014(031001)     | AF6112(031001)     | AF-62<br>AF6212(031001) | AF-63<br>AF6312(071602) | AF-63<br>AF6322(071602) | AF-63                       | AF-63                       | AF-63           | AF-63          | AF-63 DUP      | AF-63           | AF-63          | AF-63          | AF-64          | AF-64              |
|                                   | Sample Date    | 3/10/2001      | 3/10/2001                             | 3/10/2001          | 3/10/2001          | 3/10/2001               | 7/16/2002               | 7/16/2002               | AF6332(071602)<br>7/16/2002 | AF6342(071602)<br>7/16/2002 | AF6352(071602)  | AF6362(071602) | AF6364(071602) | AF6372(071602)  | AF6382(071602) | AF6392(071602) | AF6422(071602) | AF6432(071602)     |
|                                   | Sample Type    | MW             | MW                                    | MW                 | MW                 | MW                      | VP                      | VP                      | VP                          | VP                          | 7/16/2002<br>VP | 7/16/2002      | 7/16/2002      | 7/16/2002       | 7/16/2002      | 7/16/2002      | 7/16/2002      | 7/16/2002          |
|                                   | Start Depth    | 2.3            | 20                                    | 20                 | 20                 | 3                       | 1                       | 6                       | 11                          | 16                          | 21              | VP<br>26       | VP             | VP              | VP             | VP             | VP             | VP                 |
|                                   | End Depth      | 12.3           | 30                                    | 30                 | 30                 | 13                      | 5                       | 10                      | 15                          | 20                          | 25              | 30             | 26<br>30       | <u>31</u><br>35 | . 36           | 41             | 6              | 11                 |
| Chemical Name                     | Unit           |                |                                       |                    |                    |                         |                         | <u> </u>                |                             |                             | 20              |                | 30             | . 35            | 40             | 45             | 10             | 15                 |
| 1,1,1-Trichloroethane             | µg/L           | <1             | <1                                    | <1                 | <1                 | < 1                     | <1                      | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1              | < 25           |                |                |                    |
| 1,1,2,2-Tetrachloroethane         | µg/L           | < 1            | < 1                                   | <1                 | < 1                | <1                      | <1                      | <1                      | <1                          | < 1                         | <1              | <1             | <1             | <1              | < 25           | < 5<br>< 5     | <1             | <1                 |
| 1,1,2-Trichloroethane             | µg/L           | <1             | <1                                    | < 1                | < 1                | <1                      | <1                      | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| 1,1-Dichloroethane                | µg/L           | < 1            | < 1                                   | <1                 | <1                 | <1                      | <1                      | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1              | < 25           | < 5            | <1<br><1       | <1                 |
| 1,1-Dichloroethene                | µg/L           | <1             | <1                                    | <1                 | <1                 | < 1                     | < 1                     | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1              | < 25           | < 5            |                | <1                 |
| 1,2-Dibromoethane                 | μg/L           |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 | ~ 25           |                | <1             | < 1                |
| 1,2-Dichloroethane                | µg/L           | <1             | < 1                                   | <1                 | <1                 | <1                      | < 1                     | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1              | < 25           | < 5            | <1             |                    |
| 1,2-Dichloroethene                | µg/L           | < 2            | 3.4                                   | 3.5                | 1.3 J              | <2                      | <2                      | <2                      | < 2                         | 0.71 J                      | 1.2 J           | 4.5            | 4.2            | <2              | 116            | 38.7           | <2             | <1                 |
| 1,2-Dichloropropane               | µg/L           | <1             | <1                                    | < 1                | <1                 | < 1                     | <1                      | <1                      | <1                          | < 1                         | <1              | <1             | <1             | <1              | < 25           | <u> </u>       | <1             | <2                 |
| 2-Butanone                        | µg/L           | 1 J            | < 5                                   | < 5                | 2.3 J              | 1.9 J                   | < 5                     | < 5                     | < 5                         | < 5                         | < 5             | < 5            | < 5            | <5              | < 125          | < 25           | <5             | <u>&lt;1</u><br><5 |
| 2-Hexanone                        | µg/L           | < 5            | < 5                                   | < 5                | < 5                | < 5                     | < 5                     | < 5                     | < 5                         | < 5                         | < 5             | <5             | < 5            | < 5             | < 125          | < 25           | < 5            | <5                 |
| 4-Methyl-2-pentanone              | µg/L           | < 5            | < 5                                   | < 5                | < 5                | < 5                     | < 5                     | < 5                     | < 5                         | < 5                         | < 5             | < 5            | < 5            | < 5             | < 125          | < 25           | < 5            | < 5                |
| Acetone                           | µg/L           | 2250 J         | 33.8 U                                | 35.2 U             | 356                | 8630 J                  | 6.4                     | < 5                     | < 5                         | < 5                         | < 5             | <5             | < 5            | < 5             | < 125          | < 25           | < 5            | <5                 |
| Benzene                           | µg/L           | 0.67 J         | 0.26 J                                | 0.25 J             | <1                 | 0.15 J                  | 0.92 J                  | 5.6                     | <1                          | <1                          | 1.8             | 3              | 3              | 1.4             | < 25           | < 5            | <1             | <1                 |
| Benzene, 1-methylethyl            | μg/L           |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| Bromochloromethane                | µg/L           |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| Bromodichloromethane              | µg/L           | <1             | <1                                    | <1                 | <1                 | <1                      | < 1                     | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| Bromoform                         | µg/L           | <1             | < 1                                   | <1                 | <1                 | <1                      | <1                      | <1                      | <1                          | <.1                         | < 1             | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| Bromomethane                      | µg/L           | <1             | <1                                    | < 1                | <1                 | < 1                     | <1                      | <1                      | <1                          | < 1                         | <1              | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| Carbon disulfide                  | µg/L           | < 5            | < 5                                   | < 5                | < 5                | < 5                     | < 5                     | < 5                     | < 5                         | < 5                         | < 5             | < 5            | < 5            | < 5             | < 125          | < 25           | < 5            | <5                 |
| Carbon tetrachloride              | µg/L           | <1             | <1                                    | <1                 | <1                 | <1                      | < 1                     | <1                      | <1                          | < 1                         | <1              | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| Dichlorodifluoromethane           | µg/L           |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| Chlorobenzene                     | µg/L           | <1             | <1                                    | <1                 | < 1                | <1                      | < 1                     | <1                      | <1                          | < 1                         | < 1             | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| Chloroethane                      | µg/L           | <1             | <1                                    | <1                 | < 1                | < 1                     | <1                      | <1                      | <1                          | <1                          | < 1             | <1             | < 1            | <1              | < 25           | < 5            | <1             | <1                 |
| Chloroform                        | µg/L           | 0.66 J         | <1                                    | <1                 | 0.39 J             | 1                       | <1                      | <1                      | <1                          | <1                          | <1              | <1             | < 1            | <1              | < 25           | < 5            | <1             | <1                 |
| Chloromethane                     | µg/L           | <1             | <1                                    | <1                 | < 1                | < 1                     | <1                      | <1                      | <1                          | <1                          | <1              | < 1            | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| cis-1,2-Dichloroethene            | µg/Ĺ           |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| cls-1,3-Dichloropropene           | µg/L           | <1             | < 1                                   | <1                 | < 1                | < 1                     | <1                      | <1                      | <1                          | <1                          | < 1             | <1             | < 1            | <1              | < 25           | < 5            | < 1            | <1                 |
| Dibromochloromethane              | µg/L,          | <1             | <1                                    | <1                 | <1                 | < 1                     | <1                      | <1                      | <1                          | <1                          | <1              | <1             | <1             | <1 -            | < 25           | < 5            | <1             | <1                 |
| Dibromomethane                    | µg/L           |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| Ethylbenzene                      | µg/L           | <1             | <1                                    | <1                 | <1                 | < 1                     | <1                      | 3.5                     | <1                          | <1                          | 0.45 J          | < 1            | < 1            | 0.64 J          | < 25           | < 5            | <1             | <1                 |
| Methylene chloride<br>Naphthalene | μg/L.<br>μα/L. | < 5            | < 5                                   | < 5                | < 5                | < 5                     | < 5                     | < 5                     | 5 JBU                       | < 5                         | <u>5</u> JBU    | 5 JBU          | 5 JB           | < 5             | < 125          | < 25           | 5 JBU          | 5 JBU              |
|                                   |                |                | · · · · · · · · · · · · · · · · · · · |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| n-Bulylbenzene                    | μg/L           |                |                                       |                    |                    |                         | <b> </b>                |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| n-Propylbenzene                   | µg/L           |                | l                                     |                    |                    |                         |                         | [                       |                             |                             |                 |                |                |                 |                |                |                |                    |
| sec-Butylbenzene                  | µg/L           |                |                                       | < 1                |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |
| Styrene<br>Tetrachloroethene      | µg/L           | <1             | <1                                    |                    | <1                 | < 1                     | <1                      | <1                      | <1                          | < 1                         | <1              | < 1            | < 1            | <1              | < 25           | < 5            | <1             | <1                 |
| Toluene                           | µg/L           | <1             | <1                                    | <pre> &lt; 1</pre> | < <u>1</u> ,<br><1 | <u> </u>                | <1                      | <1                      | <1                          | < 1                         | <1              | <1             | <1             | <1              | < 25           | < 5            | <1             | <1                 |
| Trichloroethene                   | μg/L<br>μg/l.  | <1             | 26.1                                  | 24.9               | 267                |                         | 2.4                     | 1 1 1 1                 | 1 JU                        | 1 JU                        | 20              | 1 JU           | <u>1</u> J     | 1 JU -          | < 25           | 3.8 J          | 10             | 2.2 U              |
| Vinvi chloride                    | ացու<br>ացու   | <1             | <1                                    | 24.9               | 267<br>< 1         | 0.39 J                  | <1                      | <1                      | <1                          | 12.9                        | 20.9            | 71.7           | 68.7           | 0.88 J          | 1250           | 344            | < 1            | <1                 |
| Xvienes (total)                   | μg/L<br>μg/L   | < 3            | < 3                                   | < 3                | < 1                | <1<br><3                | <1                      | <1                      | <1                          | <1                          | <1              | <1             | < 1            | <1              | < 25           | < 5            | <1             | <1                 |
| Notes:                            | µց/ւ           | 10             | ~ 3                                   | 1 20               | L > 3              | 5                       | 1J                      | < 3                     | < 3                         | < 3                         | < 3             | < 3            | < 3            | < 3             | < 75           | < 15           | < 3            | < 3                |
| Notes.                            |                |                |                                       |                    |                    |                         |                         |                         |                             |                             |                 |                |                |                 |                |                |                |                    |

Notes: MW = monitor well groundwater sample VP = vertical profile groundwater sample Blank cell = no data/constituent not analyzed for Bolded values indicate detections J = Estimated value R = Result rejected during data validation B = Analyte detected in associated blank U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                                  | Sample ID    | AF6442(071602) | AF6452(071602) | AF6462(071602) | AF6472(071602)  | AF-64          | AF-64          | AF-65          | AF-65          | AF-65          | AF-65          | AF-65          |                |                |                |                |                 |                                       |
|----------------------------------|--------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|---------------------------------------|
|                                  | Sample Date  | 7/16/2002      | 7/16/2002      | 7/16/2002      |                 | AF6482(071602) | AF6492(071602) | AF6512(071702) | AF6522(071702) | AF6532(071702) | AF6542(071702) | AF6552(071702) | AF-65 DUP      | AF-65          | AF-65          | AF-65          | AF-65           | AF-66                                 |
|                                  | Sample Type  | VP             | VP             | VP             | 7/16/2002<br>VP | 7/16/2002      | 7/16/2002      | 7/17/2002      | 7/17/2002      | 7/17/2002      | 7/17/2002      | 7/17/2002      | AF6554(071702) | AF6562(071702) | AF6572(071702) | AF6582(071702) |                 | AF6612(07                             |
|                                  | Start Depth  | 16             | 21             | 26             | 31              | VP             | 7/17/2002      | 7/17/2002      | 7/17/2002      | 7/17/2002      | 7/17/2002       | 7/16/20                               |
|                                  | End Depth    | 20             | 25             | 30             | 35              | 36             | 41             | 1              | 6              | 11             | 16             | 21             | VP             | VP             | VP             | VP             | VP              | VP                                    |
| mical Name                       | Unit         |                |                |                |                 | 40             | 45             | 5              | 10             | 15             | 20             | 25             | 21             | 26             | 31             | 36             | 41              | 1 1                                   |
| 1-Trichloroethane                | µg/L         | <1             | <1             | <1             |                 |                |                |                |                |                |                | 20             | 25             |                | 35             | 40             | 45              | 5                                     |
| 2,2-Tetrachloroethane            | ug/L         | <1             | <1             |                | <1              | <1             | < 1            | <1             | <1             | <1             | <1             | <1             |                |                |                |                |                 | <u> </u>                              |
| 2-Trichloroethane                | <u>μg/L</u>  | <1             | <1             | <1             | <1              | <1             | <1             | <1             | <1             | <1             | <1             |                | <1             | <u> </u>       | <1             | <1             | <1J             | <1                                    |
| -Dichloroethane                  | <u>μg/l.</u> | <1             |                | <1             | <1              | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1             | <1J             | <1                                    |
| -Dichloroethene                  |              |                | < 1            | <1             | <1              | <1             | <1             | <1             | <1             | <1             |                | <1             | <1             | <1             | <1             | <1             | <1J             | · · · · · · · · · · · · · · · · · · · |
| -Dibromoethane                   | µg/L         | <1             | <1             | <1             | <1              | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1.             | <1                                    |
|                                  | µg/L         |                |                |                |                 |                |                | ·              |                |                | <1             | <1             | <1             | <1             | < 1            | <1             | <1J             | <1                                    |
| -Dichloroethane                  | µg/L         | <1             | <1             | <1             | <1              | <1             | <1             | <1             | <1             |                |                |                |                |                |                |                | <u> </u>        | <1                                    |
| -Dichloroethene                  | µg/L         | <2             | < 2            | 2              | 1.4 J           | <2             | 4.4            | <2             |                | <1             | <1             | <1             | <1             | < 1            | <1             |                |                 |                                       |
| Dichloropropane                  | μg/L         | <1             | <1             | <1             | <1              | <1             | <1             |                | < 2            | <2             | < 2            | 0.38 J         | 0.37 J         | < 2            | <2             | <1             | <1J             | < 1                                   |
| Butanone                         | µg/L         | < 5            | < 5            | <5             | < 5             | 5 JU           | < 5            | <1             | <1             | <1             | <1             | <1             | <1             | <1             |                | <2             | < 2 J           | <2                                    |
| lexanone                         | μg/L         | < 5            | < 5            | < 5            | < 5             | <5             |                | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | <1             | <1             | <u>&lt;1</u> J  | < 1                                   |
| lethyl-2-pentanone               | µg/L         | < 5            | < 5            | < 5            | < 5             | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            |                | < 5            | < 5            | 5.3 J           | < 5                                   |
| etone                            | µg/L         | < 5            | < 5            | <5             | < 5             |                | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | <5             | < 5            | < 5            | < 5            | < 5 J           | < 5                                   |
| nzene                            | ug/L         | <1             | <1             | <1             |                 | 7.3 U          | < 5            | 8.8 U          | < 5            | < 5            | < 5            | < 5            |                | < 5            | < 5            | < 5            | < 5 J           | < 5                                   |
| nzene, 1-methylethyl             | µg/L         |                |                |                | <1              | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | < 5            | < 5            | < 5            | 5 JU           | 19.4 UJ         | 3.1 J                                 |
| mochloromethane                  | μg/L         |                | ·              |                |                 |                |                |                |                |                |                | `!             | <1             | <1             | <1             | <1             | 0.38 J          | <1                                    |
| omodichloromethane               | μg/L         | <1             | <1             |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| omoform                          | μg/L         | <1             |                | <1             | <u>&lt;1</u>    | <1             | < 1            | <1             | <1             | <1             | <1             |                |                | {              |                |                |                 |                                       |
| momethane                        |              |                | <1             | <1             | <1              | < 1            | <1             | <1             | <1             | <1             |                | <1             | <1             | <1             | <1             | <1             | <1J             | <1                                    |
| rbon disulfide                   | µg/L         | <1             | <1             | <1             | <1              | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1J             | <1                                    |
| rbon tetrachloride               | µg/L         | < 5            | < 5            | < 5            | < 5             | < 5            | < 5            | < 5            | < 5            | < 5            | < 1            | < 1            |                | <1             | <1             | <1             | <1J             |                                       |
| hlorodifluoromethane             | µg/L         | < 1            | <1             | <1             | <1              | <1             | <1             | <1             | <1             |                | < 5            | < 5            | < 5            | < 5            | < 5            | <5             |                 | <1                                    |
|                                  | µg/L         |                |                |                |                 |                |                |                | <u> </u>       | < 1            | <1             | <1             | <1             | < 1            |                | <1             | < 5 J           | < 5                                   |
| lorobenzene                      | µg/L         | <1             | <1             | <1             | <1              | <1             | <1             | <1             |                |                |                |                |                |                |                |                | <u>&lt;1J</u>   | <1                                    |
| loroethane                       | μg/L         | <1             | <1             | <1             | <1              | <1             | <1             |                |                | <1             | <1             | <1             | <1             | <1             | <1             |                |                 |                                       |
| loroform                         | µg/l,        | <1             | <1             | <1             | <1              | <1             | <1             |                | <1             | <1             | <1             | <1             | <1             | <1             |                | <1             | <1J             | < 1                                   |
| oromethane                       | µg/L         | <1             | <1             | <1             | <1              | <1             |                | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1 .           | <u>&lt;1J</u>   | < 1                                   |
| -1,2-Dichloroethene              | μg/L         |                |                |                |                 |                |                | <1             | <1             | < 1            | <1             | < 1            | <1             | <1             |                | <1             | <1J             | <1                                    |
| -1,3-Dichloropropene             | µg/L         | <1             | <1             | <1             | <1              | <1             |                |                |                |                |                |                |                |                | <1             | <1             | <u>&lt;1</u> J  | < 1                                   |
| romochloromethane                | µg/L         | <1             | <1             | <1             | <1              |                | <1             | <1             | <1             | <1             | <1             | <1             | <1             | ; _            |                |                |                 |                                       |
| romomethane                      | μg/L         |                |                |                | ~1              | <1             | <1             | <1             | <1             | <1             | <1             | <1             |                | <1             | <1             | <1             | <1J             | < 1                                   |
| ylbenzene                        | µg/L         | <1             | <1             | <1             |                 |                |                |                |                |                |                |                | <1             | <1             | <1             | <1             | <1J             | < 1                                   |
| thylene chloride                 | µg/L         | 5 JBU          | 5 JBU          | 5 JBU          | <1              | <1             | <1             | <1             | <1             | <1             | <1             | <1             |                |                |                |                |                 | · · · · · ·                           |
| phthalene                        | μg/L         |                |                | <u> </u>       | 5 JBU           | 5 JBU          | 5 JBU          | < 5            | < 5            | < 5            | < 5            | < 5            | <1             | <1             | < 1            | <1             | <1J             | < 1                                   |
| utylbenzene                      | µg/t.        |                |                |                |                 |                |                |                |                |                |                | <u></u>        | < 5            | < 5            | < 5            | < 5            | < 5 J           | 5 JU                                  |
| ropylbenzene                     | μ <u>g/L</u> |                |                |                |                 |                |                |                |                |                |                | ·              |                |                |                |                |                 |                                       |
| -Butylbenzene                    |              |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| rene                             | µg/L         |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| rachloroethene                   | µg/L         | <1             | <1             | <1             | < 1             | <1             | <1             | <1             | <1             | <1             |                |                |                |                |                |                |                 |                                       |
| uene                             | μg/L         | <1             | <1             | <1             | < 1             | < 1            | <1             | <1             | <1             |                | <1             | <1             | < 1            | <1             | <1             | <1             | <1J             |                                       |
| hloroethene                      | µg/L         | 20             | 10             | 2.9 U          | 1.2 U           | 7              | 1.7 U          | 1.9            | 1.10           | <1             | <1             | <1             | <1             | <1             | <1             |                |                 | <1                                    |
|                                  | µg/L         | 6.7            | 13.8           | 31.2           | 2.8             | 1.1            | 79.1           | <1             | <1             | 0.74 J         | 0.74 J         | 0.47 J         | 0.51 J         | 0.43 J         |                | ~~~            | <1J             | < 1                                   |
| / chloride                       | µg/L         | < 1            | <1             | <1             | <1              | <1             | <1             | <1             |                | <1             | 2.4            | 3              | 3              | <1             | <1             | <1             | 1.2 J           | 3.4                                   |
| enes (total)                     | µg/L         | < 3            | < 3            | < 3            | < 3             | < 3            | < 3            | < 3            |                | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <u> &lt;1 J</u> | <1                                    |
| ÷S:                              |              |                |                | L              |                 |                |                |                | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            | < 3            |                | <1 J            | <u> </u>                              |
| = monitor well groundwater sa    | mple         |                |                |                |                 |                |                |                |                |                |                |                |                | <u> </u>       | ~0             | < 3            | 0.27 J          | < 3                                   |
| vertical profile groundwater sa  | emple        |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| k cell = no data/constituent not | analyzed for |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| led values indicate detections   |              |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| Estimated value                  |              |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| Result rejected during data vali |              |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| Analyte detected in associated   | blank        |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |
| Non-detect based on data valid   |              |                |                |                |                 |                |                |                |                |                |                |                |                |                |                |                |                 |                                       |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

15 of 22

.

.

.

| ·····                                   | Location ID                | AF-66                       | AF-66                       | AF-66                       | AF-66                       | AF-66                       | AF-66                       | AF-66 DUP                   | AF-66                       | AF-66                       | AF-67                       | AF-67                       | AF-67                       | AF-67                       | AF-67                       | AF-67           | AF-67                       | AF              |
|-----------------------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------|-----------------------------|-----------------|
|                                         | Sample ID<br>Sample Date   | AF6622(071602)<br>7/16/2002 | AF6632(071602)<br>7/16/2002 | AF6642(071602)<br>7/16/2002 | AF6652(071702)<br>7/17/2002 | AF6662(071702)<br>7/17/2002 | AF6672(071702)<br>7/17/2002 | AF6674(071702)<br>7/17/2002 | AF6682(071702)<br>7/17/2002 | AF6692(071702)<br>7/17/2002 | AF6722(071702)<br>7/17/2002 | AF6732(071702)<br>7/17/2002 | AF6742(071702)<br>7/17/2002 | AF6752(071702)<br>7/17/2002 | AF6762(071702)<br>7/17/2002 | AF6772(071702)  | AF6782(071802)<br>7/18/2002 | AF6792<br>7/18/ |
|                                         | Sample Date<br>Sample Type | VP                          | /////2002<br>VP             | VP                          | VP                          | VP                          | 7/17/2002<br>VP | VP                          | //18/<br>V      |
|                                         | Start Depth                | 6                           | 11                          | 16                          | 21                          | 26                          | 31                          | 31                          | 36                          | 41                          | 6                           | 11                          | 16                          | 21                          | 26                          | 31              | 36                          |                 |
|                                         | End Depth                  | 10                          | 15                          | 20                          | 25                          | 30                          | 35                          | 35                          | 40                          | 45                          | 10                          | 15                          | 20                          | 25                          | 30                          | 35              | 40                          |                 |
| Chemical Name                           | Unit                       |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             | <u> </u>                    |                 |                             |                 |
| 1,1,1-Trichloroethane                   | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 2                         | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| 1.1.2.2-Tetrachloroethane               | µg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 1                         | < 2                         | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| 1.1.2-Trichloroethane                   | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 2                         | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| 1.1-Dichloroethane                      | µg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | 2.2                         | 0.97 J                      | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| 1.1-Dichloroethene                      | µg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | 1.1 J                       | 2.3                         | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| 1.2-Dibromoethane                       | µg/L                       |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                 |                             | 1               |
| 1.2-Dichloroethane                      | µg/L                       | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 2                         | < 1                         | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| 1,2-Dichloroethene                      | µg/L                       | 15.9                        | 90.5                        | 15                          | <2                          | <2                          | <2                          | <2                          | 0.45 J                      | 0.37 J                      | 14.2                        | 25.6                        | < 2                         | <2                          | < 2                         | <2              | < 2                         | 1               |
| 1.2-Dichloropropane                     | µg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 2                         | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| 2-Butanone                              | µg/L                       | < 5                         | <5                          | < 5                         | < 5                         | < 5                         | <5                          | < 5                         | < 5                         | < 5                         | < 10                        | < 5                         | < 5                         | < 5                         | < 5                         | <5              | < 5                         |                 |
| 2-Hexanone                              | µg/L                       | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 10                        | < 5                         | < 5                         | < 5                         | < 5                         | < 5             | < 5                         |                 |
| 4-Methyl-2-pentanone                    | µg/L                       | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 10                        | < 5                         | < 5                         | < 5                         | < 5                         | < 5             | < 5                         |                 |
| Acetone                                 | μg/L                       | 16.7                        | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | 5 JU                        | < 5                         | 8.6 JU                      | < 5                         | < 5                         | < 5                         | < 5                         | < 5             | < 5                         |                 |
| Benzene                                 | µg/L                       | 0.4 J                       | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          | <1                          | <1                          | < 2                         | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Benzene, 1-methylethyl                  | µg/L                       |                             | •                           |                             |                             |                             | ·                           | · · ·                       | 1                           |                             |                             |                             |                             |                             | <u> </u>                    | · ·             |                             |                 |
| Bromochloromethane                      | μg/ <b>ί.</b>              |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                 |                             |                 |
| Bromodichloromethane                    | µg/L                       | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          | <1                          | <1                          | < 2                         | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Bromoform                               | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Bromomethane                            | µg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | < 1                         |                 |
| Carbon disulfide                        | μg/L                       | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 5                         | < 10                        | <5                          | < 5                         | < 5                         | < 5                         | <5              | < 5                         | 1               |
| Carbon tetrachloride                    | µg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| Dichlorodifluoromethane                 | μg/L                       |                             | - 1                         |                             |                             |                             |                             |                             |                             |                             |                             | · · · ·                     | · · · · ·                   |                             |                             |                 |                             | 1               |
| Chlorobenzene                           | μg/L                       | <1                          | < 1                         | <1                          | <1                          | < 1                         | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Chloroethane                            | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Chloroform                              | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| Chloromethane                           | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| cis-1,2-Dichloroethene                  | μg/L                       | ·                           |                             |                             |                             |                             | <u>.</u>                    | ·                           | · · · · ·                   |                             |                             |                             |                             |                             |                             | · · ·           |                             | 1               |
| cis-1,3-Dichloropropene                 | μg/L                       | ~1                          | <1                          | <1                          | <1                          | <1                          | <1                          | < 1                         | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| Dibromochloromethane                    | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          | 1               |
| Dibromomethane                          | µg/L                       |                             |                             |                             | · · · ·                     |                             | ····· · ······              | · · ·                       |                             |                             |                             |                             |                             |                             |                             |                 |                             |                 |
| Ethylbenzene                            | μg/L                       | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Methylene chloride                      | µg/L                       | < 5                         | < 5                         | < 5                         | < 5                         | 1.9 J                       | < 5                         | < 5                         | < 5                         | < 5                         | < 10                        | < 5                         | < 5                         | < 5                         | < 5                         | < 5             | < 5                         |                 |
| Naphthalene                             | µg/L                       |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                 | 1                           | 1               |
| n-Butylbenzene                          | µg/L                       |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                 | 1                           |                 |
| n-Propylbenzene                         | µg/L                       |                             |                             |                             |                             |                             |                             | 1                           |                             |                             | 1                           |                             |                             |                             |                             |                 |                             |                 |
| can Rubdhonzona                         | µg/L                       |                             |                             |                             |                             |                             | 1                           |                             |                             |                             |                             |                             |                             |                             |                             |                 |                             |                 |
| 1860-Dulyibenzene                       | µg/i.                      | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | < 1                         | <1              | <1                          | 1               |
| sec-Butyibenzene<br>Styrene             |                            | <1 .                        | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <1                          | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
|                                         | µg/L                       |                             | 0.4                         | 3.2                         | 1.2 U                       | 1.8 U                       | 1.8                         | 2.2                         | 1.9                         | 1.1                         | <2                          | <1                          | <1                          | <1                          | <1                          | <1              | <1                          |                 |
| Styrene                                 | μg/L<br>μg/L               | 4.1                         | 3.1                         | J J.A                       |                             |                             | <1                          | <1                          | 6                           | 4.2                         | 107                         | 746                         | <1                          | <1                          | < 1                         | <1              | <1                          |                 |
| Styrene<br>Tetrachloroethene            |                            |                             | 4.2                         | 76                          | <1                          | <1                          | 1 51                        |                             |                             |                             |                             |                             |                             |                             |                             |                 |                             |                 |
| Styrene<br>Tetrachloroethene<br>Toluene | μg/L                       | 4.1                         |                             |                             |                             | <u>&lt;1</u><br><1          | <1                          | <1                          | <1                          | <1                          | < 2                         | <1                          | <1                          | <1 .                        | <1                          | <1              | <1                          |                 |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

# Table 4-2 Summary of Groundwater Analyses, UST 25 and 26 CAP- Part B Investigations HAA-17 Hunter Army Airfield-Savannah, GA

|                                                                | Location ID          | AF-68                   | AF-68                  | AF-68                    | AF-69          | AF-69 DUP      | AF-70      | AF-71          | AF-72          | AF-73          | AF-73          | AF-73          | AF-73          | AF-73 DUP      | AF-73                  | AF-73            | AF-73                                 |
|----------------------------------------------------------------|----------------------|-------------------------|------------------------|--------------------------|----------------|----------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------|------------------|---------------------------------------|
|                                                                | Sample ID            | AF-00<br>AF6812(121802) | AF68F2(072506)         | AF68G2(012307)           | AF6912(121802) | AF6914(121802) |            | AF7112(121802) | AF7212(121802) | AF7312(101103) | AF7322(101103) | AF7332(101103) | AF7342(101103) | AF7344(101103) | AF7352(101103)         |                  | AF7372(101103)                        |
|                                                                | Sample Date          | 12/18/2002              | 7/25/2006              | 1/23/2007                | 12/18/2002     | 12/18/2002     | 12/18/2002 | 12/18/2002     | 12/18/2002     | 10/11/2003     | 10/11/2003     | 10/11/2003     | 10/11/2003     | 10/11/2003     | 10/11/2003             | 10/11/2003       | 10/11/2003                            |
|                                                                | Sample Type          | MW                      | MW                     | MW                       | MW             | MW             | MW         | MW             | MW             | VP             | VP             | VP             | VP             | VP             | VP                     | VP               | VP                                    |
|                                                                | Start Depth          | 34.5                    | 34.5                   | 34.5                     | 40,2           | 40.2           | 15         | 15.3           | 2.5            | 7              | 12             | 16             | 21             | 21             | 26                     | 31               | 36                                    |
|                                                                | End Depth            | 39,5                    | 39,5                   | 39.5                     | 45,2           | 45.2           | 20         | 20.3           | 12.5           | 11             | 15             | 20             | 25             | 25             | 30                     | 35               | 40                                    |
| Chemical Name                                                  | Unit                 |                         |                        |                          |                |                |            |                |                |                |                |                |                | . <u>.</u>     |                        |                  |                                       |
| 1,1,1-Trichloroethane                                          | µg/L_                | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | < 1            | <1             | <1             | <1             | <1             | <1                     | <1               | <1                                    |
| 1,1,2,2-Tetrachloroethane                                      | µg/L                 | <1                      | <1                     | <1                       | < 1            | <1             | <1J        | <1J            | <1             | < 1            | <1             | < 1            | <1             | <1             | <1                     | < 1              | <1                                    |
| 1,1,2-Trichloroethane                                          | μg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | < 1            | <1             | <1             | <1                     | <1               | < 1                                   |
| 1,1-Dichloroethane                                             | µg/L                 | < 1                     | <1                     | <1                       | <1             | <1             | <1J        | <1J            | 1.8            | <1             | < 1            | <1             | <1             | <1             | <1                     | < 1              | <1                                    |
| 1.1-Dichloroethene                                             | μg/L                 | 1.6                     | 1.71                   | 1.47                     | < 1            | <1             | <1J        | 0.54 J         | 4.9            | < 1            | <1             | <1             | <1             | <1             | <1                     | <1               | < 1                                   |
| 1,2-Dibromoethane                                              | μg/L                 | <1                      | < 1                    | <1                       | <1             | <1             | <1J        | <1J            | <1             | < 1            | < 1            | <1             | <1             | <1             | <1                     | <1               | < 1                                   |
| 1,2-Dichloroethane                                             | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | 1.2            | <1             | <1             | <1             | <1             | <1             | < 1                    | <1               | < 1                                   |
| 1,2-Dichloroethene                                             | μg/L                 | 84.8                    | 84.9                   | 67.7                     | 6.9            | 6.5            | <1J        | 36.5 J         | 57.8           | <1             | <1             | < 1            | <1             | <1             | <1                     | 0.4 J            | 34.2                                  |
| 1,2-Dichloropropane                                            | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | < 1            | <1             | < 1            | <1                     | <1               | <1                                    |
| 2-Butanone                                                     | μg/L                 | < 5                     | < 5                    | < 5                      | < 5            | < 5            | < 5 J      | < 5 J          | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5              | < 5                                   |
| 2-Hexanone                                                     | µg/L                 | < 5                     | < 5                    | < 5                      | < 5            | < 5            | < 5 J      | < 5 J          | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5              | < 5                                   |
| 4-Methyl-2-pentanone                                           | μg/L,                | < 5                     | < 5                    | < 5                      | < 5            | < 5            | < 5 J      | < 5 J          | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5              | < 5                                   |
| Acetone                                                        | μg/L                 | < 5                     | < 5                    | < 5                      | < 5            | < 5            | <5 J       | < 5 J          | < 5            | <u>5 JU</u>    | 5 JU           | 5 JU           | < 5            | < 5            | 5 JU                   | 5 JU             | 5 JU                                  |
| Benzene                                                        | µg/L                 | < 1                     | 1.18                   | 0.993 J                  | <1             | < 1            | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | 0.61 J           | 1.6                                   |
| Benzene, 1-methylethyl                                         | µg/L                 |                         |                        |                          |                |                |            |                |                |                |                |                | ļ              |                |                        |                  |                                       |
| Bromochloromethane                                             | µg/L                 | <1                      | < 1                    | <1                       | <1             | <1             | <1 J       | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | < 1                    | <1               | <1                                    |
| Bromodichloromethane                                           | μg/L                 | <1                      | < 1                    | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1               | <1                                    |
| Bromoform                                                      | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1               | <1                                    |
| Bromomethane                                                   | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1               | < 1                                   |
| Carbon disulfide                                               | µg/L                 | < 5                     | < 5                    | < 5                      | < 5            | < 5            | <5J        | < 5 J          | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5              | < 5                                   |
| Carbon tetrachloride                                           | µg/L                 | <1                      | <1                     | <1                       | < 1            | < 1            | <1J        | <1J            | < 1            | <1             | <1             | < 1            | <1             | <1             | <1                     | < 1              | < 1                                   |
| Dichlorodifluoromethane                                        | µg/L                 |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| Chlorobenzene                                                  | μg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | < 1            | <1             | <1             | <1             | <1                     | <1               | <1                                    |
| Chloroethane                                                   | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | < 1            | <1             | < <u>1</u>     | < 1                    | <1               | <1                                    |
| Chloroform                                                     | μg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | < 1                    | <1               | <1                                    |
| Chloromethane                                                  | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | < 1            | < 1                    | < 1              | <1                                    |
| cis-1,2-Dichloroethene                                         | µg/L                 |                         |                        | [                        |                |                |            |                |                |                |                |                |                |                |                        |                  | · · · · · · · · · · · · · · · · · · · |
| cis-1,3-Dichloropropene                                        | µg/L                 | <1                      | <1                     | <1                       | < 1            | < 1            | <1j        | <1J            | < 1            | <1             | <1             | <1             | < 1            | <1             | < 1                    | <1               | <1                                    |
| Dibromochloromethane                                           | µg/L                 | <1                      | <1                     | <1                       | <1             | < 1            | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | < 1              | <1                                    |
| Dibromomethane                                                 | µg/L                 |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| Ethylbenzene                                                   | µg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | < 1            | < 1            | <1             | <1             | <1             | <1             | <1                     | <1               | <1                                    |
| Methylene chloride                                             | μg/L                 | < 5                     | < 5                    | < 5                      | < 5            | < 5            | <5J        | < 5 J          | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5              | < 5                                   |
| Naphthalene                                                    | µg/L                 |                         |                        |                          |                |                |            |                |                |                |                |                |                | (              |                        |                  |                                       |
| n-Butylbenzene                                                 | µg/L                 |                         |                        |                          |                |                |            |                | ļ              |                |                |                |                |                |                        |                  | <u> </u>                              |
| n-Propylbenzene                                                | μg/L                 |                         |                        |                          |                |                |            |                |                |                |                | 1              | ļ              | · · · · ·      |                        |                  |                                       |
| sec-Butylbenzene                                               | µg/L                 |                         |                        |                          |                |                |            | ·              |                |                | <u> </u>       | <u> </u>       | L              |                |                        |                  |                                       |
| Styrene                                                        | µg/L                 | < 1                     | <1                     | < 1                      | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | < 1            | <1             | <1             | <1                     | <1               | <1                                    |
| Tetrachloroethene                                              | μg/L                 | <1                      | <1                     | <1                       | <1             | <1             | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1 <2.8                | <1<br><2.8       | < 1<br><3.2                           |
| Toluene                                                        | µg/L                 | <1                      | <1                     | 0,623 J                  | <1             | <1             | <1J        | <1J            | <1             | <1.9           | <3             | <2.5           | <2.7           | <2.6           | <u> &lt;2.8</u><br>1.9 | 4.4              | 97.7                                  |
| Trichloroethene                                                | µg/L                 | 380 J                   | 540                    | 373 J                    | 138 J          | 141 J          | 2 J        | 41.4 J         | 807 J          | < 1            | <1             | 1.5            | 2.2            | 2.2            |                        | <u>4.4</u><br><1 | <1                                    |
| Vinyt chloride                                                 | µg/L                 | <1                      | <1                     | <1                       | <1             | < 1            | <1J        | <1J            | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1               | <1                                    |
| Xylenes (total)                                                | µg/L                 | <1                      | <1                     | 0.873 J                  |                | <1             | <1J        | <1J            | <1             | <1             | <1             | < 1            | <1             | < 1            | . <1                   |                  |                                       |
| Notes:                                                         |                      |                         |                        |                          |                |                |            |                |                |                |                |                |                | ,              |                        |                  |                                       |
| MW = monitor well groundwate<br>VP = vertical profile groundwa |                      |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| Blank cell = no data/constituer                                | t not analyzed for   |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| Bolded values indicate detection                               |                      |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| J = Estimated value                                            |                      |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| R = Result rejected during dat                                 | a validation         |                         |                        |                          |                |                |            |                |                |                |                |                |                | 1              |                        |                  |                                       |
| B = Analyte detected in associ                                 |                      |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| U = Non-detect based on data                                   | validation           |                         |                        |                          |                |                |            |                |                |                |                |                |                |                |                        |                  |                                       |
| Samples collected solely for in                                | vestigation of petro | eum prior to CAP P      | art B investigations a | are not included in this | s table        |                |            |                | 17 of 22       |                |                |                |                |                |                        |                  |                                       |

.

١.

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

17 of 22

.
|                           | Lander ID                | AE 79                   | AF-74          | AF-74      | AF-75          |
|---------------------------|--------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                           | Location ID              | AF-73<br>AF7382(101103) | AF7412(101003) | AF7422(101003) | AF7432(101003) | AF7442(101003) | AF7452(101003) | AF7462(101103) | AF7472(101103) |            | AF7512(100903) | AF7522(100903) | AF7532(100903) | AF7542(100903) | AF7552(100903) | AF7554(100903) | AF7562(100903) | AF7572(101003) |
|                           | Sample ID<br>Sample Date | 10/11/2003              | 10/10/2003     | 10/10/2003     | 10/10/2003     | 10/10/2003     | 10/10/2003     | 10/11/2003     | 10/11/2003     | 10/11/2003 | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/10/2003     |
|                           | Sample Type              | VP                      | 10/10/2003     | VP             | VP             | VP             | VP             | VP             | VP             | VP         | VP             | VP             | 0/9/2003       | VP             | VP             | VP             | VP             | VP             |
|                           | Start Depth              | 41                      | 7              | 12             | 16             | 21             | 26             | 31             | 36             | 41         | 7              | 12             | 16             | 21             | 26             | 26             | 31             | 36             |
|                           | End Depth                | 45                      | 11             | 15             | 20             | 25             | 30             | 35             | 40             | 45         | 11             | 15             | 20             | 25             | 30             | 30             | 35             | 40             |
| Chemical Name             | Unit                     | 10                      | <u>``</u>      |                |                |                | **             |                |                | ·····      | ····           | ····           |                |                |                |                |                |                |
| 1,1,1-Trichloroethane     | μg/L.                    | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | < 1            | <1             | <1             |
| 1,1,2,2-Tetrachloroethane | µg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | .<1            | <1             | <1         | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             |
| 1,1,2-Trichloroethane     | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             |
| 1.1-Dichloroethane        | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             |
| 1,1-Dichloroethene        | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             |
| 1,2-Dibromoethane         | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             |
| 1,2-Dichloroethane        | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             |
| 1.2-Dichloroethene        | μg/L                     | 27.8                    | <1             | <1             | <1             | <1             | <1             | 3.2            | 8.7            | 4.7        | <1             | <1             | <1             | <1             | 0.62 J         | 0.66 J         | 1.2            | <1             |
| 1,2-Dichloropropane       | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | < 1            | <1             | <1             | < 1            | <1             | <1             | <1             |
| 2-Bulanone                | <u>μg/L</u>              | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | 4.1 J      | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            |
| 2-Hexanone                | μg/L                     | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            |
| 4-Methyl-2-pentanone      | μg/L                     | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            |
| Acetone                   | μg/L                     | 5 JU                    | 5 JU           | 5 JU           | < 5            | < 5            | 50             | < 5            | 5.2 U          | 13.4 U     | 5 JU           | 5.7 U          | 5.5 U          | 5 JU           |
| Benzene                   | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | 2.5            | 1,7            | 0,43 J     | <1             | <1             | 2.3            | 1.3            | < 1            | <1             | <1             | <1             |
| Benzene, 1-methylethyl    | μg/L                     |                         |                |                | 1              |                |                |                |                |            |                |                |                |                |                |                |                |                |
| Bromochloromethane        | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | .<1            | <1             | <1             |
| Bromodichloromethane      | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | < 1            | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             |
| Bromoform                 | µg/L                     | <1                      | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             |
| Bromomethane              | µg/L                     | <1                      | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             |
| Carbon disulfide          | μg/L                     | < 5                     | < 5            | < 5            | < 5            | < 5            | <5             | < 5            | < 5            | < 5        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            |
| Carbon tetrachloride      | μg/L                     | <1                      | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1 ;           | < 1            | <1             | <1             | <1             |
| Dichlorodifluoromethane   | µg/L                     |                         |                |                | 1              |                |                |                |                |            |                |                |                |                |                |                |                |                |
| Chlorobenzene             | µg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1             |
| Chloroethane              | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | < 1            | <1             | <1         | < 1            | <1             | <1             | <1             | < 1            | <1             | <1             | < 1            |
| Chloroform                | µg/L                     | <1                      | <1             | <1             | < 1            | <1             | <1             | <1             | <1             | <1         | <1             | <1             | < 1            | <1 i           | < 1            | <1             | <1             | <1             |
| Chloromethane             | µg/L                     | <1                      | <1             | < 1            | <1             | <1             | <1             | < 1            | <1             | <1         | <1             | <1             | <1             | < 1            | < 1            | <1             | <1             | <1             |
| cis-1,2-Dichloroethene    | µg/L                     |                         |                |                |                |                |                |                |                |            |                |                |                |                |                |                |                |                |
| cis-1,3-Dichloropropene   | µg/L                     | <1                      | <1             | < 1            | <1             | <1             | <1             | <1             | < 1            | <1         | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             |
| Dibromochloromethane      | µg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | < 1            | < 1            | <1             | <1             | < 1            | <1             | <1             | <1             |
| Dibromomethane            | μg/L                     |                         |                |                |                |                |                |                |                |            |                |                |                |                |                |                |                |                |
| Ethylbenzene              | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1             |
| Methylene chloride        | µg/L                     | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5        | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            |
| Naphthalene               | µg/L                     |                         |                |                |                |                |                |                |                |            |                |                |                |                |                |                |                |                |
| n-Butylbenzene            | µg/L                     |                         |                |                |                |                |                |                |                |            |                |                |                |                |                |                |                |                |
| n-Propylbenzene           | µg/L                     |                         |                |                |                | L              | 1              |                |                | 1          | Į              | ļ              | ļ              | ļ              |                | ļ              |                |                |
| sec-Butylbenzene          | μg/L                     |                         | ļ              |                | L              |                |                | 1              |                | 1          | ļ              |                |                |                | ļ              |                |                |                |
| Styrene                   | μg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | < 1            | <1             | <1         | <1             | <1             | < 1            | <1             | < 1            | <1             | <1             | < 1            |
| Tetrachloroethene         | µg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | < 1            | <1             | <1             | < 1            | < 1            | < 1            | <1             | <1             |
| Toluene                   | μg/ί.                    | <2.3                    | <3.2           | <3.4           | <2.4           | <1.9           | <2.5           | <2.1           | <3.9           | <2.4       | <2             | <1.5           | <2,1           | <1.6           | <1.6           | <1.9           | <1.6           | <1.9           |
| Trichloroethene           | µg/L                     | 437                     | <1             | <1             | 0.59 J         | 2.7            | 1.7            | 53.9           | 57 J           | 47.4       | <1             | <1             | 4.9            | 4.5            | 15.6           | 18             | 9.7            | <1             |
| Vinyl chloride            | µg/L                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1         | <1             | <1             | <1             | < 1            | < 1            | <1             | <1             | <1             |
| Xylenes (total)           | µg/L                     | <1                      | < 1            | <1             | < 1            | <1             | <1             | <1             | < 1            | 0.6 J      | <u>  &lt;1</u> | <1             | <1             | < 1            | <1             | <1             | <1             | <u>&lt;1</u>   |
| Notes:                    |                          |                         |                |                |                |                |                |                |                |            |                |                |                |                |                |                |                |                |

Notes: MW = monitor well groundwater sample VP = vertical profile groundwater sample Blank cell = no data/constituent not analyzed for Bolded values indicate detections

J = Estimated value

R = Result rejected during data validation B = Analyte detected in associated blank U = Non-detect based on data validation

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

.

|                                                    | Location ID          | AF-75                 | AF-76                  | AF-76                   | AF-76          | AF-76          | AF-76          | AF-76          | AF-76          | AF-76          | AF-76          | AF-77          | AF-77                  | AF-77          | AF-77          | ÁF-77          | AF-77          | AF-77          |
|----------------------------------------------------|----------------------|-----------------------|------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------|----------------|----------------|----------------|----------------|----------------|
|                                                    | Sample ID            | AF7582(101003)        | AF7612(100903)         | AF7622(100903)          | AF7632(100903) | AF7642(100903) | AF7652(100903) | AF7662(100903) | AF7672(100903) | AF7674(100903) | AF7682(100903) | AF7712(100803) | AF7722(100803)         | AF7732(100803) | AF7742(100803) | AF7752(100803) | AF7762(100903) | AF7772(100903) |
|                                                    | Sample Date          | 10/10/2003            | 10/9/2003              | 10/9/2003               | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/9/2003      | 10/8/2003      | 10/8/2003              | 10/8/2003      | 10/8/2003      | 10/8/2003      | 10/9/2003      | 10/9/2003      |
|                                                    | Sample Type          | VP                    | VP                     | VP                      | VP             | VP             | VP             | VP             | VP             | VP             | VP             | VP             | VP                     | VP             | VP             | VP             | VP             | VP             |
|                                                    | Start Depth          | 41                    | 7                      | 12                      | 16             | 21             | 26             | 31             | 36             | 36             | 41             | 11             | 16                     | 21             | 26             | 31             | 36             | 41             |
|                                                    | End Depth            | 45                    | 11                     | 15                      | 20             | 25             | 30             | 35             | 40             | 40             | 45             | 15             | 20                     | 25             | 30             | 35             | 40             | 45             |
| Chemical Name                                      | Unit                 |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane | µg/L                 | <1                    | <1<br><1               | <1<br><1                | <1             | <1             | <1             | <1             | <1             | <1             | <1             | < 1            | <1                     | <1             | < 1            | <1             | <1             | <1 J           |
|                                                    | μ <u>g/L</u>         |                       |                        |                         | <1             | < 1            | <1             | <1             | <1             | <1             | < 1            | <1             | <1                     | <1             | <1             | <1             | <1             | <1 J           |
| 1,1,2-Trichloroethane                              | μg/L                 | <u> </u>              | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | < 1                    | <1             | < 1            | <1             | <1             | <1J            |
| 1.1-Dichloroethene                                 | μg/L<br>μg/L         | <1                    | <1                     | <1                      | <1<br><1       | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | < 1            | < 1            | <1             | <1J            |
| 1.2-Dibromoethane                                  | μ <u>g/L</u><br>μg/L | <1                    | <1                     | <1                      | <1             | <1             | < 1            | < 1            | <1             | <1             | <1             | <1             | <1                     | < 1            | < 1            | < 1            | <1             | <1J            |
| 1,2-Dichloroethane                                 | μg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1<br><1       | <1             | <1<br><1       | <1             | <1             | <1             | <1                     | < 1            | <1             | < 1            | <1             | <1J            |
| 1,2-Dichloroethene                                 | µg/L                 | 0.42 J                | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| 1,2-Dichloropropane                                | µg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | < 1            | <1             | <1             | <1J            |
| 2-Butanone                                         | μg/L                 | < 5                   | <5                     | < 5                     | < 5            | < 5            | < 5            | < 5            | <5             | <5             | 2.6 J          | <1             | <1                     | <1             | < 1            | <1             | <1             | <1 J           |
| 2-Hexanone                                         | µg/L                 | < 5                   | <5                     | <5                      | <5             | < 5            | < 5            | < 5            | < 5            | <5             | 2.6 J<br>< 5   | <5<br><5       | < 5                    | < 5            | < 5            | < 5            | < 5            | < 5 J          |
| 4-Methyl-2-pentanone                               | µg/L<br>µg/L         | < 5                   | < 5                    | <5                      | < 5            | < 5            | < 5            | < 5            | < 5            | <5             | < 5            | < 5            | < 5                    | < 5            | < 5            | < 5            | < 5            | < 5 J          |
| Acetone                                            | µg/L                 | 5 JU                  | 5 JU                   | 5 JU                    | 5 JU           | 5 JU           | 5 JU           | 5 JU           | 5JU            | 5 JU           | 12 U           | 5 JU           | <u> &lt; 5</u><br>5 JU | < 5<br>5 JU    | < 5<br>5 JU    | < 5            | < 5            | <5 J           |
| Benzene                                            | μg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | 5 JU .<br>< 1  | < 5<br>< 1     | 5 JU           | 6.9 UJ         |
| Benzene, 1-methylethyl                             | μg/L                 | ·                     |                        | 1                       |                | ~ 1            |                |                | · 1            | <sup>*</sup>   | -1             |                | ~ 1                    | <u> </u>       | <u> </u>       | <u> </u>       | <1             | <1J            |
| Bromochloromethane                                 | μ <u>g</u> /L        | <1                    | <1                     | <1                      | <1             | <1             | < 1            | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| Bromodichloromethane                               | µg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| Bromoform                                          | µg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| Bromomethane                                       | µg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| Carbon disulfide                                   | µg/L                 | < 5                   | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5            | < 5            | < 5            | < 5            | <5 J           |
| Carbon tetrachloride                               | μg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| Dichlorodiffuoromethane                            | µg/L                 |                       | l                      |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| Chlorobenzene                                      | µg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | < 1            | <1             | <1             | <1                     | <1             | < 1            | <1             | <1             | <1J            |
| Chloroethane                                       | µg/L                 | < 1                   | <1                     | <1                      | <1             | <1             | <1             | < 1            | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J            |
| Chloroform                                         | µg/L                 | <1                    | <1                     | <1                      | <1             | < 1            | < 1            | < 1            | <1             | <1             | <1             | <1             | <1                     | <1             | < 1            | <1             | <1             | <1J            |
| Chloromethane                                      | µg/L                 | <1                    | < 1                    | <1                      | <1             | <1             | <1             | < 1            | <1             | <1             | < 1            | <1             | < 1                    | < 1            | < 1            | < 1            | <1             | <1J            |
| cis-1,2-Dichloroethene                             | µg/L,                |                       |                        |                         |                |                |                |                |                |                |                |                |                        | j              |                |                |                |                |
| cis-1,3-Dichloropropene                            | μg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | < 1            | <1             | <1             | <1J            |
| Dibromochloromethane                               | µg/L                 | <1                    | <1                     | . <1 .                  | <1             | <1             | <1             | <1             | <1             | <u>&lt; 1</u>  | <1             | <1             | <1                     | <1             | <1             | < 1            | <1             | <1 J           |
| Dibromomethane                                     | µg/L                 |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| Ethylbenzene                                       | µg/L                 | <1                    | <1                     | <1                      | < 1            | <1             | <1             | <1             | <1             | <1             | < 1            | < 1            | < 1                    | < 1            | <1             | <1             | <1             | <1 J           |
| Methylene chloride                                 | µg/L                 | < 5                   | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                    | < 5            | < 5            | < 5            | < 5            | < 5 J          |
| Naphthalene                                        | μg/L                 |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| n-Butylbenzene<br>n-Propylbenzene                  | <u>μg/L</u>          |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| sec-Butylbenzene                                   | μg/L<br>μg/L.        |                       |                        |                         |                |                | l              |                |                |                |                |                |                        | · · · · · ·    |                |                |                | 4              |
| Styrene                                            | μg/L<br>μg/L         | < 1                   | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             |                |                        |                |                |                |                | <b> </b>       |
| Tetrachloroethene                                  | μg/L,                | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1<br><1       | < 1                    | <1             | < 1            | <1             | < 1            | <1J            |
| Toluene                                            | μg/L                 | <2.8                  | <2.1                   | <2.2                    | <2.4           | <2.1           | <2.4           | <2             | <2,3           | <2.1           | <5.3           | <2.1           | <1 <2.4                | <3.4           | < 1<br><1.3    | <1<br><2.6     | <1             | <1J            |
| Trichloroethene                                    | µg/L                 | 3.9                   | <1                     | <1                      | <1             | 2.3            | <1             | <1             | <1             | <1             | <1             | <1             | 0.73 J                 | 0.79 J         | <1.3           | <2.6           | <1.7           | <4 J           |
| Vinyl chloride                                     | μg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1             | <1                     | <1             | <1             | <1             | <1             | <1J<br><1J     |
| Xylenes (total)                                    | µg/L                 | <1                    | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1             | 0.96 J         | <1             | 0.64 J                 | <1             | <1             | <1             | <1             | 0.61 J         |
| Notes:                                             |                      | ·                     | •                      | 1                       |                | •              | <b>.</b>       |                |                |                |                | 1 - 4          | 1 0 7010               |                |                | <u> </u>       | <u> </u>       | 1 0.010        |
| MW = monitor well groundwate                       | er sample            |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| VP = vertical profile groundwat                    | er sample            |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| Blank cell = no data/constituen                    | •                    |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| Bolded values indicate detection                   | ms                   |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| J = Estimated value                                |                      |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| R = Result rejected during data                    |                      |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| B = Analyte detected in associ                     |                      |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| U = Non-detect based on data                       |                      |                       |                        |                         |                |                |                |                |                |                |                |                |                        |                |                |                |                |                |
| Samples collected solely for in                    | vestigation of petro | leurn prior to CAP Pa | art B Investigations a | re not included in this | table          |                |                |                |                |                |                |                |                        |                |                |                |                |                |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                                  | Location ID          | AF-77              | AF-78                  | AF-78                   | AF-78          | AF-78          | AF-78          | AF-78 DUP      | AF-78          | AF-78                                   | AF-78                                  | B159-1                                | 8159-1            | B159-1    | B169-1    | B159-1            | B159-1    |
|----------------------------------|----------------------|--------------------|------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|-----------------------------------------|----------------------------------------|---------------------------------------|-------------------|-----------|-----------|-------------------|-----------|
|                                  | Sample ID            | AF7782(100903)     | AF7812(100803)         | AF7822(100803)          | AF7832(100803) | AF7842(100803) | AF7852(100803) | AF7854(100803) | AF7862(100803) | AF7872(100803)                          | AF7882(100803)                         | B159-1-10(120402)                     | B159-1-15(120402) |           |           | 8159-1-30(120402) |           |
|                                  | Sample Date          | 10/9/2003          | 10/8/2003              | 10/8/2003               | 10/8/2003      | 10/8/2003      | 10/8/2003      | 10/8/2003      | 10/8/2003      | 10/8/2003                               | 10/8/2003                              | 12/4/2002                             | 12/4/2002         | 12/4/2002 | 12/4/2002 | 12/4/2002         | 12/4/2002 |
|                                  | Sample Type          | VP                 | VP                     | VP                      | VP             | VP             | VP             | VP             | VP             | VP                                      | VP                                     | VP                                    | . VP              | VP        | VP        | VP                | VP        |
|                                  | Start Depth          | 46                 | 12                     | 16                      | 21             | 26             | 31             | 31             | 36             | 41                                      | 46                                     | 9                                     | 14                | 19        | 24        | 29                | 34        |
| Chemical Name                    | End Depth            | 50                 | 15                     | 20                      | 25             | 30             | 35             | 35             | 40             | 45                                      | 50                                     | 11                                    | 16                | 21        | 26        | 31                | 36        |
|                                  | Unit                 |                    | <b></b>                |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| 1,1,1-Trichloroethane            | µg/L                 | <1                 | <1                     | <1                      | < 1            | <1             | <1             | <1             | <1             | <1                                      | <1                                     | < 2                                   | < 2               | <2        | < 10      | < 20              | < 10      |
| 1,1,2,2-Tetrachloroethane        | µg/L                 | <1                 | <1                     | < 1                     | < 1            | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| 1,1,2-Trichloroethane            | µg/l.                | < 1                | <1                     | < 1                     | < 1            | <1             | <1             | < 1            | <1             | <1                                      | <1                                     | < 2                                   | <2                | < 2       | < 10      | < 20              | < 10      |
| 1,1-Dichloroethane               | μg/L                 | <1                 | < 1                    | <1                      | < 1            | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | < 2               | <2        | < 10      | < 20              | < 10      |
| 1,1-Dichloroethene               | μ <u>g/L</u>         | <1                 | <1                     | <1                      | <1             | < 1            | <1             | <1             | <1             | < 1                                     | <1                                     | < 2                                   | <2                | <2        | < 10      | < 20              | < 10      |
| 1,2-Dibromoethane                | <u>μ</u> g/L         | <1                 | <1                     | <1                      | < 1            | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| 1,2-Dichloroethane               | μ <u>g/</u> L.       | < 1                | <1                     | <1                      | <1             | <1             | < 1            | <1             | < 1            | <1                                      | <1                                     |                                       |                   |           |           |                   |           |
| 1,2-Dichloroethene               | µg/L                 | <1                 | <1                     | 0.62 J                  | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| 1,2-Dichloropropane              | μg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | < 1                                     | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| 2-Butanone                       | μg/L                 | 7.8                | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                     | < 5                                    | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| 2-Hexanone                       | μg/L                 | < 5                | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                     | < 5                                    | < 2                                   | <2                | < 2       | < 10      | < 20              | < 10      |
| 4-Methyl-2-pentanone             | μg/L                 | < 5                | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                     | < 5                                    | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Acetone                          | μg/L                 | 25 U               | 31.1 U                 | 5 JU                    | 5 JU           | 8.7 U          | 5 JU           | 5 JU           | 5 JU           | 5 JU                                    | < 5                                    | <2                                    | < 2               | < 2       | < 10      | < 20              | < 10      |
| Benzene                          | µg/L                 | 0.52 J             | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | < 2       | 0.98 J    | < 20              | < 10      |
| Benzene, 1-methylethyl           | µg/L                 |                    | ļ                      |                         |                |                |                |                |                |                                         |                                        | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Bromochloromethane               | µg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Bromodichloromethane             | μg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | < 1            | <1             | <1                                      | <1                                     | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Bromoform                        | µg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Bromomethane                     | μg/L                 | < 1                | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Carbon disulfide                 | µg/L                 | < 5                | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                     | < 5                                    | < 2                                   | <2                | <2        | < 10      | < 20              | < 10      |
| Carbon tetrachloride             | µg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | < 2               | < 2       | < 10      | < 20              | < 10      |
| Dichlorodifluoromethane          | μg/L.                |                    |                        |                         |                |                |                |                |                |                                         |                                        | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| Chlorobenzene                    | μg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | < 1                                    | <2                                    | < 2               | <2        | < 10      | < 20              | < 10      |
| Chloroethane                     | μg/L                 | < 1                | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Chloroform                       | μg/L                 | <1                 | <1                     | <1                      | <1             | < 1            | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | < 2               | <2        | < 10      | < 20              | < 10      |
| Chloromethane                    | μg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| cis-1,2-Dichloroethene           | µg/L                 |                    |                        |                         |                |                |                |                |                |                                         |                                        | < 2                                   | < 2               | < 2       | 2.35 J    | < 20              | < 10      |
| cis-1,3-Dichloropropene          | μg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | < 2                                   | < 2               | < 2       | < 10      | < 20              | < 10      |
| Dibromochloromethane             | μg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | < 2               | <2        | < 10      | < 20              | < 10      |
| Dibromomethane                   | μg/L.                |                    |                        |                         |                |                |                | · · · · ·      |                |                                         |                                        | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Ethylbenzene                     | μg/L                 | 0.26 J             | <1                     | <1                      | <1             | 0.32 J         | <1             | <1             | <1             | <1                                      | < 1                                    | <2                                    | <2                | < 2       | < 10      | < 20              | < 10      |
| Methylene chloride               | μg/L                 | < 5                | < 5                    | < 5                     | < 5            | < 5            | < 5            | < 5            | < 5            | < 5                                     | < 5                                    | < 2                                   | <2                | <2        | < 10      | < 20              | < 10      |
| Naphthalene                      | µg/L                 |                    |                        |                         |                |                |                |                |                |                                         |                                        | < 2                                   | <2                | <2        | < 10      | < 20              | < 10      |
| n-Butylbenzene                   | µg/L                 |                    |                        |                         |                |                |                |                |                |                                         |                                        | < 2                                   | <2                | <2        | < 10      | < 20              | < 10      |
| n-Propylbenzene                  | μg/L                 |                    |                        |                         |                |                |                |                |                |                                         |                                        | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| sec-Butylbenzene                 | μg/L                 |                    |                        |                         |                |                |                |                |                | · · · · · · · · · · · · · · · · · · ·   |                                        | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| Styrene                          | μg/L                 | <1                 | <1                     | <1                      | < 1            | <1             | <1             | < 1            | <1             | < 1                                     | <1                                     | <2                                    | <2                | < 2       | <10       | < 20              | < 10      |
| Tetrachloroethene                | µg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| Toluene                          | μg/L                 | <2.2               | <2.3                   | <2.8                    | <2.6           | <5.1           | <2.2           | <2.8           | <2             | <2                                      | <1.9                                   | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| Trichloroethene                  | µg/L                 | <1                 | <1                     | 1.4                     | <1             | < 1            | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | 2.44      | 3.63 J    | < 20              | < 10      |
| Vinyi chloride                   | µg/L                 | <1                 | <1                     | <1                      | <1             | <1             | <1             | <1             | <1             | <1                                      | <1                                     | <2                                    | <2                | <2        | < 10      | < 20              | < 10      |
| Xylenes (total)                  | μg/L                 | <1                 | <1                     | 0.62 J                  | <1             | 0.72 J         | <1             | <1             | <1             | <1                                      | <1                                     | · · · · · · · · · · · · · · · · · · · | - 44              | -2        |           |                   | × IV      |
| Notes:                           |                      |                    |                        |                         |                |                | ••••••         |                | •              | • · · · · · · · · · · · · · · · · · · · | ······································ |                                       | h                 | i         |           |                   |           |
| MW = monitor well groundwate     |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| VP = vertical profile groundwa   |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| Blank cell = no data/constituer  |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| Bolded values indicate detection | ons                  |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| J = Estimated value              |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| R = Result rejected during dat   |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   | :         |           |                   |           |
| B = Analyte detected in assoc    |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| U = Non-detect based on data     | validation           |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
| Samples collected solety for in  | vestigation of permi | eum prior to CAP P | art B Investigations a | re not included in this | table          |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |
|                                  |                      |                    |                        |                         |                |                |                |                |                |                                         |                                        |                                       |                   |           |           |                   |           |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

| · · · · · · · · · · · · · · · · · · ·                               | Location ID | B159-1            | B159-1    | B159-2            | B159-2            | B159-2            | B159-2                                  | B159-2    | B159-2            | B159-2    | B159-2            | D 450 0                     | D (Ma o                                 |                                       |                                |                   |              |                     |
|---------------------------------------------------------------------|-------------|-------------------|-----------|-------------------|-------------------|-------------------|-----------------------------------------|-----------|-------------------|-----------|-------------------|-----------------------------|-----------------------------------------|---------------------------------------|--------------------------------|-------------------|--------------|---------------------|
|                                                                     | Sample ID   | 8159-1-40(120402) |           | B159-2-10(120602) | B159-2-15(120602) | B159-2-20(120602) | B159-2-25(120602)                       |           | B159-2-40(120602) |           | B159-2-35(120602) | B159-3<br>B159-3-10(120402) | B159-3<br>B159-3-15(120402)             | B159-3                                | B159-3                         | B159-3            | B159-3       | B159-3              |
|                                                                     | Sample Date | 12/4/2002         | 12/4/2002 | 12/6/2002         | 12/6/2002         | 12/6/2002         | 12/6/2002                               | 12/6/2002 | 12/6/2002         | 12/6/2002 | 12/6/2002         | 12/4/2002                   | 12/4/2002                               | B159-3-20(120402)<br>12/4/2002        | B159-3-25(120402)<br>12/4/2002 | B159-3-30(120402) |              | ) B159-3-40(120602) |
|                                                                     | Sample Type | VP                | VP        | VP                | VP                | VP                | VP                                      | VP        | VP                | VP        | VP                | VP                          | VP                                      | VP                                    | 12/4/2002<br>VP                | 12/4/2002<br>VP   | 12/4/2002    | 12/4/2002           |
|                                                                     | Start Depth | 39                | 44        | 9                 | 14                | 19                | 24                                      | 29        | 34                | 39        | 44                | 9                           | 14                                      | 19                                    | 24                             | 29                | VP<br>34     | VP                  |
|                                                                     | End Depth   | 41                | 46        | 11                | 16                | 21                | 26                                      | 31        | 36                | 41        | 46                | 11                          | 16                                      | 21                                    | 26                             | 31                | 34           | 39                  |
| Chemical Name                                                       | Unit        |                   |           |                   |                   |                   |                                         |           |                   | · · · · · |                   |                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | · · · · · · · · · · · · · · · · · · · |                                |                   |              | 41                  |
| 1,1,1-Trichloroethane                                               | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | <2        | <2                | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| 1,1,2,2-Tetrachloroethane                                           | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | < 2       | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| 1,1,2-Trichloroethane                                               | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | < 2       | <2                | <2                          | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| 1,1-Dichloroethane                                                  | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2 IJ            | < 2 [J    | < 2   J           | <2                          | <2                                      | <2                                    | < 10 J                         | < 10              | < 10 IJ      | < 10                |
| 1,1-Dichloroethene                                                  | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         |                     |
| 1,2-Dibromoethane                                                   | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | < 2               | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10<br>< 10        |
| 1,2-Dichloroethane                                                  | μg/L        |                   |           |                   |                   |                   |                                         |           |                   |           |                   | <u> </u>                    |                                         | · · · ·                               |                                |                   | × 10         | <u> </u>            |
| 1,2-Dichloroethene                                                  | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | < 2       | <2                | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10         |                     |
| 1,2-Dichloropropane                                                 | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2               | < 2       | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              |              | < 10                |
| 2-Butanone                                                          | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | <2        | <2                | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10<br>< 10 | < 10                |
| 2-Hexanone                                                          | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | < 2               | <2        | <2                | <2                          | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| 4-Methyl-2-pentanone                                                | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              |              | < 10                |
| Acetone                                                             | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | <2                | <2                          | <2                                      | <2                                    | < 10                           | <10               | < 10<br>< 10 | < 10                |
| Benzene                                                             | րձ/լ՝       | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | < 2       | <2                | <2                          | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| Benzene, 1-methylethyl                                              | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10<br>< 10        |
| Bromochloromethane                                                  | րց/լ        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | < 2       | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         |                     |
| Bromodichloromethane                                                | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | < 2               | <2        | < 2               | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| Bromoform                                                           | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | < 2       | < 2               | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| Bromomethane                                                        | µg/l.       | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | < 2       | < 2               | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         | < 10<br>< 10        |
| Carbon disuifide                                                    | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | < 2       | < 2               | <2                          | <2                                      | <2                                    | < 10                           | < 10              | < 10         | <10                 |
| Carbon tetrachloride                                                | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2               | < 2       | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         | <10                 |
| Dichlorodifluoromethane                                             | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | <2        | <2                | 10.5                        | 5.32                                    | <2                                    | < 10                           | < 10              | < 10         | <10                 |
| Chlorobenzene                                                       | μg/L,       | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | < 2               | < 2       | <2                | <2                          | <2                                      | <2                                    | < 10                           | <10               | < 10         | < 10                |
| Chloroethane                                                        | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | < 2               | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         | <10                 |
| Chloroform                                                          | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2               | < 2       | <2                | < 2                         | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| Chloromethane                                                       | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | < 2               | <2        | < 2               | < 2                         | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | <10                 |
| cis-1,2-Dichloroethene                                              | μg/L_       | 14.7              | 3.4 J     | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | < 2       | < 2               | < 2                         | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| cis-1,3-Dichloropropene                                             | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | < 2               | < 2                         | < 2                                     | <2                                    | < 10                           | <10               | < 10         | <10                 |
| Dibromochloromethane                                                | μg/Լ        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2               | <2        | < 2               | <2                          | <2                                      | <2                                    | < 10                           | <10               | < 10         | < 10                |
| Dibromomethane                                                      | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <21J      | <2                | < 2 IJ    | <2                | < 2                         | < 2                                     | <2]J                                  | < 10                           | < 10              | < 10  J      | < 10                |
| Ethylbenzene                                                        | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | < 2               | < 2                         | < 2                                     | < 2                                   | < 10                           | < 10              | < 10         | <10                 |
| Methylene chloride                                                  | μg/ί.       | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | <2        | <2                | < 2                         | <2                                      | < 2                                   | < 10                           | < 10              | < 10         | <10                 |
| Naphthatene                                                         | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2               | <2        | <2                | < 2                         | <2                                      | <2                                    | < 10                           | < 10              | < 10         | <10                 |
| n-Butylbenzene                                                      | μg/L_       | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | < 2               | < 2       | <2                | < 2                         | <2                                      | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| n-Propylbenzene                                                     | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | < 2               | < 2       | <2                | < 2                         | <2                                      | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| sec-Butylbenzene                                                    | μg/L        | < 10              | < 10      | < 10              | <10               | < 10              | < 10                                    | < 2       | < 2               | < 2       | <2                | < 2                         | <2                                      | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| Styrene                                                             | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | <2        | <2                | < 2                         | < 2                                     | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| Tetrachloroethene                                                   | μg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | < 2       | <2                | <2        | <2                | <2                          | < 2                                     | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| Totuene                                                             | µg/L        | < 10              | < 10      | < 10              | < 10              | < 10              | < 10                                    | <2        | < 2               | <2        | < 2               | < 2                         | < 2                                     | <2                                    | < 10                           | < 10              | < 10         | < 10                |
| Trichloroethene                                                     | µg/L        | 116               | 12.7      | < 10              | < 10              | < 10              | < 10                                    | <2        | <2                | <2        | < 2               | < 2                         | < 2                                     | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| Vinyl chloride                                                      | µg/L        | < 10              | < 10      | < 10              | < 10              | <u>&lt; 10</u>    | < 10                                    | <2        | < 2               | <2        | < 2               | <2                          | < 2                                     | < 2                                   | < 10                           | < 10              | < 10         | < 10                |
| Xylenes (total)                                                     | µg/L        |                   |           | l                 |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| Notes:                                                              |             |                   |           |                   |                   |                   | 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |           |                   |           |                   |                             | ····                                    |                                       |                                |                   |              | <u>ا</u> ا          |
| MW = monitor well groundwate                                        |             |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| VP = vertical profile groundwat                                     |             |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| Blank cell = no data/constituen<br>Bolded values indicate detection |             |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| J = Estimated value                                                 | 112         |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| R = Result rejected during data                                     | validation  |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| B = Analyte detected in associa                                     |             |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| U = Non-detect based on data                                        |             |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |
| o - norruetett based oli tiata                                      | ADICICIUM   |                   |           |                   |                   |                   |                                         |           |                   |           |                   |                             |                                         |                                       |                                |                   |              |                     |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

|                                       | Sample ID                             | B159-3-45(120602) | D450 4 40/400 100 | 0480 A 454404     | B159-4    | 8159-4            | B159-4            | B159-4            | B159-4            | B159-4            | B159-5            | D450.6            | B 180 -           |                  |           |                   |                   |               |
|---------------------------------------|---------------------------------------|-------------------|-------------------|-------------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-----------|-------------------|-------------------|---------------|
|                                       | Sample Date                           | 12/4/2002         | B159-4-10(120402) | B159-4-15(120402) |           | B159-4-25(120402) | B159-4-30(120402) | B159-4-35(120402) | B159-4-40(120402) | B159-4-45(120402) | B159-5-10(120402) | B159-5            | B159-5            | 8159-5           | B159-5    | B159-5            | B159-5            | B159-5        |
|                                       | Sample Type                           | VP                | 12/4/2002<br>VP   | 12/4/2002         | 12/4/2002 | 12/4/2002         | 12/4/2002         | 12/4/2002         | 12/4/2002         | 12/4/2002         | 12/3/2002         | B159-5-15(120302) | B159-5-20(120302) | B159-5-25(120302 |           | B159-5-35(120302) | B159-5-40(120402) | B159-5-45(120 |
|                                       | Start Depth                           | 44                | 9                 | VP                | VP        | VP                | VP                | VP                | VP                | VP                | VP                | 12/3/2002<br>VP   | 12/3/2002         | 12/3/2002        | 12/3/2002 | 12/3/2002         | 12/3/2002         | 12/3/2002     |
| · · · · · · · · · · · · · · · · · · · | End Depth                             | 44                | <del>y</del>      | 14                | 19        | 24                | 29                | 34                | 39                | 44                | 9                 | 14                | VP                | VP               | VP        | VP                | VP                | VP            |
| remical Name                          | Unit                                  |                   |                   | 16                | 21        | 26                | 31                | 36                | 41                | 46                | 11                | 14                | 19                | 24               | 29        | 34                | 39                | 44            |
| 1.1-Trichloroethane                   | µg/L                                  | < 10              | < 2               |                   |           |                   |                   |                   |                   |                   |                   |                   | 21                | 26               | 31        | 36                | 41                | 46            |
| 1.2.2-Tetrachloroethane               | µg/L                                  | < 10              |                   | < 2               | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | <2                |                   |                  |           |                   |                   |               |
| 1.2-Trichloroethane                   | μg/L                                  | < 10              | < 2               | < 2               | <2        | < 10              | < <u>1</u> 0      | < 10              | < 10              | <2                | <2                | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| 1-Dichloroethane                      |                                       | <10               | < 2               | <2                | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| 1-Dichloroethene                      | μg/L<br>μg/L                          | < 10              | < 2 I J           | <2                | < 2       | < 10              | < 10              | < 10              | < 10 J            | <2                | <2                | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| 2-Dibromoethane                       | · · · · · · · · · · · · · · · · · · · |                   | < 2               | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                |                   | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| 2-Dichloroethane                      | µg/L                                  | < 10              | < 2               | < 2               | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| 2-Dichloroethene                      | hâyr                                  |                   |                   |                   |           |                   |                   |                   |                   |                   |                   | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
|                                       | μg/L                                  | < 10              | < 2               | <2                | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | < 2               |                   |                   |                  |           |                   |                   |               |
| 2-Dichloropropane                     | μg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                |                   | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| Butanone                              | μg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | < 2               | < 2               | < 10             | < 10      | < 10              | <10               | < 10          |
| Hexanone                              | µg/L                                  | < 10              | <2                | < 2               | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| Methyl-2-pentanone                    | µg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| etone                                 |                                       | < 10              | < 2               | <2                | <2        | < 10              | < 10              | < 10              | < 10              |                   | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| enzene                                | hã\r                                  | < 10              | < 2               | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| enzene, 1-methylethyl                 | լենչ                                  | < 10              | < 2               | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| omochloromethane                      | µg/l.                                 | < 10              | < 2               | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | < 2               | 0.81 J            | < 10             | < 10      | < 10              | < 10              | < 10          |
| omodichioromethane                    | µg/L                                  | < 10              | < 2               | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| omoform                               | μg/L                                  | < 10              | < 2               | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| omomethane                            | µg/L_                                 | < 10              | < 2               | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
| arbon disulfide                       | μg/L                                  | < 10              | <2                | < 2               | <2        | < 10              | < 10              | < 10              | <10               | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| arbon tetrachloride                   | µg/L                                  | < 10              | <2                | < 2               | <2        | < 10              | < 10              | < 10              | <10               | <2                | <2                | < 2               | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
| chlorodifluoromethane                 | μg/L                                  | < 10              | <u>&lt;</u> 2     | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| lorobenzene                           | μg/L                                  | < 10              | <2                | < 2               | < 2       | < 10              | < 10              | < 10              | <10               | <2                | <2                | < 2               | < 2               | < 10             | < 10      | <10               | < 10              | < 10          |
| loroethane                            | µg/L                                  | < 10              | <2                | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | <2                | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
| loroform                              | μg/L                                  | < 10              | <2                | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| Iloromethane                          | µg/L                                  | < 10              | <2                | < 2               | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| -1,2-Dichloroethene                   | µg/L                                  | < 10              | < 2               | < 2               | < 2       | . < 10            | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| -1,3-Dichloropropene                  | µg/L                                  | < 10              | < 2               | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
|                                       | µg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | < 2               | <2                | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
| bromomethane<br>hylbenzene            | μg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10 IJ           | < 10              | < 10              | <2                | <2                | < 2               | <2                | < 10 IJ          | < 10      | < 10              | < 10              | < 10          |
| sthylene chloride                     | μg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | <2                | < 10 !           | < 10      | < 10              | < 10              | < 10          |
| phihalene                             | µg/L_                                 | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| Butylbenzene                          | µg/L                                  | < 10              | < 2               | < 2               | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
|                                       | μg/L                                  | < 10              | < 2               | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | 1.37 J            | 6.17              | 6.22 J           | < 10      | < 10              | < 10              | < 10          |
| Propylbenzene c-Butylbenzene          | <u>μg/L</u>                           | < 10              | <2                | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | 0.53 J            | <2                | < 10             | < 10      | < 10 J            | < 10              | < 10          |
| rene                                  | <u>μg/L</u>                           | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | < 2               | 0.62 J            | < 10             | < 10      | < 10              | < 10              | < 10          |
| trachloroethene                       | µg/L                                  | < 10              | <2                | < 2               | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | 0.88 J            | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
| luene                                 | µg/L                                  | < 10              | < 2               | < 2               | <2        | < 10              | < 10              | < 10              | <10               | <2                | <2 <2             | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| chloroethene                          | µg/L                                  | < 10              | <2                | <2                | <2        | < 10              | < 10              | < 10              | < 10              | <2                | <2                | <2                | <2                | < 10             | < 10      | < 10              | < 10              | < 10          |
| vi chloride                           | μg/L                                  | < 10              | < 2               | <2                | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                |                   | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| ienes (total)                         | µg/L                                  | < 10              | <2                | < 2               | < 2       | < 10              | < 10              | < 10              | < 10              | <2                | <2                | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| tes:                                  | µg/L                                  |                   | <u> </u>          |                   |           |                   |                   |                   |                   |                   |                   | <2                | < 2               | < 10             | < 10      | < 10              | < 10              | < 10          |
| N = monitor well groundwater          | sampla                                |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   | 1                |           |                   |                   |               |
| I = vertical profile groundwate       |                                       |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   | :                |           |                   |                   |               |
| ank cell = no data/constituent i      |                                       |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   |                  |           |                   |                   |               |
| Ided values indicate detection        |                                       |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   |                  |           |                   |                   |               |
| Estimated value                       | -                                     |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   |                  |           |                   |                   |               |
| = Result rejected during data         | validation                            |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   |                  |           |                   |                   |               |
| Analyte detected in associat          |                                       |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   | :                |           |                   |                   |               |
|                                       | olidation                             |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   |                  |           |                   |                   |               |
| Non-detect based on data v            | andauon                               |                   |                   |                   |           |                   |                   |                   |                   |                   |                   |                   |                   |                  |           |                   |                   |               |

Samples collected solely for investigation of petroleum prior to CAP Part B Investigations are not included in this table Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

22 of 22

.



Table 4-3 Summary of Groundwater Analyses, Purge Facility Investigation HAA-17 Hunter Army Airfield-Savannah, GA

|                      |                   | AT-MW-1  | AT-MW-2      | AT-MW-3  | AT-MW-4                                                                                                         | AT-MW-4  | AT-MW-5  |
|----------------------|-------------------|----------|--------------|----------|-----------------------------------------------------------------------------------------------------------------|----------|----------|
|                      | Well ID           | AT-10112 | AT0212       | AT0312   | AT0412                                                                                                          | AT0414   | AT0512   |
| <u> </u>             | Sample ID<br>Date | 07/23/06 | 07/23/06     | 07/24/06 | 07/24/06                                                                                                        | 07/24/06 | 07/24/06 |
| 1000                 | Units             | 01120/00 |              |          |                                                                                                                 |          |          |
| VOCs                 |                   | 1.13     | <1           | <1       | <1                                                                                                              | <1       | <1       |
| 1,2-Dichloroethene   | µg/L              | <5       | <5           | <5       | 2.43 J                                                                                                          | 2.67 J   | <5       |
| 2-Butanone           | µg/L              | <5       | <5           | <5       | 1.49 J                                                                                                          | 1.76 J   | <5       |
| 4-Methyl-2-pentanone | µg/L              |          | <5           | 3.26 J   | 10.5                                                                                                            | 13       | 1.26 J   |
| Acetone              | μg/L              | 1.64 J   |              | <1       | 1.09                                                                                                            | 1.11     | <1       |
| Benzene              | μg/L              | <1       | <1           | <        | 2.88                                                                                                            | 3.1      | 1.25     |
| Ethylbenzene         | µg/L              | <1       | 0.828 J      |          | the second se | 5.11     | 1.28     |
| Toluene              | µg/L              | 0.396 J  | 0.402 J      | <1       | 5.11                                                                                                            | <1       | <1       |
| Trichloroethene      | µg/L              | 34.8     | <u>&lt;1</u> | <1       | <1                                                                                                              |          | 5.32     |
| Xylenes, Total       | μg/L              | 0.496 J  | 1.07         | 0.277 J  | 14.6                                                                                                            | 14.6     | 9.52     |
| SVOCs                |                   |          | -            |          |                                                                                                                 | 0.424 J  | 3.46     |
| 2-Methylnaphthalene  | μg/L              | <1 J     | <1           | <1       | <1                                                                                                              |          | <19.6    |
| Benzoic Acid         | μg/L              | <20      | <20          | 12.1 J   | <20                                                                                                             | 14.9 J   |          |
| Naphthalene          | µg/L              | <1 J     | 0.548 J      | <1       | <1                                                                                                              | 0.676 J  | 2.15     |
| Metals               |                   |          |              |          |                                                                                                                 |          | 440      |
| Barium, Total        | μg/L              | 40.5     | 12.1         | 60.3     | 34.3                                                                                                            | 33.4     | 14.2     |
|                      | µg/L              | 0.51 J   | < 0.3        | < 0.3    | 0.32 J                                                                                                          | <0.3     | < 0.3    |
| Cadmium, Total       |                   | 16.1     | 1.3 J        | 1.8 J    | 3.6 J                                                                                                           | 3 J      | 1.4 J    |
| Chromium, Total      | µg/L              |          |              |          |                                                                                                                 |          |          |

J = Estimated value

Bolded values indicate detections

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

# Table 4-4 Summary of Soil Analyses, Purge Facility Investigation HAA-17 Hunter Army Airfield - Savannah, Georgia

| nits                          | Soil<br>Notification<br>Concentration                                                                                                               | AT-MW-1<br>AT0111<br>05/11/06<br>Surface<br>0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT-MW-1<br>AT0121<br>05/11/06<br>Subsurface                                                                                                                                                                                                                                                  | AT-MW-2<br>AT0211<br>05/10/06                                               | AT-MW-2<br>AT0221<br>05/10/06                                                                                   | AT0311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AT-MW-3 (DUP)<br>AT0313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT0321                                                 | AT0323                                                 | AT0411    |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------|
| Date<br>Soil]<br>ogs)<br>nits | Notification                                                                                                                                        | 05/11/06<br>Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05/11/06                                                                                                                                                                                                                                                                                     | 05/10/06                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                        |           |
| Soil]<br>ogs)<br>nits         | Notification                                                                                                                                        | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 | 05/10/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05/10/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05/10/06                                               | 05/10/06                                               | 05/10/06  |
| ogs)<br>nits                  |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subsurface                                                                                                                                                                                                                                                                                   |                                                                             | Subsurface                                                                                                      | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Subsurface                                             | Subsurface                                             | Surface   |
| ogs)<br>nits                  | Concernation                                                                                                                                        | 0.0-10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              | Surface                                                                     | 4.0-6.0                                                                                                         | 0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0-6.0                                                | 4.0-6.0                                                | 0.0-1.0   |
| nits                          |                                                                                                                                                     | 0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0-6.0                                                                                                                                                                                                                                                                                      | 0.0-1.0                                                                     | 4.0-0.0                                                                                                         | 0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                        |           |
| 1100                          |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              | < 0.0016                                                                    | < 0.00142                                                                                                       | < 0.00115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.00134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00161                                              | < 0.00236                                              | < 0.00118 |
| g/kg                          | 0.13                                                                                                                                                | < 0.00121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.00127                                                                                                                                                                                                                                                                                    |                                                                             | < 0.00709                                                                                                       | <0.00575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.0067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.00805                                              | <0.0118                                                | <0.00589  |
| j/kg                          | 0.79                                                                                                                                                | < 0.00604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00268 J                                                                                                                                                                                                                                                                                    | <0.00802                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0132                                                 | 0.0181                                                 | 0.0117    |
| g/kg                          | 2.74                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00805                                               | <0.0118                                                | 0.00477 J |
| ı/kg                          | DL*                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              | Sedelander Palanticher auf die erste bei bei bei bei bei bei bei bei bei be |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.00161                                              | < 0.00236                                              | < 0.00118 |
| g/kg                          | 0.68                                                                                                                                                | < 0.00121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00034 J                                              | 0.00055 J                                              | <0.00118  |
| g/kg                          | 14                                                                                                                                                  | 0.0003 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00161                                               | 0.00783                                                | < 0.00118 |
| g/kg                          | 14.4                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.00161                                               | <0.00236                                               | <0.00118  |
| g/kg                          | 20                                                                                                                                                  | <0.00121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00026 J                                                                                                                                                                                                                                                                                    | <0.0016                                                                     | <0.00142                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                        |           |
|                               |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             | 0.052                                                                                                           | < 0.0384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.0384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0451                                               | < 0.0471                                               | < 0.0346  |
| g/kg                          | 1.64                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0451                                               | < 0.0471                                               | 0.0275 J  |
| g/kg                          | 5                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             | the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0451                                               | < 0.0471                                               | 0.0153 J  |
| g/kg                          | 5                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0451                                               | < 0.0471                                               | 0.0226 J  |
| g/kg_                         | 5                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.451                                                | < 0.471                                                | < 0.346   |
| g/kg                          | 13.7                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0451                                               | < 0.0471                                               | 0.0504    |
| g/kg                          | 500                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0451                                               | < 0.0471                                               | 0.0265 J  |
| g/kg                          | 110                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0451                                               | < 0.0471                                               | 0.0357    |
| ig/kg                         | 500                                                                                                                                                 | < 0.0402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.0441                                                                                                                                                                                                                                                                                     | 0.0137 J                                                                    | < 0.0404                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                        |           |
|                               |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              | 441                                                                         | < 0.651                                                                                                         | < 0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.676                                                | < 0.673                                                | 0.85 J    |
| ig/kg                         |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                            |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.8                                                    | 3.6                                                    | 6.5       |
| ng/kg                         |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.0406                                               | < 0.0404                                               | 0.075 J   |
| ig/kg                         |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                            |                                                                             |                                                                                                                 | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second se | 4.4                                                    | 5.8                                                    | 3.8       |
| ng/kg                         |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>6.2 J</u>                                                                                                                                                                                                                                                                                 |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                    | 2.9                                                    | 17.8      |
| ng/kg                         |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0346                                                 | 0.0281                                                 | 0.0237    |
| ng/kg                         |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.84 J                                                 | 1.4 J                                                  | < 0.609   |
| ng/kg                         | 36                                                                                                                                                  | < 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9                                                                                                                                                                                                                                                                                          |                                                                             | 0.550                                                                                                           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                        |           |
|                               | /kg<br>/kg<br>/kg<br>/kg<br>/kg<br>/kg<br>/kg<br>/kg<br>/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg<br>g/kg | jkg         2.74           jkg         DL*           jkg         0.63           jkg         14           jkg         14.4           jkg         20           jkg         1.64           jkg         5           jkg         5           jkg         5           jkg         5           jkg         5           jkg         5           jkg         500           jkg         500           g/kg         500           g/kg         500           g/kg         500           g/kg         300           g/kg         300           g/kg         17 | /kg         2.74         0.013           /kg         DL*         000071           /kg         DL*         000071           /kg         14         0.0003 J           /kg         14.4         0.00448           /kg         14.4         0.00448           /kg         1.64         < 0.0402 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                           | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |           |

Notes:

J = Estimated value

Bolded values indicate detections

Shaded cell indicates detections above Notification Concentrations, per Rule 391-3-19 DL\* = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit (PQL); values below the PQL are not shaded



# Table 4-4 Summary of Soil Analyses, Purge Facility Investigation HAA-17 Hunter Army Airfield - Savannah, Georgia

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT 1047 5                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              | AT CO 1                                                                                                                                                                                                                                                                                                                      | AT 99 TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT-99-2                                                                                                                                                                                                                                                                                                                                                                                                               | AT-SS-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT-SS-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AT-SS-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AT0320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05/12/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subsurface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ace [Soil] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ı (ft bgs) | Consernation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0-6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0-1.0                                                                                                                                                                                                                       | 4.0-6.0                                                                                                                                                                                                                                                                      | 0.5-1.0                                                                                                                                                                                                                                                                                                                      | 2.0-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5-1.0                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0-4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              | 10.00400                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.00122                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      | - in the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/kg      | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      | DL*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.00539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.00108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00029 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00034 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00151                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.00108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.00151                                                                                                                                                                                                                      | <0.00191                                                                                                                                                                                                                                                                     | <0.00142                                                                                                                                                                                                                                                                                                                     | <0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00025 J                                                                                                                                                                                                                                                                                                                                                                                                             | <0.00117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.00119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.0272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/kg      | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0246 J                                                                                                                                                                                                                      | < 0.0458                                                                                                                                                                                                                                                                     | 0.0218 J                                                                                                                                                                                                                                                                                                                     | < 0.0408                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0416                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.0404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.0373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mg/kg      | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/kg      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.0357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.0399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              | the second se                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg/kg      | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 J                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mg/kg      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mg/kg      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0184                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.589                                                                                                                                                                                                                       | < 0.797                                                                                                                                                                                                                                                                      | < 0.693                                                                                                                                                                                                                                                                                                                      | < 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.74                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Soil         Soil           ble Date         Notification           Acce [Soil]         Concentration           Concentration         Concentration           units         0.13           mg/kg         0.13           mg/kg         0.79           mg/kg         0.74           mg/kg         0.74           mg/kg         0.68           mg/kg         14           mg/kg         14.4           mg/kg         5           mg/kg         5           mg/kg         5           mg/kg         500           mg/kg         500           mg/kg         500           mg/kg         500           mg/kg         39           mg/kg         300 | AT0421           ble Date         Soil         AT0421           Notification         05/10/06         Subsurface           ace [Soil]         Concentration         Subsurface           mg/kg         0.13         < 0.00108 | Initial Section ID ble Date         Soil         AT0421         AT0511           Die Date         Notification         05/10/06         05/11/06           Iff bgs)         Concentration         Subsurface         Surface           Ing/kg         0.13         < 0.00108 | Initiation ID<br>ble Date         Soil         AT0421         AT0511         AT0521           De Date         Notification         05/10/06         05/11/06         05/11/06           If bgs)         Concentration         Subsurface         Surface         Subsurface           If bgs)         0.13         < 0.00108 | Initiation ID<br>ble Date         Soil<br>Notification<br>Concentration         AT0421<br>05/10/06         AT0511<br>05/11/06         AT0521<br>05/11/06         AT0110<br>05/12/06           Units         Oncentration         05/10/06         05/11/06         05/11/06         05/12/06           Units         Oncentration         4.0-6.0         0.0-1.0         4.0-6.0         0.5-1.0           Units         Units         0.00151         0.000667 J         <0.00142 | Initiation ID         Soil         AT0421         AT0511         AT0521         AT0110         AT0120           ble Date         Notification         05/10/06         05/11/06         05/11/06         05/12/06         05/12/06           ace [Soil]         Concentration         Subsurface         Surface         Subsurface         Surface         Subsurface           mg/kg         0.13         < 0.00108 | Inite ID         AT01421         AT0511         AT0521         AT0110         AT0120         AT0210           bail Date         Notification         O5/10/06         05/11/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06         05/12/06 | Initiation ID         AT 0,00147         Colono,00147         Colono,0017         Colono,00117 <th< td=""><td>mple D<br/>atom ID<br/>ble Date<br/>Notification<br/>(ft bgs)         AT0421<br/>AT0421         AT0420<br/>AT0421         AT0621<br/>AT0621         AT0110<br/>AT0120         AT0220<br/>AT0210         AT0220<br/>AT0210         AT0310<br/>O5/12/06           05/12/06<br/>(ft bgs)<br/>Units         Subsurface<br/>Subsurface         Surface<br/>Sufface         Subsurface         Subsurface         Subsurface         Subsurface         Subsurface         Subsurface         Subsurface         Sufface         <td< td=""></td<></td></th<> | mple D<br>atom ID<br>ble Date<br>Notification<br>(ft bgs)         AT0421<br>AT0421         AT0420<br>AT0421         AT0621<br>AT0621         AT0110<br>AT0120         AT0220<br>AT0210         AT0220<br>AT0210         AT0310<br>O5/12/06           05/12/06<br>(ft bgs)<br>Units         Subsurface<br>Subsurface         Surface<br>Sufface         Subsurface         Subsurface         Subsurface         Subsurface         Subsurface         Subsurface         Subsurface         Sufface         Sufface <td< td=""></td<> |

Notes:

J = Estimated value

Bolded values indicate detections

Shaded cell indicates detections above Notification Concentrations, per Rule 391-3-19

DL\* = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit (PQL); values below the PQL are not shaded

| Table 4-5                                     |
|-----------------------------------------------|
| Vertical Profile, MIP, and DPT Sample Summary |
| HAA-17                                        |
| Hunter Army Airfield - Savannah, GA           |

ī

| MIP/DP1       | Installation<br>Date | Northing                    | Easting           | Soil Sampling<br>Invervals (ft BGS) | Groundwater Sampling Invervals (ft BGS)                                                                                                                   |
|---------------|----------------------|-----------------------------|-------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID            |                      | 9 through 2002              |                   |                                     | 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55                                                                                             |
|               | 5/7/1999             | 9 through 2002<br>734143.75 | 979553.06         |                                     | 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55<br>11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50, 51-55                            |
| AF-21         | 5/8/1999             | 734085.32                   | 979516.34         |                                     | <u></u>                                                                                                                                                   |
| AF-22         |                      | 734139.86                   | 979550.68         |                                     | 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50<br>6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50                                    |
| AF-30         | 9/26/1999            | 733998.85                   | 979522.67         |                                     | 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50<br>11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50                                    |
| AF-31         | 9/25/1999            | 733972.47                   | 979570.12         |                                     | 11-15, 16-20, 21-25, 20-30, 51-05, 05, 05, 05, 05, 05, 05, 05, 05, 05,                                                                                    |
| AF-32         | 9/25/1999            | 734303.9                    | 979627            |                                     | 4-9, 9-14, 14-19, 19-24, 24-29, 29-34, 34-39, 39-44, 44-49<br>4-9.0, 9-14, 14-19, 19-24, 24-29, 29-34, 34-30, 39-44, 44-49                                |
| AF-43         | 11/30/2000           | 734233                      | 979549.9          |                                     | 4-9.0, 9-14, 14-19, 19-24, 24-29, 29-34, 34-39, 39-44, 44-49<br>4-9, 9-14, 14-19, 19-24, 24-29, 29-34, 34-39, 39-44, 44-49                                |
| AF-44         | 12/1/2000            | 734156.9                    | 979457.5          | u                                   | 4-9, 9-14, 14-19, 19-24, 24-29, 20-31 35, 36-40, 41-45, 46-50                                                                                             |
| AF-45         | 12/1/2000            |                             | 979390.2          |                                     | 4-9, 9-14, 14-15, 13/24, 2 201<br>6-10, 10-20, 11-15, 21-25, 28-30, 31-35, 36-40, 41-45, 46-50                                                            |
| AF-46         | 12/2/2000            | 734090.1                    | 979367.3          |                                     | 6-10, 10-20, 11-10, 21 25, 26-30, 31-35, 36-40, 41-45, 46-50<br>11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50                                    |
| AF-47         | 12/2/2000            | 733996.5                    | 979430.7          |                                     | 11-15, 16-20, 21-23, 20-00, 10-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50<br>5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 41-45, 46-50 |
| AF-48         | 12/4/2000            | 733926.8                    | 979641.8          |                                     | 5-10, 10-15, 10-20, 20-20, 20-20, 31-35, 36-40, 41-45, 46-50<br>6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50                              |
| AF-49         | 12/2/2000            | 733922.2                    | 979596.9          |                                     | 6-10, 11-13, 10-20, 21-25, 21-29, 29-34, 34-39, 39-44, 44-49<br>4-9, 9-14, 14-19, 19-24, 24-29, 29-34, 34-39, 39-44, 44-49                                |
| AF-50         | 12/2/2000            | 734069.3                    | 979650.9          | <u>+</u>                            | 4-9, 9-14, 14-13, 10-27, 21-31, 30-35, 35-40, 40-45, 45-50<br>5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50                                |
| AF-51         | 12/3/2000            | 734115.2                    |                   |                                     | 1 - 10 - 14 + 14 + 10 + 10 - 24 + 24 - 29 - 29 - 34 - 39 + 35 - $4 - 4 + 1 - 5 - 10 - 10 - 10 - 10 - 10 - 10 - 1$                                         |
| AF-52         | 12/2/2000            | 734234                      | 979686.7          |                                     | 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                   |
| AF-63         | 7/16/2002            | 734234.3                    | 979386.5          |                                     | 1                                                                                                                                                         |
| AF-64         | 7/16/2002            | 734337.7                    | 979548.7          |                                     | 1                                                                                                                                                         |
| AF-65         | 7/17/2002            | 734417                      | 979673.9          |                                     | 4 5 6 10 11-15 16-20 21-25 26-30 31-35 30-40 41 10                                                                                                        |
| AF-66         | 7/17/2002            | 734418.8                    | 979801.5          |                                     | 0 40 41 45 46-20 21-25, 26-30, 31-35, 30-40, 41 10                                                                                                        |
| AF-67         | 7/17/2002            | 734017.7                    | 979773.2          |                                     | -244 14 16 10-21 24-26 29-31 34-30 39-41 + 44-40                                                                                                          |
|               | 12/4/2002            | <del>_</del>                | <u></u>           |                                     |                                                                                                                                                           |
| B159-2        | 12/6/2002            |                             | _ <u> </u>        |                                     |                                                                                                                                                           |
| B159-3        | 12/4/2002            |                             |                   |                                     |                                                                                                                                                           |
| B159-4        | 12/4/2002            |                             |                   |                                     | 9-11, 14-16, 19-21, 24-26, 29-31, 34-36, 39-41, 44-46                                                                                                     |
| B159-5        | 12/3/2002            |                             |                   |                                     |                                                                                                                                                           |
| Building 1290 |                      | - 2007                      |                   | 1 10 11 5 10 5 15                   | 15-16, 41-45                                                                                                                                              |
| MIP-01/DPT0   | 2 10/07*             | 734754.1254                 |                   | 99 13-14.5, 43.5-45.                | <u> </u>                                                                                                                                                  |
|               | 10/07*               | 735500.7184                 | 977136.59         |                                     |                                                                                                                                                           |
| MIP-02        | 10/07*               | 734735.329                  | 4 978625.45       |                                     |                                                                                                                                                           |
| MIP-02        | 10/07*               | 735369.235                  | 977186.18         | 26                                  | 10-12, 38-40                                                                                                                                              |
| MIP-03        |                      | 734467.177                  | 978702.35         |                                     | 36-38, 46-48                                                                                                                                              |
| MIP-04/DPT0   |                      | 734361.182                  | 4 979392.07       |                                     |                                                                                                                                                           |
| MIP-05/DPT0   | 10/07*               | 734231.339                  | 4 979233.28       |                                     | 5 14-16, 44-46                                                                                                                                            |
| MIP-06        |                      | 734823.88                   |                   | 316 14.5-15.5 ,44-4                 | 5                                                                                                                                                         |
| MIP-07/DPT    | 10/07*               | 735124.93                   |                   | 846                                 |                                                                                                                                                           |
| MIP-08        | 10/07*               | 734947.179                  |                   | 169                                 | 8-10, 39-41                                                                                                                                               |
| MIP-09        |                      | 734525.11                   |                   | 792 7.5-8.5 ,39-40                  | 10 42 14 16 26-28                                                                                                                                         |
| MIP-10/DPT    | ×                    |                             |                   |                                     |                                                                                                                                                           |
| MIP-11/DPT    | 10 10/07*            |                             |                   | 445                                 |                                                                                                                                                           |
| MIP-12        |                      |                             |                   | 819                                 | 10-14, 34-36                                                                                                                                              |
| MIP-13        | 10/07*               |                             |                   |                                     | 10-14,04 00                                                                                                                                               |
| MIP-14/DPT    | 06 10/07             |                             |                   |                                     | 41-45                                                                                                                                                     |
| MIP-15        | 10/07                |                             |                   |                                     | 12-14, 40-42                                                                                                                                              |
| MIP-16/DP1    | r01 10/07            |                             |                   |                                     |                                                                                                                                                           |
| MIP-17/DP     | ro <u>9 10/07</u>    |                             |                   |                                     |                                                                                                                                                           |
| MIP-18        | 10/07                | * 734713.1                  | <u>. 10100711</u> |                                     |                                                                                                                                                           |

Notes: Samples collected solely for petroleum analysis during CAP Investigations are not included in table MIP = membrane interface probe DPT = direct push technology -- = no data/not applicable 1 of 2 \* exact date of MIP installation unknown

(

| Table 4-5                                     |
|-----------------------------------------------|
| Vertical Profile, MIP, and DPT Sample Summary |
| HAA-17                                        |
| Hunter Army Airfield - Savannah, GA           |

٦

| Vertical Profile/<br>MIP/DPT<br>ID | Installation<br>Date | Northing    | Easting     | Soil Sampling<br>Invervals (ft BGS) | Groundwater Sampling Invervals (ft BGS) |
|------------------------------------|----------------------|-------------|-------------|-------------------------------------|-----------------------------------------|
| MIP-19                             | 10/07*               | 734822.537  | 979561.1835 |                                     | 14-18, 35-40                            |
| MIP-20/DPT08                       | 10/07*               | 734735.3294 | 978625.4549 | 13-14,35-36                         | 14-18, 26-28                            |
| MIP-21/DPT13                       | 1/08*                | 733568.8536 | 979871.4161 | 16-18,28-30                         | 14-10, 20-20                            |
| MIP-22                             | 1/08*                | 733887.4989 | 979792.3465 |                                     |                                         |
| MIP-23                             | 1/08*                | 733744.2716 | 979677.1611 |                                     | 0.40.00.00                              |
| MIP-24/DPT14                       | 1/08*                | 734043.5136 | 980028.5711 | 11-13,24-26                         | 8-12, 22-26                             |
| MIP-25                             | 1/08*                | 734280.7719 | 980107.0775 |                                     |                                         |
| MIP-26/DPT11                       | 1/08*                | 734045.3549 | 979823.0955 | 12.5-14.5 ,27.5-29.5                | 10-14, 24-29                            |
| MIP-27/DPT18                       | 1/08*                | 733644.9259 | 979294.9965 | 8-10,28-30                          | 4-8, 24-28                              |
| MIP-28                             | 1/08*                | 733869.2089 | 979974.8455 |                                     |                                         |
| MIP-29/DPT15                       | 1/08*                | 734518.1736 | 980185.7271 | 15-17,24-26                         | 11-15, 20-24                            |
| MIP-30/DPT12                       | 1/08*                | 733898.9929 | 979668.8475 | 14-16,26-28                         | 12-16, 24-28                            |
| MIP-31                             | 1/08*                | 733430.4589 | 980024.3095 |                                     |                                         |
| MIP-32                             | 1/08*                | 733122.9799 | 981127.8375 | <u> </u>                            |                                         |
| MIP-33                             | 1/08*                | 733472.4436 | 981543.1051 |                                     |                                         |
| MIP-34/DPT17                       | 1/08*                | 733902.3379 | 981494.8275 | 17-19,38-40                         | 16-26, 36-40                            |
| MIP-35/DPT16                       | 1/08*                | 734380.7799 | 980666.4285 | 15-17,31-33                         | 10-14, 28-32                            |
| MIP-36/DPT19                       | 1/08*                | 732927.2859 | 979350.8335 | 9-10,31-33                          | 8-12, 30-34                             |
| MIP-37                             | 1/08*                | 733428.5059 | 979233.4535 | j                                   |                                         |
| MIP-38/DPT20                       | 1/08*                | 733075.3956 | 979652.9141 | 12-14,28-30                         | 8-12, 24-28                             |
| MIP-39                             | 1/08*                | 733018.9059 | 979850.3635 |                                     |                                         |
| MIP-40                             | 1/08*                | 733125,3949 | 980296.7765 | 5                                   |                                         |

(

(

Notes: Samples collected solely for petroleum analysis during CAP Investigations are not included in table MIP = membrane interface probe DPT = direct push technology -- = no data/not applicable \* exact date of MIP installation unknown 2 of 2

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                             |                |              |               |            |              |            | MW-3D         | MW-4S        |
|-----------------------------|----------------|--------------|---------------|------------|--------------|------------|---------------|--------------|
|                             |                |              | MW-1D         | MW-2S      | MW-2D        | MW-3S      | AU03121       | AU04111      |
|                             | Location ID    | MW-1S        | AU01121       | AU02111    | AU02121      | AU03111    | 07/18/07      | 07/17/07     |
|                             | Sample ID      | AU01111      | 07/17/07      | 07/18/07   | 07/17/07     | 07/18/07   | MW            | MW           |
|                             | Sample Date    | 07/17/07     |               | MW         | MW           | MW         | 19.58 - 29.58 | 5.66 - 15.66 |
|                             | Sample Type    | MW           | MW            | 4.3 - 14.3 | 19.90 - 29.9 | 6.7 - 11.7 | 19.56 - 28.00 |              |
| Semple                      | Depth (ft BGS) | 5.72 - 15.72 | 19.95 - 29.95 | 4.0 - 11.0 |              |            |               | <1           |
|                             | T Units        |              |               | <1         | <1           | <1         | <1            | <1           |
| Chemical Name               | μg/L           | <1           | <1            | <1         |              | <1         |               | <1           |
| 1,1,2,2-Tetrachloroethane   | μg/L           | <1           | <1            | <          | <1           | <1         | <1            | <1           |
| 1.1-Dichloroethane          |                | <1           | <1            |            | <1           | <1         | <1            |              |
| 1.1-Dichloroethene          | <u>µg/L</u>    | <1           | <1            | <1         | +            | <1         | <1            |              |
| 1,2-Dichloroethane          | µg/L           | <1           | <1            | <1         | <            | 1          | <1            | <1           |
| 1,2-Dichloroethene          | µg/L           | <1           | <1            | <1         | <5           | <5         | 2.43 J        | <5           |
| 2-Butanone                  | µg/L           |              | <5            | <5         |              | 1-1        | <1            | <1           |
| Acetone                     | µg/L           |              | <1            | <1         | <1           | <5         | <5            | <5           |
|                             | µg/L_          |              |               | <5         | <5           | 0.273 J    | <1 <1         | <1           |
| Benzene<br>Carbon Disulfide | µg/L           | <5           | <1            | <1         | <1           | <1         | <1            | <1           |
|                             | µg/L           | <1           | +             | <1         | <1           |            | <1            | <1           |
| Chloroform                  | µg/L_          | <1           |               | <1         | <1           | <1         |               | <1           |
| Toluene                     | μg/L           | <1:          | <1            |            | <1           | <1         |               |              |
| Trichloroethene             | <u>μg/L</u>    | <1           | <1            |            |              |            |               |              |
| Vinyl Chloride              | <u>P9'-</u>    | <b>_</b>     |               |            |              |            |               |              |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

DPT = direct push groundwater sample

MW = monitor well groundwater sample

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                           |                         |          |             |             |           | MW-7S        | MW-7D       | MW-8S       |
|---------------------------|-------------------------|----------|-------------|-------------|-----------|--------------|-------------|-------------|
|                           | Location ID             | MW-4D    | MW-5S       | MW-5D       | MW-6S     | AU07111      | AU07121     | AU08111     |
|                           | Sample ID               | AU04121  | AU05111     | AU05121     | AU06111   | 07/16/07     | 07/17/07    | 07/18/07    |
|                           | Sample Date             | 07/17/07 | 07/18/07    | 07/18/07    | 07/18/07  | MW           | MW          | MW          |
|                           | Sample Date             |          | MW          | MW          | MW        | 7.89 - 17.89 | 24.6 - 34.6 | 5.40 - 15.4 |
|                           | Douth (# BGS)           |          | 5.80 - 15.8 | 20.0 - 30.0 | 4.0 - 9.0 | 7.00 11.00   |             |             |
|                           | Depth (ft BGS)<br>Units |          |             |             | <1        |              | <1          | <1          |
| Chemical Name             |                         | <1       | <1          | <1          | <1        |              | <1          | <1          |
| 1,1,2,2-Tetrachloroethane | µg/L                    | <1       | <1          | <1          | 1         |              | <1          | 6.01        |
| 1,1-Dichloroethane        | μg/L                    | <1 <1    | <1          | <1          | <1        |              | <1          | <1          |
| 1,1-Dichloroethene        | µg/L                    | <1       | <1          |             | <1        | <1           | <1          | <1          |
| 1,2-Dichloroethane        | μg/L                    | <1       | <1          | <1          | <1        | +            | <1          | <1          |
| 1,2-Dichloroethene        | μg/L                    |          | <1          | <1          | <1        | 1.89 J       |             | <5          |
| 2-Butanone                | µg/L                    | <5       | <5          | <5          | 14.9      | <1 <1        | <1          | <1          |
| Acetone                   | µg/L                    |          | <1          | <1          | <1        |              | <5          | <5          |
| Benzene                   | µg/L                    |          | <5          | <5          | <5        | <u>+</u>     | <1          | <1          |
| Carbon Disulfide          | µg/L                    | <1 <1    | <1          | <1          | <1        |              |             | <1          |
| Chloroform                | μg/L                    | <1       | <1          | <1          | <1        |              | <1          | <1          |
| Toluene                   | μg/L                    | +        | <1          | <1          | <1        |              | <1          | <1          |
| Trichloroethene           | µg/L                    | <1 <1    | <1          | <1          |           |              |             |             |
| Vinyl Chloride            | µg/L                    |          |             |             |           |              |             |             |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19 Bolded value indicates detection

DPT = direct push groundwater sample MW = monitor well groundwater sample

|                            |                  |              |             |               |            |             | MW-13S       | MW-13D        |
|----------------------------|------------------|--------------|-------------|---------------|------------|-------------|--------------|---------------|
|                            |                  |              | MW-9S       | MW-9D         | MW-12S     | MW-12D      | AU13111      | AU13121       |
| ·····                      | Location ID      | MW-8D        |             | AU09121       | AU12111    | AU12121     | 07/19/07     | 07/19/07      |
|                            | Sample ID        | AU08121      | AU09111     | 07/18/07      | 07/18/07   | 07/18/07    |              | MW            |
|                            | Sample Date      | 07/18/07     | 07/18/07    | MW            | MW         | MW          | MW           | 20.01 - 30.01 |
|                            | Sample Type      | MW           | MW          | 20.39 - 30.39 | 7.6 - 17.6 | 24.3 - 34.3 | 5.59 - 15.59 | 20.01-00.01   |
| Sample                     | e Depth (ft BGS) | 14.50 - 24.5 | 5.55 - 15.5 | 20.39 - 30.00 |            |             | ļ            |               |
|                            | 1 Units          |              |             |               | <1         | <1          | <1           |               |
| Chemical Name              | μg/L             | <1           | <1          |               |            | <1          | <1           |               |
| 1,1,2,2-Tetrachloroethane  |                  | <1           | <1          | <1            | <1         | <1          | <1           | <1            |
| 1.1-Dichloroethane         | µg/L             | 7.77         | 4.29        | <1            |            | <1          | <1           | <1            |
| 1,1-Dichloroethene         | μg/L             | <1           | <1          | <u>&lt;1</u>  |            | <1          | <1           | <1            |
| 1,2-Dichloroethane         | μg/L             | <            | <1          | <1            | <1         | +           | <1           | <1            |
| 1,2-Dichloroethene         | µg/L             | <1           | +           | <1            | <1         |             | <5           | <5            |
| 2-Butanone                 | µg/L             | <            | 5.52        | 12            | <5         |             | <1           | <1            |
| Acetone                    | μg/L             | +            | <1          | <1            | <1         | <           | <5           | <5            |
| Benzene                    | µg/L             |              |             | <5            | <5         |             | <1           | <1            |
| Carbon Disulfide           | µg/L             |              | <1          | <1            | <1         |             |              | <1            |
| Chloroform                 | µg/L             | <1           |             | <1            | <1         |             | <1           | <1            |
|                            | μg/L             | <1           | +           | <1            | <1         | <1          | -+           | <1            |
| Toluene<br>Trichloroethene | μg/L             | 1.08         | 0.551 J     | <1            | <1         | <1          |              |               |
| Vinyl Chloride             | μg/L             | <1           | 0.5510      |               |            |             |              |               |
|                            |                  |              |             |               |            |             |              |               |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

:

DPT = direct push groundwater sample

MW = monitor well groundwater sample

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                           |               |          |          |             |             |             | DPT-03      | DPT-03      |
|---------------------------|---------------|----------|----------|-------------|-------------|-------------|-------------|-------------|
|                           |               | 104/450  | MW-16S   | DPT-01      | DPT-02      | DPT-02      | AU031A      | AU032A      |
|                           | Location ID   | MW-15S   | AU16111  | AU011A      | AU021A      | AU022A      | 10/02/07    | 10/02/07    |
|                           | Sample ID     | AU15111  |          | 10/02/07    | 10/02/07    | 10/02/07    |             | DPT         |
|                           | Sample Date   | 07/19/07 | 07/19/07 | DPT         | DPT         | DPT         | DPT         | 44.0 - 46.0 |
|                           | Sample Type   | MW       | MW       | 41.0 - 45.0 | 15.0 - 16.0 | 41.0 - 45.0 | 14.0 - 16.0 |             |
| Sample D                  | epth (ft BGS) | Unknown  | Unknown  | 41.0 - 40.0 |             |             |             | <1          |
|                           | Units         |          |          | <1          | <1          | <1          | <1          | <1          |
| Chemical Name             | µg/L          | <1       | <1       |             | <1          | <1          | <1          |             |
| 1,1,2,2-Tetrachloroethane | <u>μg/L</u>   | <1       | 0.906 J  | <1          |             | <1          | <1          | <1          |
| 1,1-Dichloroethane        |               | 9.35     | 54.7     | <1          | <           | <1          | <1          | 1.1         |
| 1,1-Dichloroethene        | µg/L          | <1       | <1       | <1          |             | <1          | <1          | 0.574 J     |
| 1,2-Dichloroethane        | µg/L          | <1       | <1       | 3.65        | <1          | <5          | <5          | <5          |
| 1,2-Dichloroethene        | µg/L          | <1       | <1       | <5          | <5          | +           | <5          | <5          |
| 2-Butanone                | µg/L          |          | <5       | <5          | <5          |             | <1          | <1          |
| Acetone                   | µg/L          | <5       |          | <1          | <u> </u>    | <1          | <5          | 1.55 J      |
| Benzene                   | μg/L          | <1       | <5       | 1.55 J      | <5          | <5          |             | <1          |
| Carbon Disulfide          | µg/L          | <5       | +        | <1          | <1          | <1          | +           | <1          |
|                           | µg/L          | <1       |          |             | <1          | <1          |             | 2.5         |
| Chloroform                | µg/L          | <1       | <1       | 19.4        | <1          | <1          | <1          | <1          |
| Toluene                   | µg/L          | <1       | <1       | <1 <1       | <1          | <1          | <1          |             |
| Trichloroethene           | μg/L          | <1       | 27.3     | _ <u>`</u>  |             |             |             |             |
| Vinyl Chloride            | <u> </u>      |          | -        |             |             |             |             |             |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

DPT = direct push groundwater sample MW = monitor well groundwater sample

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                             |                |             |             |             | DPT-05      | DPT-06      | DPT-06      | DPT-07     |
|-----------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
|                             | Location ID    | DPT-04      | DPT-04      | DPT-05      | AU052A      | AU061A      | AU062A      | AU071A     |
|                             | Sample ID      | AU041A      | AU042A      | AU051A      | 10/02/07    | 10/03/07    | 10/03/07    | 10/03/07   |
|                             | Sample Date    | 10/02/07    | 10/02/07    | 10/02/07    | DPT         | DPT         | DPT         | DPT        |
|                             | Sample Type    | DPT         | DPT         | DPT         | 46.0 - 48.0 | 10.0 - 14.0 | 34.0 - 36.0 | 8.0 - 10.0 |
| Sample                      | Depth (ft BGS) | 10.0 - 12.0 | 38.0 - 40.0 | 36.0 - 38.0 | 40.0 - 40.0 | 10.0 1.00   |             |            |
| Chemical Name               | Units          |             | L           | <1          | <1          | <1          | <1          | <1         |
| 1,1,2,2-Tetrachloroethane   | µg/L           | <1          | <1          |             | <1          | <1          | <1          | <1         |
| 1,1-Dichloroethane          | µg/L           | <1          | <1          |             | <1          | <1          | <1          | <1         |
| 1,1-Dichloroethene          | µg/L           | <1          | <1          |             | <1          | <1          | <1          | <1         |
| 1,2-Dichloroethane          | µg/L           | <1          | <1          | J           | 3.42        | <1          | <1          | <1         |
| 1,2-Dichloroethene          | µg/L           | <1          | <1          | 2.99        | <5          | <5          | <5          | <5         |
| 2-Butanone                  | μg/L           | <5          | <5          | <5          | <5          | <6.81       | <21.4       | <5         |
| Acetone                     | µg/L           | <5          | <5          |             |             | <1          | <1          | <1         |
|                             | µg/L_          | <1          | <1          | 1.05        | 2.49 J      | <5          | <5          | <5         |
| Benzene<br>Carbon Disulfide | µg/L           | <5          | <5          | <5          | <1          |             | <1          | <1         |
|                             | µg/L           | <1          | <1          | <1          | <1          | <1          | <1.53       | <1         |
| Chloroform                  | µg/L           | <1          | <1          | <1          | 74.8        | <1 <1       | <1          | <1         |
| Toluene                     | μg/L           | <1          | <1          | 39.7        | <1          |             | <1          | <1         |
| Trichloroethene             | μg/L           | <1          | <1          | <1          |             |             |             |            |
| Vinyl Chloride              | <u> </u>       |             |             |             |             |             |             |            |

J = estimated value

Bolded value indicates detection Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

DPT = direct push groundwater sample

MW = monitor well groundwater sample

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                           |                |             |             |             | DPT-09      | DPT-09       | DPT-10      | DPT-10      |
|---------------------------|----------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|
|                           | Location ID    | DPT-07      | DPT-08      | DPT-08      | AU091A      | AU092A       | AU101A      | AU102A      |
|                           | Sample ID      | AU072A      | AU081A      | AU082A      | 10/03/07    | 10/03/07     | 10/04/07    | 10/04/07    |
|                           | Sample Date    | 10/03/07    | 10/03/07    | 10/03/07    |             | DPT          | DPT         | DPT         |
|                           | Sample Type    | DPT         | DPT         | DPT         | 12.0 - 14.0 | 40.0 - 42.0  | 10.0 - 12.0 | 14.0 - 16.0 |
|                           | Depth (ft BGS) | 39.0 - 41.0 | 14.0 - 18.0 | 35.0 - 40.0 | 12.0 - 14.0 |              |             |             |
|                           | Units          |             |             |             | <1          | <1           | <1          | <1          |
| Chemical Name             | μg/L           | <1          | 0.44 J      | <1          |             | <1           | <1          | 3.35        |
| 1,1,2,2-Tetrachloroethane |                | <1          | <1          | <1          |             | <1           | 1.66        | 6.74        |
| 1,1-Dichloroethane        | μg/L           | <1          | <1          | <1          | <1          | 1            | 1           | <1          |
| 1,1-Dichloroethene        | µg/L           | <1          | <1          | <1          | <1          |              | 41.3        | 104         |
| 1.2-Dichloroethane        | µg/L           | <1          | <1          | <1          | <1          |              | <5          | <5          |
| 1,2-Dichloroethene        | µg/L           |             | <5          | <5          | <5          | 4.72 J       | 1.55 J      | 1.54 J      |
| 2-Butanone                | µg/L           | <5          |             | <5          | <7.44       | <u>4.725</u> | <1          | <1          |
| Acetone                   | μg/L           | +           | <1          | <1          | <1          |              | <5          | <5          |
| Benzene                   | μg/L_          | <5          | <5          | <5          | <5          | 3.18 J       | 1           | <1          |
| Carbon Disulfide          | μg/L           | <           |             | <1          | <1          | <1           |             | <1          |
| Chloroform                | μg/L           | <1          | <1          | <1          | <1          | <1           | 172         | 483 J       |
| Toluene                   | µg/L           | <1          | <1          | <1          | <1          | <1           | <1          | <1          |
| Trichloroethene           | μg/L           | <1          |             | <1          | <1          | <1           |             | 1           |
| Vinyl Chloride            | µg/L           |             |             | _1          |             |              |             |             |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

DPT = direct push groundwater sample

MW = monitor well groundwater sample

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                           |                |             |             |             | DPT-12        | DPT-12      | DPT-13      | DPT-13      |
|---------------------------|----------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|
|                           | Location ID    | DPT-10      | DPT-11      | DPT-11      | AU121A        | AU122A      | AU131A      | AU132A      |
|                           | Sample ID      | AU103A      | AU111A      | AU112A      | 01/28/08      | 01/28/08    | 01/29/08    | 01/29/08    |
|                           | Sample Date    | 10/04/07    | 01/28/08    | 01/28/08    | DPT           | DPT         | DPT         | DPT         |
|                           | Sample Type    |             | DPT         | DPT         | 12.0 - 16.0   | 24.0 - 28.0 | 14.0 - 18.0 | 26.0 - 28.0 |
| Osmala                    | Depth (ft BGS) | 26.0 - 28.0 | 10.0 - 14.0 | 24.0 - 29.0 | 12.0 - 10.0   |             |             |             |
|                           | Units          |             |             |             |               | <1          | <1          | <1          |
| Chemical Name             | µg/L           | <1          | <1          | <1          |               | <1          | <1          | <1          |
| 1,1,2,2-Tetrachloroethane | μg/L           | 0.791 J     | 0.862 J     | <1          |               |             | <1          | <1          |
| 1,1-Dichloroethane        | μg/L           | <1          | 2.59        | <1          | +             | <1          | <1          | <1          |
| 1,1-Dichloroethene        | μg/L           | <1          | <1          | <1          |               |             | <1          | <1          |
| 1,2-Dichloroethane        | µg/L           | 22.2        | 63.8        | <1          | <             | <5          | <5          | <5          |
| 1,2-Dichloroethene        | μg/L           | 3.27 J      | <5          | <5          | 3.55 J        | <5          | <5          | <5          |
| 2-Butanone                |                | 7.98 J      | 3.78 J      | 4.46 J      | <1 <1         |             | <1          | <1          |
| Acetone                   | μ <u>g/L</u>   | <1          | <1          | <1          | <             |             | <5          | <5          |
| Benzene                   | μg/L           | <5          | <5          | <5          | <             | <1          | <1          | <1          |
| Carbon Disulfide          | μg/L_          | <1          | <1          | <1          | $\frac{1}{1}$ | 0.386 J     | <1          | <1          |
| Chloroform                | μg/L           |             | 0.709 J     | 0.377 J     |               | <1          | <1          | <1          |
| Toluene                   | μg/L           | 99.4        | 372 J       | 0.269 J     | <1            | <1          | <1          | <1          |
| Trichloroethene           | μg/L           | <1          | 0.944 J     | <1          | <1            |             |             |             |
| Vinyl Chloride            | μg/L           |             |             |             |               |             |             |             |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19 Bolded value indicates detection

DPT = direct push groundwater sample

MW = monitor well groundwater sample

 $\bigcap$ 

Table 4-6 Summary of Groundwater Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah, GA

|                           |                  |            |             | 007 45        | DPT-15      | DPT-16      | DPT-16      | DPT-17      |
|---------------------------|------------------|------------|-------------|---------------|-------------|-------------|-------------|-------------|
|                           | Location ID      | DPT-14     | DPT-14      | DPT-15        | AU152A      | AU161A      | AU162A      | AU171A      |
|                           | Sample ID        | AU141A     | AU142A      | AU151A        |             | 01/29/08    | 01/29/08    | 01/30/08    |
|                           | Sample Date      | 01/29/08   | 01/29/08    | 01/29/08      | 01/29/08    | DPT         | DPT         | DPT         |
|                           | Sample Type      | DPT        | DPT         | DPT           | DPT         | 10.0 - 14.0 | 28.0 - 32.0 | 16.0 - 26.0 |
| 0                         | e Depth (ft BGS) | 8.0 - 12.0 | 22.0 - 26.0 | 11.0 - 15.0   | 20.0 - 24.0 | 10.0 - 14.0 | 20.0 02.0   |             |
|                           |                  |            |             |               |             |             | <1          | <1          |
| Chemical Name             | Units            | <1         | <1          | <1            | <1          | <1          |             | <1          |
| 1,1,2,2-Tetrachloroethane | μg/L             |            | <1          | <1            | <1          | <1          | <1          |             |
| 1,1-Dichloroethane        | μg/L             | <1         |             | <1            | <1          | <1          | <1          | <1          |
| 1,1-Dichloroethene        | µg/L             | <1         |             | <1            | <1          | <1          | <1          | <1          |
| 1,2-Dichloroethane        | μg/L             | <1         |             | $\frac{1}{1}$ | <1          | <1          | <1          | <1          |
| 1,2-Dichloroethene        | µg/L             | <1         | <1          |               | <5          | <5          | <5          | <5          |
|                           | μg/L             | <5         | <5          | <5            |             |             | <5          | <5 J        |
| 2-Butanone                | μg/L             | <5         |             | <5            |             | <1          | <1          | <1          |
| Acetone                   | μg/L             | <1         | <1          | <1            | <1          | <5          | <5          | <5          |
| Benzene                   |                  | <5         | <5          | . <5          | <5          |             | <1          | <1          |
| Carbon Disulfide          | µg/L             | <1         | <1          | <1            | <1          | <1          |             | 0.252 J     |
| Chloroform                | µg/L             |            |             | <1            | <1          | <1          |             | <1          |
| Toluene                   | µg/L             | <1         | <1          | <1            | <1          | <1          | <1          |             |
| Trichloroethene           | μg/L             | <1         |             | <1 <1         | <1          | <1          | <1          | <1          |
| Vinyl Chloride            | μg/L_            | <1         | <1          |               |             |             |             |             |
| Viriyi Onionde            |                  |            |             |               |             |             |             |             |

J = estimated value

Bolded value indicates detection Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19

DPT = direct push groundwater sample

MW = monitor well groundwater sample

| Table 4-6                                                    |
|--------------------------------------------------------------|
| Summary of Groundwater Analyses, Building 1290 Investigation |
|                                                              |
| Hunter Army Airfield - Savannah, GA                          |

|                                            |                |             |           |             |            |             |            | DPT-20      |
|--------------------------------------------|----------------|-------------|-----------|-------------|------------|-------------|------------|-------------|
|                                            |                |             |           | DPT-18      | DPT-19     | DPT-19      | DPT-20     | AU202A      |
|                                            | Letter ID      | DPT-17      | DPT-18    |             | AU191A     | AU192A      | AU201A     | 01/30/08    |
|                                            | Location ID    | AU172A      | AU181A    | AU182A      | 01/30/08   | 01/30/08    | 01/30/08   | DPT         |
|                                            | Sample ID      | 01/30/08    | 01/30/08  | 01/30/08    | DPT        | DPT         | DPT        | 24.0 - 28.0 |
|                                            | Sample Date    |             | DPT       | DPT         | 8.0 - 12.0 | 30.0 - 34.0 | 8.0 - 12.0 | 24.0 - 20.0 |
|                                            | Sample Type    | 36.0 - 40.0 | 4.0 - 8.0 | 24.0 - 28.0 | 8.0 - 12.0 |             |            |             |
| Sample                                     | Depth (ft BGS) | 36.0 - 40.0 |           |             |            | <1          | <1         | <1          |
|                                            | Units          |             | <1        | <1          | <1         | <1          | <1         | <1          |
| Chemical Name<br>1,1,2,2-Tetrachloroethane | µg/L           | <1          |           | <1          | <1         |             | <1         | <1          |
| 1,1,2,2-1 etfacilior de line               | μg/L           | <1          | <1        | <1          | <1         |             | <1         | <1          |
| 1,1-Dichloroethane                         | µg/L_          | <1          |           | <1          | <1         |             | <1         | <1          |
| 1,1-Dichloroethene                         | μg/L           | <1          |           | <1          | <1         |             | <5         | <5          |
| 1,2-Dichloroethane                         | μg/L           | <1          | <1        | <5          | <5         |             |            | <5 J        |
| 1,2-Dichloroethene                         | µg/L           | <5          |           | <5 J        | <5 J       | <5 J        | +          | <1          |
| 2-Butanone                                 | μg/L           | <5 J        | <5 J      | <1          | <1         | <1          | <5         | <5          |
| Acetone                                    | μg/L           | <1          | <1        | <5          | <5         | <5          | +          | <1          |
| Benzene                                    | μg/L           | <5          | <5        |             | <1         | <1          | +          | <1          |
| Carbon Disulfide                           |                | <1          | <1        | +           | 0.313 J    | <1          | <1         | <1          |
| Chloroform                                 | <u>μg/L</u>    | 0.262 J     | <1        |             | <1         | <1          |            | <1          |
| Toluene                                    | µg/L           | <1          | <1        |             | <1         | <1          | <1         |             |
| Trichloroethene                            | μg/L           | +           | <1        | <1          |            |             |            |             |
| Vinyl Chloride                             | μg/L           |             |           |             |            |             |            |             |
| Villy Chieffer                             | -              |             |           |             |            |             |            |             |

J = estimated value

Detections exceeding naturally occurring background concentrations trigger notification per Rule 391-3-19 DPT = direct push groundwater sample MW = monitor well groundwater sample

# Table 4-7 Summary of Soil Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah,GA

|                    |             |               |           |             |             | DDT 02      | DPT-03      | DPT-04      | DPT-04      | DPT-05      |
|--------------------|-------------|---------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    | Sample ID   |               | DPT-01    | DPT-02      | DPT-02      | DPT-03      | AU032B      | AU041B      | AU042B      | AU051B      |
|                    |             | Soil          | AU011B    | AU021B      | AU022B      | AU031B      | 10/02/07    | 10/02/07    | 10/02/07    | 10/02/07    |
|                    | Location ID | Notification  | 10/02/07  | 10/02/07    | 10/02/07    | 10/02/07    | 44.0 - 45.0 | 10.0 - 11.0 | 38.8 - 39.8 | 36.0 - 37.0 |
|                    | ample Date  | Concentration |           | 13.5 - 14.5 | 43.5 - 44.5 | 14.5 - 15.5 | 44.0 - 45.0 | 10.0        |             |             |
| Sample Der         |             |               |           |             |             |             |             | 0.00116     | <0.00135    | <0.00102    |
| VOCs               | Units       |               | <0.00107  | < 0.00093   | <0.00107    | <0.00097    | <0.00117    | <0.00116    | <0.00135    | < 0.00102   |
| 1,1-Dichloroethane | mg/kg       | 0.03          |           | <0.00093    | < 0.00107   | <0.00097    | 0.00141     | <0.00116    |             | 0.00054 J   |
| 1,2-Dichloroethane | mg/kg       | 0.02          | <0.00107  |             | < 0.00107   | <0.00097    | <0.00117    | <0.00116    | <0.00135    |             |
| 1,2-Dichloroethene | mg/kg       |               | <0.00107  | <0.00093    | <0.00535    | <0.00483    | <0.00584    | <0.00578    | <0.00674    | <0.00512    |
|                    | mg/kg       | 0.79          | <0.00534  | <0.00466    | +           | < 0.00483   | <0.00584    | <0.00578    | <0.00674    | <0.00512    |
| 2-Butanone         | mg/kg       |               | 0.00174 J | <0.00466    | <0.00535    | 0.0052 J    | 0,0109 J    | 0.00391 J   | 0.00981 J   | 0.00402 J   |
| 2-Hexanone         | mg/kg       | 2.74          | 0.00396 J | <0.00466    | 0.0124 J    |             | < 0.00584   | <0.00578    | <0.00674    | <0.00512    |
| Acetone            |             | +             | 0.00198 J | <0.00466    | <0.00535    | 0.00354 J   | <0.00117    | <0.00116    | <0.00135    | <0.00102    |
| Carbon Disulfide   | mg/kg       | +             | <0.00107  | <0.00093    | <0.00107    | <0.00097    |             | <0.00116    | <0.00135    | <0.00102    |
| Chloromethane      | mg/kg       |               | < 0.00107 | < 0.00093   | <0.00107    | <0.00097    | <0.00117    | <0.00578    | <0.00674    | < 0.00512   |
| Ethylbenzene       | mg/kg       |               | < 0.00534 | 0.00237 J   | 0.00228 J   | 0.00197 J   |             |             | 0.00249     | 0.0028      |
| Methylene Chloride | mg/kg       |               |           | 0.00341     | 0.00366 J   | 0.00283     | 0.00435     | 0.00332     |             | < 0.00102   |
| Styrene            | mg/kg       |               | 0.00319   | <0.00093    | <0.00107    | < 0.00097   | <0.00117    | <0.00116    | < 0.00135   |             |
|                    | mg/kg       | 14.4          | <0.00107  |             | <0.00107    | <0.00097    | 0.00332     | <0.00116    |             |             |
|                    | mg/kg       | 0.13          | 0.00114   |             |             |             |             | <0.00116    | <0.00135    | <0.00102    |
| Trichloroethene    | mg/k        |               | <0.00107  | <0.00093    | 0.000363    |             |             |             |             |             |
| Xylenes, Total     |             |               | _         |             |             |             |             |             |             |             |

Notes:

J = Estimated value

Bolded values indicate detections DL = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit

Table 4-7 Summary of Soil Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah,GA

|                            |               |               |             | •           |             |                  |                    |             |             |             |
|----------------------------|---------------|---------------|-------------|-------------|-------------|------------------|--------------------|-------------|-------------|-------------|
|                            |               |               | ·           |             |             |                  | DDT 07             | DPT-08      | DPT-08      | DPT-09      |
|                            |               |               | DPT-05      | DPT-06      | DPT-06      | DPT-07           | DPT-07             | AU081B      | AU082B      | AU091B      |
|                            | Sample ID     | ł             | AU052B      | AU061B      | AU062B      | AU071B           | AU072B<br>10/03/07 | 10/03/07    | 10/03/07    | 10/03/07    |
|                            | Location ID   | Soil          | 10/02/07    | 10/03/07    | 10/03/07    | 10/03/07         | 39.0 - 40.0        | 13.0 - 14.0 | 35.0 - 36.0 | 12.0 - 13.0 |
|                            | Sample Date   | Notification  |             | 10.0 - 11.0 | 34.0 - 35.0 | 7.5 - <u>8.5</u> | 39.0 - 40.0        |             |             |             |
| Sample D                   | epth (ft BGS) | Concentration | 41.0 - 42.0 |             |             |                  |                    | <0.00124    | <0.00186    | <0.00121    |
|                            | Units         |               | -0.0012     | <0.00113    | <0.00122    | <0.00127         | <0.00116           | <0.00124    | <0.00186    | <0.00121    |
| VOCs<br>1,1-Dichloroethane | mg/kg         | 0.03          | <0.0012     | < 0.00113   | <0.00122    | <0.00127         | <0.00116           | <0.00124    | <0.00186    | <0.00121    |
| 1,1-Dichloroethane         | mg/kg         | 0.02          | <0.0012     | <0.00113    | <0.00122    | <0.00127         | < 0.00116          | <0.0012     | <0.00931    | <0.00605    |
|                            | mg/kg         |               | <0.0012     | < 0.00564   | <0.0061     | <0.00633         | <0.00582           | <0.00018    | <0.00931    | <0.00605    |
| 1,2-Dichloroethene         | mg/kg         | 0.79          | <0.00602    | <0.00564    | <0.0061     | <0.00633         | <0.00582           | <0.00618    | 0,0208 J    | <0.00605    |
| 2-Butanone                 | mg/kg         | <u> </u>      | <0.00602    | 0.0111 J    | <0.0061     | <0.00633         | 0.00325 J          | <0.00618    | < 0.00931   | <0.00605    |
| 2-Hexanone                 | mg/kg         | 2.74          | <0.00602    |             | 0.00252 J   | 0.00204 J        | 0.00463 J          | <0.00124    | <0.00186    | <0.00121    |
| Acetone                    | mg/kg         | DL            | <0.00602    | <0.00113    | < 0.00122   | <0.00127         | <0.00116           | <0.00124    |             | <0.00121    |
| Carbon Disulfide           | mg/kg         | 0.04          | <0.0012     | <0.00113    | <0.00122    | <0.00127         | <0.00116           |             |             | 0.00291 J   |
| Chloromethane              | mg/kg         | 20            | <0.0012     |             |             | 0.00326          | 0.0033 J           | 0.0035 J    |             | 0.00134     |
| Ethylbenzene               | mg/kg         |               | <0.00602    |             | 0.00206     | 0.00199          | 0.00158            |             |             | <0.00121    |
| Methylene Chloride         | mg/kg         |               | 0.00383     |             |             | <0.00127         |                    |             |             |             |
| Styrene                    | mg/kg         |               | <0.0012     |             |             |                  | < 0.00116          |             |             |             |
| Toluene                    | mg/k          |               | 0.00295     |             |             |                  |                    | <0.00124    | +           |             |
| Trichloroethene            | mg/k          |               | <0.0012     | <0.00113    |             |                  | —                  |             |             |             |
| Vulones Total              |               | <u> </u>      |             |             |             |                  |                    |             |             |             |

Xylenes, Total

Notes:

Bolded values indicate detections DL = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit 2 of 5

| Table 4-7                                             |
|-------------------------------------------------------|
| Summary of Soil Analyses, Building 1290 Investigation |
| HAA-17                                                |
| Hunter Army Airfield - Savannah,GA                    |

|                    |         |               |             |              |             |             |             |             |             | DPT-13      |
|--------------------|---------|---------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    |         |               |             |              | DPT-10      | DPT-11      | DPT-11      | DPT-12      | DPT-12      | AU131B      |
| Sar                | nple ID |               | DPT-09      | DPT-10       |             | AU111B      | AU112B      | AU121B      | AU122B      | 01/29/08    |
|                    | tion ID | Soil          | AU092B      | AU101B       | AU102B      | 01/28/08    | 01/28/08    | 01/28/08    | 01/28/08    |             |
|                    |         | Notification  | 10/03/07    | 10/04/07     | 10/04/07    | 12.5 - 14.5 | 27.5 - 29.5 | 14.0 - 16.0 | 26.0 - 28.0 | 16.0 - 18.0 |
|                    | le Date | Concentration | 40.0 - 41.0 | 10.0 - 11.0  | 14.0 - 15.0 | 12.0 - 14.0 |             |             |             |             |
| Sample Depth (     |         |               |             |              |             |             | <0.00115    | <0.00169 J  | <0.00107 J  | <0.00115    |
| VOCs               | Units   |               | <0.00138    | <0.00131     | 0.00122 J   | <0.00158    |             | <0.00169 J  | <0.00107 J  | <0.00115    |
| 1,1-Dichloroethane | mg/kg   | 0.03          | <0.00138    | <0.00131     | <0.00141    | <0.00158    | <0.00115    | <0.00169 J  | <0.00107 J  | <0.00115    |
| 1,2-Dichloroethane | mg/kg   | 0.02          |             | 0.00931      | 0.00874     | <0.00158    | <0.00115    |             | <0.00536 J  | 0.00485 J   |
|                    | mg/kg   |               | <0.00138    | <0.00654     | <0.00706    | 0.00358 J   | <0.00574    | 0.0164 J    | <0.00536 J  | <0.00574    |
| 1,2-Dichloroethene | mg/kg   | 0.79          | <0.00689    |              | < 0.00706   | <0.00791    | <0.00574    | <0.00844 J  |             | 0.0173 J    |
| 2-Butanone         | mg/kg   |               | <0.00689    | <0.00654     | 0.0119 J    | 0.0146      | 0.00776     | 0.0688 J    | <0.00696 J  | <0.00574    |
| 2-Hexanone         | mg/kg   | 2.74          | 0.0104 J    | 0.00505 J    |             | <0.00791    | <0.00574    | <0.00844 J  | <0.00536 J  |             |
| Acetone            | mg/kg   |               | 0.00498 J   |              | <0.00706    | 0.00428     | <0.00115    | <0.00169 J  | <0.00107 J  |             |
| Carbon Disulfide   |         |               | <0.00138    | <0.00131     | <0.00141    | 0.00074 J   |             | <0.00169 J  | <0.00107 J  | <0.00115    |
| Chloromethane      | mg/kg   | +             | <0.00138    | <0.00131     | <0.00141    |             |             | <0.00844 J  | <0.00536 J  | <0.00574    |
| Ethylbenzene       | mg/kg   |               | 0.00276 J   | <0.00654     | <0.00706    | 0.00566 J   |             |             | 0.00107 J   | 0.00098 J   |
| Methylene Chloride | mg/kg   |               | 0.00201     |              | 0.00248     | 0.00187     |             | 0.00058 J   |             | <0.00115    |
| Styrene            | mg/kg   |               | <0.00138    | _            | <0.00141    | <0.00158    |             | <0.00169    | _           | 1           |
|                    | mg/kg   |               |             |              | 0.12        | 0.00211     |             |             |             |             |
| Toluene            | mg/kg   | 0.13          | <0.00138    |              |             | 0.00232     | 0.00044 J   | 0.00221 J   | 0.00001 0   |             |
| Trichloroethene    | mg/k    | g 20          | <0.00138    | 5 [ <0.00131 |             |             | -           |             |             |             |
| Xylenes, Total     |         |               |             |              |             |             |             |             |             |             |

Bolded values indicate detections DL = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit 3 of 5



# Table 4-7 Summary of Soil Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah,GA

|                    |          |               |             |             | r           |             | r           | r           |             | <u> </u>    |
|--------------------|----------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sa                 | mple ID  |               | DPT-13      | DPT-14      | DPT-14      | DPT-15      | DPT-15      | DPT-16      | DPT-16      | DPT-17      |
| Loc                | ation ID | Soil          | AU132B      | AU141B      | AU142B      | AU151B      | AU152B      | AU161B      | AU162B      | AU171B      |
| Sam                | ple Date | Notification  | 01/29/08    | 01/29/08    | 01/29/08    | 01/29/08    | 01/29/08    | 01/29/08    | 01/29/08    | 01/30/08    |
| Sample Depth       | (ft BGS) | Concentration | 28.0 - 30.0 | 11.0 - 13.0 | 24.0 - 26.0 | 15.0 - 17.0 | 24.0 - 26.0 | 15.0 - 17.0 | 31.0 - 33.0 | 17.0 - 19.0 |
| VOCs               | Units    |               |             |             |             |             |             |             |             |             |
| 1,1-Dichloroethane | mg/kg    | 0.03          | <0.00143    | <0.00159    | <0.00115    | <0.00184    | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| 1,2-Dichloroethane | mg/kg    | 0.02          | <0.00143    | <0.00159    | <0.00115    | <0.00184    | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| 1,2-Dichloroethene | mg/kg    |               | <0.00143    | <0.00159    | <0.00115    | <0.00184    | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| 2-Butanone         | mg/kg    | 0.79          | <0.00716    | <0.00795    | <0.00576    | 0.0131 J    | 0.00229 J   | <0.00601    | <0.00585    | <0.00626    |
| 2-Hexanone         | mg/kg    | -             | <0.00716    | <0.00795    | <0.00576    | <0.00921 J  | <0.00575    | <0.00601    | <0.00585    | <0.00626    |
| Acetone            | mg/kg    | 2.74          | 0.00628 J   | 0.0161      | 0.0051 J    | 0.06 J      | 0.00953     | <0.00601    | 0.0035 J    | <0.00626    |
| Carbon Disulfide   | mg/kg    | DL            | 0.00312 J   | <0.00795    | <0.00576    | <0.00921    | <0.00575    | <0.00601    | 0.00248 J   | <0.00626    |
| Chloromethane      | mg/kg    | 0.04          | <0.00143    | <0.00159    | <0.00115    | <0.00184    | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| Ethylbenzene       | mg/kg    | 20            | <0.00143    | <0.00159    | <0.00115    | <0.00184 J  | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| Methylene Chloride | mg/kg    | 0.08          | <0.00716    | <0.00795    | <0.00576    | <0.00921    | <0.00575    | <0.00601    | <0.00585    | <0.00626    |
| Styrene            | mg/kg    | 14            | 0.00065 J   | 0.00101 J   | 0.00096 J   | 0.00127 J   | 0.00039 J   | 0.00037 J   | 0.00077 J   | 0.00109 J   |
| Toluene            | mg/kg    | 14,4          | <0.00143    | <0.00159    | <0.00115    | <0.00184    | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| Trichloroethene    | mg/kg    | 0.13          | <0.00143    | <0.00159    | <0.00115    | <0.00184    | <0.00115    | <0.0012     | <0.00117    | <0.00125    |
| Xylenes, Total     | mg/kg    | 20            | 0.00041 J   | 0.00044 J   | 0.00043 J   | 0.00067 J   | <0.00115    | <0.0012     | 0.00034 J   | 0.00058 J   |

Notes:

J = Estimated value

Bolded values indicate detections

DL = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit

# Table 4-7 Summary of Soil Analyses, Building 1290 Investigation HAA-17 Hunter Army Airfield - Savannah,GA

| Sa                 | mple ID  |               | DPT-17      | DPT-18     | DPT-18      | DPT-19     | DPT-19      | DPT-20      | DPT-20      |
|--------------------|----------|---------------|-------------|------------|-------------|------------|-------------|-------------|-------------|
| Loc                | ation ID | Soil          | AU172B      | AU181B     | AU182B      | AU191B     | AU192B      | AU201B      | AU202B      |
| Sam                | ole Date | Notification  | 01/30/08    | 01/30/08   | 01/30/08    | 01/30/08   | 01/30/08    | 01/30/08    | 01/30/08    |
| Sample Depth       | (ft BGS) | Concentration | 38.0 - 40.0 | 8.0 - 10.0 | 28.0 - 30.0 | 9.0 - 10.0 | 31.0 - 33.0 | 12.0 - 14.0 | 28.0 - 30.0 |
| VOCs               | Units    |               |             |            |             |            |             |             |             |
| 1,1-Dichloroethane | mg/kg    | 0.03          | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| 1,2-Dichloroethane | mg/kg    | 0.02          | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| 1,2-Dichloroethene | mg/kg    |               | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| 2-Butanone         | mg/kg    | 0.79          | <0.00605    | <0.00727   | <0.00622    | <0.0055    | <0.00886    | <0.00625    | <0.0091     |
| 2-Hexanone         | mg/kg    |               | <0.00605    | <0.00727   | <0.00622    | <0.0055    | <0.00886    | <0.00625    | <0.0091     |
| Acetone            | mg/kg    | 2.74          | 0.0039 J    | 0.0177     | 0.00719     | 0.0051 J   | 0.0123 J    | 0.0092 J    | 0.00573 J   |
| Carbon Disulfide   | mg/kg    | DL            | <0.00605    | <0.00727   | 0.00293 J   | <0.0055    | 0.00607 J   | <0.00625    | <0.0091     |
| Chloromethane      | mg/kg    | 0.04          | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| Ethylbenzene       | mg/kg    | 20            | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| Methylene Chloride | mg/kg    | 0.08          | <0.00605    | <0.00727   | <0.00622    | <0.0055    | <0.00886    | <0.00625    | <0.0091     |
| Styrene            | mg/kg    | 14            | 0.00082 J   | 0.00121 J  | 0.00097 J   | 0.00059 J  | 0.0014 J    | 0.00043 J   | 0.001 J     |
| Toluene            | mg/kg    | 14.4          | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| Trichloroethene    | mg/kg    | 0.13          | <0.00121    | <0.00145   | <0.00124    | <0.0011    | <0.00177    | <0.00125    | <0.00182    |
| Xylenes, Total     | mg/kg    | 20            | 0.0004 J    | 0.00066 J  | 0.00042 J   | 0.0003 J   | 0.00062 J   | <0.00125    | <0.00182    |

Notes:

J = Estimated value

Bolded values indicate detections

DL = Detection Limit, as defined in Rule 391-3-19 as the practical quantitation limit







Site Investigation Work Plan, HAA-17

Hydrogeologic Conditions

# ARCADIS

# 5. Current HAA-17 Conceptual Site Model

The following is an overview of the geologic setting and groundwater quality conditions at HAA-17 based on previous investigations.

# 5.1 Hunter Army Airfield Depositional Model

A depositional model of how shallow sediments were deposited at HAAF may be a valuable tool to predict the distribution of sand units and clay beds in the uppermost aquifer system at HAAF. HAAF is located on top of the relict Pamlico beach ridge that was the shoreline during late Pleistocene time. The shallow sediments at HAAF are comparable to sediments that form the nearby modern barrier islands along the Atlantic coast. Pamlico Terrace is only a little older (in geologic time) and higher than the modern beach. The depositional processes and sediments that form barrier islands are well researched by coastal geomorphologists and clastic sedimentologists. Published investigations of modern barrier islands can be used to predict the shallow stratigraphy at HAAF. In a typical barrier system, the highest part of the ridge is the beach composed of fine to medium well sorted quartz sand. The beach itself is a massive sand with little clay and silt because it is reworked by the constant wave action and migration of tidal inlets.

In front of the beach to the east was the shallow open Atlantic Ocean. Deposited sediments should be finer sands that are constantly reworked to form massive but finer sands compared to the beach. Grain size should decrease with increasing water depth due to the limited winnowing in deeper water by reduced wave action with depth. There should be only minor clay units unless the beach has prograded over a remnant of marsh clay.

Behind the barrier to the west were marshes and bays that deposited lower energy silts and silty clay units. Clay beds are interbedded with sand units. The sand units were deposited from tidal inlets that migrated along the barrier and wash-over fans from storms. Individual units will drape off of the central barrier massive sands. Clays will compact more than sands with time to form somewhat continuous but thin units.

Hunter Army Airfield will compare the shallow sediments at the site to the typical beach depositional model as we pursue closure. Currently, our evaluation of the shallow geology at HAA-17 closely matches the depositional environment behind and up to the former beach, which is where the runways are located.

Hydrogeologic Conditions (

# 5.2 HAA-17 Local Geology/Hydrogeology

The HAA-17 site is located about 7,000 feet southeast of HAA-15, MCA Barracks site, on the opposite side of the Pamlico beach ridge. Topography from HAA-15 to HAA-17 is relatively flat with less than 5 feet in relief (Figure 5-1). Former USTs 25 and 26 were located on a relatively steep east facing slope that forms the eastern boundary of the Pamlico beach ridge. The elevation decreases about 10 feet within 300 feet to a drainage canal. The steep eastern topographic slope suggests that the HAA-17 area was deposited on the seaward side of the Pamlico beach ridge.

Lithologies west of the former USTs location on top of the Pamlico ridge are typical of the beach and shallow foreshore in open marine conditions. The lithologic log from Monitor Well AT-MW-01 to the west of former USTs in the Purge area describes massive poorly sorted sand with no discernable clay units to a total depth of 40 feet. Massive sand with minor to no clay is typical of a beach. Lithologies were not recorded in the groundwater investigation at Building 1290.

Lithologic logs from wells drilled at HAA-17 suggest shallow marine conditions. Figure 5-2 illustrates a cross section along topographic strike near the former UST area. The dominant lithology is a poorly sorted fine grain silty sand with minor interstitial clay. The silty sand is typical of a shallow open marine environment. Most of the HAA-17 site does not have distinct clay beds down to a depth of about 40 feet. Wells AF-57, AF-55, and AF-54 penetrated a clay bed at about 40 feet depth. However, most other monitor wells were terminated above this depth. There is a massive clay unit to the southeast near Tubb Street at the base of the beach ridge. Also, shallow borings to the east of the drainage ditch at the base of the Pamlico beach ridge encountered shallow clay units. A geophysical survey conducted in 2000 by Argonne National Laboratory confirmed shallow clay units east of the drainage canal. Massive clays are not typical of the shallow open marine environment. The Pamlico beach ridge may have prograded over the marsh of an older beach ridge.

Lateral groundwater flow at HAA-17 conforms to the relatively steep slope to the southeast. Depth to the water table varies from about 2 feet to 5 ft bgs with a gradient on the slope of about 0.02 ft/ft. Groundwater migration rates at HAA-17 are unknown since slug tests have not been performed to determine hydraulic conductivities. There should be minor variation in groundwater flow directions at HAA-17 due to the relatively steep topographic slope. A summary of groundwater elevations at HAA-17 are included in Table 5-1.

# Site Investigation Work Plan, HAA-17

Hydrogeologic Conditions

A groundwater investigation at Building 1290 suggests that a groundwater divide exists near Strachan drive. Groundwater to the west of Strachan Drive flows to the southwest away from Building 1290 and the HAA-17 area (Figure 5-3a and Figure 5-3b.) The Building 1290 investigation shows that groundwater flow east of Strachan Drive conforms to the local topography and flows to the southeast toward former USTs 25 and 26. The horizontal groundwater gradient in the relatively flat area up gradient of USTs 25 and 26 is about 0.003 ft/ft. Monitor well data from July 2007 suggest a downward hydraulic gradient in the relatively flat area west of former USTs 25 and 26.

There are limited data at former USTs 25 and 26 to determine vertical hydraulic gradients. There are two sets of nested monitor wells at HAA-17. Monitor Well AF-27 is paired with deeper AF-42, and Monitor Well AF-07 is paired with deeper AF-40. Well pair AF-07/AF-40 is located on the slope near former USTs 25 and 26 and shows a slight upward to downward gradient of +0.05 feet to -0.54 feet from year 2000 to 2006. The well pair AF-27/AF-42 is located at the base of the Pamlico beach ridge next to the drainage canal. The vertical gradient at well pair AF-27/AF-42 shows a significant upward gradient of +2.35 feet to +3.59 feet from year 2000 to year 2003. However, there are no data from AF-27 after 2003. A potentiometric map presented in the UST 25 and 26 CAP, Addendum #2 showed shallow groundwater elevations decreasing towards the drainage ditch from both directions suggesting that the drainage canal may be a groundwater discharge barrier for the shallow groundwater, i.e., the drainage canal may capture all shallow groundwater in this area. However, potentiometric data from 2006 presented in Figure 5-4a and Figure 5-4b indicate groundwater flows past the canal.

### 5.3 Extent of Impacts

# 5.3.1 Groundwater Impacts

The dissolved TCE in groundwater at HAA-17 is centered at the former UST tank farm. TCE was previously detected at a maximum of 7,730 micrograms per liter ( $\mu$ g/L) in analyses from temporary boring AF-52. The dissolved TCE concentrations decrease in all directions from AF-52. Concentrations above 1 milligram per liter (mg/L) are limited to an area around AF-52 and AF-43/53 and an area near AF-45/55 and AF-63 at the other end of the former tank farm. Multiple investigations show that the dissolved TCE concentration in groundwater is significantly lower up gradient of the former UST tank farm. The highest TCE concentrations detected during the vertical profile study around Building 1336 were 437  $\mu$ g/L in AF-73 and 57  $\mu$ g/L in AF-74, both of which are about 200 feet upgradient of the former Tank Farm. Another investigation around Building

# Site Investigation Work Plan, HAA-17

Hydrogeologic Conditions (

1336 resulted in the detection of 75  $\mu$ g/L of TCE in groundwater at DPT-05 in approximately the same location as AF-74. Multiple groundwater investigations demonstrate that the former UST tank farm area was likely the primary source of TCE. Additional investigations up gradient of former USTs 25 and 26 yielded predominantly no detections of VOCs with only a few low dissolved TCE concentrations in groundwater.

During the Purge Area investigation, 34.8 µg/L of TCE was detected in groundwater from deep monitor well AT-MW-01 (40 to 45 ft bgs). TCE was detected at a concentration of 19.4 µg/L in a sample from DPT-01 at a similar interval (41 to 45 ft bgs). All other samples were below detection limits for TCE. The purge facility area is side gradient of the former tank farm. RCRA metals chromium and barium were detected in groundwater samples from the Purge Facility monitor wells. Total chromium was detected in one well and barium was detected in all five wells. The turbidity in the sample from MW-1, the only well where chromium was detected, was 80 Nephelometric Turbidity Units (NTUs) and the results were potentially attributable to particulates in the sample.

During the Building 1290 investigation, TCE was not detected near the building. Low microgram/liter concentrations were detected east of the Strachan Road groundwater divide. During the same investigation, groundwater east of the former tank farm and the drainage canal was also sampled. TCE was detected at a concentration of 483  $\mu$ g/L in temporary boring DPT-10, which is east of the drainage canal near monitor well AF-35. During sampling of USTs 25 and 26 monitor wells, TCE was detected at 807  $\mu$ g/L in shallow monitor well AF-72 (2.5 to 12.5 ft bgs) and at 604  $\mu$ g/L in monitor well AF-51 (15 to 20 ft bgs), which are also east of the canal.

The vertical distribution of dissolved TCE in groundwater at HAA-17 shows variation with depth. Vertical profile analyses indicated that the highest TCE concentrations at the former Tank Farm were at approximately 20 to 30 ft bgs.

The available groundwater data show minor degradation of TCE. Temporary boring AF-52 contained 7730  $\mu$ g/L TCE and 378  $\mu$ g/L of degradation product 1,2dichloroethene. The sample from MW-16S contained 27.3  $\mu$ g/L of vinyl chloride and 54.7  $\mu$ g/L of 1,1-DCE but no TCE above detection limits.

g.\envit stewart - haafideliverableshaa-17 Investigation work planihaa-17 final work planitext revised for tinalhaa17 draft work plan 040309 revised for final.docx

Į

Hydrogeologic Conditions

# 5.3.2 Soil Impacts

### 5.3.2.1 USTs 25 and 26 Area Soil Impacts

Soil samples that were collected during the CAP-Part A and CAP-Part B investigation for the former USTs 25 and 26 were analyzed for petroleum-related constituents only (BTEX, PAHs, TPH-DRO (Total Petroleum Hydrocarbons – Diesel Range Organics), and TPH-GRO (Total Petroleum Hydrocarbons – Gasoline Range Organics). These constituents are addressed under the GA EPD USTMP and soil samples collected solely for analysis of petroleum constituents during CAP investigations at former USTs 25 and 26 are not discussed in this work plan.

# 5.3.2.2 Purge Facility Soil Impacts

Between May and July 2006, surface soil, subsurface soil, and groundwater samples were collected at the Purge Facility (Figure 4-2). Soil samples were collected from three locations (SS-01 through SS-03) along a surface drainage pathway feature and from five monitor well borings (AT-MW-01 through AT-MW-05) for analysis of VOCs, SVOCs, and RCRA metals. No SVOCs or RCRA metals were detected at levels above HSRA notification concentrations. The only VOC detected was carbon disulfide, which was detected in samples from two locations. The HSRA Notification Concentration for carbon disulfide is the detection limit. However, carbon disulfide can be released into the environment from a variety of natural sources, including the metabolic action of soil bacteria and plants (World Health Organization 2002) and there is no evidence to indicate that these two isolated detections of low concentrations are attributable to an anthropogenic source. A summary of soil analytical data collected during the investigation of the Purge Facility is provided in Table 4-4.

### 5.3.2.3 Building 1290 Soil Impacts

Between October 2007 and January 2008, soil samples were collected around Building 1290 and downgradient to areas east of former USTs 25 & 26 as part of the Building 1290 investigation (Figure 4-2). Soil samples were collected from 20 locations (DPT-01 through DPT-20) following subsurface screening using MIP as discussed in Section 4.3. The samples were analyzed for VOCs. No VOCs were detected at levels above notification concentrations. A summary of soil analytical data collected during the investigation of Building 1290 is provided in Table 4-7.

Hydrogeologic Conditions

# 5.4 Data Gaps

Previous investigations indicated that the Purge Facility and Building 1290 are not sources of the TCE plume near the former USTs 25 and 26 area. Analyses of TCE concentrations do not indicate any TCE sources upgradient of the former tank farm. The source(s) of the TCE impact to groundwater remains unknown.

A review of historical data shows that the highest concentrations of TCE were observed in groundwater samples collected from 20 to 30 ft bgs (Figure 4-3). The primary source of the TCE release is likely near vertical profile location AF-52 and monitor well AF-53, the locations with the highest observed TCE concentrations in groundwater. AF-52 and AF-53 are located between the former USTs 25 and 26 area and Building 1345. In 2000, TCE was detected at 7,730  $\mu$ g/L at vertical profile AF-52 in the sample collected from 19-24 ft bgs. In 2001, TCE was detected at 2,410  $\mu$ g/L in monitor well AF-53, screened 20-30 ft bgs. No monitor well currently exists to permanently monitor the TCE detected in vertical profile AF-52.

Gaps in the Conceptual Site Model where additional investigation is required include the following:

- Potential TCE source areas in the former tank farm area should be investigated and delineated.
- TCE in the three areas depicted on Figure 4-3 should be delineated to background concentrations consistent with HSRA requirements. These areas are proximate to the Purge Facility, a drycleaner facility, former location of UST 25 & 26, Special Weapons Facility and Weapon Cleaning Facility, which were previously identified as potential source areas (Figure 3-2).
- The history of activities in the impacted areas, specifically solvent use, should be researched further to enhance the understanding of potential sources of TCE.
- Additional investigation should be conducted around the Purge Facility to evaluate chromium and barium detections in groundwater.
- The clay units previously identified east of the former UST 25 & 26 location should be investigated to evaluate location and continuity.
- Slug tests or pumping tests have not been performed to date and should be conducted to calculate hydraulic conductivities.
- Additional data should be collected to verify vertical hydraulic gradients across the HAA-17 area.

Hydrogeologic Conditions

- Surface water elevations in the drainage canal east and downgradient of former USTs 25 & 26 should be determined to establish the hydraulic nature of the stream (gaining or losing).
- Groundwater flow direction east of the drainage canal should be determined.
- Biogeochemical data should be collected to aid evaluation of anaerobic biodegradation of TCE.

# Table 5-1 Groundwater Elevation Summary, 2006-2007 HAA-17 Hunter Army Airfield-Savannah, GA

| Well ID                                                                                                                                                     | Date      | Top of Casing<br>Elevation<br>(ft above MSL) | Screened<br>Interval<br>(ft BGS) | Depth to<br>Water (ft) | Groundwater<br>Elevation<br>(ft) |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------|----------------------------------|------------------------|----------------------------------|--|--|--|--|
| Purge Facility Investigation Water Level Data, May 12,2006           AT-MW-1         5/12/2006         31.61         40.3 - 45.3         4.45         27.16 |           |                                              |                                  |                        |                                  |  |  |  |  |
| AT-MW-1                                                                                                                                                     | 5/12/2006 | 31.61                                        |                                  |                        |                                  |  |  |  |  |
| AT-MW-2                                                                                                                                                     | 5/12/2006 | 31.86                                        | 2.3 - 12.3                       | 3.69                   | 28.17                            |  |  |  |  |
| AT-MW-3                                                                                                                                                     | 5/12/2006 | 32.09                                        | 2.2 - 12.2                       | 3.54                   | 28.55                            |  |  |  |  |
| AT-MW-4                                                                                                                                                     | 5/12/2006 | 32.79                                        | 2.3 - 12.3                       | 4.79                   | 28                               |  |  |  |  |
| AT-MW-5                                                                                                                                                     | 5/12/2006 | 33.03                                        | 2.3 - 12.3                       | 4.62                   | 28.41                            |  |  |  |  |
|                                                                                                                                                             |           | Vater Level Data,                            |                                  |                        | 40.4                             |  |  |  |  |
| AF-01                                                                                                                                                       | 7/19/2006 | 23.02                                        | 2.5 - 12.5                       | 4.92                   | 18.1                             |  |  |  |  |
| AF-02                                                                                                                                                       | 7/19/2006 | 21.94                                        | 2.0 - 12.0                       | 4,58                   | 17.36                            |  |  |  |  |
| AF-03                                                                                                                                                       | 7/19/2006 | 22.27                                        | 2.0 - 12.0                       | 4.75                   | 17.52                            |  |  |  |  |
| AF-04                                                                                                                                                       | 7/19/2006 | 22.24                                        | 2.0 - 12.0                       | 3.01                   | 19.23                            |  |  |  |  |
| AF-05                                                                                                                                                       | 7/19/2006 | 22.21                                        | 2.0 - 12.0                       | 2.36                   | 19.85                            |  |  |  |  |
| AF-07                                                                                                                                                       | 7/19/2006 | b                                            | 2.5 - 12.5                       | 4.92                   | b                                |  |  |  |  |
| AF-08                                                                                                                                                       | 7/19/2006 | 23.1                                         | 2.5 - 12.5                       | 3.79                   | 19.31                            |  |  |  |  |
| AF-09                                                                                                                                                       | 7/19/2006 | 22.93                                        | 2.0 - 12.0                       | NR                     | destroyed                        |  |  |  |  |
| AF-11                                                                                                                                                       | 7/19/2006 | 21.89                                        | 1.0 - 11.0                       | 2.99                   | 18.9                             |  |  |  |  |
| AF-12R                                                                                                                                                      | 7/19/2006 | 22.56                                        | 3.5 - 13.5                       | 8,35                   | 14.21                            |  |  |  |  |
| AF-13                                                                                                                                                       | 7/19/2006 | 22.79                                        | 2.5 - 12.5                       | 2.99                   | 19.8                             |  |  |  |  |
| AF-14                                                                                                                                                       | 7/19/2006 | 23.04                                        | 1.4 - 11.4                       | 2.91                   | 20.13                            |  |  |  |  |
| AF-15                                                                                                                                                       | 7/19/2006 | 23.28                                        | 1.5 - 11.5                       | 3.95                   | 19.33                            |  |  |  |  |
| AF-16                                                                                                                                                       | 7/19/2006 | 22.17                                        | 1.6 - 11.6                       | NM                     | NM                               |  |  |  |  |
| AF-17                                                                                                                                                       | 7/19/2006 | 18.93                                        | 2.0 - 12.0                       | destroyed              | destroyed                        |  |  |  |  |
| AF-18                                                                                                                                                       | 7/19/2006 | 20.13                                        | 1.3 - 11.3                       | 3.88                   | 16.25                            |  |  |  |  |
| AF-19                                                                                                                                                       | 7/19/2006 | 19.68                                        | 1.4 - 11.4                       | 1.19                   | 18.49                            |  |  |  |  |
| AF-20                                                                                                                                                       | 7/19/2006 | 22.84                                        | 3.0 - 13.0                       | 4.54                   | 18.3                             |  |  |  |  |
| AF-23                                                                                                                                                       | 7/19/2006 | 23.25                                        | 3.0 - 13.0                       | 4.44                   | 18.81                            |  |  |  |  |
| AF-24                                                                                                                                                       | 7/19/2006 | 22.85                                        | 2.0 - 12.0                       | 2.57                   | 20.28                            |  |  |  |  |
| AF-25                                                                                                                                                       | 7/19/2006 | 15.03                                        | 0.1 - 10.1                       | NM                     | NM                               |  |  |  |  |
| AF-26                                                                                                                                                       | 7/19/2006 | 17.65                                        | 2.0 - 12.0                       | 3.32                   | 14.33                            |  |  |  |  |
| AF-28                                                                                                                                                       | 7/19/2006 | 17.11                                        | 2.0 - 12.0                       | destroyed              | destroyed                        |  |  |  |  |
| AF-29                                                                                                                                                       | 7/19/2006 | 19.06                                        | 2.0 - 12.0                       | 4.5                    | 14.56                            |  |  |  |  |
| AF-33                                                                                                                                                       | 7/19/2006 | 18.07                                        | 2.3 - 11.8                       | 2.6                    | 15.47                            |  |  |  |  |
| AF-34                                                                                                                                                       | 7/19/2006 | 17.85                                        | 1.4 - 10.9                       | 6.02                   | 11.83                            |  |  |  |  |
| AF-35                                                                                                                                                       | 7/19/2006 | 17.63                                        | 1.2 - 10.7                       | 4.18                   | 13.45                            |  |  |  |  |
| AF-36                                                                                                                                                       | 7/19/2006 | 17.52                                        | 1.4 - 10.9                       | 3.45                   | 14.07                            |  |  |  |  |
| AF-37                                                                                                                                                       | 7/19/2006 | 20.06                                        | 4.4 - 14.3                       | damaged                | damaged                          |  |  |  |  |
| AF-39                                                                                                                                                       | 7/19/2006 | 22.12                                        | 4.4 - 14.3                       | 4.53                   | 17.59                            |  |  |  |  |
| AF-40                                                                                                                                                       | 7/19/2006 | 22.78                                        | 28.5 - 33.0                      | 5.34                   | 17.44                            |  |  |  |  |
| AF-41                                                                                                                                                       | 7/19/2006 | 22.33                                        | 28.5 - 33.0                      |                        | not accessible                   |  |  |  |  |
| AF-42                                                                                                                                                       | 7/19/2006 | 19.03                                        | 28.5 - 33.0                      | 0.9                    | 18.13                            |  |  |  |  |
| AF-53                                                                                                                                                       | 7/19/2006 | 22.93                                        | 20.0 - 30.0                      | NM                     | NM                               |  |  |  |  |
| AF-54                                                                                                                                                       | 7/19/2006 | 22.43                                        | 32.4 - 42.4                      | 4.11                   | 18.32                            |  |  |  |  |
| AF-55                                                                                                                                                       | 7/19/2006 | 22.76                                        | 24.0 - 34.0                      | 4.23                   | 18.53                            |  |  |  |  |
| AF-56                                                                                                                                                       | 7/19/2006 | 22.99                                        | 19.9 - 29.9                      | NM                     | NM                               |  |  |  |  |

# Table 5-1 Groundwater Elevation Summary, 2006-2007 HAA-17 Hunter Army Airfield-Savannah, GA

| Well ID Date |           | Top of Casing           | Screened      | Depth to   | Groundwater |  |
|--------------|-----------|-------------------------|---------------|------------|-------------|--|
| Well ID      | Date      | Elevation               | Interval      | Water (ft) | Elevation   |  |
| AF-57        | 7/19/2006 | (ft above MSL)<br>22.21 | (ft BGS)      |            | (ft)        |  |
| AF-58        | 7/19/2006 | 22,32                   | 57.8 - 62.8   | 3.72       | 18.49       |  |
| AF-59        | 7/19/2006 | 22.32                   | 2.7 - 12.7    | 8.71       | 13.61       |  |
| AF-60        | 7/19/2006 | 23.77                   | 2.3 - 12.3    | 4.14       | 18.19       |  |
| AF-61        | 7/19/2006 | 23.47                   | 20.0 - 30.0   | 2,7        | 21.07       |  |
| AF-62        | 7/19/2006 | 22.11                   | 3.0 - 13.0    | <u> </u>   | 19.74       |  |
|              |           | n Water Level Da        | 1 3.0 - 13.0  |            | NM          |  |
| MW-01D       | 7/20/2007 | 36.40                   | 19.95 - 29.95 |            | 20.04       |  |
| MW-015       |           |                         |               | 6.79       | 29.81       |  |
|              | 7/20/2007 | 36.43                   | 5.72 - 15.72  | 6.75       | 29.95       |  |
| MW-02D       | 7/20/2007 | 36.05                   | 19.90 - 29.90 | 6.38       | 29.92       |  |
| MW-02S       | 7/20/2007 | 36.05                   | 4.3 - 14.3    | 6.28       | 30.02       |  |
| MW-03D       | 7/20/2007 | b                       | 19.59 - 29.58 | 6.95       | 29.59       |  |
| MW-03S       | 7/20/2007 | b                       | 6.70 - 11.70  | 6.78       | 29.81       |  |
| MW-04D       | 7/20/2007 | 36.25                   | 19.91 - 29.91 | 6.82       | 29.68       |  |
| MW-04S       | 7/20/2007 | 36.23                   | 5.66 - 15.66  | 6.69       | 29.81       |  |
| MW-05D       | 7/20/2007 | 36.16                   | 20.0 - 30.0   | 6.35       | 30.05       |  |
| MW-05S       | 7/20/2007 | 36,14                   | 5.80 - 15.80  | 6.32       | 30.08       |  |
| MW-06S       | 7/20/2007 | 36.03                   | 4.0 - 9.0     | 6.44       | 29.86       |  |
| MW-07D       | 7/20/2007 | 36.93                   | 24.6 - 34.6   | 6.85       | 30.08       |  |
| MW-07S       | 7/20/2007 | 36.92                   | 7.89 - 17.89  | 6.73       | 30.19       |  |
| MW-08D       | 7/20/2007 | 36.72                   | 14.50 - 24.50 | 6.74       | 29.98       |  |
| MW-08S       | 7/20/2007 | 36.53                   | 5.40 - 15.40  | 6.56       | 29.97       |  |
| MW-09D       | 7/20/2007 | 37.35                   | 20.39 - 30.39 | 9.65       | 27.7        |  |
| MW-09S       | 7/20/2007 | 37.39                   | 5.55 - 15.55  | 8.46       | 28.93       |  |
| MW-12D       | 7/20/2007 | 37.27                   | 24.3 - 34.3   | 7.8        | 29.7        |  |
| MW-12S       | 7/20/2007 | 37.29                   | 7.6 - 17.6    | 7.75       | 29.75       |  |
| MW-13D       | 7/20/2007 | 36.81                   | 20.01 - 30.01 | 7.11       | 29.7        |  |
| MW-135       | 7/20/2007 | 36.63                   | 5.59 - 15.59  | 6.8        | 29.83       |  |
| MW-15        | 7/20/2007 | 31.30                   |               | 4.2        | 27.1        |  |
| MW-16        | 7/20/2007 | 30.33                   |               | 3.55       | 26.78       |  |

### Notes:

MSL = mean sea level

BGS = below ground surface

TOC = top of casing

b = unable to open well cap during survey


 $\frown$ 

 $\overline{}$ 





.

( ;

DIVIGROUP; (ENV) DB; (R.HOOTMANIA, SAUL) LD; (B.ALTCM) P(C; (M. FENNER) PM; (C. BERTZ) TM; S.BOSTIAND; WILLIS) TA2009 SI WORKPLANF52 H17A, WP\_XSECAAding LAYOUT: AA SAVED: 3725/2009 9:32 AM ACADVER: 17.15 (LMS TECH) PAGESETUP: --- PLOTSTYLETA











ITY: (KNOXVILLE) DIVIGROUP: (ENV) DB: (LGREEN) LD: (B.ALTOM) PIC: (M.FENNER) PM: (C.BERTZ) TM: (S.BOSTIAN/D.WILLIS/H.ENGLISH ROJECT: GP08HAFS, F17A, DBCSM PATH: G: (GISIGP08HAFS/H17A/2009 SI WORKPLANIF12 HAA17\_WP\_GW\_20064mxd SAVED: 25MAR2009

Proposed investigation

#### 6. Proposed Investigation

An investigation is proposed to address the knowledge gaps listed in Section 5.4. A primary focus will be delineation of the source(s) of TCE impacts in groundwater at HAA-17. The low concentrations of TCE in groundwater up gradient of former USTs 25 and 26 do not appear to be related to the more extensive impacts near the former USTs 25 and 26 area. The initial focus is to determine if the primary source(s) of TCE in groundwater is related to operations near the former UST farm. This will include investigating the use of TCE at the former UST tank farm, the up gradient area including Special Weapons Area, and the area east of the drainage canal. Investigation activities to delineate the extent of the TCE detected at the Purge Facility and east of Building 1290 are also proposed.

All procedures and techniques utilized for this investigation will conform to EPA Region 4 Science and Ecosystem Support Division (SESD) guidance and the approved Sampling and Analysis Plan (ARCADIS 2009). All soil and groundwater samples collected will be analyzed by Shealy Environmental Services, Inc., a certified Georgia laboratory. Any mobile analytical laboratory utilized for field analysis will also be a certified Georgia laboratory.

The activities comprising the investigation at HAA-17 include the following:

- Collection of water-level measurements from monitor wells associated with HAA-17
- Installation of two monitor well pairs and multiple surface water stadia to evaluate groundwater/surface water flow near the drainage canal
- Slug tests in representative wells to determine hydraulic conductivities in the shallow aquifer
- Sampling of existing monitor wells to confirm previous data
- Vertical profiles in suspected source areas using MIP technology
- Borings for soil and groundwater sampling to evaluate contaminant distribution and extent
- Installation of approximately 4 groundwater monitor wells
- Sampling of new and selected existing groundwater monitor wells.
  Biogeochemical analyses of groundwater in selected source area and background monitor wells will be included.

The vertical and horizontal profile of VOC contamination in soil and groundwater in suspected source areas will be investigated using MIP technology. Borings for the collection of soil and groundwater samples will be utilized for establishing the

## ARCADIS

#### Site Investigation Work Plan, HAA-17

Proposed investigation

Ι

contaminant distribution and extent and to confirm source area MIP data. The MIP and installation of borings for soil and groundwater sampling will be conducted under one mobilization. The MIP investigation will be performed initially to determine and delineate the source(s) and focus the subsequent assessment effort.

#### 6.1 Phase I Source Area Investigation

#### 6.1.1 Water-Level Measurements

A complete set of water-level measurements will be collected from selected monitor wells installed at HAA-17. These water-level measurements will be taken to provide a comprehensive view of vertical and horizontal gradients in the area.

#### 6.1.2 Groundwater/Surface Water Flow near Drainage Canal

Two deep monitor wells will be installed in the vicinity of the drainage canal to obtain data on groundwater flow east of the canal. The wells will be installed close to existing shallow monitor wells AF-03 and AF-35 to provide information on vertical gradients east of the canal. Surface water stadia will be installed to determine the relationship of groundwater to surface water. Proposed monitor well locations are presented on Figure 6-1.

#### 6.1.3 Slug Testing

Slug tests will be performed in approximately six representative monitor wells to determine hydraulic conductivities in the shallow and deep intervals of the unconfined aquifer. Rising head and falling head slug tests will be conducted at each location.

#### 6.1.4 Baseline Sampling of Monitor Wells

Selected monitor wells will be sampled to update analytical data for existing monitor wells. Low-flow techniques will be used to collect groundwater samples from the selected monitor wells. Field measurements will include pH, specific conductance, temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity. Groundwater samples from TCE impacted areas will be analyzed for U.S. Environmental Protection Agency (USEPA) Method 8260. The groundwater samples from the Purge Facility monitor wells will also be analyzed for USEPA Method 6010 to determine barium and chromium concentrations.

Proposed investigation

#### 6.1.5 Membrane Interface Probe

MIP borings will be installed in areas where TCE concentrations indicate proximity to source mass in the former USTs 25 and 26 area. Initial borings will be installed proximate to AF-52 and AF-53, where the highest historical concentrations of TCE were observed and proximate to AF-45 and 55, where concentrations above 1 mg/L were detected. The initial MIP borings will be advanced to the confining layer (approximately 40 ft bgs). The approximate locations are presented on Figure 6-1. The location of subsequent MIP borings will be based on initial results.

MIP is an in-situ tool installed with DPT. The MIP unit heats the soil and groundwater adjacent to the probe thereby increasing volatility and causing the vapor phase to diffuse across the membrane into an inert gas loop. The gas carries the vapors to a series of detectors housed at the surface. Continuous (2-foot increment) chemical profile logs are generated from each hole. The detectors used will include a photoionization detector (PID), a flame ionization detector, and an electron capture detector. The MIP unit includes a tool to measure sediment conductivity, which should accurately locate the clay beds within the silty sands and sand units. Sediment conductivities will be compared to existing nearby well logs to verify lithologies. MIP vapor concentration measurements and conductivity tests will be performed at 2-foot intervals from approximately 5 ft bgs to the underlying silty-clay confining layer at approximately 40 ft bgs. The initial MIP points will provide real-time data that will be used to locate subsequent MIP locations, soil borings and monitor wells. Concrete coring may be required for some locations and permission will be obtained prior to any intrusive activities. The intent of the MIP investigation is to initially determine elevated VOC concentrations near the source of the release. The MIP will not detect low (<100 µg/L) VOC concentrations. The MIP data will be used to locate temporary borings and ultimately permanent wells from which groundwater samples will be collected for laboratory analysis.

#### 6.1.6 Temporary Borings

Borings will be installed to delineate the extent of the TCE plume associated with former USTs 25 and 26 as well as the low concentrations of TCE detected in groundwater during the investigations at the Purge Facility (AT-MW-01) and Building 1290 (MW-8D, DPT-01, and DPT-03). The proposed locations, which are presented in Figure 6-1, will be adjusted based on facility requirements and access and previous results.

## ARCADIS

#### Site Investigation Work Plan, HAA-17

Proposed investigation

A GeoProbe or equivalent DPT equipment will be utilized to install temporary borings. In the former tank farm area, the data from the MIP evaluation will be used to locate soil borings for collection of soil and groundwater samples to confirm the delineation of the source area(s). The temporary borings will be installed to the base of the Lower Unit aquifer at approximately 40 ft bgs. Selected temporary borings will be split spooned to total depth and lithologies recorded by a qualified geologist on lithologic logs. Unsaturated soil samples will be screened with a PID. The soil and groundwater samples will selected for analysis by USEPA Method 8260B based on PID readings, intervals identified by the MIP and/or evaluation of drainage pathways and other potential solvent sources.

The investigation derived waste (IDW) from the installation of borings for MIP and soil and groundwater sampling will be collected in U. S. Department of Transportation (DOT)-approved 55-gallon drums. A soil sample will be collected from each drum for characterization for disposal purposes. The locations of the soil borings will be surveyed by a land surveyor registered in the state of Georgia. All temporary borings will be grouted with cement from total depth to land surface to protect separation of aquifers.

#### 6.1.7 Groundwater Monitor Wells

Additional 2-inch-diameter monitor wells may be installed in the source area if located and/or the dissolved plume area as necessary to define the contaminant distribution and monitor potential migration. The most likely scenario will be that an additional 4 to 6 monitor wells will be installed in the deep surficial groundwater at approximately 35 to 40 ft bgs. The number and locations of monitor wells will be based on the results of the soil and groundwater investigations previously described. The wells will be constructed of 2-inch-diameter Schedule 40 PVC. Specific depths will be based on lithologic logs from temporary borings and the MIP conductivity logs. Deep wells will have a 5-foot screen set to sample a specific interval identified with MIP and DPT results. Well screens will consist of a 2-inch inside diameter, flush threaded, 0.010-in. slotted PVC. Clean, inert, siliceous material shall be used to construct a uniform and continuous filter pack. Grain size will be applicable to the screen used. A seal measuring 1-foot thick consisting of a bentonite grout shall be pumped into the annular space above the filter pack. Monitor wells will be completed at ground surface within steel meter boxes painted to FS/HAAF standards. The surface completions will be flush because the wells will be located around buildings or in populated areas. The monitor wells will be surveyed for location and elevation by a land surveyor registered in the state of Georgia. All soil wastes from installation

## ARCADIS

#### Site Investigation Work Plan, HAA-17

Proposed investigation

of monitor wells will be segregated by borehole and collected in DOT-approved 55gallon drums.

#### 6.1.8 Sampling of New and Existing Monitor Wells

Groundwater samples will be collected from the new monitor wells installed as described. Existing wells will also be sampled to confirm the results of previous soil and groundwater investigations and to obtain biogeochemical data to facilitate remedy design. Low-flow techniques will be used to collect groundwater samples from the selected monitor wells. Field measurements will include pH, specific conductance, temperature, ORP, DO, and turbidity. The groundwater will be analyzed for VOCs in accordance with USEPA Method 8260. In addition, select samples collected at monitor wells designated as source area and background wells will be analyzed for biogeochemical parameters. The proposed biogeochemical parameters are listed in Table 6-1. Monitor well samples collected at the Purge Facility will be analyzed for total and dissolved chromium and barium.

6.1.9 Vapor Intrusion - Indoor Air Pathway

After source delineation is complete, buildings in the area will be evaluated for susceptibility to vapor intrusion. Building construction relative to distribution of contaminant mass and potential exposure pathways will be analyzed.

#### 6.2 Phase II Delineation Investigation

The intention of the Phase I investigation is to fully delineate the source(s) and limits of contamination. If gaps in the Conceptual Site Model are discovered after the Phase I scope is complete, an additional investigation of soil or groundwater will be performed as determined to complete delineation. Additional soil sampling, monitor well installations and groundwater sampling may be performed to fully characterize the HAA-17 TCE release. Phase II investigation activities will be discussed informally with the GA EPD prior to implementation.

#### Table 6-1 Recommended Biogeochemical Analytical Parameters HAA-17 Hunter Army Airfield - Savannah, Ga

| Parameter                           | Analytical Method                      | Technical Protocol                       | Preservative                | Reporting Limit                  | Holding Time |
|-------------------------------------|----------------------------------------|------------------------------------------|-----------------------------|----------------------------------|--------------|
| Biological Oxygen Demand            | SM5210 B                               | 40 CFR Part 136                          | Cool 4°C                    | 0.2 mg/L                         | 48 hours     |
| Nitrite (NO2)                       | SM4110 B / 300.0 /<br>E352.1           | 40 CFR Part 136                          | Cool 4°C                    | 0.2 mg/L                         | 48 hours     |
| Nitrate (NO3)                       | SM4500-NO3- / 300.0<br>/ E353.2        | 40 CFR Part 136                          | Cool 4°C                    | 0.2 mg/L                         | 48 hours     |
| Chlorides (Cl)                      | SM4500-B, -C, -D, -E<br>/ 300.0 / 9250 | 40 CFR Part 136 /<br>SW-846              | Cool 4°C                    | 0.2 mg/L                         | 28 days      |
| Total Iron                          | SW6010                                 | SW-846                                   | pH <2 with HNO3,<br>Cool 4℃ | 0.025 mg/L                       | 180 days     |
| Ferrous Iron (Fe2+)                 | SM3500-FE-D /<br>SW7199M               | 40 CFR Part 136 /<br>SW-846              | Cool 4°C or HCi<br>pH<2     | 0.025 mg/L                       | Analyze ASAP |
| TOC (dissolved)                     | SM5310-B, -C, -D /<br>9060             | 40 CFR part 136 /<br>SW846               | HCI pH<2                    | 5 mg/L                           | 14 days      |
| Alkalinity                          | SM 2320-B / 310.2                      | 40 CFR Part 136                          | Cool 4°C                    | 4 mg/L                           | 48 hours     |
| Sulfate (SO4)                       | SM4110-B / 300.0 /<br>375.2            | 40 CFR Part 136                          | Cool 4°C                    | 1 mg/L                           | 28 days      |
| Sulfide (S)                         | SM4500-S2-F, -D, -G                    | 40 CFR Part 136                          | ZnAC or ZnAc+<br>NaOH       | 2 mg/L                           | 48 hours     |
| VOCs                                | SW8260                                 | SW846                                    | HCI pH<2                    | various                          | 14 days      |
| Volatile Fatty Acids                | E300.0                                 | 40 CFR Part 136                          | Cool 4°C                    |                                  |              |
| Carbon Dioxide (CO2)                | AM20GAX                                | N/A                                      | benzalkonium<br>chloride    | 0.6 mg/L                         | 14 days      |
| Methane (CH4)                       | AM20GAX                                | N/A                                      | trisodium<br>phosphate      | 0.15 ug/L                        | 14 days      |
| Ethane & Ethene                     | AM20GAX                                | N/A                                      | trisodium<br>phosphate      | 5 ng/L                           | 14 days      |
| Turbidity -                         | NA                                     | YSI 6820 water<br>quality meter          | NA                          | Range: 0-1000 NTU                | NA           |
| Conductivity                        | NA                                     | YSI 600XL or 6820<br>water quality meter | NA                          | Range: 0 to 100<br>mS/cm         | NA           |
| Temperature                         | NA                                     | YSI 600XL or 6820<br>water quality meter | NA                          | Range: -5 to +45°C               | NA           |
| Dissolved Oxygen (DO)               | NA                                     | YSI 600XL or 6820<br>water quality meter | NA                          | Range: 0 to 20 mg/L              | NA           |
| рН                                  | NA                                     | YSI 600XL or 6820<br>water quality meter | NA                          | Range: 0 to 14<br>standard units | NA           |
| Oxidation-Reduction Potential (ORP) | NA                                     | YSI 600XL or 6820<br>water quality meter | NA                          | Range: -999 to +999<br>mV        | NA           |

Notes:

(

Notes: NA - not applicable ASAP - as soon as possible mg/L - milligrams per liter ug/L - milligrams per liter ng/L - nanograms per liter mV - millivolts mS/cm - millisemens per centimeter °C - degrees Celsius NTU - turbidity units



## ARCADIS

**Closing Summary** 

#### 7. Closing Summary

The extent of groundwater impacted by TCE near the former USTs 25 and 26 at HAA-17 has not been sufficiently defined. The intent of this investigation is to determine the location and fully delineate the primary TCE source(s) that have impacted groundwater at HAA-17 as well as define the limits of TCE impacted groundwater. The source(s) are most likely in the vicinity of the former USTs 25 and 26 area. Therefore, the initial investigation is focused on the former USTs 25 and 26 and surrounding areas. Flexibility has been built into the investigation scope to allow the investigation to be adapted to newly acquired data that may indicate other source scenarios. Investigation activities will also be conducted around the purge facility and areas east of building 1290 where concentrations exceeding HSRA thresholds were detected.

When sufficient data have been obtained to provide a consistent and complete Conceptual Site Model that includes source and extent, the results of the investigation will be included in a revised CSR. A proposed schedule for this site is included as Figure 7-1.

## Figure 7-1: HAA-17 Project Schedule Fort Stewart and Hunter Army Airfield

| ID   | WBS     | Task Name                                      | Duration | Start        | Finish       | Predecessors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2008                        |
|------|---------|------------------------------------------------|----------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| D    | 0       | Ft Stewart / HAAF Schedule - Proposed          | 555 days | Mon 1/19/09  | Thu 3/24/11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qtr 1   Qtr 2   Qtr 3   Qtr |
|      | 1       | HAA 17: TCE GROUNDWATER IMPACTS UST 25/26      | 555 days | Mon 1/19/09  | Thu 3/24/11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| 2    | 1.1     | HSRA Notification                              | 10 days  | Mon 1/19/09  | Fri 1/30/09  | <u> 1993 - 1993 - 1995 - 1</u> 995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995<br>- 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -<br>- 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1905 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 - 1905 |                             |
|      | 1.2     | HAA 17 CSR Work Plan                           | 176 days | Mon 2/2/09   | Thu 10/8/09  | · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|      | 1.2.1   | HAA 17 CSR Work Plan Rev 0                     | 110 days | Mon 2/2/09   | Tue 7/7/09   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|      | 1,2,1,1 | Prepare Draft HAA 17 CSR Work Plan             | 40 days  | Mon 2/2/09   | Fri 3/27/09  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|      | 1.2.1.2 | Army Review of Draft                           | 20 days  | Mon 3/30/09  | Fri 4/24/09  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| -    | 1.2.1.3 | ARCADIS Revisions                              | 5 days   | Mon 4/27/09  | Fri 5/1/09   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|      | 1.2.1.4 | Army Submittal of Final CSR Work Plan Rev 0    | 5 days   | Mon 5/4/09   | Fri 5/8/09   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                           |
|      | 1.2.1.5 | GAEPD Review of CSR Work Plan Rev 0            | 40 days  | Mon 5/11/09  | Tue 7/7/09   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| ···· | 1.2.1.6 | GAEPD comments on CSR Work Plan Rev 0          | 0 days   | Tue 7/7/09   | Tue 7/7/09   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|      | 1.2.2   | HAA 17 CSR Work Plan Rev 1                     | 65 days  | Wed 7/8/09   | Wed 10/7/09  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|      | 1.2.2.1 | Prepare RTCs and HAA 17 CSR Work Plan Rev 1    | 5 days   | Wed 7/8/09   | Tue 7/14/09  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|      | 1.2.2.2 | Army Review of RTCs and CSR Work Plan Rev 1    | 20 days  | Wed 7/15/09  | Tue 8/11/09  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.2.2.3 | ARCADIS Revisions                              | 5 days   | Wed 8/12/09  | Tue 8/18/09  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.2.2.4 | Army Submittal of RTCs and CSR Work Plan Rev 1 | 5 days   | Wed 8/19/09  | Tue 8/25/09  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.2.2.5 | GAEPD Review of CSR Work Plan Rev 1            | 30 days  | Wed 8/26/09  | Wed 10/7/09  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.2.3   | Regulatory Approval HAA 17 CSR Work Plan Rev 1 | 1 day    | Thu 10/8/09  | Thu 10/8/09  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.3     | HAA 17 Field Investigation                     | 71 days  | Sun 10/18/09 | Sun 1/31/10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|      | 1.3.1   | Phase 1 Field Investigation Mobilization       | 0 days   | Sun 10/18/09 | Sun 10/18/09 | 17FS+10 edays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|      | 1.3.2   | Phase 1 Field investigation Completion         | 45 edays | Sun 10/18/09 | Wed 12/2/09  | . 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|      | 1.3.3   | Phase 2 Field investigation Mobilization       | 0 days   | Fri 1/1/10   | Fri 1/1/10   | 20FS+30 edays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|      | 1.3.4   | Phase 2 Field Investigation Completion         | 30 edays | Fri 1/1/10   | Sun 1/31/10  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.4     | HAA 17 CSR                                     | 151 days | Mon 1/11/10  | Wed 8/11/10  | ···· - ··· · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|      | 1.4.1   | HAA 17 CSR Rev 0                               | 85 days  | Mon 1/11/10  | Fri 5/7/10   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|      | 1.4.1.1 | Prepare Draft HAA 17 CSR                       | 15 days  | Mon 1/11/10  | Fri 1/29/10  | 21FS+5 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|      | 1.4.1.2 | Army Review of Draft CSR                       | 20 days  | Mon 2/1/10   | Fri 2/26/10  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.4.1.3 | ARCADIS Revisions                              | 5 days   | Mon 3/1/10   | Fri 3/5/10   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.4.1.4 | Army Submittal of Final CSR Rev 0              | 5 days   | Mon 3/8/10   | Fri 3/12/10  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|      | 1.4.1.5 | GAEPD Review of CSR Rev 0                      | 40 days  | Mon 3/15/10  | Fri 5/7/10   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |

Date: Fri 4/3/09



|    | 14/20   |                                      | Figure<br>Fort St | 7-1: HAA-17<br>ewart and Hu | Project Scheo<br>nter Army Air | dule<br>field |                             |
|----|---------|--------------------------------------|-------------------|-----------------------------|--------------------------------|---------------|-----------------------------|
| ID |         | Task Name                            | Duration          | Start                       | Finish                         | Predecessors  | 2008 200                    |
| 30 | 1.4.1.6 | GAEPD comments on CSR Rev 0          | 0 days            | Fri 5/7/10                  | Fri 5/7/10                     | 2             | Qtr 1 Qtr 2 Qtr 3 Otr 4 Otr |
| 31 | 1.4.2   | HAA 17 CSR Rev 1                     | 65 days           | Mon 5/10/10                 | Tue 8/10/10                    |               |                             |
| 32 | 1.4.2.1 | Prepare RTCs and HAA 17 CSR Rev 1    | 5 days            | Mon 5/10/10                 | Fri 5/14/10                    | 30            |                             |
| 33 | 1.4.2.2 | Army Review of RTCs and CSR Rev 1    | 20 days           | Mon 5/17/10                 | Mon 6/14/10                    | 32            |                             |
| 34 | 1.4.2.3 | ARCADIS Revisions                    | 5 days            | Tue 6/15/10                 | Mon 6/21/10                    |               |                             |
| 35 | 1.4.2.4 | Army Submittal of RTCs and CSR Rev 1 | 5 days            | Tue 6/22/10                 |                                | 33            |                             |
| 36 | 1.4.2.5 | GAEPD Review of CSR Rev 1            | 30 days           | Tue 6/29/10                 | Mon 6/28/10                    | 34            |                             |
| 37 | 1.4.3   | Regulatory Approval HAA 17 CSR Rev 1 |                   |                             | Tue 8/10/10                    | 35            |                             |
| 38 | 1.5     |                                      | 1 day             | Wed 8/11/10                 | Wed 8/11/10                    | 36            |                             |
| 39 | 1.5.1   | HAA 17 CAP Rev 0                     | 156 days          | Thu 8/12/10                 | Thu 3/24/11                    |               |                             |
| 40 | 1.5.1.1 | Prepare Draft HAA 17 CAP             | 80 days           | Thu 8/12/10                 | Mon 12/6/10                    | 37            |                             |
| 41 | 1.5.1.Ž | Army Review of Draft CAP             | 10 days           | Thu 8/12/10                 | Wed 8/25/10                    |               |                             |
| 42 | 1.5.1.3 |                                      | 20 days           | Thu 8/26/10                 | Thu 9/23/10                    | 40            |                             |
| 43 |         | ARCADIS Revisions                    | 5 days            | Fri 9/24/10                 | Thu 9/30/10                    | 41            |                             |
|    | 1.5.1.4 | Army Submittal of Final CAP Rev 0    | 5 days            | Fri 10/1/10                 | Thu 10/7/10                    | 42            |                             |
| 44 | 1.5.1.5 | GAEPD Review of CAP Rev 0            | 40 days           | Fri 10/8/10                 | Mon 12/6/10                    | 43            | :<br>-                      |
| 45 | 1.5.1.6 | GAEPD comments on CAP Rev 0          | 0 days            | Mon 12/6/10                 | Mon 12/6/10                    | 44            | 1                           |
| 46 | 1.5.2   | HAA 17 CAP Rev 1                     | 75 days           | Tue 12/7/10                 | Wed 3/23/11                    | 45            |                             |
| 47 | 1.5.2.1 | Prepare RTCs and HAA 17 CAP Rev 1    | 5 days            | Tue 12/7/10                 | Mon 12/13/10                   | · · · · · · · |                             |
| 48 | 1.5.2.2 | Army Review of RTCs and CAP Rev 1    | 20 days           | Tue 12/14/10                | Wed 1/12/11                    | 17            |                             |
| 49 | 1.5.2.3 | ARCADIS Revisions                    | 5 days            | Thu 1/13/11                 | Wed 1/19/11                    | 47            |                             |
| 50 | 1.5.2.4 | Army Submittal of RTCs and CAP Rev 1 | 5 days:           | Thu 1/20/11                 | Wed 1/16/11                    | 48            |                             |
| 51 | 1.5.2.5 | GAEPD Review of CAP Rev 1            | 40 days           | Thu 1/27/11                 |                                | 49            | :                           |
| 52 | 1.5.3   | Regulatory Approval Final HAA 17 CAP |                   | 1                           | Wed 3/23/11                    | 50            | -<br>-<br>-                 |
|    |         |                                      | 1 day             | Thu 3/24/11                 | Thu 3/24/11                    | 51            |                             |

R ARCADIS

٩



## ARCADIS

# Site Investigation Work Plan, HAA-17

#### References

#### 8. References

ARCADIS 2009. Sampling and Analysis Plan and Quality Assurance Project Plan, Ft. Stewart Military Reservation and Hunter Army Airfield, Georgia. February.

Earth Tech, Inc. 1999. Corrective Action Plan-Part A Report for Facility ID: 9-025008, Underground Storage Tanks 25 & 26 at Building 1343, Hunter Army Airfield, Georgia. March.

SAIC. 2008. Data Summary Report for the TCE Plume at Building 1290, Hunter Army Airfield, Georgia. August.

SAIC. 2007. Site Investigation Report for the Purge Facility at Hunter Army Airfield, Georgia. February.

SAIC. 2004. Data Summary Report for the 2003 Vertical-Profile Investigation for USTs 25 & 26, Facility ID#9-025008, Building 1343, Hunter Army Airfield, Georgia. April.

SAIC. 2003. Corrective Action Plan–Part B Addendum #2 for USTs 25 & 26, Facility ID #9-025008,Building 1343, Hunter Army Airfield, Georgia. April.

SAIC. 2001. Corrective Action Plan–Part B Addendum #1 for USTs 25 & 26, Facility ID #9-025008, Building 1343, Hunter Army Airfield, Georgia. June.

SAIC. 2000. Corrective Action Plan-Part B for USTs 25 & 26, Facility ID #9-025008, Building 1343, Hunter Army Airfield, Georgia. February.

World Health Organization. 2002. Concise International Chemical Assessment Document 46 - Carbon Disulfide. Geneva, Switzerland.



(

### Appendix A

Geophysical Investigation Report

(Reference: UST 25 & 26 CAP-Part B Addendum #1 (Facility ID #9-025008) June 2001)

### Direct-push Electrical Logging (DP e-log)

Direct-push electrical logging (DP e-log) is a modification of conventional borehole resistivity logging techniques in that no pre-existing borehole or well is required. The direct-push probe is attached to the leading end of the tool string and advanced into the subsurface using the percussion hammer and hydraulic slides on the direct push vehicle. A track mounted Geoprobe 66DT probing system was used to direct push the e-logging probe at the FBTS at YPG.

The Geoprobe Model SC400 probe was used for this project, which consists of a fourelectrode Wenner array and measures 15 inches long by 1.5 inches in diameter. Measurements are made by applying an electric current to the outer two electrodes and recording the voltage difference between the inner two electrodes (Christy et al., 1994). The measurement is transmitted via a pre-strung coaxial cable to signal processing hardware at the surface where a real-time log (measurement at 0.05 ft intervals) is displayed on a laptop computer. A string pot mounted on the mast of the DP unit tracks the depth and speed of advancement of the probe.

### Global Positioning System (GPS)

The Trimble Pro XR/XRS global positioning system was used to determine the State Plane coordinates for geophysical survey grid, fence corners, well locations, and other surface features at 260<sup>th</sup> Motor Pool. The Trimble Pro XR/XRS uses the RACAL satellite subscription service to provide real-time differential correction during data collection. Quality control of the GPS surveying was maintained by positioning the "rover" unit at points with a known location, and by occupying several grid coordinates within the survey grid so as to reduce stretching errors.

#### Gridding, Contouring, and Presentation of Data

The EM-31 and EM-61 data are presented as color-contoured maps depicting lateral variations in the respective data, and the 2D-resistivity data are displayed as color-coded profile sections depicting vertical and lateral changes. Maps are constructed from the quadrature-phase (conductivity) for EM-31, and coil-difference for the EM-61. The processing steps used to convert the profile data to a map image are:

<u>Correct the data to the local grid frame</u>. Fiducial markers, consisting of the profile location, end points, and intermediate points are used to stretch individual profiles to the correct lengths used by the survey grid. The intermediate markers

28

A-49

are required so that stretching errors associated with uneven walking speeds and changes in terrain can be minimized.

- <u>Transformation to final grid frame</u>. GPS measurements are made on selected grid stakes and the true spatial coordinate for the stake is determined. From 5 to 10 stakes are occupied in order to reduce survey errors associated with the initial grid construction. A data rotation and transformation program uses this information to convert the local grid frame information to a real-world coordinate system (usually a Universal Transverse Mercator projection). This transformation allows incorporating the geophysical data into a GIS based system in order to aid the interpretation.
- <u>Gridding</u>. The data were gridded using the Kriging algorithm of the commercial software code SURFER. The Kriging method will construct a reasonably accurate grid surface, though artifacts are produced at the grid edges and where long-distance interpolation is required in sparsely populated regions.
- <u>Color Contouring</u>. The generated grids are displayed as color-contoured maps where green-to-blue colors represent relative lows, and red-to-white colors, relative highs. The contour-range, interval, and color-scheme used for individual grids was designed to provide the best possible detail of identified anomalies while simultaneously suppressing visible instrument and/or external noise. Mapped features such as fence lines and surface debris are overlain onto the final image to aid and improve the interpretation.

A-50

# **APPENDIX B: Geophysical Instrumentation**

### Overview

Results from the borehole geophysical surveys are presented in this Appendix for the 7 borings or wells entered. Table B.1 provides a short summary by boring or well ID and methods used. Figures B.1 through B.4 show the logging results for each boring or well by profile line. The locations for the 7 geophysical logging points are shown in Figure 2 in the main body of text.

|                |             |          | Borehole Geophysical Logging |               |  |
|----------------|-------------|----------|------------------------------|---------------|--|
| Well/Boring ID | Figure #    | DP e-log | EM Induction                 | Natural Gamma |  |
| X1-1           | <b>B</b> .1 | No       | Yes                          | Yes           |  |
| X1-2           | B.1         | Yes      | No                           | No            |  |
| X2-1*          | B.2         | Yes      | Yes                          | Yes           |  |
| X2-2           | B.2         | Yes      | No                           | No            |  |
| X3-1*          | B.3         | Yes      | Yes                          | Yes           |  |
| X3-2           | B.3         | Yes      | No                           | No            |  |
| X4-1           | B.4         | Yes      | No                           | No            |  |
| AF-31/42       | B.4         | No       | Yes                          | Yes           |  |

Table B.1. Geophysical methods used for each boring or well.

All three methods used at this location

260X1-1





Figure B.1. Subsurface geophysical logs collected along Resistivity Profile 1. See Figure 2 for survey locations.



Figure B.2. Subsurface geophysical logs collected along Resistivity Profile 2. See Figure 2 for locations



Figure B.3. Subsurface geophysical logs collected along Resistivity Profile 3. See Figure 2 for survey locations.



Figure B.4. Subsurface geophysical logs collected along Resistivity Profile 4 and at monitoring well AF-42. See Figure 2 for locations.

| Well/Boring | Electrical Con | ductivity (mS/m) | ~              | Elevation,                 | <u> </u>              |
|-------------|----------------|------------------|----------------|----------------------------|-----------------------|
| D           | DP e-log       | EM Induction     | Gamma<br>(CPS) | Top of UCU<br>(meters ASL) | Thickness<br>(meters) |
| X1-1        | N/A            | 75               | 115            | -1.8                       | 1.9                   |
| X1-2        | 90             | N/A              | N/A            | -1.8                       | 1.8                   |
| X2-1        | 90             | 75               | 105            | -3.0                       | 1.6                   |
| X2-2        | 80             | N/A              | N/A            | -3.0                       | 1.6                   |
| X3-1        | 95             | 85               | 110            | -3.8                       | 1.3                   |
| X3-2        | 75             | N/A              | N/A            | -3.6                       | 1.5                   |
| X4-1        | 90             | N/A              | N/A            | -3.0                       | 1.8                   |
| AF-31/42    | 80             | 100              | 100            | -2.5                       | 1.8                   |
|             |                | · · ·            |                |                            | ····                  |

Table B.2. Upper Clay Unit Parameters

Table B.3. Lower Clay Unit Parameters

| Well/Boring<br>ID | Electrical<br>Conductivity<br>DP e-log (mS/m) | Elevation,<br>Top.of LCU<br>(meters ASL) | Thickness<br>(meters) |
|-------------------|-----------------------------------------------|------------------------------------------|-----------------------|
| X1-1              | N/A                                           | N/A                                      |                       |
| X1-2              | 130                                           | -12.5                                    | 2.9                   |
| X2-1              | 140                                           | -14.0                                    | 1.5                   |
| X2-2              | 140                                           | -14.5                                    | 2.5                   |
| X3-1              | N/A                                           | -17.5*                                   |                       |
| X3-2              | 130                                           | -16.5                                    | 3.5                   |
| <b>X</b> 4-1      | 145                                           | -14.0                                    | 2.0                   |
| AF-31/42          | N/A                                           | N/A                                      |                       |

\* Estimated at the bottom of the boring, LCU not encountered

## ATTACHMENT A

## **GEOPHYSICAL INVESTIGATION REPORT**

(

Hunter Army Airfield UST CAP-Part B Addendum #1 Report (June 2001) USTs 25 & 26, Building 1343, Facility ID #9-025008

(

( ...

### THIS PAGE INTENTIONALLY LEFT BLANK.

### **Report to Sponsor**

SUNACULAR SU

CARA SADING INANGE

NUMBER OF STREET, STRE

<u>ang ka</u>

## Geophysical Investigation of the 260<sup>th</sup> Motor Pool Site at HAAF, Georgia

By

M.D. Thompson, S.F. Miller and J.M. Cooper

Center for Environmental Restoration Systems Energy Systems Division Argonne National Laboratory

for

Melanie Little Hunter Army Airfield Savannah, Georgia

Interim Project Report

June 2001

| OVERVIEW                                                         |   |
|------------------------------------------------------------------|---|
| GEOLOGY                                                          | 6 |
| PLIOCENE-HOLOCENE UNIT                                           | 6 |
| MIOCENE AQUICLUDE (CONFINING UNIT)                               | 6 |
| GEOPHYSICAL SURVEYS                                              | 6 |
| 2-D ELECTRICAL RESISTIVITY IMAGING (2D-ERI)                      |   |
| BOREHOLE GEOPHYSICAL LOGGING                                     |   |
| Direct-push Conductivity Surveys (DP e-log)                      |   |
| EM Induction and Natural-Gamma Borehole Surveys                  |   |
| Results of Borehole Geophysics                                   |   |
| ELECTROMAGNETIC TERRAIN CONDUCTIVITY AND METAL DETECTION MAPPING |   |
| DISCUSSION                                                       |   |
| COMPARISON OF 2D-ERI AND BOREHOLE GEOPHYSICAL DATA               |   |
| CONCLUSIONS                                                      |   |
| RECOMMENDATIONS                                                  |   |
| REFERENCES                                                       |   |
| APPENDIX A: GEOPHYSICAL INSTRUMENTATION                          |   |
| Overview                                                         |   |
| ELECTROMAGNETIC TERRAIN-CONDUCTIVITY SURVEYING                   |   |
| Geonics EM-31                                                    |   |
| Geonics EM-61 Metal Detector                                     |   |
| 2-D ELECTRICAL RESISTIVITY IMAGING                               |   |
| DIRECT-PUSH ELECTRICAL LOGGING (DP E-LOG)                        |   |
| GLOBAL POSITIONING SYSTEM (GPS)                                  |   |
| GRIDDING, CONTOURING, AND PRESENTATION OF DATA                   |   |
| APPENDIX B: GEOPHYSICAL INSTRUMENTATION                          |   |
| Overview                                                         |   |

### TABLE OF CONTENTS

ALC: NO.

STORY STORAGE STOR

AND DESCRIPTION OF

South States

(

ii

# List of Tables

ĺ

(

I

(

| Table 1.Ge | ophysical methods used for each boring or well.   | 11  |
|------------|---------------------------------------------------|-----|
| Table B.1. | Geophysical methods used for each boring or well. | .30 |
| Table B.2. | Upper Clay Unit Parameters                        | 31  |
| Table B.3. | Lower Clay Unit Parameters                        | 31  |

### List of Figures

Figure 1..... General Site Map

and the second

- Figure 3......2D-ERI Models for Profile 1
- Figure 4......2D-ERI Models for Profile 2
- Figure 5. ...... 2D-ERI Models for Profile 3
- Figure 6. ..... 2D-ERI Models for Profile 4
- Figure 7..... Structure Contours TOP of UCU
- Figure 8 ..... Isopach Map of the UCU.
- Figure 9. ..... Structure Contours TOP of LCU
- Figure 10...... EM-31 Surveys at the 260<sup>th</sup>
- Figure 11...... EM-61 Surveys at the 260<sup>th</sup>
- Figure 12......Comparison of Borehole and Surface Geophysics
- Figure 13...... Comparison of Borehole and Surface Geophysics
- Figure 14...... Comparison of Borehole and Surface Geophysics
- Figure 15...... Comparison of Borehole and Surface Geophysics
- Figure A.1 ..... Example 2D-ERI modeling output
- Figures B.1 B.4 Borehole Geophysics Results.

## Geophysical Investigation of the 260<sup>th</sup> Motor Pool site at HAAF, Georgia

### Overview

The 260<sup>th</sup> Motor Pool site at Hunter Army Airfield (Figure 1) is currently under environmental investigation for sub-surface TCE contamination. Chemical analysis of groundwater monitoring wells indicates that TCE is present at shallow depths (2-4 m) beneath the ground surface in the wooded area southeast of the 260<sup>th</sup> Motor Pool.

The geology beneath the site consists of coastal plain sediments comprised of interbedded sand and clay layers. Two clay horizons, the Upper Clay Unit (UCU) and the Lower Clay Unit (LCU), have been identified by geophysical methods and may act as potential barriers for the migration and pooling of TCE products beneath the  $260^{th}$  site. The UCU occurs at depths of 7 to 9m below the ground surface and the LCU at depths of 13-22m below ground level.

As part of the investigation, geophysical surveys were conducted at the 260<sup>th</sup> Motor Pool site to better characterize subsurface geology controlling the migration and entrapment of TCE contaminants (DNAPL). Additional geophysical surveys were also performed to determine whether an uncontrolled burial site was present. Geophysical methods used consisted of electromagnetic (EM) terrain conductivity surveying, EM metal detection, two-dimensional electrical resistivity imaging (2D-ERI), and borehole electric and natural-gamma logging.

Results from modeling the 2D-ERI data provide gross spatial distributions and trends of electrical properties of the subsurface, which are correlated with the underlying geology. In situ geophysical measurements were also performed using available monitoring wells and direct-push techniques. Both electrical and natural-gamma methods were run which allow discriminating between clay and non-clay intervals. The borehole geophysical surveys clearly indicated the depth and thickness of discrete clay layers at the boring, whereas, the surface geophysical methods are used to extrapolate between borings.

A-9

5



Figure 1. Location map for the 260th Motor Pool and Hunter Army Airfield (HAAF), Savannah, Georgia.

100000

## Geology

Stratigraphic units of concern at the 260th Motor Pool include the Pliocene-Holocene Unit and the underlying Miocene Aquiclude (Confining Unit).

#### **Pliocene-Holocene Unit**

Holocene deposits are characterized by sand, clay, and lesser amounts of gravel; Pleistocene deposits by arkosic sand and gravel containing discontinuous clay beds; and Pliocene deposits by phosphatic, micaceous and clayey sand. Numerous in-filled channels, some of which extend into and potentially through the Miocene aquiclude, also characterize units within the Pliocene-Holocene series.

### **Miocene Aquiclude (Confining Unit)**

The Miocene Aquiclude is composed of mainly clastic deposits containing low-permeability clays, silts, clayey silts, and sandy or silty clays that act as confining units in the Savannah area. The thickness of the Miocene deposits range in thickness from over 100ft in the Savannah area to being locally absent, or nearly so, off Hilton Head Island and the Beaufort area (Foyle et al, 1999).

### **Geophysical Surveys**

Geophysical surveys were conducted during two rounds, April 2000 and Oct./Nov 2000. This allowed assessing what seasonal effects would occur on the resulting geophysical models, and allowed adjusting survey parameters in attempt to improve the resolution of the resulting models. Surveys consisted of two-dimensional electrical-resistivity imaging (2D-ERI), borehole geophysical logging, electromagnetic (EM) terrain-conductivity mapping, and EM metal detection. The survey locations are shown in Figure 2 with the 2D-ERI profiles denoted as solid red lines, the EM grid as a magenta color, and the borehole geophysical measurement points as solid-blue circles. The 2D-ERI and borehole geophysical surveys were conducted in order to map the vertical distribution and lateral continuity of clay layers underlying the field site. EM terrainconductivity and metal detection surveys were conducted in the wooded area southeast of the motor pool in order to determine whether an uncontrolled burial site was present. A more thorough description of the instrumentation and geophysical methods is provided in Appendix A.

A-11



Figure 2. Locations of Geophysical Surveys at the 260th Motor Pool.

(

Section 1

- States States

**技術型をあえ** 

**HARDER**
### 2-D Electrical Resistivity Imaging (2D-ERI)

State States

CONTRACTOR OF STREET, S

2D electrical-resistivity data were collected along 4 profiles (Figure 2) at the 260<sup>th</sup> site using an AGI Sting/Swift system (see Appendix A for a more thorough discussion of the methodology and use of this instrument). Each profile was surveyed twice, first in April 2000 during wet soil conditions, then in October/November 2000 in dry soil conditions brought upon by a summer long drought. Only Schlumberger arrays were used because they produced relatively clean data sets with stable inversion models. Details and comparisons of the repeat measurements are discussed below.

Data collected during the second round were generally noisier and of poorer quality than that collected during the initial round (April 2000), and models constructed from the second round of data yield higher modeling errors than the April round. Drier soil conditions are believed to be major cause for the increased noise and model errors. In this case, the electrical-contact between the ground and the electrodes is reduced and the contrast between low- and high-resistivity zones is increased. One major drawback to the increased noise is that a greater degree of modeling artifacts occurs in the form of extreme high and low bulls-eyes. These features are noted where present.

The initial targets for the 2D-ERI investigation were the depth and lateral continuity of the upper and lower clay units (UCU and LCU) underlying the site. The LCU proved too great in depth to be fully resolved using the 2D-ERI method. This is in part due to the near surface conditions and in part due to resolution limits imposed by modeling algorithm (fuzzier solution with depth). A distinct decrease in electrical resistivity, however, occurs at depths where borings adjacent to the profiles indicate the top of the LCU. The UCU is only partially resolved on the 2D-ERI profiles due primarily to its thinness (<2.5 m).

Profile 1 is oriented southwest to northeast and lies south of and parallel to the main drainage ditch adjacent to the 260<sup>th</sup> Motor Pool fence (See Figure 2). The resulting 2D-ERI models are shown in Figure 3 with the April 2000 data in the top panel, and the second round model results in the lower panel. This convention is observed for each profile. The first round of data collection used an electrode spacing of 6m and 42 total electrodes, which provided a total profile length of 246m. The second round used a 3m-electrode spacing with 56 electrodes, resulting in a 245m

A-13

long profile. The decreased electrode spacing for the second round survey was used in an attempt to increase the resolution of the model.

A 15m thick high-resistivity (>100 ohm-m) layer dominates the resulting models constructed for Profile 1 (Figure 3). The top of this high-resistivity zone averages approximately 2m in depth on the southwestern half of the profile and shallows to the NE until it is just below the ground surface (coordinate 138X and greater). The bottom of this layer averages approximately 20m in depth below ground level. Lateral continuity of this layer is lost between profile coordinates 84X and 138X, where zones of lower resistivity break the high-resistivity layer.

Low-resistivities (<40 ohm-m) underlie the high-resistivity layer and are probably caused by clay intervals in the lower clay unit (Miocene). The resolution of the 2D-ERI model at depth does not allow determining a precise interface for the top of these clay units. The actual interface most likely occurs during the transition from high-to-low resistivity, perhaps in the 60-80 ohm-m contour range. In a gross sense, though, the lower clays (Miocene) occur at an average depth of approximately 15-20m below ground level. Undulations upwards of 5m occur at the top of these low-resistivity units, though at this juncture it is unclear whether changing moisture conditions or true changes in the elevation of the clays is occurring.

An almost 10m rise in the clay surface is observed between profile coordinates 102X and 120X on the second round model shown in Figure 3. This coincides with an upward shift and thinning of the high-resistivity zone in this area (the initial round of data suggested a low point in the clay surface at this location). One explanation is that the rise is a modeling artifact produced by the modeling algorithm to handle the noisier data. Note that the overlying high-resistivity zone almost triples in resistivity (~100 to ~300 ohm-m) from the first to the second round. An alternate explanation is that drier soil conditions have enhanced the contrast between sand/silt and clay intervals, and the top of the low-resistivity material coincides with the top of the upper clay unit.

Profile 2 is oriented northwest to southeast, runs sub-parallel to Tubb Street, and the resulting 2D-ERI models are shown in Figure 4 (see Figure 2 for the profile location). Both survey rounds used an electrode spacing of 3m and a total of 56 electrodes, resulting in a profile length of 165m. The initial survey in April, however, used a base array of 28 electrodes and two roll-along extensions of 14 electrodes each to construct the profile, whereas the October survey used a single



No. of Concession, Name



array of 56 electrodes. The later geometry has the advantages of bridging gaps inherent in the collection of roll-along surveys and allows penetrating to greater investigation depths.

The two 2D-ERI models constructed for Profile 2 (Figure 4) compare favorably, except for the following two areas: a near surface, resistivity-high bulls-eye beneath profile position 111X, and zones of increased resistivity on the northwest end of the profile on the October survey. These differences are attributed to the drier soil conditions brought on by the summer-long drought. In this case, the drier soil conditions have increased the electrical contrasts between the clay and silt/sand intervals, and the modeling algorithm is over-estimating the true resistivity.

A thin (2-3m thick) low-resistivity layer (<20 ohm-m) is observed just below the ground surface on Profile 2 (Figure 4). This layer begins near profile position 36X and exits at the southeast end of Profile 2.

A layer of moderate-to-high resistivity (>70 ohm-m) immediately underlies the near-surface low-resistivity layer at an average depth of 2m. This high-resistivity appears as a thicker zone in the northwest third of the profile, where it averages 8-10m in thickness on the April data set and reaches approximately 12m in thickness beneath profile position 57X. The high-resistivity layer thins towards the southeast to an average thickness of 5m, and maintains this thinner state across the rest of the profile. The "layer-cake" geo-electrical response on the southeastern half of the April model is consistent with the underlying geology. The thicker electrically resistive structure between profile coordinates 45-63X may be indicative of a thicker coarser grained interval. Also note that this part of the profile crosses an area with sub-surface TCE contamination.

Near-surface, high-resistivity features observed on the northwest end of the profile are most likely associated with fill material used for construction of the motor pool's parking apron. A near-surface high-resistivity bulls-eye observed in the October data near profile position 25X is most likely caused by the drainage ditch.

The presence of clay units is inferred for causing the underlying low-resistivities in the southeast two-thirds of the profile. The top of this low-resistivity occurs in the 8-to-10m-depth range in the southeastern 2/3 of the profile, and at a minimum depth of 15-to-20m in the northwest. This change depth is similar in magnitude to that observed on Profile 1.

Figure 5 shows the 2D-ERI modeling results for Profile 3, which was acquired along an approximate north-to-south transect along the western edge of a gravel roadbed extending through



the wooded area (see Figure 2 for location). The initial survey in April used a base array of 28 electrodes and two roll-along extensions of 14 electrodes each to construct the profile, and the November survey used a single array of 56 electrodes. The geo-electric model for the April data (top panel, Figure 5) displays very low model error, whereas the November survey (bottom panel, Figure 5) yielded a very noisy data set with a correspondingly high modeling error. Processing of the November survey required using additional data smoothing and horizontal filtering that was not implemented for any of the other profiles.

Model results (Figure 5) show an approximately 2m thick, near-surface low-resistivity layer (<20 ohm-m) that extends across most of the profile. This layer begins near profile position 25X and ends near position 144X. A near-surface layer of similar low-resistivity and thickness is observed on the other three profiles, and is interpreted to be a naturally occurring feature.

Underlying the low-resistivity layer is a 7-9m thick layer of moderate-to-high-resistivity (>70 ohm-m) that extends across the profile. In the April model, this layer decreases in resistivity towards the south where it becomes a low-to-moderately resistive zone (35-60 ohm-m). The November model, however, does not indicate a decrease in resistivity to the south for this layer, but shows pronounced lateral discontinuities. Note also that the resistivity of this layer is much greater than observed on the April model. The discontinuities in the November model (bottom panel, Figure 5) are interpreted as artifacts introduced by the modeling algorithm (pinching out or necking problem). In addition, drier soil conditions are interpreted to have increased the electrical contrast between the clays and silt/sand layers, and the model algorithm is either under-or overshooting the resistivity value for individual zones.

Another zone of low resistivity immediately underlies the moderate-to-high resistivity layer. The top of this low-resistivity zone occurs at a depth of approximately 9-to-11m, and the November model indicates that this horizon is from 7-to-10m in thickness. An apparent increase in resistivity within this zone below profile position 66X is most likely a modeling artifact.

High-resistivities are observed at the base of the November model, suggesting the presence of sand or coarser-grain intervals. This zone occurs at a depth consistent with Miocene units.

Profile 4 is oriented west-to-east, and bisects the study area along a line of monitoring wells (Figure 2). Both the April and November surveys utilized an electrode separation of 3 m and began at the same point; however, slightly different geometric configurations were used. The





A-19

April survey consisted of a base array of 28 electrodes and a single roll-along of 14 electrodes for a total line length of 123m. The November survey consisted of a single array of 56 electrodes for a total line length of 165m. The later array geometry increased depth of exploration from approximately -10 to -20 m MSL with no loss of data resolution in the near surface.

Modeling results for Profile 4 are presented in Figure 6. Like the previous three profiles, the November data suffer from a significant increase in noise that is attributed to drier soils brought on by the summer-long drought. General trends within the data are preserved, however. For both models, a thin low-resistivity layer that is approximately 2m thick is present just below the ground surface. Low-resistivity layers of similar dimension and position are also observed on the other three profiles, suggesting a common and most likely natural condition.

The western half of the profile is underlain by a high-resistivity layer (>80 ohm-m) that reaches a thickness of upwards of 15m. Profiles 1 and 2 also show a thicker, high-resistivity zone in this general region. Towards the east, the high-resistivity layer thins to approximately 7-9m. The November model exhibits an increased lateral discontinuity for this horizon in the eastern half of the profile, which is attributed to the drier soil conditions and relatively noisier data.

At depth, low-resistivities underlie the eastern half of the profile with top at approximately 6-8m in elevation (11-13m depth). The November model suggests a very thick (>10m) lowresistivity zone, though it is unclear at this time if the model is fully resolving deeper features.

No evidence for burial activity is indicated on Profile 4 (especially the November data which extended further into the wooded area).

### **Borehole Geophysical Logging**

Borehole geophysical surveying was conducted in order to map the vertical distribution (top, bottom, and thickness) of clay horizons adjacent to the 260<sup>th</sup> Motor Pool, as well as the electrical properties of the subsurface to help interpret the 2D-ERI models. Borehole methods used consisted of direct-push conductivity (DP e-log), EM induction (conductivity), and natural-gamma surveys. The methods used, and the PVC cased holes or wells surveyed, are given in Table 1.

| l'able l | • • | Geophysical | . methods | used | for | each | PVC | cased | hole | or well |  |
|----------|-----|-------------|-----------|------|-----|------|-----|-------|------|---------|--|
|----------|-----|-------------|-----------|------|-----|------|-----|-------|------|---------|--|

|                |          | Borehole Ge  | ophysical Logging |
|----------------|----------|--------------|-------------------|
| Well/Boring ID | DP e-log | EM Induction | Natural Gamma     |





| X1-1     | No  | Yes | Yes |
|----------|-----|-----|-----|
| X1-2     | Yes | No  | No  |
| X2-1*    | Yes | Yes | Yes |
| X2-2     | Yes | No  | No  |
| X3-1*    | Yes | Yes | Yes |
| X3-2     | Yes | No  | No  |
| X4-1     | Yes | No  | No  |
| AF-31/42 | No  | Yes | Yes |

\* All three methods used at this location

The rationale for using the above tools is that clay horizons can be distinguished from silt/sand intervals using both radiological and electrical properties. Clay sediments include relatively high amounts of naturally-occurring, gamma-ray emitting potassium-40 and daughter isotopes of the uranium- and thorium- decay series, yielding a significantly greater response than sand intervals on natural gamma logs (Keys, 1990). Clay sediments are also more electrically conductive than sand or silt intervals, and exhibit a significantly greater response on conductivity logs. Changes in borehole conductivity, however, may also arise from variations in the concentration of total dissolved solids (TDS) within borehole fluids (Keys, 1990), and thus mask sand/clay changes. The combined use of electrical and passive radiation tools assists in determining borchole fluid versus formation effects.

### Direct-push Conductivity Surveys (DP e-log)

Six electrical-conductivity DP e-logs were collected at the 260<sup>th</sup> site by the U.S. Army Corps of Engineers (Savannah) using a GeoProbe rig fitted with a Wenner-array tip. The DP e-log method provides an in situ measurement of the electrical properties of the underlying soil and sediment. Locations of the GeoProbe direct push points are indicated on Figure 2, and plots of the resulting DP e-logs are provided in Appendix B. DP e-log positions were located at predetermined sites on 2D-ERI profiles to test the model results and to aid in their interpretation (see Figure 2 for locations). Two of the DP e-logs (X2-1 and X3-1) were subsequently cased with 2 inch PVC to permit borehole geophysical logging with the EM induction and natural-gamma tools.

### EM Induction and Natural-Gamma Borehole Surveys

Borehole geophysical measurements were performed in one well (AF-31/42) and three of the GeoProbe installed PVC casings at the 260<sup>th</sup> site using the natural-gamma (HLP-2375/S) probe and an EM induction (EMP-2493) tool. A Mount Sopris MGX data logger was used to manipulate the tools (see Appendix A for further discussion of these instruments). Two of the PVC cased holes surveyed using the EM induction and natural-gamma tools also had DP e-logs collected, which allows directly comparing the DP e-log with the EM induction data. Plots of the EM induction and natural-gamma logs are presented in Appendix B.

#### **Results of Borehole Geophysics**

「日本」の

CONTRACTOR OF

A clay horizon, termed the Upper Clay Unit (UCU), was detected at an average depth of 8m by the borehole geophysical logs (Figures B.1 – B.4). The natural-gamma response for this unit lies within a consistent range of 100-115 counts per second (CPS), which makes it readily identifiable on the GeoProbe holes, X1-1, X2-1, and X3-1, where the average background is in the 60-70 CPS range (Figures B.1 – B.3 and Table B.2). Stronger background levels observed in Well AF-42 (80 CPS, Figure B.4) tend to mask the UCU. These stronger background levels are interpreted to arise from materials used in the construction of the well. None of the PVC cased holes/wells logged with the natural-gamma tool penetrated the Lower Clay Unit (LCU).

Five of the DP e-log and EM-induction surveys (X2-1, X2-2, X3-1, X3-2, and X4-1) indicate the presence of a high-conductivity, near-surface layer, that averages 2m in thickness. This zone directly correlates with the low-resistivity (high-conductivity) near-surface layer imaged on the 2D-ERI profiles. Direct push points X1-1 and X1-2 do not show this near-surface, highconductivity layer and it is absent on the corresponding parts of the 2D-ERI models for profiles 1 and 2.

EM induction logs collected using the EMP-2493 downhole tool in PVC cased holes X2-1 and X3-1 compare favorably with DP e-logs recorded for those points. In general, the DP e-logs provide higher resolution than the induced method, which allows detecting thinner conductive zones. The induced response mimics that of the DP e-logs; however, the response is smoothed across finer layers and the range of values as a whole are significantly dampened.

The UCU is identified as a 1.3-to-2.5m thick zone ranging from 75-to-100 milli-siemens per meter (mS/m) in conductivity (Figures B.1 – B.4, and Table B.2). This horizon is consistent in

depth and thickness for the 100-115 CPS natural-gamma zone identified as the UCU. The DP elogs tend to better define the top and bottom of this horizon, whereas the EM induction logs, due primarily to the length of the EM induction tool, tend to smear the upper and lower contacts. The effect is that the induction log appears as a filtered or averaged reduction of the DP e-log data.

In some cases (X1-2 on Figure B.1) the UCU starkly contrasts with the surrounding sediment where the background conductivities range from 20-to-30 mS/m. In other cases, notably push points X2-2 and X3-1 and X3-2, the UCU defines the top of a sequence of clay horizons (or stringers). Push point X3-1 for example indicates an approximately 4m thick clay zone underlying the UCU (elevation of -9 m), whereas on X2-2 and X3-2 this intermediate zone is approximately 2m thick and occurs at a higher elevation (-6 m).

Taken as a whole, the borehole electrical data suggest a 7 to 9m depth range for the top of the UCU. Except for the near-surface, high-conductivity zone, the electrical properties for the interval above the UCU appear to reflect sand and silt sediments. Minor clay stringers are interpreted to be present due to thin 1m-thick zones of moderately higher conductivity (50-to-70 mS/m). Clay horizons are more prevalent beneath the UCU as evidenced by an increase in the number of electrically conductive zones.

Only the DP e-logs penetrated into the LCU (except X3-1), which occurs as an electrically conductive unit at depths of 13 to 22 m below ground level (elevations of -12.5 to -16.5m, mean sea level, Table B.3). Thickness of the LCU ranges from 1.6m (X2-1) to almost 4m (X3-2), and the LCU exhibits a consistent range of 130-145 mS/m in conductivity. This distinguishes it from the UCU and other overlying clay zones, each of which tends to be lower in conductivity (80-100 mS/m). Thus the 4m thick electrically conductive zone (~100 mS/m) observed on X3-1 at an elevation of approximately -9m (Figure B.3) cannot be interpreted as part of the LCU.

Structure and isopach maps of the UCU were constructed from the DP e-log data and are shown in Figures 7 and 8, and a structure map of the top-of-the LCU is shown in Figure 9. These maps serve to provide boundary information for the potential migration direction and pooling locations for subsurface contaminant. The top-of-the UCU (Figure 7) shows a consistent slope towards the southeast from an elevation of approximately -2m at probe points X1-1 and X1-2 to about -3.5m in elevation at location X3-1. The isopach map (Figure 8) indicates that the UCU is thinnest under location X3-1.



Figure 7. Structure Map of the Top of the Upper Clay Unit. Elevation in meters relative to sea-level.



Δ-26

(

(

Figure 9 is a map showing the elevation of the top-of-the LCU and the contours are in meters relative to mean sea level. A topographic low for the top-of-the LCU is present beneath the X3-1 and X3-2 push probe locations. Probe point X3-2 encountered the LCU at an elevation of -16.5m, and an elevation of -17.5m is inferred for X3-1. The X3-1 push probe location did not encounter the LCU, which extended to -17.5m in elevation.

The structure maps (Figures 7 and 9) indicate that DNAPL migration would likely occur in a southwest direction towards the X3-1 location.

## Electromagnetic Terrain Conductivity and Metal Detection Mapping

EM terrain conductivity mapping measures lateral variations in electrical-conductivity in the upper 2-to-4 m of the subsurface. Disposal and burial activities usually perturb the natural electrical conditions, which allows mapping trench and pit features. EM metal detection supplements the terrain conductivity data by determining whether metallic debris is buried under a particular site. The Geonics EM-31 and EM-61 instruments were used to collect the terrain-conductivity and metal-detection data, respectively. A more thorough description of the use of these instruments is provided in Appendix A.

Data were collected along NE-SW oriented transects spaced at 5 m intervals in the grid area shown in Figure 2. The primary purpose for these surveys was to determine whether unrecorded burial or disposal activities had occurred in the wooded area southeast of the motor pool. The impetus for these surveys was the discovery of areas with surface debris (pots, bottles, corrugated steel siding, etc), a partially exposed 55 gallon drum (no markings), and a 5 gallon drum (fuel/deicing compound) during the initial phase of geophysical surveying. The resulting survey grid was constructed to encompass these features.

Figures 10 and 11 show the results for the EM-31 terrain-conductivity and EM-61 metal detection surveys. Each data set is presented as a color-contoured anomaly map with roads and cultural features overlain. The gridded data have been rotated and scaled into the Georgia State Plane (U.S. Survey Feet) coordinate system and locations of anomalies of interest are given in these coordinates.

A northeast-southwest trending zone of high-conductivity (>58 mS/m) dominates Figure 10. This zone is interpreted to be a natural feature due to its size and shape. Zones of lowconductivity (<30 mS/m) are present along the southeast and northwest edges of the survey area.

15

A-27



Section 1

Sector Sector

(

Figure 9. Structure Map of the Top of the Lower Clay Unit. Elevation is in meters relative to mean sea-level. The elevation of the LCU under boring X3-1 is estimated, and could be lower than shown.



記録は言語

ļ





175 16.0 14.5 13.0



Statuser's

A STATE OF COMPANY

All States and states

a transmitter

The construction material used for the road most likely causes the southeastern low-conductivity zones. Excavation of the drainage ditch northwest of the grid may be the cause for the low-conductivity zones observed along the edge of the drainage ditch.

Contraction of the local division of the loc

STATISTICS.

の記録のない

Other features observed on Figure 10 consist of a 20x12 m zone of high-conductivity located immediately north of where the 55 gallon drum was discovered, and an E-W elongated low-conductivity zone located approximately 10-12 m west of where the 5 gallon drum was found. The high-conductivity zone is tentatively interpreted as a natural feature due to its similarity to the NE-SW trending high that dominates the figure. The low-conductivity zone, however, may be related to the presence of a drainage ditch that cuts west-to-east through the grid at this location.

The metal detection results presented in Figure 11 do not indicate the presence of any pervasive burial activity southeast of the 260<sup>th</sup> Motor Pool. Minor amounts of buried debris are likely present along the SE edge of the grid (980000X, 734050Y) and are interpreted to be associated with where surface debris was dumped. The proximity to the existing road has perhaps allowed some uncontrolled dumping to occur. Two other zones that likely contain shallowly buried metal are present NW (979950X, 734125Y) and NNE (980025X, 734150Y) of this feature. Depth analyses performed on the above anomalies indicate a maximum burial depth of slightly less than 1 meter.

Buried debris is likely present immediately west of where the 5-gallon drum (fuel/de-icing compound) was discovered. This debris is just north of where the conductivity-low is observed (Figure 10), and may be related to minor amounts of dumping/burial. A drainage ditch cuts through the wooded area in this vicinity.

### Discussion

The 2D-ERI data have mapped an electrically resistive layer that ranges from 7 to 15m in thickness. The electrically resistive zone is believed to correlate with sands and silts of Pliocene to Holocene in age, and represent a potential contaminant storage and or migration zone. Overlying this layer is a thin, near-surface, low-resistivity (conductive) layer that may be the source for the high-anomalies observed on the EM anomaly map (Figure 10), and underlying the resistive layer are zones of lower-resistivity interpreted as clayey intervals. The overall layer-cake interpretation is consistent with the local geology described for the HAAF region.

The base of the high-resistivity zone coincides with the Upper Clay Unit (UCU) where the resistive layer is thinner. This condition occurs along the southern half of Profile 2, all of Profile 3 and the western half of Profile 4. The top of the Lower Clay Unit (LCU) has probably been mapped where the high-resistivity layer is thickest, which occurs along Profile 1, and the northern and western ends of Profiles 2 and 4. In these cases, the UCU was not imaged by the resistivity data.

### Comparison of 2D-ERI and Borehole Geophysical Data

Even though the 2D-ERI data indicate simple model of an electrically resistive layer overlying a more conductive zone (sands and silts overlying clayey intervals), consideration must still be given to the actual detail afforded by this type of data. To do this, comparisons of the 2D-ERI models (resistivity models) and the borehole geophysical logging results are given in Figures 12 through 15. In general, the 2D-ERI data provide gross geo-electrical structure though individual clay units are not fully resolved. The 2D-ERI data, at best, allow determining the approximate top for these clayey zones.

Figure 12 shows the results along Profile 1. The UCU does not appear to have been imaged by the 2D-ERI data as evidenced by the results for the X1-1 and X1-2 borings. At X1-1, a 2m thick layer is indicated for the UCU with a resistivity of 13-14 ohm-m (75 mS/m), yet the resistivity model only indicates the presence of higher-resistivities in the 35-50 ohm-m range. This range does, however, correspond to base line values for X1-1 (30-40 ohm-m or 25-33 mS/m) indicated on the EM induction log (magenta line).



と目前に

Non-

**C** 

Ì



A-33







and a subscription

Profile 4 (Schlumberger) at 3 m electrode separation: April 2000

A-36

At boring location X1-2, the top of the UCU coincides with a subtle change from approximately 100 ohm-m (brown color) to about 85 ohm-m (yellow color) and not the true observed change of 100 to 10 ohm-m (10 mS/m to 100 mS/m on Figure B.1). The top of the LCU at Boring X1-2 also coincides with a subtle decrease in resistivity, from 85 ohm-m (yellow) to 65 ohm-m (green) on the 2D-resistivity model. The measured decrease (DP e-log) indicates a true change from 100 to approximately 15 ohm-m for this interval.

State State State

A similar interpretation can be made at location X2-1 on Profile 2 (Figure 13). In this case, however, the UCU does not appear to be imaged at all as a resistive zone has been modeled at its appropriate depth. Based on the DP e-log results, the top of the UCU occurs in the transition from high to low resistivity. The UCU is thinner here (<1.5m) and below the vertical resolution of the 2d-ERI model. Also, the DP e-log indicates fewer clay intervals in the -25 - 10m elevation range than observed at location X2-2.

A better correlation between the 2D-ERI model and the borehole geophysical data is observed at location X2-2 on Figure 13. Here, both the 2D-ERI model and DP e-log data indicate a near-surface, low-resistivity zone (<10 ohm-m, >100 mS/m). This near-surface agreement also occurs at position X2-1. Underlying the low-resistivity zone is an approximately 8m thick zone of increased resistivity, which corresponds to the decrease in electrical conductivity observed on the DP e-log. The 2D-ERI model indicates a thick, low-resistivity zone towards the base of the model at X2-2. The DP e-log, on the other hand, indicates a series of clay horizons and not one thick zone. This discrepancy highlights limits in the vertical resolution of the 2D-ERI method at greater depths.

The 2D-ERI model for Profile 3 and the X3-1 and X3-2 borehole geophysical logs are shown in Figure 14. Both the DP e-logs and the 2D-ERI model indicate a near-surface, low-resistivity (< 10 ohm-m) layer of approximately 2m in thickness. The DP e-log data indicate an approximately 7m thick zone of higher resistivity (50-90 ohm-m) underlying the near-surface layer. The corresponding parts of the 2D-ERI models also show a 7-8m thick zone of higher resistivity, though the value is greatly over-estimated at the X3-2 location. The over estimation is most likely due to the extremely dry soil conditions.

The top of the UCU has been approximated by the 2D-ERI model for Profile 3 (Figure 14) as a change to low-resistivities at depth (position of the UCU on the DP e-log). Below this elevation

-18

the correlation between the 2D-ERI and DP e-log data falls apart. For the X3-1 location, the low-resistivities exhibited by the 2D-ERI model could be caused by the UCU and intermediate clay zone (-4 to -14 m elevation range). However, at X3-2, the 2D-ERI model and DP e-log appear to be of opposite sense. Here the resistivity model indicates low-resistivities where the DP e-log indicates higher resistivities, and vice versa for the LCU.

Figure 15 shows the comparison between the 2D-ERI model for Profile 4 and the logging results for borings X4-1 and X3-1. A near-surface, low-resistivity zone of approximately 2m in thickness is indicated by both the X4-1 and X3-1 surveys, and the 2D-ERI model. Underlying this near-surface zone is a layer of higher-resistivity. Note that for the X4-1 location, the resistivity layer is modeled by the 2D-ERI data to extend to at least -10m in elevation, and does not resolve the numerous clay strings or the UCU. The LCU is below the maximum depth imaged by the 2D-ERI model, though the resistivity model does hint at decreasing resistivities at depth. The 7m thick, high-resistivity zone located at position X3-1 on Figure 15 corresponds to an intermediate, electrically-resistive zone between the near-surface and UCU on the DP e-log.

### Conclusions

Both the DP e-log and borehole geophysical technologies have demonstrated that they are suitable for mapping key geologic units at the 260<sup>th</sup> Motor Pool site. A clay horizon, termed the Upper Clay Unit (UCU) was observed on all 8 of the borings/wells logged by the geophysical methods, and a clay zone termed the Lower Clay Unit (LCU) was observed on 5 of the borings.

This UCU appeared at a consistent depth and had a unique geophysical response, such that it is interpreted to be laterally continuous beneath the field site. In particular, depth and thickness of the UCU are readily discernable on the borehole geophysical logs, and these data were integrated to produce structure and isopach maps. A general thinning and decrease in elevation towards the southeast is observed for the UCU.

The LCU occurs at depths of 18 to 22 m below ground surface and its upper surface shows a general decrease in elevation towards the southeast. The LCU was more electrically conductive than the UCU and other shallow clay horizons, which allows using it as a basal marker horizon.

The lateral continuity of the UCU and LCU indicate that they can act as a barrier to the migration of DNAPL. If the DNAPL pools on top of either unit, then the likely migration direction will be to the southeast towards probe point X3-1.

The 2D-ERI data have mapped an electrically resistive layer that ranges from 7 to 15m in thickness. This electrically resistive zone is believed to correlate with sands and silts of Pliocene to Holocene in age, and represent a potential contaminant storage and/or migration zone. The base of the high-resistivity zone coincides with the UCU where the resistive layer is thinnest and with the top of the LCU where the high-resistivity layer is thickest. The overall layer-cake interpretation for resistivity data is consistent with the regional geology for HAAF.

A STATE OF ST

Electromagnetic terrain-conductivity and metal-detection surveys do not indicate the presence of an undocumented disposal or burial site in the wooded area SE of the 260<sup>th</sup> Motor Pool. The 2D-ERI data collected along Profiles 1, 3, and 4 also do not show any features consistent with burial or disposal activity. The surface debris present is probably due to isolated dumping incidents and does not represent a systematic disposal. Buried debris will likely be found at two small regions that are indicated by high-anomaly response on Figure 11. Maximum depth of burial is probably less than 1 m.

### Recommendations

Based upon the success of the subsurface geophysical technologies, it is recommended that any further characterization of geology within the 260<sup>th</sup> Motor Pool site include DP E-log and well-log geophysical surveys where feasible. To constrain and map the UCU with geophysical well-logging techniques, wells that extend to at least 12m in depth (-6m MSL) are required. Furthermore, metal casing precludes the use of the induction method, which severely limits the capability of a well-log geophysical program. For this reason, viable wells will have to be cased with PVC.

Geophysical survey results at the 260<sup>th</sup> site indicate that the 2D-ERI method might be suitable for mapping the UCU if a tighter electrode spacing (<3m) is used. The 2D-ERI method may also be suitable for mapping the LCU if gross structural features are desired (e.g. approximate depth and lateral-continuity). Modeling results when combined with limited GeoProbe DP e-logging points provides a sufficient level of confidence in the interpretation of the 2D-ERI data.

### References

- Christy, Collin D., T.M. Christy, V. Wittig, 1994. A Percussion Probing Tool for the Direct Sensing of Soil Conductivity. In: Proceedings of the Eighth National Outdoor Action Conference and Exposition. NGWA.
- Foyle, A.M., V.J. Henry, C.R. Alexander, 1999, *Miocene Aquiclude Mapping Project: Phase 1* Findings Report, Georgia Department of Natural Resources, Atlanta, Project Report 39.
- Geonics Limited, 1994, EM-61 High Sensitivity Metal Detector Operating Manual, Geonics Ltd., Mississauga, Canada, 70 p.
- Geonics Limited, 1991, EM-31 Operating Manual (for Models with Two Digital Meters), Geonics Ltd., Mississauga, Canada, 61 p.
- Geoprobe Systems, 1998. Geoprobe SC400 Soil Conductivity Probe, Product Bulletin No. PBSC40398. Kejr Inc., Salina, Kansas.
- Golden Software, 1999, SURFER for Windows, Gridding and Contouring, 809 14<sup>th</sup> St., Golden, Colorado.
- Keys, S.W., 1990, Borehole Geophysics Applied to Ground-water Investigations; Techniques of

Water-Resources Investigations of the United States Geological Survey, Book 2, Chapter

E2. U.S. Government Printing Office, 150 p.

A THE REAL OF

経済に

- Loke, M.H., 1998, RES2DINV ver 3.3 for Windows 3.1, 95 and NT: Rapid 2D Resistivity & IP inversion using the least-squared method. Distributed by Advanced Geosciences, Inc., Austin, TX, 66 p.
- Pawlowski, J.R., R. Lewis, T. Dobush, and N. Valleau, 1995, An Integrated Approach for Measuring and Processing Geophysical Data for the Detection of Unexploded Ordnance, Symposium on the Application of Geophysics to Engineering and Environmental Problems, Orlando, FL, Environmental and Engineering Geophysical Society, pp. 965-982.
- McNeill, J.D., 1980, Electromagnetic Terrain Conductivity Measurements at Low Induction Numbers, Technical Note TN-7, Geonics, Ltd., Mississauga, Canada, 15 p.
- RIMROCK Geophysics, 1992, SIPT2 Refraction Processing Software, Version 3.2, Boulder, Colorado.
- Scott, J.H., 1973, "Seismic Refraction Modeling by Computer," Geophysics, 38(2):271–284.
- Scott, J.H., 1977, SIPT A Seismic Refraction Inverse Modeling Program for Time-Share Terminal Computer Systems: U.S. Geol. Survey. Open-File Reports 77-366, 27 p.

# **APPENDIX A: Geophysical Instrumentation**

### Overview

ST. BRANN

No. of Concession

Contraction of the local division of the loc

No.

COLUMN TO THE OWNER

Geophysical investigations conducted at the 260<sup>th</sup> Motor Pool at HAAF were designed to detect whether uncontrolled burial/disposal activities had occurred, and to map the continuity and structure of the underlying geology. Instrumentation used to collect geophysical data at HAAF consisted of the following:

- Geonics EM-31 electromagnetic conductivity meter
- Geonics EM-61 electromagnetic induction meter
- Sting/Swift 2D-Electrical Resistivity Profiling System
- GeoProbe Direct Push Resistivity/Conductivity Meter
- MGX Downhole Induction and Natural-Gamma Logging System
- Trimble Pro XRS Global Positioning Instrument

### Electromagnetic Terrain-Conductivity Surveying

Electromagnetic-induction instruments (EM-31 and EM-34) are used to measure the electrical conductivity of the near-surface, and can also be used to locate buried metallic objects. A transmitter coil is used to induce an electrical current into the ground, and the receiver coil measures the strength of the secondary magnetic field generated by these currents. Two components of the secondary magnetic field are recorded: 1) the quadrature-phase component which is used to measure the ground conductivity, and 2) the inphase component which is used for metallic detection due to its extreme sensitivity to large metallic objects (Geonics Ltd., 1991). The electrical conductivity of the ground is nearly linearly proportional to strength of the quadrature-phase component and is given in units of milli-siemens per meter (mS/m). The inphase measurement is the ratio between the secondary magnetic field to the primary field, and is expressed in parts per thousands (ppt).

The coils can be oriented in either a vertical dipole or horizontal dipole configuration. For the vertical dipole case, the axes of the coils are oriented perpendicular to the ground surface, and for the horizontal dipole, the axes are parallel to the ground surface. For both cases, the coils are maintained in a coplanar state. The vertical dipole orientation is generally preferred over the horizontal dipole because it provides for a greater investigative depth and is less sensitive to near surface variations.

The separation between the transmitter and receiver coils is the primary component that determines the depth of penetration. Table A-1 lists the depth of investigation for different coil orientations and separations for the Geonics EM-31 and EM-34 meters. The "Maximum Depth" is roughly the depth at which 90% of the instrument response has occurred (0.75x horizontal coil spacing; 1.5x vertical coil spacing). The "Effective Depth" is the depth range where the instrument's overall response is the greatest. Thus, layers within the "Effective Depth" range contribute most to the measured conductivity.

Conductivity values obtained in EM surveying represent weighted mean values of all the layer conductivities from the ground surface to the maximum depth that is sensed by the EM instrument (McNeill, 1980). If the underlying rock or sediment is uniform, the measured conductivity value will be the true conductivity. The amount of contribution to the measured conductivity from a single layer depends on its conductivity, depth, and thickness. Deeper layers contribute less to the final value than do near-surface layers.

| Instrument    | Coil Orientation  | Maximum Depth | Effective Depth |
|---------------|-------------------|---------------|-----------------|
| EM-31 (3.3 m) | Horizontal Dipole | 2.5 m         | 0-2 m           |
|               | Vertical Dipole   | 5.5 m         | 0.5-2.5 m       |
| EM-34 (20 m)  | Horizontal Dipole | 15 m          | 0-13 m          |
|               | Vertical Dipole   | 30 m          | 3-16 m          |
| EM-34 (40 m)  | Horizontal Dipole | 30 m          | 0-26 m          |
|               | Vertical Dipole   | 60 m          | 6-32 m          |

Table A-1. Effective penetration depth of the EM-31 and EM-34 Instruments

#### Geonics EM-31

The EM-31 transmitter and receiver coils are housed in a 3.5m long sensor boom, and a single person can operate the instrument. A nominal depth of investigation of 5.5m is realized when measurements are made using the vertical-dipole mode. Measurements are collected at ½ second intervals, and the quadrature and inphase components are collected simultaneously. This allows discrimination between anomalies sourced by buried metallic objects from those that are either lithologically or hydrologically controlled. Additional information consisting of the profile position, starting, and ending points, as well as fiducial mark locations along the profile, were

recorded with an OMNI 720 data logger (Polycorder). This information is then downloaded to a personal computer for processing and display.

#### Geonics EM-61 Metal Detector

and the second

The Geonics EM-61 is a portable electromagnetic induction instrument that measures the secondary magnetic field generated from buried metallic debris. The EM-61 uses a stacked, dual-coil configuration in order to allow discriminating between buried and surface-borne metallic debris. The EM-61 is capable of detecting buried metallic items to a depth of 3.3 m (10 ft). Data are recorded on three channels, which include an upper-coil response, lower-coil response, and coil-difference. The strength of the resulting secondary magnetic field is measured in millivolts (mV). These data, along with the survey geometry, are recorded on an OMNI 720 data logger, and are later downloaded to an IBM compatible personal computer for processing and display.

The dual coil configuration used by the EM-61 allows for discriminating between metallic objects that are more deeply buried than from those that are either at the surface, or are buried at a shallow depth (less than half-foot). Metal objects at or near the ground surface will produce approximately the same response from the upper- and lower-coils, whereas buried targets will produce a stronger response from the upper coil than from the lower coil, with the difference in response increasing with depth. Subtracting the lower coil response from the upper coil response produces a data set that effectively suppresses the anomaly signature from metallic debris at the ground surface, while simultaneously enhancing the signature for more deeply buried targets. In practice, maintaining meticulous field notes marking the locations of surface debris encountered during the survey augments discrimination of surface objects.

A depth estimate for individual targets can be determined from the ratio between the upperand lower-coil values at the peak of the corresponding anomaly (see Pawlowski et al., 1995). Software developed by Geonics Ltd. for the EM-61 metal detector automates this process by providing a graphical display of the profile data, and a real-time calculation of the depth. The algorithm used by the Geonics software is accurate for small, ball-shaped objects that are buried at a shallow depth, but will over-estimate the target depth for larger and/or more deeply buried targets. Clusters of small, shallow-buried objects will produce a secondary magnetic field that appears to be sourced from a larger and more deeply buried object (Geonics Ltd., 1994).

### 2-D Electrical Resistivity Imaging

Two-dimensional electrical resistivity imaging (2D-ERI) is conducted using an Advanced Geosciences, Inc. (AGI) Sting/Swift<sup>™</sup> automatic multi-electrode system and earth resistivity meter. Earth resistivity measurements are accomplished by passing an electric current between two electrodes and measuring the potential difference (voltage) between two separate electrodes. The measured voltage is a factor of the resistance of the earth material and the geometry of the electrode array. Resistivity, an intrinsic property of the earth, is then calculated using the measured voltage, the electric current strength, and a geometric factor for the electrode array. The calculated resistivity value is actually an "apparent-resistivity" because it includes the resistances of all the material that the electrical current passes through. A modeling procedure is then used to convert the measured apparent-resistivity data into earth-layer resistivity sections.

The electrodes used to measure the voltage difference are arranged in various geometries called arrays, and the calculated apparent-resistivity value is interpreted to represent a depth point at the center of an individual array. Depth of measurement is related to width of electrode separation, with greater electrode separation resulting in greater depths of penetration. Classically, two different techniques are used to determine the electrical resistivity of earth materials. In vertical electrical sounding (VES), electrodes are expanded about the center of an array to generate a layered electrical section at a single point (vertical profile). The horizontal profiling technique uses an array with a fixed electrode separation, which is marched along a line to image lateral variations at a constant depth.

The 2-D ERI method combines VES and lateral profiling in a single survey without the timeconsuming process of constantly moving electrodes and reconnecting cables. In 2D-ERI a single cable connects a linear array of electrodes (28 to 56 in this study), which are turned on and off using a preprogrammed sequence via a controller box. The raw apparent-resistivity data are typically displayed as a pseudosection where the lateral position of the measurement point is placed at the center of the corresponding electrode array, and the depth of the measurement increases with increasing electrode spacing. Apparent-resistivity pseudosections are useful for performing quality-control checks and for examining whether cultural objects have impacted the data set.

Apparent-resistivity pseudosections are converted, through a process termed inversion, into an electrical-resistivity cross-section showing true earth-layer resistivities. RES2DINV, a commercially available program, was used to perform the two-dimensional inversion modeling (Loke, 1998). During the inversion, the subsurface is divided into a number of blocks equal to or less than the number of measurement points. A smoothness-constrained, least-squares inversion routine is used to estimate the resistivity value of each block, and finite-element or finitedifference forward modeling algorithm is used to calculate the resulting pseudosection. The model is iteratively corrected until an apparent-resistivity pseudosection calculated from the model converges with the measured apparent-resistivity pseudosection. A root-mean-square (RMS) error calculation of the difference between the two apparent-resistivity pseudosections is used as a measure of the degree of fit for the model. Maximum convergence often occurs within 3 to 5 iterations, after which RMS values do not change significantly and the model may start to become unstable (Loke, 1998). The model conversion threshold (change between iterations) is normally set to 5% to avoid producing unrealistic model results (due to instability).

In some cases the apparent-resistivity data were manually edited to remove "bad" data points prior to inversion. These "bad" points are usually due to electrode grounding problems and to the presence of cultural interference (underground utilities). Other steps taken to improve the model quality are to incorporate topographic information and to verify a good coupling between the electrode and ground. Contact resistance checks are used prior to measurement to check for poor electrode-ground coupling, and those electrode positions with a coupling resistance greater than 1 kilo-ohm are soaked with a salt-water solution to enhance electrode/earth coupling.

Figure A-1 shows an output example from the RES2DINV program. The upper panel contains the measured apparent resistivity data, the middle panel is the computed (modeled) apparent-resistivity data, and the lower panel is the resulting resistivity cross-section. It must be understood that the models are constructed of distinct blocks and the method used to display this information smoothes over these blocks using a color-contouring scheme. Because the vertical and horizontal resolution is tied to the dimensions of each block, depth and thickness for individual anomalies will not be accurate. In general, both the vertical and lateral resolutions of the models decrease with depth.

27

A-47





(

A-48