

Sampling Project Strategy and Path Forward

Closed Castner Firing Range Fort Bliss, TX

29 July 2010

Agenda

- Meeting Goals
- Site Overview
- Defining the Problem
- Study Goals
- Sampling Approach
- Path Forward
- Work Plan
- Schedule
- Questions

Meeting Goals

- Review current project scope and goals
- Introduce proposed sampling approach and procedures
- Present plans for data usability in future investigative efforts
- Understanding TCEQ expectations and level of involvement

El Paso Museum

Border Patro

Museum

Castner Range Overview

- Size
- Location
- Vegetation
- Terrain
- Historical uses
- Munitions types

Defining the Problem

- Large Site (7,007 acres)
- Varied types of firing ranges and munitions types used from 1930s – 1960s
- Heterogeneity of munitions constituents in soil
 - Most of surface area uncontaminated (>95%)
 - Most contamination in chunks localized around "low order" (partial) detonations
 - Most MC in top inch of soil on training ranges (deeper at demolition ranges)
- Challenges determining nature and extent of contamination
- Unknown future land use

Project Objectives

- Implement and test the effectiveness of the Army's Incremental Sampling (IS) Protocol on the Closed Castner Firing Range, Fort Bliss, TX
- Gain regulatory acceptance of IS sampling approach and results
- Characterize MC at Castner Range
- Test some hypotheses about the IS sampling approach on Castner Range

Study Goals

- Collect data in a manner that allows for use under Texas Risk Reduction Program (TRRP)
- Determine presence or absence of munitions constituents (MC) (energetics and metals)
 - If presence of MC, then determine nature and extent through comparison to TRRP PCLs
- TCEQ accept sampling results for use in future investigation and remediation efforts
 - Using Texas Accredited Laboratory
 - Validating Data in accordance with TRRP-13

Proposed Study Questions

- Is the Army's Incremental Sampling protocol implementable in a production setting?
- Determining nature and extent of MC on Castner Range (representative concentrations)
- What is the effect of sampling unit size on IS concentrations?
- What is the effect of erosion vs. deposition on MC concentrations?
- What is the correlation between MEC and MD density on MC concentrations?

- Determine Areas of Interest
- Identify Sampling Units
- Determine appropriate PCLs and Ecological Benchmarks for Screening Data
- Ensure data can be used for determining nature and extent

Munitions Constituents (MC)

- Energetics (examples)
 - Nitramines (RDX)
 - Nitroaromatics (TNT)
 - Nitrate Esters (NG)
- Metals (examples):
 - Lead
 - Antimony
 - Zinc
 - Copper

Determine Areas of Interest

Areas of Interest at the Site determined by evaluating data overlays from previous site characterization activities

- Both Incremental and Discrete Sampling will be performed
- Identify sampling units to sample using the Incremental Sampling method
- Collect samples using the Discrete Sampling Method

- Unknown future land use
- Nearby development and recreational use
- Recommendation:
 - Distribute sampling units across high and low MEC densities
 - Vary sampling unit size to test sensitivity of results
 - Sampling Units will be defined in the Work Plan

Proposed Solution: Incremental Sampling Design

Discreet Sampling

•	A	•	•						
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	A	•	•

Sample collection point for 100 discrete samples VS.

Incremental Sampling

--→

Path of travel

 Increment collection point for two separate MI samples

Soil Sampling Methods

- Shallow surface soils
- Uniform sample depth
- Uniform sample size
- Quick and easy to take a lot of sample increments (minimum of 30 increments)

Sample Processing (8330B)

- 1. Stratify range area
- 2. Incremental sampling design
- 3. Whole sample dried
- 4. Whole sample sieved
- 5. Whole sample pulverized
- 6. Subsampling

Path Forward

Utilize the analytical results from the IS and discrete sampling efforts to:

- Determine nature and extent of MC by comparing to appropriate TRRP PCLs
- Focus on areas requiring further assessment and delineation
- Justify areas that do not require further assessment

Data Screening

To define nature and extent, analytical results will be screened against the most current (March 2010) PCLs:

- Data will be initially screened against the Tier 1 Residential PCLs for 30-acre source area
- Select PCLs in accordance with TRRP
 - The lower of the TotSoil_{Comb}, GWSoil_{Ing}, and AirSoil_{Inh-v}
 - Compare value to background. If higher, utilize background.
- Data will be compared to ecological benchmarks

Work Plan

A Work Plan will be developed to document:

- Areas of interest
- Sampling approach
- Defined sampling units
- Screening levels (PCLs and ecological benchmarks)
- Method for Evaluating Results

- August 2010 October 2010: Develop Work Plan & UFP-QAPP
- February 2011: Soil Sampling
- March May 2011: Analytical analysis and report writing

Questions?

