
2021 Water Quality Report

Where does my water come from?

Fort Stewart's main water supply comes from six municipal groundwater wells that are no less than 500 feet deep, while Hunter Army Airfield residents are serviced by four 500-foot deep wells and one 1,100-foot

deep well. Groundwater is stored in permeable rock layers called aguifers, which are like underground lakes. Our groundwater is supplied by the Floridan Aquifer. Before the water is distributed, the water is chlorinated to kill disease-causing organisms and fluoridated to promote dental health.

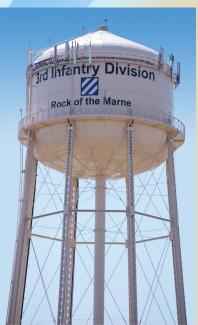
Georgia Water Restrictions

The state restricts outdoor water use to conserve our water resources. Homes and businesses with odd-numbered addresses may water on Sundays, Tuesdays, & Thursdays and even numbered or unnumbered addresses water on Mondays, Wednesdays, & Saturdays from 12 midnight to 10 a.m. and 4 p.m. to 12 midnight. All outdoor water use is prohibited on Fridays

R	RESOURCES Pollution Resources
0	OPTIMIZE WELL-BEINGENVIRONMENT
C	COMPLIANCE
K	KEEP IMPROVING
OF THE MARNE	Sustainable Fort Stewart/ Hunter Army Airfield

DPW Environmental Division 1550 Veterans Parkway, Bldg. 1137 Fort Stewart GA. 31314-5601

Local Postal Customer


Source Water Assessment

A source water assessment has been performed on the source of your drinking water (the Floridan Aquifer). The Wellhead Protection Plans at Fort Stewart and Hunter Army Airfield were developed to determine the susceptibility of contaminants entering our drinking water supply and to better identify ways for protecting our water source. For further information, a copy of these Wellhead Protection Plans may be reviewed at the Fort Stewart Environmental Office, 1550 Veterans Parkway (Bldg. 1137), Fort Stewart, GA 31314-5601. Point of contact is Mr. Stanley Thomas, 912-767-2010.

Vulnerability

Both MEDDAC'S Preventive Medicine and the DPW continually monitor the drinking water for contaminants. Our water is SAFE to drink; however, some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/ CDC (Center for Disease Control) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

0 5

Σ

R

R

ш

NOH

002

4

ш

. ഗ

2

0

79 5 C R

and septic systems.

Protecting your Water Source

The Directorate of Public Works (DPW) is pleased to present Fort Stewart and Hunter Army Airfield's Annual Water Quality Report (Water System Identification CG1790024 and CG0510107, respectively). Our water is SAFE to drink! This report provides you with a detailed account of all water monitoring and testing results gathered in 2021 confirming the

Installation's good water quality. As always, we've met our goal to provide our patrons with safe and dependable drinking water. Additional copies of this report are available at the Installation's Environmental Offices: Fort Stewart Building 1137 and Hunter Army Airfield Building 615.

The sources of drinking water (both tap and bottled) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the land or through

the ground, it can dissolve naturally-occurring minerals. Therefore, water can pick up substances as by-products from both the presence of animals and human activities. Contaminants that may be present in source water include:

 Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

• Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial and domestic wastewater discharges, oil and gas production, or mining and farming activities. • Pesticides or herbicides, which may come from a variety of sources such as agriculture, urban runoff. and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals (VOCs), which are by-products of industrial processes and petroleum production, and they can also come from gas stations, urban stormwater runoff,

• Radioactive contaminants, which can be either naturally-occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which provide the same public health protection. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling EPA's Safe Drinking Water Hotline (800-426-4791).

https://www.epa.gov/sdwa/drinking-water-contaminant-human-health-effects-information

2021 Water Quality Data

				Fort Stewart (CG			ONTAMIN	Hunter Army Airfie	ald (CG0510107)		
Parameter	MCL	MCLG	Detected	Range of Detection	Sample Date ²	Violation	Detected	Range of Detection	Sample Date ²	Violation	Typical Source of Contaminants
						ATED C	ONTAMI		Date		
Total Coliform	1	0	1 pos	n/d-pos	Jan-Dec 2021	NO	n/d	n/d-n/d	Jan-Dec 2021	NO	Naturally present in the environment
Fluoride (ppm)	4	4	0.99*	0.70-1.10	Jan-Dec 2021	NO	1.02*	0.70-1.10	Jan-Dec 2021	NO	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Chlorine (ppm)	4	4	0.68*	0.20-1.42	Jan-Dec 2021	NO	0.86*	0.20-1.54	Jan-Dec 2021	NO	Water additive used to control microbes
Lead (ppb)	AL=15	0	4.2**	1 of 38 Sites exceeding AL	Aug-Sep 2020	NO	4.7**	0 of 20 Sites exceeding AL	Jul-Aug 2019	NO	Corrosion of household plumbing system; Erosion of natural deposits
Copper (ppb)	AL=1,300	1,300	190**	0 of 38 Sites exceeding AL	Aug-Sep 2020	NO	190**	0 of 20 Sites exceeding AL	Jul-Aug 2019	NO	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
TTHMs [Total trihalomethanes] (ppb)	80	80	4.35* LRAA	n/d-8.1	Mar-Nov 2021	NO	n/d	n/d	Jun 2021	NO	By-product of drinking water chlorination
Haloacetic Acids (ppb)	60	60	0.58* LRAA	n/d-1.2	Mar-Nov 2021	NO	n/d	n/d	Jun 2021	NO	By-product of drinking water chlorination
				ι	JNREGU	LATED	CONTAN	IINANTS			
Chloroform (ppb)	n/a	n/a	0.48*	n/d-4.2	Mar-Dec 2021	NO	0.20*	n/d-0.66	Aug 2020-Jun 2021	NO	By-product of drinking water chlorination
Dibromochloromethane (ppb)	n/a	n/a	1.08*	n/d-3.6	Mar-Nov 2021	NO	n/d	n/d	Jun 2021	NO	By-product of drinking water chlorination
Sodium (ppb)	n/a	n/a	13,000*	13,000	Nov 2021	NO	48,200*	10,000-200,000	Aug-Sep 2020	NO	Erosion of natural deposits; Leaching through soils high in sodium
Dichlorobromomethane (ppb)	n/a	n/a	0.75*	n/d-2.6	Mar-Dec 2021	NO	n/d	n/d	Jun 2021	NO	By-product of drinking water chlorination
Chlorodibromomethane (ppb)	n/a	n/a	1.14*	0.66-1.6	Nov-Dec 2021	NO	0.1*	n/d-0.51	Aug-Sep 2020	NO	By-product of drinking water chlorination reacting with naturally occurring substances in water, such as decomposing plant material
Bromodichloromethane (ppb)	n/a	n/a	0.79*	0.65-0.93	Nov-Dec 2021	NO	0.14*	n/d-0.69	Aug-Sep 2020	NO	By-product of drinking water chlorination
Bromoform (ppb)	n/a	n/a	0.66*	n/d-2.8	Mar-Dec 2021	NO	n/d	n/d	Aug 2020-Jun 2021	NO	By-product of drinking water chlorination
lron (ppb)	n/a	n/a	n/d	n/d	Nov 2021	NO	32*	0-110	Aug 2020	NO	Corrosion of household plumbing system; Erosion of natural deposits
Dichloroacetic Acid	n/a	n/a	.08*	n/d-1.2	Mar-Nov 2021	NO	n/d	n/d	Jun 2021	NO	By-product of drinking water chlorination

Terms and Abbreviations:

Maximum Contaminant Level Goal (MCLG): Level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL): Highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Action Level (AL): The concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

ppm: Parts per million; a unit of measure equivalent to a single penny in \$10,000. HAA: Haloacetic Acids.

ppb: Parts per billion; a unit of measure equivalent to a single penny in \$10,000,000.

Water Conservation Tips

When it comes to conserving water, small changes can have a big impact. Here are some ways you can help conserve water.

- Turn water off while shaving and/or brushing your teeth.
- Take a shower instead of a bath.
- Only run washing machine/dishwasher for full loads.

Periodically check for toilet and faucet leaks.

TTHM: Total Trihalomethanes; by-products of drinking water disinfection.

n/d- Not Detected.; n/a- Not applicable; pos- Positive for the presence.

TT: Treatment Technique.

MRDL: Maximum Residual Disinfection Level.

MRDLG: Maximum Residual Disinfection Level Goal.

location during the previous four calendar quarters.

Range: The range of the highest and lowest analytical values of a reported

to 13.4 (highest value). EPA requires the range to be reported for certain analytes.

contaminant. For example, the range of an unregulated contaminant may be 10.1 (lowest value)

LRAA: Locational Running Annual Average. The average of samples taken at a particular monitoring

- Install water-saving shower heads, faucets, and toilets.
- Irrigate in accordance with FS/HAAF's irrigation schedule. (see "Georgia Water Restrictions" section)

Only EPA approved laboratory methods are used to analyze your drinking water. Our personnel take water samples from numerous locations throughout the distribution system and residential taps; samples are then delivered to an accredited laboratory where water quality analyses are performed. At a minimum, samples are analyzed as follows:

Synthet Lead and Nitrates/N Total Trib: Unregula

The Georgia Environmental Protection Division (EPD) issued Fort Stewart/Hunter Army Airfield an SOC monitoring waiver until DEC 2022 because EPD studies have shown that the drinking water is not vulnerable to contamination from SOCs at either

State Required Monitoring Frequencies

Parameter	Fort Stewart Monitoring Frequency	Hunter Army Airfield Monitoring Frequency
Contaminants	Once a month	Once a month
ganic Contaminants (VOCs)	Once every 3 years	Once every 3 years
Drganic Contaminants (SOCs)	Waived	Waived
Contaminants (IOCs)	Once every 3 years	Once every 3 years
Copper	Once every 3 years	Once every 3 years
trites	Once every year	Once every year
lomethanes (TTHM)	Once a quarter	Once every 3 years
ed Contaminants	Approx. once every 3 years	Approx. once every 3 years

Conserving our Water Supply

Everyday throughout the world, nations are facing water problems in terms of both quantity and quality. According to a report from the Organisation for Economic Co-Operation and Development, by 2050 water demands are expected to increase by 400 percent from manufacturing and by 130 percent from household use (from a baseline year of 2012). Although 75 percent of the earth is covered by water, only 1 percent is available as renewable fresh water, and only about one-third of all precipitation that falls on the land goes

Spray Park Facility

back to the oceans by rivers and runoff. We are a nation whose water needs are rapidly rising while available supplies are shrinking; regional water crises are becoming increasingly frequent as water tables are falling and stream flow is decreasing. We can no longer take our drinking water for granted. This means that individuals, municipalities, industries, and governments must be proactive in conserving and protecting our water supplies. The consequences of recurring long duration droughts are far-reaching, affecting wildlife, vegetation, and humans. Additionally, drought impacts on society are often exacerbated by the demand that people place on the water supply. Water is one of the most precious commodities we have on this planet; we ought not to treat it as if it were an unlimited resource. By shifting our priorities for water usage, we can prevent water scarcity. The well has run dry in many placeslet's not make our community next!

Health Effects of Lead in Water

If present, elevated levels of lead can cause serious nealth problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Water Systems are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using

water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at www.epa.gov/safewater/lead.